

w w w . s y n g r e s s . c o m

Visit us at

Syngress is committed to publishing high-quality books for IT Professionals
and delivering those books in media and formats that fit the demands of our
customers. We are also committed to extending the utility of the book you
purchase via additional materials available from our Web site.

SOLUTIONS WEB SITE
To register your book, visit www.syngress.com/solutions. Once registered, you can
access our solutions@syngress.com Web pages. There you may find an assortment of
 valueadded features such as free e-books related to the topic of this book, URLs
of related Web sites, FAQs from the book, corrections, and any updates from the
author(s).

ULTIMATE CDs
Our Ultimate CD product line offers our readers budget-conscious compilations of
some of our best-selling backlist titles in Adobe PDF form. These CDs are the perfect
way to extend your reference library on key topics pertaining to your area of expertise,
including Cisco Engineering, Microsoft Windows System Administration, CyberCrime
Investigation, Open Source Security, and Firewall Configuration, to name a few.

DOWNLOADABLE E-BOOKS
For readers who can’t wait for hard copy, we offer most of our titles in downloadable
Adobe PDF form. These e-books are often available weeks before hard copies, and are
priced affordably.

SYNGRESS OUTLET
Our outlet store at syngress.com features overstocked, out-of-print, or slightly hurt
books at significant savings.

SITE LICENSING
Syngress has a well-established program for site licensing our e-books onto servers
in corporations, educational institutions, and large organizations. Contact us at
sales@syngress.com for more information.

CUSTOM PUBLISHING
Many organizations welcome the ability to combine parts of multiple Syngress books,
as well as their own content, into a single volume for their own internal use. Contact
us at sales@syngress.com for more information.

This page intentionally left blank

Max Schubert
Derrick Bennett
Jonathan Gines
Andrew Hay
John Strand

Elsevier, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively
“Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold
AS IS and WITHOUT WARRANTY. You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” “Ask the Author
UPDATE®,” and “Hack Proofing®,” are registered trademarks of Elsevier, Inc. “Syngress: The Definition
of a Serious Security Library™,” “Mission Critical™,” and “The Only Way to Stop a Hacker is to Think
Like One™” are trademarks of Elsevier, Inc. Brands and product names mentioned in this book are
trademarks or service marks of their respective companies.

KEY SERIAL NUMBER
001 HJIRTCV764
002 PO9873D5FG
003 829KM8NJH2
004 BAL923457U
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.
30 Corporate Drive
Burlington, MA 01803

Nagios 3 Enterprise Network Monitoring Including Plug-Ins and Hardware Devices
Copyright © 2008 by Elsevier, Inc. All rights reserved. Printed in the United States of America. Except as
permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in
any form or by any means, or stored in a database or retrieval system, without the prior written permission
of the publisher, with the exception that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 0

ISBN 13: 978-1-59749-267-6

Publisher: Andrew Williams
Copy Editor: Beth Roberts
Page Layout and Art: SPi Publishing Services

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director
and Rights, at Syngress Publishing; email m.pedersen@elsevier.com.

Max Schubert is an open source advocate, integrator, developer, and IT professional.
He enjoys learning programming languages, designing and developing software,
and working on any project that involves networks or networking. Max lives in
Charlottesville, VA, with his wife and a small herd of rescue dogs. He would like to
thank his wife, Marguerite, for her love, support and tolerance of his wild hours and
habits throughout this project, his parents for stressing the importance of education,
writing, and for instilling a love of learning in him. In addition, Max would like to
express his gratitude to the following people who provided him guidance and
assistance on his portion of this project: Sam Wenck, for his help in creating the early
outline for the security chapter and for his friendship, Ton Voon and Gavin Carr for
Nagios::Plugin and for allowing me to use the Nagios::Plugin::SNMP namespace for
my own Perl extension to Nagios::Plugin, Joerg Linge and Hendrik Bäcker for the
Nagios PNP perfdata / RRD graphing plugin, which I used extensively in this book,
my friends Luke Nabavi and Marty Kiefer for their extensive encouragement during
the writing of the book, many other friends who encouraged me when I was feeling
overwhelmed, and a big thank you to all of the Nagios core developers, plugin authors,
and enhancement contributors who’s works we have discussed in this publication;
it is you who make Nagios the wonderful framework it is today. I would like to also
personally thank Andrew Williams, our fearless Publisher, for his encouragement,
humor, and ability to make solid and rational decisions to keep us all on track.
Finally, my heartfelt thanks to everyone on this writing team; we have produced
what I feel is a very solid book in a very short period of time. Thank you all for
making this an exciting and satisfying experience.

Derrick Bennett has been working professionally in the IT Field for over 15 years
in a full spectrum of Network and Software environments. Being born a bit too late
and missing the Assembly bandwagon I started with computers and programming
with the Commodore Vic-20 and Basic language programs. From there my time
has been spent between both the software and hardware. In the 90’s as BBS Sysop,
to the mid 90’s as an MCSE supporting a large Windows network for a major
corporation, to today working with customers of all types to deliver real world

Authors

�

solutions for their environments. During that work I was first exposed to Network
monitoring on a global scale, and the pitfalls of trying to monitor enterprise networks
over frame-relay and dial up links. While working in the corporate world and supporting
large scale environments I also worked with smaller startups and new companies. This
was during the initial years of the commercialization of the Internet and many small
companies were working hard to provide commercial class service on low end budgets.
It was through this work on both enterprise networks and small 5 servers shops that
the true advantage of open source projects found their home for me. Since then I have
continued working for various large networks where monitoring has always been key.
It was through this work that I contributed source code changes to the NRPE project
for Nagios adding in SSL encryption along with other updates for the Nagios Core.
I have deployed Nagios in over 20 unique environments from 20 servers to a complete
NOC covering hundreds of systems spread across every country. A majority of my work
has been in integrating Nagios and other tools into existing applications, environments,
and processes and making the job of running a system easier for those that maintain
it. Even today I find my attraction to the systems and their software to be the same as
when I programmed my first basic goto to today when I install a new server and its
applications. In a never ending desire to reduce repetitive maintenance and to reduce
downtime I hope that everyone reading this will find something that helps make their
systems run even better than before. Like most the co-authors on this project I can
be found on the Nagios-Dev mailing list nagios-devel@lists.sourceforge.net or at
dbennett@anei.com.

I am thankful to those who have done all the great programming before me and
to my parents Pat and Fred who not only inspired my involvement with computers but
supported my obsessive love for them once I plugged the first one in. I also want to
thank Charles and all the other people out there willing to financially support people,
employees, or family, who are working on open source projects and supporting the
future of great applications. Last I want to say thank you to Ethan, he has been truly
devoted to the Nagios project and has contributed more than anyone else ever could.
His true support of Nagios and the community is what makes all of these Nagios
related resources so worthwhile and has made a good idea into a great application.

Jonathan Gines is a systems integrator, software engineer, and has worked for
major corporations providing telecommunications and Internet services, healthcare
management, accounting software development, and of course, federal government

�i

contracting. His experience includes serving as an adjunct professor for Virginia Tech,
teaching database design and development (yes, including relational algebra, relational
calculus, and the ever dreadful normalization forms), developing modeling and simulation
models in C++, and good ol’ software development using open source programming
technologies such as Perl, Java/J2EE, and some frustrating trial and error with Ruby.
Jonathan has a graduate degree from Virginia Tech, and holds several certifications
including the CISSP and the ITIL Foundation credential.

While not performing UNIX systems administration or troubleshooting enterprise
software applications, Jonathan has just completed his doctorate coursework in Bio-
defense at George Mason University, and stays busy preparing for the PhD candidacy
exam. Jonathan would like to thank his friends and immediate family for their loving
support, but offers special acknowledgment to his brother, Anthony S. Gines. Anthony,
thanks for always willing to lend a helping hand, and serving as an inspiration to try
your best.

Andrew Hay is a security expert, trainer, and author of The OSSEC Host-Based
Intrusion Detection Guide. As the Integration Services Program Manager at Q1 Labs
Inc. his primary responsibility involves the research and integration of log and vulner-
ability technologies into QRadar, their flagship network security management solution.
Prior to joining Q1 Labs, Andrew was CEO and co-founder of Koteas Corporation,
a leading provider of end-to-end security and privacy solutions for government and
enterprise. His resume also includes various roles and responsibilities at Nokia Enterprise
Solutions, Nortel Networks, and Magma Communications, a division of Primus.

Andrew is a strong advocate of security training, certification programs, and public
awareness initiatives. He also holds several industry certifications including the CCNA,
CCSA, CCSE, CCSE NGX, CCSE Plus, Security+, GSEC, GCIA, GCIH, SSP-MPA,
SSP-CNSA, NSA, RHCT, and RHCE.

Andrew would first like to thank his wife Keli for her support, guidance, and
unlimited understanding when it comes to his interests. He would also like to thank
Chris Fanjoy, Daniella Degrace, Shawn McPartlin, the Trusted Catalyst Community,
and of course his parents, Michel and Ellen Hay, and in-laws Rick and Marilyn Litle
for their continued support.

John Strand currently teaches the SANS GCIH and CISSP classes. He is currently
certified GIAC Gold in the GCIH and GCFW and is a Certified SANS Instructor.
He is also a holder of the CISSP certification. He started working computer security

�ii

with Accenture Consulting in the areas of intrusion detection, incident response,
and vulnerability assessment/penetration testing. He then moved on to Northrop
Grumman specializing in DCID 6/3 PL3-PL5 (multi-level security solutions), security
architectures, and program certification and accreditation. He currently does consulting
with his company Black Hills Information Security. He has a Masters degree from
Denver University, and is currently also a professor at Denver University. In his spare
time he writes loud rock music and makes various futile attempts at fly-fishing.

�iii

Foreword . . xix

Introduction. . xxi

Chapter.1.Nagios.3 . . 1
What’s New in Nagios 3? . 2

Storage of Data . 2
Scheduled Downtime . 2
Comments . 2
State Retention . 3
Status Data . 3

Checks . 3
Service Checks . 3
Host Checks . 4
Freshness Checks . 4

Objects . 4
Object Definitions . 5
Object Inheritance . 6

Operation . 7
Performance Improvements . 7
Inter-Process Communication (IPC) . 7
Time Periods . 7
Nagios Event Broker . 8
Debugging Information . 8
Flap Detection . 8
Notifications . 9

Usability . 9
Web Interface . 9
External Commands . 10
Embedded Perl . 10
Adaptive Monitoring . 10
Plug-in Output . 10
Custom Variables . 11

Macros . 11
Backing up Your Nagios 2 Files . 18
Migrating from Nagios 2 to 3 . 18

Contents

ix

x. Contents

Upgrading Using Nagios 3 Source Code . 20
Upgrading from an RPM Installation . 22
Converting Nagios Legacy Perl Plug-ins . 23

Chapter.2.Designing.Configurations.for.Large.Organizations 25
Introduction . 26
Fault Management Configuration Best Practices . 26

Solicit Input from Your Users First . 26
Use a “Less Is More” Approach . 26
Take an Iterative Approach to Growing Your Configuration 27

Only Alert on the Most Important Problems . 27
Let Your Customers and Users Tell You What Is Important 28

Planning Your Configuration . 28
Soliciting Requirements from Your Customers and Users 28

Start High-Level and Work Down the Application Stack 29
Find Out What Applications Are the Most Important to

Your Users . 30
Find Out What the Most Important Indicators of Application

Failure/Stress Are . 30
Start By Only Monitoring the Most Critical Indicators of

Health/Failure . 30
Device Monitoring . 30
Application Monitoring . 31

Nagios Configuration Object Relationship Diagrams . 31
Hosts and Services . 32
Contacts, Contact Groups, and Time Periods . 32
Hosts and Host Groups . 33
Services and Service Groups . 34
Hosts and Host Dependencies . 35
Services and Service Dependencies . 36
Hosts and Host Escalations . 37
Services and Service Escalations . 38
Version Control . 39

Notification Rules and Output Formats . 43
Notification via Email . 43

Minimize the Fluff . 43
Make Notification Emails Easy to Filter . 44
Enhancing Email Notifications to Fit Your Users’ Environment 44

Notification Via Pager/SMS . 50
Minimize Included Information . 50

. Contents. xi

Only Notify in the Most Important Situations . 51
Respect Working Hours and Employee Schedules 51

Alternative Notification Methods . 51
Instant Messenger . 51
Text-to-Speech . 54

On-Call Schedules . 68
Rotating Schedules and Dynamic Notification . 68

Dependencies and Escalations . 70
Host and Service Escalation Rules . 71

Escalate on a Host Level or a Service Level? . 71
Host and Service Dependencies . 74

Maximizing Templates . 77
How Do We Make a Template? . 80
Multiple Hosts . 82
Multiple Host Groups . 82
Regular Expression Tricks in Config Files . 82

Chapter.3.Scaling.Nagios . . 85
Scaling the GUI . 86

Rule 1: Only Show Outstanding Problems on
Your Primary Display . 86

Rule 2: Keep Informational Displays Simple . 86
Detailed Information on Parameters Used by status .cgi 88

hoststatustypes . 89
servicestatustypes . 89
style . 89
noheader . 89

Limiting the View to Read-Only . 92
Multiple GUI Users (Users/Groups) . 95

One Administrator, One Shared Read-Only Account 95
One Administrator, Multiple Read-Only Accounts . 95
Multiple Administrators, Multiple Semi-Privileged Accounts,

One Read-Only Account . 96
Clustering . 96

NSCA and Nagios . 99
Passive Service Checking . 100
Passive Host Checking . 104
Sending Data without NSCA . 104

Failover or Redundancy . 105
Redundancy . 105

xii. Contents

Failover . 106
Establish Data Synchronization between Two Nagios Servers 106

The Future . 110
Database Persistence . 111

CGI Front End . 112
Even More . 112
A Pluggable Core . 113

Chapter.4.Plug-ins,.Plug-ins,.and.More.Plug-ins. . 115
Introduction . 116
Plug-in Guidelines and Best Practices . 116

Use Plug-ins from the Nagios Community . 116
Use Version Control . 117
Output Performance Data . 117

Software Services and Network Protocols . 117
SNMP Plug-ins . 117
What SNMP Is Good For . 118
What SNMP Is Not Good For . 119
Nagios::Plug-in and Nagios::Plug-in::SNMP . 119
ePN—The Embedded Nagios Interpreter . 126

Example . 126
Network Devices—Switches, Routers . 127

CPU Utilization . 127
MIB needed . 127
OIDs needed . 128

Example Call to the Script . 128
The Script . 128
Memory Utilization . 132

MIB needed . 132
OIDs needed . 132

Example Call . 132
The Script . 133
Component Temperature . 135

MIB needed . 135
OIDs needed . 135

Example Call to the Script . 136
The Script . 136
Bandwidth Utilization . 141

MIB needed . 141
OIDs needed . 141

. Contents. xiii

Example Call to the Script . 141
The Script . 142

Network Interface as Nagios Host? . 149
Host Definition Example . 150

Servers . 150
Basic System Checks . 151

Example Call and Output . 152
The Script . 153
RAM utilization . 157

MIB needed . 157
OIDS used . 157

The Script . 157
Swap utilization . 159

MIB needed . 159
OIDs used . 159

Partition Utilization . 161
MIB needed . 161
OIDs needed . 161
Example output . 162

Load Averages . 174
MIB needed . 174
OIDs used . 174

Example call and output . 175
And here is the code for the plug-in . 175

Process Behavior Checks . 177
Number of Processes by State and Number of Processes

By Process Type . 178
MIB Needed . 178
OIDs used . 178

Critical Services by Number of Processes . 186
MIB needed . 186
OIDS used . 186

The Code for the Script . 188
HTTP Scraping Plug-ins . 203

Robotic Network-Based Tests . 204
Testing HTTP-based Applications . 204
Ensuring the Home Page Performs Well and Has the Content

We Expect . 205
Ensuring a Search Page Performs as Expected and Meets SLAs 205

xiv. Contents

Example Call to the Script . 206
The Library (WWW::UltimateDomains) . 206

Testing Telnet-like Interfaces (Telnet or SSH) . 211
Network Devices . 211

Monitoring LDAP . 211
Testing Replication . 211

Example Call to This Script . 212
The Script . 212

Monitoring Databases . 222
Specialized Hardware . 223

Bluecoat Application Proxy and Anti-Virus Devices 223
SNMP-based Checks . 223

Proxy Devices (SG510, SG800) . 224
CPU Utilization . 225

MIB needed . 225
OIDs used . 225
system-resources .my . 225

Memory Utilization . 227
MIB needed . 227
OIDs used . 228

Network Interface Utilization . 230
MIB needed . 230
OIDs used . 230

Anti-Virus Devices . 233
A / V Health Check . 233

MIB needed . 233
OIDs needed . 233

Environmental Probes . 235
Complete Sensor Check and Alert Script . 236

MIB needed . 236
OIDs used . 236

Example call to the script . 237
Summary . 244

Chapter.5.Add-ons.and.Enhancements. . 245
Introduction . 246
Checking Private Services when SNMP Is Not Allowed 246

NRPE . 246
DMZs and Network Security . 246
Security Caveats . 247

. Contents. xv

NRPE Details . 248
NRPE in the Enterprise . 248

Scenario 1: The Internet Web Server . 248
NSCA . 249

Visualization . 250
NagVis . 250

Enable the Event Broker in Nagios . 250
Install the NDO Utils Package . 251
Download and Install NagVis, Configure It to Use the

Database Back End You Set up with NDO . 253
PNP—PNP Not PerfParse . 255
Cacinda . 260
NLG—Nagios Looking Glass . 262
SNMP Trap Handling . 264

Net-SNMP and snmptrapd . 264
SNMPTT . 264

Configuring SNMPTT for Maintainability and
Configuration File Growth . 265

NagTrap . 265
Text-to-Speech for Nagios Alerts . 269
Summary . 271

Chapter.6.Enterprise.Integration. . 273
Introduction . 274
Nagios as a Monitor of Monitors . 274
LDAP Authentication . 275

One LDAP User, One Nagios User . 275
One LDAP Group, One Nagios User . 276

Integration with Splunk . 277
Integrating with Third-Party Trend and Analysis Tools 278

Cacti . 278
eHealth . 280

Multiple Administrators/Configuration Writers . 281
Integration with Puppet . 282
Integration with Trouble Ticketing Systems . 283
Nagios in the NOC . 284

The Nagios Administrator . 285
The Nagios Software . 285
Integration . 286
Deployment . 286

xvi. Contents

Maintenance . 287
The Process . 287
The Operations Centers . 288

The Enterprise NOC . 288
The Incident . 291
Ongoing Maintenance . 292
Smaller NOCs . 292

Summary . 294

Chapter.7.Intrusion.Detection.and.Security.Analysis. 295
Know Your Network . 296

Security Tools under Attack . 296
Enter Nagios . 297
Attackers Make Mistakes . 298

NSClient++ Checks for Windows . 298
Securing Communications with NSClient++ . 300

Security Checks with NRPE for Linux . 301
check_load . 301
check_users . 301
check_total_procs . 302
check_by_ssh . 302

Watching for Session Hijacking Attacks . 302
DNS Attacks . 302
Arp Cache Poisoning Attacks . 303

Nagios and Compliance . 306
Sarbanes-Oxley . 306
SOX and COBIT . 307
SOX and COSO . 307
Payment Card Industry . 308
DCID 6/3 . 308
DIACAP . 310
DCSS-2 System State Changes . 310

Securing Nagios . 310
Hardening Linux and Apache . 311
Basics . 312

Summary . 314

Chapter.8.Case.Study:.Acme.Enterprises. . 315
Case Study Overview . 316

Who Are You? . 316
ACME Enterprises Network: What’s under the Hood? 316

. Contents. xvii

ACME Enterprises Management and Staff: Who’s Running the Show? 318
ACME Enterprises and Nagios: Rubber Meets the Road! 319
Nagios Pre-Deployment Activities: What Are We Monitoring? 321
Nagios Deployment Activities: Can You See Me? . 328
Enterprise and Remote Site Monitoring . 330
eHealth . 331

NagTrap . 332
NagVis . 332
Puppet . 333
Splunk . 333

Host and Service Escalations, and Notifications . 333
Service Escalations . 334
Notification Schemes . 334

Nagios Configuration Strategies . 334
DMZ Monitoring—Active versus Passive Checking 334

Why Passive Service Checks? . 334
Why Active Service Checks? . 335
NRPE and ACME Enterprises . 335

Developer, Corporate, and IT Support Network Monitoring 336
NSCA to the Rescue! . 336
NRPE Revisited . 336

Select Advice for Integrating Nagios as the Enterprise
Network Monitoring Solution . 337

The Nagios Software . 338
Nagios Integration and Deployment . 339

Index. . 341

This page intentionally left blank

Foreword

The primary benefit, for anyone picking this book up and reading this Foreword,
is to understand that the primary goal here was to explain the advanced features
of Nagios 3 in plain English. The authors understand that not everyone who uses
Nagios is a programmer. You also need to understand that you do not need to be
a programmer to leverage the advanced features of Nagios to make it work for you.
Gaining a better understanding of these advanced features is key to unlocking the
power of Nagios 3.

The authors start by taking you through the new features of Nagios 3. Scaling
Nagios 3, by understanding and implementing the advanced features of Nagios, is also
discussed in detail. Understanding these features will help you to take 10 monitored
hosts and scale to 100,000 monitored hosts similar to Yahoo! Inc. or Tulip It Services
in India. These organizations didn’t simply install the default Nagios configuration and
start monitoring 100,000 hosts. As you can imagine, a rigorous tuning exercise was
performed that included custom security and performance modifications to assist in
the monitoring of hosts on their network.

The Plug-ins chapter alone is worth the price of this book. Never has such detail
been put into the explanation of plug-in creation and use. As I said before, you don’t
need to be a programmer to understand the value of this chapter. The authors take the
time to ensure that the scripts are explained in plain English so that anyone, from the
new Nagios user to the seasoned professional, knows how to use the plug-ins to their
advantage.

xix

www.syngress.com

A real-world case study rounds out the book by explaining how fictional
Fortune 500 Company ACME Enterprises implements Nagios 3 to monitor its
offices in North America, Europe, and Asia. Most readers will benefit from the
description of the ACME implementation and parallel it with the configuration
of their own network.

Having just finished writing the OSSEC Host-Based Intrusion Detection Guide,
I still had the writing bug. When my publisher asked me to contribute to a new book
on Nagios 3, I jumped at the opportunity. Since I had previously used Nagios in both
an enterprise environment and at home, I thought I could offer insight into my
challenges and experiences with the product. I was introduced to my coauthors and
was amazed to hear about their level of expertise with Nagios and past contributions
to the project. It was obvious that Max Schubert, Derrick Bennett, and Jonathan
Gines would be the teachers in this book, and I would be learning as much as I could
from them.

In talking with my new coauthors, we realized we needed some additional help
with the Intrusion Detection and Security Analysis with Nagios chapter. I had experience
with intrusion detection and security analysis, but not with respect to Nagios. I reached
out to my friend and colleague John Strand to see if he’d be interested in joining the
authoring team. He had previously mentioned that he had used Nagios extensively
during his incident handling engagements. John was thrilled to join the authoring team
and we started immediately.

My coauthors and I hope you use this book as a resource to further your knowledge
of Nagios 3 and make the application work for you. If Nagios 3 doesn’t do what you
need it to out of the box, this book will show you how to create your own custom
scripts, integrate Nagios with other applications, and make your infrastructure easier
to monitor.

—Andrew Hay, Coauthor
Nagios 3 Enterprise Network Monitoring

xx	 Foreword

A Brief History of Nagios
Nagios Timeline

In the Beginning, There Was Netsaint
Shortly after the first week of May 2002, Nagios, formerly known as Netsaint, started
as a small project meant to tackle the then niche area of network monitoring. Nagios
filled a huge need; commercial monitoring products at the time were very expensive,
and small office and startup datacenters needed solid system and network monitoring
software that could be implemented without “breaking the bank.” At the time, many
of us were used to compiling our own Linux kernels, and open source applications
were not yet popular. Looking back it has been quite a change from Nagios 1.x to
Nagios 3.x. In 2002, Nagios competed with products like What’s up Gold, Big Brother,

Introduction

1/1/20041/1/2003

5/10/2002 3/13/2008

1/1/2005 1/1/2006 1/1/2007 1/1/2008

Nov 17, 2005
1.3 Released

Feb 7, 2006
2.0 Released

Dec 15, 2004
2.0b1 Released

Feb 2, 2004
1.2 Released

Jun 2, 2003
1.1 Released

5/10/2002
1.0b1 First Released

Nov 24, 2002
1.0 Released

3/27/2006
2.1 Released

Mar 26, 2007
3.0a1 Released

Mar 13, 2008
3.0 Released

xxi

www.syngress.com

xxii Introduction

and other enhanced ping tools. During the 1.x days, release 1.2 became very stable
and saw a vast increase in the Nagios user base. Ethan had a stable database backend
that came with Nagios that let administrators persist Nagios data to MySQL or
PostgreSQL. Many users loved having this database capability as a part of the core
of Nagios, Nagios 2.x and NEB, Two Steps Forward, One Step Back (to Some).

Well into the 2.0 beta releases, many people stayed with release 1.2 as it met all the
needs of its major user base at that time. The 2.x line brought in new features that started
to win over users in larger, “enterprise” organizations; at this time, Nagios also started to
gain traction the area of application-level monitoring. Ethan and several core developers
added the Nagios Event Broker (NEB), an event-driven plug-in framework that allows
developers to write C modules that register with the event broker to receive notification
of a wide variety of Nagios events and then act based on those events. At the same time,
the relational database persistence layer was removed from Nagios to make the distinc-
tion clear between core Nagios and add-ons/plug-ins and to keep Nagios as flexible as
possible. NDO Utils, a NEB-based module for Nagios, filled the gap the core database
persistence functionality once held. During the 2.x release cycle, NDO Utils matured
and was adopted by the very popular NagVis visualization add-on to Nagios.

Enter Nagios 3
With the 3.x release, we see the best of 1.x and 2.x and significant gains in configura-
tion efficiencies and features that make using Nagios in larger environments much
easier. The template system now supports multiple inheritance and custom, user-defined
variables, a huge win for making maintainable and readable configurations. A number
of configuration settings have been added specifically to make Nagios perform more
efficiently when used with large numbers of services and hosts. Nagios will now parse
and ingest multiline output from scripts, making it much easier to output stack traces,
HTML errors, and other longer status messages. The GUI now makes a clear separation
between “handled” (acknowledged) service and host problems, making Nagios even
easier to use to focus on service and host problems that require attention.

Nagios in the
Enterprise—a Flexible Giant Awakens
Move forward six years from the days of Netsaint, and Nagios is now a product that
has proven to be a best-in-class open source monitoring solution. It competes well
against most commercial applications, and in our opinion, it will in most cases have

www.syngress.com

 Introduction xxiii

a lower cost to deploy and a higher level of effectiveness than many commercial
applications in the same market. It has become an application that is both flexible and
relatively easy to maintain. For every issue we have seen, there has been a way to
monitor it through Nagios using plug-ins from the Nagios community or to create
a way to monitor so that 100% meets the needs of the environment Nagios is in.
In the progression of Nagios, we have seen the majority of attention paid to core
features and functionality. No marketing team has dictated what new color needs to
be in the logo, no companies have bought each other to re-brand a good product and
leave new development on the floor. We see continued development that only improves
on a tool no system or network administrator should be without. The 3.0 Alpha
release saw 25 major changes from 2.0 documented in the change log. With almost
every subsequent 3.x release, there has been a list of more than 10 new features per
version.

As a measure of any good project, one needs to look at the community using it.
Since 2.0, the Nagios-Plugins and Nagios Exchange Web sites have grown dramatically—
nagiosexchange.org demonstrates the large community involvement in Nagios with
custom plug-ins, add-ons, and modifications that have been freely contributed to
improve and extend this application. Need to visualize service and host data? NagVis,
PNP, nagiosgrapher, and other add-ons will let you do that. Want to give users who
are not familiar with Nagios a GUI to edit and create an initial configuration? Use a
Web-based GUI add-on—Fruity, Lilac, and NagiosQL are just a few of the adminis-
tration GUIs available. Want to receive alerts via your blog? Or IM? Or Jabber?
Scripts exist to let you do just that. Do not want to create your own integration of
Nagios with other network and system monitoring products? A number of choices
exist for that as well.

The future looks bright for Nagios in the enterprise; all of the authors on this
project firmly believe this, and we believe our book can help you to make best use of
Nagios by showing you the wide variety of features of Nagios 3, describing a number
of useful add-ons and enhancements for Nagios, and then providing you a cookbook-
style chapter full of useful plug-ins that monitor a variety of devices, from HTTP-
based applications to CPU utilization to LDAP servers and more. We hope you enjoy
this book and get as much out of it by reading and applying the principles and lessons
shown in it as we did during the process of writing it.

—The Authors

This page intentionally left blank

�

Chapter 1

Nagios 3

Solutions in this chapter:

What’s New in Nagios 3?

Backing up Your Nagios 2 Files

Migrating from Nagios 2

■

■

■

ww

2 Chapter 1 • Nagios 3
What’s New in Nagios 3?
Nagios 3 has many exciting performance, object configuration, and CGI front-end
enhancements. Object configuration inheritance has been improved and extended.
Nagios now supports service and host dependencies along with service and host
escalations. You can add arbitrary custom variables to services and hosts and access
those variables in notifications and service and host checks. The CGI front end now
has special subtabs for unhandled service, host, and network problems. The performance
data output subsystem is very flexible and can even write to named pipes. The Nagios
Event Broker (NEB) subsystem has been improved and enhanced. Finally, a number
of new performance tuning features and tweaks can be used to help optimize the
performance of your Nagios installation.

Storage of Data
There have been several enhancements to how Nagios 3 stores application-specific data.

Scheduled Downtime
In Nagios 2, scheduled downtime entries were stored in their own file as defined by
the downtime_  file directive in the main configuration file. Nagios 3 scheduled down-
time entries are now stored in the status file, as defined by the status_  file directive in
the main configuration file. Similarly, retained scheduled downtime entries are now
stored in the retention file, as defined by the state_retention_  file directive in the main
configuration file.

Comments
Previously stored in their own files in Nagios 2, host and service comments are now
stored in the status file, as defined by the status_  file directive. Similarly, retained com-
ment entries are now stored in the retention file, as defined by the state_retention_  file
directive in the main configuration file.

Also new in Nagios 3, acknowledgment comments marked as non-persistent are
only deleted when the acknowledgment is removed. In Nagios 2, these acknowledg-
ment comments were automatically deleted when Nagios was restarted.
w.syngress.com

 Nagios 3 • Chapter 1 3
State Retention
With Nagios 3, status information for individual contacts, comments IDs, and
downtime IDs is retained across program restarts. Variables have also been added
to control what host, service, process, and contact attributes are retained across
program restarts.

The retained_host_attribute_mask and retained_service_attribute_mask variables are
used to control what host/service attributes are retained globally across program
restarts. The retained_ process_host_attribute_mask and retained_ process_service_attribute_
mask variables are used to control what process attributes are retained across program
restarts. Finally, the retained_contact_host_attribute_mask and retained_contact_service_
attribute_mask variables are used to control what contact attributes are retained
 globally across program restarts.

Status Data
Contact status information is saved in the status and retention files. Please note that
contact status data is not processed by the CGIs. Examples of contact status infor-
mation include last notification times, notifications enabled, and notifications disabled
contact variables.

Checks
Several new service, host, and freshness check features have been added to Nagios 3
with a focus on enhancing system performance.

Service Checks
By default Nagios 3 checks for orphaned service checks. There is a new enable_
predictive_service_dependency_checks option that control whether Nagios will
initiate predictive dependency checks for services. Nagios allows you to enable
predictive dependency checks for hosts and services to ensure the dependency
logic will have the most up-to-date status information when it comes to making
decisions about whether to send out notifications or allow active checks of a
host or service.
www.syngress.com

ww

� Chapter 1 • Nagios 3
Additionally, regularly scheduled service checks no longer impact performance
with the implementation of new cache logic in Nagios 3. The new cached service
check feature can significantly improve performance, as Nagios can use a cached
service check result instead of executing a plug-in to check the status of a service.

Host Checks
Scheduled host checks running in serial can severly impact performance. In Nagios 3,
host checks run in parallel. As with service checks, the new cached check feature also
applies to host checks. This feature can significantly improve performance.

Two new options have been added to increase host check performance. The new
check_ for_orphaned_hosts option enables checks for orphaned hosts in parallel. Similar
to the enable_predictive_serivce_dependency_checks option for service checks, the enable_
predictive_host_dependency_checks option controls whether Nagios will initiate predic-
tive dependency checks for hosts.

In Nagios 3, passive host checks that have a DOWN or UNREACHABLE
result can now be automatically translated to their proper state as the Nagios
instance receives them. Using the passive_host_checks_are_soft option, you can also
control how Nagios sets the state for passive host checks instead of leaving the
default HARD state.

Freshness Checks
A new freshness_threshold_latency option has been added to allow you to change the
host or service freshness threshold that is automatically calculated by Nagios. To make
use of this option, specify the number of seconds that should be added to any host or
service freshness threshold.

Objects
Objects are the defined monitoring and notification logical units within a
Nagios configuration. The objects that make up a Nagios configuration include
services, service groups, hosts, host groups, contacts, contact groups, commands,
time periods, notification escalations, notification dependencies, and execution
dependencies.

In Nagios 3, changes have been made to object definitions and object inheri-
tances that can result in a Nagios configuration that is easier to maintain and grow
than configurations with Nagios 2 were.
w.syngress.com

 Nagios 3 • Chapter 1 �
Object Definitions
In the past, you may have wanted to create service dependencies for multiple services
that are dependent on services on the same host. In Nagios 3, you can leverage these
host dependencies definitions for different services on one or more hosts. The host-
group, servicegroup, and contactgroups configuration types have also been enhanced with
the addition of several key attributes. The hostgroup_members, notes, notes_url, and
action_url attributes have been moved from the hostextinfo type to the hostgroup type.
The servicegroup_members, notes, notes_url, and action_url attributes have been moved
from the extserviceinfo type to the servicegroup type. Finally, the contactgroup_members
attribute has been added to the contactgroups type. This flexibility allows you to
include hosts, services, or contacts from subgroups in your group definitions.

The contact type now has new host_notifications_enabled and service_notifications_
enabled, and can_submit_commands directives that better control notifications to the
contact and determine whether the contact can submit commands through the
Nagios Web interface.

Extended host and service definitions (hostextinfo and serviceextinfo, respectively)
have been deprecated in Nagios 3. All values that form extended definitions
have also been merged with host or service definitions. Nagios 3 will continue to
read and process older extended information definitions, but will log a warning.
The Nagios development team notes that future versions of Nagios will not
support separate extended info definitions. Also deprecated in Nagios 3 is the
parallelize directive in service definitions. By default, all service checks now run
in parallel.

To limit the times during which dependencies are valid, host and service dependen-
cies now support an optional dependency_period directive. If you do not use the depen-
dency_period directive in a dependency definition, the dependency can be triggered at
any time. If you specify a timeperiod in the dependency_period directive, Nagios will only
use the dependency definition during times that are valid in the timeperiod definition.

You can also use extended regular expressions in your Nagios configuration files
if you enable the use_regexp_matching configuration option. A new initial_state direc-
tive has been added to host and service definitions. This directive allows you to tell
Nagios that a host or service should default to a specific state when Nagios starts,
rather than UP for hosts or OK for services.

Finally, there are no longer any inherent limitations on the length of host names
or service descriptions.
www.syngress.com

ww

� Chapter 1 • Nagios 3
Object Inheritance
Specifying more than one template name in the use directive of object definitions
allows you to inherit object variables/values from multiple templates. When you use
multiple inheritance sources, Nagios will use the variable/value from the first source
that is specified in the use directive so the order you list templates in is very important.
Services now inherit contact groups, notification interval, and notification period from their
associated host unless otherwise specified. Similarly, hosts and service escalations now
inherit contact groups, notification interval, and escalation timeperiod from their associated
host or service unless otherwise specified. Table 1.1 lists the object variables that will
be implicitly inherited from related objects if their values are not explicitly specified
in your object definition or inherited them from a template.
Table 1.1 Object Variables

Object Type Object Variable Implied Source

Services notification_period notification_ period in the
associated host definition.

Host Escalations escalation_period notification_ period in the
 associated host definition.

Service Escalations escalation_period notification_ period in the
 associated service definition.
Specifying a value of null for the string variables in host, service, and contact
definitions will prevent an object definition from inheriting the value set in parent
object definitions. In addition, most string variables in local object definitions can
now be appended to the string values that are inherited. This “additive inheritance”
can be accomplished by prepending the local variable value with a plus sign (+).
The following example shows how to use the additive inheritance:
define host{

host_name andrewserver

hostgroups +internal-servers,dmz-servers

use generichosthosttemplate
w.syngress.com

}

 Nagios 3 • Chapter 1 �
Operation
Numerous operational improvements have been added to Nagios 3, including several
performance improvements, changes to the IPC mechanism, an overhaul of the
timeperiod directives, enhanced debugging information, and more.

Performance Improvements
The pre-caching of object configuration files and exclusion of circular path detection
checks from the verification process has greatly improved Nagios 3 performance.
A number of improvements have been made in the way Nagios deals with internal data
structures and object relationships. This results in substantial performance improve-
ments in larger deployments of Nagios.

Two additional options have been added to increase performance specifically in
large deployments. The use_large_installation_tweaks option allows the Nagios daemon
to take certain shortcuts that result in lower system load and better performance.
The external_command_buffer_slots option determines how many buffer slots Nagios
will reserve for caching external commands that have been read from the external
command file by a worker thread, but have not yet been processed by the main
thread of the Nagios daemon.

Inter-Process Communication (IPC)
There have been significant changes to the IPC mechanism Nagios users to transfer
host/service check results back to the Nagios daemon from child processes. The IPC
mechanism has been changed to reduce load and latency issues related to processing
large numbers of passive checks in distributed monitoring environments.

Check results are now transferred by writing check results to files in a directory
specified by the check_result_ path option. Additionally, files older than the max_check_
result_  file_age option will be deleted without further processing.

Time Periods
Everyone involved with the Nagios project agreed that the manner in which timeperiods
functioned required a major overhaul. Time periods have been extended in Nagios 3
to allow for date exceptions including weekdays by name of day, days of the month,
and calendar dates.
www.syngress.com

w

� Chapter 1 • Nagios 3

Note

The timeperiods directives are processed in the following order: calendar date
(e.g., 2008-0�-0�), specific month date (e.g., January �st), generic month
date (e.g., Day �5), offset weekday of specific month (e.g., 2nd Tuesday in
December), offset weekday (e.g., 3rd Monday), normal weekday (e.g., Tuesday).
Nagios Event Broker
When events within Nagios the Nagios Event Broker’s (NEB) callback routines are
executed to allow custom user-provided code to interact with Nagios. Using the
NEB, you can output the events generated within your deployment to almost any
application or tool imaginable.

Modules are libraries of shared code the NEB calls when an event occurs. The
events are checked by the NEB to see if there is a registered callback associated with
that particular type of event. If the event matches what the callback expects, the
event is forwarded to your module. Once received, the module will execute any
custom code associated with the event.

The event broker in Nagios 3 contains a modified callback for adaptive
program status data, an updated NEB API version, additional callbacks for adaptive
content status data, and a pre-check callback for hosts and services. The hosts and
services pre-check callback allows modules to cancel or override internal host
or service checks.

Debugging Information
In Nagios 3 debugging information can be written to a separate debug file. This file
is automatically rotated when it reaches a user-defined size. The benefit of this
enhancement is that you no longer have to recompile Nagios to debug an issue.

Flap Detection
The host and service definitions now have a flap_detection_options directive that allows
you to specify what host or service states should be considered by the flap detection
logic. When flap detection is enabled, hosts and services are immediately checked,
and any hosts or services that are flapping are noted on the Nagios GUI. Percent
ww.syngress.com

 Nagios 3 • Chapter 1 �
state change and state history are also retained for both hosts and services even when
flap detection is disabled.

Notifications
Notifications in Nagios 3 are sent for flapping hosts/services or when flap detection
is disabled on a host or service. When this occurs, the $NOTIFICATIONTYPE$
macro will be set to “FLAPPINGDISABLED”. Notifications can also be sent out
when scheduled downtime starts, ends, and is cancelled for hosts and services.
The $NOTIFICATIONTYPE$ macro is set to “DOWNTIMESTART” when the
scheduled downtime is scheduled to start, “DOWNTIMEEND” when the scheduled
downtime completes, and “DOWNTIMECANCELLED” when the scheduled
downtime is cancelled.

The first_notification_delay option has been added to host and service definitions to
introduce a delay between when a host/service problem first occurs and when the
first problem notification goes out.

Usability
Several usability enhancements have been included in Nagios 3. The Web interface
layout has been updated, Perl scripts can now tell Nagios to use the embedded Perl
interpreter, timeperiods can be changed on demand, and plug-in output is now
 multiline and extended to 4096 bytes of output.

Web Interface
Similar to the TAC CGI, important and unimportant problems are broken down
within the hostgroup and servicegroup summaries. Some minor layout changes around
the host and service detail views have also been implemented. Additional check
statistics have been added to the Performance Info screen.

Splunk integration options have been added to various CGIs within Nagios 3.
This integration is controlled by the enable_splunk_integration and splunk_url options
in the CGI configuration file. The enable_splunk_integration option determines
whether integration functionality with Splunk is enabled in the Web interface.
If enabled, you will be presented with Splunk It links in various places throughout
the Nagios web interface. The splunk_url option is used to define the base URL to
your Splunk interface. This URL is used by the CGIs when creating links if the
enable_splunk_integration option is enabled.
www.syngress.com

ww

10 Chapter 1 • Nagios 3
External Commands
In Nagios 2, the check_external_commands option was disabled by default. In Nagios 3,
however, this option is enabled by default so the command file will be checked for
commands that should be executed automatically. Custom commands may now also
be submitted to Nagios. Custom command names are prefixed with an underscore
and are processed internally by the Nagios daemon.

Embedded Perl
Perl-based plug-ins can now explicitly tell Nagios whether they should be run
under the embedded Perl interpreter. Two new variables now control the use of the
embedded Perl interpreter. The enable_embedded_ perl variable determines whether
the embedded Perl interpreter is enabled on a program-wide basis. The use_embedded_ 
 perl_implicitly variable determines whether the embedded Perl interpreter should be
used for Perl plug-ins/scripts that do not explicitly enable/disable it. Please note that
Nagios must be compiled with support for embedded Perl for both variables to
function.

Adaptive Monitoring
Using the adaptive monitoring capabilities in Nagios 3, the timeperiod for hosts and
services can now be modified on demand with the appropriate external command.
The CHANGE_HOST_CHECK_TIMEPERIOD command changes the valid
check period for the specified host. The CHANGE_SVC_CHECK_TIMEPERIOD
command changes the check timeperiod for a particular service to what is specified by
the check_timeperiod option.

Plug-in Output
One of the biggest enhancements in Nagios 3 is that multi-line plug-in output is
now supported for host and service checks. The maximum length of plug-in output
has also been increased from the 350-byte limit in Nagios 2 to 4096 bytes. The
4096-byte limit exists to prevent a plug-in from overwhelming Nagios with too
much output. Additional lines of output (beyond the first line) are now stored in the
$LONGHOSTOUTPUT$ and $LONGSERVICEOUTPUT$ macros.
w.syngress.com

 Nagios 3 • Chapter 1 11

tip

To modify the maximum plug-in output length, simply edit the MAX_PLUGIN_
OUTPUT_LENGTH definition in the include/nagios.h.in file of the source code
distribution and recompile Nagios. As of this writing, you will also have to
manually modify the p�.pl script to have it output more than 256 bytes of
output from scripts run under ePN, the embedded Nagios Perl interpreter.
Custom Variables
The ability to create user-defined, custom variables is seen as a huge advantage in
Nagios 3. Custom variables allow users to define additional properties in their host,
service, and contact and then use the values of these custom variables in notifications,
event handlers, and host and service checks. When you define a custom variable, you
must ensure that the name begins with an underscore (_) character.

Custom variables are case insensitive so you cannot create multiple custom variables
with the same name, even if they differ by using a mix of uppercase and lowercase letters.
Like normal variables, custom variables are inherited from object templates. Finally, scripts
can reference custom variable values with macros and environment variables.

The following example shows how you could use custom variables for a host
object that indicate when one of your Oracle servers (oraclepci334) was installed and
when it was secured:
define host{

host_name oraclepci334

_installed_on_date February 24, 2008 ;

_secured_on_date February 26, 2008 ;

…

}

Macros
Nagios 3 includes 40 new macros to help you simplify your commands. These macros
allow you to reference information from hosts, services, and other sources in your
commands without having to explicitly declare the same values every time. Table 1.2
www.syngress.com

describes the new macros.

www.syngress.com

12 Chapter 1 • Nagios 3

Table 1.2 New Macros in Nagios 3

Macro Description

$TEMPPATH$ The temp_path directory variable Nagios uses to
store temporary files during the monitoring pro-
cess. This directory is specified in the nagios.cfg for
your Nagios installation using the temp_path=
<dir_name> format (e.g., temp_path=/tmp).

$LONGHOSTOUTPUT$ The full text output from the last host check.

$LONGSERVICEOUTPUT$ The full text output from the last service check.

$HOSTNOTIFICATIONID$ The unique number that identifies the host noti-
fication. This notification ID is incremented by one
each time a new host notification is sent out.

$SERVICENOTIFICATIONID$ The unique number that identifies the service noti-
fication. This notification ID is incremented by one
each time a new service notification is sent out.

$HOSTEVENTID$ The unique number that identifies the current
state of the host. The event ID is incremented by
one for each state change the host undergoes.
If the host has not experienced a state change, the
value returned will be zero.

$SERVICEEVENTID$ The unique number that identifies the current state
of the service. The service ID is incremented by one
for each state change the service undergoes. If the
service has not experienced a state change, the
value returned will be zero.

$SERVICEISVOLATILE$ Indicates that the service is being marked as
volatile (�) or not volatile (0).

$LASTHOSTEVENTID$ The last unique event ID given to the host.

$LASTSERVICEEVENTID$ The last unique event ID given to the service.

$HOSTDISPLAYNAME$ The alternate display name as defined by the
display_name directive in the host definition
configuration.

Continued

www.syngress.com

 Nagios 3 • Chapter 1 13

Macro Description

$SERVICEDISPLAYNAME$ The alternate display name for the host as defined
by the display_name directive in the host defini-
tion configuration.

$MAXHOSTATTEMPTS$ The alternate display name for the service as
defined by the display_name directive in the
service definition configuration.

$MAXSERVICEATTEMPTS$ The maximum number of check attempts defined
for the current service.

$TOTALHOSTSERVICES$ The total number of services associated with
the host.

$TOTALHOSTSERVICESOK$ The total number of services associated with the
host that are in an OK state.

$TOTALHOSTSERVICES 
WARNING$

The total number of services associated with the
host that are in a WARNING state.

$TOTALHOSTSERVICES 
UNKNOWN$

The total number of services associated with the
host that are in an UNKNOWN state.

$TOTALHOSTSERVICE 
SCRITICAL$

The total number of services associated with the
host that are in a CRITICAL state.

$CONTACTGROUPNAME$ The short name of the contact group this contact
is a member of as defined by the contactgroup_
name directive in the contactgroup definition
configuration.

$CONTACTGROUPNAMES$ The comma-separated list of contact groups this
contact is a member of.

$CONTACTGROUPALIAS$ The long name of either the contact group name
passed as an on-demand macro argument or the
primary contact group associated with the current
contact. This value is taken from the alias directive
in the contactgroup definition.

$CONTACTGROUPMEMBERS$ The comma-separated list of all contacts passed as
an on-demand macro argument or the primary
contact group associated with the current contact.

$NOTIFICATIONRECIPIENTS$ The comma-separated list of all contacts that are
being notified about the host or service.

Table 1.2 Continued. New Macros in Nagios 3

Continued

www.syngress.com

1� Chapter 1 • Nagios 3

Macro Description

$NOTIFICATIONISESCALATED$ Indicates that the notification was escalated (�)
or sent to the normal contacts for the host or
service (0).

$NOTIFICATIONAUTHOR$ The name of the user who authored the
notification.

$NOTIFICATION 
AUTHORNAME$

The short name (if applicable) for the contact
specified in the $NOTIFICATIONAUTHOR$ macro.

$NOTIFICATION 
AUTHORALIAS$

The alias (if applicable) for the contact specified in
the $NOTIFICATIONAUTHOR$ macro.

$NOTIFICATIONCOMMENT$ The comment that was entered by the notification
author.

$EVENTSTARTTIME$ Indicates the point in time after
$PROCESSSTARTTIME$ when Nagios began to
interact with the outside world.

$HOSTPROBLEMID$ The unique number associated with the host’s
current problem state. The number is incremented
by one when a host or service transitions from an
UP or OK state to a problem state.

$LASTHOSTPROBLEMID$ The previous unique problem number that was
assigned to the host.

$SERVICEPROBLEMID$ The unique number associated with the service’s
current problem state. The number is incremented
by one when a host or service transitions from an
UP or OK state to a problem state.

$LASTSERVICEPROBLEMID$ The previous unique problem number that was
assigned to the service.

$LASTHOSTATE$ The last state of the host. The possible states are
UP, DOWN, and UNREACHABLE.

$LASTHOSTSTATEID$ The numerical representation of the last state of the
host (e.g., 0 = UP, � = DOWN, 2 = UNREACHABLE).

Table 1.2 Continued. New Macros in Nagios 3

Continued

 Nagios 3 • Chapter 1 1�

Macro Description

$LASTSERVICESTATE$ The last state of the service. The possible states are
UP, DOWN, and UNREACHABLE.

$LASTSERVICESTATEID$ The numerical representation of the last state
of the service (e.g., 0 = UP, � = DOWN,
2 = UNREACHABLE).

$ISVALIDTIME:$ The on-demand macro that indicates if a particular
time period is valid (�) or invalid (0); e.g.,

$ISVALIDTIME:2�×�$ will be set to 1 if the current
time is valid within the 2�×� time period. If not,
it will be set to 0.

$ISVALIDTIME:2�×�:timestamp$ will be set to 1
if the time specified by the timestamp argument
is valid within the 2�×� time period. If not, it will
be set to 0.

$NEXTVALIDTIME:$ The on-demand macro that returns the next valid
time for a specified time period; e.g.,

$NEXTVALIDTIME:2�×�$ will return the next valid
time from, and including, the current time in the
2�×� time period.

$NEXTVALIDTIME:2�×�:timestamp$ will return the
next valid time from, and including, the time
specified by the timestamp argument in the 2�×�
time period.

Table 1.2 Continued. New Macros in Nagios 3

tip

You can determine the number of seconds it takes for Nagios to start up by
subtracting $PROCESSSTARTTIME$ from $EVENTSTARTTIME$.
Nagios macros can be used in one or more of 10 distinct command categories,
and not all macros are valid for every type of command. Table 1. 3 describes the
10 categories of Nagios commands.
www.syngress.com

www.syngress.com

1� Chapter 1 • Nagios 3

Table 1.3 Nagios Command Categories

Macro Description

Service checks Checks the availability of services in your Nagios
deployment at regular intervals, as defined by your
service definitions, or on-demand (as required).

Certain Host and Service macros cannot be used,
and none of the Contact or Notification macros can
be used.

Service notifications Used to define how notifications are handled for
service state (i.e., OK, WARNING, UP, DOWN, etc.)
changes.

Certain Host macros cannot be used.

Host checks Checks the availability of hosts in your Nagios
deployment at regular intervals, as defined by your
host definitions, or on-demand (as required).

Certain Host macros cannot be used, and none of the
Service, Contact, or Notification macros can be used.

Host notifications Used to define how notifications are handled for host
state (i.e., OK, WARNING, UP, DOWN, etc.) changes.

None of the Service macros can be used.

Service event handlers
and/or a global service
event handler

Global service event handlers are run for every
service state change that occurs, immediately prior
to any service-specific event handler that may be
run. Individual services can have their own event
handler command that should be run to handle
state changes.

Certain Host and Service macros cannot be used,
and none of the Contact or Notification macros
can be used.

Host event handlers
and/or a global host
event handler

Global host event handlers are run for every host
state change that occurs, immediately prior to
any host-specific event handler that may be run.
Individual hosts can have their own event handler
command that should be run to handle state changes.

Certain Host macros cannot be used, and none of the
Service, Contact, or Notification macros can be used.

Continued

 Nagios 3 • Chapter 1 1�

Macro Description

OCSP command Obsessive Compulsive Service Processor (OCSP)
commands allow you to run a command after
every service check.

Certain Host and Service macros cannot be used,
and none of the Contact or Notification macros
can be used.

OCHP command Obsessive Compulsive Host Processor (OCHP)
commands allow you to run a command after
every host check.

Certain Host macros cannot be used, and none of
the Service, Contact, or Notification macros can
be used.

Service performance
data commands

Internal performance data that relates to the actual
execution of a service check.

Certain Host and Service macros cannot be used,
and none of the Contact or Notification macros
can be used.

Host performance data
commands

Internal performance data that relates to the actual
execution of a host check.

Certain Host macros cannot be used, and none of
the Service, Contact, or Notification macros can
be used.

Table 1.3 Continued. Nagios Command Categories
The Nagios developers have been kind enough to provide a full list of all available
standard macros for Nagios 3 at http://nagios.sourceforge.net/docs/3_0/macrolist.html.
The Nagios on-demand macros and macros for custom variables are detailed at
http://nagios.sourceforge.net/docs/3_0/macros.html. These sites should be considered
the most up to date resources available as both pages are actively updated as new
features are introduced into the Nagios 3 product stream.
www.syngress.com

w

1� Chapter 1 • Nagios 3
Backing up Your Nagios 2 Files
With any application, it is recommended to back up your current configuration files
prior to upgrading to a newer version of that same application. Aside from being a
good part of any disaster recovery plan, backing up your files prior to an upgrade
allows you to revert to your running configuration with minimal downtime.

Before starting your Nagios 3 upgrade, ensure that you back up the files listed
in Table 1.4.
Table 1.� Nagios Files to Back Up

Nagios File Description

nagios.cfg The main Nagios configuration file, typically located at
/usr/local/nagios/etc /nagios.cfg.

resource.cfg The resource configuration file, typically located at
/usr/local/nagios/etc /resource.cfg.

cgi.cfg The CGI configuration file, typically located at /usr/local/
nagios/etc /cgi.cfg.

retention.dat The retention data file, typically located at /usr/local/
nagios/var/retention.dat.

nagios.log The current Nagios log file, typically located at /usr/local/
nagios/var/nagios.log.
You should also back up all of your Nagios object definition files. These are the
*.cfg files that typically reside in the /usr/local/nagios/etc/objects/ directory. You may
also want to back up any archived Nagios log files for forensic, or purely sentimental,
reasons. These archived *.log files typically reside in the /usr/local/nagios/var/archives/
directory.

Migrating from Nagios 2 to 3
If you have a current installation of Nagios 2 you can install Nagios 3 and leverage
your existing configuration without having to retune your deployment for your
network. Although possible, this is not recommended as you will miss out on many
of the enhancements in Nagios 3.
ww.syngress.com

 Nagios 3 • Chapter 1 1�
There are several important points to consider prior to upgrading your Nagios 2
installation to Nagios 3. The service_reaper_  frequency variable in the main configuration
file has been renamed to check_result_reaper_  frequency. This option allows you to
control the frequency in seconds of check result reaper events. Reaper events process
the results from host and service checks that have finished executing. These events
constitute the core of the monitoring logic in Nagios.

The $NOTIFICATIONNUMBER$ macro has been deprecated in favor of the new
$HOSTNOTIFICATIONNUMBER$ and $SERVICENOTIFICATIONNUMBER$
macros. The $HOSTNOTIFICATIONNUMBER$ macro is the current notification
number for the host. The notification number increases by one each time a new
notification is sent out for the host, with the exception of acknowledgments, which
do not cause the notification number to increase. The $SERVICENOTIFICATION
NUMBER$ macro is the current notification number for the service. The notification
number increases by one each time a new notification is sent out for the service,
with the exception of acknowledgments, which do not cause the notification number
to increase.

Several directives, options, variables, and definitions have also been removed or
depreciated and should no longer be used in Nagios 3. The parallelize directive in
service definitions is now deprecated and no longer used, as all service checks are run
in parallel. The aggregate_status_updates option has been removed. All status file updates
are now aggregated at a minimum interval of one second. Extended host and extended
service definitions have been deprecated. They are still read and processed by Nagios 3,
but it is recommended that you move the directives found in these definitions to your
host and service definitions, respectively.

The downtime_  file file variable in the main configuration file is no longer supported,
as scheduled downtime entries are now saved in the retention file. The comment_ file file
variable in the main configuration file is no longer supported, as comments are now
saved in the retention file.
www.syngress.com

tip

To preserve existing downtime entries and existing comments, stop Nagios 2
and append the contents of your old downtime and comment files to the
retention file.

w

20 Chapter 1 • Nagios 3
Upgrading Using Nagios 3 Source Code
One way to upgrade your Nagios 2 deployment to Nagios 3 is to download the
latest source code from the Nagios project’s SourceForge.net page. The downloaded
archive can be obtained using any Internet connected system and transferred to your
Nagios server or it can be downloaded directly to your Nagios server using the wget
command:
wget http://osdn.dl.sourceforge.net/sourceforge/nagios/nagios-3.tar.gz

Depending on the current Nagios release, or the Nagios release you wish to
download, you will have to adjust the filename accordingly. Once downloaded, you
need to extract the files from the archive and install the Nagios software. If your
server does not have the necessary development and dependant packages installed,
the installation may not complete or operate as expected. At the time of this writing,
regardless of your operating system type, the following dependencies must be
installed prior to installing Nagios 3: the Apache HTTP server, the GCC compiler
and development libraries specific to your distribution, and the GD graphics library.
Note

SourceForge.net is a source code repository and acts as a centralized loca-
tion for software developers to control and manage open source software
development. The Nagios project page on SourceForge is located at
http://sourceforge.net/projects/nagios/.
The Apache HTTP server is required to provide a Web interface to manage your
Nagios deployment. Some operating system distributions recommend certain versions
of the Apache HTTP server over another. For example, when installing Nagios on an
Ubuntu Linux or openSUSE distributions, Apache2 is recommended. Some older
Linux distributions may not have the capability to run the Apache2 release and you
may be forced to install on Apache 1.3.

The GNU Compiler Collection (GCC) is a set of compilers used to compile the
raw Nagios code into a working application. Without the development libraries GCC
relies on to build the application, the Nagios compile, and subsequent installation,
will fail.
ww.syngress.com

 Nagios 3 • Chapter 1 21

tip

If your Unix, Linux, or BSD operating system has a package management
utility installed, you usually need only specify that the GCC and development
“tools” packages be installed. The package management utility is usually
smart enough to automatically resolve any dependency issues for you.
The GD graphics library is an open source code library for the dynamic creation
of images by programmers. Nagios uses the GD graphics library to generate the
graphical representations of your collected data so it is easy to work with.

With the dependencies satisfied, and the Nagios archive downloaded, all that
remains is to extract the archive and install it using the following commands:
tar xzf nagios-3.tar.gz

cd nagios-3

./configure --with-command-group=nagcmd

make all

make install

/usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

/sbin/service nagios restart

If there are no errors generated during the compilation or installation, your
Nagios installation has succeeded. If, for some reason you do receive errors,
please review the exceptions for hints on how to resolve the issue and try the
installation again.

If you alpha- or beta-tested the Nagios pre-released code, you need not worry
about starting your Nagios deployment from scratch. Using the same source code
installation process you can upgrade your pre-released Nagios deployment to the
generally available final release, or any subsequent release, without losing your
configuration information.

Generally speaking, this means that when a development release of Nagios is
released you will have the ability to update from your final release, to several develop-
ment releases, and eventually, to the final release of the new Nagios code.

If this is a production server, however, it is probably a good idea not to install
pre-released Nagios code as there may be instabilities and vulnerabilities in the
development version of Nagios.
www.syngress.com

w

22 Chapter 1 • Nagios 3
Upgrading from an RPM Installation
The team behind Nagios releases the latest and greatest code in the form of compressed
source code archives. Package-based releases for various operating systems—such as
RPM for Red Hat distributions or DEB files for Debian distributions—are developed
by members of the Nagios community and are usually driven by community demand.

To upgrade from your package-based Nagios 2 release to the source-based Nagios 3,
you need to:

1. Back up your Nagios 2 configuration, retention, and log files. See the
Backing up Your Nagios 2 Configuration Files section earlier in this chapter.

2. Uninstall the Nagios 2 package using the package management tools specific
to your operating system distribution. For example, if using a Red Hat based
Linux distribution, you could use the rpm -e command to uninstall the
Nagios 2 package.

3. Install Nagios 3 from source. See the Upgrading Using Nagios 3 Source Code
section earlier in this chapter.

4. Restore your Nagios 2 configuration, retention, and log files.

5. Verify your Nagios 3 configuration. Since we have copied an archived version
of your Nagios 2 files, we should verify that there are no conflicting configu-
ration issues by using the command:

/usrs/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg
ww

tip

If there is an error in your configuration file, the error generated by the
nagios -v command will point you to the line in the configuration file that
appears to be causing the problem. If a warning is encountered the check
will pass, as they are typically recommendations and not issues.
6. Start your Nagios 3 server. Now that you have verified that your configura-
tion file will work with your new Nagios 3 installation, run the following
command to start the server:
/sbin/service nagios restart
.syngress.com

 Nagios 3 • Chapter 1 23
Converting Nagios Legacy Perl Plug-ins
The Nagios software employs plug-ins to perform checks on managed hosts and
services. In addition, these plug-ins may either be compiled executables, or human-
readable scripts written in Perl or any of the Unix shells. For perl-based plugins
Nagios provides the option of having the plug-ins interpreted via embedded Perl for
Nagios (ePN).

If your Nagios installation is not using ePN there is nothing to use the plugins
with Nagios 3. If, however, you have perl plugins that you wrote for Nagios 2 run-
ning under ePN, you will need to modify your plugins to specify that they wish to
use ePN or set the variable use_embedded_perl_implicitly to 1 in the nagios.cfg
configuration file. Add one of the following lines to your Perl plug-in within the first
10 lines of the plugin to instruct ePN to either execute the plugin by calling an
external perl intrepreter or to execute the plug-in with ePN:
Use embedded Perl for Nagios (ePN)

nagios: +epn

or
Do NOT use ePN; use the Perl interpreter outside of Nagios

nagios: -epn
www.syngress.com

This page intentionally left blank

Chapter 2
Designing
Configurations for
Large Organizations
Solutions in this chapter:

Fault Management Configuration
Best Practices

Planning Your Configuration

Nagios Configuration Object Relationship
Diagrams

Notification Rules and Output Formats

■

■

■

■

25

w

26 Chapter 2 • Designing Configurations for Large Organizations
Introduction
In this chapter, chapter we discuss how to create Nagios configurations that are
easy to navigate, easy to maintain, and meet the needs of a larger customer. First we
cover a few simple rules to follow as you design and implement your configuration.
We then cover planning, a critical part of configuration that is often overlooked
when implementing a fault management system. We then visually depict and discuss
some important Nagios configuration object relationships that can help make your
Nagios configuration easier to maintain and manage. We then discuss notification
and escalation best practices. Finally we show you how to make the best use of the
flexible and powerful object-oriented configuration language that is at the core of
Nagios 3.

Fault Management
Configuration Best Practices
We now discuss some basic principles that can make your life as a Nagios administrator
and integrator easier. Given the variety of groups in an organization that monitoring
systems touch, defining a change and growth process for your Nagios implementation
is important. Readers who are familiar with software development might recognize
some of these rules.

Solicit Input from Your Users First
Users should drive your implementation. Whether they are technicians fixing problems,
customers expecting service-level agreements to be met, or managers wanting to
know the status of applications that support projects they manage, users determine
whether your monitoring implementation lives or dies. Pay close attention to what
they want and your implementation will be successful. Before you write one line of
configuration code, talk to each of these groups and find out how Nagios can best
make their workdays (and nights) easier.

Use a “Less Is More” Approach
What is the fastest way to overwhelm the human brain? Send it too much informa-
tion at once. What is the fastest way to make enemies out of your users? Bombard
them and yourself with notifications for every little event that happens. We recom-
mend you always prioritize your configuration and focus on what is most important.
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 27
Only notify people who can do something about a problem unless someone
outside the scope of responsibility for an area explicitly asks to be notified.

Only monitor services on your systems that are indicators of failure. While
it might be fun to see how many users are present on your systems, unless
having too many users on a system at once has caused problems in the past,
do not monitor that metric.

Only monitor hosts and devices that matter. Can you monitor the health of
the black-and-white printer down the hall? Sure. If it is only used a few times
a week, should you monitor it? Probably not.

Take an Iterative Approach
to Growing Your Configuration
Show the value of your system early on by adding a few important users in your
organization to Nagios as contacts and by implementing checks of a few critical
devices or services to Nagios. Grow your configuration as you learn more about your
users’ needs and what is important to them. Over time you will end up with a system
your users pay attention to and one that helps track device and service problems.
As with software development, implementing checks and notifications incrementally
will help you create a system that matters.

Only Alert on the Most Important Problems
It can be very intimidating to be brought into a large organization to implement
monitoring; determining what is important can become confusing, especially when
politics are involved. Here are some rules to help you determine what services and
devices are important to monitor:

Financial impact If a service or device problem means a financial loss to
your organization, monitor it.

Organizational impact If a service or device outage means missing an
important deadline or hurting a customer relationship, monitor that service
or device.

Personal impact If an outage means loss of job, income, or respect in a
group for you or anyone on your team, help by implementing monitoring
for that device or service.

■

■

■

■

■

■

www.syngress.com

w

28 Chapter 2 • Designing Configurations for Large Organizations
Let Your Customers and
Users Tell You What Is Important
Allow your user base to drive your configuration with regard to what is important
and your system will be a success with your users. Talk to domain experts of the
applications you will be monitoring and let them educate you about how their
applications are designed to run and what indicates failure within each application.
There is one exception to the “what is important” rule: Unless one or more of your
users or managers are Nagios experts they should not tell you how to best implement
their requirements.

Planning Your Configuration
Now that we have covered some basic configuration development principles, we will
look at the process of planning your configuration. Users are key to this process and
should be as much a part of the requirements process as they can be given restraints of
time and resources. In this section we guide you through a top-to-bottom planning
process you can use to implement a Nagios configuration for your organization.

Soliciting Requirements
from Your Customers and Users
We cannot stress enough the importance of bringing the customer into the require-
ments process. Ask any network or systems administrator who has been in charge of
implementing monitoring for an organization and you will hear story after story of
implementations that failed because 1) the customer was not involved in developing
requirements for the monitoring software; 2) the customer was not involved with
prioritizing the system and application checks done on devices and applications in the
organization; or 3) the customer was not involved in determining who should get
notified how often and during which time periods.

Start by finding out what is important to monitor. Speak with the customer,
project managers, and team leads. Initially it can be very useful to have meetings with
both the customer and managers present to determine what is important. Keep the
meetings short and to the point. Have a written agenda. It is very easy when discussing
monitoring for the meetings to get sidetracked by political, budgetary, or organizational
issues that have little to do with the basic questions:
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 29
What is important to monitor?

Who knows what the important devices and applications in your
organization are?

Who needs to know about outages?

Start High-Level and Work Down the Application Stack
Nagios makes it very easy to monitor devices. Once you are comfortable with
developing service and host checks, you may be tempted to monitor every possible
aspect of every device you can find. If you find yourself heading down this path,
pause and take a deep breath. Ask yourself how monitoring the aspect of the device
or application you are focusing on helps you meet the requirements you gathered
from your customer and users. Most users do not care if the paging rate of a Unix
system goes about 400 pages a second. Most system administrators will not care
about this either unless it is a system that hangs and crashes when I/O paging rates
hit that limit.

Most consumers of your data care more about whether their applications perform
within acceptable boundaries than whether each system is performing as efficiently as
it possibly can. Does monitoring CPU utilization help determine whether an appli-
cation is performing properly? It can. Does performing an HTTP-based robotic test
do a better job of telling you that same information? Absolutely. Why? It much more
closely mirrors what users of the application might do and therefore has a much
better chance of alerting on an application problem at a level your users care about.
After an application test fails does the CPU test then mean more? Yes, it does; the
CPU test now helps you determine or eliminate potential causes for the application
problem, and helps you focus on lower level system and network issues that might be
causing the failure or performance problem.

Start with checks that test functionality at a level that is closest to how your users
judge whether your application is responding properly, and then work down toward
metrics like CPU utilization, paging rates, network errors, and so forth. Your users
will thank you by caring about what you have implemented for them, and your
operational staff will thank you for eliminating some of the angry “it is 2 a.m. and
Joe in Hawaii just called me, the CEO, to tell me he cannot log in!” calls.

■

■

■

www.syngress.com

w

30 Chapter 2 • Designing Configurations for Large Organizations
Find Out What Applications
Are the Most Important to Your Users
Sounds obvious, and it is. Sometimes, the application that continually has the most
problems in an organization is not the most important application to that organiza-
tion. Talk with your managers, customers (if you are allowed to), and users, and ask
them what the most important applications are. Make a prioritized list based on the
feedback you get from each group, keeping in mind that the customers’ wants take
highest priority. Your users will often be able to share important information with
you about what applications are the most important to the customer as well.

Find Out What the Most Important
Indicators of Application Failure/Stress Are
The key is to ask questions and talk with your peers, managers, and customers.
Guessing only leads to useless or ignored alerts. Spend time (as much as you are able to)
reading architectural, workflow, and other diagrams and documents created for the
applications you are to monitor. You need to understand how the applications you are
monitoring work before you can provide meaningful alerts.

Start By Only Monitoring the
Most Critical Indicators of Health/Failure
Once you have a framework set up that easily lets you monitor various elements of a
device or aspects of an application, it can be very tempting to monitor everything on
that device or application. Resist this temptation. Start by monitoring the most obvious
aspects of a device or application, and then add monitors for less obvious indicators as
your understanding of the device or application matures. Keep your focus on what is
important and you will help your user community and yourself; monitor everything
and you will create chaos and confusion. Always remember that monitoring frame-
works are first and foremost tools to facilitate communication and provide meaningful
information on the state of a network and the applications on it.

Device Monitoring
Every organization will have a different focus. Use the flexibility of Nagios to your
advantage. If a shop has separate groups that manage systems based on the operating
system type, create host groups in Nagios based on the type of operating system.
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 31
If your organization organizes machines based on environments (integration, devel-
opment, production), group hosts based on those identifiers. If your customer only
has staff who deal with problems on an application level, group devices by the
application they support.

Application Monitoring
If your place of work focuses primarily on monitoring important applications, an
approach you can take to get up and running quickly is to add each device the applica-
tion lives on to Nagios, add one service check to each device, and then quickly move
on to application-level tests. Keep in mind that application-level tests involve more than
just testing if a network service port is listening. Work with your development staff or
development managers, find use cases that typify what users do with the application you
are monitoring, and then write tests that model those interactions. Your tests will serve
two purposes: they will show when the application path you have simulated fails, and
will provide useful baseline performance indicators. Even if your test does not fully
simulate a user interaction (for example, by automating a browser GUI as opposed to
just scripting HTTP directly), the performance numbers from each test run will show
average response over time and also point out deviations in response time that can prove
very useful.

Think like a tester. When an application fails and that failure is corrected, find out
what happened and, if you can, write a test that simulates that path or modify your
existing tests to catch that error and output a message that embodies the trouble-
shooting steps you learned from the people who corrected the problem (or yourself
if you were the troubleshooter). The more troubleshooting knowledge you can embed
in your monitoring application, the less precious brainpower you and others have to
spend remembering obscure troubleshooting paths.

Nagios Configuration
Object Relationship Diagrams
Nagios has excellent documentation. One addition we have always wanted is
diagrams showing how the various Nagios configuration objects relate to each other.
Here are some diagrams representing relationships between the various configuration
objects available in Nagios 3. We initially created a diagram with all relationships
shown on one graph, but that turned out to be completely unreadable. We have
broken down these relationships into smaller pieces, which makes for graphs that are
www.syngress.com

w

32 Chapter 2 • Designing Configurations for Large Organizations
more readable. We provide notes on each diagram to help point out some of the
more useful relationships between Nagios configuration objects.

Hosts and Services
Note that services and hosts can both be members of hostgroups; this pair of relation-
ships can make your Nagios configurations much easier to grow over time. For exam-
ple, you could define a cisco-snmp group, write a slew of useful SNMP-based checks
for your routers and switches, and then quickly add those checks to every Cisco device
on your network by just adding the devices to the cisco-snmp group (Figure 2.1).
Figure 2.1 Service Configuration Object Relationships

Contact
contacts

contacts

parents

hostgroups

host_name

hostgroup_name

contact_groups

contact_groups

check_period

check_period
notification_period

notification_period

servicegroups

Host

Host Group Contact Group

Service

Service Group

Time Period
Contacts, Contact Groups, and Time Periods
Contact groups can help keep your configuration simple as they allow you to associ-
ate access control by groups. You can associate a user with one or more contact groups
using the contactgroups attribute of the contact object, or you can associate contacts
from the contact group itself by enumerating them in the members attribute.

Note also the flexibility Nagios gives users re time periods. User objects have the
service_notification_period and host_notification_period to limit when they
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 33
receive notifications, and time periods can use other time periods as exclusions to
limit the range of the time period. Hosts and services have time periods associated
with them that limit when host checks are performed (check_period) and when
notifications are sent (notification_period) (Figure 2.2).
Figure 2.2 Contact and Time Period Configuration Object Relationships

Contact

members

contactgroups

check_period

check_period

notification_period

notification_period

host_notification_period
service_notification_period

exclude

Host

Contact Group

Service

Time Period
Hosts and Host Groups
Host groups are great for reporting and for associating groups of related devices with
groups of related service checks. For example, an ISP might create a unique host group
for each customer. The ISP can then run or create scripts to regularly run availability
and trend reports for each customer. Also note that host groups can have host groups as
members; this lets an administrator associate a device with a host group that has other
host groups as members where each child host group has multiple services associated
with it. For example, we might have a host group for Solaris servers and a host group
for Apache servers with a parent group call unix_web_servers (Figure 2.3).
www.syngress.com

w

34 Chapter 2 • Designing Configurations for Large Organizations

Figure 2.3 Host and Host Group Object Relationships

Host Group Host

Contact

contacts

contact_groups

notification_period

Contact Group

Host Extended Info

Service

hostgroup_name

hostgroup_members
check_period

Time Period

hostgroups

members
Services and Service Groups
A nice division of responsibility that Nagios uses is the separation of check periods
and notification periods. For example, we can have a service that is checked 24×7 and
only triggers notifications during working hours, meaning availability and trend reports
will show all service changes and the people responsible for the health of the services
only are notified during hours they are at work. Note also that with Nagios 3, service
groups can have other service groups as members; this allows Nagios users and admin-
istrators to run SLA reports for management that aggregate trends and availability of
groups of services across your organization (Figure 2.4).
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 35

Figure 2.4 Service and Service Group Object Relationships

Service Group

servicegroup_members

members

hostgroup_name

check_period

service_description

host_name

host_name

servicegroups

contact_groups

contacts

notification_period

Host Group Time Period

Service Host

Contact Group

Contact

Service Extended Info
Hosts and Host Dependencies
Nagios allows administrators to set up dependencies between hosts. This relationship
can be useful in modeling real-life host dependencies. For example, the application
tier of an application might be completely useless if the database server it relies on is
unreachable or down; in this case we may wish to suppress notifications for the applica-
tion tier when the database server is down as the application server is totally dependent
on the database server. Note that host dependencies have time periods associated with
them so you can limit when the dependency is in effect. The Nagios documentation
recommends that host dependencies should only be used when the hosts that depend
on each are related to each other by functional relationships; for hosts that depend on
each other for network connectivity, the basic child to parent relationship attribute
parents should be used (Figure 2.5).
www.syngress.com

w

36 Chapter 2 • Designing Configurations for Large Organizations

Figure 2.5 Hosts and Host Dependencies Object Relationships

Contact GroupContact

Host notification_period

Host Dependency
dependency_period

dependent_host_namehost_name

dependent_hostgroup_name

hostgroup_name

parents

Time Period

contacts contact_groups

check_period

Host Group hostgroups
Services and Service Dependencies
Some services in an organization may only function if other services are working
properly; Nagios lets us model this situation using service dependencies. When master
services fail, checks will be suppressed for services that depend on them. For example,
if an organization is using a service-oriented architecture (SOA), it might have one Web
service that provides information on employees within the organization: name, contact
numbers, where the employee sits, and so forth. Another service might use this service
to retrieve employee data and display it on a centralized Web site; if the employee data
provider stops functioning properly, there is no point in verifying with a check that the
Web site used to display that data is working properly, as it completely depends on
the data provider. Note that as with host dependencies, service dependencies use time
periods (dependency_period) to allow for limiting when the dependency is in effect
(Figure 2.6).
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 37

Figure 2.6 Services and Service Dependencies Object Relationships

Service Dependency

Host

dependent_host_name

host_name

hostgroup_name
Host Group

host_name

Contact Contact Group Service Group

contacts contactgroups servicegroups

notification_period

check_period

dependent_service_name dependency_period

Service Time Period
Hosts and Host Escalations
Host escalations let Nagios easily integrate with tiered support systems. They allow
the Nagios administrator to set up notification rules that instruct Nagios to alter or
add to the groups notified when a host is in a particular state based on the numbers
of notifications that have been sent for a state. For example, an organization might
have a dedicated tier 1-2 Unix system administration group. When a Web server
becomes unreachable, this group would be the first to work to get the host back
online. If the tier 1-2 group is unable to bring the host back to an operational state
after two notifications, then a tier 3 group at central corporate would be notified and
begin to investigate the issue to resolve it within established service-level agreement
times set up between the customer and the service provider. Note that as with
dependencies, host escalation time periods can be limited if desired; host escalations
can also be associated with host groups, making it easy to maintain escalation proce-
dures across large groups of hosts (Figure 2.7).
www.syngress.com

w

38 Chapter 2 • Designing Configurations for Large Organizations

Host Group Time PeriodHost

Host Escalation

escalation_period

hostgroups

host_name

check_period

notification_period

Contact Group
Contact

contact_groups contacts

contacts

parents

contact_groups

hostgroup_name

Figure 2.7 Hosts and Host Escalations Object Relationships
Services and Service Escalations
As with host escalations, service problems can be escalated to different groups in an
organization based on the length of time a problem occurs. Notice that service
escalations can be associated with both hosts and host groups but not service groups.
If services that need to be escalated are associated with host groups rather than hosts
or services, it is then easy to create service escalation policies that apply across an
organization. For example, an organization might have a host group named web servers
that holds all Web servers in an organization along with all service checks needed for
them. Under this scenario, any new host added to the web servers group immediately
inherits the service escalation policies created for the host group (Figure 2.8).
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 39

Figure 2.8 Services and Service Escalations Object Relationships
Version Control
Nagios’ configuration language is like a stripped-down programming language with
object-oriented features; treat your Nagios configuration as you would any other
application source code. The larger and more heterogeneous the environment is,
the more complex configurations can become, even when designed carefully to take
advantage of the inheritance model the Nagios configuration language supports.
In an environment where there is enough trust to give coworkers the ability to
manage their own configurations, the risk of losing important configuration code
increases. Finally, there is the risk of losing a configuration should an intruder break
in to the host Nagios runs on.

Version control can help resolve all of these situations. It mitigates the risks
associated with having multiple authors working on the same code at the same
time. It provides an easy way to have live backups of Nagios configurations and lets
administrators see who changed what, and when. In this section, we show how
version control can help make your configuration easier to use, change, and share.

The larger the configuration, the trickier it becomes to remember the changes
made to the configuration. Place the configuration under version control and it
becomes easy to see what changes have been made to the configuration. Additionally,
www.syngress.com

w

40 Chapter 2 • Designing Configurations for Large Organizations
the comments provided give context and rationale for why changes were made.
Version control also allows for tagging specific releases of a configuration. If an organi-
zation has implemented a redundant cold backup system, a version control system can
easily compare two configuration releases and quickly synchronize a live system and a
cold backup system. Finally, most version control systems also provide a Web interface
that allows users to browse the source, compare arbitrary revisions, and create and
associate actions with code (trouble tickets, bug reports, etc). This can make it easy for
an administrator to keep track of what has changed and remember why changes were
made in the first place.

As mentioned before in this book, Nagios can facilitate communications between
groups in an organization and help them communicate the status of managed devices
and services within an organization to operational staff. Once an organization starts
seeing the value Nagios can provide in these areas, domain experts within an organi-
zation might start to develop their own ideas of what they want to monitor and how
they want to monitor the services and hosts that are important to them. Eventually
trust might develop between the administrators and these users and you may decide to
allow users to make their own configuration changes. Even with this trust in place
administrators probably do not want users to make configuration changes to service
and host monitoring policies that other groups in an organization have established.
Version control systems can be used to control access to areas of a configuration tree
by setting up group-specific subdirectories that are stored in projects made specifi-
cally for each group. For example, if there is a Unix group, a Windows group, and
a router group, the configuration directives in nagios.cfg might look like this:
cfg_dir=/usr/local/nagios/etc/groups/windows

cfg_dir=/usr/local/nagios/etc/groups/unix

cfg_dir=/usr/local/nagios/etc/groups/router

Each subdirectory could then be set up as a version-controlled repository. This
allows each group to check out its own configuration project, make changes to it, and
check changes back in. They never need interactive login access to the physical moni-
toring host. After changes are made, a code review can be done (very important),
the configuration can be tested, and the new code can then be applied to the system.
Version control will not keep people from writing malicious code or creating files
with incorrect syntax, so make sure a human reviews each group’s changes before they
are applied to the Nagios host.
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 41
This way of thinking about configuration can also be very useful for a consulting
business. For example, a business might have a client with whom there is a fair amount
of trust, yet that client requires service or hosting checking functionality specific to
their application or network. Administrators might not be comfortable giving clients
SSH access to the Nagios host as it contains configurations from other customers.
In this case, the Nagios configuration tree might look something like Figure 2.9.
Figure 2.9 Example Nagios Configuration Tree for a Consulting Business

/usr/local/nagios/etc

customers

Ultimate_Domains

etc/

bin/
The Nagios cfg_dir section might look like this:
cfg_dir=/usr/local/nagios/etc/customers/Ultimate_Domains/bin

cfg_dir=/usr/local/nagios/etc/customers/Ultimate_Domains/etc

cfg_dir=/usr/local/nagios/etc/customers/CVK9_Services/bin

cfg_dir=/usr/local/nagios/etc/customers/CVK9_Services/etc

For each customer custom scripts would be stored in the bin/ subdirectory, and
custom configurations in the etc/ subdirectory. We also recommend making use of
the custom attributes feature of Nagios 3 to create base host or service configuration
for each customer that contains company-specific information. This meta-data can
later be used in notifications to provide contact information or other company-
specific information to the people receiving the alerts. A base service configuration
with custom attributes is shown in this example:
www.syngress.com

w

42 Chapter 2 • Designing Configurations for Large Organizations
define service {

use generic-service # Inherit from the generic-service definition that comes with
Nagios

name ud-base

hostgroups ultimatedomains

notification_interval 120

notification_period 24×7

contact_groups ultimatedomains

__ud_base /usr/local/nagios/etc/clients/Ultimate_Domains # Custom
commands can refer to this

__customer_notes Ask for Jarred if you need to speak to someone who knows
all the applications well

__customer_address 111 Example Avenue, Sometown, Florida. 00000

__customer_phone 555–1212

register 0

}

We recommend using a double-underscore “__” as a prefix to custom attributes;
when the variables are used in services or hosts the _HOST or _SERVICE prefix is
separated from the variable name by a single underscore. For example, in a command
definition, __customer_phone becomes:
$_SERVICE_CUSTOMER_PHONE$

An example check command that uses the __ud_base and other custom variables:
define command {

command_name check_ud_keyword_search

command_line $_SERVICE_UD_BASE$/bin/check_keyword_search.pl -s
$_SERVICE_UD_KEYWORD_SEARCH_TERM$ -e $_SERVICE_UD_KEYWORD_SEARCH_ENV$ -w
$_SERVICE_UD_KEYWORD_SEARCH_WARN$ -c $_SERVICE_UD_KEYWORD_SEARCH_CRIT$

}

Losing a configuration, whether it is due to mistyping, a system break-in by an
attacker, or system failure is painful. Set up a revision control repository for the
Nagios monitoring host on a host that is separate from Nagios on the network
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 43
so that even if the monitoring host is compromised or fails, there is a recent backup
to roll back to quickly. Version control should never be used as the backup system for
a host, yet it certainly makes an excellent addition to backup systems and is a very
fast way to restore a configuration should something bad happen.

Version control of configuration code is often not considered at all when imple-
menting a monitoring system with Nagios. Nagios’ configuration language is rich
and can help model services and hosts in complex environments—making the loss of
a well-designed configuration a painful event. Make wise use of version control and
there will be peace of mind for administrators, flexibility for users, and customers can
have control over their custom service checks and the ability to easily see what
changes are made to their monitoring configuration.

Notification Rules and Output Formats
Designing notification rules is one of the most important activities done in the man-
agement of a Nagios configuration. Design rules that provide the right information
to the right people at the right times and coworkers will notice. Do a poor job of
designing notification rules, send out too much information or too little to the wrong
people, and coworkers will notice in a negative way and there will be much unhappi-
ness (trust us on this) in the office and users will ignore the alerts Nagios sends out.

Notification via Email
Less is more when it comes to email notifications. Most professionals in IT receive
hundreds or more emails a day. While many email clients make it easy to prioritize,
flag, and tag messages, it is still a normal human tendency to be annoyed at too
much information and to ignore email when we receive too much of it from a single
source. Customizing your notifications to fit in with the email system the client uses
can really help you sell your monitoring services to your customer/clients.

Minimize the Fluff
We repeat this often because it is so important. Send out email notifications only when
a problem requires human intervention immediately. If CPU utilization on a system hits
100% during one five-minute poll, you certainly want to capture that event by having
your service check return a CRITICAL state to Nagios, but you most likely should not
www.syngress.com

w

44 Chapter 2 • Designing Configurations for Large Organizations
send out an email to a system administrator. If CPU utilization stays pegged at 100%
utilization for several hours, it might then be time for a person to investigate. Use host
and service dependencies to escalate alerts when needed and to suppress alerts for hosts
and services that should not be checked because dependent services and hosts are not
available.

Make Notification Emails Easy to Filter
Always use a standard subject prefix to your emails so users can filter your emails into
custom folders if they want to. A fixed subject prefix also makes it easy to see which
emails are sent from Nagios.

Enhancing Email Notifications
to Fit Your Users’ Environment
Customers use a variety of email systems; some support open standards for displaying
priority, importance, or status. Some support HTML, while others do not. Take the
time to learn your customer’s email system so you can make your emails as precise
and easy to digest as possible. For example, here is a script that sends notifications
using HTML email and adds an icon to an email. This notification script was designed
for use with Lotus Notes, which uses custom Mail headers to indicate priority and
status. For OK/recovery, the email shows a happy face; for CRITICAL, flames are
shown; and for WARNING, a finger with string around it is shown. In addition to
the basic status, a trend graph for the service for the last 24 hours is sent to give the
user context for the ongoing status of this service or host.

First, we have the notification command definition. In this example, $USER3$ is
defined in our resources.cfg file with the path to our custom notification scripts; for
example:
$USER3$=/usr/local/nagios/custom/notifications

define command {

command_name notify-by-email

command_line $USER3$/notify-by-email “$LONGDATETIME$” “$NOTIFICATIONTYPE$”
“$HOSTNAME$” “$HOSTALIAS$” “$HOSTADDRESS$” “$SERVICEDESC$” “$SERVICESTATE$”
“$SERVICEOUTPUT$” “$CONTACTALIAS$” “$CONTACTEMAIL$”

}

ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 45
And here is the notification script:
#!/bin/bash

export PATH=/usr/local/bin:/usr/local/netpbm/bin:/usr/bin:/usr/sbin:/bin

Template with body of the email, MIME formatting, etc.

TEMPLATE=/usr/local/nagios/custom/notifications/templates/notify-by-email

vars=”LONGDATETIME NOTIFICATIONTYPE HOSTNAME HOSTALIAS HOSTADDRESS”

vars=”$vars SERVICEDESC SERVICESTATE SERVICEOUTPUT”

vars=”$vars CONTACTALIAS CONTACTEMAIL”

Time in seconds since the Epoch

get_time() {

local secs=$1

perl -e “print (time() - $secs);”

}

now() {

get_time −300

}

Returns an histogram all ready for inclusion in a MIME-encoded email,

JPG format.

#

1) Retrieve the PNG image

2) Convert to PNM

3) Convert to JPG

4) base64 encode

5) Output content

get_trend_img() {

local host=”$1”

local service=”$2”

local start=”$3”

local end=”$4”

wget -q -O - \

--user=myuser \

--password=mypassword \
www.syngress.com

w

46 Chapter 2 • Designing Configurations for Large Organizations
“http://nagios/nagios/cgi-bin/trends.cgi?createimage&t1=${start}&t2=${end}&
assumeinitialstates=yes&assumestatesduringnotrunning=yes&initialassumedhoststate=
0&initialassumedservicestate=0&assumestateretention=yes&includesoftstates=no&
host=${host}&service=${service/ /+}&backtrack=4&zoom=4 “ | \

pngtopnm - | \
pnmtojpeg - | /usr/local/bin/uuenview -b - trend.jpg

}

get_trend_img www01.example.com SSH 1158210000 1158220000

for v in $vars

do

value=$1

shift

eval ″$v=\”$value\””

done

COLOR=”black”

MISC=”Importance: Normal”

case $SERVICESTATE in

 (OK) COLOR=green

MISC=‘X-Notes-Item: T;

name=$Moods

X-Notes-Item: T;

name=tmpSenderTag

X-Notes-Item: T;

name=$devopt_basic_moods

X-Notes-Item: T;

name=SenderTag

X-Notes-Item: 85;

type=300; name=_ViewIcon’

;;

CRITICAL) COLOR=red ;

MISC=‘Importance: High

X-Notes-Item: F;

name=$Moods
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 47
X-Notes-Item: F;

name=tmpSenderTag

X-Notes-Item: F;

name=$devopt_basic_moods

X-Notes-Item: F;

name=SenderTag

X-Notes-Item: 74;

type=300; name=_ViewIcon’

;;

UNKNOWN) COLOR=gray

MISC=‘X-Notes-Item: Q;

name=$Moods

X-Notes-Item: Q;

name=tmpSenderTag

X-Notes-Item: Q;

name=$devopt_basic_moods

X-Notes-Item: Q;

name=SenderTag

X-Notes-Item: 162;

type=300; name=_ViewIcon’

;;

WARNING) COLOR=orange

MISC=‘X-Notes-Item: M;

name=$Moods

X-Notes-Item: M;

name=tmpSenderTag

X-Notes-Item: M;

X-Notes-Item: M;

name=$devopt_basic_moods

X-Notes-Item: M;

name=SenderTag

X-Notes-Item: 10;

type=300; name=_ViewIcon’

;;

FLAPPING) COLOR=purple ;;

esac
www.syngress.com

48 Chapter 2 • Designing Configurations for Large Organizations
HINFO=${HOSTNAME}

. $TEMPLATE

/usr/lib/sendmail -oi -t <<EOF

$CONTENT

EOF

exit 0

And the template with the text and MIME format of the email; in this case:
/usr/local/nagios/custom/notifications/templates/notify-by-email)

CONTENT=$(cat <<EOF

From: “Support Team” support@example.com

To: “$CONTACTALIAS” <$CONTACTEMAIL>

$MISC

Subject: $HOSTNAME/$SERVICEDESC is $SERVICESTATE

MIME-Version: 1.0

Content-type: multipart/mixed;

 Boundary=”0__=8FBBFB7ADFDD3C9E8f9e8a93df938690918c8FBBFB7ADFDD3C9E”

Content-Disposition: inline

--0__=8FBBFB7ADFDD3C9E8f9e8a93df938690918c8FBBFB7ADFDD3C9E

Content-type: text/html; charset=US-ASCII

Content-Transfer-Encoding: 7bit

Content-Disposition: inline

<center>

$LONGDATETIME

</center>

<center>

<span style=”color: $COLOR;font-size: 24px; text-align: center; font-weight:
bold;font-family: Arial”>

$HOSTALIAS

www.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 49
$HOSTNAME ($HOSTADDRESS) - $SERVICEDESC is $SERVICESTATE

</center>

<center>

<i>

$SERVICEOUTPUT

</i>

</center>

--0__=8FBBFB7ADFDD3C9E8f9e8a93df938690918c8FBBFB7ADFDD3C9E

Content-type: image/jpeg;

name=”trend.jpg”

Content-Disposition: inline

Content-transfer-encoding: base64

$(get_trend_img “$HOSTNAME” “$SERVICEDESC” `get_time 43200` `now`)

--0__=8FBBFB7ADFDD3C9E8f9e8a93df938690918c8FBBFB7ADFDD3C9E

Content-type: text/html; charset=US-ASCII

Content-Transfer-Encoding: 7bit

Content-Disposition: inline

--0__=8FBBFB7ADFDD3C9E8f9e8a93df938690918c8FBBFB7ADFDD3C9E

EOF

)

www.syngress.com

w

50 Chapter 2 • Designing Configurations for Large Organizations
Finally, a screenshot of what email from this script looks like to the end user as
shown in Figure 2.10.
Figure 2.10 Example Lotus Notes HTML Email Output
Notification Via Pager/SMS
Minimize Included Information
Notifications need to convey information quickly and concisely. Even though many of
us have phones and pagers capable of receiving and displaying large documents, the last
thing we want to do as system and network managers is clog up mail networks with
too much information. Ask your customers and users what they want to see in their
notifications. Include only the most important facts: host name, IP address, service
description, maybe a customer-specific piece of meta-data like a contact phone number.
Avoid graphics and long service output strings in notifications to pagers/SMS devices.
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 51
Only Notify in the Most Important Situations
The larger the set of hosts and services you monitor, the more important this rule is;
it also takes time to tune service and host checks so they are not triggered when
situations do not warrant it. In general it is better to start with no notifications and
then add notification rules as necessary rather than send too many notifications out for
service and host outages and have them ignored. One of us was in a situation where a
coworker called Nagios “the spaminator” because this co-author had not implemented
notifications properly and users were getting notified of service state changes too
frequently. A five-minute discussion with another member of the team led to a quick
and happy resolution thanks to the rich configuration language Nagios includes.

Respect Working Hours and Employee Schedules
Make sure you find out from managers and your customers when they want to be
notified. Nothing is more annoying to a technician or manager than receiving an
alert during a time when he or she is supposed to be off the clock. Make it easy for
people to contact you to request changes to schedules, and implement those changes
promptly when users request them.

Alternative Notification Methods
For most situations, email is the preferred method of notification. However, there
are plenty of situations in which administrators might prefer to send or receive alerts
using methods other than email. In this chapter, we cover sending alerts that use
Instant Messenger and polling Nagios for alerts and then translating them into speech
using text-to-speech.

Instant Messenger
For some organizations, certain systems or services are so critical that users want to be
notified as close to the time of the event as possible. Other groups, like software teams,
might leave a chat room open for team discussion and interaction; these developers
might also want alerts about system or host problems for development systems to be
sent to their chat room. The Instant Messenger protocol can be used to satisfy this kind
of requirement.
www.syngress.com

w

52 Chapter 2 • Designing Configurations for Large Organizations
We will now show an example notification script that uses AOL instant messenger,
a very stable and well-documented Instant Messenger protocol with a wide variety of
clients available. To send an Instant Message, we will need to first establish a user account
with AOL and then save our username and configuration in our Nagios configuration.
Since this information is sensitive, we recommend you put it in the resource.cfg file and
tighten down the permissions on resource.cfg so only root can read/write it. Here
we will set our username in user variable 50 and our password in user variable 51 in
the Nagios configuration file resource.cfg:
$USER50$=myusername

$USER51$=mypassword

Since the resource.cfg file is readable only by root, we will need to restart Nagios
after changing it, as Nagios reads the resource.cfg file as root before it drops privileges
to the nonroot user ID Nagios runs as (you are running Nagios as a nonprivileged
user we hope).

Here is an example script that will send an instant message using AOL IM, written
in ruby; for this example, we are calling it notify-by-aol-im.rb:
#!/usr/local/bin/ruby

require ‘rubygems’

require ‘net/toc’

USAGE = <<EOF

#{$0} from-screen-name from-password to-screen-name message

EOF

screen_name = ARGV[0] || my_die(“Missing from screen name”)

password = ARGV[1] || my_die(“Missing password”)

to = ARGV[2] || my_die(“Missing to screen name”)

msg = ARGV[3] || my_die(“Missing message to send”)

client = Net::TOC.new(screen_name, password)

client.connect

client.buddy_list.buddy_named(to).send_im(msg)

client.wait(5)

client.disconnect

exit 0

Now we need to create a command definition in Nagios so we can access the
new command from our Nagios configuration:
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 53
define command {

command_name service-notify-by-im

command_line $USER1$/notify-by-aol-im.rb ‘$USER50$’ ‘$USER51$’ ‘$ADDRESS1$’
‘Host: $HOSTNAME$\nHost state: $HOSTSTATE$\nTime: $LONGDATETIME$\nService:
$SERVICEDESC$\nService state: $SERVICESTATE$\nService output: $SERVICEOUTPUT$\n’ }

To send a message, we will need to know the end user’s IM username. Since this
information is not sensitive, we can embed it in the contact definition for the user as
an addressN variable. Here is an example that sets the instant messenger username
into the address1 variable in a contact:
define contact {

…

address1 myexampleIMname

…

}

Next we associate our notification command with the user who wants to be
notified by IM:
define contact{

…

service_notification_commands service-notify-by-im

…

}

Voilà! The user will start to receive service notifications via IM. If the user wants
IM notifications only during special times or days in addition to the normal notifica-
tions he receives, we can create a second contact definition for the user that just
holds the IM specifications:
define contact{

contact_name joe-im

alias Joe - Instant Messenger

service_notification_period 9x5

host_notification_period never

host_notification_options n # n == none

host_notification_commands dummy_command # have to define a command for host
 notifications

service_notification_options u,w,c,r

service_notification_commands service-notify-by-im

address1 myexampleIMname

}

A possible definition for dummy_command in the commands file, as we do not
care about host notifications for this contact:
www.syngress.com

w

54 Chapter 2 • Designing Configurations for Large Organizations
define command{

command_name dummy_command

command_line check_dummy 0

}

Keep in mind that services like AOL IM will disallow login access if an IM client
connects and then disconnects too many times within a minute. For this reason, use
IM only for the most critical alerts.

Text-to-Speech
We have encountered many situations where initially managers thought that having
alerts spoken would be a great way to make their lives easier. Sometimes giving a
manager the ability to hear alerts can help sell Nagios to an organization. The result
is often that after a month or two, the manager and other employees get tired of
hearing these alerts. This does not mean there is no value in text-to-speech. Some
busy system administrators might appreciate not having to constantly switch their
focus to Nagios to check for new problems, and certainly if there are staff at an
organization who have problems with sight, text-to-speech can be very useful.

For text-to-speech, we prefer to have a script that actively polls Nagios for alerts
rather than having Nagios call a script to perform the text-to-speech. Having the
text-to-speech script poll Nagios means it can live anywhere on the network and
even be deployed to multiple places within an organization if so desired; each
instance can filter the alerts from the “Service Problems” and “Host Problems”
screens to cater to the target audience for the script.

The script presented here uses Perl and the Microsoft Voice API to translate alerts
into speech; we have found that most organizations use Windows workstations for
end users. Porting the script to Linux or Unix is a simple matter, as the GPL Festival
project (http://www.cstr.ed.ac.uk/projects/festival/) provides a very flexible and fairly
easy to set up set of tools to translate text to speech for Unix and Linux.

If you wish to use a voice other than the default voice that comes with Windows,
download the Microsoft SAPI5 speech SDK from http://download.microsoft.
com/download/speechSDK/SDK/5.1/WXP/EN-US/speechsdk51.exe. Run the
.msi installer from the package, and two additional voices—Sam (voice index 1)
and Mary (voice index 2)—will be installed.

If you wish to use SSL URLs with this script on Windows, note that the SSL
packages are no longer provided in the Activestate perl package repository due
to Canadian cryptographic export restrictions. Instead, you will have to add the
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 55
University of Winnipeg repository to PPM and then install them. Example session
using Activestate Perl 5.10 (please be aware that the repositories have different paths
for versions 5.8 and 5.6 of Activestate Perl):
C:\>ppm-shell

ppm> add rep winnipeg http://cpan.uwinnipeg.ca/PPMPackages/10xx/

ppm> install Net::SSLeay

You will be asked a series of questions about retrieving ssleay32.dll and libeay32.
dll. Answer yes to the questions, accept the defaults for any other questions related to
the install of the SSL module, and the module will install without problems.

This script will also run under Cygwin (tested under version 1.5.25-7 with
Perl 5.10). We tested the script with the default Perl 5.8.8; unfortunately with perl
5.8.8 Net::SSLeay dumps core when LWP attempts to retrieve SSL URLs using
Net::SSLeay. Upgrading to Perl 5.10 and recompiling Net::SSLeay using the cpan
front-end resolved the issue.

Here is the code for the daemon:
#!/usr/bin/perl

=pod

=head1 NAME

nagios-ttsd.pl

=head1 SYNOPSIS

Poll a Nagios host for alerts and translate them from text to speech bounded by
filters established within the configuration file.

=head1 CONFIGURATION

The configuration file has 3 sections: main, filters, and translations.

The main section contains information on where Nagios is on the network, how often
to poll it, and the username and password to use to log into Nagios to retrieve
service and host status. The account used for retrieving status should only be
able to view statuses; do not give it permission to execute commands, leave
comments, etc. Finally, there is a debug variable in the main section that will
cause the script to output verbose debugging information to a file if you set the
value of debug to a file name.

The filters section allows you to filter what alerts are retrieved from Nagios based
on service name, host name, and service or host state.

The translations section contains a list of words and replacements for them.

Often you will find that text to speech libraries do not handle English spellings
properly, so being able to replace proper spellings with phonetic spellings can
www.syngress.com

w

56 Chapter 2 • Designing Configurations for Large Organizations
make alerts sound much more natural when spoken. Place new words or phrases
between EOF markers and put %% between the word or phrase to catch and the
translation of the phrase. Additionally the translations section contains host_
phrase_template and service_phrase_template variables; you can alter the template
for host and service problem phrases to your liking.

See the included sample configuration file for more information on configuring this
program.

=cut

use strict;

use LWP;

use Win32::OLE;

use Config::IniFiles;

use CGI;

use FindBin;

my $CF_FILE = shift || “$FindBin::Bin/nagios-ttsd.ini”;

my %HOST_STATES = qw(

PENDING 1

UP 2

DOWN 4

UNREACHABLE 8

);

my %SVC_STATES = qw(

PENDING 1

OK 2

WARNING 4

UNKNOWN 8

CRITICAL 16

);

my $CAN_SSL = 0;

eval{

require Net::SSLeay;

import Net::SSLeay;

};

$CAN_SSL = 1 unless $@;

my $CFG = read_config($CF_FILE);

my $DEBUG = $CFG->{‘main’}->{‘debug’} || ’’;

my $VERBOSE = $CFG->{‘main’}->{‘verbose’} || 0;
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 57
validate_config($CFG, $CAN_SSL, \%HOST_STATES, \%SVC_STATES);

debug(“Starting”);

my $TTS = Win32::OLE->new(“Sapi.SpVoice”)

|| die “Sapi.SpVoice failed”;

$TTS->{‘Voice’} = $TTS->GetVoices->Item($CFG->{‘main’}->{‘voice’});

my $SLEEP = $CFG->{‘main’}->{’polling_interval’};

my @TRANSLATIONS = @{$CFG->{’translations’}->{’phrase_list’}};

my $HOST_PHRASE = $CFG->{’translations’}->{’host_phrase_template’};

my $SERVICE_PHRASE = $CFG->{’translations’}->{’service_phrase_template’};

while (1){

speak(“Checking for host alerts”) if $VERBOSE;

my @h = check_for_host_alerts($CFG, \%HOST_STATES);

speak_alerts($HOST_PHRASE, \@TRANSLATIONS, @h);

speak(“Checking for service alerts”) if $VERBOSE;

my @s = check_for_service_alerts($CFG, \%SVC_STATES);

speak_alerts($SERVICE_PHRASE, \@TRANSLATIONS, @s);

speak(“Sleep for $SLEEP seconds”) if $VERBOSE;

sleep $SLEEP;

}

exit 0;

sub read_config{

my $cfg_file = shift;

my %ini;

tie %ini, ‘Config::IniFiles’, (-file => $cfg_file);

return \%ini;

}

sub validate_config{

my $cfg = shift;

my $has_ssl = shift;

my $host_states = shift;

my $svc_states = shift;

my @errors;

my @main_req = qw(

nagios_url nagios_user nagios_pass polling_interval
www.syngress.com

58 Chapter 2 • Designing Configurations for Large Organizations
voice

);

for my $param (@main_req){

if ($cfg->{’main’}->{$param} eq ‘’){

push(@errors, “Missing $param in main”);

}

}

my $nagios_url = $cfg->{’main’}->{’nagios_url’};

if ($nagios_url ne ‘’){

if ($nagios_url !~ m/^http/i){

push(@errors,

“Invalid nagios_url, must start with http or https”);

}

if (($nagios_url =~ m/^https/i) && ($has_ssl == 0)){

push(@errors,

“nagios_url uses SSL but Net::SSLeay is not present”);

}

$cfg->{’main’}->{’nagios_url’} =~ s/\/$//;

}

my $interval = $cfg->{’main’}->{’polling_interval’};

push(@errors, “polling_interval in main must be a number”)

unless $interval =~ m/^\d+$/;

my @ss = split(/\s+/, $cfg->{’filters’}->{’service_statuses’});

if (scalar(@ss) == 0) {

$cfg->{’filters’}->{’service_statuses’} = ‘’;

} else{

my $ss_regexp = join(’|’, keys %{$svc_states});

for my $s (@ss){

if ($s !~ m/${ss_regexp}/i){

push(@errors, “Invalid service state $s specified”);

}

}

}

if ($cfg->{’filters’}->{’service_regexp’} eq ‘’){

$cfg->{’filters’}->{’service_regexp’} = ‘.’;

}

www.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 59
my @hs = split(/\s+/, $cfg->{’filters’}->{’host_statuses’});

if (scalar(@hs) == 0){

$cfg->{’filters’}->{’host_statuses’} = ‘’;

} else{

my $hs_regexp = join(‘|’, keys %{$host_states});

for my $s (@hs){

if ($s !~ m/${hs_regexp}/i){

push(@errors, “Invalid host state $s specified”);

}

}

}

if ($cfg->{‘filters’}->{‘host_regexp’} eq ‘’){

$cfg->{‘filters’}->{‘host_regexp’} = ‘.’;

}

if (scalar(@errors) > 0){

warn “Configuration file validation failed\n”;

die join(“\n”, @errors);

}

debug(“Configuration file validated”);

}

sub debug{

return if $DEBUG eq ‘’;

if (! defined($main::DEBUG_FD)){

open($main::DEBUG_FD, “>> $DEBUG”)

||die “Can’t append to debug file $DEBUG: $!”;

}

my $msg = shift;

print {$main::DEBUG_FD} scalar(localtime(time)) . “: $msg\n”;

}

sub speak{

my $msg = shift;

debug(“Speaking ‘$msg’”);

$TTS->Speak($msg, 0);

$TTS->WaitUntilDone(-1);

}

www.syngress.com

w

60 Chapter 2 • Designing Configurations for Large Organizations
sub speak_alerts{

my $phrase_template = shift;

my $translations_ref = shift;

my @alerts = @_;

for my $item (@alerts){

my $phrase = substitute_phrase($item, $phrase_template);

for my $t (@$translations_ref){

my ($match, $replace) = split(/\s*%%/, $t);

debug(“Translation: s/$match/$replace/g”);

$phrase =~ s/$match/$replace/gie;

Substitute in $N variables from user-supplied replacements

eval “\$phrase = qq{$phrase}”;

}

speak($phrase);

}

}

sub check_for_host_alerts{

my $cfg = shift;

my $host_states = shift;

my $base = $cfg->{‘main’}->{‘nagios_url’};

my $statuses_val = get_value_of_desired_states(

$cfg->{‘filters’}->{‘host_statuses’}, $host_states);

http://www.example.com/nagios/cgi-bin/status.cgi?hostgroup=all

&style=hostdetail&hoststatustypes=12

my $url = “${base}/cgi-bin/status.cgi?hostgroup=all&noheader=yes&” .

“style=hostdetail&hoststatustypes=${statuses_val}”;

my $content = get_content($cfg, $url);

debug(“HOST content:\n==========\n$content\n===========”);

my @alerts = parse_host_content($content, $cfg);

return @alerts;

}

ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 61
sub check_for_service_alerts{

my $cfg = shift;

my $service_states = shift;

my $base = $cfg->{‘main’}->{‘nagios_url’};

my $statuses_val = get_value_of_desired_states(

$cfg->{‘filters’}->{‘service_statuses’},

$service_states);

http://www.example.com/nagios/cgi-bin/status.cgi?host=all&

servicestatustypes=28

my $url = “${base}/cgi-bin/status.cgi?host=all&noheader=yes&” .

“servicestatustypes=${statuses_val}”;

my $content = get_content($cfg, $url);

debug(“STATUS content:\n==========\n$content\n===========”);

my @alerts = parse_service_content($content);

return filter_alerts(\@alerts, $cfg);

}

sub get_value_of_desired_states{

my $states_string = shift;

my $states_hash_ref = shift;

my @wanted_states;

if ($states_hash_ref ne ‘’){

for my $state (split(/\s+/, $states_string)){

debug(“Adding state $state to wanted states array”);

push(@wanted_states, uc($state));

}

} else{

@wanted_states = keys %{$states_hash_ref};

}

my $statuses_value = 0;

for my $key (@wanted_states){

$statuses_value += $states_hash_ref->{$key};

}

return $statuses_value;

}

www.syngress.com

62 Chapter 2 • Designing Configurations for Large Organizations
sub get_content{

 my $cfg = shift;

 my $url = shift;

 my $user = $cfg->{‘main’}->{‘nagios_user’};

 my $pass = $cfg->{‘main’}->{‘nagios_pass’};

 my $ua = NagiosClient->new($user, $pass);

 debug(“Retrieving URL $url”);

 my $response = $ua->get($url);

 if (! $response->is_success){

 die(“Could not retrieve $url: “ . $response->status_line . “\n”);

 }

 return $response->content;

}

sub parse_host_content{

 my $content = shift;

 my $cfg = shift;

 my @alerts;

 while ($content =~ m%

 <TD\s+align=left\s+valign=center\s+CLASS=‘statusHOST[A-Z]+’>

 .+?

 # Host name

 >([^<]+)

 .+?

 # Status

 <TD\s+CLASS=‘statusHOST[A-Z]+’>([^<]+)</TD>

 .+?

 # Time

 nowrap>([^<]+)</TD>

 .+?

 # Duration

 nowrap>([^<]+)</TD>

 .+?

 # Status Information

 >([^<]+)</TD>

 .+?

 %xsmgi) {
www.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 63
 my $alert ={

 ‘type’ => ‘host’,

 ‘host’ => decode_html($1),

 ‘status’ => decode_html($2),

 ‘time’ => decode_html($3),

 ‘duration’ => decode_html($4),

 ‘information’ => decode_html($5)

 };

 if ($DEBUG ne ‘’){

 my $msg = “Host: “;

 for my $field (keys %$alert) {

 $msg .= “$field:$alert->{$field} “;

 }

 debug($msg);

 }

 push(@alerts, $alert);

 }

 return @alerts;

}

sub parse_service_content {

 my $content = shift;

 my @alerts;

 my $host;

 # HTML::Parser won’t parse Nagios HTML, neither will HTML::ExtractTable
(tried),

 # have to do it manually. Blech. Oh how nice it would be to have
status.cgi

 # generate XML!

 while ($content =~ m%

(?:<TD\s+align=left\s+valign=center\s+CLASS=‘status(?:Even|Odd|HOST[A–Z]+)’>

 <A\s+HREF=‘extinfo.cgi

 .+?

 # Host name - will be empty TD pair if this is a continuation

 # of a host with multiple alerts
www.syngress.com

ww

64 Chapter 2 • Designing Configurations for Large Organizations

 ’>([^<]+)|<TD></TD>)

 .+?

 # ‘ Service description

 >([^<]+)

 .+?

 # Status

 CLASS=’status[A-Z]+‘>([A-Z]+)</TD>

 .+?

 # ‘ Time

 nowrap>([^<]+)</TD>

 .+?

 # Duration

 nowrap>([^<]+)</TD>

 .+?

 # Attempts

 >([^<]+)</TD>

 .+?

 # Status Information

 >([^<]+)</TD>

 .+?

 %xsmgi) {

 # Host might be empty if this is a host with multiple alerts

 $host = ($1 ne ‘’) ? $1 : $host;

 my $alert ={

 ‘type’ => ‘service’,

 ‘host’ => decode_html($host),

 ‘service’ => decode_html($2),

 ‘status’ => decode_html($3),

 ‘time’ => decode_html($4),

 ‘duration’ => decode_html($5),

 ‘attempts’ => decode_html($6),

 ‘information’ => decode_html($7)

 };

 if ($DEBUG == 1){

 print “Service: “;

 for my $field (keys %$alert){

 print “$field:$alert->{$field} “;
w.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 65
 }

 print “\n”;

 }

 push(@alerts, $alert);

 }

 return @alerts;

}

sub decode_html{

 my $string = shift;

 $string = CGI::unescapeHTML($string);

 $string =~ s/nbsp//g;

 return $string;

}

sub filter_alerts{

 my $alerts_ref = shift;

 my $cfg = shift;

 my $host_regexp = $cfg->{‘filters’}->{‘host_regexp’};

 my $service_regexp = $cfg->{‘filters’}->{‘service_regexp’};

 my @filtered;

 for my $alert (@$alerts_ref){

 my $host = $alert->{‘host’};

 my $service = $alert->{‘service’};

 if ($host !~ /$host_regexp/) {

 debug(“Host:‘$host’ Service:‘$service’ - host does not match,
skipping”);

 next;

 }

 if ($service !~ /$service_regexp/) {

 debug(“Host:‘$host’ Service:‘$service’ - service does not match,
skipping”);

 next;

 }
www.syngress.com

66 Chapter 2 • Designing Configurations for Large Organizations
 debug(“Host:‘$host’ Service:‘$service’ - host and service match!”);

 push(@filtered, $alert);

 }

 return @filtered;

}

sub substitute_phrase{

 my $vars_ref = shift;

 my $template = shift;

 my $phrase = $template;

 for my $var (keys %$vars_ref){

 $phrase =~ s/\%$var/$vars_ref->{$var}/gie;

 }

 return $phrase;

}

Simple wrapper class to provide an overriden get_basic_credentials method

to LWP::UserAgent so we can login as the user / password in the config

file

package NagiosClient;

use strict;

use base qw(LWP::UserAgent);

our $USER = ‘’;

our $PASS = ‘’;

sub new{

 my $class = shift;

 $NagiosClient::USER = shift;

 $NagiosClient::PASS = shift;

 return $class->SUPER::new();

}

sub get_basic_credentials{

 main::debug(“Returning credentials”);

 return ($USER, $PASS);

}

1;
www.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 67
And here is a sample configuration file:
[main]

; Enter the name of a file to activate debugging, leave empty to disable

; debugging

debug = debug.log

; Put a one here to make the program a little verbose; program will tell

; you when it is about to poll and when it is about to sleep.

verbose = 1

; Base Nagios URL, https ok as long as you have Net::SSLeay installed

nagios_url = https://192.168.3.1/nagios

; User to authenticate as; must have read all permissions for all

; hosts and services

nagios_user = myuser

nagios_pass = mypass

; How often to check for events, in seconds

polling_interval = 900

; Which voice to use? 0: default, 1: Sam, 2: Mary

; Sam and Mary are only available if you install

; the Microsoft SAPI 5.x API.

voice = 2

[filters]

; Space-separated list of status to match; all others will be ignored.

; Use one or more of OK WARNING CRITICAL UNKNOWN

service_statuses = WARNING CRITICAL

; Regular expression to limit services we match. ‘.’ matches all, all

; non-matching services (service description field) will be ignored.

service_regexp = .

; Space-separated list of host states to match; all others will be

; ignored.

; Use one or more of PENDING UP DOWN UNREACHABLE

host_statuses = DOWN UNREACHABLE

; Regular expression to limit hosts we match .. ‘.’ matches all, all

; host names that do not match will be ignored.

host_regexp = .

[translations]

; Host and service phrase - templates to use for speaking host and

; service alerts. You can use the following variables, all are

; prefixed with %
www.syngress.com

w

68 Chapter 2 • Designing Configurations for Large Organizations
; * %host - name of the host associated with the alert

; * %status - status of the alert

; * %type - type of alert, either ‘host’ or ‘service’

; * %time - date/time of the alert in format 03-10-2008 10:54:34

; * %service - service description as defined in service definition

; * %duration - how long the alert has been in the current state,

; format ‘0d 0h 3m 40s’

; * %information - Status information, output from check plugin

; * %attempts - Attempt field from GUI

host_phrase_template = %host has been %status for %duration

service_phrase_template = %host … %service … %status … %information, for %duration

; Phonetic translation helpers. On the left side put the phrase you wish to

; match, on the right side of the %% put the phrase to replace it with.
Can make the

; text-to-speech output sound much more natural.

phrase_list = <<EOF

SSH%% ess ess Atche

-%% …

 0[dhms]%%

(\d+)d%% $1 days

(\d+)h%% $1 hours

(\d+)m%% $1 minutes

(\d+)s%% $1 seconds

**ePN.+?”\.%% Check command failed to execute properly

EOF

To run the program, open a command Window or Cygwin bash shell, cd to the
directory you have installed the script and configuration file in, and type:
nagios-ttsd.pl nagios-ttsd.ini

To stop it, just type Ctrl-C in the command window the daemon was started in.

On-Call Schedules
Rotating Schedules
and Dynamic Notification
Later in this book we explore the role of the NOC (Network Operation Center) and
the standard levels of support and escalation. When it comes to notifications there are
several options. Excessive notifications to staff who are not directly responsible for
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 69
resolving an issue will lead to complacency and reduce response to real issues. Nagios
allows for numerous scheduling options for notifications and rotating schedules;
full documentation can be found at (http://nagios.sourceforge.net/docs/3_0/
oncallrotation.html). There are times, however, when you need customized notifica-
tions or notification schedules that match on-call staff rotations. The existing Nagios
infrastructure does not lend itself well to a rotating notification schedule. Many
organizations need to dynamically change who is on call or can use the more rigid
fixed schedules built into Nagios. To adapt Nagios to work for this type of rotating
schedule we need to set up some custom event handlers.

First, we establish a generic contact that contains an email alias we will use for
the on-call staff member; for example we could name our alias on-call. We then use
custom scripts to change our system’s local mail alias file so that notifications sent to
the custom mail alias are delivered to the on-call staff member. This allows us to use
any scripting language to quickly change the on-call destination.

In the Web page shown in Figure 2.11, we have customized the Nagios default
index.html. As you will see in the chapter in the book on scaling the Nagios GUI,
we have changed the main section of the screen to only show services that are down.
By modifying Nagios index.html page, we have added a message bar area at the top
of the screen. This is a simple HTML frame. Inside that frame, we are able to add
custom data pulled from a database or other text file using the scripting language of
our choice. This dynamic data can include important contact information and use
short refresh times to ensure that NOC staff can quickly see who is on-call to handle
problems. For some sites, we have even implemented scrolling Java banners with
constantly updated system information or performance data. The goal is to present
the data that is needed in one simple location.
www.syngress.com

w

70 Chapter 2 • Designing Configurations for Large Organizations

Figure 2.11 Nagios GUI Customized to Show On-Call Rotation Information
Dependencies and Escalations
You have a well laid-out configuration; services are associated with devices, contacts
are associated with contact groups, and contacts and contact groups are associated with
hosts and host groups. You are done, right? Wrong. Two days after implementing your
configuration, you get a call from a system administrator in your lab. “Please do not
alert me to host problems until the system integrators have been notified of them and
have had a chance to fix them, as the SI team uses the lab to test new hardware and
software configuration combinations.” Host escalation rules will let you resolve this
situation. A day later, you get a call from a developer. “Hey, just wanted to tell you that
I am getting application test alerts over and over when Web services are turned off.
If Apache and Tomcat are down, there is no need to perform application-level checks as
the application will not run without those two services.” Host and service dependencies
will help you rework your Nagios configuration to handle that type of situation.
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 71
Host and Service Escalation Rules
In large organizations we are bound to encounter situations in which more than one
group of people need to know about problems, especially problems that continue for
longer periods of time: hours, days, or longer. Host and service escalation rules help
make Nagios an excellent tool for communicating device and service status to the
right people at the right time.

Escalate on a Host Level or a Service Level?
Whether to escalate on a host level or service level depends on the purpose of the
monitoring. If an installation is designed to monitor devices and applications at both
a central office and remote offices, it will be very useful to use host-based escalations.
If the installation is designed to monitor clients for whom you provide consulting
services, a service escalation might prove more useful.

If a Nagios installation is focused on the needs of a large organization with multiple
offices, host escalations might prove very useful. Many organizations with remote offices
will provide a small IT staff in each remote office. When host-based problems occur,
they may wish to have Nagios first alert the local staff to the issues. If problems continue
for some number of hours without resolution, they may then wish to have Nagios
notify the IT staff at your central office. The following example Nagios code models
this situation. For our example, office A has several hosts. When a host problem occurs,
local IT staff are notified first. After five notification cycles, the central office will start
to get notified if the problem has not been resolved and the central office will also
continue to be re-notified every two hours until the problem is resolved (Figure 2.12).
www.syngress.com

Figure 2.12 Host Escalation Relationships

Central Router C

Web Server A File Server A

center-IT-staff

Notified after
4th alert

office-A-IT-staff

always notified

Office A Switch
Nagios

Office A Router

Server unreachable

w

72 Chapter 2 • Designing Configurations for Large Organizations
define host{

 name office-A-base

 contact_groups office-A-IT-staff

 hostgroup_name office-A-hosts

 notification_period 24×7

 register 0

}

define host{

 use office-A-base

 host_name office_A_router

 parents central_router_C

 …

}

define host{

 use office-A-base

 host_name office_A_switch

 parents office_A_router

 …

}

define host{

 use office-A-base

 host_name web_server_a

 parents office_A_switch

}

define host{

 use office-A-base

 host_name file_server_a

 parents office_A_switch

}

define hostescalation{

 hostgroup_name office-A-hosts

 contactgroups central-IT-staff

 first_notification 5

 last_notification 0

 ; Only notify central staff every 2 hours

 notification_interval 120

 ; Rule is active at all times
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 73
 escalation_period 24×7

 ; Only trigger if hosts are down or unreachable

 escalation_options d,u

}

Service escalations are useful for managed applications, especially multi-tiered
applications. For example, if there is an application with a database tier and a Web tier,
administration staff might wish to first have general tier-1 and tier-2 staff notified
of database problems. If the tier-1 and tier-2 staff are unable to resolve the problem
after some time (or are not able to get to the problem quickly enough), administrators
might then call on a production database team to investigate the issue. The production
database team only provides direct support overnight and only wants to be notified
if a service is in a critical state and the tier-1 and tier-2 staff have not been able to
take care of the issue after three notification periods (Figure 2.13). The following code
below models this situation.
Figure 2.13 Service Escalation Relationships

tier3-dbe-team

Notified after 3
notifications

office-A-IT-staff

Always notified

Database Server
TNS listener down

Nagios
define service{

 name office-A-svc-base

 contact_groups office-A-IT-staff

 notification_period 24×7

 register 0

}

define service{

 use office-A-svc-base

 service_description TNS listener response

 hostgroup_name db-hosts

}

www.syngress.com

w

74 Chapter 2 • Designing Configurations for Large Organizations
sevice_escalation{

 hostgroup_name db-hosts

 service_description TNS listener response

 ; Our expert DB team

 contact_groups tier3-dbe-team

 ; Notify after service alerts have gone to tier 1 and tier 2 staff 3 times

 first_notification 4

 last_notification 0

 ; Notify DB staff every hour until the issue is resolved or the time period
expires

 notification_interval 60

 ; Only counts overnight

 escalation_period 2300-0600x7

 ; Only care about services in critical state

 escalation_options c

}

Host and Service Dependencies
An important feature of any good network and service monitoring framework is data
reduction. Older network management platforms would alert repeatedly about a
problem until it was resolved, leading to much frustration on the part of administrators
(and sometimes even compounding an issue). Later network and service monitoring
programs, like Nagios, notify once, and then suppress notifications until a problem is
resolved or the interval you specify for re-notification is reached. Host and service
dependencies take this data reduction concept one step further; if Web service
N depends on hosts X, Y, and Z and services P, Q, and R, administrators can set up
dependency rules so that Nagios will not even attempt to check the Web service
if the hosts and services it depends on are down.

Figure 2.14 is an example of service dependency. Web service AcmeWeb has
Apache on a Web host, Apache depends on MySQL on a database host and LDAP
on an LDAP server to function properly.
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 75

Figure 2.14 Service Dependency Example

DB Host

Web Host

LDAP Host

LDAP

Apache

Depends on
Depends on

MySQL
define service{

 host_name web_host

 service_description Apache

 check_command check_http

 … more definition directives …

}

define service{

 host_name db_host

 service_description MySQL

 check_command check_mysql

 … more definition directives …

}

define service{

 host_name ldap_host

 service_description LDAP

 check_command check_ldap

 … more definition directives …

}

; Apache depends on MySQL, only want this in effect for critical states

defineservicedependency{

 dependent_host_name web_host

 dependent_service_description Apache

 host_name db_host

 service_description MySQL

 inherits_parent 0

 execution_failure_criteria c

 notification_failure_criteria c

 dependency_period 24×7

}

www.syngress.com

w

76 Chapter 2 • Designing Configurations for Large Organizations
; Apache depends on LDAP, only want this in effect for critical states

defineservicedependency{

 dependent_host_name web_host

 dependent_service_description Apache

 host_name ldap_host

 service_description LDAP

 inherits_parent 0

 execution_failure_criteria c

 notification_failure_criteria c

 dependency_period 24×7

}

Figure 2.15 is an example of host dependency. File server B depends on NFS
server B and SAN server C to function.
Figure 2.15 Host Dependency Example

Client Client

File Server

NFS Server SAN

Depends on Depends on

SMB SMB
SMB

Client
define host{

 host_name file_server

 … more host definition directives …

}

define host{

 host_name nfs_server

 … more host definition directives …

}

ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 77
define host{

 host_name san_server

 … more host definition directives …

}

; File server depends on NFS server; we all know how touchy NFS

; can be ;).

define hostdependency{

 dependent_host_name file_server

 host_name nfs_server

 inherits_parent 0

 execution_failure_criteria d,u

 notification_failure_criteria d,u

 dependency_period 24×7

}

; File server depends on the SAN, file server loses too much disk space

; and functionality to bother checking if SAN goes away.

define hostdependency{

 dependent_host_name file_server

 host_name san_server

 inherits_parent 0

 execution_failure_criteria d,u

 notification_failure_criteria d,u

 dependency_period 24×7

}

Maximizing Templates
In this section we examine Nagios configuration templates. For templates and other
configuration hacks, please remember one global rule: Never define a host or service
that is not based on a template. If you are monitoring one system that has a number
of well-defined services, you will usually find that you end up monitoring two or
more servers with the same settings.

To maintain sanity define your templates in a separate file from your host or
service configurations.

When someone first uses Nagios, they will often define all hosts in a single file.
Once those are in your system and Nagios is actively monitoring them this person
might think, “Wow this was easy, I can monitor anything.” With Nagios, you can
monitor host or device you can programmatically retrieve information from. We often
encounter Nagios configurations that start with a few servers or networks and then
www.syngress.com

w

78 Chapter 2 • Designing Configurations for Large Organizations
quickly grow. This rapid growth leads to many host and service configurations
that have much repeated data among them. Eventually you might end up with
200 Windows servers and realize that you need to change one setting on all services.
This change has now become a task that may take you several days to complete.
This is a listing of all of the attributes that can be used in a Nagios host template:

define host{

host_name host_name

alias alias

display_name display_name

address address

parents host_names

hostgroups hostgroup_names

check_command command_name

initial_state [o,d,u]

max_check_attempts #

check_interval #

retry_interval #

active_checks_enabled [0/1]

passive_checks_enabled [0/1]

check_period timeperiod_name

obsess_over_host [0/1]

check_freshness [0/1]

freshness_threshold #

event_handler command_name

event_handler_enabled [0/1]

low_flap_threshold #

high_flap_threshold #

flap_detection_enabled [0/1]

flap_detection_options [o,d,u]

process_perf_data [0/1]

retain_status_information [0/1]

retain_nonstatus_information [0/1]

contacts contacts

contact_groups contact_groups

notification_interval #

first_notification_delay #

notification_period timeperiod_name

notification_options [d,u,r,f,s]

notifications_enabled [0/1]

stalking_options [o,d,u]
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 79
Quite a large number of attributes, and each host you manage will need to have
many of them set for the host configuration to be valid. For most organizations many
of the attributes in a host configuration will be the same between all hosts, yielding
just three attributes that uniquely identify hosts to Nagios. This example shows what
the host configuration looks like when we use a template to define all of the common
attributes used for hosts within our configuration (in this case for all Unix hosts):
define host{

use unix-template-group1

 host_name unix1

 alias Unix Server 1

 address 192.168.0.2

}

With a little planning we have reduced our host configuration to just four lines; all
common attributes are defined in the template used in the host configuration. We can
additionally define the parents for this host in the host configuration, but again we can
also define the parents in base templates for hosts that share the same parent network
device. This has the additional benefit of making it easy to re-parent a set of devices by
just changing the value of the parents attribute in the host template used by a group of
hosts. When you combine the use of templates with careful organization of template
files you can easily manage a large Nagios configuration.We start with where we store
the Nagios configuration files.

Look in your nagios.cfg file:
cfg_dir=/usr/local/nagios/etc/servers

cfg_dir=/usr/local/nagios/etc/printers

cfg_dir=/usr/local/nagios/etc/switches

cfg_dir=/usr/local/nagios/etc/routers

notes note_string

notes_url url

action_url url

icon_image image_file

icon_image_alt alt_string

vrml_image image_file

statusmap_image image_file

2d_coords x_coord,y_coord

3d_coords x_coord,y_coord,z_coord

}

www.syngress.com

w

80 Chapter 2 • Designing Configurations for Large Organizations
With the preceding configuration, any files placed in the listed directories will be
read in as object definition files. Inside the servers directory we can now create a file
for “Main office.”

By keeping configuration files in logically named files, you can easily manage your
Nagios configuration as it grows.

How Do We Make a Template?
First, create a configuration file just for templates. Template configuration files look
just like normal host configuration files with one additional attribute added to them
to indicate the file is a template:
register 0 ; DONT REGISTER THIS DEFINITION - ITS NOT A REAL SERVICE,
JUST A TEMPLATE

register 0 tell Nagios that the definition is a template that will be used by real
hosts or services in your Nagios configuration.

Here is an example service template:
define service{

name unix-service-host ; The ‘name’ of this service
 template

active_checks_enabled 1 ; Active service checks are
 enabled

passive_checks_enabled 1 ; Passive service checks are
 enabled/accepted

parallelize_check 1 ; Active service checks should
 be parallelized (disabling this
 can le

obsess_over_service 1 ; We should obsess over this
 service (if necessary)

check_freshness 0 ; Default is to NOT check
 service ‘freshness’

notifications_enabled 1 ; Service notifications are
 enabled

event_handler_enabled 1 ; Service event handler is
 enabled

flap_detection_enabled 1 ; Flap detection is enabled

failure_prediction_enabled 1 ; Failure prediction is enabled

process_perf_data 1 ; Process performance data

retain_status_information 1 ; Retain status information
 across program restarts

retain_nonstatus_information 1 ; Retain non-status information
 across program restarts

is_volatile 0 ; The service is not volatile
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 81
service_description CP http

check_command check_http

check_period 24×7 ; The service can be checked at
 any time of the day

max_check_attempts 3 ; Re-check the service up to
 3 times in order to determine
 its final

normal_check_interval 5 ; Check the service every
 10 minutes under normal
 conditions

retry_check_interval 2 ; Re-check the service every
 two minutes until a hard state
 can be de

contact_groups admins ; Notifications get sent out to
 everyone in the ‘admins’ group

notification_options w,u,c,r ; Send notifications about
 warning, unknown, critical,
 and recovery e

notification_interval 60 ; Re-notify about service
 problems every hour

notification_period 24×7 ; Notifications can be sent out
 at any time

register 0 ; DONT REGISTER THIS DEFINITION
 - ITS NOT A REAL SERVICE, JUST
 A TEMPLATE

}

In this template we have defined all of our common attributes and have set the
attribute register to 0 to tell Nagios we will be using the definition as a template for real
services we are monitoring with Nagios. Using this template we can now define the
following service:
define service{

 use unix-service-host;

 host_name cp.localhost.net

 normal_check_interval 3

}

Notice how short the service definition has become.This example also shows that
for specific implementations of templates we have written we can override settings as
needed. For our check_http service we have decided to change the check_interval
overriding the value set in the base template we use.

So now, we have discussed the principles and importance of templates to a Nagios
configuration. Next, we will look at some lesser-known tricks that can be used in
www.syngress.com

w

82 Chapter 2 • Designing Configurations for Large Organizations
templates and config files. These are techniques you might not use often; when used
they are real time savers. These can be applied to all Nagios definitions, and you can
find the full list of Nagios object tricks and tips in the Nagios documentation online
at http://nagios.sourceforge.net/docs/3_0/objecttricks.html.

Multiple Hosts
You can place multiple host names in the host_name definition of a service object to
tell Nagios the service exists on all hosts:
define service{

 use unix-service-host;

 host_name cp.localhost.net,server2.localhost.net,server3.localhost.net

 normal_check_interval 3

}

Multiple Host Groups
You have a host group that consists of Unix servers, and you want Nagios to ping
each host in the group. This can be accomplished by changing the host_name attribute
in the ping service to hostgroup_name:
define service{

 use unix-service-host;

 hostgroup_name unix_servers,windows_servers

 normal_check_interval 3

}

In conclusion, when starting your Nagios configuration always think in terms of
templates.

Regular Expression Tricks in Config Files
Most networks use naming conventions for hosts deployed within the organization.
These conventions usually help identify a server’s location, operating system, and
 function. Using this information and regular expressions, we can reduce the size and
number of our configuration files. To start, you need to enable regular expression
checking in the nagios.cfg configuration file by setting the configuration variable
use_regexp_matching to 1 and then restarting Nagios.
ww.syngress.com

 Designing Configurations for Large Organizations • Chapter 2 83
Here we are using a naming standard based on operating system, function, and
location. We have made the name DNS compatible as these names are part of our
DNS database. For this example have a set of Windows 2000 servers that run a Web
cluster in our Los Angeles office. For servers 1–9, the names would look like:
win2k-web01.la.localhost.net, win2k-web02.la.localhost.net --- win2k-web09.la.
localhost.net

These names tell us the operating system, major function, and office the systems
are located in. Now we want to define our services for this host:
define service{

 use win2k-service-host;

 host_name win2k-web.*.la.localhost.net

 service_description HTTP Service

 check_command check_http

}

By using the regex pattern of “.*” we tell Nagios, “Apply this service definition to
any host that contains the sub-string ‘win2k-web’ followed by any number of addi-
tional characters followed by the sub-string ‘.la.hosthost.net’.” This means that for each
defined host this service will be checked. This will limit our check to just the Windows
host in the LA office, but we can easily drop the LA portion and have it perform this
service check for all the Windows Web servers. The option use_regexp_matching will
only apply to host or service names that contain the characters *, ?, +, or \.. If you
want regular expression matching to be used for all host and service names regardless
of whether the names contain regular expression meta-characters, enable use_regexp_
matching in your configuration file and then additionally set the option use_true_regexp_
matching to 1.
www.syngress.com

This page intentionally left blank

Chapter 3
Scaling Nagios
Solutions in this chapter:

Scaling the GUI

Detailed Information on Parameters
Used by status.cgi

Limiting the View to Read-Only

Multiple GUI Users (Users/Groups)

Clustering

Failover or Redundancy

The Future

■

■

■

■

■

■

■

85

w

86 Chapter 3 • Scaling Nagios
Scaling the GUI
The Big Picture: Nagios is your monitoring tool. Whether used for a small office of
10 servers, or 400 servers and over 1000 services, the objective is still the same: you
want to know how your systems are doing and you want to know quickly the health
of your environment. The goal of any monitoring GUI is simple: tell end users and
administrators in less than five seconds the overall status of managed systems and
networks. Many professionals who manage systems and networks have had vendors
tell us how we should view our network. Openview, Netview, and Tivoli have all
kept to the same principle of having systems that show a top-down view that
requires interaction to “drill-down” or zoom in to network problems while constantly
displaying all the managed hosts and services at an organization that are not having
problems. These interfaces provide excellent eye candy for overviews and presentations,
but do little to provide a view that is useful to administrators and troubleshooting
personnel. In general, two basic rules should be followed to allow you to keep an eye
on real issues and a good idea on overall status. We now describe each of these rules
and show how they will help make your Nagios implementation a success, regardless
of the number of devices and services monitored or the size of the staff in charge of
maintaining managed devices and services.

Rule 1: Only Show Outstanding
Problems on Your Primary Display
Use color-coding to show how severe each alert is and to show which alerts have
been acknowledged. Do not show scheduled outages, working services, flapping
services, or other items that do not require immediate human intervention. Primary
displays that show information that does not require action by support staff will be
ignored. The display also needs to update itself automatically so that operators always
see the latest set of alerts on it. Simplicity is the key to the success when it comes to
implementing a useful ‘heads up’ display.

Rule 2: Keep Informational Displays Simple
The more data and more complicated the display, the more likely you have infor-
mation displayed that will start to be ignored. Keep long-term trending data off of
your primary display screen as it will only clutter up the display and overwhelm
ww.syngress.com

 Scaling Nagios • Chapter 3 87
your support staff. Your primary status screen is your dispatcher; any new alerts that
appear on it should require action by the staff in charge of the health of devices
and applications within the organization.

Nagios allows us to meet both of these goals. Nagios 3 includes two new options
in the GUI, “Unhandled Service Problems,” and “Unhandled Host problems.” These
screens only show warning and critical host and service alerts that have not been
acknowledged. We recommend you take this one step further and only show critical
service and host alerts using customized status screens.

Let’s examine the difference between what we normally see and what a custom
configuration shows us (Figures 3.1 and 3.2).
www.syngress.com

Figure 3.1 Typical Nagios Status Display

w

88 Chapter 3 • Scaling Nagios

Figure 3.2 Status Screen Showing Only Critical Alerts
As you can see, the second screen shows us that one service is in a CRITICAL
state. We have all the details about this service in one quick glance. We can create a
custom view by changing the HTTP parameters that are passed to the Nagios status
CGI, status.cgi.

Detailed Information
on Parameters Used by status.cgi
The Nagios status.cgi program takes a number of HTTP parameters that allow us to
alter the information it displays. In this section we show how to alter it to just display
critical host or service alerts on the Nagios GUI. We recommend using HTML frames
for your “heads up” critical host and service alert display; one frame displays critical
host alerts, the other shows critical service alerts. An example of this is shown later.

Here is the Nagios status.cgi URL that the “Unhandled Host Problems” option
in the Nagios 3 GUI links to by default
/cgi-bin/status.cgi?hoststatustypes=13&servicestatustypes=29&style=hostdetail&
noheader=yes
ww.syngress.com

 Scaling Nagios • Chapter 3 89
hoststatustypes
The hoststatustypes parameter stores an integer that indicates which host states status.
cgi should display:

HOST_PENDING=1

HOST_UP=2

HOST_DOWN=4

HOST_UNREACHABLE=8

In our previous example, we used the number 13. Select the host states you want
to view by adding together the values associated with the constants. A value of 13
tells us that status.cgi will show hosts that are in any state except HOST_UP
(HOST_PENDING + HOST_DOWN + HOST_UNREACHABLE = 13).

servicestatustypes
The servicestatustypes parameter is also a variable that stores an integer that indicates
which service states to display:

SERVICE_PENDING=1

SERVICE_OK=2

SERVICE_WARNING=4

SERVICE_UNKNOWN=8

SERVICE_CRITICAL=16

In our example, we see the value 29, which leaves out SERVICE_OK.

style
The style parameter allows us to change what data is displayed and how it is displayed.
We use the value detail in our examples. Other values you can use are overview, grid,
summary, and hostdetail.

noheader
The last HTTP parameter we use is noheader. This parameter does not require a
value; if it is present in the query string, status.cgi will not display summary informa-
tion before displaying alert detail. If summary information is wanted, we can display
www.syngress.com

90 Chapter 3 • Scaling Nagios
it in another frame or HTML page altogether by using ministatus.cgi, which can be
found on the book web site. By trimming out header information from our alert
display, we simplify the display and make it more useful to service desk staff.

Color is very important in any network or system monitoring system. From the
time Nagios was called Netsaint until now, Nagios has used three distinct colors to
show device and host status:

Green is OK

Yellow is WARNING

Red is CRITICAL

We start by removing green from status views. Why? Showing what is working
properly uses up valuable screen space in the NOC. Our concerns rest in yellow and
red status; for any hosts or services in the yellow (warning) state, we should start
investigating the cause to resolve the issue, and for any hosts or services in the red
(critical) state, we need to open a ticket for tracking our issue and work to resolve
the issue and verify service restoration. In our previous example, we have a router
showing a service failure. Initially, we should perform some basic checks to verify the
service has failed. Once that is complete, we begin to “work” the issue. Since many
NOCs utilize personnel located in multiple remote locations, we run the risk of
multiple people working the same issue. To accommodate this reality of the NOC
environment, Nagios added acknowledgement states for hosts and services; each type
of acknowledgement can have a custom color associated with it. Alert acknowledge-
ment allows staff members to see that a problem is being worked on and reduces the
possibility of two or more people attempting to work the same problem indepen-
dently. Nagios ships with status and acknowledgement colors set to the same color;
By editing the <nagios-root>/share/stylesheets/status.css we find the items we need
to update:
.statusHOSTDOWNACK { font-family: arial,serif; font-size: 8pt; background-color:
#F83838; }

.statusHOSTUNREACHABLEACK { font-family: arial,serif; font-size: 8pt;

background-color: #F83838; }

.statusBGUNKNOWNACK { font-family: arial,serif; font-size: 8pt; background-color:
#FFDA9F; }

.statusBGWARNINGACK { font-family: arial,serif; font-size: 8pt; background-color:
#FEFFC1; }

.statusBGCRITICALACK { font-family: arial,serif; font-size: 8pt; background-color:
#FFBBBB; }
www.syngress.com

 Scaling Nagios • Chapter 3 91
.statusBGDOWNACK { font-family: arial,serif; font-size: 8pt; background-color:
#FFBBBB; }\

.statusBGUNREACHABLEACK { font-family: arial,serif; font-size: 8pt; background-color:
#FFBBBB; }

These are based on standard HTML colors. We recommend that you choose an
acknowledgment color that is a deeper shade of the original status color so one can
see the difference between a warning alert that has been acknowledged and a critical
alert that has been acknowledged. Figure 3.3 shows the difference after changing the
HOSTDOWNACK color to #FF9900 (orange).
Figure 3.3 Using Unique Colors to Make Acknowledged Alarms Stand Out
With the changes shown in Figure 3.3, we have now removed all nonessential
data from our display for situations in which the primary task is to monitor and
troubleshoot outstanding problems. As we progress through the Case Study, you
will see how these items come together for a NOC of any size. Through the use of
custom status screens, color-coded acknowledgments, and a quick view of the data
that shows only hosts or services that are having problems, we simplify the display
and help stop the apathy that can occur in a NOC when unimportant data is
displayed or too much data is displayed on the “big screen”—only show what
www.syngress.com

w

92 Chapter 3 • Scaling Nagios
matters and what needs to be worked, and that work will much more likely be
done. This is counter to what we have seen in many products in the past. Network
and system monitoring products traditionally have been about showing how many
hosts or services you are monitoring or how large or integrated your monitoring
is. Nagios provides this data, and this should be used when looking at performance
data, long-term trending, planning, and deeper issue isolation. However, it should
never be the data your primary troubleshooters are required to watch all day. When
looking at the screen in Figure 3.3 we can tell at a quick glance if any open issues
need to be worked on and resolved. There is plenty of empty space available so that
if new issues arise, they will be easily seen and addressed without any clicking or
changing views.

Limiting the View to Read-Only
Nagios does a terrific job of conveying large amounts of information quickly, and
in a manner most end users find intuitive. Anyone we have shown a Nagios status
screen has instantly been able to identify that items in red need to be resolved.
Many NOCs or service desks like to make status information available to other
people in their company and even people outside their company, including outside
customers and vendors. When implementing this “outsider view” they want to make
sure they allow status data to be viewed, but also worry about these users making
unauthorized changes to Nagios. The solution for this is a read-only user model.
With this change to Nagios, we can allow specified accounts to access Nagios as
read-only users. Through a combination of read-only users and custom URLs as
described previously, we can provide custom status screens that are suitable for
customer, vendor, or management view. This read-only functionality is currently
not part of the core Nagios distribution. For read-only configuration to work,
you need to install a patch to the CGI executables Derrick Bennet created; this
patch is included on the Web site for this book for the current Nagios 3.x release.
Once the patch is applied, we will modify our cgi.cfg file to add the following
new option:
authorized_for_read_only=<user1>,<user2>
ww.syngress.com

 Scaling Nagios • Chapter 3 93
Add the same users to the authorized_for_all_hosts and authorized_for_all_services
if you wish to allow them to see all hosts and services.

In figure 3.4 we show a snapshot of an unaltered detail screen; in figure 3.5
we show a snapshot for a detail screen with the read-only user patch applied to Nagios.
Figure 3.4 Typical Host Status Screen
When logged in as a normal user, we can see both the Commands screen and any
comments associated with this host or service.
www.syngress.com

w

94 Chapter 3 • Scaling Nagios

Figure 3.5 Host Status Screen for a Read-Only User
In Figure 3.5, we logged in with a shared account called “nagios” that is set as a
read-only user. On the detail screen, we can see that the commands section informs
the user that his account does not have access. In addition, the comments section has
been removed completely. The read-only patch prevents the Nagios CGIs from send-
ing comments and commands data to the browser for read-only user accounts. We
now have a safe way to allow semi-trusted users to view systems and hosts within
Nagios without worrying about them changing the state of Nagios or viewing private
comments made by operational staff as they work to resolve outstanding problems.

Through a combination of custom status.cgi URLs and the read-only user patch
to Nagios, we can create custom web pages outside of Nagios that include system
and host status from Nagios without revealing private information or allowing
untrusted users the ability to change the state of Nagios as it runs.
ww.syngress.com

 Scaling Nagios • Chapter 3 95
Multiple GUI Users (Users/Groups)
Often, multiple users in an organization want to have access to Nagios. Several
approaches can be taken to meet this type of requirement. In this section, we briefly
discuss each technique to help you decide which will work best for your organization.

One Administrator,
One Shared Read-Only Account
This scenario is common for organizations that started small and are growing, or
for environments like development shops, where fine-grained access control is not
critical. In this mode, the Nagios administrator merely has to define one account
in the CGI configuration file with administrative rights and a second account with
read-only access. The read-only account may or may not have the capability to
perform GUI-based actions like resubmitting service checks, acknowledging service
or host problems, or disabling notifications. Whether an administrator chooses to
allow those actions will depend on the local security policies and the level of trust
an administrator has with his users.

One Administrator,
Multiple Read-Only Accounts
In organizations in which Nagios is deployed in production environments, or the
number of users actively checking Nagios is larger, or groups of users need access
to specific groups of checks, this scenario works well. The read-only accounts
might be shared accounts used by groups of people. The accounts might even map
to email groups. For example, if an organization has a windows_admins email
alias, the administrator might create a Nagios user named windows_admins. The
windows_admins user would use the email address windows_admins and the account
would have access limited to only the Windows servers on the organization’s
network by making use of the fine-grained access controls in the Nagios CGI
configuration file.
www.syngress.com

w

96 Chapter 3 • Scaling Nagios
Multiple Administrators,
Multiple Semi-Privileged
Accounts, One Read-Only Account
In the largest organizations, there may be multiple administrators, semi-privileged
accounts, and a read-only account. In this scenario, a single sign-on framework using
LDAP might be employed to centralize access. While Nagios does not directly sup-
port LDAP, a number of LDAP modules for Apache can be used to authenticate
users, including mod_authnz_ldap. The problem with using LDAP directly this way is
that for each LDAP user, entries have to be added to the CGI configuration file to
give permissions to the user that extend beyond the roles granted to the default user.
For this reason, we recommend an administrator set up a nightly script to query and
write out the CGI configuration file for each user granted access. Desired roles can
be kept in a database or other file store, and the script can then create all user con-
figurations and the main CGI configuration file to give the fine-grained permissions
needed for a large organization. A template for the CGI configuration can be
employed that hard codes the read-only account in the configuration file template.

Clustering
One of the first bottlenecks organizations will run into is performance when moni-
toring a large number of hosts and services. This can occur even earlier if you are
using performance handlers on your service or host checks. One way to resolve
performance problems is to cluster Nagios; clustering is also very useful when there
are a number of remote sites that need to be monitored by Nagios. We will first
discuss a very common scenario in which there is a central Nagios installation used
to monitor a single local site and several remote sites. Our example scenario has two
separate offices with individual hosts and services that need to be monitored;
between the two offices is a single network (WAN) connection. For performance
reasons, we do not want to run all our monitoring checks over this single connection
from our central office. We also want the remote office to be able to monitor their
systems locally. Using the configuration shown in Figure 3.6 (below), we can distribute
host and service monitoring across several Nagios servers. This reduces the load on
each individual Nagios server (compared to having all monitoring done from a
central server) and also has a nice side-effect of reducing site-to-site network traffic
as remote site monitoring is performed by a Nagios instance local to the site.
ww.syngress.com

 Scaling Nagios • Chapter 3 97
We will set up the master Nagios server in our main office; this server will hold
both the master and remote Nagios server configuration file trees. The master server
will also run the NSCA daemon and will accept passive reporting from the remote
instance. The master server will then present a whole view of the network and
systems being monitored.
Nagios
Master Server

(NSCA Daemon)

Nagios Remote Server
(NSCA Client)

NSCA Traffic
Rsync remote site files to Master

/nagios/etc/site-master/
servers.cfg
routers.cfg

/nagios/etc/site-remote/
servers.cfg
routers.cfg

/nagios/etc/site-remote/
servers.cfg
routers.cfg

Figure 3.6 Clustered Nagios Data Flow
With this setup, we can disable notifications on the remote server if that is desir-
able. In many cases, it may be easier to define notifications, escalations, and other
non-system-specific details in the master server, as this simplifies administration.
In this case, make sure enable_notifications is set to 0 in the nagios.cfg file on the remote
server. In addition, for any host or service defined at the remote site you must have
the same configuration in place for your master server (Figure 3.7).
www.syngress.com

Tip

Since Nagios allows you to monitor directories for configuration files, it is
recommended that you set up a /<nagios_prefix>/etc/site-remote/ directory
and use a cron job to import file changes on a daily basis. This allows the
master and remote servers to synchronize without user intervention (as we
will show later in this section).

w

98 Chapter 3 • Scaling Nagios

Nagios
Master Server

Nagios Remote Server

NSCA Traffic
Port 5667 tcp

Figure 3.7 NSCA Data Flow between Clustered Servers
First we configure the remote site; install Nagios as normal on the server and
then change the following parameters in nagios.cfg to allow it to function properly
in our Nagios cluster:

enable_notifications = 0 # We do not want this instance sending out
notifications.

obsess_over_services=1 # We want the remote server to obsess over
services so all changes will be reported back to the master server.

oscp_command=nsca_send_result # This is a custom script shown next.

With these configuration changes in place, the remote Nagios server will call
the command nsca_send_result after every service check executed on the remote host.
The nsca_send_result script will then forward the service check results to the master
Nagios server. Place the following definition for nsca_send_result in your commands
configuration file (commands.cfg by default):
define command{

 command_name nsca_send_result

 command_line /usr/local/nagios/libexec/nsca_send_result
$HOSTNAME$ ‘$SERVICEDESC$’ $SERVICESTATE$ ‘$SERVICEOUTPUT$’

}

Now we create the nsca_send_result shell script on the remote server (this version
is taken from the Nagios 3.0 manual):
#!/bin/sh

 # Arguments:

 # $1 = host_name (Short name of host that the service is

 # associated with)

 # $2 = svc_description (Description of the service)

 # $3 = state_string (A string representing the status of

 # the given service - “OK”, “WARNING”, “CRITICAL”

 # or “UNKNOWN”)

 # $4 = plugin_output (A text string that should be used
ww.syngress.com

 Scaling Nagios • Chapter 3 99
 # as the plugin output for the service checks)

 #

 # Convert the state string to the corresponding return code

 return_code=-1

 case “$3” in

 OK)

 return_code=0

 ;;

 WARNING)

 return_code=1

 ;;

 CRITICAL)

 return_code=2

 ;;

 UNKNOWN)

 return_code=-1

 ;;

 esac

 # pipe the service check info into the send_nsca program, which

 # in turn transmits the data to the nsca daemon on the central

 # monitoring server

 /bin/printf “%s\t%s\t%s\t%s\n” “$1” “$2” “$return_code” “$4” | /usr/local/
nagios/bin/send_nsca central_server -c /usr/local/nagios/etc/send_nsca.cfg

Data flow from the remote server to the master server is:

1. Host and service checks are executed on the remote server.

2. The remote server takes the raw results of checks, and through the
oscp_command function sends them to the master server.

We use NSCA to send the checks from the remote server to the master server in
this scenario. After we discuss how to configure NSCA to accomplish the remote-to-
master data flow, we will discuss using rsync and ssh to accomplish the same task.

NSCA and Nagios
NSCA is written and maintained by Ethan, the creator of Nagios. NSCA allows a
remote client to send an asynchronous event to a Nagios server using a TCP-based
protocol that includes data encryption and password-based authentication; the server
side of NSCA will even spool passive check results on the server side if Nagios is not
running at the time the check result is received. The default port for the NSCA
daemon is 5667; this can easily be changed as needed. NSCA is available as a separate
www.syngress.com

w

100 Chapter 3 • Scaling Nagios
software package from the downloads section of http://www.nagios.org; like Nagios,
it is well-documented and installation is relatively easily. Once you have configured
and compiled NSCA you will have five files to install:

■ The NSCA daemon startup script needs to be placed in /etc/ (/etc/init.d
on Linux or Solaris) and properly linked to appropriate startup levels so
NSCA starts up when the Nagios server enters multi-user mode with net-
working (run level 3 on most Unix and Unix-like operating systems).

■ The NSCA configuration file needs to be set up and placed on the server;
the default location is <nagios-prefix>/etc/nsca.cfg.

■ The NSCA daemon needs to be copied to the Nagios installation; typically,
it is installed as <nagios-prefix>/bin/nsca.

■ The NSCA client binary, send_nsca, needs to be copied to the remote client
that will be sending events to the NSCA server. The recommended installation
location on the remote server for this binary is /<nagios-prefix>/libexec/
send_nsca.

■ The NSCA client needs a configuration file to work properly; you can
either copy an existing NSCA client configuration file to the remote server
or create one locally and then copy it to the remote server based on the
example configuration included with the NSCA package. The recommended
location for the NSCA client configuration file is <nagios-prefix>/etc/nsca.
cfg on the NSCA client host.
NoTe

It is important that the password you set in the NSCA client and server
configuration files match; if the passwords do not match the NSCA server
will reject checks sent to it by the NSCA client.
Passive Service Checking
Once we have the NSCA daemon running on the master server and the send_nsca
client configured on the remote server, we are now ready to continue our configuration.
In our example scenario, the master server is performing checks for hosts and services
located at the master site. It is important that we make sure that the master server only
checks local services; if we are not careful with our master server configuration it might
ww.syngress.com

 Scaling Nagios • Chapter 3 101
start to check remote services as well. We now describe how to configure the master
server so that it accepts check results from the remote server but does not attempt to
actively check remote services itself.

First we add a new service template that we will use as the base template for all
service checks results sent to the master server from the remote server. In this template
we disable active checks of the remote services by the master server by setting the
parameter active_checks_enabled to 0. In some situations it may seem desirable to have
the master server perform checks on hosts monitored by the remote server should the
remote server fail. In this case we would set check_ freshness to 1. Please note that if this
setting is enabled, all checks that the remote server runs to monitor remote hosts and
services need to be present on the local master and need to be able to reach all hosts
and services on remotely monitored hosts. This adds significant complexity and main-
tenance cost to the Nagios cluster and we recommend that you do not allow the
master server to actively check services monitored by the remote Nagios host. It is
important to clearly define the logical path from the local master server to the remote
Nagios server. We recommend that the local master monitor the remote Nagios server
to ensure it is up and running. We also recommend that all remotely monitored hosts
and services have the remote Nagios server set as their parent; this will ensure that all
hosts and services monitored by the remote site will be marked as unreachable on the
master Nagios GUI should the remote Nagios host become unavailable or unreachable.
Here is an example service template that can be used on the master Nagios host as a
base template for all services checked by the remote Nagios server in our cluster:
define service

C name remote-service ; The ‘name’ of this service template

active_checks_enabled 0 ; Active service checks are enabled

passive_checks_enabled 1 ; Passive service checks are enabled/accepted

parallelize_check 1 ; Active service checks should be parallelized
 (disabling this can lead to major performance
 problems)

obsess_over_service 1 ; We should obsess over this service
 (if necessary)

check_freshness 1 ; Default is to NOT check service ‘freshness’

notifications_enabled 1 ; Service notifications are enabled

event_handler_enabled 1 ; Service event handler is enabled

flap_detection_enabled 1 ; Flap detection is enabled

failure_prediction_enabled 1 ; Failure prediction is enabled

process_perf_data 1 ; Process performance data

retain_status_information 1 ; Retain status information across program
 restarts
www.syngress.com

w

102 Chapter 3 • Scaling Nagios
retain_nonstatus_information 1 ; Retain non-status information across
 program restarts

is_volatile 0 ; The service is not volatile

check_period 24×7 ; The service can be checked at any time of
 the day

max_check_attempts 3 ; Re-check the service up to 3 times in
 order to determine its final (hard) state

normal_check_interval 10 ; Check the service every 10 minutes under
 normal conditions

retry_check_interval 2 ; Re-check the service every two minutes
 until a hard state can be determined

contact_groups admins ; Notifications get sent out to everyone in
 the ‘admins’ group

notification_options w,u,c,r ; Send notifications about warning,
 unknown, critical, and recovery events

notification_interval 60 ; Re-notify about service problems every hour

notification_period 24×7 ; Notifications can be sent out at any time

register 0 ; DONT REGISTER THIS DEFINITION - ITS NOT
 A REAL SERVICE, JUST A TEMPLATE!

}

Once we have our new template in place we need to copy the remote site’s
service configuration files to the remote service configuration directory on the
master host. After the files are copied over we can do a global search and replace on
all service checks in this directory so that they use our passive check template as their
base template. To do this, we must replace any ‘use <template-name>’ lines in the
configuration files with the line ‘use remote-service.’ If this is a new installation, we may
chose to create the remote service configuration files on the master server and then
push them to the remote server. After the push to the remote server, we can clean
out the local server’s remote site configuration directory, copy all services into the
directory, and then perform the search and replace to replace the base template in all
files. Throughout the creation of our configurations for this Nagios cluster we strive
to create and use templates wherever possible to keep our overall configuration as
simple and maintainable as possible.

Now is a good time to confirm that our configuration changes on the remote
and local master make sense and are functioning as expected. Check the remote
Nagios server to ensure that notifications are disabled, verify that obsess_over_services
is enabled, and ensure that oscp_command is defined and that the command set in the
variable exists and works as expected.
ww.syngress.com

www.syngress.com

 Scaling Nagios • Chapter 3 103

Nagios
Master

Nagios
RemoteManagement network for cluster traffic

Remote Nagios
server can reach
Nagios master
but cannot reach
server A

Network Outage

Master Nagios
server can reach
remote Nagios
server and Server A

Server A

Is server up or down?

Figure 3.8 Nagios Clustering and Outage Point of View

Notes from the Underground

translate_passive_host_checks and Distributed Monitoring
When working with distributed monitoring, host checks are usually completed
from the master server. If your network configuration does not allow this, you
may need to set up the local master Nagios server to accept passive host check
results from the remote Nagios server as well. If you chose to do this, be very
aware of how point of view can affect perception of whether a host is reach-
able or not. When the master server shows you that server A at the remote site
is down, it is because the server was not reachable from the point of view of the
remote server. However, it may be that the server is only unreachable from
the remote server. To resolve this point of view conflict Nagios provides the
translate_passive_host_checks option. With this option enabled, the master
server will translate check results sent by the remote server and determine
if server A should be shown as down on the master GUI. While the translate_
passive_checks option might be useful for some clustered environments, in most
distributed monitoring situations, you will want the master Nagios server to
display remote check results from the point of view of the remote Nagios server
and this option should be left disabled. (Figure 3.8).

w

104 Chapter 3 • Scaling Nagios
Passive Host Checking
Our master server and remote site are both now performing active checks on systems
and services. We now need to determine if we wish to have all host checks for host
monitored by the remote Nagios server done from the remote server. Host checks
are only done by Nagios if all service checks have failed and the system needs to
determine if the host is physically still reachable. If a network configuration or fire-
wall prevents the master server from polling the remote server, we will need to have
the remote Nagios server perform all host checks for remotely monitored servers and
have the remote server submit check results to the local master server. To do this,
make the following configuration changes on the Nagios servers in the cluster:

On the master server:

1. Enable the configuration parameter passive_host_checks by setting it to 1 in
the nagios.cfg configuration file.

On the remote server:

2. Set the parameter obsess_over_hosts to 1 in the nagios.cfg configuration file
(similar to what we did for services in the previous section).

3. As with our service configuration in the previous section, we need to config-
ure the remote server to send passive host check results to the master server
by setting the nagios.cfg parameter obsess_command to nsca_send_result.

Sending Data without NSCA
Earlier in this chapter we stated that we can send data from the remote server to the
master server without using NSCA. Regardless of how we send passive checks from
the remote server to the local master server, on the local master server passive service
checks are submitted to Nagios by writing commands to the external command file
in Nagios. This external command file allows Nagios plug-ins to submit passive
check results to Nagios by writing the check timestamp, type, host, status, and output
to the file. Nagios regularly reads this file and acts on the check results in it as if the
results had been collected by Nagios executing a local plugin to check a service.
Here is an example of what a passive service check output line looks like:
[1205044608] PROCESS_HOST_CHECK_RESULT;router1;0;0

This means that using ssh and a cron job on the master server, we can send data
between our two servers and cat or pipe the data directly to the /<nagios_prefix>/
var/rw/nagios.cmd file where it will then be processed.
ww.syngress.com

 Scaling Nagios • Chapter 3 105
Failover or Redundancy
In the previous section, we looked at clustering and how to share the load of
our Nagios monitoring. Clustering helps lower network utilization for checks per-
formed on remote sites and helps reduce the load on the primary Nagios server used to
monitor both local and remote sites. If you have taken the time and effort to implement
clustering, most likely monitoring is an important part of the operations and main-
tenance side of your organization and the last thing you want is to lose your monitoring
server or the metrics collected by it. Failover and redundancy are two concepts that we
can implement in the server and software infrastructure we use to host Nagios that can
reduce the possibility of loss of data or loss of monitoring in our organization.

Depending on your specific situation and requirements, you will need to decide if
your system needs failover or redundancy. In failover mode you create a second system
that sits in standby mode, ready to take over the functions of the master server should it
detect a failure or be manually brought up to master status. In a redundant configura-
tion there are two Nagios systems that are online and running simultaneously; should
the master server in the redundant pair fail the secondary server immediately takes over
the tasks the master is unable to perform. In redundant mode, the secondary server
performs the same checks as the master server and no service or host check result data
is shared between servers. We give a brief description in this chapter of how redun-
dancy might be implemented with Nagios; due to the complexity that full redundancy
introduces into our configurations and setup, we will not cover it in depth in this book.
Failover, however, is both easier to set up and maintain than redundancy and we will
explain how to implement it within Nagios following our short section on redundancy.

Redundancy
When we configured clustering, we were in essence setting up a redundant configuration
of Nagios. If at any time the master server is lost in a clustered environment, an adminis-
trator can simply enable notifications on the remote system and that system will take
over monitoring and alerting functions for all defined hosts and services. When setting
up master server redundancy we make similar configuration changes to each server. We
use scripts and cron jobs to periodically synchronize configuration files between the two
master Nagios servers in a redundant configuration. With these cron jobs in place, we have
two systems performing the same checks across all devices and services in our organization.
While having two servers perform the same checks on every device does ensure that
monitoring continues even if a monitoring server fails, it also doubles the amount of
www.syngress.com

w

106 Chapter 3 • Scaling Nagios
network traffic and the load placed on monitored servers by the monitoring hosts. For
many organizations this additional load on the network and on managed hosts will not
be worth the time and effort needed to properly implement this type of configuration,
so be sure to speak with management and the staff that maintain network devices and
servers at your organization before considering implementing full redundancy using
Nagios.

Failover
In failover mode, the master server actively polls hosts and services. The master server
also runs a periodic job (via cron) that pushes host and service check results and
configuration settings from the master server to the secondary server. Should the
primary server fail, an administrator will need to log into the secondary server to
start Nagios; the secondary server will then take over where the primary server left
off. Overall, it is easier to set up and maintain a pair of servers in failover mode than
it is to maintain a pair of clustered servers. The transition time to switch from the
primary server in failover mode to the secondary server is not instant as it would be
in a clustered setup, but it is very short. The Nagios documentations describes how to
configure Nagios for basic failover mode operation. We expand on that documenta-
tion in order to clarify and explain it to users who are not familiar with how failover
mode works for applications in general and specifically for Nagios. We hope that by
the end of this chapter you will have a clear understanding of how to implement
failover mode for Nagios at your organization.

Establish Data Synchronization
between Two Nagios Servers

1. Create a master IP address for Nagios. This master IP address will only be
active on the active Nagios server. It will be used for the official host name of
the Nagios host so Web users and administrators can reach the active Nagios
server regardless of which server is active. It will also be used as the destina-
tion for SNMP traps or NSCA checks used by agents on managed devices.
Finally, it will be used in the Web server configuration on each Nagios host
so there is only one Apache configuration for Nagios between the two hosts.

2. Set up a primary Nagios server with two IP addresses. The primary IP will be
used for systems management; all monitoring and passive checks will be done
using the second IP address. The second IP address will be the master Nagios
ww.syngress.com

 Scaling Nagios • Chapter 3 107
IP address. It will be “moved” from the primary server to the secondary server
when we need to make the secondary server the master server by de-activating
it on the primary server and activating it on the secondary server.

3. Set up a secondary Nagios server with the same software and setup as your
primary Nagios server, including two IP addresses:—one unique IP address
for systems management that will be active, and a secondary IP address that
is the same as the master Nagios IP address you configured on the primary
system. Be sure to leave the master Nagios IP address configuration disabled on the
secondary server. Failure to do so will cause an IP address conflict on your network
that will disable access to the primary Nagios server via the Nagios master IP
address.

4. Establish an encrypted communication channel between the two Nagios
servers using rsync and SSH. Rsync (http://rsync.samba.org/) is a freely
available application that keeps files and permissions synchronized between
two systems. Rsync is very efficient; only changes in files and directories are
copied between two systems when it runs. Rsync can synchronize files using
its own TCP-based transport protocol, or it can use SSH as its transport. We
highly recommend using SSH as the transport, as SSH encrypts all data sent
between two systems. SSH also allows us to use cryptographically strong keys
(Public Key Infrastructure) for authentication instead of passwords; by using
SSH keys we can set up rsync to synchronize files between the two systems
without requiring a user to be present to enter a password. Install rsync and
ssh and set up SSH key-based authentication (use ssh-keygen to make the
keys) between your primary server and secondary server; you should create a
key on each server so rsync can run in either direction without user inter-
vention. You can either choose to create SSH keys that have no passphrase
for this purposes, or set up a passphrase for your SSH keys and use a combi-
nation of ssh-agent and Keychain (www.gentoo.org/proj/en/keychain/) to
manage the passphrases. Which one you choose will depend on the security
policies in your organization; if you choose to use ssh-agent and Keychain
you will need to enter the passphrases for the SSH keys you set up one time
on each server when the servers are rebooted.

5. Create a cron job on the primary server that runs the rsync command
and pushes all changes to configuration files to the secondary server at
regular intervals. Our recommendation is to have the synchronization job
www.syngress.com

www

108 Chapter 3 • Scaling Nagios

Fig
run every 10 minutes. The cron job can be as simple as running the
command rsync -avz -e ssh /usr/local/nagios/ secondary:/usr/local/
nagios/. This will recursively copy any changes to files from the primary
server to the secondary server while preserving file and directory permissions,
links, and access times.

6. Set up a synchronization job from the secondary to the master server but
leave it disabled. Should you need to switch from the primary to the secondary
server and keep the two in sync, this secondary cron job can be activated to
perform that function. (See Figure 3.9.)
.syngress.com

Managed hosts send SNMP traps
and NSCA passive checks to Nagios
using the shared Nagios master IP
address.

Secondary
Nagios Server

Nagios
Master IP
Address
(enabled)

192.168.3.10

Management
IP Address

192.168.1.12

Nagios and
Apache

ConfigurationsConfigurations are kept in sync
using rysnc over SSH

System administrator
Manages Nagios
hosts

Deactivate master IP Address on primary
Nagios server; activate master IP address
on secondary Nagios server during failover

nagios.example.com

NSCA
Checks

SNMP
Traps

NOC support personnel use
Nagios GUI to monitor all
systems and applications.

Managed Hosts

Management
IP Address

192.168.1.11

Nagios and
Apache

Configurations

Nagios
Master IP
Address

(disabled)
192.168.3.10

Primary
Nagios Server

ure 3.9 Nagios in Failover Mode with Two Servers

 Scaling Nagios • Chapter 3 109
At this point, our failover scenario setup is complete. By using rsync over ssh, we
have created a simple system to keep all configuration files, data files, and core program
files synchronized between our primary and secondary servers. We can now test
our failover configuration (it is very important to test failover before a real problem
happens!). Perform the following steps to switch Nagios from the primary server to
the secondary server:

1. Disable the master IP address on the primary server.

2. Activate the master IP address on the secondary server.

3. Stop Nagios and all related applications on the primary server.

4. Stop the rysnc job on the primary server by commenting out the cron job.

5. Start Nagios and other Nagios-related applications (SNMPTT, NSCA
daemon, NDO, etc.) on the secondary server.

6. Start the sync job on the secondary server so data will be synchronized
to the primary server (if the primary server is still able to accept data).
(See Figure 3.10.)
Figure 3.10 Nagios Failover Sequence

Nagios Primary

Migrate master IP address to secondary server

Enable Master
IP address

Start Nagios

Start Apache

Start Rsync

Stop Apache

Stop Nagios

Stop Rsync

Disable Master
IP address

Stop all apps on the primary server and start them
on the secondary server

Change synchronization so the secondary server
replicates to the primary server

Nagios Secondary
Remember to shut down Nagios on the primary server or at least make sure
notifications are disabled on the primary server. In addition, you must remember to
disable the rsync cron job on the primary server (if the primary is still up) to ensure
www.syngress.com

w

110 Chapter 3 • Scaling Nagios
it doesn’t replicate bad old data to the secondary server once the secondary server
becomes the master.

You can execute the check_nagios plug-in on the primary system to check the
health of Nagios:
./check_nagios -F /usr/local/nagios/var/nagios.log -C nagios -e 10
NAGIOS OK: 5 processes, status log updated 454 seconds ago

This will tell us if the local system has failed. You can use this type of check to
enable an automatic failover from the primary to the secondary. We normally recom-
mend against this, as many times failures of the primary Nagios process have to do
with configuration changes, and in those cases, a failover system will not resolve the
issue. It is normally recommended that you avoid automatic failover and instead set a
time limit. If the primary Nagios server is down for longer than your specified time,
you should begin the process to move to the secondary server. Even in those cases
where you do need to fail back to the master, you will be able to one-time reverse
the rsync process and be ready to move back to your primary server.

This configuration also works well for upgrades. You can disable the cron job on
the primary server, upgrade the secondary server, and then bring the secondary
server online to test and validate the upgrade while having the safety net of being
able to go back to the primary server if you encounter upgrade issues. As you work
more with your Nagios server, you will identify more areas where the open configu-
ration and easy scripting nature of the application make it so that any system can be
easily measured and monitored including your Nagios server.

The Future
The future of Nagios is of keen interest to all of us. Members of our team (Derrick
Bennet, Max Schubert) have been using Nagios since it was called Netsaint in a wide
variety of locations. We have used it to monitor environments that are as small as
four servers in a small office, to hundreds of servers across multiple data centers and
through numerous firewalls and network filters. We have always found that keeping
monitoring as simple as possible produces the best results. Nagios adheres to this
philosophy and has been flexible enough to succeed in every environment in which
we have used it. We have never found a service, application, or system that could not
be monitored using Nagios. In many situations, we find that someone else in the
ww.syngress.com

 Scaling Nagios • Chapter 3 111
large, enthusiastic Nagios community has already found a way to monitor devices
we use. Several of us have spent time installing Nagios side by side with commercial
products like Tivoli and HP Openview. In all cases, we find that the people who
monitor and manage devices and networks on a daily basis time and time again
choose Nagios over any other product.

So, what does that leave for the future? Quite a lot! Nagios is very flexible,
which means much can be done to make it even better. Nagios 3.0 brought massive
improvements in performance and large-scale configurations. Many of the features of
Nagios we covered in this chapter were traditionally only available in large commercial
packages as recently as a year ago. The improvements in Nagios as of version 3 are
quite amazing and we can only imagine the functionality that will be added to Nagios
with future releases.

Database Persistence
There has long been a cry for database support native in Nagios. NDOutils provides
much of that functionality today. Having used several of the add-on database pack-
ages for Nagios we can provide some insight on why integrating a relational database
into the Nagios life cycle is difficult. The biggest issue with using a database is keep-
ing Nagios simple. When using templates stored in plain-text files you can configure
hosts and services faster than is possible in any current database implementation due
to the impedance mis-match between a traditional relational database model and an
object-oriented, inheritence based model. There are two barriers to a native core
database design:

■ Having a database understand templates in a dynamic fashion is tricky. The
traditional database design model does not easily map to an object-oriented
model. Some databases (PostgresQL, for example) do implement object-
oriented features, but we have yet to see anyone attempt to map the Nagios
configuration object model to an object-oriented database like Postgres.

■ Providing a user interface that allows for dynamic adjustments of database-level
constraints without having to drop and re-create tables or alter table designs on
the fly. The database-based Nagios configuration add-ons we have used have
had us cursing by about the 23rd entry at the amount of duplicate data we had
to enter because they do not fully implement the OO inheritance model
Nagios supports.
www.syngress.com

w

112 Chapter 3 • Scaling Nagios
CGI Front End
The only subject we have seen more debate about on than database persistence
is the Nagios front-end CGI programs. Very few web applications in use today use
a C-based front end. Many members of the Nagios community would really like
to see the Nagios GUI ported to perl, python, or another very high-level scripted
language. One of the major benefits of a C-based front end, however, is the speed
and reliability the interface provides. No requirements for Java on the client, or
large desktop packages to be installed; the CGIs all generate HTML and CSS. Alas,
it seems that 3.0 will most likely be the last version to use C on the front end;
the assumption is that PHP will be used as the front-end in version 4 of Nagios.

The biggest reason we see for a conversion from C to a very high-level language is
not the functionality the CGIs provide, but rather the strong desire people have to
change the look of the GUI or to integrate Nagios with other Web-based tools. We do
look forward to the next version of the Nagios front end, but we will never complain
about the C code in use today and how compatible Nagios output is with web brows-
ers, from Links to Firefox. An additional benefit to having a PHP-based front end will
be the ability to easily internationalize the Nagios GUI, which will allow Nagios to be
used by a much broader audience.

Even More
We expect to see an even more flexible core Nagios distribution in the future. This
includes additional event handlers and triggers within the Nagios Event Broker
(NEB) and interpreters for high-level languages that will allow more types of plug-
ins in more languages to be used with Nagios, similar to how an API-like mod_perl
allows for Perl scripts and modules to act and react to Apache events throughout the
life cycle of Apache. We expect this new core to allow for plug-ins written in high-
level languages like PHP, ruby, Python, Perl, or Lua to register themselves as listeners
for Nagios events, eliminating the constant need to work on Nagios data from out-
side Nagios. We hope to see this same change happen for check commands and
notifications to allow more commands to be executed by Nagios directly from
memory. Some people within the Nagios community really want to see Nagios
moved into a Web application framework like Zend or Zope. It is our hope that
Nagios does not follow this path, but rather remains its own self-hosting framework
so it can continue to do what it does better than any other comparable application in
its market. Overall, we expect that the largest changes will be in the areas of access
ww.syngress.com

 Scaling Nagios • Chapter 3 113
control lists, authentication, and customization, but we leave the real decisions to
Nagios’ one true developer, Ethan Galstad. Always remember that if Nagios does not
support a feature you would really like to see in place, there is always room for you
to create it and contribute to the project!

A Pluggable Core
Unlike many open source projects and commercial software projects that are unwill-
ing to change core features once a feature is stable, even if the reasons are valid and
useful, Nagios dropped a piece of core functionality with version 2.x that many
people found useful: built-in database persistence. Why was this done? Because the
lead developers saw that the best way to keep Nagios an open, extensible framework
was to move away from adding features to the core and develop a flexible, extensible
plug-in framework. Nagios 2.x saw the introduction of this framework, called Nagios
Event Broker (NEB). NEB allows third-party developers to write C extensions that
register themselves to be notified when various events happen in the Nagios life
cycle. This includes system startup, host and service check changes, and triggering of
external events to name a few.

With the advent of Nagios 3, we see this framework becoming even more stable
and we see a growing number of NEB modules available for Nagios. An important
module in this evolution is Nagios Data Output Utils (NDO utils). This module
replaces the Nagios 1.x database persistence model, allowing Nagios administrators
to persist host and service configurations and host and service check results to a
database. It was introduced in the 2.x series of Nagios and continues to receive major
attention and use with version 3 of Nagios. A wildly popular add-on, NagVis, makes
extensive use of NDO Utils. Community feedback on the NDO Utils module and
community driven patches are quickly driving this module to a place of maturity
and stability.

We expect the NEB framework to continue to grow in popularity and the num-
ber of plug-ins available for Nagios that make use of it to grow as well. It would not
be surprising to see most noncore functionality (for example, the Web-based GUI)
to eventually be removed from the core Nagios source code and re-implemented
as NEB-based add-ons. The future is looking bright for Nagios as a monitoring
framework, and we expect that NEB will be a major part of that future.
www.syngress.com

This page intentionally left blank

Chapter 4
Plug-ins, Plug-ins,
and More Plug-ins
Solutions in this chapter:

Plug-in Guidelines and Best Practices

Software Services and Network Protocols

Servers

HTTP Scraping Plug-ins

Testing Telnet-like interfaces (Telnet or SSH)

Monitoring LDAP

Monitoring Databases

Specialized Hardware

Anti-Virus Devices

Environmental Probes

■

■

■

■

■

■

■

■

■

■

˛	Summary
115

w

116 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
Introduction
One of the many advantages Nagios has over commercial/closed network and system
monitoring systems is its terrific plug-in API. The Nagios plug-in API is open, easy
to use, and well documented. You can develop your plug-ins in any language you
want and you can monitor anything that is important to your users. C and Perl are
currently the most popular languages used for plug-ins; C because it is fast, and Perl
because Nagios comes with an embedded Perl interpreter that caches Perl scripts in
memory, letting them execute much more quickly than other interpreted languages
(much like mod_perl would).

In this section, we discuss plug-in development best practices and guidelines.
We then show examples of monitoring using SNMP, as SNMP is typically in use at
large organizations. From there we discuss how to monitor a variety of application-
level protocols such as LDAP and HTTP. Finally, we show you examples of monitoring
a variety of Enterprise-class hardware devices, from proxies to environmental moni-
toring systems. All the code presented in this chapter is available for download at
no cost from the book’s Web site.

Plug-in Guidelines and Best Practices
The official documentation for Nagios plug-in writing can be found at
http://nagiosplug.sourceforge.net/developer-guidelines.html. It covers everything
from command-line interface expectations to performance data output formats.
Writing plug-ins is a lot of fun; just make sure your plug-ins conform to the standards
so others can easily understand how they work and you can share them with the
Nagios community if you choose to do so. Plug-ins should be written in simple,
clear logic and defensive programming involved as they are designed to trap and
report on error statuses. They should be documented well as they tend to not be
changed often once they are working and deployed in a production environment.

Use Plug-ins from
the Nagios Community
The Nagios community is diverse and enthusiastic. Thanks to the open nature of
Nagios, you will find a plethora of service and host checking plug-ins. If you can,
use community-written plug-ins rather than reinvent the wheel, as this helps lower
the barriers to learning Nagios for people new to the framework. If you find
you need to enhance existing code or write new plug-ins to meet your needs,
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 117
contribute them to the Nagios community, as the community makes Nagios
a terrific fault management framework!

Use Version Control
Your Nagios plug-ins are most likely not the star code at the company you work
for. Most likely the output from them or the value they produce is also not visible
to end users. This does not mean you should not follow software development best
practices! Make your life easier by using version control to manage your plug-in
code, be that with SVN, CVS, GIT, or your version control system of choice.
The lower the risk of code change for yourself, the more likely you are to enhance,
improve, and refine your plug-ins over time.

Output Performance Data
You should develop your plug-ins with performance data in mind. A variety of
Nagios add-ons process this data in very useful ways. For example, PNP (PNP is not
PerfParse) will take this data and produce RRD-based trending graphs. You can also
use this output in Cacti or other trending tools already installed in your environment.
Get in the habit of adding performance data to your plug-ins and you will increase
the shelf life and interest your plug-in has to your users and the Nagios community
as a whole. Please make sure to follow the Nagios performance data guidelines found
at http://nagiosplug.sourceforge.net/developer-guidelines.html#AEN203.

Software Services
and Network Protocols
Writing plug-ins is an area where integrators and IT professionals can really shine.
Nagios’ plug-in framework is very easy to code and lets you design just about any
kind of service check you can imagine. In this chapter, we discuss a number of types
of service checks that tend to be important for larger organizations. We start with
SNMP and clusters, and then get into more protocol-specific checks for enterprise-
important technologies such as databases, LDAP, and Web services.

SNMP Plug-ins
SNMP has a reputation for being insecure and a large security risk. This is too bad.
It is a risk if the network it is used on is not designed properly and permissions are
not set up properly. With the advent of SNMP v3, however, that risk is diminished,
www.syngress.com

ww

118 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
as SNMP v3 uses strong encryption and protects both the data and credentials of the
server and client.

If you are fortunate enough to be allowed to use SNMP on your network, read on.
SNMP agents expose a tremendous amount of useful information from a device, from
configuration management related information to performance indicators to indica-
tions that faults are in progress or are about to occur on a device.

We assume in this chapter that you have used SNMP. The meanings of the terms
community string, MIB, and OID should be familiar to you; if not, there are many sites
on the Internet and many books you can read to learn about SNMP.

All the monitoring techniques in this section will work with any version of SNMP.
We use a combination of both SNMP v2 and SNMP v3 in the examples; SNMP v2
for routers and network devices, and SNMP v3 for hosts. For each example, we also
list the device model and name we used to test the techniques as well as the MIBs
the device needs to support for the monitoring tests to work. This should allow you
to determine whether devices not listed for the examples will work with the code
examples/scripts in this chapter.

We start this section with a short description of the kinds of monitoring SNMP
agents do well. We will cover the following types of devices in this section: network
devices, servers, and specialized hardware (load balancers, proxies). We additionally
cover software agent monitoring for specialized applications such as LDAP servers
and Java Web application servers.

What SNMP Is Good For
SNMP is especially well suited for monitoring private services and indicators that
are not accessible over a network. CPU usage, swap utilization, RAM usage, and disk
partition utilization are common examples. SNMP is also very useful for monitoring
process activity on a device; agents that support the HOST-MIB allow you to remotely
query the complete process table of a device, which includes the memory and CPU
utilization each process is using, and the command and arguments of the command line
used to start the process. Using just the process information we can monitor and alert
on useful measures of device and service health such as critical processes stopping, too
much memory or CPU consumed over time for a process or group of processes and
unusual numbers of processes running.
w.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 119
What SNMP Is Not Good For
It is preferable to monitor network-accessible services from outside the device itself,
as remote tests experience conditions that are closer to what a real user or remote host
would experience, including network latency, external network interface congestion,
and problems due to firewall or network misconfiguration. SNMP is also a poor
choice for Internet-exposed hosts unless you use SNMP v3 exclusively, as SNMP
versions 1 and 2c are plain text protocols. SNMP requires senior developers if the
development staff is to implement custom agents. Finally, SNMP can be a poor choice
for monitoring devices that sit on low-bandwidth, high-latency networks, as the
SNMP traffic for devices with many SNMP-accessible elements (like larger routers)
can potentially use a significant portion of the bandwidth on a low-bandwidth link.

Nagios::Plug-in and
Nagios::Plug-in::SNMP
Nagios::Plug-in is a Perl module created by Ton Voon <ton.voon@altinity.com>, now
maintained by the Nagios Plug-in development team; source code and documentation
for it can be found at http://nagios-plug.sourceforge.net. This Perl module provides a
number of convenience routines to make it easier to write Nagios plug-ins, including
routines to simplify adding, parsing, and reading command-line options, create perfor-
mance data, check thresholds, and output properly formatted Nagios status lines and
status codes. We recommend this module for your Perl-based plug-ins, as it significantly
reduces the amount of time you spend doing basic plug-in infrastructure. As we write
and publish this book, the Nagios plug-in developers are establishing standards for
thresholds that are much richer than the currently documented standards. This new
set of standards will allow for complex threshold specifications and should help to
encourage plug-in developers to write code using the common argument parsing
code, making it easier for users to quickly integrate
plug-ins from a diverse development community.

Nagios::Plug-in::SNMP is a subclass of Nagios::Plug-in Max Schubert wrote to
make it easier to create SNMP-based scripts. It includes code to handle common
SNMP options and to perform SNMP GET and WALK requests. Nagios::Plug-in::
SNMP uses the Net-SNMP module to perform SNMP requests. While the developers
of the Net-SNMP project recommend using the Perl SNMP classes that come with
the Net-SNMP agent over the Net-SNMP module, we have found Net-SNMP to
work very well for querying any SNMP device we have needed to query. The module
can be downloaded from the book site or from CPAN.
www.syngress.com

w

120 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
Some of the scripts in this section also use a utility module Max Schubert wrote
that makes parsing and checking thresholds that use a format of
‘label,<op>,value:label2,<op>,value’

Where <op> is one of:

gte: >=

gt: >

lte: <=

lt: <

E.g. ‘user,gt,90:system,gt,60’

It also includes a routine to convert metrics to Kb, kb, Mb, MB, GB, gb, and %,
and a routine to output results for the results from the multiple threshold checks in
an easy-to-read format. Here is the module; it is also available online from the book
site. This module does not use the new style of threshold specifications the Nagios::
Plug-in developers are using, as that standard was not complete during the time this
book was written.
package Nenm::Utils;

=pod

=head1 NAME

Nagios Enterprise Network Monitoring Utils

=head1 SYNOPSIS

A collection of routines that make multi-threshold parsing and checking
easier, these routines let us check warning and critical thresholds that
are in the format ‘metric,<op>,value:metric2,<op>,value2’, e.g. ‘nice,gt,90:
user,lt,5’.

Valid operators are gt (>), lt (<), gte (>=), and lte (<=). Valid metrics
are passed into the parse and check functions as a hash ref where the keys
are the metrics and the values are hashes with at least a key called ‘value’
that contains the value associated with the metric.

=cut

$Nenm::Utils::DEBUG = 1;

use strict;
use Nagios::Plugin; # For error levels

=pod

=head2 parse_multi_threshold($conditions_ref, $valid_metrics);

Parse warning and critical condition strings passed in by the user; returns
a reference to an array of arrays containing thresholds that the function
check_multi_thresholds can check and an array of error messages from errors
that occurred during parsing .. if no errors occur, the size of the error
array will be 0.
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 121
Example:

my %metrics = (
 ‘idle’ => {‘value’ => 0},
 ‘nice’ => {‘value’ => 0}
);

my ($wthr, $werrs) = Utils::parse_multi_threshold($plugin->opts->warning,
 \%metrics);

=cut

sub parse_multi_threshold {

 my $threshold_conditions =
 shift || die “Missing condition string to parse!”;

 my $valid_metrics =
 shift || die “Missing hash ref of valid metrics”;

 my @errors;
 my @thresholds;

 my @conditions = split(‘:’, $threshold_conditions);

 for my $condition (@conditions) {

 my $has_error = 0;

 my ($metric, $op, $value) = split(‘,’, $condition);

 if (! defined($metric)) {
 push(@errors, “$condition missing metric to check!”);

 }

 if (! defined($op)) {
 push(@errors, “$condition missing operator to use for check!”);

 }

 if (! defined($value)) {
 push(@errors, “$condition missing value to check!”);

 }

 if (! exists $valid_metrics->{$metric}) {
 my $msg = “$metric is not a valid metric, valid metrics ” .
 “are ” . join(‘, ’, sort keys %$valid_metrics);
 push(@errors, $msg);
 }

 my $valid_ops = ‘lt|gt|gte|lte’;

 my $real_op = ‘’;

 $op = lc($op);

 if ($op eq ‘lt’) {
 $real_op = ‘<’;
 } elsif ($op eq ‘gt’) {
 $real_op = ‘>’;
 } elsif ($op eq ‘gte’) {
 $real_op = ‘>=’;
 } elsif ($op eq ‘lte’) {
 $real_op = ‘<=’;
www.syngress.com

122 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 } else {
 my $msg = “$op is not a valid operator, valid operators ” .
 “are $valid_ops”;
 push(@errors, $msg);
 }

 next if scalar(@errors) > 0;

 debug(“parse_multi_threshold: adding $metric $real_op ($op) $value”);

 push(@thresholds, [$metric, $real_op, $value]);

 }

 return (\@thresholds, \@errors);

}

=pod

=head2 check_multi_thresholds($metrics, $warning_ref, $critical_ref, $type);

Checks all thresholds in $warning_ref and $critical_ref arrays (arrays
returned by parse_multi_thresholdc calls) and returns a hash of results
with the following keys:
* warning = reference to array of warning messages
* critical = reference to array of critical messages
* ok = reference to array of ok messages
* perfdata = string of perfdata, ready for output

$type is the threshold value type (%, K, M, B) and is added to perfdata
output to indicate the type of number in perfdata output. Use any valid
perfdata symbol that applies to your data.

Each key in metrics have a value that is a hash reference where there is
at least the key ‘value’ holding the real value for the metric.

Example:

my %metrics = (
 ‘idle’ => {‘value’ => 80},
 ‘nice’ => {‘value’ => 55}
);

my $results =
 Utils::check_multi_thresholds(\%metrics, $warn_ref, $crit_ref, ‘%’);

=cut
sub check_multi_thresholds {

 my $metrics =
 shift || die “Missing hash ref of metrics to check!”;

 my $warning =
 shift || die “Missing array ref of warning thresholds!”;

 my $critical =
 shift || die “Missing array ref of critical thresholds!”;

 my $type_label =
 shift || die “Missing type label (e.g. \%, K, M, B) for metrics!”;

 my $results = {
 ′critical′ => [],
 ′warning′ => [],
www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 123
 ′ok′ => [],
 ′perfdata′ => ′′
 };

 my %checked;

 for my $c (@$critical) {

 my ($metric, $op, $value) = (@{$c});

 debug(“check_multi_thresholds: check critical $metric $op $value”);

 my $real = $metrics->{$metric}->{′value′};
 my $result = eval_expr(“$real $op $value”);

 $checked{$metric}->{‘critical’} = $value;

 if ($result == 1) {
 push(@{$results->{′critical′}},
 ″$metric ($real$type_label $op $value$type_label)″);
 $checked{$metric}->{′caught′} = 1;
 }

 }

 for my $w (@$warning) {

 my ($metric, $op, $value) = (@$w);

 my $real = $metrics->{$metric}->{′value′};
 $checked{$metric}->{‘warning’} = $value;

 debug(“check_multi_thresholds: check warning $metric $op $value”);

 next if exists $checked{$metric}->{‘caught’};

 my $result = eval_expr(“$real $op $value”);

 if ($result == 1) {
 push(@{$results->{′warning′}},
 ″$metric ($real$type_label $op $value$type_label)″);
 $checked{$metric}->{′caught′} = 1;
 }

 }

 my $perfdata;

 for my $metric (sort keys %$metrics) {

 my $w = 0;
 $w = $checked{$metric}->{′warning′}
 if exists $checked{$metric}->{‘warning’};

 my $c = 0;
 $c = $checked{$metric}->{′critical′}
 if exists $checked{$metric}->{‘critical’};

 $perfdata .= ″ ′$metric′=$metrics->{$metric}->{′value′}″ .
 “$type_label;$w;$c”;

 next if exists $checked{$metric}->{‘caught’};

 my $value = $metrics->{$metric}->{′value′};
 push(@{$results->{‘ok’}}, “$metric $value$type_label”);

 }
www.syngress.com

w

124 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 $results->{‘perfdata’} = $perfdata;

 return $results;

}

sub eval_expr {

 my $expr = shift;

 my $result = 0;

 eval {
 $result = eval ″($expr);″;
 die $@ if $@;
 };

 $result = 0 if ((! defined $result) or ($result eq ‘’));

 debug(“eval_expr: $expr returned $result”);

 return $result;

}

=pod

=head2 convert_to($type_symbol, $metrics_hash_ref)

 Convert all values in the ‘value’ keys of the hash passed in by reference
to the type referenced by the $type_symbol passed in. Valid values for
$type_symbol are: ‘%’, ‘K’, ‘k’, ‘G’, ‘g’, ‘T’, ‘t’, ‘M’, or ‘m’. Large
K, G, M, T all will be computed using powers of 1024, lower case versions
will be multiplied by 1000 * N where K == 1, M == 2, G == 3, and T == 4.

 If percent is specified, the routine assumes that all passed in metrics
added together make up the total for the type of metric they represent.
Routine expects that ‘raw’ values will be in a key named ‘raw’ for
every metric passed in, e.g.

 my $cpu_metrics = {
 ′nice′ => { ′raw′ = 2390239, ′value′ => 0
 ′system′ => { ′raw′ = 23902390, ′value′ => 0
 ′user′ => { ′raw′ = 949348984, ′value′ => 0
 };

 Nenm::Utils::convert_to(‘%’, $cpu_metrics);

=cut

sub convert_to {

 my $convert_to = shift;
 my $metrics_ref = shift;

 my $valid_types = ‘\%|B|M|K|G’;

 die ″Invalid metric type $convert_to passed in!″
 unless $convert_to =~ m/^${valid_types}$/i;

 if ($convert_to eq ‘%’) {

 my $total = 0;

 for my $metric (keys %{$metrics_ref}) {
 $total += $metrics_ref->{$metric}->{′raw′};
 }
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 125
 for my $m (keys %{$metrics_ref}) {
 $metrics_ref->{$m}->{′value′} =
 sprintf(″%.2f″, ($metrics_ref->{$m}->{′raw′} / $total) * 100);
 }

 } else {

 my $base = 1024;
 $base = 1000 if ($convert_to =~ /[a-z]/);

 my $power = 0;

 $convert_to = lc($convert_to);

 if ($convert_to eq ′b′) {
 $power = 1;
 } elsif ($convert_to eq ′m′) {
 $power = 2;
 } elsif ($convert_to eq ′g′) {
 $power = 3;
 } elsif ($convert_to eq ′t′) {
 $power = 4;
 }

 my $multiplier = $base ** $power;

 for my $m (keys %{$metrics_ref}) {
 $metrics_ref->{$m}->{′value′} =
 $metrics_ref->{$m}->{′raw′} * $multiplier;
 }

 }

}

=pod

=head2 output_multi_levels($label, $results_hash_ref);

Takes a Nagios plugin label along with the results as returned by
check_multi_thresholds and outputs results text, including perfdata.
For every result passed in, the most critical result wins; list of
all thresholds breached and all values that are ok is output in a
comma separated list, divided by label. Example:

=cut

sub output_multi_results {

 my $label = shift;
 my $results = shift;

 my @critical = @{$results->{′critical′}};
 my @warning = @{$results->{′warning′}};
 my @ok = @{$results->{‘ok’}};

 my $level = OK;

 print “$label ”;

 if (scalar(@critical)) {
 print ″CRITICAL - ″ . join(′, ′, @critical) . ′ ′;
 $level = CRITICAL;
 }
www.syngress.com

126 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 if (scalar(@warning)) {
 print ″WARNING - ″ . join(′, ′, @warning) . ′ ′;
 $level = WARNING unless $level == CRITICAL;
 }

 if (scalar(@ok)) {
 print ″OK - ″ . join(′, ′, @ok) . ′ ′;
 }

 print “ | $results->{‘perfdata’}\n”;

 return $level;

}

sub debug {

 return unless $Nenm::Utils::DEBUG == 1;

 my $msg = shift;

 warn scalar(localtime()) . “: $msg\n”;

}

1;

ePN—The Embedded Nagios Interpreter
ePN is an embedded Perl interpreter that runs inside Nagios, as mod_perl does with
Apache. For shops that heavily use Perl for plug-ins, it can dramatically decrease the
load Nagios puts on a system. Please note that there are caveats to watch out for
when using ePN; the most important is that once you start using ePN, you should
not use the reload target of the Nagios init script (equivalent of sending a HUP signal
to Nagios), as the reload does not properly clean up memory used by scripts run
under ePN. For some this may be a deal-breaker; if it is not, please take advantage of
this feature. When coding plug-ins to run under ePN you must be more careful with
variable scoping and destruction than with normal scripts, because the scripts do
persist in memory as they would with mod_perl. ePN, like the other parts of Nagios,
has a very simple API scripts should conform to:

Each script defines a single function; all variables should be scoped within
this function.

Each script calls the single function at the end of the script and exits with
the return value of the function.

Example
#!/usr/bin/perl

nagios: +epn

sub my_cool_check {

■

■

www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 127
use strict;

my $helper = Helper->new();

my $output = $helper->do_stuff();

...

$helper = undef; # Make sure references are cleared

return 0; # OK

}

exit my_cool_check();

Notice the line
nagios: +epn

This tells Nagios that the script wants to be run under the embedded Perl inter-
preter. This line has to be put in the first 10 lines of your script; if you do not have
the embedded Perl interpreter enabled in your configuration file this line will have
no effect on the execution of the script.

The nice thing about the ePN coding style is that plug-ins written using it can
be used with Nagios regardless of whether ePN is enabled. For more information
on ePN, refer to the Nagios documentation. All plug-ins in this section use an
ePN-compliant coding style.

Network Devices—Switches, Routers
Managed network devices offer a huge variety of information through SNMP, so it
can be difficult to decide what is important to monitor. This section shows a number
of scripts to help you monitor critical indicators of problems on network devices.

Assumptions made in this section:

All network devices are Cisco devices

SNMP version used is version 2

Community string for the device is stored in a custom host variable
named __snmp_community

CPU Utilization
MIB needed

CISCO-PROCESS-MIB
ENTITY-MIB

■

■

■

www.syngress.com

w

128 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
OIDs needed
CISCO-PROCESS-MIB
cpmCPUTotal5secRev: 1.3.6.1.4.1.9.9.109.1.1.1.1.6
cpmCPUTotal1minRev: 1.3.6.1.4.1.9.9.109.1.1.1.1.7
cpmCPUTotal5minRev: 1.3.6.1.4.1.9.9.109.1.1.1.1.8
cpmCPUTotalPhysicalIndex: 1.3.6.1.4.1.9.9.109.1.1.1.1.2
ENTITY-MIB
entPhysicalName: 1.3.6.1.2.1.47.1.1.1.1.7
As with servers, network device CPU over-utilization is a key indicator that a

network device needs to be replaced or upgraded. According to Cisco documenta-
tion (see How to Collect CPU Utilization on Cisco IOS Devices Using SNMP—
www.cisco.com/en/US/tech/tk648/tk362/technologies_tech_note09186a0080094a94.
shtml), sustained CPU utilization of 90% or more can lead to degraded performance
in 2500 series routers. For this reason, Cisco recommends a baseline CPU utilization
threshold of 90%; they also recommend that only the five-minute CPU utilization
metric should be used for alerting on CPU utilization; the one-minute-and-five-
second metrics should be used for capacity planning purposes only.

This check follows those guidelines; the warning and critical threshold values are
checked against the five-minute counter; one-second and one-minute metrics are not
checked. All three counters are output as perfdata for use in trending. If the device
has more than one CPU, all CPUs will be checked; the name of the CPU will be
taken from the entPhysicalName OID if that OID exists for the CPU. If the CPU
physical entity OID does not exist, the name “CPU N” will be used, where N starts
at 0 and increments by one for each additional CPU found on the device.

Example Call to the Script
./check_snmp_cisco_cpu.pl --hostname rtr1.example.com --snmp-version 2c --
rocommunity mycommunity -w 90 -c 95

SNMP-CISCO-CPU CPU_0 0% | ‘cpu_0_5sec’=1;0;0 ‘cpu_0_1min’=0;0;0
‘cpu_0_5min’=0;90;95

The Script
#!/usr/bin/perl

=pod

=head1 NAME

check_snmp_cisco_cpu.pl - Check CPU utilization on a Cisco device.

=head1 SYNOPSIS
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 129
This script will check the 5 minute CPU % utilization on a Cisco
device. Specify thresholds for utilization with the warning and
critical switches. The thresholds will be checked for each CPU
on the device if the device has multiple CPUs.

The script will output perfdata that also includes
the 5 second and 1 minute CPU utilization metrics for the device.

=cut

CISCO-PROCESS-MIB
* cpmCPUTotal5secRev: 1.3.6.1.4.1.9.9.109.1.1.1.1.6
* cpmCPUTotal1minRev: 1.3.6.1.4.1.9.9.109.1.1.1.1.7
* cpmCPUTotal5minRev: 1.3.6.1.4.1.9.9.109.1.1.1.1.8
* cpmCPUTotalPhysicalIndex: 1.3.6.1.4.1.9.9.109.1.1.1.1.2
#
ENTITY-MIB (table)
* entPhysicalName: 1.3.6.1.2.1.47.1.1.1.1.7
#
Get 5 minute average, grab OID index for it, poll table
.1.3.6.1.4.1.9.9.109.1.1.1.1.2.<INDEX>, if that OID has
a non-zero value, save the index OID and poll
.1.3.6.1.2.1.47.1.1.1.1.7.<INDEX> to get the human-readable
description of the component the CPU is on.
#
If .1.3.6.1.4.1.9.9.109.1.1.1.1.2.<INDEX> returns a zero value
there is no mapping to a physical component description.

sub check_snmp_cisco_cpu {

 use strict;
 use FindBin;
 use lib “$FindBin::Bin/lib”;

 use Nagios::Plugin::SNMP;
 use Nenm::Utils;

 my $LABEL = ‘SNMP-CISCO-CPU’;

 my $USAGE = <<EOF;
Usage: %s —warning % --critical %
EOF

 my $plugin = Nagios::Plugin::SNMP->new(
 ‘shortname’ => $LABEL,
 ‘usage’ => $USAGE
);

 $plugin->getopts;

 $Nenm::Utils::DEBUG = $plugin->opts->get(‘snmp-debug’);

 my $WARN = $plugin->opts->get(‘warning’);
 $plugin->nagios_die(“Missing warning threshold!”) unless $WARN;

 my $CRIT = $plugin->opts->get(‘critical’);
 $plugin->nagios_die(“Missing critical threshold!”) unless $CRIT;
www.syngress.com

w

130 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 my %OIDS = qw(
 cpmCPUTotalPhysicalIndex 1.3.6.1.4.1.9.9.109.1.1.1.1.2
 cpmCPUTotal5secRev 1.3.6.1.4.1.9.9.109.1.1.1.1.6
 cpmCPUTotal1minRev 1.3.6.1.4.1.9.9.109.1.1.1.1.7
 cpmCPUTotal5minRev 1.3.6.1.4.1.9.9.109.1.1.1.1.8
);

 my %cpu;

 my $phys_results = $plugin->walk($OIDS{‘cpmCPUTotalPhysicalIndex’});
 delete $OIDS{‘cpmCPUTOtalPhysicalIndex’};

 my $phys_names = $phys_results->{$OIDS{‘cpmCPUTotalPhysicalIndex’}};

 my $cpu_counter = 0;

 for my $row (keys %$phys_names) {

 my $idx = ($row =~ m/^.+\.(\d+)$/)[0];

 my $ent_name = “CPU_$cpu_counter”;

 Nenm::Utils::debug(
 “CPU index $idx has physical entity index $phys_names->{$row}”);

 if ($phys_names->{$row} > 0) {
 $ent_name = get_physical_name($plugin, $phys_names->{$row});
 }

 Nenm::Utils::debug(“CPU index $idx now has cpuName $ent_name”);

 $cpu_counter++;
 $cpu{$idx} = { ‘cpuName’ => $ent_name };

 }

 for my $oid (values %OIDS) {

 Nenm::Utils::debug(“Walk OID $oid”);
 my $results = $plugin->walk($oid);

 for my $base_oid (keys %$results) {

 my $idx = ($base_oid =~ m/^.+\.(\d+)$/)[0];

 my %table = %{$results->{$base_oid}};

 my $ent_name;

 for my $row (keys %table) {

 Nenm::Utils::debug(“Received $row: $table{$row}”);

 my ($base, $entity) = ($row =~ m/^(.+)?\.(\d+)$/)[0,1];

 for my $o (keys %OIDS) {

 my $v = $OIDS{$o};
 if ($v eq $base) {

 Nenm::Utils::debug(“Index $entity: $o = $table{$row}”);
 $cpu{$entity}->{$o} = $table{$row};
 }

 }

 }

 }

 }
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 131
 # Check 5 min CPu value for all CPUs

 my $CRITICAL = $plugin->opts->get(‘critical’);
 my $WARNING = $plugin->opts->get(‘warning’);

 my @critical;
 my @warning;
 my @ok;

 for my $cpu_idx (keys %cpu) {

 my $cpu5min = $cpu{$cpu_idx}->{‘cpmCPUTotal5minRev’};
 my $name = $cpu{$cpu_idx}->{‘cpuName’};

 Nenm::Utils::debug(“$name 5 minute utilization is $cpu5min”);

 if ($cpu5min > $CRITICAL) {
 push(@critical, “$name (${cpu5min}\% > ${CRITICAL}\%)”);
 } elsif ($cpu5min > $WARNING) {
 push(@warning, “$name (${cpu5min}\% > ${WARNING}\%)”);
 } else {
 push(@ok, “$name ${cpu5min}\%”);
 }

 }

 my $output = “$LABEL ”;
 my $level = OK;

 if (scalar(@critical) > 0) {
 $output .= ‘CRITICAL - ’ . join(‘, ’, @critical) . ‘ ’;
 $level = CRITICAL;
 }

 if (scalar(@warning) > 0) {
 $output .= ‘ WARNING - ’ . join(‘, ’, @warning) . ‘ ’;
 $level = WARNING unless $level == CRITICAL;
 }

 if (scalar(@ok) > 0) {
 $output .= ‘ OK - ’ . join(‘, ’, @ok);
 }

 print “$output | ” . make_perfdata(\%cpu) . “\n”;
 return $level;

 sub get_physical_name {

 my $plugin = shift;
 my $idx = shift;

 my $oid = “1.3.6.1.2.1.47.1.1.1.1.7.$idx”;
 Nenm::Utils::debug(“Getting physical name OID $oid”);

 my $result = $plugin->get($oid);
 my $name = $result->{$oid};
 Nenm::Utils::debug(“Physical name for index $idx is $name”);

 return $name;
 }
www.syngress.com

132 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 sub make_perfdata {

 my $stats = shift;

 my $perfdata = “”;

 for my $cpu (keys %$stats) {

 my $name = lc($stats->{$cpu}->{‘cpuName’});
 $name =~ s/\s+/_/g;

 my $cpu5sec = $stats->{$cpu}->{‘cpmCPUTotal5secRev’};
 my $cpu1min = $stats->{$cpu}->{‘cpmCPUTotal1minRev’};
 my $cpu5min = $stats->{$cpu}->{‘cpmCPUTotal5minRev’};
 $perfdata .= “‘${name}_5sec’=$cpu5sec;0;0 ” .
 “‘${name}_1min’=$cpu1min;0;0 ” .
 “‘${name}_5min’=$cpu5min;$WARNING;$CRITICAL ”;

 }

 return $perfdata;

 }

}

exit check_snmp_cisco_cpu();

Memory Utilization
MIB needed

CISCO-MEMORY-POOL-MIB

OIDs needed
ciscoMemoryPoolName: 1.3.6.1.4.1.9.9.48.1.1.1.2
ciscoMemoryPoolUsed: 1.3.6.1.4.1.9.9.48.1.1.1.5
ciscoMemoryPoolFree: 1.3.6.1.4.1.9.9.48.1.1.1.6
Near 100% memory utilization for long periods of time indicates a device is

overworked. This check looks at each memory pool on a Cisco device and will alert
if one or more of the pools exceeds the % utilization warning and critical thresholds
passed to the script.

Example Call
./check_snmp_cisco_mem_pool.pl --hostname rtr1.example.com --snmp-version 2c
--rocommunity mycommunity -w 90 -c 95

SNMP-CISCO-MEM-POOL OK - Processor 23.67%, I/O 40.10% |
‘processor’=23.67%;90;95;0;100 ‘i/o’=40.10%;90;95;0;100
www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 133
The Script
#!/usr/local/bin/perl

nagios: +epn

=pod

=head1 NAME

check_snmp_cisco_mem_pool.pl - Check memory pool utilization
on a Cisco router or switch

=head1 SYNOPSIS

Check memory pool utilization on a Cisco device. This script will check each
memory pool available on a Cisco switch or router and alert if the % memory
utilized is greater than the warning and critical thresholds passed into
the script. Perfdata will be output for each pool found; the metrics will
be prefixed with the name of the pool as reported by the Cisco device.

=cut

sub check_snmp_cisco_mem_pool {

 use strict;
 use Nagios::Plugin::SNMP;
 use Nenm::Utils;

 my $USAGE = <<EOF;
Usage: %s --warning % --critical %
EOF

 my $LABEL = ‘SNMP-CISCO-MEM-POOL’;

 my $plugin = Nagios::Plugin::SNMP->new(
 ‘shortname’ => $LABEL,
 ‘usage’ => $USAGE
);

 $plugin->getopts;

 $Nenm::Utils::DEBUG = $plugin->opts->get(‘snmp-debug’);

 my $WARN = $plugin->opts->get(‘warning’);
 $plugin->nagios_die(“Missing warning threshold!”) unless $WARN;

 my $CRIT = $plugin->opts->get(‘critical’);
 $plugin->nagios_die(“Missing critical threshold!”) unless $CRIT;

 my %oids = qw(
 .1.3.6.1.4.1.9.9.48.1.1.1.2 ciscoMemoryPoolName
 .1.3.6.1.4.1.9.9.48.1.1.1.5 ciscoMemoryPoolUsed
 .1.3.6.1.4.1.9.9.48.1.1.1.6 ciscoMemoryPoolFree
);

 my %mem;

 # Build our memory table, indexed by pool index, from
 # our metric tables.

 for my $oid (sort keys %oids) {

 Nenm::Utils::debug(“Walking $oid”);

 my $results = $plugin->walk($oid);
www.syngress.com

ww

134 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 for my $key (keys %{$results->{$oid}}) {

 my ($oid, $idx) = ($key =~ m/^(.+)\.(\d+)$/);
 Nenm::Utils::debug(“Received $oid, $idx”);

 $mem{$idx} = {} unless exists $mem{$idx};
 my $value = $results->{$oid}->{$key};
 $mem{$idx}->{$oids{$oid}} = $value;

 Nenm::Utils::debug(“Pool index $idx - $oids{$oid} - $value”);
 }

 }

 # How calculate % utilization based on free and used memory for
 # each pool and check for threshold violations.

 my @critical;
 my @warn;
 my @ok;

 for my $pool (keys %mem) {

 my $name = $mem{$pool}->{‘ciscoMemoryPoolName’};
 my $free = $mem{$pool}->{‘ciscoMemoryPoolFree’};
 my $used = $mem{$pool}->{‘ciscoMemoryPoolUsed’};
 my $util = sprintf(“%.2f”, ($used / ($used + $free)) * 100);

 $mem{$pool}->{‘util’} = $util;

 Nenm::Utils::debug(“$name - $util\% memory utilization”);

 if ($util > $CRIT) {
 push(@critical, “$name ($util\% > $CRIT\%)”);
 } elsif ($util > $WARN) {
 push(@warn, “$name ($util\% > $WARN\%)”);
 } else {
 push(@ok, “$name $util\%”);
 }

 }

 my $level = OK;

 my $output = “$LABEL ”;

 if (scalar(@critical) > 0) {
 $output .= ‘CRITICAL - ’ . join(‘, ’, @critical) . ‘ ’;
 $level = CRITICAL;
 }

 if (scalar(@warn) > 0) {
 $output .= ‘WARN - ’ . join(‘, ’, @warn) . ‘ ’;
 $level = WARNING unless $level == CRITICAL;
 }

 if (scalar(@ok) > 0) {
 $output .= ‘OK - ’ . join(‘, ’, @ok);
 }

 if (scalar(@critical) > 0) {
 $output .= ‘CRITICAL - ’ . join(‘, ’, @critical) . ‘ ’;
 $level = CRITICAL;
 }
w.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 135
 if (scalar(@warn) > 0) {
 $output .= ‘WARN - ’ . join(‘, ’, @warn) . ‘ ’;
 $level = WARNING unless $level == CRITICAL;
 }

 if (scalar(@ok) > 0) {
 $output .= ‘OK - ’ . join(‘, ’, @ok);
 }

 $output .= make_perfdata(\%mem, $WARN, $CRIT);

 print “$output\n”;

 return $level;

 sub make_perfdata {

 my $mem_ref = shift;
 my $warn = shift;
 my $critical = shift;

 my $perfdata = ‘ | ’;

 for my $pool (sort keys %$mem_ref) {
 my $name = lc($mem_ref->{$pool}->{‘ciscoMemoryPoolName’});
 my $util = $mem_ref->{$pool}->{‘util’};
 $perfdata .= “‘$name’=$util\%;$warn;$critical;0;100 ”;
 }

 return $perfdata;

 }

}

exit check_snmp_cisco_mem_pool();

Component Temperature
MIB needed

ENTITY-MIB
CISCO-ENTITY-SENSOR-MIB

OIDs needed
ENTITY-MIB:

entPhysicalDescr: 1.3.6.1.2.1.47.1.1.1.1.2

CISCO-ENTITY-SENSOR-MIB

entSensorType: 1.3.6.1.4.1.9.9.91.1.1.1.1.1

entSensorScale: 1.3.6.1.4.1.9.9.91.1.1.1.1.2

■

■

■

www.syngress.com

136 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
entSensorValue: 1.3.6.1.4.1.9.9.91.1.1.1.1.4

entSensorStatus: 1.3.6.1.4.1.9.9.91.1.1.1.1.5

Higher end Cisco devices include temperature sensors, and each has different
temperature limits. The following check was written for 6500 series Cisco switches
but should work with other Cisco devices that support temperature sensors. It will
check each sensor that is available on the Cisco device and alert if any sensors exceed
the temperature thresholds (Celsius) passed in to the script. The highest alert status
for any sensor becomes the alert level of the check. The script will output perfdata
metrics for each sensor the device supports for trending purposes.

Example Call to the Script
./check_snmp_cisco_temp.pl --hostname 192.168.3.1 --snmp-version 2c
--rocommunity mycommunity --warning 30 \

 --critical 36 --snmp-max-msg-size 50000 --sensor-regex inlet

WARNING - Inlet_1 (40c >= 30c), OK Inlet_2 28c | ‘Inlet_1’=40c;30;36
‘Inlet_2’=28;30;36

The Script
#!/usr/local/bin/perl

=cut

=head1 NAME

check_snmp_cisco_temp.pl - Check temperature sensors on Cisco devices
that support temperature sensors.

=head1 DESCRIPTION

This script will check the temperatures of all temperature sensors on
a Cisco device. Pass in warning and critical temperature thresholds
(in degrees Celsius)

and the script will alert if one or more temperature sensors on
the device exceed the thresholds supplied to the script; the highest
alert level becomes the alert level for the script.

If the device does not support temperature sensors, UNKNOWN will be returned.

You must specify which sensors to check by using the --sensor-regex switch.
If you pass the word ‘all’ to the switch, every sensor will be checked;
if you specify a regular expression, only sensors matching that expression
will be matched. For example, you could specify

—sensor-regex Inlet

to only check inlet sensors. Regular expression matching is case insensitive.

Please note that you may need to use the --snmp-max-msg-size switch to
increase the SNMP buffer size for devices with a large number of sensors.
50000 is a good place to start.

=pod

■

■

www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 137
#
Descriptions of sensors
snmpwalk -c read-only -v 2c 192.168.3.1 1.3.6.1.2.1.47.1.1.1.1.2
#
Type - 8 == celsius, 12 == truth value
snmpwalk -c ready-only -v 2c 192.168.3.1 1.3.6.1.4.1.9.9.91.1.1.1.1.1
#
Scale (exponent) - 9 == units (10^0)
snmpwalk -c read-only -v 2c 192.168.3.1 1.3.6.1.4.1.9.9.91.1.1.1.1.2
#
Most recent measurements
snmpwalk -c read-only -v 2c 192.168.3.1 1.3.6.1.4.1.9.9.91.1.1.1.1.4
#
Status 1 == ok, 2 == cannot report, 3 == broken
snmpwalk -c read-only -v 2c 192.168.3.1 1.3.6.1.4.1.9.9.91.1.1.1.1.5

sub check_snmp_cisco_temp {
 use strict;

 use FindBin;
 use lib “$FindBin::Bin/lib”;

 use Nagios::Plugin::SNMP;

 my $LABEL = ‘SNMP-CISCO-TEMP’;

 my $USAGE = <<EOF;
Usage: %s --sensor-regex ‘Inlet’ --warning 30 --critical 36
EOF

 my $plugin = Nagios::Plugin::SNMP->new(
 ‘shortname’ => $LABEL,
 ‘usage’ => $USAGE
);

 $plugin->add_arg(
 ‘spec’ => ‘sensor-regex|S=s@’,
 ‘help’ => “-S, --sensor-regex\n” .
 “ Regular expression to use to select sensors to\n” .
 “ read. For example, -S ‘Inlet’ would select only\n” .
 “ inlet sensors on a device. Use the word ‘all’ to\n” .
 “ have the script check ALL sensors.”,
 ‘required’ => 1
);

 $plugin->add_arg(
 ‘spec’ => ‘warning|w=i’,
 ‘help’ => “-w, --warning degrees-celsius\n” .
 “ Upper warning threshold in degrees celsius for\n” .
 “ the temperature of a sensor”,
 ‘required’ => 1
);

 $plugin->add_arg(
 ‘spec’ => ‘critical|c=i’,
www.syngress.com

w

138 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 ‘help’ => “-c, --critical degrees-celsius\n” .
 “ Upper critical threshold in degrees celsius for\n” .
 “ the temperature of a sensor”,
 ‘required’ => 1
);

 $plugin->getopts;

 my $DEBUG = $plugin->opts->get(‘debug’);

 # Get the sensor index

 my $sensor_oid = ‘1.3.6.1.2.1.47.1.1.1.1.2’;

 my $result = $plugin->walk($sensor_oid)->{$sensor_oid};

 debug(“Retrieved sensor list”);

 my %sensors;

 debug(“Retrieved ” . keys(%$result) . “sensor descriptions”);

 my @idxs;

 my $sensor_regexes = $plugin->opts->get(‘sensor-regex’);

 for my $var (keys %$result) {

 my $name = $result->{$var};

 if (lc($sensor_regexes->[0]) ne ‘all’) {

 # Choose just ones that match our regexes

 my $matched = 0;

 for my $expr (@$sensor_regexes) {

 if ($name =~ m/$expr/i) {
 debug(“Matched sensor $name against $expr”);
 $matched = 1;
 last;
 }

 }

 next unless $matched == 1;

 }

 $name =~ s/[‘“]//g;
 $name =~ s/temperature\s+sensor//ig;
 $name =~ s/\s+$//;
 $name =~ s/^\s+//;

 my $idx = ($var =~ m/(\d+)$/)[0];

 debug(“Setting oid $var to name $name and index $idx”);

 $sensors{$idx} = {
 ‘name’ => $name,
 ‘type’ => 0,
 ‘scale’ => 0,
 ‘temp’ => 0,
 ‘status’ => 0
 };

 }
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 139
 debug(“Checking ” . keys(%sensors) . “ sensors”);

 my $prefix = ‘.1.3.6.1.4.1.9.9.91.1.1.1.1’;

 # Check type, eliminate those that are not type 8 (celsius)
 for my $idx (keys %sensors) {

 my @oids = (
 “${prefix}.1.$idx”, # Type - 8 is temp
 “${prefix}.2.$idx”, # Scale - 9 == 10^0
 “${prefix}.4.$idx”, # Measurement
 “${prefix}.5.$idx” # Status - 1 ok, 2 cannot report, 3 broken
);

 $result = $plugin->get(@oids);

 foreach my $p (keys %$result) {

 if ($p eq “${prefix}.1.$idx”) {
 $sensors{$idx}->{‘type’} = $result->{$p};
 }

 if ($p eq “${prefix}.2.$idx”) {
 $sensors{$idx}->{‘scale’} = $result->{$p};
 }

 if ($p eq “${prefix}.4.$idx”) {
 $sensors{$idx}->{‘temp’} = $result->{$p};
 }

 if ($p eq “${prefix}.5.$idx”) {
 $sensors{$idx}->{‘status’} = $result->{$p};
 }

 }

 }

 # Close and destroy session
 $plugin->close();

 # Now check sizes

 my $w = $plugin->opts->get(‘warning’);
 my $c = $plugin->opts->get(‘critical’);

 my @ok;
 my @warn;
 my @crit;

 my $level = OK;

 my $has_temperature_sensors = 0;

 my @perf_data;

 for my $idx (keys %sensors) {

 my $s = $sensors{$idx};

 # Type 8 == temperature, ignore all others
 next if $s->{‘type’} != 8;

 $has_temperature_sensors = 1;

 # Status of 2 is non-measurable, 3 is broken
 next if $s->{‘status’} == 2;

 push(@perf_data, perf_data($s->{‘name’}, $s->{‘temp’}, $w, $c));
www.syngress.com

140 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 if ($s->{‘status’} == 3) {
 $level = CRITICAL;
 push(@crit, “$s->{name} offline”);
 next;
 }

 if ($s->{‘temp’} >= $c) {
 $level = CRITICAL;
 push(@crit, “$s->{‘name’} ($s->{‘temp’}c >= ${c}c)”);
 } elsif ($s->{‘temp’} >= $w) {
 $level = WARNING unless $level == CRITICAL;
 push(@warn, “$s->{‘name’} ($s->{‘temp’}c >= ${w}c)”);
 } else {
 push(@ok, “$s->{‘name’} $s->{‘temp’}c”);
 }

 }

 if (! $has_temperature_sensors) {
 $plugin->nagios_die(“Device does not have temperature sensors”);
 }

 print “$LABEL ”;

 if (scalar(@crit) > 0) {
 print “CRITICAL - ” . join(‘, ’, @crit) . ‘ ’;
 }

 if (scalar(@warn) > 0) {
 print “WARNING - ” . join(‘, ’, @warn) . ‘ ’;
 }

 if (scalar(@ok) > 0) {
 print “OK - ” . join(‘, ’, @ok) . ‘ ’;
 }

 print “|” . join(‘ ’, @perf_data) . “\n”;

 return $level;

 sub perf_data {

 my $module = shift;
 my $temp = shift;
 my $warn = shift;
 my $crit = shift;

 $module = ~ s/\s+/_/g;
 $module = ucfirst($module);

 return “‘${module}’=$temp;$warn;$crit;;”;
 }

 sub debug {

 return unless $DEBUG == 1;

 my $msg = shift;

 print STDERR scalar(localtime()) . “: $msg\n”;
 }

}

exit check_snmp_cisco_temp();
www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 141
Bandwidth Utilization
MIB needed

IF-MIB
ETHERLIKE-MIB

OIDs needed
IF-MIB

ifDescr: 1.3.6.1.2.1.2.2.1.2

ifSpeed: 1.3.6.1.2.1.2.2.1.5

ifOperStatus: 1.3.6.1.2.1.2.2.1.8

ifInOctets: 1.3.6.1.2.1.2.2.1.10

ifOutOctets: 1.3.6.1.2.1.2.2.1.16

ETHERLIKE-MIB:

dot3StatsIndex: 1.3.6.1.2.1.10.7.2.1.1

dot3StatsDuplexStatus: 1.3.6.1.2.1.10.7.2.1.19

Bandwidth utilization is very important to organizations that pay for bandwidth.
This check will monitor a specific interface on a Cisco device and report if traffic in
or out of the interface exceeds the thresholds set for the script. The user can optionally
specify the maximum bandwidth for the interface; this is useful for situations in which
the port connects to an upstream device that is not manageable and has much less
bandwidth capacity than the managed device. An example of this would be a core
router whose uplink port connects to an ISP-owned router; both ports might have a
maximum interface speed of 100 Mb/sec, but the ISP might only allow the customer
to use 10 Mb/sec. Method for calculating bandwidth taken from Cisco documentation
(How to Calculate Bandwidth Utilization Using SNMP—www.cisco.com/en/US/
tech/tk648/tk362/technologies_tech_note09186a008009496e.shtml).

Example Call to the Script
In this case, we want to warn if there is more than 90% utilization inbound or
outbound for the interface; alert with a critical status if the utilization is greater
than 98% inbound or outbound, and have a maximum speed of 100 Mb/sec on

■

■

■

■

■

■

■

www.syngress.com

142 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
the interface. Maximum speed specifications can be done as “g” for gigabits per
second, “m” for megabits per second, or “k” for kilobits per second. If no suffix is
present, bits per second is assumed.
w

Note

This script should work for hosts too when used with the --no-duplex-check
switch, as most host-based agents implement the IF-MIB but do not support
the ETHERLIKE-MIB.
./check_snmp_if_bw_util.pl --snmp-version 2c --hostname rtr1.example.com
--rocommunity mycommunity \

--warning ‘in_util,gt,90:out_util,gt,90’ --critical
‘in_util,gt,98:out_util,gt,98’ \

--interface FastEthernet0/1 --sleep-time 5 --max-speed 100m

SNMP-IF-BW-UTIL FastEthernet0/1 (Full Duplex) OK - in_util 2.31%, out_util
8.36% | ‘in_util’=2.31%;90;98 ‘out_util’=8.36%;90;98

The Script
#!/usr/local/bin/perl

nagios: +epn

=pod

=head1 NAME

check_snmp_if_bw_util.pl - Check bandwidth utilization for an interface on
a device that implements IF-MIB.

=head1 SYNOPSIS

Check bandwidth % utilization on an interface on a device that supports the
IF-MIB. Bandwidth utilization is checked by both in bits/second and out
bits/second. Maximum bandwidth will be taken from the IF-MIB::ifSpeed
OID unless the maximum speed for the interface is specified using the
--max-speed argument to the script. The name of the interface to check
must be passed in using the --interface argument to the script.

This script expects the interface being checked to be up and in full duplex
mode; if the interface is in half-duplex mode, use the --half-duplex switch
to indicate that. If the interface is down or in the wrong mode, the
script will exit with a CRITICAL level alert. If you wish to not have the
script check duplex because the device you are querying does not support
the ETHERLIKE-MIB, just pass in the --no-duplex-check switch.

Warning and critical thresholds can be specified using the following format:

metric,<op>,number:metric,<op>,number
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 143
Where metric is one of:
* in_util
* out_util

and <op> is one of
* lt - <
* lte - <=
* gt - >
* gte - >=

Example:

--warning ‘in_util,gt,90:out_util,gt,90’ --critical ‘out_util,gt,95’

Multiple thresholds specified with ‘:’ will be OR‘d; if any of the
passed in threshold checks is true, the script will alert. The most
critical alert status becomes the alert level for the script.

The script will also output perfdata for in and out utilization.

Example call and output:

./check_snmp_if_bw.pl —hostname myrouter --interface FastEthernet0/1 --max-speed
10m --warn ‘in_util,gt,90:out_util,gt,90’ --critical ‘out_util,gt,95’
--max-speed 10m
SNMP-IF-BW-UTIL WARN - IN UTIL (93% > 90%), OK - OUT UTIL 85% |
‘in_util’=93%;90;95;
0;100 ‘out_util’=85%;90;95;0;100

=cut

sub check_snmp_if_bw {

 use strict;
 use Nagios::Plugin::SNMP;
 use Nenm::Utils;

 my $USAGE = <<EOF;
Usage: %s --warning ‘spec’ --critical ‘spec’ --interface NAME \
 [--max-speed SPEC] [--half-duplex | --no-check-duplex]
EOF

 my $LABEL = ‘SNMP-IF-BW-UTIL’;

 my $plugin = Nagios::Plugin::SNMP->new(
 ‘shortname’ => $LABEL,
 ‘usage’ => $USAGE
);

 $plugin->add_arg(
 ‘spec’ => ‘interface|i=s’,
 ‘help’ => “—interface, -i: Name of the interface to use; use the\n” .
 “ description as returned by ifDescr.\n”,
 ‘required’ => 1
);

 $plugin->add_arg(
 ‘spec’ => ‘sleep-time|S=i’,
 ‘help’ => “--sleep-time, -s: Time to sleep between samples; if not\n” .
 “ present, defaults to 10.\n”,
 ‘required’ => 0,
 ‘default’ => 10
);
www.syngress.com

ww

144 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins

 $plugin->add_arg(
 ‘spec’ => ‘half-duplex’,
 ‘help’ => “--half-duplex: Interface should be in half-duplex,\n” .

“ otherwise script expects interface\n” .
“ to be in full duplex mode.”,

 ‘required’ => 0,
 ‘default’ => 0
);

 $plugin->add_arg(
 ‘spec’ => ‘no-duplex-check’,
 ‘help’ => “--no-duplex-check: DO not check duplex state on the\n” .

“ interface; useful for devices \n” .
“ that do not implement ETHERLIKE-MIB.\n”,

 ‘required’ => 0,
 ‘default’ => 0
);

 $plugin->add_arg(
 ‘spec’ => ‘max-speed|M=s’,
 ‘help’ => “--max-speed, -M: Maximum speed for the interface being\n” .

“ checked. Specify ‘g’, ‘m’, or ‘k’\n” .
“ for Gigabits, megabits, or kilobits\n” .
“ per second. If no maximum speed is\n” .
“ specified, the script will use the \n” .
“ value from ifSpeed.\n”,

 ‘required’ => 0,
 ‘default’ => ‘’
);

 $plugin->getopts;

 $Nenm::Utils::DEBUG = $plugin->opts->get(‘snmp-debug’);

 my $SLEEP_TIME = $plugin->opts->get(‘sleep-time’);

 my $IFDESCR = $plugin->opts->get(‘interface’);

 $plugin->nagios_die(“Missing interface to check!”) unless $IFDESCR;

 my $EXPECTED_DUPLEX = ‘’;

 if ($plugin->opts->get(‘no-duplex-check’) == 0) {

 if ($plugin->opts->get(‘half-duplex’) == 1) {
 $EXPECTED_DUPLEX = ‘halfDuplex’;
 } else {
 $EXPECTED_DUPLEX = ‘fullDuplex’;
 }
 }

 my %if_stats = (
 ‘in_util’ => {qw(value 0)},
 ‘out_util’ => {qw(value 0)}
);

 my ($wthr, $werrs) = Nenm::Utils::parse_multi_threshold(
$plugin->opts->warning, \%if_stats);
w.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 145
 if (scalar(@$werrs) > 0) {
 $plugin->nagios_die(“Invalid warning threshold specified: ” .
 join(‘, ’, @$werrs));
 }

 my ($cthr, $cerrs) = Nenm::Utils::parse_multi_threshold(
 $plugin->opts->critical, \%if_stats);
 if (scalar(@$cerrs) > 0) {
 $plugin->nagios_die(“Invalid critical threshold specified: ” .
 join(‘, ’, @$cerrs));
 }

 my $CRIT = $plugin->opts->get(‘critical’);
 $plugin->nagios_die(“Missing critical threshold!”) unless $CRIT;

 # Optional .. if -1, use ifSpeed for the interface.
 my $MAX_SPEED = $plugin->opts->get(‘max-speed’);

 # Get the index for this interface, return UNKNOWN if not found
 my $IF_IDX = get_if_index($plugin, $IFDESCR);

 if ($IF_IDX == -1) {
 $plugin->nagios_die(“Could not find interface $IFDESCR in IF-MIB”);
 }

 # Check to see if the interface is up (1), if not, exit with UNKNOWN
 if (! if_is_up($plugin, $IF_IDX)) {
 $plugin->nagios_exit(CRITICAL,
 “Interface $IFDESCR is not up, can’t check!”);
 }

 # Get the duplex for the interface from ETHERLIKE-MIB, exit with
 # critical if it is not in the expected duplex state.

 if ($plugin->opts->get(‘no-duplex-check’) == 0) {
 my $DUPLEX = get_if_duplex($plugin, $IF_IDX);

 if ($DUPLEX ne $EXPECTED_DUPLEX) {

 $plugin->nagios_exit(CRITICAL,
 “Interface $IFDESCR is in $DUPLEX mode, ” .
 “expected to see if in $EXPECTED_DUPLEX mode”);
 }
 }

 # if the user specified a max speed, translate it into bits; if they
 # did not specify a max speed, get the max speed from the ifSpeed
 # OID for the interface.

 my $MAX_BITS = 0;

 if ($MAX_SPEED eq ‘’) {
 $MAX_BITS = get_if_speed($plugin, $IF_IDX);
 } else {
 $MAX_BITS = speed_spec_to_bps($plugin, $MAX_SPEED);
 }

 Nenm::Utils::debug(“Retrieving traffic sample 1”);
 # Get octets in and out for the interface
 my ($IN_OCT1, $OUT_OCT1) = get_if_octets($plugin, $IF_IDX);

 # Sleep for sleep-time seconds, sample again
 Nenm::Utils::debug(“Sleep $SLEEP_TIME seconds between samples”);
www.syngress.com

ww

146 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 sleep($SLEEP_TIME);

 Nenm::Utils::debug(“Retrieving traffic sample 2”);
 # Get octets in and out for the interface
 my ($IN_OCT2, $OUT_OCT2) = get_if_octets($plugin, $IF_IDX);

 my $IN_OCT = $IN_OCT2 - $IN_OCT1;
 my $OUT_OCT = $OUT_OCT2 - $OUT_OCT1;

 # Calculate % utilization based on bits in/out and max speed
 # http://www.cisco.com/en/US/tech/tk648/tk362/technologies_tech_
 note09186a008009496e.shtml

 Nenm::Utils::debug(
 “In utilization: ($IN_OCT * 800) / ($SLEEP_TIME * $MAX_BITS)”);

 $if_stats{‘in_util’}->{‘value’} = sprintf(“%.2f”,
 (($IN_OCT * 800) / ($SLEEP_TIME * $MAX_BITS)) * 100);

 Nenm::Utils::debug(
 “Out utilization: ($OUT_OCT * 800) / ($SLEEP_TIME * $MAX_BITS)”);
 $if_stats{‘out_util’}->{‘value’} = sprintf(“%.2f”,
 (($OUT_OCT * 800) / ($SLEEP_TIME * $MAX_BITS)) * 100);

 my $results = Nenm::Utils::check_multi_thresholds(\%if_stats,
 $wthr, $cthr, ‘%’);

 my $output_label = “$LABEL $IFDESCR”;

 if ($EXPECTED_DUPLEX ne ‘’) {
 $EXPECTED_DUPLEX =~ s/^(\w+[a-z])([A-Z]\w+)$/\u$1 $2/;
 $output_label .= “ ($EXPECTED_DUPLEX)”;
 }

 return Nenm::Utils::output_multi_results($output_label, $results);

 # Search for SNMP index of specified interface; if found return
 # the integer index of the interface. If not found, return -1.
 sub get_if_index {

 my $snmp = shift;
 my $wanted_if = lc(shift());

 my $results = $snmp->walk(‘.1.3.6.1.2.1.2.2.1.2’);
 my $iftable = $results->{‘.1.3.6.1.2.1.2.2.1.2’};

 Nenm::Utils::debug(“Checking for IF description $wanted_if”);

 my $found_idx = -1;

 for my $oid (keys %$iftable) {

 my $descr = lc($iftable->{$oid});

 Nenm::Utils::debug(“Retrieved IF description $descr”);

 if ($descr eq $wanted_if) {
 my $idx = ($oid =~ m/^.+\.(\d+)$/)[0];
 Nenm::Utils::debug(“Found IF $wanted_if - index $idx”);
 $found_idx = $idx;
 last;
 }
 }

 return $found_idx;
 }
w.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 147
 sub if_is_up {

 my $snmp = shift;
 my $idx = shift;

 my %states = qw(
 1 up
 2 down
 3 testing
 4 unknown
 5 dormant
 6 notPresent
 7 lowerLayerDown
);

 my $oid = “.1.3.6.1.2.1.2.2.1.8.$idx”;
 my $results = $snmp->get($oid);
 my $status = $results->{$oid};

 Nenm::Utils::debug(“Interface status is $states{$status}”);

 return ($status == 1) ? 1 : 0;

 }

 sub get_if_duplex {

 my $snmp = shift;
 my $wanted_idx = shift;

 my %oids = qw(
 dot3StatsIndex .1.3.6.1.2.1.10.7.2.1.1
 dot3StatsDuplexStatus .1.3.6.1.2.1.10.7.2.1.19
);

 my %duplexes = qw(
 1 unknown
 2 halfDuplex
 3 fullDuplex
);

 my $results = $snmp->walk($oids{‘dot3StatsIndex’});
 my $ports = $results->{$oids{‘dot3StatsIndex’}};

 my $duplex = ‘’;

 for my $port (keys %$ports) {

 my $idx = $ports->{$port};
 if (“$idx” eq “$wanted_idx”) {

 my $eidx = ($port =~ m/^.+\.(\d+)/)[0];

 Nenm::Utils::debug(“Etherlike-MIB Index for $idx: $eidx”);

 my $duplex_oid = “$oids{‘dot3StatsDuplexStatus’}.$eidx”;
 Nenm::Utils::debug(“Etherlike-MIB duplex OID: $duplex_oid”);

 my $d_results = $snmp->get($duplex_oid);

 my $didx = $d_results->{$duplex_oid};
 $duplex = $duplexes{$didx};
www.syngress.com

ww

148 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 Nenm::Utils::debug(“Etherlike-MIB Duplex $didx: $duplex”);

 last;
 }

 }

 return $duplex;

 }

 sub get_if_speed {

 my $snmp = shift;
 my $idx = shift;

 my $bps = 0;

 my $oid = “.1.3.6.1.2.1.2.2.1.5.$idx”;
 my $results = $snmp->get($oid);
 $bps = $results->{$oid};

 Nenm::Utils::debug(“Interface speed is $bps”);

 return $bps;

 }

 sub speed_spec_to_bps {

 my $helper = shift;
 my $spec = shift;

 my ($number, $mult) = ($spec =~ m/^(\d+)(\D*)$/)[0,1];

 if ($number eq ‘’) {
 $helper->nagios_die(“Invalid speed $spec!”);
 }

 my $bps = 0;

 if ($mult eq ‘’) {
 Nenm::Utils::debug(“No multiplier, returning speed $number”);
 $bps = $number;
 } else {

 if (length($mult) != 1) {
 $helper->nagios_die(“Invalid speed $spec!”);
 }

 $mult = lc($mult);

 if ($mult eq ‘g’) {
 $bps = $number * (1000 ** 3);
 } elsif ($mult eq ‘m’) {
 $bps = $number * (1000 ** 2);
 } elsif ($mult eq ‘k’) {
 $bps = $number * 1000;

 } else {
 $helper->nagios_die(“Invalid multiplier in speed spec ” .
 “$spec, valid labels are g, k, and m”);
 }

 }
w.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 149
 Nenm::Utils::debug(“Returning max speed ${bps} bits per second”);

 return $bps;
 $bps = $number * (1000 ** 3);
 } elsif ($mult eq ‘m’) {
 $bps = $number * (1000 ** 2);
 } elsif ($mult eq ‘k’) {
 $bps = $number * 1000;
 } else {
 $helper->nagios_die(“Invalid multiplier in speed spec ” .
 “$spec, valid labels are g, k, and m”);
 }
 }

 Nenm::Utils::debug(“Returning max speed ${bps} bits per second”);

 return $bps;

 }

 sub get_if_octets {

 my $snmp = shift;
 my $idx = shift;

 my %oids = (

 ‘ifInOctets’ => “.1.3.6.1.2.1.2.2.1.10.$idx”,
 ‘ifOutOctets’ => “.1.3.6.1.2.1.2.2.1.16.$idx”
);

 my $results = $snmp->get(values %oids);

 my $in = $results->{$oids{‘ifInOctets’}};
 my $out = $results->{$oids{‘ifOutOctets’}};

 Nenm::Utils::debug(“Interface $idx: in $in, out $out”);

 return ($in, $out);

 }

}

exit check_snmp_if_bw();

Network Interface as Nagios Host?
In some cases this can be very useful. Many clients uses point-to-point VPNs to tunnel
traffic from one office location to another. Many businesses also will not allow SNMP
on DMZ devices like VPN concentrators. You can still visually show whether traffic is
flowing between sites by creating a “virtual” host in Nagios that has as its host-alive
check an SNMP check that ensures the interface on a managed router or switch that is
attached to the VPN concentrator is enabled and active.
www.syngress.com

w

150 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
Host Definition Example
Note that the network device interface status check is used as the host alive check.
define host {

 use generic-host
 host_name europe-vpn
 alias Europe VPN
 address 192.168.3.1
 parents core_rtr
 check_command check-snmp-if-oper-status!20
 contact_groups admins
 notification_interval 120
 icon_image cisco.png
 notes VPN to Europe via PIX
 statusmap_image cisco.png
}

The command definition for the operational interface status check:
define command {

 command_name check-snmp-if-oper-status
 command_line $USER1$/check_ifoperstatus -k $ARG1$ -H $HOSTADDRESS$
 -C snmp-community
}

Servers
Servers, those lovely boxes with the fancy blinking lights. So many interesting metrics
to monitor, so little time. Which metrics should you care about? It depends. While
network and system monitoring products make it easy to monitor just about every-
thing your host SNMP agent can offer, resist the temptation to monitoring everything
right away. Why? To make each check meaningful, you have to understand what is
normal for your servers. This takes time. Even a measure as simple as CPU utilization
requires knowledge of how your servers normally behave, how they behave under
stress, and how hard the applications on them work the CPU. If you want to establish
a baseline, use a trending tool like Cacti to record multiple metrics (or PNP or
another RRD graphing add-on to Nagios). After you establish a baseline and deter-
mine which metrics are the best indicators of health or problems on the host, write
Nagios checks for those metrics using the knowledge you have gained over time
about how hosts and applications in use at your organization work.
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 151
Assumptions made in this section:

SNMP v3 is used

SNMP auth protocol is md5

SNMP auth username is stored in a custom host variable named
__snmp_auth_username

SNMP auth password is stored in a custom host variable named
__snmp_auth_password

All devices use the Net-SNMP agent (unless otherwise noted)

Basic System Checks
All of the following examples were built to work with Net::SNMP and the Net-
SNMP agent. Porting them to other SNMP agents should be easy, as most use either
standard MIBs or private extensions that any host-based agent should support (e.g.,
load average). All assume the use of the Nagios::Plug-in::SNMP module discussed at
the beginning of this section.

CPU utilization

MIB needed:

UCD-SNMP-MIB

OIDs used:
Raw user ticks: .1.3.6.1.4.1.2021.11.50.0
Raw nice ticks: .1.3.6.1.4.1.2021.11.51.0
Raw system ticks: .1.3.6.1.4.1.2021.11.52.0
Raw idle ticks: .1.3.6.1.4.1.2021.11.53.0
Raw wait ticks: .1.3.6.1.4.1.2021.11.54.0
Raw kernel ticks: .1.3.6.1.4.1.2021.11.55.0
Raw interrupt ticks: .1.3.6.1.4.1.2021.11.56.0
CPU utilization, like many of the metrics we discuss in this section, varies from

system to system. What indicates a problem in performance on one system may be
completely acceptable on another. Bursts of 100% CPU utilization on most active
systems are completely acceptable. The Net-SNMP agent exposes four CPU utilization

■

■

■

■

■

www.syngress.com

w

152 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
metrics: idle time, user time, nice time, and system time. Excessive CPU user time
over a period of time indicates the CPU is busy processing application logic; for
some systems this will be expected, for others it may indicate problems. Excessive
system time may indicate that hardware peripherals attached to the system are being
over-utilized (disk arrays, other custom devices), or that hardware peripherals are too
slow or experiencing failures. Excessive nice time can be an indication that the
system is becoming over-utilized and system administrators are running a number of
processes at lower or higher priority to balance system load.

This plug-in was a bit more challenging to write than some of the others in this
chapter. First, only user, nice, system, and idle CPU metrics are standard across all of
the Unix and Unix-like platforms Net-SNMP supports. Wait, kernel, and interrupt
tick counters have always existed in Solaris, but for Linux they were not exposed to
userland processes like the Net-SNMP agent until the 2.6.x family of kernel was
introduced. On Solaris, system time is the sum of kernel and wait time, while on
BSD-based operating systems, system is the sum of system and interrupt time. This
script handles all of these operating system differences gracefully.

We recommend that you use the first_notification_delay service configuration direc-
tive to delay notification of CPU issues; delaying notification for at least 30 minutes is
a good rule of thumb, as CPU utilization only becomes a problem over extended
periods of time. Using first_notification_delay will allow you to capture when the
CPU exceeds the thresholds you set without driving NOC and system administration
staff crazy with meaningless notifications.

This plug-in lets you check one or more of the CPU metrics for both warning
and critical levels. It also outputs all metrics in perfdata format so you can graph them
using a perfdata parsing output plug-in like PNP (pnp4nagios.sf.net), which we use
extensively in this section.

Example Call and Output
./check_net_snmp_cpu.pl --hostname host.example.com --snmp-version 3
--auth-username user \

--auth-password password --auth-protocol md5 -c ‘user,gt,80:system,gt,80’
-w ‘idle,gte,10’

NET-SNMP-CPU WARNING - idle (68.35% >= 10%) OK - system 4.44%, user 9.81%,
nice 17.41% | ‘system’=4.44%;0;80 ‘user’=9.81%;0;80 ‘idle’=68.35%;10;0
‘nice’=17.41%;0;0
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 153
The Script
#!/usr/local/bin/perl

nagios: +epn

=pod

=head1 NAME

check_net_snmp_cpu.pl - Check CPU utilization on a Net-SNMP

enabled device.

=head1 SYNOPSIS

Check CPU idle, system, user, and nice % utilization on a Net-SNMP

enabled device.

e.g.

$0 [.. options ..] -w ‘idle<5’ -c ‘system>98’

The plugin will output a list of all thresholds that have been breached and
all that are ok; the most critical status becomes the return status of the plugin.
For perfdata the plugin will output all metrics checked by the script. Output is
in % for all perfdata metrics.

e.g.

‘system’=44%;0;0 ‘idle’=48%;0;0 ‘nice’=0%;0;0 ‘user’=8%;0;0

=cut

sub check_net_snmp_cpu {

 use strict;

 use FindBin;
 use lib “$FindBin::Bin/lib”;

 use Nagios::Plugin::Threshold;
 use Nagios::Plugin::SNMP;
 use Nenm::Utils;

 my $USAGE = <<EOF;

Usage: %s [--warning ‘metric,<op>,number:metric,<op>,number’] \\
 --critical ‘metric,<op>,number:metric,<op>,number’
EOF

my $LABEL = ‘NET-SNMP-CPU’;

my $plugin = Nagios::Plugin::SNMP->new(
 ‘shortname’ => $LABEL,
 ‘usage’ => $USAGE

);

$plugin->add_arg(

 ‘spec’ => ‘sleep-time|S=i’,

 ‘required’ => 0,

 ‘help’ => “-S, --sleep-time\n” .
 “ Seconds to sleep between CPU samples (default 15s)”,

 ‘default’ => ‘15’

);
www.syngress.com

154 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
$plugin->getopts;

$Nenm::Utils::DEBUG = $plugin->opts->get(‘snmp-debug’);

my %cpu = (
 ‘user’ => {qw(oid .1.3.6.1.4.1.2021.11.50.0 raw 0 s0 0 s1 0 value 0)},
 ‘nice’ => {qw(oid .1.3.6.1.4.1.2021.11.51.0 raw 0 s0 0 s1 0 value 0)},
 ‘system’ => {qw(oid .1.3.6.1.4.1.2021.11.52.0 raw 0 s0 0 s1 0 value 0)},
 ‘idle’ => {qw(oid .1.3.6.1.4.1.2021.11.53.0 raw 0 s0 0 s1 0 value 0)},
 ‘wait’ => {qw(oid .1.3.6.1.4.1.2021.11.54.0 raw 0 s0 0 s1 0 value 0)},
 ‘kernel’ => {qw(oid .1.3.6.1.4.1.2021.11.55.0 raw 0 s0 0 s1 0 value 0)},
 ‘interrupt’ =>
 {qw(oid .1.3.6.1.4.1.2021.11.56.0 raw 0 s0 0 s1 0 value 0)}
);

my ($wthr, $werrs)= ([], []);

if (defined $plugin->opts->warning) {
 ($wthr, $werrs) =
 Nenm::Utils::parse_multi_threshold($plugin->opts->warning, \%cpu);

}

if (scalar(@$werrs) > 0) {
 $plugin->nagios_die(“Errors found in warning thresholds specified:” .
 “\n ” . join(“\n ”, @$werrs));
}

my ($cthr, $cerrs) =
 Nenm::Utils::parse_multi_threshold($plugin->opts->critical, \%cpu);

if (scalar(@$cerrs) > 0) {
 $plugin->nagios_die(“Errors found in critical thresholds specified:” .

 “\n ” . join(“\n ”, @$cerrs));
}

my @oids;

for my $metric (keys %cpu) {
 push(@oids, $cpu{$metric}->{‘oid’});
}

my $snmp_results = $plugin->get(@oids);

Nenm::Utils::debug(“First sample of CPU metrics taken”);

Sample once
$cpu{‘user’}->{‘s0’} = $snmp_results->{$cpu{‘user’}->{‘oid’}};
$cpu{‘nice’}->{‘s0’} = $snmp_results->{$cpu{‘nice’}->{‘oid’}};
$cpu{‘system’}->{‘s0’} = $snmp_results->{$cpu{‘system’}->{‘oid’}};
$cpu{‘idle’}->{‘s0’} = $snmp_results->{$cpu{‘idle’}->{‘oid’}};
$cpu{‘wait’}->{‘s0’} = $snmp_results->{$cpu{‘wait’}->{‘oid’}};
$cpu{‘kernel’}->{‘s0’} = $snmp_results->{$cpu{‘kernel’}->{‘oid’}};
$cpu{‘interrupt’}->{‘s0’} = $snmp_results->{$cpu{‘interrupt’}->{‘oid’}};

Various metrics of the seven in this script are not present on all
OSes so check for each; if they are not present, delete them.
www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 155
for my $might_have (sort keys %cpu) {

 if ($cpu{$might_have}->{‘s0’} eq ‘noSuchObject’) {
 Nenm::Utils::debug(“Agent does not support $might_have”);
 delete $cpu{$might_have};
 }
}

Rebuild OIDs list as it might have changed.
@oids = ();

for my $metric (sort keys %cpu) {
 push(@oids, $cpu{$metric}->{‘oid’});

}

sleep $plugin->opts->get(‘sleep-time’);

Sample again to get values to use for % change
$snmp_results = $plugin->get(@oids);

Nenm::Utils::debug(“Second sample of CPU metrics taken”);

$plugin->close();

Save results of second query in s1
for my $metric (sort keys %cpu) {
 $cpu{$metric}->{‘s1’} = $snmp_results->{$cpu{$metric}->{‘oid’}};
}

my ($ostype, $sysdescr) = $plugin->get_sys_info();

Nenm::Utils::debug(“OS type is $ostype, sysDescr is $sysdescr”);

for my $metric (keys %cpu) {

 my $s0 = $cpu{$metric}->{‘s0’};
 my $s1 = $cpu{$metric}->{‘s1’};
 my $diff = $s1 - $s0;

 Nenm::Utils::debug(“CPU: $metric; $s1 - $s0 = $diff ticks”);

 $cpu{$metric}->{‘raw’} = $diff;

}

Net-SNMP platform differences
#
There may be differences for other platforms, but for
now just covering Linux, BSD, and Solaris.

if (($ostype =~ /bsd/i) || ($ostype eq ‘solaris’)) {

 my $system = $cpu{‘system’}->{‘raw’};
 my $wait = (exists $cpu{‘wait’}) ? $cpu{‘wait’}->{‘raw’} : 0;
 my $kernel = (exists $cpu{‘kernel’}) ? $cpu{‘kernel’}->{‘raw’} : 0;
 my $interrupt =
 (exists $cpu{‘interrupt’}) ? $cpu{‘interrupt’}->{‘raw’} : 0;

 Nenm::Utils::debug(‘Performing platform-specific % calculations’);

 # On Solaris, system == wait + kernel
 # On BSD, system == system + interrupts
 #
 # We skip system in calculating % and calculate
 # it after the rest so we don’t throw off the metrics
www.syngress.com

156 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 # and the end user can use this script without having
 # to worry about platform differences. Thanks to David
 # Shield for pointing me to where the CPU specific Net-SNMP
 # code lives in the Net-SNMP source.

 my $total;

 # Sum all but OS-specific metrics
 for my $metric (sort keys %cpu) {
 next if (($ostype =~ /bsd/) && ($metric eq ‘interrupt’));
 next if (($ostype eq ‘solaris’) && ($metric =~ /wait|kernel/));
 $total += $cpu{$metric}->{‘raw’};
}

Calculate all but system
for my $metric (sort keys %cpu) {
 next if (($ostype =~ /bsd/) && ($metric eq ‘interrupt’));
 next if (($ostype eq ‘solaris’) && ($metric =~ /wait|kernel/));
 my $raw = $cpu{$metric}->{‘raw’};
 $cpu{$metric}->{‘value’} = sprintf(“%.2f”, ($raw / $total) * 100);
}

Now subtract system ticks diff so we can get % utilization

for the platform-specific metrics that comprise it

$total -= $cpu{‘system’}->{‘raw’};

if ($ostype =~ /bsd/i) {

 # For BSD we have to add back interrupt ticks as system
 # system on BSD is CPU_SYS + CPU_INTR.

 $total += $cpu{‘interrupt’}->{‘raw’};

 $cpu{‘interrupt’}->{‘value’} =
 sprintf(“%.2f”, ($cpu{‘interrupt’}->{‘raw’} / $total) * 100);

} elsif ($ostype eq ‘solaris’) {

 # For Solaris we have to add interrupt and kernel to the
 # total to get an accurate % utilization for system as system
 # is the sum of kernel and interrupt.

 $total += ($cpu{‘interrupt’}->{‘raw’} + $cpu{‘kernel’}->{‘raw’});
 $cpu{‘wait’}->{‘value’} =
 sprintf(“%.2f”, ($cpu{‘wait’}->{‘raw’} / $total) * 100);
 $cpu{‘kernel’}->{‘value’} =
 sprintf(“%.2f”, ($cpu{‘kernel’}->{‘raw’} / $total) * 100);
}

} else {

 Nenm::Utils::convert_to(‘%’, \%cpu);

}

my $results = Nenm::Utils::check_multi_thresholds(\%cpu,
 $wthr, $cthr, ‘%’);

return Nenm::Utils::output_multi_results($LABEL, $results);

}

exit check_net_snmp_cpu();
www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 157
RAM utilization
MIB needed

UCD-SNMP-MIB

OIDS used
Memory free: .1.3.6.1.4.1.2021.4.11.0
Memory shared: .1.3.6.1.4.1.2021.4.13.0
Memory buffered: .1.3.6.1.4.1.2021.4.14.0
Memory cached: .1.3.6.1.4.1.2021.4.15.0
Like CPU utilization, RAM utilization on servers will peak at times and for some

servers will stay near 100% while the server is active. The Net-SNMP agent allows
us to see RAM utilization broken out into free memory, cached memory, memory
buffered, and shared memory. High percentages of cached and shared memory indicate
the kernel is caching files and kernel objects to speed disk access and the server is not
experiencing memory stress; the kernel will decrease the amount of memory used for
caching frequently used files and kernel objects as the demands on the system for RAM
increase. Do not ever expect to see a large percentage of memory in the free category
for a Unix or Unix-like system, as the kernel will use as much free memory as it can
for caching files and objects.

The Script
#!/usr/local/bin/perl

nagios: +epn

=pod

=head1 NAME

check_net_snmp_mem.pl - Check memory utilization on a Net-SNMP
 enabled device.

=head1 SYNOPSIS

Check memory used, free, shared, buffered, and cached. Specify
warning thresholds by metric type using either bytes or %.

e.g.

$0 [.. options ..] -w ‘free,lt,900k’ -c ‘used,gt,99%’

You can use the suffixes K, M, or G to indicate kilobytes, megabytes,
or gigabytes. If you specify no suffix, bytes is assumed.

The plugin will output a list of all thresholds that have been breached and all
that are ok; the most critical status becomes the return status of the plugin. For
perfdata the plugin will output all metrics checked by the script. Output is in
bytes for all perfdata metrics.
www.syngress.com

w

158 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
e.g.

‘used’=230230239;0;0 ‘free’=50000032;0;0 ‘shared’=1G;0;0 ‘buffered’=23023094;0;0
‘cached’=3029499;0;0
=cut

sub check_net_snmp_mem {

 use strict;

 use FindBin;
 use lib “$FindBin::Bin/lib”;

 use Nagios::Plugin::Threshold;
 use Nagios::Plugin::SNMP;
 use Nenm::Utils;

 my $USAGE = <<EOF;

Usage: %s [--warning
‘metric[%|k|m|g]?,<op>,number:metric[%|k|m|g]?,<op>,number’] \\
 --critical
‘metric[%|k|m|g]?,<op>,number:metric[%|k|m|g]?,<op>,number’ \\
 [—convert-to \%|K|G|M]

EOF

 my $LABEL = ‘NET-SNMP-MEM’;

 my $plugin = Nagios::Plugin::SNMP->new(
 ‘shortname’ => $LABEL,
 ‘usage’ => $USAGE
);

 $plugin->add_arg(

 ‘spec’ => ‘convert-to|T=s’,
 ‘required’ => 0,
 ‘help’ => “-T, --convert-to\n” .
 “ Specify how to convert returned agent memory metrics\n” .
 “ (%, b, K, M, or G). Values from agent will be ” .
 “ converted\n” .
 “ to this type, threshold values will be considered to\n” .
 “ be of this type, and perfdata values will use this \n” .
 “ type. Default conversion type is bytes if option is \n” .
 “ not present”,
 ‘default’ => ‘b’

);

 $plugin->getopts;

 $Nenm::Utils::DEBUG = $plugin->opts->get(‘snmp-debug’);

 my %mem = (

 ‘free’ => {qw(oid .1.3.6.1.4.1.2021.4.11.0 raw 0 value 0)},
 ‘shared’ => {qw(oid .1.3.6.1.4.1.2021.4.13.0 raw 0 value 0)},
 ‘buffered’ => {qw(oid .1.3.6.1.4.1.2021.4.14.0 raw 0 value 0)},
 ‘cached’ => {qw(oid .1.3.6.1.4.1.2021.4.15.0 raw 0 value 0)}
);
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 159
 my ($wthr, $werrs)= ([], []);

 if (defined $plugin->opts->warning) {
 ($wthr, $werrs) =
 Nenm::Utils::parse_multi_threshold($plugin->opts->warning, \%mem);
 }

 if (scalar(@$werrs) > 0) {
 $plugin->nagios_die(“Errors found in warning thresholds specified:” .
 “\n ” . join(“\n ”, @$werrs));
 }

 my ($cthr, $cerrs) = Nenm::Utils::parse_multi_threshold(
 $plugin->opts->critical, \%mem);

 if (scalar(@$cerrs) > 0) {
 $plugin->nagios_die(“Errors found in critical thresholds specified:” .
 “\n ” . join(“\n ”, @$cerrs));
 }

 my @oids;

 for my $metric (keys %mem) {
 push(@oids, $mem{$metric}->{‘oid’});

 }

 my $snmp_results = $plugin->get(@oids);

 $plugin->close();

 $mem{‘free’}->{‘raw’} = $snmp_results->{$mem{‘free’}->{‘oid’}};
 $mem{‘shared’}->{‘raw’} = $snmp_results->{$mem{‘shared’}->{‘oid’}};
 $mem{‘buffered’}->{‘raw’} = $snmp_results->{$mem{‘buffered’}->{‘oid’}};
 $mem{‘cached’}->{‘raw’} = $snmp_results->{$mem{‘cached’}->{‘oid’}};

 my $CONVERT_TO = $plugin->opts->get(‘convert-to’);

 Nenm::Utils::convert_to($CONVERT_TO, \%mem);

 my $results = Nenm::Utils::check_multi_thresholds(\%mem, $wthr, $cthr,
 $CONVERT_TO);
 return Nenm::Utils::output_multi_results($LABEL, $results);

}

 exit check_net_snmp_mem();

Swap utilization
MIB needed

UCD-SNMP-MIB

OIDs used
Total swap space: .1.3.6.1.4.1.2021.4.3.0
Swap space available: .1.3.6.1.4.1.2021.4.4.0
www.syngress.com

w

160 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
Check the percentage of swap in use. This one has simple thresholds that let us make
use of all of the convenience methods Nagios::Plug-in has to offer. Code for the plug-in:
#!/usr/local/bin/perl

nagios: +epn

=pod

=head1 NAME

check_net_snmp_swap.pl - Check the swap space % in use

=head1 SYNOPSIS

Check the % swap space in used on a server, warning

and critical thresholds are upper acceptable limits for

swap space utilization.

This plugin will output the percent swap space in use as perfdata.

=cut

sub check_net_snmp_swap {

 use strict;
 use FindBin;
 use lib “$FindBin::Bin/lib”;

 use Nagios::Plugin::SNMP;

 my $USAGE = <<EOF;
Usage: %s [—warning %] --critical %

EOF

 my $LABEL = ‘NET-SNMP-SWAP’;

 my $plugin = Nagios::Plugin::SNMP->new(
 ‘shortname’ => $LABEL,
 ‘usage’ => $USAGE
);

 $plugin->getopts;

 $plugin->set_thresholds(
 ‘warning’ => $plugin->opts->warning,
 ‘critical’ => $plugin->opts->critical,
);

 use constant TOTAL => ‘.1.3.6.1.4.1.2021.4.3.0’;
 use constant AVAIL => ‘.1.3.6.1.4.1.2021.4.4.0’;

 my @oids = (TOTAL(), AVAIL());

 my $results = $plugin->get(@oids);

 $plugin->close();

 my @warning;
 my @critical;
 my @ok;

 my $total = $results->{TOTAL()};
 my $avail = $results->{AVAIL()};

 my $pct_used = sprintf(“%5.2f”, (($total - $avail) / $total) * 100);

 my $code = $plugin->check_threshold(check => $pct_used);
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 161
 my $msg;

 if ($code == CRITICAL) {
 $msg = “${pct_used}% > ” . $plugin->opts->critical . “%”;
 } elsif ($code == WARNING) {
 $msg = “${pct_used}% > ” . $plugin->opts->warning . “%”;
 } else {
 $msg = “${pct_used}% swap in use”;
 }

 $plugin->add_perfdata(
 ‘label’ => “‘pct_used”,
 ‘value’ => $pct_used,
 ‘uom’ => “%”
);

 $plugin->nagios_exit($code, $msg);

}

 check_net_snmp_swap();

Here is a command definition for this plug-in. Since swap thresholds will be pretty
standard across Net-SNMP hosts, in this case we will hard-code the thresholds in the
command definition.
define command {

 command_name check_net_snmp_swap
 command_line $USER2$/check_net_snmp_swap.pl --hostname $HOSTADDRESS$ --port
161 --snmp-version 3 --auth-protocol md5 --auth-username ‘$_HOST_SNMP_AUTH_
USERNAME$’ —auth-password ‘$_HOST_SNMP_AUTH_PASSWORD$’ --warning 70 --critical 85
}

Partition Utilization
MIB needed

HOST-RESOURCES-MIB

OIDs needed
hrFSMountPoint: 1.3.6.1.2.1.25.3.8.1.2
hrFSIndex: 1.3.6.1.2.1.25.3.8.1.1
hrFSStorageIndex: 1.3.6.1.2.1.25.3.8.1.7 -> link to hrStorageEntry for this device
hrFSType: 1.3.6.1.2.1.25.3.8.1.4 -> FS type from hrFSTypes
HR FS Types: 1.3.6.1.2.1.25.3.9
hrStorageDescr: .1.3.6.1.2.1.25.2.3.1.3.1
hrStorageAllocationUnits: 1.3.6.1.2.1.25.2.3.1.4
hrStorageSize: 1.3.6.1.2.1.25.2.3.1.5
hrStorageUsed: 1.3.6.1.2.1.25.2.3.1.6
www.syngress.com

w

162 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
hrStorageAllocationFailures: 1.3.6.1.2.1.25.2.3.1.7
hrStorageType: 1.3.6.1.2.1.25.2.1—type of storage device; e.g., (hrStorageFixed

Disk, hrStorageRemovableDisk)
Device Type Index: - .1.3.6.1.2.1.25.3.2.1.2
Trending software packages typically make partition trending a two-step process.

First, you run a “discovery” process on the target agent that retrieves the names of all
partitions on a host. Next, you choose which partitions you wish to monitor, and from
that point on the agent checks only those partitions. With Nagios, it is customary to
use a service check per important partition. While both of these models work, we
prefer to have the flexibility of both in one tool and the ability to also have a plug-in
that checks every partition on a host without us caring about what their names are
ahead of time.

check_snmp_storage.pl does just that. You can tell it to check all partitions or
a defined set of partitions in one pass. Thresholds for the script are in % free space
or bytes free, selected by the --measure switch. If you pass the all argument to the
--partition selector or pass a list of partitions to the script, the thresholds are applied
to all partitions. Finally, the script will output perfdata for the partitions you tell it to
check, giving you output for trending as well.

A nice feature of this disk utilization check script is that it uses an industry standard
MIB; the following code should work for any SNMP agent that supports the HOST-
RESOURCES-MIB. Here is an example call:
/check_snmp_hr_storage.pl --hostname 192.168.3.1 --snmp-version 3 --auth-username
my_user --auth-password my_pass -w 90 -c 95 -U % -P all

Example output
Everything is ok
SNMP-HR-STORAGE OK - /backup = 88.38%, / = 82.82%, /home2 = 36.93%, /tmp = 1.77%,
/boot = 14.72%, \

/home3 = 10.97% |‘/backup’=88.38%;90;95;0;100 ‘/’=82.82%;90;95;0;100

‘/home2’=36.93%;90;95;0;100 \

‘/tmp’=1.77%;90;95;0;100 ‘/boot’=14.72%;90;95;0;100 ‘/home3’=10.97%;90;95;0;100

Here is the code:

#!/usr/local/bin/perl

nagios: +epn

=pod

=head1 NAME
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 163
check_snmp_hr_storage.pl - Check storage devices using the
 HOST-RESOURCES-MIB

=head1 SYNOPSIS

Check partition utilization on a device by percent space used or minimum free
space available; you can filter partitions based on mount point (-P), file system
type (-T), or storage device type (-F).

In addition to thresholds, script will output performance data, percent used if
-U % is selected, free bytes if -U [KMG] is selected.

Examples:

* By percent, SNMP v3, all partitions. Warn at 90% used, critical at 95% used.

./check_snmp_hr_storage.pl --hostname 192.168.3.1 --snmp-version 3 --auth-username
my_user --auth-password my_pass -w 90 -c 95 -U % -P all

SNMP-HR-STORAGE OK - /backup = 88.38%, / = 82.82%, /home2 = 36.93%, /tmp = 1.77%,
/boot = 14.72%, /home3 = 10.97% | ‘/backup’=88.38%;90;95;0;100
‘/’=82.82%;90;95;0;100 ‘/home2’=36.93%;90;95;0;100 ‘/tmp’=1.77%;90;95;0;100
‘/boot’=14.72%;90;95;0;100 ‘/home3’=10.97%;90;95;0;100

* By minimum space free, SNMP v2c, /tmp and /boot, in Megabytes. Warn at 50M left
available, critical at 20M available

./check_snmp_hr_storage.pl --hostname 192.168.3.1 --snmp-version 2c --rocommunity
-w 50 -c 20 -U M -P /tmp -P /boot
SNMP-HR-STORAGE OK - /tmp - 932.82M, /boot - 84.19M | ‘/tmp’=978128896;52428800;
20971520;0;995774464 ‘/boot’=88274944;52428800;20971520;0;103515136

=cut

sub check_snmp_hr_storage {

 use strict;

 use FindBin;
 use lib “$FindBin::Bin/lib”;

 use Nagios::Plugin::SNMP;
 use Nagios::Plugin::Threshold;

 my $USAGE = <<EOF;
Usage: check_snmp_hr_storage.pl \
 {-P all | -P NAME0 ... -P NAMEN }
 [-F FStype] [-T storage_type]
 [-U threshold_unit_type]
 [-X volatile_partition1 ... -X volatile_partitionN]

EOF

 my $LABEL = ‘SNMP-HR-STORAGE’;

 my $plugin = Nagios::Plugin::SNMP->new(
 ‘shortname’ => $LABEL,
 ‘usage’ => $USAGE
);
www.syngress.com

w

164 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
$plugin->add_arg(
 ‘spec’ => ‘partition|P=s@’,
 ‘help’ => “-P, --partition NAME\n” .
 “ Partition(s) to check, use switch multiple times\n” .
 “ to specify multiple partitions or use ‘all’ to \n” .
 “ check all partitions [required]”,
 ‘required’ => 1
);

$plugin->add_arg(
 ‘spec’ => ‘fs-type-expr|F=s’,
 ‘help’ => “-F, --fs-type-expr\n” .
 “ String or regular expression to use to determine\n” .
 “ which file systems to include in disk checks.\n” .
 “ Use fs-type-opt to select the operator to use\n” .
 “ for the check. [optional, default ‘any’]”,
 ‘default’ => ‘any’
);

$plugin->add_arg(
 ‘spec’ => ‘fs-type-op|O=s’,
 ‘help’ => “-O, --fs-type-op\n” .
 “ Operator to use when checking to see if a file\n” .
 “ system should be included in checks this plugin\n” .
 “ performs. Valid operators are ‘eq’, ‘ne’, ‘=~’\n” .
 “ and ‘~!’. [optional, default ‘’]”,
 ‘default’ => ‘’
);

$plugin->add_arg(

 ‘spec’ => ‘storage-type|T=s’,
 ‘help’ => “-T, --storage-type\n” .
 “ Type of storage (e.g. ‘hrStorageFixedDisk’)\n” .
 “ [optional, default ‘any’]”,
 ‘default’ => ‘any’
);

$plugin->add_arg(
 ‘spec’ => ‘unit-type|U=s’,
 ‘help’ => “-U, --unit-type\n” .
 “ type of unit to use for check:\n” .
 “ (B: bytes, M: Megabytes, G: Gigabytes, %: percent)\n” .
 “ If a byte measurement is specified, thresholds are\n” .
 “ low bounds. If % is specified thresholds are high\n” .
 “ bounds (e.g. use > 90%) [optional, default ‘%’]”,
 ‘default’ => ‘%’
);

$plugin->add_arg(

 ‘spec’ => ‘volatile-partition|X=s@’,
 ‘help’ => “-X, --volatile-partition\n” .
 “ Names of partitions that may not always be present\n” .
 “ on the system when disks are checked; this will\n” .
 “ cause the script to output 0s for perf_data for\n” .
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 165
 “ any partition listed to keep trending data in good\n” .
 “ shape.\n”,
 ‘required’ => 0,
 ‘default’ => []
);

$plugin->add_arg(
 ‘spec’ => ‘no-fsafc|N’,
 ‘help’ => “--N, —no-fsafc\n” .
 “ Do not check for storage allocation failures; \n” .
 “ provided for use with buggy HOST-RESOURCES MIB\n” .
 “ implementations.”,
 ‘required’ => 1,
 ‘default’ => ‘0’
);

$plugin->getopts;

my $WARNING = $plugin->opts->get(‘warning’);
my $CRITICAL = $plugin->opts->get(‘critical’);
my $UNIT_TYPE = uc($plugin->opts->get(‘unit-type’));

if ($UNIT_TYPE !~ m/^[%MKG]$/) {
die <<EOF;
Invalid unit type specified ($UNIT_TYPE), valid types are
* % - percent utilization
* K - Kilobytes
* M - Megabytes
* G - Gigabytes

EOF

}

if ($plugin->opts->get(‘fs-type-op’) ne ‘’) {

 my $expr = $plugin->opts->get(‘fs-type-expr’);
 my $op = $plugin->opts->get(‘fs-type-op’);

 if ($op !~ m/^(?:=~|!~|eq|ne)$/) {

 die <<EOF;

Invalid fs-type-op value ‘$expr’ provided, valid values are:
 * eq - Type of filesystem equals string provided in fs-type-expr.
 * ne - Type of filesystem does not equal string provided in fs-type-expr.
 * =~ - Type of filesystem matches regular expression in fs-type-expr.
 * !~ - Type of filesystem does not match regular expression
 in fs-type-expr.
EOF

 }

 # Call will die if the expression is invalid
 fs_type_check(‘test’, $op, $expr);
}

if ($plugin->opts->get(‘fs-type-expr’) ne ‘any’) {
 die “fs-type-op is required if fs-type-expr is provided!”
 if $plugin->opts->get(‘fs-type-op’) eq ‘’;
}

www.syngress.com

166 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
my @partitions = @{$plugin->opts->partition};

my %wanted;

#
Filter on mount point
#

my %mount_names =
 filter_on_mount_point($plugin, \%wanted, @partitions);

Add volatile partitions in if not present so trending data
stays constant for partitions not always present

my $volatile_partitions = $plugin->opts->get(‘volatile-partition’);

if (ref($volatile_partitions) eq ‘ARRAY’) {

 my @volatile = @$volatile_partitions;

 for my $vp (@volatile) {
 next if exists $mount_names{$vp};
 $mount_names{$vp} = -1;
 }
}

#
Filter on FS type
#

filter_on_fs_type($plugin, \%wanted, \%mount_names,
 $plugin->opts->get(‘fs-type-op’),
 $plugin->opts->get(‘fs-type-expr’));

#
Get storage indexes - table at 1.3.6.1.2.1.25.3.8.1.7
#

{

 local $_;
 my @oids = map { “.1.3.6.1.2.1.25.3.8.1.7.$_”; } keys %wanted;
 my $results = $plugin->get(@oids);

 for my $sindex (keys %$results) {
 my $idx = ($sindex =~ m/.+\.(\d+)$/)[0];
 debug(“$wanted{$idx}->{‘mount’} - IDX $idx - SIDX $sindex”);
 $wanted{$idx}->{‘storage_index’} = $results->{$sindex};
 }
}

#
Filter out based on storage type if user requested we filter
based on type.
#
hrStorageType table at 1.3.6.1.2.1.25.2.3.1.2
#

my $storage_type = $plugin->opts->get(‘storage-type’);

filter_on_storage_type($plugin, \%wanted, \%mount_names, $storage_type);
www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 167
#
Get storage units, storage size, description, storage used,
and storage failures for each device we have left
#

add_hr_storage_metrics($plugin, \%wanted);
#
Check for storage failures and utilization problems
#

dump_wanted(\%wanted) if ($plugin->opts->get(‘snmp-debug’) == 1);

my @ok;
my @warn;
my @crit;

for my $name (sort keys %mount_names) {

 my $idx = $mount_names{$name};

 # Volatile partition, just add dummy perfdata to keep trending
 # straight

 if ($idx == -1) {

 $plugin->add_perfdata(
 ‘label’ => “‘${name}’”,
 ‘value’ => 0,
 ‘uom’ => ‘’,
 ‘min’ => 0,
 ‘max’ => 0,
 ‘threshold’ => make_threshold(0, 0)
);

 next;

 }

 debug(“$name [$idx]: checking utilization”);

 my %part = %{$wanted{$idx}};
 my $mount = $part{‘mount’};

 $mount_names{$mount} = 1;

 if ($plugin->opts->get(‘no-fsafc’) == 0) {
 my $sf = $part{‘storage_allocation_failures’};

 if (($sf ne ‘noSuchInstance’) && ($sf > 0)) {
 push(@crit, “$mount - $sf storage allocation failures”);

 }

 }

 my $units = $part{‘storage_allocation_units’};
 my $size = $part{‘storage_size’};
 my $used = $part{‘storage_used’};

 # Only on Solaris does this happen with Net-SNMP. Thank you!
 if ($size == 0) {
 debug(“$mount - agent returned 0 bytes as size. Is this ” .
 “a Solaris zone or other VPS?”);
 next;
 }
www.syngress.com

ww

168 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins

 # If % was specified, we are checking utilization to see if
 # partition is more utilized than thresholds

 if ($UNIT_TYPE eq ‘%’) {

 my $pct_used = sprintf(“%.2f”, ($used / $size) * 100);

 if ($pct_used >= $CRITICAL) {
 push(@crit, “$mount (${pct_used}% >= ${CRITICAL}%)”);
 } elsif ($pct_used >= $WARNING) {
 push(@warn, “$mount (${pct_used}% >= ${WARNING}%)”);
 } else {
 push(@ok, “$mount = ${pct_used}%”);

 }

 $plugin->add_perfdata(
 ‘label’ => “‘${mount}’”,
 ‘value’ => $pct_used,
 ‘uom’ => ‘%’,
 ‘min’ => 0,
 ‘max’ => 100,
 ‘threshold’ => make_threshold($WARNING, $CRITICAL)
);

 } else {

 # Otherwise we are checking for space remaining

 my $warn_bytes = $WARNING;
 my $crit_bytes = $CRITICAL;

 my $size_bytes = $size * $units;
 my $used_bytes = $used * $units;
 my $free_bytes = $size_bytes - $used_bytes;

 my $free_label;

 if ($UNIT_TYPE eq ‘K’) {

 $warn_bytes *= 1024;
 $crit_bytes *= 1024;
 $free_label = $free_bytes / 1024;

 } elsif ($UNIT_TYPE eq ‘M’) {

 $warn_bytes *= (1024 ** 2);
 $crit_bytes *= (1024 ** 2);
 $free_label = $free_bytes / (1024 ** 2);

 } elsif ($UNIT_TYPE eq ‘G’) {

 $warn_bytes *= (1024 ** 3);
 $crit_bytes *= (1024 ** 3);
 $free_label = $free_bytes / (1024 ** 3);

 }

 if ($free_bytes <= $crit_bytes) {
 push(@crit, “$mount <= ${CRITICAL}${UNIT_TYPE} free”);
 } elsif ($free_bytes <= $warn_bytes) {
 push(@warn, “$mount <= ${WARNING}${UNIT_TYPE} free”);
w.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 169
 } else {
 my $free_label = sprintf(“%.2f”, $free_label);
 $free_label =~ s/\.00//;
 push(@ok, “$mount - $free_label$UNIT_TYPE”);
 }

 $plugin->add_perfdata(

 ‘label’ => “‘${mount}’”,
 ‘value’ => $free_bytes,
 ‘uom’ => ‘’,
 ‘min’ => 0,
 ‘max’ => $size_bytes,
 ‘threshold’ => make_threshold($warn_bytes, $crit_bytes)
);

 }

}

my $level = OK;
my $msg = “”;

if (scalar(@crit) > 0) {
 $msg = join(‘, ’, @crit);
 $level = CRITICAL;

}

if (scalar(@warn) > 0) {

 if ($level == CRITICAL) {
 $msg .= “; WARNING ”;
 } else {
 $level = WARNING;
 }

 $msg .= join(‘, ’, @warn);

}

if (scalar(@ok) > 0) {

 if ($level != OK) {
 $msg .= “; OK ”;

 }

 $msg .= join(‘, ’, @ok);

}

$plugin->nagios_exit($level, $msg);

########

SUBS

########

sub dump_wanted {

 my $wanted = shift;

 for my $idx (keys %$wanted) {

 warn “Index $idx\n”;

 my %info = %{$wanted->{$idx}};
www.syngress.com

170 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 for my $key (keys %info) {
 warn “- $key: $info{$key}\n”;

 }

 }

}

sub filter_on_mount_point {

 my $agent = shift;
 my $wanted = shift;
 my @partitions = @_;

 my $hr_fs_mount_point = ‘.1.3.6.1.2.1.25.3.8.1.2’;

 my $results = $agent->walk($hr_fs_mount_point);

 my %mounts = %{$results->{$hr_fs_mount_point}};

 my %mount_names = ();

 for my $mount (keys %mounts) {

 my $index = $mount;
 $index =~ s/$hr_fs_mount_point\.//;

 if ($partitions[0] ne ‘all’) {
 next unless grep(/^$mounts{$mount}$/, @partitions);

 }

 $wanted->{$index} = {‘mount’ => $mounts{$mount}};

 # Index mounts by mount name too (for volatile processing)
 $mount_names{$mounts{$mount}} = $index;

 }

 if (scalar(keys %$wanted) == 0) {
 die “No partitions found matching @partitions!”;

 }

 return %mount_names;

}

sub filter_on_fs_type {

 my $agent = shift;
 my $wanted = shift;
 my $mount_names = shift;
 my $fs_filter_op = shift;
 my $fs_filter_expr = shift;

 # Indexed at 1.3.6.1.2.1.25.3.9.X

 my @hr_fs_types = qw(

 StartOfTable
 hrFSOther
 hrFSUnknown
 hrFSBerkeleyFFS
 hrFSSys5FS
 hrFSFat
 hrFSHPFS
 hrFSHFS
www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 171
 hrFSMFS
 hrFSNTFS
 hrFSVNode
 hrFSJournaled
 hrFSiso9660
 hrFSRockRidge
 hrFSNFS
 hrFSNetware
 hrFSAFS
 hrFSDFS
 hrFSAppleshare
 hrFSRFS
 hrFSDGCFS
 hrFSBFS
 hrFSFAT32
 hrFSLinuxExt2
);

 # hrFSType Table .1.3.6.1.2.1.25.3.8.1.4

 my @oids;

 {

 local $_; @oids = map { “.1.3.6.1.2.1.25.3.8.1.4.$_”; }
 keys %$wanted;

 }

 my $results = $agent->get(@oids);

 for my $type (keys %{$results}) {

 my $idx = ($type =~ m/.+\.(\d+)$/)[0];

 my $fsidx = ($results->{$type} =~ m/.+\.(\d+)$/)[0];
 my $fs = $hr_fs_types[$fsidx];

 if (fs_type_check($fs, $fs_filter_op, $fs_filter_expr)) {
 # Add the FS type to the wanted entry
 $wanted->{$idx}->{‘fstype’} = $fs;
 } else {
 # Not an FS type we are about, remove the entry
 delete $mount_names->{$wanted->{$idx}->{‘mount’}};
 delete $wanted->{$idx};
 next;

 }

 }

 if (scalar(keys %$wanted) == 0) {
 die “No partitions found that $fs_filter_op $fs_filter_expr!”;

 }

}

sub filter_on_storage_type {

 my $agent = shift;
 my $wanted = shift;
www.syngress.com

ww

172 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins

 my $mount_names = shift;
 my $storage_type = shift;

 # Indexed at 1.3.6.1.2.1.25.2.1.X

 my @hr_storage_types = qw(
 StartOfTable
 hrStorageOther
 hrStorageRam
 hrStorageVirtualMemory
 hrStorageFixedDisk
 hrStorageRemovableDisk
 hrStorageFloppyDisk
 hrStorageCompactDisc
 hrStorageRamDisk
);

 # hrStorageType Table 1.3.6.1.2.1.25.2.3.1.2

 my @oids;
 my %idx_storage_idx;

 for my $idx (keys %$wanted) {
 my $sidx = $wanted->{$idx}->{‘storage_index’};
 push(@oids, “.1.3.6.1.2.1.25.2.3.1.2.$sidx”);
 $idx_storage_idx{$sidx} = $idx;
 }

 my $results = $agent->get(@oids);

 for my $type (keys %{$results}) {

 my $sidx = ($type =~ m/.+?\.(\d+)$/)[0];
 my $i = $idx_storage_idx{$sidx};

 if ($results->{$type} eq ‘noSuchInstance’) {
 my $m = $wanted->{$i}->{‘mount’};
 debug(“$m - agent returned noSuchInstance for ” .
 “storage type index - deleting. Is this a ” .
 “Solaris zone or other VPS?”);
 delete $mount_names->{$wanted->{$i}->{‘mount’}};
 delete $wanted->{$i};
 next;
 }

 my $stidx = ($results->{$type} =~ m/.+?\.(\d+)$/)[0];
 my $stype = $hr_storage_types[$stidx];

 if (($storage_type ne ‘any’) && ($stype !~ /$storage_type/i)) {
 # Not an storage type we care about, remove the entry
 delete $mount_names->{$wanted->{$i}->{‘mount’}};
 delete $wanted->{$i};
 next;
 }

 $wanted->{$i}->{‘storage_type’} = $stype;

 }
w.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 173
 if (scalar(keys %$wanted) == 0) {
 die “No partitions found matching storage type $storage_type!”;

 }

}

sub add_hr_storage_metrics {

 my $agent = shift;
 my $wanted = shift;

 my %stoids = qw(
 .1.3.6.1.2.1.25.2.3.1.3 storage_descr
 .1.3.6.1.2.1.25.2.3.1.4 storage_allocation_units
 .1.3.6.1.2.1.25.2.3.1.5 storage_size
 .1.3.6.1.2.1.25.2.3.1.6 storage_used

);

 # Check for storage allocation failures unless user
 # requests we do not check for them.

 if ($plugin->opts->get(‘no-fsafc’) == 0) {
 $stoids{‘.1.3.6.1.2.1.25.2.3.1.7’} =
 ‘storage_allocation_failures’;

 }

 for my $mount (keys %wanted) {

 my @oids;

 my $sidx = $wanted->{$mount}->{‘storage_index’};

 for my $oid (keys %stoids) {
 push(@oids, “${oid}.$sidx”);

 }

 my $result = $agent->get(@oids);

 debug(“$mount - populating info”);

 for my $i (keys %$result) {

 my ($base, $idx) = ($i =~ m/^(.+)\.(\d+)$/);
 my $key = $stoids{$base};

 $wanted->{$mount}->{$key} = $result->{$i};

 }

 }

}

sub make_threshold {

 my $w = shift;
 my $c = shift;

 return

 Nagios::Plugin::Threshold->set_thresholds(‘warning’ => $w,
 ‘critical’ => $c);

}

sub fs_type_check {

 my $value = shift;
www.syngress.com

174 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 my $op = shift;
 my $expr = shift;

 my $code = “”;

 # If user wants custom FS type filter
 if (($expr eq ‘any’) || ($expr eq ‘’)) {
 return 1;

 }

 if ($op =~ m/~/) {
 $code = “(‘$value’ $op m{$expr}i);”;
 } else {
 $code = “(‘$value’ $op q{$expr});”;

 }

 my $result = 0;

 eval {

 $result = eval $code;
 die $@ if $@;
 };

 die “Invalid fs type operator / expression: $@” if $@;

 debug(“fs_type_check: evaled $code, result $result”);

 return $result;

 }

 sub debug {

 return unless $plugin->opts->get(‘snmp-debug’) == 1;
 my $msg = shift;
 warn scalar(localtime()) . “: $msg\n”;

 }

}

exit check_snmp_hr_storage();

Load Averages
MIB needed

UCD-SNMP-MIB

OIDs used
1-minute load average: .1.3.6.1.4.1.2021.10.1.3.1
5-minute load average: .1.3.6.1.4.1.2021.10.1.3.2
15 minute load average: .1.3.6.1.4.1.2021.10.1.3.3
Load average is a relative measurement; over time, you will learn what thresholds

mean trouble for your servers. The following plug-in checks the 1-minute, 5-minute,
and 15-minute load averages in one check; the script also provides performance data
www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 175
so you can create trending graphs from the output as well. You can specify warning
and critical thresholds by passing a colon-separated list of values to the warning or
critical options in the format:
[--warning | --critical] 1min:5min:15min

The Nagios::Plug-in module comes with convenience methods to set and check
thresholds and to output a status line to Nagios and an exit code. We are overloading
the meanings of the warning and critical switches in this case, so we will not be able
to use the built-in methods. If we were to rewrite this plug-in so it checked just one
load average at a time, we could use the convenience methods, but then we lose
efficiency as Nagios would run the check three separate times to get the three
 averages; we also lose the ability to get all performance statistics at once for trending
(we use PNP for graphing).

Example call and output
./check_net_snmp_load.pl -H hostname --snmp-version 3 --auth-username joesmith
--auth-password mypassword -w 20:15:10 -c 40:30:20

NET-SNMP-LA OK - 1min: 0.03, 5min: 0.14, 15min: 0.13 | ‘1min’=0.03;20;40
‘5min’=0.14;15;30 ‘15min’=0.13;10;20

And here is the code for the plug-in
#!/usr/local/bin/perl

nagios: +epn

=pod

=head1 NAME

check_net_snmp_load.pl - Check the load averages on a server

=head1 SYNOPSIS

Check the 1 minute, 5 minute, and 15 minute loads on a Net-SNMP device using SNMP.
specify warning and critical thresholds as comma-separated lists in the format

1 minute : 5 minute : 15 minute

e.g.

$0 [.. options ..] -w 20:15:5 40:30:10

The plugin will output a list of all thresholds that have been breached and all
averages that are ok; the most critical status becomes the return status of the
plugin.

=cut

sub check_net_snmp_la {

 use strict;

 use FindBin;
 use lib “$FindBin::Bin/lib”;
www.syngress.com

w

176 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 use Nagios::Plugin::Threshold;
 use Nagios::Plugin::SNMP;

 my $USAGE = <<EOF;

 Usage: %s [--warning 1min:5min:15min] --critical 1min:5min:15min

EOF

 my $LABEL = ‘NET-SNMP-LA’;

 my $plugin = Nagios::Plugin::SNMP->new(

 ‘shortname’ => $LABEL,
 ‘usage’ => $USAGE

);

 $plugin->getopts;

 use constant LOAD1 => ‘.1.3.6.1.4.1.2021.10.1.3.1’;
 use constant LOAD5 => ‘.1.3.6.1.4.1.2021.10.1.3.2’;
 use constant LOAD15 => ‘.1.3.6.1.4.1.2021.10.1.3.3’;

 my @oids = (LOAD1, LOAD5, LOAD15);

 my $results = $plugin->get(@oids);

 $plugin->close();

 my %la = (

 ‘1min’ => $results->{LOAD1()},
 ‘5min’ => $results->{LOAD5()},
 ‘15min’ => $results->{LOAD15()}

);

 my $index = 0;

 my @warning;
 my @critical;
 my @ok;

 my @wthresh = split(‘:’, $plugin->opts->warning);
 my @cthresh = split(‘:’, $plugin->opts->critical);

 my $i = 0;

 for my $avg (qw(1min 5min 15min)) {

 my %t;

 $t{‘warning’} = $wthresh[$i] if defined($wthresh[$i]);

 $t{‘critical’} = $cthresh[$i] if defined($cthresh[$i]);

 if ((defined $t{‘critical’}) && ($la{$avg} > $t{‘critical’})) {
 push(@critical, “${avg}: $la{$avg} > $cthresh[$i]”);
 } elsif ((defined $t{‘warning’}) && ($la{$avg} > $t{‘warning’})) {
 push(@warning, “${avg}: $la{$avg} > $wthresh[$i]”);
 } else {
 push(@ok, “${avg}: $la{$avg}”);
 }
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 177
 my $threshold = Nagios::Plugin::Threshold->set_thresholds(%t);

 $plugin->add_perfdata(
 ‘label’ => “‘${avg}’”,
 ‘value’ => $la{$avg},
 ‘uom’ => “”,
 ‘threshold’ => $threshold
);

 $i++;

 }

 my $level = OK;

 print “$LABEL ”;

 if (scalar(@critical)) {
 print “CRITICAL - ” . join(‘, ’, @critical) . ‘ ’;
 $level = CRITICAL;

 }

 if (scalar(@warning)) {
 print “WARNING - ” . join(‘, ’, @warning) . ‘ ’;
 $level = WARNING unless $level == CRITICAL;
 }

 if (scalar(@ok)) {
 print “OK - ” . join(‘, ’, @ok) . ‘ ’;
 }

 print ‘ | ’ . $plugin->all_perfoutput . “\n”;
 return $level;
}

 exit check_net_snmp_la();

Now we can make a command to go along with our check. Here is a command
definition for it based on the assumptions made at the beginning of this section. With
this command definition, you associate the authentication information and thresholds
with the host definition itself, making it very easy to see the host limits in the
configuration.
define command {

 command_name check_net_snmp_la
 command_line $USER1$/check_net_snmp.la --hostname $HOSTADDRESS$ --port 161
--snmp-version 3 --auth-protocol md5 --auth-username ‘$_HOST_SNMP_AUTH_
USERNAME$’ --auth-password ‘$_HOST_SNMP_AUTH_PASSWORD$’ --warning ‘$_HOST_LA_
WARNING$’ --critical ‘$_HOST_LA_CRITICAL$’
}

Process Behavior Checks
While it is very useful to know how a host is performing overall, it can also be very
useful to know how specific mission-critical processes or groups of processes on your
system are performing or behaving. For example, on a Web server, there is certainly
www.syngress.com

w

178 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
value in knowing how many instances of the Apache daemon are running or receiving
alerts should the number of process in zombie state suddenly start to grow. In this
section, we cover a number of plug-ins that allow you to get insight on how processes
are behaving and performing on your systems.

Number of Processes by State
and Number of Processes By Process Type
MIB Needed

HOST-RESOURCES MIB

OIDs used
hrSWRunName: 1.3.6.1.2.1.25.4.2.1.2
hrSWRunPath: 1.3.6.1.2.1.25.4.2.1.4
hrSWRunParameters: 1.3.6.1.2.1.25.4.2.1.5
hrSWRunStatus: 1.3.6.1.2.1.25.4.2.1.7
The HOST-RESOURCES-MIB defines four states for processes: running,

 runnable, not runnable, and invalid. Running processes are being actively serviced
by the CPU; runnable processes are waiting for a system resource (CPU cycles,
memory, disk I/O) or have been explicitly stopped by a signal (suspended, for
example). “Not runnable” processes are loaded into memory but not waiting for
resources or running (uninterruptible sleep, for example). The invalid state with
Net-SNMP exists as an SNMP SET state and as an SNMP GET state; if a user sets
a process into the invalid state (requires write access to the agent), the Net-SNMP
agent will stop the process from running. When used as an SNMP GET state, invalid
indicates the process is either idle, a zombie, or in another state not described by
running, runnable, or not runnable.

Another useful indicator of break-ins, bugs, runaway processes, or other process
problems is to look at the number of processes that run on your system by process type.
For example, you probably know how many Apache processes are normal for an Apache
Web server in your organization because that limit is set in the Apache configuration
file. If suddenly the number of processes drops to zero or climbs to twice the maximum
limit specified, you know something is very wrong. This script allows you to check
numbers of critical processes by process type and graph the numbers of critical processes
by process type. Thresholds are set on a process-by-process basis; each process can have
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 179
a high limit and a low limit. Figure 4.1 is a screenshot showing the output of this script
on a host on which it is used to track the number of Tomcat and Apache processes; note
that the graph shows the upper limits for both processes.
Figure 4.1 Apache and Tomcat Processes on a Server
Note that for best performance you might have to adjust the SNMP maximum
message size as the SNMP process table can be big; in the two example calls below
we set it to 50000 bytes.

Script call in process count mode. In this example we are watching for MySQL
and Apache processes, we want critical alerts if either process is not running, if the
number of MySQL processes is greater than 20, or if the number of Apache processes
is graeter than 150:
./check_snmp_procs.pl --hostname host1.example.com --snmp-version 3 --auth-username
myuser --auth-password mypass \

 --auth-protocol md5 ./check_snmp_procs.pl --mode
count --match /bin/httpd:apache \

 --match ‘mysqld.+basedir:mysql’ \

 --critical apache,lt,1:apache,gt,150:mysql,lt,1:
mysql,gt,20 \

 --snmp-max-msg-size 50000

SNMP-PROCS OK - apache 14, mysql 15 | ‘apache’=14;0;150 ‘mysql’=15;0;20

Script call in process state mode. In this case we warn a warning if the number of
runnable processes is greater than 30 and we want a critical alert if the total number
of processes is greater than 100.
www.syngress.com

w

180 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
./check_snmp_procs.pl --hostname host1.example.com --snmp-version 3 --auth-username
myuser --auth-password mypass \

 --auth-protocol md5
./check_snmp_procs.pl --mode state \

 --match ‘mysqld.+basedir:mysql’ \
 --warning runnable,gt,30 --critical total,gt,100 \

 --snmp-max-msg-size 50000

SNMP-PROCS WARNING - runnable (97 > 30) OK - invalid 0, notRunnable 0, running 1,
total 98 | ‘invalid’=0;0;0 ‘notRunnable’=0;0;0 ‘runnable’=97;30;0 ‘running’=1;0;0
‘total’=98;0;100

And the code for the script:
#!/usr/local/bin/perl

=pod

=head1 NAME

check_snmp_procs.pl - check process numbers by process state or by number of
processes by process name

=head1 DESCRIPTION

This script allows you to check the process table on an SNMP agent that implements
the HOST-RESOURCES-MIB. This script lets you monitor processes by process state or
by number of processes running by process name and number of matching processes.

Activate the state check mode by passing

-m state

to the script. Activate process number checking by passing in

-m count

to the script.

You can specify warning and critical thresholds for each mode in the
following format:

metric,op,number

Where op is one of:

=over 4

=item *

gt - >

=item *

lt - <

=item *

lte - <=

=item *

gte - >=

=item *

ne - !=

=item *

eq - ==
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 181
=back

You can create a string of OR’d conditions by separating each additional warning
or critical threshold by colons. Example:

--warning ‘runnable,gt,50:invalid,gt,50’ -c ‘invalid,gt,100’

You must specify a critical threshold for at least one metric; specifying a
warning threshold is optional.

=head2 Process State Mode

To activate process state check mode, pass -m state to the script.

The HOST-RESOURCES-MIB defines four process states and we define an additional
metric (total) that you can use in ‘state’ mode. Total holds the total number of
processes in the process table.

=over 4

=item *

Running - processes actively being serviced by the CPU

=item *

Runnable - processes waiting for system resources

=item *

Not runnable - processes that are in memory but not waiting to run

=item *

Invalid - process is idle, a zombie, or other state

=item *

Total - total number of processes in the process table

=back

Example threshold specification:

--warning ‘runnable,gt,50:invalid,gt,50’ -c ‘invalid,gt,100’

In state mode, perfdata will be output with counts of the number of processes in
each state and the total numbers of processes as well as warning and critical
threshold numbers. Example:

‘runnable’=4;50;0 ‘running’=100;0;0 ‘not_runnable’=1;0;0 ‘invalid’=50;0;100

=head2 Process Count Mode

To activate process count check mode, pass -m ‘count’ to the script. In this mode
you pass process match specifications to the script that indicate:

=over 4

=item *

The perl regular expression to use to match processes from the process table.

=item *

The friendly name to output for this process type in script output

=back

These process patterns should be passed to the script by appending one or more -M
<specifier> argument/value pairs to the script in the following format:

-M ‘perl-regular-expression:friendly name’
www.syngress.com

w

182 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
Example:

-M ‘java.+-Xmx:tomcat’ -M ‘httpd:apache’ -M ‘sshd:ssh’

Warning and critical thresholds can then be specified; for example, if we want to
define the rules “Between 1 and 20 Apache processes, exactly 1 java process, and
more than 0 MySQL processes” we would pass in this argument list to the script:

-M ‘java:tomcat’ -M ‘httpd:apache’ -M ‘mysqld:mysql -c ‘apache,gt,20:apache,lt,1:
tomcat,ne,1:mysql,gt,0’

The script will output perfdata for every process definition passed into the
script, regardless of whether you define a process count threshold for the process
or not. Example:

‘tomcat’=1;0;0 ‘httpd’=15;0;0 ‘mysqld’=4;0;0

=cut

sub check_snmp_procs {

 use strict;

 use FindBin;
 use lib “$FindBin::Bin/lib”;

 use Nagios::Plugin::SNMP;
 use Nenm::Utils;

 my $LABEL = ‘SNMP-PROCS’;

 my $USAGE = <<EOF;
USAGE: %s -m state|count \
 -M ‘process-regex:friendly name’ [-m spec1 ... -m specN]

EOF

 my $plugin = Nagios::Plugin::SNMP->new(

 ‘shortname’ => $LABEL,
 ‘usage’ => $USAGE

);

 $plugin->add_arg(

 ‘spec’ => ‘mode|m=s’,
 ‘help’ => “-m, --mode state|count\n” .
 “ Specify the mode of operation for the script; in \n” .
 “ ‘state’ mode the script will check the states of\n” .
 “ all processes on the server; in ‘count’ mode the\n” .
 “ script will check for numbers of critical processes.\n” .
 “ See perldoc in this script for more information.”,
 ‘required’ => 1
);

$plugin->add_arg(

 ‘spec’ => ‘match|M=s@’,
 ‘help’ => “-M, —match regex:friendly\n” .
 “ Specify a perl regular expression to match against\n” .
 “ the process table of the remote host, then a colon,\n” .
 “ then the friendly name for the matched processes,\n” .
 “ e.g. ‘java.+-server|weblogic’”,
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 183
 ‘required’ => 0,
 ‘default’ => []

);

$plugin->getopts;

$Nenm::Utils::DEBUG = $plugin->opts->get(‘snmp-debug’);

my $MODE = $plugin->opts->get(‘mode’);

$plugin->nagios_die(
 “Invalid mode selected, valid modes are ‘state’ or ‘count’”)
 unless $MODE =~ m/^(?:state|count)$/;

$plugin->nagios_die(“Critical threshold required!”)
 unless defined($plugin->opts->get(‘critical’));

if ($MODE eq ‘state’) {

 # Check states of all processes on the remote host
 my %oids = qw(
 hrSWRunStatus .1.3.6.1.2.1.25.4.2.1.7
);

 my %states = (
 ‘running’ => {qw(value 0)},
 ‘runnable’ => {qw(value 0)},
 ‘notRunnable’ => {qw(value 0)},
 ‘invalid’ => {qw(value 0)},
 ‘total’ => {qw(value 0)}
);

 my %states_map = qw(
 1 running
 2 runnable
 3 notRunnable
 4 invalid
);

 my ($wthr, $werrs)= ([], []);

 if (defined $plugin->opts->warning) {
 ($wthr, $werrs) = Nenm::Utils::parse_multi_threshold(
 $plugin->opts->warning, \%states);
 }

 if (scalar(@$werrs) > 0) {
 $plugin->nagios_die(“Errors found in warning thresholds ” .
 “specified:\n ” .
 join(“\n ”, @$werrs));

 }

 my ($cthr, $cerrs) =
 Nenm::Utils::parse_multi_threshold($plugin->opts->critical,
 \%states);
 if (scalar(@$cerrs) > 0) {
 $plugin->nagios_die(“Errors found in critical thresholds ” .
 “specified:\n ” .
 join(“\n ”, @$cerrs));
 }
www.syngress.com

w

184 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 my $snmp_results = $plugin->walk(values %oids);

 my $procs = $snmp_results->{$oids{‘hrSWRunStatus’}};

 for my $state (keys %$procs) {
 $states{$states_map{$procs->{$state}}}->{‘value’}++;
 $states{‘total’}->{‘value’}++;
 Nenm::Utils::debug(“Process is $states_map{$procs->{$state}}”);

 }

 my $results = Nenm::Utils::check_multi_thresholds(\%states,
 $wthr, $cthr, ‘’);

 return Nenm::Utils::output_multi_results($LABEL, $results);

} else {

 # Check for numbers of critical processes running on the

 # remote server by process name regular expression.

 my %matchers;

 $plugin->nagios_die(“Need at least one --match specification!”)
 unless scalar(@{$plugin->opts->get(‘match’)}) > 0;

 my @MATCH_SPECS = @{$plugin->opts->get(‘match’)};

 for my $spec (@MATCH_SPECS) {

 Nenm::Utils::debug(“Parsing $spec”);

 $plugin->nagios_die(“Invalid format for matcher! Valid format ” .
 “perl-regular-expression:friendly-name”)

 unless ($spec =~ m/^(.+):(.+)$/);

 my ($regex, $friendly) = ($1, $2);

 $matchers{$friendly} = {
 ‘value’ => 0,
 ‘regex’ => $regex
 };

 Nenm::Utils::debug(“Set $friendly to $regex”);

}

my ($wthr, $werrs)= ([], []);

if (defined $plugin->opts->warning) {
 ($wthr, $werrs) = Nenm::Utils::parse_multi_threshold(
 $plugin->opts->warning, \%matchers);

}

if (scalar(@$werrs) > 0) {
 $plugin->nagios_die(“Errors found in warning thresholds ” .
 “specified:\n ” .
 join(“\n ”, @$werrs));
}

my ($cthr, $cerrs) =
 Nenm::Utils::parse_multi_threshold($plugin->opts->critical,
 \%matchers);
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 185
if (scalar(@$cerrs) > 0) {

 $plugin->nagios_die(“Errors found in critical thresholds ” .
 “specified:\n ” .
 join(“\n ”, @$cerrs));
}

my %oids = qw(
 hrSWRunPath 1.3.6.1.2.1.25.4.2.1.4
 hrSWRunParameters 1.3.6.1.2.1.25.4.2.1.5

);

my $snmp_results = $plugin->walk(values %oids);

my %processes;

my %run_paths = %{$snmp_results->{$oids{‘hrSWRunPath’}}};

for my $oid (keys %run_paths) {
 my $idx = ($oid =~ m/^.+\.(\d+)$/)[0];
 $processes{$idx} = $run_paths{$oid};
 Nenm::Utils::debug(“Process $idx has path $run_paths{$oid}”);
}

my %run_params = %{$snmp_results->{$oids{‘hrSWRunParameters’}}};

for my $oid (keys %run_params) {

 my $idx = ($oid =~ m/^.+\.(\d+)$/)[0];

 next unless defined $run_params{$oid};

 $processes{$idx} .= “ $run_params{$oid}”;
 Nenm::Utils::debug(“Process $idx has params $run_params{$oid}”);

}

Now check each process against our regexes to determine if we match
them or not; if we match, increment the counter for the matcher.

for my $proc (sort keys %processes) {

 my $cmd_line = $processes{$proc};

 for my $matcher (keys %matchers) {

 my $regex = $matchers{$matcher}->{‘regex’};

 if ($cmd_line =~ m{$regex}i) {
 Nenm::Utils::debug(“$matcher: $cmd_line =~ $regex”);
 $matchers{$matcher}->{‘value’}++;

 }

 }

 }

 my $results = Nenm::Utils::check_multi_thresholds(\%matchers,
 $wthr, $cthr, ‘’);

 return Nenm::Utils::output_multi_results($LABEL, $results);

 }

}

exit check_snmp_procs();
www.syngress.com

w

186 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
Critical Services by Number of Processes
MIB needed

TCP-MIB

OIDS used
TCP connection state: .1.3.6.1.2.1.6.13.1.1
There are three types of TCP connection metric tests and collections we find

useful. The first is numbers of connections inbound and outbound along with unique
source and destination IP addresses. The second is TCP connections states. The third is
connections to the server by service, where a service is defined as a set of one or more
ports (for example, “mail” might comprise ports 25, 26, 465, and 587. For all of these
checks/metric collections we also want to be able to filter by server port. As with
the other SNMP performance-based scripts in this section, use the first_notification_
delay_period option with the service or host group the service is a part of to keep
Nagios from sending out notifications until the performance issue requires human
intervention.

Figure 4.2 is a graph showing the output from the TCP connection count script
over 24 hours (using the PNP plug-in for Nagios).
ww.syngress.com

Figure 4.2 TCP Connections Count Graph

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 187
Figure 4.3 is a graph showing the output from the TCP connection state script
over 24 hours for a server with a misconfigured service (using the PNP plug-in for
Nagios); a high number of connections in FIN_WAIT2 state relative to the total
number of connections is a sure sign of a TCP service problem.
Figure 4.3 TCP Connection States Graph
Finally, Figure 4.4 is a graph showing the output from the TCP service mode of
this script over 24 hours (using the PNP plug-in for Nagios). This is a Web server, so
the warning and critical thresholds are set to alert if HTTP/HTTPS exceed normal
counts for the server (although you can see from the graph that IMAP is by far the
most popular TCP-based service on the server). In service mode, each graph item
can represent one or more ports; for example, in Figure 4.4, “mail” represents TCP
ports 25, 26, 465, and 587.
www.syngress.com

w

188 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins

Figure 4.4 TCP Connections by Service Graph
The Code for the Script
#!/usr/local/bin/perl

nagios: +epn

=pod

=head1 NAME

check_snmp_tcpconns.pl - Check TCP connection states, numbers, and
 port distributions.

=head1 SYNOPSIS

This plugin uses the TCP-MIB tcpConnState table to check the following metrics:

=over

=item *
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 189
How many TCP connections are present in and out of a device and how many unique
source and destination IP addresses are present?

=item *

What is the connection state distribution (open, established, timWait, etc) for
the device being checked?

=item *

How many connections TO or FROM the device are there by user-specified protocol
(e.g. Web (80/443/8080), SMTP (25/587/465) etc.

=back

=head1 THRESHOLDS

In all cases where multiple thresholds are specified, conditions are OR’d; if any
of the conditions present are true, the threshold will be considered breached.

For ‘conn’ mode thresholds are colon-separated lists of high limits for
connections inbound and connections outbound.

Example: -w 40:20 -c 90:30

This would request ‘warn if there are more than 40 connections inbound or 20
connections outbound; return critical if there are more than 90 connections
inbound or 30 connections outbound.’

For ‘state’ mode this is a colon-separated list of list of conditionals to test
against one or more of the TCP states

Example: -w ‘timeWait,gt,5:established,gt,100’ -c ‘timeWait,gt,15:
established,gt,500’

Where gt == >, lt == <, lte == <=, and gte == >=

This would request ‘warn if there are more than 5 connections in time wait state
or more than 100 established connections; return critical if there are more than 5
established connections or more than 15 connections in time wait state.’

For ‘service’ mode this is a colon separated list of conditionals to test against
the service groupings you specified by passing them to the script using one or more
-S arguments. For each service you define, you can also specify direction for tests
by appending “_in” or “_out” to your service definition, e.g. “http_in,gt,5” would
match only if the number of connections to the http service as you define it is
greater than 5.

Note: passing the special token ‘other’ in as an -S argument will let you test
against a special bucket that holds connections that don’t match any service
definitions you provide, you can then use other, other_in, or other_out in your
warning and critical threshold check specifications if you wish as well.

Examples:

1. Check mail and FTP services, define mail as ports 25, 465, and 587 and define FTP
and ports 20 and 21

 -S ‘mail,25,465,587’ -S ‘ftp,20,21’ -w ‘mail,gt,5:ftp,gt,10’ -c ‘mail,gt,20’

2. Check web vs other.

 -S ‘web,80,443,8080,8443’ -S other -w ‘web,gt,50’ -c ‘web,gt,100:other,gt,100’

In ‘service’ mode perfdata will include data for each service as a whole along
with _in and _out broken out as well, example:
www.syngress.com

w

190 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
./check_snmp_tcpconns.pl --hostname my.example.com --snmp-version 3 \
 --auth-username myusername \
 --auth-password pass \
 -M service \
 -S other:mail,25,465,26,587 \
 -S http,80:https,443 \
 -S ftp,20,21:ssh,22:ensim,19638:imap,143,993 \
 -S pop3,110,995 -w ‘mail,gt,50’ -c ‘mail,gt,100’

SNMP-TCP-CONNS OK - mail (12)| ‘ensim’=0;0;0 ‘ensim_in’=0;0;0 ‘ensim_out’=0;0;0
‘ftp’=0;0;0 ‘ftp_in’=0;0;0 ‘ftp_out’=0;0;0 ‘http’=4;0;0 ‘http_in’=2;0;0
‘http_out’=2;0;0 ‘https’=0;0;0 ‘https_in’=0;0;0 ‘https_out’=0;0;0 ‘imap’=44;0;0
‘imap_in’=44;0;0 ‘imap_out’=0;0;0 ‘mail’=12;0;0 ‘mail_in’=8;0;0 ‘mail_out’=4;0;0
‘other’=20;0;0 ‘other_in’=0;0;0 ‘other_out’=20;0;0 ‘pop3’=11;0;0 ‘pop3_in’=11;0;0
‘pop3_out’=0;0;0 ‘ssh’=1;0;0 ‘ssh_in’=1;0;0 ‘ssh_out’=0;0;0

=head1 USAGE

Type ./check_snmp_tcpconns.pl --help

=cut

sub check_snmp_tcp_conns {

 use strict;

 use FindBin;
 use lib “$FindBin::Bin/lib”;

 use Nagios::Plugin::SNMP;

 my $USAGE = <<EOF;

USAGE: %s [-M conn | state] [-p portN .. -p port1]
 [-P port1 .. -P portN]

 {

 # mode ‘conn’
 -w ‘conns_in:conns_out’ -c ‘conns_in:conns_out’ |
 # mode ‘state’ where <op> is one of ‘lt’ (<),
 # ‘gt’ (>), ‘gte’ (>=), or ‘lte’ (<=)
 -w ‘state,<op>,N:state,<op>,N:state,<op>,N’
 -c ‘state,<op>,N:state,<op>,N:state,<op>,N’
 # mode ‘service’ where <op> is one of ‘lt’, ‘gt’, ‘gte’, or ‘lte’
 -S service_def1 ... -S service_defN [-S other]
 -w ‘service_name,gte,5:service_two,gte,10’
 -c ‘web,gte,50:pop3,gte,15:imap4,gte,15:cpanel,gte,5’
 }

EOF

 my $LABEL = ‘SNMP-TCP-CONNS’;

 my @CONN_STATES = qw(
 startOfTable
 closed
 listen
 synSent
 synReceived
 established
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 191
 finWait1
 finWait2
 closeWait
 lastAck
 closing
 timeWait
 deleteTCB
);

my $plugin = Nagios::Plugin::SNMP->new(
 ‘shortname’ => $LABEL,
 ‘usage’ => $USAGE
);

$plugin->add_arg(
 ‘spec’ => ‘mode|M=s’,
 ‘help’ => “-M, --mode\n” .
 “ Check mode (conn, states, or services), defaults\n” .
 “ to ‘conn’.\n” .
 “ In ‘conn’ mode, the plugin checks the number\n” .
 “ of inbound and outbound connections and outputs\n” .
 “ connections in, connections out, unique destination\n” .
 “ IP addresses and unique source IP addresses\n\n” .
 “ In ‘state’ mode the script will check the states\n” .
 “ of TCP connections to and from the server.\n\n” .
 “ In ‘service’ mode the script will check the numbers\n” .
 “ of connections to or from the server based on\n” .
 “ service groups you specify by passing definitions\n” .
 “ to the script using the ‘-S’ switch”,
 ‘default’ => ‘conn’
);

$plugin->add_arg(
 ‘spec’ => ‘include-port|P=i@’,
 ‘help’ => “-P, --include-port\n” .
 “ Limit results to just connections that have a \n” .
 “ client OR remote port matching the ports passed\n” .
 “ in as options.”,
 ‘required’ => 0,
 ‘default’ => []
);

$plugin->add_arg(
 ‘spec’ => ‘service|S=s@’,
 ‘help’ => “-S, --service\n” .
 “ Specify service groupings to use for service mode\n” .
 “ (-M ‘service’) check calls. Pass in one or more \n” .
 “ service group definition to the script, separated by\n” .
 “ colons, in the following format:\n” .
 “ ‘service_name,port1,port2,range1-range4’\n” .
 “ Example: -S ‘mail,25-26,465,587:www,80,443,8080,8443’.”,
 ‘required’ => 0,
 ‘default’ => []
);
www.syngress.com

w

192 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
$plugin->getopts;

my $DEBUG = $plugin->opts->get(‘snmp-debug’);

my $MODE = $plugin->opts->get(‘mode’);

if ($MODE !~ m/^(conn|state|service)$/) {
 $plugin->nagios_die(“Invalid check mode ‘$MODE’, ” .
 “must be ‘conn’, ‘service’, or ‘state’!”);
}

my $WARN = $plugin->opts->get(‘warning’);
my $CRIT = $plugin->opts->get(‘critical’);

my %SERVICES;

if ($MODE eq ‘conn’) {

 my @w = split(‘:’, $WARN);
 my @c = split(‘:’, $CRIT);

 if (scalar(@w) != 2) {
 $plugin->nagios_die(“Warning option must contain 2 thresholds: ” .
 “conns_in:conns_out”);

}

if (scalar(@c) != 2) {
 $plugin->nagios_die(“Critical option must contain 2 thresholds: ” .
 “conns_in:conns_out”);

}

} elsif ($MODE eq ‘state’) {

 my @w = split(‘:’, $WARN);
 my @c = split(‘:’, $CRIT);

 my @cs = @CONN_STATES;
 shift @cs;

my $format_help = “Format: state,<op>,number where state is one of ” .
 join(‘, ’, sort @cs) . “ and op is one of ” .
 “‘gt’, ‘gte’, ‘lt’, or ‘lte’”;

if (scalar(@w) < 1) {
 $plugin->nagios_die(“Warning option must contain at least\n” .
 “one state check, e.g. ‘timeWait,gte,44’\n” .
 $format_help);

}

for my $w (@w) {
 my ($lv, $op, $rv) = parse_cond_threshold($w, \@cs);
 if (!(defined($lv) && defined($op) && defined($rv))) {
 $plugin->nagios_die(“Invalid warning threshold $w.\n” .
 $format_help);

 }

}

 if (scalar(@c) < 1) {
 $plugin->nagios_die(“Critical option must contain at ” .
 “least one state check, e.g. ‘timeWait,gt,44’”);
}

ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 193
 for my $c (@c) {
 my ($lv, $op, $rv) = parse_cond_threshold($c, \@cs);
 if (!(defined($lv) && defined($op) && defined($rv))) {
 $plugin->nagios_die(“Invalid critical threshold $c.\n” .
 “$format_help”);
 }

 }

} elsif ($MODE eq ‘service’) {

 my $format_help = <<EOF;
 Format: service<op>number where ‘service’ is one of
 the services you specified to the script (-S switch)
 and op is one of ‘gt’, ‘gte’, ‘lt’, or ‘lte’
EOF

 my @w = split(‘:’, $WARN);
 my @c = split(‘:’, $CRIT);

 my @svc_rules = @{$plugin->opts->get(‘service’)};

 if (scalar(@svc_rules) < 1) {
 $plugin->nagios_die(<<EOF);
Must provide at least one service definition in
 ‘service’ mode!
$format_help

EOF

 }

 %SERVICES = parse_service_rules(join(‘:’, @svc_rules));

 $format_help = <<EOF;
 Format: service<op>number where ‘service’ is one of
 @{[join(‘, ’, keys %SERVICES)]}
 and op is one of ‘gt’, ‘gte’, ‘lt’, or ‘lte’

EOF

 if (scalar(@w) < 1) {
 $plugin->nagios_die(“Warning option must contain at least\n” .
 “one service check, e.g. ‘mail,gt,22’\n” .
 $format_help);
 }

 if (scalar(@c) < 1) {
 $plugin->nagios_die(“Critical option must contain at least\n” .
 “one service check, e.g. ‘mail,gt,22’\n” .
 $format_help);
 }

 for my $w (@w) {
 my ($lv, $op, $rv) =
 parse_cond_threshold($w, [keys %SERVICES]);
 if (!(defined($lv) && defined($op) && defined($rv))) {
 $plugin->nagios_die(“Invalid warning threshold $w.\n” .
 $format_help);
 }

}

www.syngress.com

w

194 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 for my $c (@c) {
 my ($lv, $op, $rv) =
 parse_cond_threshold($c, [keys %SERVICES]);
 if (!(defined($lv) && defined($op) && defined($rv))) {
 $plugin->nagios_die(“Invalid critical threshold $c.\n” .
 $format_help);

 }

 }

} else {
 # Should not happen
 $plugin->nagios_die(“Invalid mode $MODE!”);
}

my @PORTS = @{$plugin->opts->get(‘include-port’)};
my %wanted_ports;

{

 local $_;
 %wanted_ports = map { $_ => 1 } @PORTS;

}

if (scalar(@PORTS) > 0) {
 debug(“Limit to ports: ” . join(‘, ’, (sort keys %wanted_ports)));

}

Walk the TCP conn table

RFC1213-MIB::tcpConnState .1.3.6.1.2.1.6.13.1.1

my $base_oid = ‘.1.3.6.1.2.1.6.13.1.1’;

my $result = $plugin->walk($base_oid);

debug(“Retrieved TCP connection table”);

Close and destroy session
$plugin->close();

my %conns;

my %states = map { $_ => 0; } @CONN_STATES;
delete $states{‘startOfTable’};

foreach my $idx (keys %{$result->{$base_oid}}) {

 my ($local_ip, $local_port, $remote_ip, $remote_port) =
 ($idx =~ m/^
 ${base_oid}

 \.

 (\d+\.\d+\.\d+\.\d+)

 \.

 (\d+)

 \.

 (\d+\.\d+\.\d+\.\d+)

 \.

 (\d+)

 /ix);
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 195
 # If user requested filtering, only count connections
 # For ports they requested
 if (scalar(@PORTS) > 0) {
 next unless ((exists $wanted_ports{$remote_port}) ||
 (exists $wanted_ports{$local_port}));

 }

 # Skip listening sockets if in conn mode as conn mode is just
 # interested in incoming and outgoing connections, not listeners
 if ($MODE eq ‘conn’) {
 next if ($local_ip eq ‘0.0.0.0’ && $remote_ip eq ‘0.0.0.0’);

 next if ($local_ip eq ‘0.0.0.0’ && $local_port eq ‘0’);
 next if ($remote_ip eq ‘0.0.0.0’ && $remote_port eq ‘0’);
 }

 $conns{“$idx”} = {} if ! exists $conns{“$idx”};

 my $state_idx = $result->{$base_oid}->{$idx};
 my $state = $CONN_STATES[$state_idx];

 $conns{“$idx”}->{‘state’} = $state;
 $states{$state}++;

 $conns{“$idx”}->{‘localip’} = $local_ip;
 $conns{“$idx”}->{‘localport’} = $local_port;
 $conns{“$idx”}->{‘remoteip’} = $remote_ip;
 $conns{“$idx”}->{‘remoteport’} = $remote_port;

 my $dir = “”;

 if ($local_port < $remote_port) {
 $conns{“$idx”}->{‘direction’} = ‘in’;
 $dir = “<-”;
 } else {
 $conns{“$idx”}->{‘direction’} = ‘out’;
 $dir = “->”;
 }

 debug(“$local_ip:$local_port $dir $remote_ip:$remote_port”)
 if $MODE eq ‘conn’;

}

if ($DEBUG == 1) {
 dump_conns(\%conns) if $MODE eq ‘conn’;
 dump_states(\%states) if $MODE eq ‘state’;
 print “\n”;
}

my %results = (
 ‘ok’ => [],
 ‘warn’ => [],
 ‘crit’ => [],
 ‘perf_data’ => [],
);
www.syngress.com

196 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
my $ret = OK;

if ($MODE eq ‘conn’) {
 check_conn_counts(\%conns, $WARN, $CRIT, \%results);
} elsif ($MODE eq ‘state’) {

 my @cs = @CONN_STATES;
 shift @cs;

 check_conn_states(\%states, $WARN, $CRIT, \@cs, \%results);
} elsif ($MODE eq ‘service’) {
 check_services(\%conns, $WARN, $CRIT, \%SERVICES, \%results);
}

print “$LABEL ”;

if (scalar(@{$results{‘crit’}}) > 0) {
 print “CRITICAL - ” . join(‘, ’, @{$results{‘crit’}});
 $ret = CRITICAL;
}

if (scalar(@{$results{‘warn’}}) > 0) {
 print ‘, ’ if scalar(@{$results{‘crit’}}) > 0;
 print “WARNING - ” . join(‘, ’, @{$results{‘warn’}});
 $ret = WARNING unless $ret == CRITICAL;
}

if (scalar(@{$results{‘ok’}}) > 0) {
 print ‘, ’ if ((scalar(@{$results{‘crit’}}) > 0) ||
 (scalar(@{$results{‘warn’}}) > 0));
 print “OK - ” . join(‘, ’, @{$results{‘ok’}});
}

print “| ” . join(‘ ’, @{$results{‘perf_data’}}) . “\n”;
exit($ret);

sub perf_data {

 my $label = shift;
 my $count = shift;
 my $warn = shift;
 my $crit = shift;

 return “‘$label’=$count;$warn;$crit”;

}

sub dump_conns {

 my $conns = shift;

 for my $idx (sort {$a cmp $b} keys %$conns) {

 my %info = %{$conns->{$idx}};

 for my $key (sort keys %info) {
 print STDERR “$key:$info{$key} ”;

 }

 print STDERR “\n”;

 }

}

www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 197
sub dump_states {

 my $states = shift;

 for my $state (sort keys %$states) {
 print STDERR “‘$state’=$states->{$state} ”;

 }

}

sub dump_services {

 my $service_counts = shift;

 for my $svc (sort keys %$service_counts) {
 print STDERR “$svc: $service_counts->{$svc}\n”;

 }

}

sub get_conn_stats {

 my $conns = shift;

 my $in = 0;
 my $out = 0;

 # Local connections - XXX - either side is 127.0.0.N

 my %unique_ips = (‘in’ => {}, ‘out’ => {});

 for my $conn (keys %$conns) {

 my $ip = $conns->{“$conn”}->{‘remoteip’};

 next unless exists $conns->{“$conn”}->{‘direction’};

 if ($conns->{“$conn”->{‘direction’} eq ‘in’){
 $unique_ips{‘in’}->{$ip} = 1;
 $in++;
 } else {
 $unique_ips{‘out’}->{$ip} = 1;
 $out++;

 }

 }

 return ($in, $out,
 scalar(keys %{$unique_ips{‘in’}}),
 scalar(keys %{$unique_ips{‘out’}}));

}

sub debug {

 return unless $DEBUG == 1;

 my $msg = shift;

 print STDERR scalar(localtime()) . “: $msg\n”;

}

sub check_conn_counts {

 my $conns = shift;
 my $warn_spec = shift;
 my $crit_spec = shift;
 my $info = shift;
www.syngress.com

w

198 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 my ($conns_in, $conns_out, $unique_src, $unique_dst) =
 get_conn_stats($conns);

 my ($wci, $wco) = split(‘:’, $warn_spec);
 my ($cci, $cco) = split(‘:’, $crit_spec);

 if ($conns_in > $cci) {
 push(@{$info->{‘crit’}}, “Connections in ($conns_in > $cci)”);
 } elsif ($conns_in > $wci) {
 push(@{$info->{‘warn’}}, “Connections in ($conns_in > $wci)”);
 } else {
 push(@{$info->{‘ok’}}, “Connections in ok ($conns_in < $wci)”);

 }

 if ($conns_out > $cco) {
 push(@{$info->{‘crit’}}, “Connections out ($conns_out > $cco)”);
 } elsif ($conns_out > $wco) {
 push(@{$info->{‘warn’}}, “Connections out ($conns_out > $wco)”);
 } else {
 push(@{$info->{‘ok’}}, “Connections out ok ($conns_out < $wco)”);
 }

 push(@{$info->{‘perf_data’}},
 perf_data(‘conns_in’, $conns_in, $wci, $cci));
 push(@{$info->{‘perf_data’}},
 perf_data(‘conns_out’, $conns_out, $wco, $cco));
 push(@{$info->{‘perf_data’}},
 perf_data(‘unique_src’, $unique_src, 0, 0));
 push(@{$info->{‘perf_data’}},
 perf_data(‘unique_dst’, $unique_dst, 0, 0));
 return 1;
}

sub check_services {

 my $conns = shift;
 my $warn_spec = shift;
 my $crit_spec = shift;
 my $service_defs = shift;
 my $info = shift;

 my %conn_info = get_ports($conns);

 my %service_counts;
 my %checked;

 if (exists $service_defs->{‘other’}) {

 $service_counts{‘other’} = 0;
 $service_counts{‘other_in’} = 0;
 $service_counts{‘other_out’} = 0;

 $checked{‘other’} = 1;
 $checked{‘other_in’} = 1;
 $checked{‘other_out’} = 1;

 }
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 199
 for my $def (keys %$service_defs) {
 $service_counts{$def} = 0;

 }

 # Total up all ‘services’ counts
 for my $conn (keys %conns) {

 # Port only counts in services totals if it is a server
 # port; for incoming connections that is the local
 # port, for outgoing connections that is the remote port

 my $direction = $conns{$conn}->{‘direction’};

 my $port;

 if ($direction eq ‘in’) {
 $port = $conns{$conn}->{‘localport’};
 } else {
 $port = $conns{$conn}->{‘remoteport’};

 }
 # See if it matches any services; if so
 # increment the general service bucket and
 # the bucket for the service_<dir> bucket where
 # <dir> is in or out.

 my $matched = 0;

 for my $svc (keys %$service_defs) {

 my $check = $service_defs->{$svc};
 $check =~ s#\$port#$port#g;
 $check =~ s#\$direction#$direction#g;

 my $result = eval_expr($check);
 debug(“$port vs $svc: $check returned $result”);

 if ($result == 1) {

 $matched = 1;

 if (($svc =~ m/_in$/) && ($direction eq ‘in’) ||
 ($svc =~ m/_out$/) && ($direction eq ‘out’)) {
 $service_counts{$svc}++;
 $matched = 2;

 }

 if ($matched != 2) {
 $service_counts{$svc}++;
 }

 }

 }

 # Magical ‘other’ bucket catches anything not
 # matched by a user-provided service rule

 if (($matched == 0) && (exists $service_counts{‘other’})) {
 debug(“Port $port - no matches, incrementing ‘other’”);
 $service_counts{“other”}++;
 $service_counts{“other_$direction”}++;
 }

 }
www.syngress.com

200 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
dump_services(\%service_counts) if $DEBUG == 1;

Now check thresholds against the warning and critical rules

my @w = split(‘:’, $warn_spec);
my @c = split(‘:’, $crit_spec);

my %caught;

for my $c (@c) {

 my ($service, $op, $value) =
 parse_cond_threshold($c, [keys %$service_defs]);

 my $count = $service_counts{$service};

 my $result = eval_expr(“$count $op $value”);

 $checked{$service} = 1;

 if ($result == 1) {
 debug(“Service CRIT: $service ($count $op $value)”);
 push(@{$info->{‘crit’}}, “$service ($count $op $value)”);
 $caught{$service} = 1;
 }

}

for my $w (@w) {

 my ($service, $op, $value) =
 parse_cond_threshold($w, [keys %$service_defs]);

 $checked{$service} = 1;

 next if exists $caught{$service};

 my $count = $service_counts{$service};
 my $result = eval_expr(“$count $op $value”);

 if ($result == 1) {
 debug(“Service WARN: $service ($count $op $value)”);
 push(@{$info->{‘warn’}}, “$service ($count $op $value)”);
 $caught{$service} = 1;
 }

}

for my $key (sort keys %$service_defs) {

 next if exists $caught{$key};

 next unless ((grep(/${key}\b/, @w)) || (grep(/${key}\b/, @c)));

 push(@{$info->{‘ok’}}, “$key ($service_counts{$key})”);

}

Create performance data
for my $key (sort keys %$service_defs) {
 push(@{$info->{‘perf_data’}},
 perf_data($key, $service_counts{$key}, 0, 0));
 }
 return $info;

}

www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 201
sub get_ports {

 my $connections = shift;

 my %ports = (‘in’ => {}, ‘out’ => {});

 for my $index (keys %$connections) {

 my $conn = $connections->{$index};

 my $direction = $conn->{‘direction’};

 my $port;

 if ($direction eq ‘in’) {
 $port = $conn->{‘localport’};
 } else {
 $port = $conn->{‘remoteport’};
 }

 $ports{$direction}->{$port} = 0
 unless exists $ports{$direction}->{$port};

 $ports{$direction}->{$port}++;
 }

 return %ports;

}

sub parse_cond_threshold {

 my $expr = shift;
 my $valid_label_ref = shift;

 my $label_expr = join(‘|’, @$valid_label_ref);
 my $ops = ‘gt|gte|lte|lt’;

 my ($lv, $op, $rv) = split(‘,’, $expr);

 my $real_op = ‘’;

 if (defined($lv) && defined($op) && defined($rv)) {

 if ($lv !~ m/^(?:$label_expr)$/i) {
 $lv = undef;

 }

 $op = lc($op);

 if ($op eq ‘gt’) {
 $real_op = ‘>’;
 } elsif ($op eq ‘gte’) {
 $real_op = ‘>=’;
 } elsif ($op eq ‘lt’) {
 $real_op = ‘<’;
 } elsif ($op eq ‘lte’) {
 $real_op = ‘<=’;
 } else {
 $real_op = undef;
 }

 if ($rv !~ m/^\d+$/) {
 $rv = undef;

 }
 }
www.syngress.com

202 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 return ($lv, $real_op, $rv);

}

sub parse_service_rules {

 my $expr = shift;

 my %services;

 my @rules = split(‘:’, $expr);

 for my $rule (@rules) {

 my ($label, @port_specs) = split(‘,’, $rule);

 if (exists $services{$label}) {

 die “Service label ‘$label’ specified twice!”;

 }

 die “Service specs: Invalid label ‘$label’”
 unless $label =~ m/\w+/;

 my @svc_tests;

 for my $spec (@port_specs) {

 if ($spec =~ m/^(\d+)$/) {
 push(@svc_tests, “(\$port == $1)”);
 } elsif ($spec =~ m/^(\d+)\-(\d+)$/) {
 push(@svc_tests,
 “((\$port >= $1) && (\$port <= $2))”);
 } else {
 die “Service specs: ‘$spec’ is not a single port ” .
 “or a range of ports!”;
 }
 }

 my $cond = join(‘ || ’, @svc_tests);
 $services{$label} = $cond;
 $services{“${label}_in”} = “($cond) && (‘\$direction’ eq ‘in’)”;
 $services{“${label}_out”} = “($cond) && (‘\$direction’ eq ‘out’)”;

 debug(“Service rule $label: $cond”);
 }

 return %services;

}

sub check_conn_states {

 my $states = shift;
 my $warn_spec = shift;
 my $crit_spec = shift;
 my $cs_ref = shift;
 my $info = shift;

 my %caught;

 for my $cspec (split(‘:’, $crit_spec)) {

 my ($state, $op, $limit) = parse_cond_threshold($cspec, $cs_ref);
 my $actual = $states->{$state};
 my $expr = “$actual $op $limit”;
www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 203
 my $result = eval_expr($expr);
 debug(“Critical $cspec: $expr returns $result”);

 if ($result == 1) {
 push(@{$info->{‘crit’}}, “$state $op $limit ($expr)”);
 $caught{$state} = 1;

 }

 }

 for my $wspec (split(‘:’, $warn_spec)) {

 my ($state, $op, $limit) = parse_cond_threshold($wspec, $cs_ref);

 next if exists $caught{$state};

 my $actual = $states->{$state};
 my $expr = “$actual $op $limit”;

 my $result = eval_expr($expr);
 debug(“Warn $wspec: $expr returns $result”);

 if ($result == 1) {
 push(@{$info->{‘warn’}}, “$state $op $limit ($expr)”);
 } else {
 push(@{$info->{‘ok’}}, “$state = $actual”);
 }

 }

 for my $state (sort keys %$states) {
 push(@{$info->{‘perf_data’}}, “‘$state’=$states->{$state}”);
 }

 return 1;

}

sub eval_expr {

 my $expr = shift;
 my $result = 0;

 eval {

 $result = eval “($expr);”;
 die $@ if $@;
 };

 $result = 0 if ((! defined $result) or ($result eq ‘’));
 return $result;
 }

}

exit check_snmp_tcp_conns();

HTTP Scraping Plug-ins
HTTP: we love it—well-defined error codes, simple interface, a real gem of a protocol.
HTML, we sometimes love it, sometimes hate it. Why? If you did not know already,
the lack of XHTML conformance on the Web and the obvious emphasis on content
www.syngress.com

ww

204 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
meant for people not programs means that HTTP scraping can be fraught with peril:
unmatched tags, unmatched or missing quotes for attribute values, standalone tags that
are not terminated with a slash, pages with content rendered via JavaScript—all of
which can make for parsing nightmares.

So, why do we have a section devoted to HTTP scraping? Often, it is the only
way to monitor a device! Many older or lower end devices do not support SNMP
or other network-accessible monitoring protocols; much like our predecessors in
the 1970s and 1980s who had to resort to screen scraping, we must resort to HTTP
scraping. Fear not; many good language-specific libraries make HTTP scraping
more fun than pain, libraries that let us focus on what we want to monitor and
not spend all our time in the weeds wondering how to write code to correct for
poorly formed HTML (which is exactly what a sizable portion of code in Web
browsers does).

In this section, we cover HTTP scraping as it pertains to information gathering
from administrative interfaces. A later section in this chapter covers Web scraping as a
technique to automate tests of sites that are designed to be automated. We will show
you how you can make the most of this technique to get information out of impor-
tant devices like UPSs, switches, and Web-based applications to ensure they are
running and behaving as expected.

Robotic Network-Based Tests
“Nagios is a fault management tool,” you say. “What does it have to do with robotic
tests?” Nagios is an excellent tool to use for ensuring your applications run and react
and respond to your users’ requests in the manner you expect them to. In this section,
we cover creating and integrating robotic tests into Nagios.

Testing HTTP-based Applications
A growing number of large organizations make use of Web applications to sell their
products and services to customers or provide information about themselves to
their customers. Knowing whether an application is performing as expected and that
response meets customer requirements is very important. While most people think
of Nagios as more of a base service checking platform, you can use it to drive con-
tinual checks of Web-based applications for your customers and users. In this section,
we will use Perl to show examples of scripts that check the status of Web-based
applications.
w.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 205
Ensuring the Home Page
Performs Well and Has the Content We Expect
The first part of validating a Web-based application is checking response time for the
home page of the application and validating that the content on the home page is the
content the owner of the application expects to see. Fortunately for us, Nagios comes
with a plug-in that does this out of the box—check_http—that allows for checking
return status, MIME type, and content; it even allows for passing in credentials to
ensure HTTP authentication is functioning as expected.

Here is an example call to the plug-in, making use of some of the more common
options. In this case, we are checking a Web site with the string Featured Ultimate
Domains, we want a 200 HTTP return code, and we want to receive the content back
within three seconds.
./check_http -Hwww.ultimatedomains.com -u / -w 2 -c 3 -e 200 -s ‘Featured
Ultimate Domains’

HTTP OK HTTP/1.1 200 OK - 0.320 second response time |time=0.319673s;2.000000;
3.000000;0.000000 size=48778B;;;0

Ensuring a Search Page
Performs as Expected and Meets SLAs
Often, Web-based applications include search functionality. Especially with commer-
cial applications, having the search page return results within a reasonable amount of
time is critical to keeping customers’ interests. A wonderful Perl module for use with
this kind of check is WWW::Mechanize. It allows a Perl developer to quickly
develop applications that interact with Web sites in the same fashion a user would
from his Web browser. While a test like this does not simulate the delays involved
with fully rendering pages and waiting for images to download the way a full-blown
automation test can (using Win32::OLE for instance or by adding code to download
every element on every page retrieved), it does simulate the path the user takes and,
in this case, does properly measure the time the search takes and lets the Nagios
administrator trend on search response and alert when time becomes unacceptable.
The following script was written for a client of Max Schubert, who explicitly gave
his permission for it to be used in the book. The script is run against his beta site so
as not to disrupt statistics collected from his production Web site.
www.syngress.com

206 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
Definition of the check command:
define command {

 command_name check_ud_keyword_search

 command_line $_SERVICE_UD_BASE$/check_keyword_search.pl -s
 $_SERVICE_UD_KEYWORD_SEARCH_TERM$ -e $_SERVICE_UD_KEYWORD_SEARCH_ENV$ \
 -w $_SERVICE_UD_KEYWORD_SEARCH_WARN$ -c $_SERVICE_UD_KEYWORD_SEARCH_CRIT$

}

and the service definition showing the custom variables used in the command:
define service {

 use ud-base

 check_command check_ud_keyword_search

 service_description Ultimate Domains - Beta - Robotic keyword search

 __ud_keyword_search_term Test

 __ud_keyword_search_env example

 __ud_keyword_search_warn 15

 __ud_keyword_search_crit 20

 ... more definition

}

Example Call to the Script
./check_keyword_search.pl -s Test -e example -w 15 -c 20

KEYWORD_SEARCH OK - 1614 results in 8.345963 seconds | search=8.345963s;15;20

For this script, we also created a custom library that can be used to add helper
routines as needed to extend the workflow test for this script or reuse common
functions on additional application performance testing scripts we create. Special
thanks to Jarred Cohen, the owner of ultimatedomains.com, for allowing us to use
code developed for his site in this book.

The Library (WWW::UltimateDomains)
package WWW::UltimateDomains;

$WWW::UltimateDomains::VERSION =
‘# $Id: UltimateDomains.pm 17 2008-01-06 05:28:48Z max $’;

use strict;
use warnings;

use WWW::Mechanize;
use Time::HiRes qw(gettimeofday tv_interval);

=pod
www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 207
=head1 SYNOPSIS

WWW::UltimateDomains - utilities for automation of tests of the
ultimatedomains.com site

=cut

=pod

=item new(‘Timeout’ => 60)

 Instantiate WWW::UltimateDomains class. Parameters:
 SubDomain - Sub-domain of ultimatedomains.com to test against [optional]
 Timeout - Maximum seconds any operation should take
 UserAgent - User-Agent header value [optional]

 my $ud = WWW::UltimateDomains->new(
 ‘Timeout’ => 60,
 # The HTTP User-agent to use (optional)
 ‘UserAgent’ => “Query Agent”,
);

 my ($results, $time) = $ud->keyword_search(‘cards’);

=cut

sub new {

 my $class = shift;

 my $self = {

 ‘Timeout’ => undef,
 ‘SubDomain’ => ‘www’,
 ‘UserAgent’ => ‘UltimateDomainsTester/1.0’

 };

 my %args = @_;

 if (scalar(@_) == 0) {

 die <<EOF;

Missing options to new:
 Timeout - Maximum timeout in seconds for any called method [required]
 SubDomain - sub-domain to test against (e.g. www, dev, beta) [optional]
 UserAgent - Textual string to use for User-Agent header [optional]

Defaults:
 SubDomain: ${self}->{SubDomain}
 UserAgent: ${self}->{Useragent}
EOF

 }

 $self->{‘Timeout’} = $args{‘Timeout’} ||
 die “Missing required parameter ‘Timeout’!”;

 $self->{‘SubDomain’} = $args{‘SubDomain’} if defined($args{‘SubDomain’});
 $self->{‘UserAgent’} = $args{‘UserAgent’} if defined($args{‘UserAgent’});

 $self->{‘_base_url’} = “http://$args{‘SubDomain’}.ultimatedomains.com”;
www.syngress.com

w

208 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 # XXX - need error handling at some point
 $self->{‘_agent’} = WWW::Mechanize->new(‘agent’ => $self->{‘UserAgent’});
 $self->{‘_agent’}->timeout($self->{‘Timeout’});

 return bless $self, $class;

}

=item keyword_search

Performs a HTTP request on keyword_search.php with a given search term.
It returns the number domains found by keyword_search.php, the time
it took to perform the HTTP request, and an error message if a catchable
error occurred.

Usage:

 my $ud = WWW::UltimateDomains->new(‘Timeout’ => 60);
 my ($found, $time, $error) = $ud->keyword_search(“search_term”);

 die “Search failed: $error!” if defined $error;

=cut

sub keyword_search {

 my $self = shift;
 my $term = shift || die “Missing term to search for!”;
 my $url = $self->{‘_base_url’} . ‘/keyword_search.php’;
 my $agent = $self->{‘_agent’};

 # Encode non-alphanumeric characters in the search term.

 $term =~ s/([^A-Za-z0-9])/sprintf(“%%%02X”, ord($1))/seg;
 $term =~ s/ /+/g;

 # Do the page fetch and time it
 my $start_time_ref = [gettimeofday];

 eval {
 $agent->get(“${url}?search=${term}”);
 };

 my $err = $@;

 my $search_time = tv_interval($start_time_ref);

 # Parse the content and look for the “Total Domains” string
 my $domains_found = ‘No’;

 my $content = $agent->content();

 my $err_msg = “”;

 if ($err ne ‘’) {
 $err_msg = “Search failed: $@”;
 } elsif ($content =~ m/Total Domains\D+(\d+)/i) {
 $domains_found = $1;
 } elsif ($content =~ m/No domains were found/) {
 $domains_found = 0;
 } elsif ($content =~ m/500 read timeout/) {
 $err_msg = “Error: search timed out (${search_time}s > ” .
 $self->{‘Timeout’} . “s)”;
 } else {
 $err_msg = “Expected ‘Total Domains\\D+\\d+’, received $content”;

 }
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 209
 # Return number of domains found and search time
 return ($domains_found, $search_time, $err_msg);

}

1;

And then the check script:

#!/usr/local/bin/perl

=pod

=head1 DESCRIPTION

Search ultimatedomains.com for the passed in keyword and return an OK status if
 * The number of terms for the search is greater than 0
 * The search completes without exceeding the maximum execution time
 specified on the command line.

=cut

use strict;
use warnings;

use FindBin;
use lib “$FindBin::Bin/lib”;

use Nagios::Plugin;
use WWW::UltimateDomains;

my $USAGE = <<EOF;
Usage: %s -s|--search=<keyword> [-e|--env]
 [-w|--warning=<threshold>] [-c|--critical=<threshold>]
 [-v|--verbose]
EOF

my @ENVS = qw(www beta jarred rich vince max);

 my $np = Nagios::Plugin->new(
 ‘version’ => ‘$Id: check_keyword_search.pl 18 2008-01-06 14:54:07Z max $’,
 ‘shortname’ => “KEYWORD_SEARCH”,
 ‘usage’ => $USAGE,
 ‘timeout’ => 60 # Default timeout

);

$np->add_arg(spec => ‘env|e=s’,
 help => “-e, --env=ENVIRONMENT\n ” .
 “Env to search (” . join(‘,’, @ENVS) .
 “) - [default $ENVS[0]\]”,
 default => $ENVS[0]);

$np->add_arg(spec => ‘warning|w=s’,
 default => 5,
 help => “-w, --warning=INTEGER:INTEGER\n” .
 “ Warning threshold for search time [default 5]”);

$np->add_arg(spec => ‘critical|c=s’,
 default => 10,
 help => “-c, --critical=INTEGER:INTEGER\n” .
 “ Critical threshold for search time [default 10]”);
www.syngress.com

w

210 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
$np->add_arg(spec => ‘search|s=s’,
 help => “-s, --search=KEYWORD\n Keyword to search”,
 required => 1);

$np->getopts;

my $env = $np->opts->env;

if (! grep(/$env/, @ENVS)) {
 die (“Invalid env argument ” . $np->opts->env . “\n” .
 “ Valid envs are ” . join(‘,’, @ENVS) . “\n”);
}

$np->set_thresholds(‘warning’ => $np->opts->warning,
 ‘critical’ => $np->opts->critical);

Variables for the results of the keyword search
my ($found, $time, $err_msg) = (undef, undef);

eval {

 my $agent = WWW::UltimateDomains->new(
 ‘Timeout’ => $np->opts->critical,
 ‘SubDomain’ => $np->opts->env
);

 ($found, $time, $err_msg) = $agent->keyword_search($np->opts->search);

};

my $search_failed = $@;

$np->add_perfdata(
 label => “search”,
 value => $time,
 uom => “s”,
 threshold => $np->threshold()
);

Module threw a die()

if ($search_failed) {
 $np->nagios_exit(UNKNOWN, $search_failed);
}

Error during retrieval, known by WWW::UltimateDomains
if ($err_msg ne ‘’) {
 $np->nagios_exit(CRITICAL, $err_msg);
}

if ($found < 1) {
 $np->nagios_exit(CRITICAL, “No domains found for keyword ‘” .
 $np->opts->search .
 “‘ ($time seconds)”)
}

At this point, a positive number of domains were found, so let‘s make sure
the http response was received in a timely manner.

my $code = $np->check_threshold(check => $time);
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 211
if ($code == WARNING) {
 $np->nagios_exit($code, “$found results in $time seconds (> ” .
 $np->opts->warning . “s)”);
} elsif ($code == CRITICAL) {
 $np->nagios_exit($code, “$found results in $time seconds (> ” .
 $np->opts->critical . “s)”);
} elsif ($code == OK) {
 $np->nagios_exit($code, “$found results in $time seconds”);
} else {
This should never happen
 $np->nagios_exit(UNKNOWN, “$found results in $time ” .
 “seconds, but threshold check failed.”);
}

Testing Telnet-like
Interfaces (Telnet or SSH)
Network Devices
This check can help determine if core network/management network paths have
been disrupted. We have even seen cases where the telnet/ssh server on a network
device failed due to high memory and CPU utilization; the administrative server
failed before our CPU and memory alarms went off for the device, which has an
OS image with a memory leak problem. No custom code for this one; just use the
check_telnet or check_ssh programs that come with the Nagios plug-ins package.

Monitoring LDAP
LDAP continues to gain popularity in large organizations. It is easy to maintain,
easy to integrate, and scales well. There are a large number of LDAP servers on the
market. In this section, we focus on monitoring Sun One LDAP; the techniques
we explain here can be applied to other LDAP servers as well. Sun One LDAP
comes with a software SNMP agent, which makes it especially easy to monitor.

Testing Replication
This script tests simple replication between two LDAP instances. To do this, it expects
both instances to have a single user who is allowed to make changes to the same portion
of the LDAP tree being tested. The script will do the following:

1. Take a user-supplied LDIF (--ldif /path/to/ldif) and create the object
specified in the LDIF on the master server.
www.syngress.com

212 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
2. Ensure the newly created object can be found by searching for it by the
DN field in the LDIF supplied to the script (--ldif /path/to/ldif) on the
master LDAP server.

3. Sleep a user-supplied number of seconds to allow replication to occur
(--replication-wait).

4. Query for the record in the second master (or slave) LDAP server to ensure
it made it to the replicant.

5. Delete the record from the second master (in master-master mode) or the
only master (in master-slave) mode.

6. Sleep a user-supplied number of seconds to allow the deletion to propagate
to both servers (--replication-wait).

7. Query for the record on the slave (in master-slave mode) or the primary
master (in master-master mode) to make sure the record was properly
deleted.

The script will alert at a CRITICAL level if any of the steps mentioned fail.
It will output the following perfdata: time in seconds it took to BIND to each LDAP
server, time in seconds used to add the record specified in the –ldif argument, and
time in seconds used to search for the record on the second LDAP server. The scripts
uses LDAP version 3 and was written to work with the SunONE LDAP server;
it should work with other LDAP v3 compliant servers as well.

Example Call to This Script
/usr/local/bin/perl -w ./check_ldap_replication.pl --first-ldap-server
ldap01.example.com:4389 \

 --second-ldap-server ldap02.example.com:5389 --ldif
/home/testuser/src/replication.ldif \
--search-base ou=People,dc=test,dc=com --bind-dn ‘cn=Directory Manager’ \
--bind-password mypassword --replication-wait 1 --master-master-mode

LDAP-REPLICATION OK - Replicated one record in mode master-master in 1.08 seconds |
‘1st_bind_time’=0.01s;0;0 ‘2nd_bind_time’=0.00s;0;0 ‘search_time’=0.02s;0;0 ‘total_
time’=1.08s;0;0

The Script
#!/usr/local/bin/perl

nagios: +epn

=pod

=head1 NAME
www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 213
check_ldap_replication.pl

=head1 SYNOPSIS

Verify that LDAP replication between two
LDAP v3 compliant master-master or master-slave mode servers is
working properly.

=head1 DESCRIPTION

This script will do the following:

=over 4

=item *

Take a user-supplied object creation LDIF and create the object in the master
server.

=item *

Ensure the newly created object can be found using a search for it by DN in
the master LDAP server.

=item *

Sleep a user-supplied number of seconds to allow replication to occur.

=item *

Query for the record in the second master (or slave) LDAP server to ensure it
made it to the replicant.

=item *

Delete the record from the second master (in master-master mode) or the only
master (in master-slave) mode.

=item *

Query for the record on the slave (in master-slave mode) or the primary
master (in master-master mode) to make sure the record was properly deleted.

=back

If any step of the process fails, the script will return a CRITICAL alert
status to Nagios along with a descriptive error message.

This script will also output performance data for the following metrics:

=over 4

=item *

Time it took to bind to each LDAP server

=item *

Total time used for the add

=item *

Total time required to search

=back

The script accepts the following arguments:

=over 4

=item *

--bind-dn LDAP DN
www.syngress.com

w

214 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
=item *

--bind-password password

=item *

--search-base string

=item *

--first-ldap-server host[:port]

=item *

--second-ldap-server host[:port]

=item *

--ldif /path/to/ldif

=item *

--master-master-mode or --master-slave-mode

=item *

--replication-wait SECONDS

=back

All arguments are required.

Example call:

./check_ldap_replication \
--ldif /home/nagios/etc/replication.ldif \
--first-ldap-server ldap01.example.com \
--second-ldap-server ldap02.example.com:2389 \
--master-master-mode
--replication-wait 2 \
--search-base ou=people,,dc=example,dc=com \
--bind-dn myusername \
--bind-password mypassword

LDAP-REPLICATION OK: 2 seconds to replicate 1 record | ‘1st_bind’=0.2s;0;0
‘2nd_bind’=0.09s;0;0 ‘add’=0.5s;0;0 ‘search’=0.01s;0;0

=head1 Master-Master and Master-Slave Mode Differences

This test will operate slightly differently when testing master-master mode
LDAP replication then it will in master-slave mode.

The differences are as follows:

=over 4

=item *

In master-master mode, the replication record will be deleted from the second
LDAP server. In master-slave mode, the replication record will be deleted

from the master server.

=item *

In master-master mode, the script will then query to ensure the deleted
record doesn’t exist on the first LDAP server; in master-slave mode, the
script will query the second (slave) LDAP server to ensure the replication
record deletion worked properly.
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 215
=back

=head1 Replication LDIF Format

LDIF file must have DN and uid attributes that can be searched on, all other
attributes depend on your schema. The record in this file will be added to the
server given in the --first-ldap-server argument. Replication will be
considered successful if all attributes in the LDIF exist on the server
given in --second-ldap-server. Here is an example LDIF used based on test
data that comes with the Sun One LDAP server:

dn: uid=reptest1,ou=People,dc=test,dc=com
uid: reptest1
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
givenName: Reppie
sn: Test
cn: Replication Test
initials: RT
mail: reptest@example.com
telephoneNumber: 555-1212
description: This is record is for testing purposes only

=cut

sub check_ldap_replication {

 use strict;

 use Net::LDAP::Express;
 use Net::LDAP::LDIF;
 use Nagios::Plugin;
 use Time::HiRes qw(time);

 my $USAGE = <<EOF;

USAGE: check_ldap_replication.pl --ldif not –replicaiton-record /path/to/ldif \\

 --bind-dn uid=myid,ou=mygroup,dc=example,dc=com \\
 --bind-password mypassword \\
 --search-base ldap-search-base \\
 --first-ldap-server server[:port] \\
 --second-ldap-server server[:port] \\
 { --master-master-mode | --master-slave-mode } \\
 --replication-wait SECONDS \\
 [--debug]
EOF

 my $LABEL = ‘LDAP-REPLICATION’;

 my $plugin = Nagios::Plugin->new(
 ‘shortname’ => $LABEL,
 ‘usage’ => $USAGE
);
www.syngress.com

www

216 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins

$plugin->add_arg(
 ‘spec’ => ‘bind-dn|U=s’,
 ‘help’ => “-U, --bind-dn LDAP DN\n” .
 “ LDAP DN to use for the replication test. This user\n” .
 “ must be able to add, search, and delete records from\n” .
 “ both LDAP servers.”,
 ‘required’ => 1
);

$plugin->add_arg(
 ‘spec’ => ‘bind-password|P=s’,
 ‘help’ => “-P, --bind-password password\n” .
 “ Password to use to authenticate against both LDAP\n” .
 “ servers.”,
 ‘required’ => 1
);

$plugin->add_arg(
 ‘spec’ => ‘search-base|B=s’,
 ‘help’ => “-B, --search-base search-base\n” .
 “ LDAP search base to use when searching for the\n” .
 “ record added by the script”,
 ‘required’ => 1
);

$plugin->add_arg(
 ‘spec’ => ‘first-ldap-server|F=s’,
 ‘help’ => “-F, --first-ldap-server SERVER[:PORT]\n” .
 “ First LDAP server to connect to, replication\n” .
 “ record will be added to this server. Port is \n” .
 “ optional, defaults to 389.”,
 ‘required’ => 1
);

$plugin->add_arg(
 ‘spec’ => ‘second-ldap-server|S=s’,
 ‘help’ => “-S, --first-ldap-server SERVER[:PORT]\n” .
 “ Second LDAP server to connect to, replication\n” .
 “ record will be searched for on this server. Port is \n” .
 “ optional, defaults to 389.”,
 ‘required’ => 1

);

$plugin->add_arg(
 ‘spec’ => ‘ldif|L=s’,
 ‘help’ => “-L, --ldif /path/to/ldif\n” .
 “ Full path and file name of LDIF file. LDIF file\n” .
 “ must have a DN attribute that can be searched on,\n” .
 “ all other attributes are optional. The record in\n” .
 “ this file will be added to the server given in the\n” .
 “ --first-ldap-server argument. Replication will\n” .
 “ be considered successful if all attributes in the\n” .
 “ LDIF exist on the server given in --second-ldap-server”,
 ‘required’ => 1
);
.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 217
 $plugin->add_arg(
 ‘spec’ => ‘master-master-mode’,
 ‘help’ => “--master-master-mode\n” .
 “ Replication is in master-master mode. See perldoc\n” .
 “ for details on how this affects the test.”,
 ‘required’ => 0
);

 $plugin->add_arg(
 ‘spec’ => ‘master-slave-mode’,
 ‘help’ => “--master-slave-mode\n” .
 “ Replication is in master-slave mode. See perldoc\n” .
 “ for details on how this affects the test.”,
 ‘required’ => 0
);

 $plugin->add_arg(
 ‘spec’ => ‘replication-wait|W=i’,
 ‘help’ => “-W, --replication-wait SECONDS\n” .
 “ How long (in seconds) to wait between adding the\n” .
 “ replication record and searching for it.”,
 ‘required’ => 1
);

 $plugin->add_arg(
 ‘spec’ => ‘debug|D’,
 ‘help’ => “-D, --debug\n Enable debug mode”,
 ‘required’ => 0,
 ‘default’ => 0
);

 $plugin->getopts();

 my %CFG = (
 ‘opts’ => $plugin->opts,
 ‘mode’ => 0,
 ‘ldif’ => undef,
 ‘stats’ => {
 ‘1st_bind_time’ => 0,
 ‘2nd_bind_time’ => 0,
 ‘search_time’ => 0,
 ‘total_time’ => 0
 },
 ‘first_conn’ => undef,
 ‘second_conn’ => undef
);

 use constant MASTER_MASTER_MODE => ‘master-master’;
 use constant MASTER_SLAVE_MODE => ‘master-slave’;

 if ((! $plugin->opts->get(‘master-master-mode’)) &&
 (! $plugin->opts->get(‘master-slave-mode’))) {
 $plugin->nagios_die(“Must specify --master-master-mode or ” .
 “--master-slave-mode”);
 }
www.syngress.com

www

218 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins

 if ($plugin->opts->get(‘master-master-mode’)) {
 $CFG{‘mode’} = MASTER_MASTER_MODE;
 } else {
 $CFG{‘mode’} = MASTER_SLAVE_MODE;
 }

 debug(“Running in $CFG{‘mode’} mode“);

 # Ensure the specified LDIF exists and is valid.
 debug(“Parsing replication LDIF file ” . $CFG{‘opts’}->get(‘ldif’));
 $CFG{‘ldif’} = parse_ldif_file($plugin, $CFG{‘opts’}->get(‘ldif’));

 # Connect to the first server, time how long it takes to bind.

 debug(“Connecting to 1st LDAP server ” .
 $CFG{‘opts’}->get(‘first-ldap-server’));

 my $start_time = time();
 my ($first_ldap, $first_bind_time) = connect_to_ldap_server(
 $plugin,
 $CFG{‘opts’}->get(‘first-ldap-server’),
 $CFG{‘opts’}->get(‘bind-dn’),
 $CFG{‘opts’}->get(‘bind-password’),
 $CFG{‘opts’}->get(‘search-base’)
);

 $CFG{‘1st_conn’} = $first_ldap;
 $CFG{‘stats’}->{‘1st_bind_time’} = $first_bind_time;

 # Add the LDIF to the first server.
 if ($CFG{‘opts’}->get(‘debug’)) {
 debug(“Adding LDIF to ” . $CFG{‘opts’}->get(‘first-ldap-server’) .

“: ” . $CFG{‘ldif’}->current_entry()->dump());
 }
 add_ldif_to_ldap($plugin, $CFG{‘1st_conn’}, $CFG{‘ldif’});

 # Sleep --replication-wait seconds for replication to occur.
 my $wait = $CFG{‘opts’}->get(‘replication-wait’);
 debug(“Sleeping $wait seconds to allow replication to occur”);
 sleep($wait);

 debug(“Connecting to 2nd LDAP server ” .
 $CFG{‘opts’}->get(‘second-ldap-server’));

 # Search for the record on the second server.
 my ($second_ldap, $second_bind_time) = connect_to_ldap_server(
 $plugin,
 $CFG{‘opts’}->get(‘second-ldap-server’),
 $CFG{‘opts’}->get(‘bind-dn’),
 $CFG{‘opts’}->get(‘bind-password’),
 $CFG{‘opts’}->get(‘search-base’)
);

 $CFG{‘2nd_conn’} = $first_ldap;
 $CFG{‘stats’}->{‘2nd_bind_time’} = $second_bind_time;

 debug(“Ensuring LDAP record was created on secondary server”);
 my ($found, $search_time) = search_for_record($plugin,

$CFG{‘2nd_conn’},
$CFG{‘ldif’}, 1);
.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 219
 $CFG{‘stats’}->{‘search_time’} = $search_time;

 if ($found == 0) {
 $CFG{‘stats’}->{‘total_time’} = 0;
 $plugin->nagios_exit(CRITICAL,
 “Replication failed, record not found on replicant!” .
 make_perfdata($CFG{‘stats’}));
 return CRITICAL;
 }

 # Delete the record from the secondary master in master-master mode
 # or the slave in master-slave mode.

 if ($CFG{‘mode’} eq MASTER_MASTER_MODE) {
 debug(“Deleting LDAP record from secondary master server”);
 delete_record($plugin, $CFG{‘2nd_conn’}, $CFG{‘ldif’});
 } else {
 debug(“Deleting LDAP record from master server”);
 delete_record($plugin, $CFG{‘1st_conn’}, $CFG{‘ldif’});
 }

 # Search for the record on the primary master in master-master mode
 # or the slave in master-slave mode to ensure the deletion worked.

 my $not_found = 0;

 if ($CFG{‘mode’} eq MASTER_MASTER_MODE) {
 debug(“Ensuring LDAP record was deleted from secondary master server”);
 my @results = search_for_record($plugin, $CFG{‘2nd_conn’},
 $CFG{‘ldif’}, 0);
 $not_found = ! $results[0];
 } else {
 debug(“Ensuring LDAP record was deleted from master server”);
 my @results = search_for_record($plugin, $CFG{‘1st_conn’},
 $CFG{‘ldif’}, 0);
 $not_found = ! $results[0];
 }

 if ($not_found == 0) {
 $CFG{‘stats’}->{‘total_time’} = 0;
 $plugin->nagios_exit(CRITICAL, “Replication record deletion failed!” .
 make_perfdata($CFG{‘stats’}));
 }

 my $total_time = sprintf(“%0.2f”, time() - $start_time);
 $CFG{‘stats’}->{‘total_time’} = $total_time;

 my $message = “$LABEL OK - Replicated one record in mode $CFG{‘mode’} in ” .
 “$total_time seconds”;
 print “$message | ” . make_perfdata($CFG{‘stats’}) . “\n”;

 return OK;

 sub parse_ldif_file {

 my $plugin = shift;
 my $file = shift;

 my $ldif = undef;
www.syngress.com

www

220 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins

 eval {
 $ldif = Net::LDAP::LDIF->new($file, ‘r’, ‘onerror’ => ‘die’);
 my $entry = $ldif->read_entry();
 };

 if ($@) {
 $plugin->nagios_die(“Can’t parse LDIF $file: $@”);
 }

 if ($CFG{‘opts’}->get(‘debug’)) {

 my $entry = $ldif->current_entry();

 my @attrs;

 foreach my $attr ($entry->attributes) {
 push(@attrs, join(‘=’, $attr, $entry->get_value($attr)));
 }

 debug(“Parsed LDIF: ” . join(‘, ’, @attrs));
 }

 return $ldif;
 }

sub connect_to_ldap_server {

 my $plugin = shift;
 my $server_spec = shift;
 my $dn = shift;
 my $pass = shift;
 my $search_base = shift;

 my ($host, $port) = split(‘:’, $server_spec, 2);
 $port = 389 if ! defined $port;

 my $ldap = undef;

 my $start = time();

 my $debug = 0;

 if ($CFG{‘opts’}->get(‘debug’) == 1) {
 $debug = 1 | 2;
 }

 eval {
 $ldap = Net::LDAP::Express->new(
 ‘host’ => $host,
 ‘port’ => $port,
 ‘bindDN’ => $dn,
 ‘bindpw’ => $pass,
 ‘base’ => $search_base,
 ‘debug’ => $debug,
 ‘searchattrs’ => [qw(uid)]
);
 } ;

 my $connect_time = time() - $start;

 if ($@) {
 $plugin->nagios_die(“Can’t connect to ldap server $host: $@”);
 }
.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 221
 return ($ldap, $connect_time);

 }

 sub add_ldif_to_ldap {

 my $plugin = shift;
 my $conn = shift;
 my $ldif = shift;

 debug(“Adding new entry to replication master”);
 my $new_entry = $ldif->current_entry();
 my $result = $conn->add($new_entry);

 if ($result->code) {
 my $msg = “Could not add record to LDAP: ” . $result->error;
 $plugin->nagios_exit(CRITICAL, $msg);
 }

 }

 sub search_for_record {

 my $plugin = shift;
 my $conn = shift;
 my $ldif = shift;
 my $expect = shift;

 my $entry = $ldif->current_entry();
 my $filter = “(uid=” . $entry->get_value(‘uid’) . “)”;
 my $base = $CFG{‘opts’}->get(‘search-base’);

 debug(“Searching for record with search base $base and filter $filter”);

 my $start = time();
 my $results = $conn->search(‘filter’ => $filter) ;
 my $total = time() - $start;

 my $count = $results->count();

 debug(“Search return $count records”);

 if ($count != $expect) {
 my $msg = “Expected 1 entry for $filter, base $base, found $count!”;
 $plugin->nagios_exit(CRITICAL, $msg);
 }

 return($count, $total);

 }

 sub delete_record {

 my $plugin = shift;
 my $conn = shift;
 my $ldif = shift;

 my $result = $conn->delete($ldif->current_entry());

 if ($result->code) {
 my $msg = “Could not delete record: ” . $result->error;
 $plugin->nagios_exit(CRITICAL, $msg);
 }

 }
www.syngress.com

w

222 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 sub debug {
 return unless $CFG{‘opts’}->get(‘debug’) == 1;
 my $msg = shift;
 print STDERR scalar(localtime(time())) . “: $msg\n”;
 }

 sub make_perfdata {

 my $stats = shift;

 my $output = “”;

 for my $stat (sort keys %$stats) {
 $output .= sprintf(“‘$stat’=%0.2fs;0;0 ”, $stats->{$stat});
 }

 return $output;

 }

}

exit check_ldap_replication();

Monitoring Databases
Most applications in today use a database. As the backbone of most applications, the
database can be as important to the application as switches are to networks. Nagios
ships with several database plugins: check_mysql, check_mysql_query, and
check_oracle to name a few. You can also use other core plugins to check the avail-
ability of databases. For example we can use check_tcp to make sure the network
listener of the database system we are using is actually listening. If there is not a plug-
in for your database , it is generally easy to create scripts from scratch that will watch
your database for signs of failure with Nagios. The difficult part of monitoring data-
bases is that they usually do not fail in an obvious way. Most likely staff will find that
a database on the edge of failure will first have issues with performance, for example:
problems committing writes to disk, table locks not being released, or general slow
downs in database performance. We recommend that the Nagios administrator work
with their local database administrator to define situations to watch for and critical
performance thresholds. A few key points to keep in mind when setting up database
monitoring with Nagios:

Set up a table on each production database server that will be used just for
monitoring; the table should have a single timestamp field. From Nagios,
periodically run a check script that inserts a row into the table, then runs
a SELECT to ensure the row just inserted made it into the database, then
deletes the row just inserted, and finally runs a final SELECT to ensure the

■

ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 223
row was deleted. This check will quickly tell you if the database server is able
to perform basic read and write operations in a timely manner and without
failures.

Use perl scripts with ePN or shell script queries to read performance data
from database system tables and alert when performance is out of acceptable
limits as defined by the database staff and Nagios administration staff.

Most databases include SNMP agents or monitoring programs that will send
SNMP traps when the database fails or performance degrades; some also
include SNMP sub-agents or SNMP master agents that will allow you to
poll the database for performance metrics. Make use of this functionality
if the database you are monitoring supports it.

Specialized Hardware
Fast load balancers, efficient SSL termination appliances and proxies, UPSs. The variety of
hardware devices that can be found on larger projects is dizzying. Even more confusing is
keeping track of all those devices. Some provide SNMP agents (if you are lucky and can
use SNMP), others have HTTP interfaces, and even others have no interface to monitor
beyond log output. Regardless of the interface, Nagios’ simple and easy-to-use plug-in
framework will let you monitor your device and free up your memory for more impor-
tant things like remembering to go to lunch or the name and face of your significant
other. In this section, we discuss a number of hardware appliances larger organizations use
and help you monitor the right metrics on the devices, the metrics that will enable you
to quickly know when things are going wrong.

Bluecoat Application
Proxy and Anti-Virus Devices
SNMP-based Checks
The Bluecoat proxy devices (SG410, 510, and 810) and anti-virus (A/V) devices
expose a number of very useful SNMP MIBs that allow a network manager to
retrieve very useful metrics from them. These MIBs include HTTP status distribution,
CPU, memory, and disk utilization, proxy activity, and Web server utilization. One
very nice feature of Bluecoat is that all thresholds that are set by a Bluecoat adminis-
trator on a Bluecoat device are exposed in the SNMP MIB, so scripts that check

■

■

www.syngress.com

w

224 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
service thresholds on the Bluecoats for CPU, memory, and network utilization need
no threshold input from the Nagios administrator. These devices also send out a large
number of useful traps that can be received by Nagios using SNMPTT (discussed in
Chapter 5).

All MIBs used in this section can be downloaded from the Bluecoat Web site at
www.bluecoat.com.

Proxy Devices (SG510, SG800)
Bluecoat proxy devices use the concept of pressure to describe the amount of work a
manageable element of the device is using, be that CPU, network, or memory. From the
Bluecoat management console an administrator can configure the warning and critical
threshold levels and the alert threshold intervals for each of these checks. A metric is
only considered at or above a threshold if it exceeds the threshold for at least the inter-
nal configured for the threshold. For example, the CPU utilization threshold might be
configured on the Bluecoat device as “95% pressure for 120 seconds,” so the device
would only consider CPU utilization breached if it stayed above 95% utilization for two
minutes or more.

The Bluecoat MIB defines seven different states for manageable elements: ok,
low-warning, warning, high-warning, low-critical, critical, and high-critical. We map
these states to Nagios alert states as follows:

OK:

ok

WARN:

low-warning

warning

high-warning

CRITICAL:

low-critical

critical

high-critical

■

■

■

■

■

■

■

ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 225
In our opinion, having seven different states does not provide additional value.
When an element enters a non-ok state we feel that the alert should be acted on.
Having low and high sublevels within each threshold definition means a device
manager has to decide to 1) ignore the substates, 2) let the substates trigger an
alarm but do nothing about them, or 3) act regardless of the substate. We feel that
acting regardless of the substate is the best course of action and simplifies setting
the thresholds on the device.

Bluecoat administrators can also configure the Bluecoat to send SNMP traps
when thresholds are breached; these traps can be integrated into Nagios using
SNMPTT (as discussed in Chapter 5). Bluecoat also allows an administrator to
configure the Bluecoat to send email alerts and log events to the Bluecoat’s internal
logs when alerts occur.

CPU Utilization
MIB needed

BLUECOAT-SG-PROXY-MIB.my
system-resources.my

OIDs used
BLUECOAT-SG-PROXY-MIB.my

sgProxyCpuBusyPerCent: 1.3.6.1.4.1.3417.2.11.2.1.7.0

sgProxyCpuIdlePerCent: 1.3.6.1.4.1.3417.2.11.2.1.8.0

system-resources.my
cpuUtilizationValue: 1.3.6.1.4.1.3417.2.8.1.3.0

cpuCurrentState: 1.3.6.1.4.1.3417.2.8.1.9.0

cpuWarningThreshold: 1.3.6.1.4.1.3417.2.8.1.4.0

cpuCriticalThreshold: 1.3.6.1.4.1.3417.2.8.1.6.0

This check measures CPU pressure on a Bluecoat device. According to the
documentation, on SGOS 4.x, this check will only return utilization for CPU 0
on a Bluecoat device even if that device has multiple CPUs. On Bluecoats running
SGOS 5.x we can also retrieve busy and idle CPU utilization for graphing and
trending purposes using perfdata.

■

■

■

■

■

■

www.syngress.com

w

226 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
#!/usr/local/bin/perl

nagios: +epn

=pod

=head1 NAME

check_bluecoat_cpu.pl - Check CPU pressure on a Bluecoat device.

=head1 DESCRIPTION

The SNMP agent on Bluecoat devices allows us to query it to see what
thresholds have been set by the Bluecoat administrator. For this reason
we do not need to have the user specify warning nor critical thresholds.

The script will return perfdata for CPU utilization for all Bluecoat
devices; for SGOS 5.x and later this script will also return idle and
busy % CPU utilization.

=cut

sub check_bluecoat_cpu {

 use strict;
 use FindBin;
 use lib “$FindBin::Bin/lib”;

 use Net::SNMP;
 use Nagios::Plugin::SNMP;

 my $LABEL = ‘BLUECOAT-CPU’;

 my $plugin = Nagios::Plugin::SNMP->new(
 ‘shortname’ => $LABEL,
 ‘usage’ => ‘USAGE: %s’
);

 $plugin->getopts;

 my $DEBUG = $plugin->opts->get(‘snmp-debug’);

 # Return from current state will be one of these, each has
 # a value that matches the index position in the array below.
 my @states = qw(ok low-warning warning high-warning
 low-critical critical high-critical);

 my %oids = qw(
 sgProxyCpuBusyPerCent.0 .1.3.6.1.4.1.3417.2.11.2.1.7.0
 sgProxyCpuIdlePerCent.0 .1.3.6.1.4.1.3417.2.11.2.1.8.0
 cpuUtilizationValue.0 .1.3.6.1.4.1.3417.2.8.1.3.0
 cpuCurrentState.0 .1.3.6.1.4.1.3417.2.8.1.9.0
 cpuWarningThreshold.0 .1.3.6.1.4.1.3417.2.8.1.4.0
 cpuCriticalThreshold.0 .1.3.6.1.4.1.3417.2.8.1.6.0
);

 my $result = $plugin->get(values %oids);

 # Close and destroy session
 $plugin->close();

 my @perf_data;

 my %cpu;
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 227
 $cpu{‘busy’} = $result->{$oids{‘sgProxyCpuBusyPerCent.0’}};
 $cpu{‘idle’} = $result->{$oids{‘sgProxyCpuIdlePerCent.0’}};
 $cpu{‘util’} = $result->{$oids{‘cpuUtilizationValue.0’}};
 $cpu{‘state’} = $result->{$oids{‘cpuCurrentState.0’}};
 $cpu{‘warn’} = $result->{$oids{‘cpuWarningThreshold.0’}};
 $cpu{‘crit’} = $result->{$oids{‘cpuCriticalThreshold.0’}};

 # Not supported on SGOS < 5.x
 $cpu{‘busy’} = 0 if $cpu{‘busy’} eq ‘noSuchObject’;
 $cpu{‘idle’} = 0 if $cpu{‘idle’} eq ‘noSuchObject’;

 my $level = OK;

 my $output = “$LABEL ”;

 if ($cpu{‘state’} == 0) {
 $output .= “OK - Utilization $cpu{‘util’}%”;
 } elsif (($cpu{‘state’} > 0) && ($cpu{‘state’} < 6)) {
 $output .= “WARNING - Utilization $cpu{‘util’}% >= $cpu{‘warn’}%”;
 $level = WARNING;
 } else {
 $output .= “CRITICAL - Utilization $cpu{‘util’}% >= $cpu{‘crit’}%”;
 $level = CRITICAL;
 }

 print “$output, state $states[$cpu{‘state’}] ”,
 “| ‘busy’=$cpu{‘busy’}%;;;0;100 ”,
 “‘idle’=$cpu{‘idle’}%;;;0;100 ”,
 “‘util’=$cpu{‘util’}%;$cpu{‘warn’};$cpu{‘crit’};0;100 ”,
 “‘state’=$cpu{‘state’};1;6;0;6\n”;
 return $level;

 sub debug {

 return unless $DEBUG == 1;

 my $msg = shift;

 print STDERR scalar(localtime()) . “: $msg\n”;

 }

}

exit check_bluecoat_cpu();

Memory Utilization
MIB needed

BLUECOAT-SG-PROXY-MIB.my
system-resources.my
www.syngress.com

w

228 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
OIDs used
BLUECOAT-SG-PROXY-MIB.my

sgProxyMemAvailable: 1.3.6.1.4.1.3417.2.11.2.3.1.0

sgProxyMemCacheUsage: 1.3.6.1.4.1.3417.2.11.2.3.2.0

sgProxyMemSysUsage: 1.3.6.1.4.1.3417.2.11.2.3.3.0

system-resources.my

memPressureValue: 1.3.6.1.4.1.3417.2.8.2.3.0

memCurrentState: 1.3.6.1.4.1.3417.2.8.2.9.0

memWarningThreshold: 1.3.6.1.4.1.3417.2.8.2.4.0

memCriticalThreshold: 1.3.6.1.4.1.3417.2.8.2.7.0

This check measures percentage memory utilization on a Bluecoat device. On devices
running SGOS 5.x or later we can also retrieve memory available, cached, and system
utilization metrics. As with CPU utilization, the warning and critical thresholds are set on
the device itself so we do not have to ask the user to provide them as arguments to the
script.
#!/usr/local/bin/perl

nagios: +epn

=pod

=head1 NAME

check_bluecoat_mem.pl - Check Bluecoat memory pressure

=head1 DESCRIPTION

This script will check memory pressure on a Bluecoat device. The Bluecoat
SNMP agent also exposes the thresholds the Bluecoat administrator has set
on the device, which means we do not need to have the user provide
warning or critical thresholds.

The script will return memory pressure % as perfdata; for Bluecoats running
SGOS version 5.x or higher, the script will also return cached, sys, and
avail memory as perfdata for trending purposes.

=cut

sub check_bluecoat_mem {

 use strict;

 use FindBin;
 use lib “$FindBin::Bin/lib”;

 use Nagios::Plugin::SNMP;

■

■

■

■

■

■

■

ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 229
 my $LABEL = ‘BLUECOAT MEM’;

 my $plugin = Nagios::Plugin::SNMP->new(
 ‘shortname’ => $LABEL,
 ‘usage’ => ‘USAGE: %s’
);

 $plugin->getopts;

 my $DEBUG = $plugin->opts->get(‘snmp-debug’);

 # Return from current state will be one of these:
 my @states = qw(ok low-warning warning high-warning
 low-critical critical high-critical);

 my %oids = qw(
 sgProxyMemAvailable.0 .1.3.6.1.4.1.3417.2.11.2.3.1.0
 sgProxyMemCacheUsage.0 .1.3.6.1.4.1.3417.2.11.2.3.2.0
 sgProxyMemSysUsage.0 .1.3.6.1.4.1.3417.2.11.2.3.3.0
 memPressureValue.0 .1.3.6.1.4.1.3417.2.8.2.3.0
 memCurrentState. 0 .1.3.6.1.4.1.3417.2.8.2.9.0
 memWarningThreshold.0 .1.3.6.1.4.1.3417.2.8.2.4.0
 memCriticalThreshold.0 .1.3.6.1.4.1.3417.2.8.2.7.0
);

 # Get the mem values
 my $result = $plugin->get(values %oids);

 # Close and destroy session
 $plugin->close();

 my @perf_data;

 my %mem;

 $mem{‘avail’} = $result->{$oids{‘sgProxyMemAvailable.0’}};
 $mem{‘cache’} = $result->{$oids{‘sgProxyMemCacheUsage.0’}};
 $mem{‘sys’} = $result->{$oids{‘sgProxyMemSysUsage.0’}};
 $mem{‘pressure’} = $result->{$oids{‘memPressureValue.0’}};

 $mem{‘state’} = $result->{$oids{‘memCurrentState.0’}};
 $mem{‘warn’} = $result->{$oids{‘memWarningThreshold.0’}};
 $mem{‘crit’} = $result->{$oids{‘memCriticalThreshold.0’}};

 $mem{‘avail’} = 0 if $mem{‘avail’} eq ‘noSuchObject’;
 $mem{‘cache’} = 0 if $mem{‘cache’} eq ‘noSuchObject’;
 $mem{‘sys’} = 0 if $mem{‘sys’} eq ‘noSuchObject’;
 $mem{‘pressure’} = ‘’ if $mem{‘pressure’} eq ‘noSuchObject’;

 my $level = OK;
 my $output = “$LABEL ”;

 if ($mem{‘state’} == 0) {
 $output .= “OK - Utilization $mem{‘pressure’}%”;
 } elsif (($mem{‘state’} > 0) && ($mem{‘state’} < 6)) {
 $output .= “WARNING - Utilization $mem{‘pressure’}% >= $mem{‘warn’}%”;
 $level = WARNING;
 } else {
 $output .= “CRITICAL - Utilization $mem{‘pressure’}% >= $mem{‘crit’}%”;
 $level = CRITICAL;
 }
www.syngress.com

ww

230 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 print “$output, state $states[$mem{‘state’}] ”,
 “| ‘avail’=$mem{‘avail’}b;;;; ”,
 “‘cache’=$mem{‘cache’}b;;;; ”,
 “‘sys’=$mem{‘sys‘}b;;;; ”,
 “‘pressure’=$mem{‘pressure’}%;$mem{‘warn’};$mem{‘crit’};0;100 ”,
 “‘state’=$mem{‘state’};1;6;0;6\n”;

 return $level;

 sub debug {

 return unless $DEBUG == 1;

 my $msg = shift;

 print STDERR scalar(localtime()) . “: $msg\n”;

 }

}

exit check_bluecoat_mem();

Network Interface Utilization
MIB needed

system-resources.my

OIDs used
netName: 1.3.6.1.4.1.3417.2.8.3.1.1.2
netUtilizationValue: 1.3.6.1.4.1.3417.2.8.3.1.1.3
netWarningThreshold: 1.3.6.1.4.1.3417.2.8.3.1.1.4
netCriticalThreshold: 1.3.6.1.4.1.3417.2.8.3.1.1.6
netCurrentState: 1.3.6.1.4.1.3417.2.8.3.1.1.9
The Bluecoat exposes network utilization values on a per-interface basis; if the

Bluecoat has four interfaces, the SNMP agent on the Bluecoat will return individual
states, values, and thresholds for each interface. The script will output perfdata for
each interface for graphing and trending purposes.
#!/usr/local/bin/perl

nagios: +epn

=pod

=head1 NAME

check_bluecoat_net.pl - Check Bluecoat network pressure

=head1 DESCRIPTION

This script checks network pressure on a Bluecoat Proxy device. It will
return memory pressure % utilization as perfdata for each interface on
the Bluecoat proxy being checked. Network pressure thresholds are set on
the device by the Bluecoat proxy administrator so we do not need to ask
the user to provide warning nor critical thresholds to the script.

=cut
w.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 231
sub check_bluecoat_net {

 use strict;

 use FindBin;
 use lib “$FindBin::Bin/lib”;
 use Nagios::Plugin::SNMP;

 my $LABEL = ‘BLUECOAT-NET’;

 my $plugin = Nagios::Plugin::SNMP->new(
 ‘shortname’ => $LABEL,
 ‘usage’ => ‘USAGE: %s’
);

 $plugin->getopts;

 my $DEBUG = $plugin->opts->get(‘snmp-debug’);

 # Return from current state will be one of these:
 my @states = qw(ok low-warning warning high-warning
 low-critical critical high-critical);

 # These are all tables, one entry in each per interface
 my %oids = qw(
 .1.3.6.1.4.1.3417.2.8.3.1.1.2 netName
 .1.3.6.1.4.1.3417.2.8.3.1.1.3 netUtilizationValue
 .1.3.6.1.4.1.3417.2.8.3.1.1.4 netWarningThreshold
 .1.3.6.1.4.1.3417.2.8.3.1.1.6 netCriticalThreshold
 .1.3.6.1.4.1.3417.2.8.3.1.1.9 netCurrentState
);

 my %net;

 for my $oid (keys %oids) {

 debug(“Walking table $oid”);

 my $results = $plugin->walk($oid);

 for my $result (keys %$results) {

 my $table = $results->{$result};

 for my $item (keys %$table) {

 my ($base, $idx) = ($item =~ m/^(.+)\.(\d+)$/);
 my $key = $oids{$base};

 debug(“$idx: $key = $table->{$item}”);

 $net{$idx} = {} if ! exists $net{$idx};
 $net{$idx}->{$key} = $table->{$item};

 }

 }

 }

 # Close and destroy session
 $plugin->close();

 my @perf_data;

 my @ok;
 my @warn;
 my @crit;

 my $level = OK;
www.syngress.com

w

232 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 for my $idx (sort keys %net) {

 my %net = %{$net{$idx}};
 my $name = $net{‘netName’};

 if ($net{‘netCurrentState’} == 0) {

 push(@ok, “$name $net{‘netUtilizationValue’}%”);

 } elsif (($net{‘netCurrentState’} > 0) &&
 ($net{‘netCurrentState’} < 6)) {

 push(@warn, “$name $net{‘netUtilizationValue’}% ” .
 “>= $net{‘netWarningThreshold’}”);
 $level = WARNING unless $level == CRITICAL;

 } else {
 push(@crit, “$name $net{‘netUtilizationValue’}% ” .
 “>= $net{‘netCriticalThreshold’}”);
 $level = CRITICAL;
 }

 $name =~ s/ utilization//gi;
 $name =~ s/ /_/g;
 $name =~ s/:/-/g;

 push(@perf_data, “‘${name}’=$net{‘netUtilizationValue’};” .
 “$net{‘netWarningThreshold’};” .
 “$net{‘netCriticalThreshold’};” .
 “0;0”);
 }

 my $output = “$LABEL ”;

 if (scalar(@crit) > 0) {
 $output .= ‘CRITICAL ’ . join(‘, ’, @crit) . ‘ ’;
 }

 if (scalar(@warn) > 0) {
 $output .= ‘WARNING ’ . join(‘, ’, @warn) . ‘ ’;
 }

 if (scalar(@ok) > 0) {
 $output .= ‘OK ’ . join(‘, ’, @ok);
 }

 print “$output | ” . join(‘ ’, @perf_data) . “\n”;

 return $level;

 sub debug {

 return unless $DEBUG == 1;

 my $msg = shift;

 print STDERR scalar(localtime()) . “: $msg\n”;

 }

}

exit check_bluecoat_net();
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 233
Anti-Virus Devices
A / V Health Check
MIB needed

BLUECOAT-AV-MIB

OIDs needed
avFilesScanned: 1.3.6.1.4.1.3417.2.10.1.1.0
avVirusesDetected: 1.3.6.1.4.1.3417.2.10.1.2.0
avLicenseDaysRemaining: 1.3.6.1.4.1.3417.2.10.1.7.0
avSlowICAPConnections: 1.3.6.1.4.1.3417.2.10.1.10.0
Bluecoat anti-virus devices are used in conjunction with proxy devices to provide

fast anti-virus scanning of content passing through the Bluecoat device. Proxies
communicate with anti-virus devices using a protocol called ICAP that allows for
efficient communication between the two. Bluecoat anti-virus devices do not have
the rich SNMP MIB support proxy devices do; however, the SNMP agent on them
does provide useful, queryable variables. This AV check script will:

Alert when the Antivirus scanning license is nearing expiration (user pro-
vides days left for warning and critical thresholds)

Return perfdata that includes the following fields

Number of file scanned.

Viruses detected.

Number of slow ICAP connections—if sustained numbers are seen,
check the connections between the proxy and anti-virus devices for
problems and check the two devices to see if either is becoming
overloaded.

#!/usr/local/bin/perl

nagios: +epn

=pod

=head1 NAME

check_bluecoat_av.pl - Check basic status of a Bluecoat A/V device.

=head1 DESCRIPTION

■

■

■

■

■

www.syngress.com

w

234 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
This script will perform several basic checks on a Bluecoat A/V device;
the script accepts warning and critical arguments that indicate low water
marks for days left on the A/V device Antivirus license on the device. The
device will return perfdata for the number of files scanned, the number of
virii detected by the device, and the number of slow ICAP connections to
the device from compatible Bluecoat proxy devices.

=cut

sub check_bluecoat_av {

 use strict;

 use FindBin;
 use lib “$FindBin::Bin/lib”;
 use Nagios::Plugin::SNMP;

 my $LABEL = ‘BLUECOAT-AV’;

 my $USAGE = <<EOF;
USAGE %s [--warning days_left_on_license] [--critical days_left_on_license]

EOF

 my $plugin = Nagios::Plugin::SNMP->new(
 ‘shortname’ => $LABEL,
 ‘usage’ => $USAGE
);

 $plugin->getopts;

 my $DEBUG = $plugin->opts->get(‘snmp-debug’);

 my $WARNING = $plugin->opts->get(‘warning’);
 $plugin->nagios_die(‘warning threshold is required!’)
 if ! defined $WARNING;

 my $CRITICAL = $plugin->opts->get(‘critical’);
 $plugin->nagios_die(‘critical threshold is required!’)
 if ! defined $CRITICAL;

 my %oids = qw(
 avFilesScanned.0 .1.3.6.1.4.1.3417.2.10.1.1.0
 avVirusesDetected.0 .1.3.6.1.4.1.3417.2.10.1.2.0
 avLicenseDaysRemaining.0 .1.3.6.1.4.1.3417.2.10.1.7.0
 avSlowICAPConnections.0 .1.3.6.1.4.1.3417.2.10.1.10.0
);

 my $results = $plugin->get(values %oids);

 my $files_scanned = $results->{$oids{‘avFilesScanned.0’}};
 my $virii_found = $results->{$oids{‘avVirusesDetected.0’}};
 my $days_left = $results->{$oids{‘avLicenseDaysRemaining.0’}};
 my $slow_icap = $results->{$oids{‘avSlowICAPConnections.0’}};

 # Close and destroy session
 $plugin->close();

 my $level = OK;

 my $output = “$LABEL ”;
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 235
 if ($days_left <= $CRITICAL) {
 $output .= “CRITICAL - license expiring expire soon! ” .
 “($days_left days <= $CRITICAL days) ”;
 $level = CRITICAL;
 } elsif ($days_left <= $WARNING) {
 $output .= “WARNING - license approaching expiration ” .
 “($days_left days <= $CRITICAL days) ”;
 $level = WARNING;
 } else {
 $output = “OK - $days_left days left on A/V license ”;
 }

 print “$output | ‘days’=$days_left;$WARNING;$CRITICAL ” .
 “‘scanned’=$files_scanned;0;0 ” .
 “‘virii’=$virii_found;0;0 ” .
 “‘slow_icap’=$slow_icap;0;0\n”;
 return $level;

 sub debug {

 return unless $DEBUG == 1;

 my $msg = shift;

 print STDERR scalar(localtime()) . “: $msg\n”;

 }

}

exit check_bluecoat_av();

Environmental Probes
Network Technologies Incorporated (NTI) produces a number of environmental
monitoring systems. All systems come with SNMP agents and can be easily moni-
tored with Nagios. NTI was kind enough to lend us their Enviromux-Mini for the
purposes of this book. This device can monitor temperature, humidity, presence of
water using a liquid detection sensor, and has four contacts for dry contact sensors.
It additionally comes with an Ethernet port for remote administration and polling using
SNMP. The device can also send out alerts via SNMP, syslog, or email using SMTP
and can be managed using X-modem as well. While we experienced some minor
annoyances during setup (included screwdriver was insufficient to complete the
hardware installation, setup CD did not come with a Java installer and the discovery
program included requires java, discovery of the device requires a DHCP server, some
parts were not labeled correctly), we found the documentation on the device easy to
read and comprehend and the Enviromux MIB easy to use as well.
www.syngress.com

w

236 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
Complete Sensor Check and Alert Script
MIB needed

ENVIROMUX-MINI (NETWORK-TECHNOLOGIES-GLOBAL-REG)

OIDs used
temperatureSensor1CurrentValue: 1.3.6.1.4.1.3699.1.1.3.1.1.1
temperatureSensor1Alert: 1.3.6.1.4.1.3699.1.1.3.1.1.2
temperatureSensor2CurrentValue: 1.3.6.1.4.1.3699.1.1.3.1.2.1
temperatureSensor2Alert: 1.3.6.1.4.1.3699.1.1.3.1.2.2
humiditySensor1CurrentValue: 1.3.6.1.4.1.3699.1.1.3.1.3.1
humiditySensor1Alert: 1.3.6.1.4.1.3699.1.1.3.1.3.2
humiditySensor2CurrentValue: 1.3.6.1.4.1.3699.1.1.3.1.4.1
humiditySensor2Alert: 1.3.6.1.4.1.3699.1.1.3.1.4.2
dryContact1Status: 1.3.6.1.4.1.3699.1.1.3.1.5.1
dryContact1Alert: 1.3.6.1.4.1.3699.1.1.3.1.5.2
dryContact2Status: 1.3.6.1.4.1.3699.1.1.3.1.6.1
dryContact2Alert: 1.3.6.1.4.1.3699.1.1.3.1.6.2
dryContact3Status: 1.3.6.1.4.1.3699.1.1.3.1.7.1
dryContact3Alert: 1.3.6.1.4.1.3699.1.1.3.1.7.2
dryContact4Status: 1.3.6.1.4.1.3699.1.1.3.1.8.1
dryContact4Alert: 1.3.6.1.4.1.3699.1.1.3.1.8.2
waterStatus: 1.3.6.1.4.1.3699.1.1.3.1.9.1
waterAlert: 1.3.6.1.4.1.3699.1.1.3.1.9.2
temperatureSensor1Name: 1.3.6.1.4.1.3699.1.1.3.2.2.1
temperatureSensor1Unit: 1.3.6.1.4.1.3699.1.1.3.2.2.2
temperatureSensor1LowThreshold: 1.3.6.1.4.1.3699.1.1.3.2.2.3
temperatureSensor1HighThreshold: 1.3.6.1.4.1.3699.1.1.3.2.2.4
temperatureSensor2Name: 1.3.6.1.4.1.3699.1.1.3.2.3.1
temperatureSensor2Unit: 1.3.6.1.4.1.3699.1.1.3.2.3.2
temperatureSensor2LowThreshold: 1.3.6.1.4.1.3699.1.1.3.2.3.3
temperatureSensor2HighThreshold: 1.3.6.1.4.1.3699.1.1.3.2.3.4
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 237
humiditySensor1Name: 1.3.6.1.4.1.3699.1.1.3.2.4.1
humiditySensor1LowThreshold: 1.3.6.1.4.1.3699.1.1.3.2.4.2
humiditySensor1HighThreshold: 1.3.6.1.4.1.3699.1.1.3.2.4.3
humiditySensor2Name: 1.3.6.1.4.1.3699.1.1.3.2.5.1
humiditySensor2LowThreshold: 1.3.6.1.4.1.3699.1.1.3.2.5.2
humiditySensor2HighThreshold: 1.3.6.1.4.1.3699.1.1.3.2.5.3
dryContact1Name: 1.3.6.1.4.1.3699.1.1.3.2.6.1
dryContact1AlertStatus: 1.3.6.1.4.1.3699.1.1.3.2.6.2
dryContact2Name: 1.3.6.1.4.1.3699.1.1.3.2.7.1
dryContact2AlertStatus: 1.3.6.1.4.1.3699.1.1.3.2.7.2
dryContact3Name: 1.3.6.1.4.1.3699.1.1.3.2.8.1
dryContact3AlertStatus: 1.3.6.1.4.1.3699.1.1.3.2.8.2
dryContact4Name: 1.3.6.1.4.1.3699.1.1.3.2.9.1
dryContact4AlertStatus: 1.3.6.1.4.1.3699.1.1.3.2.9.2
waterName: 1.3.6.1.4.1.3699.1.1.3.2.10.1
waterAlertStatus: 1.3.6.1.4.1.3699.1.1.3.2.10.2
This check script will check the status of all sensors on the device. The Environmux

Mini SNMP agent supports only SNMP version 1 (or at least the Net-SNMP agent
code we use for our scripts was only able to poll it using SNMP version 1). For each
sensor present, the script will output a friendly name for the sensor, the current reading
for the sensor, and the low and high thresholds of the sensor if it is in alert status.

Example call to the script
check_enviromux_mini.pl --hostname 192.168.3.133 --snmp-version 1
--rocommunity mycommunity
ENVIROMUX-MINI CRITICAL - Dry Contact #2: closed, Dry Contact #3: closed,
Humidity #1: 29.00% (<= 40.0%) OK - Dry Contact #1: open (alert when closed),
Dry Contact #4: open (alert when closed), Temperature #2: 75.70F, Water #1: open
(alert when closed) | ‘contact_dry_contact1’=0;0;1;0;1
‘contact_dry_contact2’=1;0;1;0;1 ‘contact_dry_contact3’=1;0;1;0;1
‘contact_dry_contact4’=0;0;1;0;1
‘humidity_humidity_sensor1’=29.00%;0;40.0:80.0;0;100
‘temperature_temperature_sensor2’=75.70F;0;41.0:100.4 ‘water’=0;0;1;0;1

And the code for the script:

#!/usr/bin/perl

=pod

=head1 NAME
www.syngress.com

w

238 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
check_enviromux_mini.pl - Check status of all sensors on the Enviromux Mini

=head1 SYNOPSIS

This script will check the status of all sensors on an Enviromux Mini
Server Environment Monitoring System device. This script will check the
following sensors on the device:

=over 4

=item *

Temperature Sensor 1-2

=item *

Humidity Sensor 1-2

=item *

Dry Contact 1-4

=item *

Water Status

=back

All thresholds are set from the device administrative interface, so no
threshold specifications need to be passed in by the user.

The script will output Nagios perfdata for all sensors for
trending purposes. If a sensor is not active, it will not be output in
perfdata.

=back

=cut

sub check_enviromux_mini {

 use strict;
 use FindBin;
 use lib “$FindBin::Bin/lib”;

 use Nagios::Plugin::SNMP;
 use Nenm::Utils;

 my $LABEL = ‘ENVIROMUX-MINI’;

 my $USAGE = <<EOF;
Usage: %s
EOF

 my $PLUGIN = Nagios::Plugin::SNMP->new(
 ‘shortname’ => $LABEL,
 ‘usage’ => $USAGE
);

 $PLUGIN->getopts;

 $Nenm::Utils::DEBUG = $PLUGIN->opts->get(‘snmp-debug’);

 my $BASE_OID = ‘1.3.6.1.4.1.3699.1.1.3’;

 my %sensors = (
 ‘temperatureSensor1’ => {qw(
 1.1.1.0 temperatureSensor1CurrentValue
 1.1.2.0 temperatureSensor1Alert
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 239

 2.2.1.0 temperatureSensor1Name
 2.2.2.0 temperatureSensor1Unit
 2.2.3.0 temperatureSensor1LowThreshold
 2.2.4.0 temperatureSensor1HighThreshold
)},

 ‘temperatureSensor2’ => {qw(
 1.2.1.0 temperatureSensor2CurrentValue
 1.2.2.0 temperatureSensor2Alert
 2.3.1.0 temperatureSensor2Name
 2.3.2.0 temperatureSensor2Unit
 2.3.3.0 temperatureSensor2LowThreshold
 2.3.4.0 temperatureSensor2HighThreshold
)},
 ‘humiditySensor1’ => {qw(
 1.3.1.0 humiditySensor1CurrentValue
 1.3.2.0 humiditySensor1Alert
 2.4.1.0 humiditySensor1Name
 2.4.2.0 humiditySensor1LowThreshold
 2.4.3.0 humiditySensor1HighThreshold
)},
 ‘humiditySensor2’ => {qw(
 1.4.1.0 humiditySensor2CurrentValue
 1.4.2.0 humiditySensor2Alert
 2.5.1.0 humiditySensor2Name
 2.5.2.0 humiditySensor2LowThreshold
 2.5.3.0 humiditySensor2HighThreshold
)},
 ‘dryContact1’ => {qw(
 1.5.1.0 dryContact1Status
 1.5.2.0 dryContact1Alert
 2.6.1.0 dryContact1Name
 2.6.2.0 dryContact1AlertStatus
)},

 ‘dryContact2’ => {qw(
 1.6.1.0 dryContact2Status
 1.6.2.0 dryContact2Alert
 2.7.1.0 dryContact2Name
 2.7.2.0 dryContact2AlertStatus
)},
 ‘dryContact3’ => {qw(
 1.7.1.0 dryContact3Status
 1.7.2.0 dryContact3Alert
 2.8.1.0 dryContact3Name
 2.8.2.0 dryContact3AlertStatus
)},
 ‘dryContact4’ => {qw(
 1.8.1.0 dryContact4Status
 1.8.2.0 dryContact4Alert
 2.9.1.0 dryContact4Name
 2.9.2.0 dryContact4AlertStatus
)},
www.syngress.com

w

240 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 ‘water’ => {qw(
 1.9.1.0 waterStatus
 1.9.2.0 waterAlert
 2.10.1.0 waterName
 2.10.2.0 waterAlertStatus
)}
);

 my @critical;
 my @ok;

 my $perfdata = “”;

 for my $sensor (sort keys %sensors) {

 if ($sensor =~ m/temperature/) {
 $perfdata .=
 check_temp($sensor, $sensors{$sensor}, \@ok, \@critical);
 } elsif ($sensor =~ m/umidity/) {
 $perfdata .=
 check_humidity($sensor, $sensors{$sensor}, \@ok, \@critical);
 } elsif ($sensor =~ m/ontact/) {
 $perfdata .=
 check_contact($sensor, $sensors{$sensor}, \@ok, \@critical);
 } elsif ($sensor =~ m/water/) {
 $perfdata .=
 check_water($sensor, $sensors{$sensor}, \@ok, \@critical);

 }
 }

 my $output = “$LABEL ”;
 my $level = OK;

 if (scalar(@critical) > 0) {
 $output .= ‘CRITICAL - ’ . join(‘, ’, @critical) . ‘ ’;
 $level = CRITICAL;

 }

 if (scalar(@ok) > 0) {

 $output .= ‘ OK - ’ . join(‘, ’, @ok);

 }

 print “$output | $perfdata \n”;

 return $level;

 sub check_temp {

 my $name = shift;
 my $data = shift;
 my $ok = shift;
 my $critical = shift;

 Nenm::Utils::debug(“Checking temperature sensor $name”);

 my $rs = snmp_get($data);

 if ($rs->{“${name}CurrentValue”} eq “655350”) {
 Nenm::Utils::debug(“$name not active: skipping”);
 return ‘’;
 }
ww.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 241
 my $value = sprintf(“%.2f”, $rs->{“${name}CurrentValue”} / 10);
 my $unit = $rs->{“${name}Unit”};

 my $low = $rs->{“${name}LowThreshold”};
 my $high = $rs->{“${name}HighThreshold”};

 my $s_unit = ($unit =~ m/^(.)/)[0];
 my $output = $rs->{“${name}Name”} . “: $value$s_unit”;

 if ($rs->{“${name}Alert”} == 1) {

 $output .= “ - ALERT ”;

 if ($value >= $high) {
 $output .= “(>= $high$s_unit)”;
 }

 if ($value <= $low) {
 $output .= “(<= lows_unit)”;
 }

 push(@$critical, $output);

 } else {
 push(@$ok, $output);
 }

 my $perf_label = $name;
 $perf_label =~ s/([a-z])([A-Z])/1_\L2/g;

 return “‘temperature_${perf_label}’=$value$s_unit;0;$low:$high ”;

}

sub check_humidity {

 my $name = shift;
 my $data = shift;
 my $ok = shift;
 my $critical = shift;

 Nenm::Utils::debug(“Checking humidity sensor $name”);

 my $rs = snmp_get($data);

 if ($rs->{“${name}CurrentValue”} eq “655350”) {
 Nenm::Utils::debug(“$name not active: skipping”);
 return ‘’;
 }

 my $value = sprintf(“%.2f”, $rs->{“${name}CurrentValue”} / 10);

 my $low = $rs->{“${name}LowThreshold”};
 my $high = $rs->{“${name}HighThreshold”};

 my $output = $rs->{“${name}Name”} . “: $value\%”;

 if ($rs->{“${name}Alert”} == 1) {

 if ($value >= $high) {
 $output .= “ (>= $high\%)”;

 }

 if ($value <= $low) {
 $output .= “ (<= $low\%)”;

 }
www.syngress.com

242 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
 push(@$critical, $output);

 } else {
 push(@$ok, $output);

 }

 my $perf_label = $name;
 $perf_label =~ s/([a-z])([A-Z])/1_\L2/g;

 return “‘humidity_${perf_label}’=$value\%;0;$low:$high;0;100 ”;

}

sub check_contact {

 my $name = shift;
 my $data = shift;
 my $ok = shift;
 my $critical = shift;

 my %alert_on_states = qw(
 0 open
 1 closed
);

 my %states = qw(
 0 open
 1 closed
);

 Nenm::Utils::debug(”Checking contact sensor $name“);

 my $rs = snmp_get($data);

 my $state = $states{$rs->{“${name}Status”}};

 my $alert_on = $alert_on_states{$rs->{“${name}AlertStatus”}};

 my $output = $rs->{“${name}Name”} . “: $state”;

 if ($rs->{“${name}Alert”} == 1) {

 push(@$critical, $output);

 } else {

 $output .= “ (alert when $alert_on)”;
 push(@$ok, $output);

 }

 my $perf_label = $name;
 $perf_label =~ s/([a-z])([A-Z])/1_\L2/g;

 return
 “‘contact_${perf_label}’=” . $rs->{“${name}Status”} . ‘;0;’ .
 $rs->{“${name}AlertStatus”} . ‘;0;1 ’;
}

sub check_water {

 my $name = shift;
 my $data = shift;
 my $ok = shift;
 my $critical = shift;
www.syngress.com

 Plug-ins, Plug-ins, and More Plug-ins • Chapter 4 243
 my %alert_on_states = qw(

 0 open
 1 closed

);

 my %states = qw(

 0 open
 1 closed

);

 Nenm::Utils::debug(“Checking water sensor $name”);

 my $rs = snmp_get($data);

 my $state = $states{$rs->{“${name}Status”}};
 my $alert_on = $alert_on_states{$rs->{“${name}AlertStatus”}};

 my $output = $rs->{“${name}Name”} . “: $state”;

 if ($rs->{“${name}Alert”} == 1) {

 push(@$critical, $output);

 } else {
 $output .= “ (alert when $alert_on)”;
 push(@$ok, $output);

 }

 my $perf_label = $name;
 $perf_label =~ s/([a-z])([A-Z])/1_\L2/g;

 return
 “‘${perf_label}’=” . $rs->{”${name}Status“} . ‘;0;’ .
 $rs->{”${name}AlertStatus“} . ‘;0;1 ’;

 }

 sub snmp_get {

 my $data = shift;

 local($_);

 my @oids = map { ”${BASE_OID}.$_“; } keys %$data;
 Nenm::Utils::debug(”SNMP get “ . join(‘, ’, @oids));

 my $get_results = $PLUGIN->get(@oids);

 my $results;

 for my $oid (keys %$get_results) {
 my $value = $get_results->{$oid};
 $oid =~ s/$BASE_OID\.//;
 $results->{$data->{$oid}} = $value;
 Nenm::Utils::debug(”Set $data->{$oid} to $value”);
 }

 return $results;

 }
}

exit check_enviromux_mini();
www.syngress.com

w

244 Chapter 4 • Plug-ins, Plug-ins, and More Plug-ins
Summary
In this chapter, we presented a number of example checks we hope you will find
useful and inspire you to develop your own checks. While Nagios traditionally has
been used as a network and systems monitoring framework, it can be used to
 monitor the health of any device, application, or system you can get metrics from. All
the checks presented in this chapter are also available online from the book site.
ww.syngress.com

A
E

Chapter 5
dd-ons and
nhancements
Solutions in this chapter:

Checking Private Services when SNMP
Is Not Allowed

Visualization

PNP—PNP Not PerfParse

Cacinda

NLG—Nagios Looking Glass

SNMP Trap Handling

SNMPTT

NagTrap

Text-to-Speech for Nagios Alerts

■

■

■

■

■

■

■

■

■

˛	Summary
245

w

246 Chapter 5 • Add-ons and Enhancements
Introduction
Thanks to a very enthusiastic user/developer base, there is a large and continually
growing set of add-ons and enhancements available for Nagios. These projects
manipulate, massage, ingest, and display data in ways that extend far beyond the
capabilities of the core Nagios system. In this chapter we discuss a number of
enhancements and add-ons we feel are very useful in a larger environment.

Checking Private Services
when SNMP Is Not Allowed
NRPE
Download it from: http://www.nagios.org/download/addons/

Windows version: http://www.miwi-dv.com/nrpent/
Monitoring and security requirements often clash when the monitoring server

sits in one security zone and the managed server sits in a different security zone.
For example, web servers are often hosted in DMZ zones. With most DMZs, SNMP
traffic is not allowed, yet IT staff is still expected to monitor systems in the DMZ
and identify issues early. Outages to servers in a high-visibility security zone like a
DMZ means trouble for most companies as quite often corporate web servers are
located in a DMZ.

DMZs and Network Security
NRPE allows Nagios to monitor systems that sit in security zones where traffic
is only allowed to flow either from the client to the Nagios server or from the
Nagios server to the managed client. Security policies generally dictate that systems
in high-visibility security zones (like a DMZ) may not initiate communications
with systems sitting in more trusted zones; however, often a monitoring system in
the more trusted security zone will be allowed to communicate with clients in the
DMZ for monitoring purposes. These same policies also often prohibit the use of
SNMP v1 or SNMP v2c as the two are not encrypted and depend on UDP as
their layer 4 transport. NRPE uses TCP and can encrypt traffic between the server
and client using SSL (Figure 5.1).
ww.syngress.com

 Add-ons and Enhancements • Chapter 5 247

Figure 5.1 NRPE Information Flow across a Security Zone

Nagios
Monitor Server

Corporate
Firewall

Web Server

69,22,80,443

Standard Nagios Monitoring
SNMP, check_ping, check_http

Other udp and tcp based network and system
checks.

NRPE TCP Port

Nagios NRPE Monitoring
Only TCP port 22 is used and only the Nagios
Server initiates the connection to the remote

server.
In order to use NRPE in your network, you should make the following changes
to the firewall that sits between the Nagios server and the DMZ host being
monitored:

1. Create a firewall ACL that allows the Nagios host to communicate with the
DMZ host over TCP port 5666, which is the default port the NRPE client
uses to listen for incoming connections requests.

2. Connections initiated from the DMZ Web server to the internal network are
not permitted.

3. All traffic between the Nagios server and Web server is encrypted using TLS
(SSL) encryption.

4. On the DMZ Web server, tcp_wrappers should be configured to only accept
NRPE connections from the internal Nagios server or firewall IP address
(if NAT is in use) on TCP port 5666.

Security Caveats
If NRPE is run with the configuration parameter dont_blame_nrpe set to 1, it will allow
remote clients to send arbitrary command arguments to the NRPE daemon.
If NRPE is allowed to run in this mode it essentially acts as a remote shell for any
server that can connect to the NRPE client. We highly recommend that you do not
enable this mode of NRPE.
www.syngress.com

w

248 Chapter 5 • Add-ons and Enhancements
NRPE Details
NRPE allows the Nagios server to run Nagios plug-ins on a managed client.
To install NRPE, you will need both the Nagios plug-ins and OpenSSL installed on
the Nagios server. Install the OpenSSL libraries on the Nagios server to allow the
check_nrpe plugin to communicate with remote NRPE clients using TLS / SSL. The
NRPE documentation is quite good and from this point on we assume that you have
an NRPE daemon running on a remote server and we assume that check_nrpe has
been compiled and installed on your Nagios server using the default settings.

NRPE in the Enterprise
By default, NRPE is configured to monitor basic system metrics. We see many
configurations where basic measures of system health are checked: disk usage, memory
utilization and whether or not critical network-based system services are running
(SSH, Apache)—but often administrators do not take the time to fully exploit NRPE
to check higher-level application functionlity.

Scenario 1: The Internet Web Server
You have a small business Web server. You are running NRPE on the host and checking
basic services based on your web_server template. This includes disk space utilization,
memory utilization, number of active Apache processes, and number of active tomcat
Java processes. With these settings in place you know you will be alerted when there
is a critical service failure. Do not stop here; there are other types of failures that can
mean big problems for your web server and NRPE can help you spot them.

This is where we use NRPE as the eyes of our environment. For example, we
can use check_http to check for a variety of problems with our web server. We can use
the command check_http -e -N <server-name> to verify that the layer 7 firewall we use
stops invalid HTTP requests from reaching our web server. We can use the -s option
of check_http to verify that critical parts of our web site return the content we
expect them to contain. HTTP content returned from the web server. The value of
this type of checking is that we verify that our application is functioning as expected
from the perspective of a customer.

When using NRPE on a DMZ Web server, it is best to identify standard text in
the Web page near the bottom of the document (not in a header or footer) that you
can check with check_http’s -r or -s options. By checking for content on a web page,
you can identify when problems occur in the application that impact your users.
ww.syngress.com

 Add-ons and Enhancements • Chapter 5 249
NSCA
Download it from: http://www.nagios.org/download/addons/

NSCA (Nagios Service Check Acceptor) allows you to configure devices and
applications to send asynchronous events to Nagios. The event information can
be encrypted in a variety of ways, and a password can be required in order for the
server-side of NSCA to accept the incoming event. This framework is a terrific
alternative or supplement to having devices send out SNMP traps and then ingesting
them into Nagios using a framework like SNMPTT.

NSCA can be downloaded from the main Nagios site (www.nagios.org). The
installation instructions are easy to follow and installation is simple. Once installed,
the NSCA server can be run on the Nagios server as a daemon (the package comes
with a SysV-style init script that can be placed in /etc/init.d/ to start and stop the
NSCA daemon). The daemon will listen for incoming NSCA requests sent by the
client-side send_nsca utility. When received, requests are authenticated using one of
over a dozen encryption algorithms along with an optional administrator-configured
password. The password chosen must be entered in the NSCA server configuration file
and every NSCA client configuration file. If you are not using NSCA in a trusted
environment, we highly recommend creating a complex password and using a strong
encryption algorithm. We also recommend that in untrusted environments you use
firewall rules to limit which client servers can communicate with your NSCA daemon.
Once an NSCA client and server are configured, you can use the send_nsca utility
to send events from the client for anything you can script—from hard disk errors,
to application-level events, to security events (Figure 5.2).
www.syngress.com

Figure 5.2 NSCA Information Flow

Client script

calls

TCP connection

Writes to Nagios
rw command file

send_nsca NSCA daemon Nagios

w

250 Chapter 5 • Add-ons and Enhancements
Visualization
While Nagios has a very easy to read and well-designed network map front end, there
are times when a logical view by device is not what your users want. For example,
developers and application-specific support personnel might prefer a view that shows
status organized logically and by service as that is the focus of their work—ensure
the application they are responsible for is running and responding in a reasonable
amount of time.

NagVis
Download it from: http://www.nagvis.org/

In larger, heterogeneous organizations, the number of system and host problems
that occur in any given day can easily clutter up a screen, even a big one. There will
also be staff members in your organization who do not want to see network maps or
tables of problems, be that because they find the data intimidating or because they
only care about application health as opposed to system and network health. Enter
NagVis, another very useful add-on that lets you visualize data from Nagios in a
variety of useful and creative ways. NagVis uses a PHP-based front and can either
read host and service data directly from the Nagios CGIs (not recommended) or
from a MySQL database that has been populated with Nagios status information
using the NDO Utils package. In this section, we give you tips on installing and
configuring this add-on, and show examples of how to make best use of NagVis.

We recommend (the NagVis team does, too) that you use the database back end
for service and host data. For large groups, this greatly reduces the overhead of
NagVis on a system and provides much better performance than the CGI-based back
end does. Configuring NagVis to use a database involves the following steps:

1. Enable the event broker in Nagios.

2. Download and install NDO Utils.

3. Download, install, and configure NagVis.

4. We cover each of these steps in this section.

Enable the Event Broker in Nagios
If you did not enable the event broker functionality in Nagios 3 when you installed
it, you can re-run configure in the Nagios 3 distribution directory and pass it the
switch --enable-event-broker. After running configure, re-run make and then make install-base
and make install-commandmode to re-install just the Nagios daemon with the event
ww.syngress.com

 Add-ons and Enhancements • Chapter 5 251
broker capability enabled. You then must tell Nagios to broker everything through
the event broker by setting the following parameter in your nagios.cfg file:
event_broker_options=-1

Finally, you must restart Nagios so your new event-broker enabled Nagios daemon
is running.

Install the NDO Utils Package
Download it from: http://www.nagios.org/download/addons/

The NDO Utils package captures service and host configuration information and
host and service events from Nagios and populates a database with the information. It is
available for download from the main Nagios site under the Downloads section. While
the module developers warn in the README that it is experimental/beta quality, we
have not experienced any problems with this module in a production environment. NDO
consists of two parts: the NDOMOD event broker module that receives events from Nagios
and then makes the events available to remote clients over a TCP/IP socket or appends
data to a file on the Nagios server, and a data ingestion program that processes the data.
NDO comes with two programs that read events produced by the NDOMOD module;
FILE2SOCK reads the NDOMOD data from the file output of NDOMOD and sends
it over the network to a remote instance of NDO2DB, and NDODB, which can
receive data from FILE2SOCK or NDOMOD directly and populate a database with the
information. If you have the good fortune of having a separate machine to use just for
visualization, make use of FILE2SOCK and offload the data ingestion and visualization
functions onto the second machine. We will assume for the rest of this section that you
are running Nagios and NagVis on the same host, as that is likely to be the most com-
mon situation Nagios integrators will encounter (Figure 5.3).
www.syngress.com

Nagios

Sends data to

Listens for events from

Reads data from (socket)

Populates

Nagios Event Broker NDOMOD NDO2DB MySQL

Figure 5.3 How Nagios, NDOMOD, and NDO2DB Interact to Populate
a Database with Nagios Events

w

252 Chapter 5 • Add-ons and Enhancements
Follow the instructions in the README that comes with NDO Utils carefully
and you will have NDOMOD and NDO2DB installed and running in no time.
If you have multiple versions of MySQL installed on your host or have MySQL
installed in a nonstandard location, use the command mysql_config --libs to determine
which directory your MySQL libraries are installed in and then pass that directory to
the configure script as --with-mysql-lib=/path/to/mysql/lib. also keep in mind that if
you do not have Nagios installed in the default location (/usr/local/nagios), you need
to pass the base path of your installation to the NDODB configure script using the
--prefix option of configure. Finally, if you are not using the user and group nagios for
your Nagios daemon, pass the names of the group and user to configure using the
--with-ndo2db-user and --with-ndo2db-group switches.

After you make NDO, install the NDOMOD and NDO2DB files according to
the instructions in the README. The README does not currently include an init
script, so here is one you can use on Redhat-like Linux systems to control the
NDO2DB daemon:
#!/bin/bash

chkconfig: - 50 50

description: NDO2DB - Nagios NDO to database daemon
#
processname: ndo2db
pidfile: /var/run/ndo2db.pid

NBASE=/home/nagios
ndo2db=$NBASE/bin/ndo2db

source function library
. /etc/init.d/functions

case “$1” in
start)

 echo -n $“Starting ndo2db: ”
 daemon $ndo2db -c $NBASE/etc/ndo2db.cfg
 RETVAL=$?
 Echo

;;
stop)

echo -n $“Stopping ndo2db: ”
killproc $ndo2db
RETVAL=$?
echo

;;

restart)
echo -n $“Restarting ndo2db: ”
ww.syngress.com

 Add-ons and Enhancements • Chapter 5 253
$0 stop
sleep 30
$0 start

;;
status)

status ndo2db
RETVAL=$?

;;
*)

echo $“Usage: $0 {start|stop|status|restart}”
RETVAL=1

Esac

exit $RETVAL

After installing NDO2DB and NODMOD by following the README file,
restart Nagios to activate the NDOMOD module, and then start NDO2DB to
activate the NDO database daemon:
/etc/init.d/ndo2db start

If everything is installed and configured properly, you will see a line like the
following in your /var/log/messages file:
Jan 6 17:44:31 hostname nagios: ndomod: Successfully flushed 117 queued
items to data sink.

Download and Install NagVis,
Configure It to Use the Database
Back End You Set up with NDO
Now we will install and configure NagVis. Download the latest stable distribution
from http://www.nagvis.org and follow the instructions in the INSTALL file
to install NagVis. Note that when the instructions mention “Move the nagvis
directory tree,” they mean the distribution directory, not the nagvis directory you
see under the distribution directory. Following the instructions, configure NagVis
to use the database you set up when installing and configuring NDO utils on
your system. Finally, integrate links to the project into the Nagios GUI to make
it easy for users to find by adding code like the following to <path-to-nagios>/
share/side.html:

www.syngress.com

w

254 Chapter 5 • Add-ons and Enhancements
<table width=“150”>

<tr>

<td>

<table width=“100%” class=“NavBarTitle” cellspacing=“0”>

<tr>

<td class=“NavBarTitle”>Add-Ons</td>

</tr>

</table>

</td>

</tr>

</table>

<table width=“150” border=“0” cellpadding=0 cellspacing=0>

<tr>

<td width=13><img src=“images/greendot.gif” width=“13” height=“14”
 name=“config-dot”></td>

<td nowrap width=134><a href=“/nagios/nagvis/” target=“main”
 onMouseOver=“switchdot(‘nagvis-dot’,1)”
 onMouseOut=“switchdot(‘nagvis-dot’,0)”
 class=“NavBarItem”>NagVis Maps</td>

</tr>
</table>

Now that you are done with installation, the sky is the limit. The NagVis home
page has many examples of the kinds of visualization you can do with NagVis.
Many people use NagVis to show network and system paths in a manner that is
more visually appealing than the default Nagios status map; however, we have found
it works very well for showing high-level application and service status as well.

Example one: You work in a software development shop and find yourself moni-
toring multiple development and integration environments. In these environments,
it is typical for services to go up and down regularly and for a number of people to
want to know the status of services in each environment at-a-glance. Your users are most
likely not going to appreciate receiving large numbers of emails about service and
host outages, as they are expecting services and hosts to be relatively instable. This is
the type of situation in which NagVis shines; at a glance, developers, system adminis-
trators, and system integrators can easily see the status of multiple environments from
ww.syngress.com

 Add-ons and Enhancements • Chapter 5 255
one place. As with any enhancement to Nagios, talk to your users and customers when
you install this add-on; educate them on what it can do and solicit their feedback on
how it can be used to best meet their needs.

Example two: Network Operations Center (NOC). In many NOCs, staffing is
24×7 and staff are hired and quit on a regular basis. Educating and training staff
about applications on a network or set of networks quickly is very important.
Using NagVis, you can create maps that show the status of applications and make
it visually very easy for staff to learn about the relationships between the pieces
of the applications without having to spend hours reading system and network
documentation (most NOC staff do not ever get the time to do that). Additionally,
this has the benefit of making it easy for NOC staff to communicate to application-
or network-specific personnel what has gone wrong and where that piece sits
within an application.

PNP—PNP Not PerfParse
Download it from: http://www.pnp4nagios.org/pnp/

PNP is a gem of an add-on; it allows a Nagios administrator to easily add
RRD-style graphs and efficient long-term trending (four years per metric by
default) capabilities to Nagios. Like the rest of the Nagios configuration framework
and much like Cacti (at least one piece of PNP is borrowed from Cacti), this graph-
ing framework makes extensive use of templates and is easy to customize. It consists
of a PHP-based front end that lives under the Nagios web document directory and
a Perl/C based back end that processes performance data produced by Nagios
using RRDtool (www.rrdtool.org). RRDtool manipulates RRD files efficiently,
and includes a powerful graphing language. The RRD files PNP produces are space
efficient; a single metric takes up approximately 400k of space for four years’ worth
of trending. If you are familiar with Cacti, once you have PNP installed and integrated
with Nagios you will find it very easy to use and very useful. We highly recommend
you choose the Batch Mode + NPCD of operation (explained later).

In this section, we provide recommendations on the installation and configuration
of PNP. We then describe how to add performance data to your scripts in a format
Nagios and PNP can read. We finish with an example of a custom PNP template to
make an easy-to-read, useful graph from the output of a custom Nagios check (CPU
utilization in this case). Examples in this section all assume PNP is using the batch
mode and NPCD daemon mode of operation.
www.syngress.com

w

256 Chapter 5 • Add-ons and Enhancements
There are three ways to configure Nagios and PNP to get data from Nagios
into PNP:

Default mode Configure Nagios to directly call the PNP RRD (round-robin
database) file creation script (process_perfdata.pl) with performance data from
Nagios every N seconds.

Batch mode Configure Nagios to create host and service performance
data files, and add process_perfdata.pl commands to the service and host file
processing command directives of Nagios. process_perfdata.pl will then be
called by Nagios to read and process the service and host performance files
and update the RRD and XML files the PNP Web interface reads.

Batch mode + NPCD Configure Nagios to create host and service
performance data files, and to move those configuration files to a spool directory
every N seconds. Then, compile and run npcd, a C-based daemon included
with the PNP package. The daemon reads the performance files from the
spool directory, and then spawns N instances of the graphing script at a time
to ingest the files into RRD databases.

Option three provides the best scalability for large organizations and will allow
your Nagios server to process the most performance data at a time without impacting
the operation of Nagios, as in this mode, all Nagios does is create performance data
files and periodically move them to a spool directory (Figure 5.4).

■

■

■

Figure 5.4 How PNP Processes Nagios Performance Data

Nagios NPCD process_perfdata.pl
Service and host

performance data files

Writes out

perfdata commands move files to

Grabs files

Calls, passing files to

Creates/updates files

Performance data
spool directory

RRD and XML
file directory
For best RRD creation and update performance, make sure you have the RRDs
Perl module (comes with the source distribution of RRDtool) installed. You can
check to see if you have this module by running the command:
ww.syngress.com

 Add-ons and Enhancements • Chapter 5 257
perl -MRRDs -e 1

If you see no output from Perl when you run this command, the RRDs module
is installed. If you see an error message, you might need to download and compile
RRDtool from source yourself; the options --with-perl and --with-perl-site-install will
enable the RRDs module and place it in your site-wide Perl library directory.

Configuring Nagios to create the performance data files the PNP npcd daemon
reads and setting up base PNP configuration files is fairly easy. The documentation
on the PNP site is very well done, so we will not repeat basic installation instructions
here. We do recommend you follow the documentation carefully, as the process will
fail if you miss any steps. Especially critical are the host and service performance data
templates; make sure you enter those into your configuration file correctly.

Once you have PNP installed and configured correctly, you need to understand
how to modify your scripts to produce performance data output in a manner Nagios
understands. Nagios 3 parses any data in the output of a service check that follows a
pipe “|” symbol as performance data. Performance data can include multiple metrics,
and each metric can contain discreet warning, critical, minimum, and maximum
values. From the Nagios perfdata documentation (http://nagiosplug.sourceforge.net/
developer-guidelines.html#AEN203):
| ‘label1’=value;[warn];[crit];[min];[max] … ‘labelN’=value;[warn];[crit];[min];[max]

Sample output from a service check that uses this format:
ROBOTIC_TEST OK: 340 results in 3.034 seconds |‘Retrieve home page’=1s;3,5;;;
‘Perform search’=15s;20;30;;

From the output of this check, we know:

The test performed acceptably and involved a Web search that returned
340 results.

Home page retrieval took 1 second, has a warning threshold of 3 seconds,
a critical threshold of 5 seconds, and no min or max output values.

Logout took 2 seconds, has a warning threshold of 5 seconds, a critical
threshold of 15 seconds, and no min or max output values.

■

■

■

www.syngress.com

Note

Your performance data can include data that goes well beyond the single
status your check returns, yielding a very nice separation of fault management
data vs. service performance trending data.

w

258 Chapter 5 • Add-ons and Enhancements
Now that we have our performance data in a format Nagios and PNP will
recognize, we need to configure the service so Nagios processes performance data
from it by setting the service parameter process_perf_data to 1 and restarting Nagios.
We then create a PNP graph template so we can see all the performance data from
our Nagios check in one place. PNP templates are PHP files that generate a custom
command line that will be passed to rrdtool along with a string containing the RRD
tool language necessary to create your graph. For more information on the RRD
tool and RRD language, see www.rrdtool.org/.

PNP first looks for templates under <nagios-share>/pnp/templates.dist, and then
under <nagios-share>/pnp/templates for a PHP template file to use to display a
custom graph for a service. Custom template files should be named for the service
with which they are associated. If no custom template file is found, the default
template default.php will be used.

We will place our custom check graph template in the directory <nagios-share>/
pnp/templates. An easy way to get started on a custom template is to find an existing
template under the templates.dist directory, copy it to the templates directory, and
then modify it to meet your needs. For this check, we copied the check_load.php
template, as it shows multiple RRD sources on a single graph. Here is the template
we created based on the Net-SNMP CPU check shown in Chapter 4 in this book:
<?php
$opt[1] = “--vertical-label ‘% Utilization’ ” .

“--title ‘$hostname: $NAGIOS_SERVICEDESC’ -X 0 -M”;

$colors = array(
‘idle’ => ‘00FF00’,
‘user’ => ‘0000FF’,
‘system’ => ‘FF0000’,
‘kernel’ => ‘999999’,
‘interrupt’ => ‘999900’,
‘wait’ => ‘FF9900’,
‘nice’ => ‘00FF00’

);

$graph = “”;

$i = 1;

foreach ($DS as $d) {
if ($NAME[$d] == ‘idle’) {

continue;
}

$type = ‘STACK’;
ww.syngress.com

 Add-ons and Enhancements • Chapter 5 259
if ($i == 1) {
$type = ‘AREA’;

}
$i++;

$label = sprintf(“%-9s”, ucfirst($NAME[$d]));
$graph .= <<<EOF

DEF:var$d=$rrdfile:$DS[$d]:AVERAGE
$type:var$d#{$colors[$NAME[$d]]}:“$label”
GPRINT:var$d:LAST:“ Cur %6.2lf ”
GPRINT:var$d:MAX:“Max %6.2lf \\n”

EOF;
if ($i == 1) {

$type = ‘AREA’;
}
$i++;

$label = sprintf(“%-9s”, ucfirst($NAME[$d]));

$graph .= <<<EOF
DEF:var$d=$rrdfile:$DS[$d]:AVERAGE
$type:var$d#{$colors[$NAME[$d]]}:“$label”
GPRINT:var$d:LAST:“ Cur %6.2lf ”
GPRINT:var$d:MAX:“Max %6.2lf \\n”

EOF;

}

$def[1] = preg_replace(‘/[\r\n]/’, ‘ ’, $graph);

?>

Now we browse to http://example.org/pnp?host=myhost to see our new graph.
Figure 5.5 is a screenshot of what the output looks like.
www.syngress.com

Figure 5.5 PNP-based Net-SNMP CPU Utilization Graph

w

260 Chapter 5 • Add-ons and Enhancements
The power of this framework is that this graph will be generated for any new hosts
you add to Nagios that are associated with this Nagios check.

Finally, integrate PNP into the Nagios HTML GUI by adding some custom
HTML code to <path-to-nagios>/share/side.html. This example adds HTML that
will take you to the custom pages section of PNP when the “PNP Graphs” link is
clicked (just remove the word page from the link to go to the default PNP index
page). Add the code to the bottom of the file, before the ending </body> tag:

<table width=“150” border=“0” cellpadding=0 cellspacing=0>

<tr>

 <td width=13><img src=“images/greendot.gif” width=“13” height=“14”
 name=“config-dot”></td>
<td nowrap width=134><a href=“/nagios/pnp/index.php?page” target=“main”
 onMouseOver=“switchdot(‘pnp-dot’,1)”
 onMouseOut=“switchdot(‘pnp-dot’,0)”
 class=“NavBarItem”>PNP Graphs</td>

</tr>
</table>

Cacinda
Download it from: http://cacinda.sf.net/

If your shop is more Cacti-oriented and you use Nagios purely for service and
status checks or you have a very large Cacti install and are just starting to use Nagios,
Cacinda can help you create HTML-based dashboards that integrate the information
from Cacti and Nagios along with live SNMP data from your devices. Warning:
Cacinda is an alpha release; when it is stable, it will be released as a Cacti plug-in.
Despite its new status, getting it set up and running is straightforward. Like most Nagios
and Cacti add-ons, Cacinda uses templates to allow you to handle multiple device types
easily and create customized HTML views for metrics from a variety of SNMP devices.

Installation of Cacinda is straightforward; just download the source code from
http://cacinda.sf.net, untar it into a directory under your Web server’s document root,
and configure it by editing the config.pnp file that comes with the distribution. The
first section of the Cacinda configuration file is used to configure Cacinda so it can
select data from your Cacti database. The second section is to tell Cacinda the base
URL for Nagios, and configure a username and password to use to log in to Nagios
ww.syngress.com

 Add-ons and Enhancements • Chapter 5 261
if Nagios requires authentication. Finally, you may configure a search and replace
string pair that will help you match Cacti host names to Nagios names. For example,
if you use fully qualified host names in Cacti, but short names in Nagios, you can use
this to strip the domain portion of each Cacti host name so the names will work
with Nagios.

Cacti uses templates for each device type you wish to display a dashboard for;
the current release supports Cisco devices, Microsoft SNMP agents, and Net-SNMP
agents. Cacti checks the SNMP sysDescr.0 and sysObjectId.0 SNMP OIDs to try to
match devices with templates; if a suitable template cannot be found, a descriptive
error page will appear. A template can include graphs from Cacti, output from Nagios,
and live SNMP data. Cacinda uses the PHP package Image_Graph for creating live
graphs.

Once you have Cacinda properly configured, you can create useful and aesthetically
pleasing dashboards for your users and administrators to use to view host status.
Dashboard pages will refresh every five minutes to display data updates. Eventually, the
author of this project plans to make Cacinda a Cacti plug-in to make it easier to
install and configure (Figures 5.6 and 5.7).
www.syngress.com

Cacinda

Managed Device CactiNagios

Retrieves host service
information over HTTP

Retrieves live
host information
using SNMP

Retrieves Cacti graphs and
host information from Cacti
MySQL database.

Figure 5.6 How Cacinda Retrieves Data from Nagios and Cacti

w

262 Chapter 5 • Add-ons and Enhancements

Figure 5.7 Cacinda Screenshot
NLG—Nagios Looking Glass
Download it from: http://www.nagioslookingglass.co.uk

Nagios Looking Glass (NLG) is a PHP-based project that allows you to set up a
read-only status site that sits outside your Nagios security zone (DMZ for example).
The software consists of two pieces: a client that resides on the system end users will
access to view Nagios host and service status; and a server piece that sits on the
Nagios server (under the share directory) that communicates with the client to
retrieve Nagios status files. We tried version 1.10 b1 for the purposes of this book,
as it supports Nagios 3.

The software requirements for the system are fairly standard; it does require PHP
5.1 or newer for both the client and server sides (we used php 5.2.5). The project
ww.syngress.com

 Add-ons and Enhancements • Chapter 5 263
allows the administrator to customize the look, feel, and output of the NLG site.
Even the thresholds for the front-end screen network and metric health bars can be
customized. Most users will find the default look and feel aesthetically pleasing. NLG
provides views that non-technical staff and managers will find especially pleasing,
although technical staff will find much of the same detailed information available in
the NLG Web GUI the core Nagios GUI produces (Figures 5.8 and 5.9).
www.syngress.com

End user

Calls over HTTP
GET/nagios/client/ Calls over HTTP

GET/nagios/server/
Retrieves status
files

Sends files to
NLG client,
caches results

Format and display
results to user using
default or administrator
customized templates

NLG client NLG server Nagios

Figure 5.8 Nagios Looking Glass Data Flow

Figure 5.9 Nagios Looking Glass in Action

w

264 Chapter 5 • Add-ons and Enhancements
SNMP Trap Handling
Many open source monitoring packages lack the capability to ingest and process
SNMP traps. While Nagios does not come “out of the box” with this capability,
enabling it is fairly easy due to the open nature of Nagios. While configuring SNMP
agents to send traps is sometimes a bit complex, the benefits of being able to receive
traps are that events are received much closer to when they occur compared to waiting
for polling to happen and those events take fewer system resources to process than
do polled events. In this section, we give an overview of SNMPTT, a trap-handling
program that hooks into Net-SNMP’s snmptrapd. We then discuss how to make use
of NagTrap, an open source trap viewer for Nagios.

Net-SNMP and snmptrapd
Download it from: http://net-snmp.sourceforge.net/

If you use SNMP with Nagios and are not familiar with Net-SNMP, you
either are not managing Unix and Unix-like systems or you are fortunate enough
to have a budget that allows you to use a commercial agent. Net-SNMP is an open
source, extensible SNMP agent and suite of SNMP utilities. The only commercial
agent we have used that exceeds its functionality is the CA (formerly Empire
Technologies) SysEdge agent, which retails for over $3k per instance. Net-SNMP
runs on a wide variety of Unix and Unix-like platforms and Windows. snmptrapd
is a trap listener included with the Net-SNMP distribution; it will receive traps
and then has a very flexible configuration that allows you to specify hooks to
handle traps based on source IP, authentication, and/or OID. SNMPTT relies on
snmptrapd, so make sure you download and install snmptrapd before installing
SNMPTT.

SNMPTT
Download it from: http://www.snmptt.org/

SNMPTT (SNMP Trap Translator) is a Perl-based program developed by the
Net-SNMP group. It translates traps from SNMP to more human-readable formats
(or other computer-parsable formats). It can also populate databases or files with the
traps. NagTrap reads SNMPTT translated traps from a MySQL database. Download
and install SNMPTT and follow the directions to enable it to store traps in MySQL
before installing NagTrap.
ww.syngress.com

 Add-ons and Enhancements • Chapter 5 265
Configuring SNMPTT for
Maintainability and Configuration File Growth
SNMPTT allows an administrator to specify multiple configuration files for event
definitions; take advantage of this feature to divide your configuration into files by
device type or event type. For example, if we have events coming in from Oracle
Enterprise Manager (OEM), Digi devices, and Bluecoat proxies, we might use the
directory /usr/local/snmp/etc/snmptt/ to place configuration snippets for each
device type in. We tell SNMPTT to look at multiple files by adding them to the
snmptt_conf_files variable in the SNMPTT main configuration file; since SNMPTT
is written in Perl, it uses an INI parser that understands Perl HERE document
syntax. For example:
snmptt_conf_files = <<EOF
/usr/local/snmp/etc/snmptt/oem.conf
/usr/local/snmp/etc/snmptt/digi.conf
/usr/local/snmp/etc/snmptt/bluecoat.conf
EOF

NagTrap
Download it from: http://www.nagtrap.org/

NagTrap is an open-source Nagios add-on that reads SNMP traps from a database
created by SNMPTT (SNMP Trap Translator). It allows you to view, query, and filter
traps by host name, severity, and category from a PHP-based Web interface. It also
allows you to archive traps through the GUI. Finally, it includes a script to help you
get traps from SNMPTT into Nagios (Figure 5.10).
Calls

Populates

Submits passive checks to (via rules)

Reads data from

snmptrapd SNMPTT MySQL Nagtrap Nagios

Figure 5.10 NagTrap Data Flow
Download NagTrap from http://www.nagtrap.org. Installation is straightforward
and well documented. Two changes we recommend making are:
www.syngress.com

266 Chapter 5 • Add-ons and Enhancements
1. Change the format line field in the snmptt database from type varchar(255)
to text(2000) as a number of traps will exceed the varchar(255) limit.

2. Add indexes to the SNMPTT table; we recommend adding indexes to the
category and severity fields at a minimum.

While SNMPTT comes with a script that can be run as a check from Nagios that
polls the SNMPTT database for new traps, we believe you will get better performance
by adding script triggers to your SNMPTT configuration files that submit passive
checks to Nagios as this keeps Nagios from having to poll yet another data source.
We discuss how to do this and show an example script that will allow you to do this
in the next section of this chapter. Ingesting Traps into Nagios.

SNMPTT allows you to specify a custom script to be called when a match for an
OID is found in a configuration file you create. This hook makes it easy for us to then
submit alerts to Nagios as passive checks. Since most devices we deal with will likely
send dozens if not more events to your SNMPTT instance, we find it easiest to create
a passive check per device type and then define the severity of the event in the
SNMPTT configuration line. For example, if we have a Raritan configured to send
Nagios SNMPT traps we might create a “Raritan Event” passive check that can be
used to accept any of the 30 or so SNMP traps the Raritan can send.

The hardest part of ingesting traps from SNMPTT into Nagios is mapping the device
names and IPs to your Nagios names and IPs. Since some devices are multihomed, you
might receive a trap from a device with a source IP address in the trap that does not
match the IP you have configured for the device in Nagios. There are several ways to
work around this situation. First, you can change your Nagios configuration for the
device in question so the IP used for traps matches the IP you use for polling. Second,
you can make sure every device you receive events from has a DNS PTR (reverse IP to
name) record in DNS, and turn on DNS in SNMPTT. Third, and most flexible, you can
just add a local database table or flat file where you can map these additional outside IPs
to your inside IPs and write your script so it looks up the IP in this local cache before it
tries to match the IP address in your Nagios to IP address data store.

There are two ways to query Nagios to get the official hostname for a device
for which you have an IP address. The first is to write a wrapper script that will let
you query your Nagios configurations, or a script that parses your Nagios host
configurations and writes the IP to host name mappings to either a flat file or a
database. This method places custom development effort on you but then means
you have no extra components to add to Nagios to retrieve hostname or IP address
information. The second way is to install NDO (mentioned earlier in this chapter)
www.syngress.com

 Add-ons and Enhancements • Chapter 5 267
and then just query the Nagios event database using your favorite scripting language’s
database abstraction API.

For this SNMPTT to Nagios script, we chose to use NDO because we had it
installed already for NagVis (mentioned earlier in this chapter). This made the
SNMPTT to Nagios script very short and easy to write.

Here is an example of what an event configuration in SNMPTT looks like,
including calls to our custom script:
EVENT digiLoginSuccess .1.3.6.1.4.1.332.10.14.14.0.1 “Digi” warning
EXEC /usr/local/etc/snmp/snmptt2nagios.pl $ar $s “Digi Event” “$Fz”
FORMAT Successful login: $1

EVENT digiLoginFailed .1.3.6.1.4.1.332.10.14.14.0.2 “Digi” critical
EXEC /usr/local/etc/snmp/snmptt2nagios.pl $ar $s “Digi Event” “$Fz”
FORMAT Failed login: $1

EVENT digiGeneric .1.3.6.1.4.1.332.* “Digi” ok
EXEC /usr/local/etc/snmp/snmptt2nagios.pl $ar $s “Digi Event” “$Fz”
FORMAT $+*

Here is what a passive check configuration in Nagios that receives events from this
script looks like; note that we set up a “reset” freshness check that will be called to reset
the state of the event to OK if a new event is not received within a period of time.

First, we define a base service template for the passive service:
define service {

use generic-service
name passive-base
check_period 24×7
flap_detection_enabled 0
max_check_attempts 1
active_checks_enabled 0
passive_checks_enabled 1
normal_check_interval 1
retry_check_interval 1
check_freshness 1
freshness_threshold 3600
process_perf_data 1
contact_groups admins
notifications_enabled 0
register 0

}

Then, we define a template for the Digi event service:
define service {

use passive-base
check_command check_digi_freshness
www.syngress.com

w

268 Chapter 5 • Add-ons and Enhancements
hostgroup_name digi-hosts
service_description Digi Event
contact_groups admins

}

Finally, the command definition for the command that will reset the service to
OK after one hour (3600 seconds) without a new event arriving:
define command {

command_name check_digi_freshness
command_line $USER1$/check_dummy 0

}

Here is the script we can use to submit a passive check from SNMPTT to
Nagios; we use the NDO database to map agent IP addresses to Nagios host
names:
#!/usr/local/bin/perl

use strict;
use DBI;
$|++;

my $DSN = “DBI:mysql:database=nagios;host=localhost”;
my $DB_USER = ‘user’;
my $DB_PASS = ‘pass’;
my $CMD_FILE = ‘/var/nagios/rw/nagios.cmd’;

my $address = $ARGV[0] || usage(“Missing address to look for!”);
my $level = $ARGV[1] || die usage(“Missing condition level”);
my $descr = $ARGV[2] || die usage(“Missing service description”);
my $output = $ARGV[3] || die usage(“Missing plugin output”);

my %ERRORS = qw(

OK 0
WARNING 1
CRITICAL 2

);

$level = uc($level);

usage(“Invalid level $level”) unless exists $ERRORS{$level};

my $dbh = DBI->connect($DSN, $DB_USER, $DB_PASS);

my $sql = <<EOF;
SELECT display_name from nagios_hosts where address = ‘$address’
EOF

my $sth = $dbh->prepare($sql);
$sth->execute;
my $row = $sth->fetchrow_hashref();
ww.syngress.com

 Add-ons and Enhancements • Chapter 5 269
my $host = $row->{‘display_name’};

usage(“Host not found!”) unless $host;

my $time = time();
my $return = $ERRORS{$level};
[<timestamp>]

PROCESS_SERVICE_CHECK_RESULT;<host_name>;<svc_description>;

<return_code>;<plugin_output>

my $check = “[$time] PROCESS_SERVICE_CHECK_RESULT;$host;$descr;$return;$output”;

open(my $fd, “> $CMD_FILE”) ||

die “Cannot write to Nagios external command file $CMD_FILE: $!”;

print $fd “$check\n”;

close($fd);

exit;

sub usage {

my $msg = shift;

die <<EOF;

$msg

$0 IP OK∣WARNING∣CRITICAL “Service Description” “Plugin output”

e.g.

$0 192.168.1.30 WARNING “Digi” “User foo logged into Digi1 from 192.168.0.33

EOF

}

Translating SNMP trap MIBS to SNMPTT format is an easy process, and receiving
events from all of our specialized devices and monitoring programs (like Oracle’s
OEM) has proven very useful.

Text-to-Speech for Nagios Alerts
Often, data center or technical managers or NOC staff think that having the
alerting system speak alerts will make their lives much easier. Before long, however,
you will see them shrink down in their seat as alerts are spoken or just quietly turn
the volume down on the speakers of the alerting station. Spoken alerts must be
implemented judiciously. Only have the text-to-speech system “say” the most
critical alerts.
www.syngress.com

ww

270 Chapter 5 • Add-ons and Enhancements
Something else to keep in mind when implementing text-to-speech is that even
the better text-to-speech libraries will not pronounce words the way we might expect
them to. Therefore, it will most likely be necessary to include in any text-to-speech
scripts the capability to add custom word and phrase transformations that change
words that trip up voice libraries into phonetic spellings that make them sound truer
to their original spellings. For an example text-to-speech daemon that polls Nagios
and “speaks” alerts, see Chapter 2.
w.syngress.com

 Add-ons and Enhancements • Chapter 5 271
Summary
As you can see, a wide variety of add-ons and enhancements let Nagios do much
more than just monitor networks and systems by running plug-ins. A major strength
of Nagios (and a feature that can be intimidating to new users) is its flexibility
and openness. We have covered just a small portion of the add-ons available for
Nagios in this chapter; we hope that the add-ons we discussed will get you excited
about the Nagios community and the power that Nagios brings to administrators
and users.
www.syngress.com

This page intentionally left blank

Chapter 6
Enterprise
Integration
Solutions in this chapter:

Nagios as a Monitor of Monitors (MOM)

LDAP Authentication

Integration with Splunk

Integrating with Third-Party Trend
and Analysis Tools

Multiple Administrators/Configuration
Writers

Integration with Puppet

Integration with Trouble Ticketing Systems

Nagios in the NOC

■

■

■

■

■

■

■

■

˛	Summary
273

w

274 Chapter 6 • Enterprise Integration
Introduction
In an ideal world, an organization would choose one tool that would enable them to
monitor and perform performance trending on every device and application in the
organization, regardless of operating system. In reality, most organizations end up
choosing a mix of best-of-breed tools. All these pieces need to be tied together to
ensure your customer and your teammates do not spend all of their time remember-
ing what tool to use. This chapter focuses on how to integrate Nagios with the types
of tools, frameworks, and operational models commonly used in larger organizations.

Nagios as a Monitor of Monitors
A monitor of monitors (MOM) is a centralized console that receives events from
remote applications, displays alerts, and can poll locally managed devices for status.
It is important when designing a monitoring system to empower the staff who
manage applications and systems within an organization with as much control over
their monitoring systems as possible (Figure 6.1). It is also very important to let
specialists in an organization use the tools they know work best for the type
of monitoring they wish to do. For example, a network security team might prefer
to manage its own instances of Snort, Tripwire and Nessus. Even these specialized
systems will produce some alarms and events that your tier-1 and tier-2 staff need
to know about due to their potential impact. Instead of forcing them to have to
learn and use multiple tools to see these alerts, simplify their lives by letting the
application experts decide which alarms need to be seen, and have the specialists
configure their tools to forward these alerts to the central management server.
SNMP traps or the Nagios NSCA frameworks can both be used for this purpose.
ww.syngress.com

 Enterprise Integration • Chapter 6 275

Figure 6.1 Monitor of Monitors in an Organization

Monitor of Monitors

Locally
Developed
Applications

SNMP agentsLocally
Managed
Devices

Branch
Office
Monitor

Intrusion
Detection
System

Polls SNMP
Traps

SNMP
traps

SNMP
Traps

NSCA
checks
Nagios can fill this manager of managers role quite well. It can receive and display
SNMP traps using SNMPTT and some simple integration code, it can receive passive
events using the NSCA framework, and it can poll systems and applications in an
organization for status. With its extensive visualization add-ons (NagVis, PHP, Nagios
Looking Glass, to name a few), Nagios can provide end users with a multitude of
customized views of data stored in Nagios. When planning a new Nagios installation
or integrating Nagios into an existing organization, think about how Nagios might
work in this role. Using Nagios as a Monitor of Monitors can make your life easier
as an integrator. It also may make it much easier to convince an organization to
adopt Nagios; not much thrills IT managers (especially service desk managers) more
than hearing that they can simplify life for their staff while providing them with
greater insight into IT operations.

LDAP Authentication
In this section, we discuss how to use LDAP as an authentication source for Nagios.
We first discuss using LDAP for simple authentication based on mapping Nagios
contacts to LDAP users. Then, we discuss how to make LDAP work for group
authentication with Nagios.

One LDAP User, One Nagios User
Basic Nagios integration with LDAP is straight-forward. For most distributions of
Linux and flavors of BSD, use the package administration tools that come with the
www.syngress.com

w

276 Chapter 6 • Enterprise Integration
operating system to install an Apache LDAP authentication module like mod_authnz_
ldap. For some flavors of Unix you might have to custom-compile the module. Set up
a <Location> section in an .htaccess file or in one of the Apache server configuration
files with mod_authnz_ldap directives so the configuration points to an LDAP server
that contains the user accounts needing access to Nagios. Create the contact objects in
Nagios so that the user IDs from LDAP map to the Nagios usernames. Finally, estab-
lish a base set of privileges for all users and hard-code the names of the Nagios
administrators in the Nagios CGI configuration file. Keep in mind that with this
method of authentication, the Nagios administrator will have to manually assign users
to hosts or host groups for those users to view hosts within Nagios unless the special
token * is used in the configuration file with the authorized_for_all* configuration
directives (authorized_for_all_hosts, authorized_for_all_services, authorized_for_all_
service_commands, authorized_for_all_host_commands) to grant access to view all
hosts and services to everyone (Figure 6.2).
Figure 6.2 Basic LDAP User Authentication Data Flow

End User

GET /nagios/status.cgi

.htaccess file or
httpd.conf <Location>
section

Search LDAP for user

User found, password matches

Request passes to status.cgi,
user in REMOTE_USER variable

Apache LDAPmod_authnz_ldap Nagios
One LDAP Group, One Nagios User
In this scenario we use shared group accounts for LDAP authentication instead of
individual user accounts. This makes maintaining contact configurations easier but
provides less fine-grained auditing on who is doing what in Nagios. It also may
simplify how a Nagios administrator thinks about authentication as the contact
groups can map to corporate email groups. Only use this method of authentication
ww.syngress.com

 Enterprise Integration • Chapter 6 277
in a trusted environment and do not give all authenticated users permissions to
modify the state of Nagios as it runs from the web interface unless everyone can be
trusted. As with the first LDAP authentication scenario in this section, we hard code
the names of groups that receive elevated permissions in the Nagios CGI configura-
tion file.

Integration with Splunk
Nagios has been integrated with graphing tools like Cacti and other performance
data tools for years now, using a variety of different methodologies. In the 3.x
release of Nagios, Ethan has started to integrate Nagios with Splunk, a commercial
product that acts as like “Google for your logs.” Nagios allows us to monitor just
about anything, Splunk allows us to ingest and search just about any file format or
textual output we feel is important, be that system logs, output from programs, or
text ingested using custom connectors. Splunk indexes this data and gives us flexible,
full-text searching capabilities.

This functionality is a perfect companion for Nagios. When something is broken,
the next question is “Why did it break?” For that we often turn to system and appli-
cation log files. Currently, Nagios to Splunk integration is very basic. There are a few
configuration options to change in the Nagios CGI configuration file, cgi.cfg. These
options are shown below:
SPLUNK INTEGRATION OPTIONS

These options allow you to enable integration with Splunk

in the web interface. If enabled, you’ll be presented with

“Splunk It” links in various places in the CGIs (log file,

alert history, host/service detail, etc). Useful if you’re

trying to research why a particular problem occurred.

For more information on Splunk, visit http://www.splunk.com/

This option determines whether the Splunk integration is enabled

Values: 0 = disable Splunk integration

1 = enable Splunk integration

enable_splunk_integration=1

This option should be the URL used to access your instance of Splunk

splunk_url=http://splunk.localhost.net:8000/
www.syngress.com

w

278 Chapter 6 • Enterprise Integration

Figure 6.3 Nagios Status Screen Showing Link to Splunk
The Splunk icon then appears as a link that will take the end user to your Splunk
Web site and execute a query for the host or service having an issue. Currently, this
is the extent of Splunk integration with Nagios; it is by no means where we believe
the integration will end. The open architecture and vast number of uses Splunk
has means that we expect to see increased integration between Nagios and Splunk in
future versions of Nagios.

Integrating with
Third-Party Trend and Analysis Tools
Cacti
Cacti (www.cacti.net) is an open-source trending tool that uses the round-robin
database tool (RRD tool) to create long-term trending graphs of device and applica-
tion performance. When integrated with Nagios, MySQL, and SNMPTT, Cacti can
ww.syngress.com

 Enterprise Integration • Chapter 6 279
be used to create network monitoring trend reports and graphs. Cacti has a very
flexible plug-in framework and can be enhanced to perform additional functions
Examples include: watching for configuration changes on network devices, alerting
when trended metrics exceed configured thresholds, and displaying bandwidth utili-
zation maps. While Cacti is very good at trending, its fault management capabilities
do not match those of Nagios. When used with Nagios, we recommend you use
Cacti for long term trending and Nagios for fault management.

One of the difficulties of integrating Cacti and Nagios is authentication.
Cacti directly supports LDAP authentication. Nagios can be made to use LDAP
by using the mod_authnz_ldap module for Apache. Unfortunately, even with
LDAP authentication on for both programs it will still be necessary to create user
accounts for each application to limit access within each program. If your user
base is trusted you can give read-only permissions for all devices to the “guest”
user account in Cacti.

Another way to integrate the two programs is to use the Cacinda add-on
(http://cacinda.sf.net/). Cacinda is a PHP-based set of scripts that allows you to set up
dashboards for devices on your network by device type and then display information
from those devices in Nagios. It accesses the Cacti database directly for graphs, SNMP
authentication information, and device information so there is no need to create
individual user accounts in both Cacti and Nagios. Cacinda pages can be linked to
from Nagios by using the extra notes or action URL configuration directives for
devices. See the section on Cacinda in Chapter 5 for more information on how
Cacinda works.

Finally, you might conclude that it is best to not fully integrate them. Many
users will set up Cacti to focus on network devices as it has several very useful
network-centric plug-ins and use Nagios solely for monitoring systems and appli-
cations. Here is a very small sampling of the plug-ins available for Cacti:

Network Weathermap for Cacti (http://www.network-weathermap.com/)

MAC address and port status tracking (http://docs.cacti.net/plugins/
mactrack/info)

Netflow graphing (http://docs.cacti.net/plugins/Flowviewer)

■

■

■

www.syngress.com

w

280 Chapter 6 • Enterprise Integration
Your level of integration may be just placing a link from the Nagios main GUI
that will let users view Cacti pages while staying within the Nagios HTML frame
set. This is the beauty of Nagios, many ways to do what needs to be done to meet
the goals of your organization—just pick the method that works best for you and
your customers.

eHealth
eHealth is a commercial trending and trap management suite of programs sold by
Computer Associates (CA). eHealth does an excellent job of reporting and is
designed to let you store and then query metrics across large numbers of devices. It
comes with a number of well thought-out reports and a flexible report creation tool
that allows you to create reports tailored to your organization. eHealth is designed to
be a monitor of monitors and additionally comes with a very flexible trap handling
and filtering program, Trap Exploder.

eHealth does performance predication based on past performance. By default it
watches element performance over a six-week period; as future performance deviates
from this rolling six-week baseline, eHealth will generate alerts that tell the percent
deviation in performance an element is showing and whether the element perfor-
mance is degrading or improving. For example, one of these alerts might read “CPU
utilization is 100% higher than normal.” These traps can be kept in eHealth or for-
warded to Nagios.

eHealth also comes with a limited set of visualization tools; it does not, however,
come with network path visualization tools or application-level or service-level cus-
tomizable visualization tools. We suggest that when using eHealth and Nagios
together, eHealth is used as the data repository of all system and network metrics,
while Nagios is used for nonstandard application, system, and network checks. We
also suggest making use of eHealth’s trap viewer but use Nagios as the Monitor of
Monitors and forward traps that need to be acted on to Nagios for alerting and
notification. Finally, for DMZ hosts where SNMP may not be allowed, Nagios’ NSCA
add-on can be used to send application-level events from DMZ devices to Nagios.

The ideal role for Nagios if integrated with eHealth would be as the master fault
manager. We recommend you use Nagios for visualizing services and applications on
your network and make use of eHealth for long-term trending and analysis of system
and network devices. In this role, eHealth should be configured to forward all traps
ww.syngress.com

 Enterprise Integration • Chapter 6 281
to Nagios for display and notification where applicable. eHealth comes with an
easy-to-use Web interface and uses Apache authentication for application login; to
ease integration of users between the two applications you should either use the
.htpasswd file eHealth creates for users to authenticate users under Nagios or set up
a cron job that will copy this file from your eHealth host to your Nagios host using
scp using PKI.
Figure 6.4 Nagios and eHealth Together

NOC Staff

Nagios

Apache MySQL

NSCA
eHealth
Tools

eHealth
Poller

eHealth
Trap Listener

Critical events

Oracle
OEM

DMZ Device
- No SNMP
Allowed Device Device Device

SNMP-enabled
Application

eHealth
Reports

LDAP

Tier 3 Staff

SNMPTT
Multiple Administrators/
Configuration Writers
In larger organizations there will often be more than one person involved in writing
and maintaining Nagios configuration files. There are several administration GUIs
available for Nagios; while the current set of GUIs available does not provide the full
flexibility of configuration that hand-creation of configuration allows, they all do
www.syngress.com

w

282 Chapter 6 • Enterprise Integration
allow for creation of user accounts and user roles. If your staff is technically proficient,
you might opt instead to design your Nagios configuration so it can be checked into
a source code control system like CVS or SVN; access to various parts of the configu-
ration tree can then be controlled by server-side ACLs. Finally, you might even choose
an LDAP-based configuration where Nagios objects are stored in LDAP and a custom
script pulls the configuration from LDAP periodically and applies it to your system,
restarting Nagios if changes have been made.

Integration with Puppet
Puppet (http://www.reductivelabs.com/projects/puppet) is an open source systems
administration automation and management framework. System polices are config-
ured using a declarative configuration language very similar to Ruby. Each managed
server runs a Puppet agent that retrieves its configuration from a central Puppet
server (called the Puppet master). Once an agent has a valid configuration, it will
periodically apply the policies and rules it receives from the Puppet Master to the
managed system and can also send the results of each run to a Puppet reporting
server. Policies and rules range from watching for changes in critical files and
 directories to ensuring no changes are made to specific files, to installing and
 updating software packages on managed hosts.

Puppet and Nagios make a good team. Puppet provides an “inside-out” view of
a network of systems and helps automate many types of system administration tasks.
Nagios, on the other hand, is very good at providing “outside-in” views of applications,
systems, and networks. A typical arrangement would entail Nagios reporting status for
service checks on a managed host, while Puppet actually performs the systems adminis-
tration tasks that would normally be done if human intervention were required.
Together, the two provide a very complete tool set for monitoring and managing an
organization’s IT infrastructure (Figure 6.5).
ww.syngress.com

 Enterprise Integration • Chapter 6 283

Figure 6.5 Nagios and Puppet Together

SNMP
Agent

Puppet server sends
sends configuration
associated with agent
to managed system
when agent checks in
with the server.

Agent does the following:
* Can manage critical services on a host
* Sends reports to server after every
 periodic run; reports show what policies
 were checked and what changed between
 runs.
* Can watch critical files and replace them
 with ‘clean’ server copies if they change.
* Performs system management and
 administration jobs; jobs can be
 scheduled lik cron jobs or can be
 triggered by changes in the system.

Host, Service, and
Application checksSubmit to Nagios

as passive checks

SNMP Traps

SNMPTT Puppet
Agent

Nagios

Managed Device

Puppet
Integration with Trouble Ticketing Systems
We recommend that you only allow your fault management software to create
trouble tickets if the alerts triggering the tickets are so application specific and free
from false positives (like a passive check) that you can ensure the event requires
attention by a real person. On the other hand, we highly recommend you take
advantage of help desk systems that allow you to associate fault manager event IDs
and information with your trouble tickets. For example, it would make sense to have
your help desk software have the capability to acknowledge an open alert in Nagios,
or to have the help desk software clear an alert as soon as the issue is resolved by the
help desk person working on the event in question.

Core Nagios exposes a large number of macros that enable scripts to use the
information Nagios gathers from hosts, services, and other sources. Macros can be
employed by event handlers that execute scripts to email, send text messages, or call
external programs. Trouble ticketing systems often provide programs that can be used
to inject tickets into the service desk system from the command line; many allow end
users to open new tickets by sending email to a specific email address, for example
www.syngress.com

w

284 Chapter 6 • Enterprise Integration
support@example.com. Nagios’ event handlers can call these external programs or
send email to a trouble ticketing system to open new tickets, providing URLs in the
ticket body that link the ticket back to the originating Nagios event. Again, be sure
any events set up to automatically open new trouble tickets only do so for events that
require immediate human attention (Figure 6.6).
Nagios Managed Device

Executes host check_command

No response -host down!

Call event handler

Open trouble ticket

Host Event Handler Trouble Ticketing System

Figure 6.6 Nagios Opens a Trouble Ticket
Nagios in the NOC
There are usually three types of NOCs. We will discuss the Enterprise NOC first and
then explore two smaller types of NOCs as well.

The Enterprise NOC usually is divided into three tiers. The tier one group takes
phone calls, opens tickets, and acts as the front line of problem resolution. This group
is typically the one that should be seeing a problem-only view of Nagios. They
should see hosts and services that report warnings and start to work those issues
while starting a problem ticket. Tier two will usually have more specific skills or
specialties and will have problems escalated to them based on that expertise. Tier two
should take on any issues that have been open for longer than your established
escalation threshold or that the tier one group is unable to complete. Tier three is
usually made of non-NOC staff who are application or system specific experts who
are called in to look at issues after second or third escalation timers have expired.
Some NOCs will include a separate group that sits organizationally between the first
and second or second and third tiers based on the systems in use within the organi-
zation. Another variation is that once past tier one problems are branched off to
other second-level teams that specialize in application, hardware, or network issues.
ww.syngress.com

 Enterprise Integration • Chapter 6 285
In all of these cases it is important to define escalation timers and notification rules.
Improper notifications and unrealistic escalation times lead to “cry wolf ” conditions
that will cause your staff to become complacent about alerts and issues. Preventing
false positives before they send out notification is the number-one priority of your
Nagios administrator. We will now discuss some important issues to consider should
you decide to integration Nagios into your organizations’ NOC.

The Nagios Administrator
This can be a full-time job. Nagios is not an install and forget application, and like the
rest of your systems and applications, it requires maintenance. Depending on the num-
ber of systems you may need more than one person to administer and maintain Nagios;
this is especially true in larger organizations. For any Enterprise Nagios installation you
need at least one dedicated Nagios administrator. This person can then work with
individual system administrators and their teams to maintain Nagios host and service
definitions. The Nagios administrator should be someone who works with the applica-
tions in your organization daily. This person should be experienced with all aspects of
Nagios and with the large number of add-ons and customizations that are available for
Nagios.The lead Nagios administrator should have strong organization skills, an ability
to interact with multiple teams at your organization, and be able to listen well and
determine what is important to monitor and what is not as new applications are added
to an organization’s network. Additionally, the Nagios administrator needs to be able to
communicate effectively and train and educate other staff members on network and
systems management concepts and benefits.

The Nagios Software
For Nagios to be effective, its monitoring plug-ins and software need to be installed
before a system goes live. You need to test the failure scenarios for that system and
validate that your thresholds are set correctly. You also need to validate that perfor-
mance data is being collected properly by plugins and establish a performance baseline.
By planning your deployment early as described in Chapter 2, you will have base
configurations and templates that only need to be slightly modified for new systems
and applications. You also only need to define all of your system and application depen-
dencies to keep your status screens clean; ensure that network paths are properly defined
so that when a network device fails all hosts that depend on it are shown as unreachable
by Nagios (as opposed to all of them being shown as down). In addition, new versions
of Nagios and the plug-ins are released several times throughout the year. Planning for
www.syngress.com

w

286 Chapter 6 • Enterprise Integration
upgrades and deploying updates to both software and custom plug-ins and the
Nagios configuration can be a task for your Nagios administration team, or it can be
 delegated to desk staff if upgrade and installation processes are properly documented.

Integration
When preparing a system for roll out into a production environment, your Nagios
administrator and System adminsitrators should work together to deploy the system
and configure Nagios to starting monitoring it. For any enterprise deployment you
should have a develop and test Nagios system where you can test plug-ins and con-
figurations. This allows a team to identify failure scenarios, configure alerts, and test
notification policies before the system is in use. For a large enterprise installation you
should have a second Nagios server that just handles integration and test environ-
ment systems so you can validate configuration changes and file configurations before
moving the changes to your production Nagios server.

Deployment
Deployments should be done in phases. We recommend you deploy applications and
systems in groups; this allows operations staff to learn the systems, validate the systems
function properly, and test that health checks for the systems are implemented as
agreed upon by operational and development staff. Your main goal is to remove as
many false positives as possible and ensure that alerts sent by the system are meaning-
ful to operational staff.

When deploying new Nagios servers, make sure notifications are off by setting
the parameter notifications_enabled to 0 in the nagios.cfg configuration file. If possible,
have notifications go to a separate testing mailbox so you can validate the notification
process and details. Many people do not appreciate the value a monitoring system
can bring to an organization; the especially dislike systems that fill up their mail
boxes with notifications. Using templates you can quickly change the notification
destinations for an entire set or host group of systems, allowing you to quickly
 transition the monitoring to the local system admins once your deployment testing
is done.

While it may not be the most glamorous of tasks, as you add new system and
application checks to Nagios, be sure to monitor your Nagios server for resource and
performance problems. Make sure you are running checks on your base monitoring
system. Watch for changes in execution times. If you are using the performance data
gathering features of Nagios, carefully watch processing times and performance.
ww.syngress.com

 Enterprise Integration • Chapter 6 287
While Nagios operates well in large environments, performance data processing can
easily become a bottleneck for a Nagios system. If you are planning to roll Nagios
out on a large deployment with performance data processing in place, we recommend
you look at distributed Nagios monitoring.

Maintenance
Even after Nagios is configured to monitor a new system, you will need to maintain
the configuration—watch for repetitive failures and be sure to update configuration
rules to match changes in the system or application. If your configuration and monitor-
ing environment are large, you should schedule periodic reviews of the systems and
devices being monitored to check for changes or new services. You also need to plan for
the scheduled maintenance cycle of the system to make sure you have scheduled main-
tenance planned in your Nagios configuration. Sending alerts out at 2 a.m. for planned
work makes everyone unhappy. In many cases, you will also need to plan alert outages
around network backup and other regularly scheduled system and network maintenance
activities that can cause false positive alerts.

Depending on your environment, you may already have software deployment or
patch management software in place. If not, keep Nagios in mind when planning
your deployment and maintenance. For the most part we have seen Nagios plug-ins
work for years without needing replacement. However, when a new plug-in comes
out that you just have to have, having a way to easily deploy the changes to many
systems at once can make your life as a Nagios administrator much easier.

If you don’t have patch management, we highly recommend you look at your
Nagios user account. In many environments you may be able to allow SSH access
to your systems using SSH keys instead of passwords. With SSH keys in place, you
can implement a script on your Nagios server that parses Nagios and other system
 configuration files, determines which systems require updates, and then deploys
updates to those systems. Regardless of the method you decide to use to manage
your updates, the update process needs to be considered and accounted for on the list
of required resources and required time per server when planning a deployment.

The Process
Nagios can add a lot of value to an organization provided you monitor changes to
your systems and eliminate false positives. Define a change process that includes
notifying Nagios administration staff when something changes in the environment.
System administrators need to come to you early in the integration process so you
www.syngress.com

w

288 Chapter 6 • Enterprise Integration
can have complete application and system monitoring in place for a system or appli-
cation when it does finally go live. Ensure a process is in place that makes it easy for
operational staff to report problems that Nagios did not catch to Nagios administra-
tors so that the problem situation can be monitored by Nagios in the future.
Your Nagios administrator should have the ability to review support tickets to see
which issues were not identified before a phone call was received or users noticed
that a problem was occurring. When a problem is found, you should consider the
basic questions—what caused the issue, what resolved the issue, how can we detect
it in the future, and how can we prevent it or automatically recover from it? Your
biggest return on investment overall from monitoring is to end “known issues” or
repetitive maintenance work; this type of continual re-fixing is part of what leads to
lower morale and more common mistakes from your NOC staff.

In conclusion, remember that Nagios does not replace people; you normally cannot
reduce your admin or network staff once a monitoring system is in place. A proper
deployment of any monitoring tool will help make your staff more effective and your
outages less expensive and damaging. When Nagios alerts your staff, it should be point-
ing them to the exact problem that needs to be resolved. Too often we depend on
phone calls or emails from users that present symptoms of the issues but not the actual
problem. Through intelligent setup and proper configuration of Nagios, you present
your staff with a tool that tells them exactly where issues are occurring so they can
quickly resolve host and application problems.

The Operations Centers
The Enterprise NOC
The enterprise NOC is the primary customer of your Nagios installation. Nagios
provides NOC staff with early insight into problems. If host and service checks are
properly defined, warnings are seen by the NOC before end users are impacted. Your
Nagios configuration should be simple and geared toward users’ needs. Just as you
gather requirements before adding new hosts, you need to document how your NOC
works today and what needs improvement. In most environments there will be some
kind of monitoring tool in place well before you suggest Nagios. Work with NOC staff
to identify what they like and do not like about the current set of tools they use. Many
times, the problem is not that the tool currently in place is not useful but rather that it
is not integrated into the build, test, and deploy processes an organization uses for new
and existing systems. Looking at a typical service desk workflow we can see how
Nagios can integrate into an existing service desk process. (Figure 6.7).
ww.syngress.com

www.syngress.com

 Enterprise Integration • Chapter 6 289

Existing Flow:
1. User calls helpdesk -> Helpdesk opens ticket and attempts to identify root issue. Depending on the service outage
there can be a high volume of calls for one issue.
2. Helpdesk is able to either work issue and resolve or escalates to second level.
3. Second level works to identify root cause and resolve issue. If unable to resolve issue, they may need to contact
third-level support.
4. Once issue is resolved, helpdesk works to close ticket and notify users of service recovery.

Nagios Flow:
1. Nagios display shows service in Warning status -> Helpdesk opens a ticket knowing a base root issue as Nagios
has a failing or failed service and pre-defined service check. Since the issue being reported is from a pre-defined
service check there is less work involved in identifying the root cause of the failure. You are also able to then have the
helpdesk check against previous tickets or documentation for this type of check failure. Helpdesk also acks the alert
on Nagios. With this ack, any other administrator knows that the issue is now being worked on.
2. Helpdesk is able to resolve issue or escalates to second level.
Nagios continues to monitor, and if pre-defined time limit has passed or service fails it will then automatically notify
second-level staff.
3. Second-level staff is able to begin troubleshooting and either resolve issue or involve third-level support.
Once the issue is resolved, Nagios is able to automatically show service recovery, which acts as a redundant
confirmation to staff that issue has been completely resolved.

Advantage of Fault Monitoring:
* Helpdesk is able to identify Root Cause issues at “Warning” State before issue is “Critical”
* Root Cause Research time and false symptoms are greatly reduced.
* Helpdesk is able to methodically work issue without rushing.
* Issue is resolved before any user impact and without additional resource usage of end user reporting.

Issues with Non Monitored Fault Management:
* Helpdesk is dependent on end users to report problems after they have impacted the customer base.
* End users reports usually describe symptoms and not true root cause of issues or specific system with fault.
* Faults are only found when they impact systems.
* Helpdesk is continuously in a reactionary mode “fighting fires” instead of pro-actively maintaining systems.

Nagios Helpdesk Flow

Existing Helpdesk Flow

Ticket
Created

Ticket
Created

Issue
Resolved

Issue
Resolved

Resolution
Validated

Nagios Clears
Warning Alert

Ticket Closed
No Customer

Imapct

Ticket Closed
Customer
Contacted

Web Server
Disk partition
becomes full

Web Server
Disk partition
becomes full

End User reports
web access

problem

Nagios Warning
alert at 80%

Issue
Researched

Issue
Researched

Helpdesk alerted
on Disk partition
for Web Server

Figure 6.7 Typical Workflow

290 Chapter 6 • Enterprise Integration
Many issues are not isolated. With an automated testing tool like Nagios you can
see when multiple problems occur at the same time and you can usually easily see
what top level system or application caused the two or more related problems; this
keeps operational staff from getting stuck ‘in the weeds’ when an application or
system problem occurs. When a user calls, he or she may report a problem accessing
a web server. If the real issue is that a network device between the web server and
the end user has failed, Nagios can display this graphically and keep your opera-
tional staff from spending time on trouble shooting application-level issues when in
fact the problem is network-related.

Nagios saves your operational staff time. If your helpdesk receives a notice Nagios
that a service or host is in a warning state, they may be able to fix the impending
problem before any customers notice. Many help desk personnel spend more time
answering calls to repeat the same outage information to a group of users than they
do working on and resolving problems. In addition, when new issues are reported by
users, your first-level helpdesk will become tied up in telephone and user task work
and they may not be able to work any issues to resolution. As a result, tier two staff
may become stressed and overworked on tasks that can and should be done by tier
one staff. Finding issues before users do can save your organization both time and
money.

The scenario we have just described is typical of a NOC with a more traditional,
tiered approach to support. In this environment, operations staff sit in a shared work
area and communication between staff members is as easy as standing up and shouting
at a neighbor. In cases where NOC personnel are not in a common area, more work
has to be done to keep people informed. Investing in a large, easy to read status screen
for each common area used by your NOC staff on any level drastically increases their
awareness of system status. Status screens should never be limited to one location and
should never be left out of the data center. When placing a status screen, keep in mind
what we discussed earlier on scaling the GUI. Sit at the desks of your staff and look at
the status screen; if you cannot read all text on the screen neither can they. The data
shown should be easy to read, simple, and always current. A good analogy for this is
driving: when you look out your windshield you look at everything around you; if
you see a sign that warns you of danger ahead, you process that information and act
accordingly. If that sign is too far away or in such small type that you cannot see it you
will ignore it or worse, lose focus on the road as you attempt to read it, and now that
sign has hurt your driving experience rather than help it.
www.syngress.com

 Enterprise Integration • Chapter 6 291

Note

In the data centers we have visited we rarely see status monitors on the
data center floor. Yet a high percentage of time, outages are caused by
work being done in the data center. We feel that more administrators need
to consider the benefit of putting system status screens in the data center.
When an operational staff member is done replacing a cable, or installing a
new server, the data center monitor will provide near-instant configuration
that the work done did not break other systems in the data center.
The Incident
For discussion purposes, lets pretend that a hard disk on a web server is 98% full.
With no monitoring at all, we will not know there is an issue until the drive is full
and the application stops operating correctly. In this case, the first report of an issue
is when a customer contacts the helpdesk and reports that the Web site is broken.
Administrative staff begin researching why the Web server has failed. By this time the
drive is 100% full and the SSH server on the system fails as a result, making trouble-
shooting even more difficult. At this point, many users are impacted and the issue has
become a critical problem for end users and the help desk staff!

Nagios allows us to configure both WARNING and CRITICAL thresholds for
alerts. The warning threshold should cause the alert to be triggered at least 30 mintues
before an issue becomes critical. Once an issue is critical, it will most likely impact
end users. In the preceding case, we could have been are alerted to the issue before
the disk was full. The helpdesk would have been able to log in to the system, identify
the cause of the issue, and resolve it. With the issue resolved, no application or systems
would have been affected and no customers would have called to report a problem.

Fires rarely occur in a well managed and organized help desk. All administrative
staff from level 1 to 3 should have a general of system and network performance at
all times. Management should be able to tell what issues exist and how well they are
being managed. Many helpdesks today base their staffing levels on metrics, usually
based on the ratio of tickets open/closed, system uptime/downtime, and overall
application availability. Proactive monitoring with a fault management system allows
you to lower your system downtime and improve your time gap for ticket open/
close interval.
www.syngress.com

w

292 Chapter 6 • Enterprise Integration
Ongoing Maintenance
There will be times when a system breaks in such a way that Nagios is not aware of.
You need to have the option in your ticket system to flag those issues so that Nagios
staff can easily see them. Once the problem and resolution are known the Nagios
system can be updated to monitor for that failure condition. With this type of continual
quality management, you can simealtaneously grow your monitoring configuration and,
at the same time, reduce the number of system and host outages that occur. System
and software upgrades, integration of new systems, and addition of new checks to catch
system and host problems before they become critical will keep a NOC staff very busy.
We feel that in the long run the happiness customers and end users experience and the
reduced stress placed on a NOC staff justify the additional time and effort required to
integrate Nagios into the processes in use in a NOC.

Smaller NOCs
In the beginning of this section, we mentioned that there are two other types of
NOCs that typically use Nagios. Enterprise NOCs in some ways are easier than smaller
NOCs. They have a larger staff with more well-defined roles and responsibilities.
Smaller NOCs have fewer resources to allocate to problems; in some cases the “NOC”
may just be a single person sitting behind a PC. First, we will look at the NOC that
has a small helpdesk staff where one group of personnel perform the duties of both tier
one and tier two staff. When this type of helpdesk is unable to resolve an issue they
escalate the issue directly to a developer or a direct vendor for additional support.
In these situations you will find that helpdesk staff is committed to each issue for a
longer amount of time as they follow each issue to completion regardless of their
experience level with the problem at hand. This can become a problem if too many
issues occur at once. By identifying issues before they are critical problems, Nagios it
helps prioritize problems. Moreover, the ability to acknowledge issues and add notes
directly to Nagios means additional staff can easily see the status of issues and handle
those with the higher impact first.

The other type of NOC typically seen has staff members at multiple locations who
may support systems locally and then act as secondary support or even primary support
for remote locations. When working with remote staff support or de-centralized NOCs,
it is important that staff in each location can communicate easily and quickly with
each other. Allow staff members to use email or instant messenger to communicate
with each other as they work on current issues (do not allow end users to communicate
ww.syngress.com

 Enterprise Integration • Chapter 6 293
with NOC staff using instant messenger as this circumvents your help desk processes!).
We recommend you not use email as a trouble ticketing system as it does not provide
any one person with ownership or accountability of issues. Effective tools for group
chat include private IRC, IM Group channels, even VOIP or Skype conference
channels can be used for this purpose.

The biggest bottleneck in de-centralized NOCs is that the ability for staff members
to quickly communicate with each other is reduced dramatically when compared to a
NOC where the support staff can see and interact with each other directly. It is impera-
tive that when possible as much of your support staff should work in a location that
promotes direct interaction. Your goal is to allow and support unstructured conversations.
Quite often several issues that occur at or around the same time will be related. If NOC
staff cannot easily talk with each other about outstanding issues the link between related
issues can easily be lost. This results in longer outages and repeated effort by your staff.
Small or de-centralized NOCs have an uphill battle in fighting this communication
barrier. Individual status screens separate from desktops in every office area can help
greatly in keeping people aware of network status and health. Organizations that use
Nagios should consider implementing direct methods of communications like paging,
instant messenger, and text messages as these methods of communication are quite
effective at conveying the importance of an alert.
www.syngress.com

w

294 Chapter 6 • Enterprise Integration
Summary
In this chapter, we described how to best integrate Nagios into your NOC. Far too
often today, we see NOCs that are run using outdated methodologies that do not stress
proactive monitoring and direct communication best practices. Times and systems have
changed. With software and hardware load balancing we can now monitor systems and
resolve issues well before any end users are affected. When looking at Nagios or any
other monitor of monitors (MOM) software, we must consider our current environ-
ment and what processes are in use by our help desk management and staff. When
we review our help desk practices and procedures, our first task is to pose as an end
user, place a ticket, and see how things operate from the point of view of a customer.
Everyone in IT has had to interact with vendor help desk systems; we all know how
frustrating it can be to struggle through a traditional, tiered help desk system, especially
one that is de-centralized. Take a hard look at your help desk systems and processes and
find ways to improve it so users will not need to call; if they do have to call, ensure
that they are helped quickly, directly, and politely. The less time the user is put on hold
or transferred, the better. The sooner users can be given a real answer, the happier they
are with your level of service. Your happiest customer is one who never has to call;
the customer who will recommend you to someone else is the one who does call and
is provided real assistance.

Be willing to change. Talk to and listen to the different tiers of your helpdesk. They
will tell you what issues they fix daily and where the process can be improved. There
should be a zero tolerance policy on daily repetitive issues. If you had to change your
car tire every day you went to work, you would not keep that car. Applications should
not experience the same problems and band-aid solutions over and over nor should
your NOC have to waste time on a regular basis on issues that should be escalated
and resolved so they do not occur again. We also recommend that you visit other
NOCs. See how similar helpdesks in your field work. Finally, look at how helpdesks
in other fields work; many times you can find processes and applications in other
fields that apply very well to your field. We need to re-examine how we manage the
systems we operate and how we help the users who use the systems and applications
we monitor for them.
ww.syngress.com

Chapter 7
Intrusion Detection
and Security
Analysis
Solutions in this chapter:

Know Your Network

Watching for Session Hijacking Attacks

Nagios and Compliance

Securing Nagios

■

■

■

■

˛	Summary
295

w

296 Chapter 7 • Intrusion Detection and Security Analysis
Know Your Network
One of the axioms of computer security is “know your network.” Unfortunately,
many network security professionals tend to think this means purchasing more
security software, running more scans, or hiring an external firm to run a penetration
test. However, the real core of good network security is not the tools you run or the
firms you hire to document that you are “secure,” but how well you understand your
systems and your network architecture.

There are a great number of different tools available to a security professional.
None of them is as valuable as the ones that provide true visibility into the systems
and services of a network. This is where the true power of Nagios comes in. It is not
an IDS; it is not a vulnerability assessment scanner; it will not tell you that you have
been hacked; it won’t even stop an attacker. However, it still can be one of the most
powerful tools in your security arsenal. Nagios forces you to understand and monitor
the normal and approved operating parameters of your systems. This is a key point
because when something “abnormal” happens, you will have a good baseline and
understanding of what changed and why it is important to you. After all, how can
you know what abnormal is if you don’t know what normal is first?

Security Tools under Attack
We are seeing many of the core security technologies we have come to depend on
beginning to be attacked and bypassed. The research of Mike Poor and Ed Skoudis
has shown how simple modifications like fragmentation and different versions of
Metasploit attack code causes it to not be identified or stopped by many intrusion
prevention systems (ISPs). We are seeing the re-emergence of master boot record
(MBR) viruses, malware that attacks anti-virus products directly, and robust com-
mand and control mechanisms for botnets. These are only the beginning of a new
trend in hacking that is going to force us to better understand our systems rather
than rely on various tools to tell us we are secure or hacked.

It is becoming more and more important for security professionals to understand
what is happening on their networks. It is also important to know what is leaving
your network (extrusion detection) and to understand that some attacks, like
smb_relay, do not involve exploits in the traditional sense and may be difficult to
detect with traditional security technologies like IDS and IPS.

To read more about MBR viruses returning, see the article at www.f-secure.com/
weblog/archives/00001393.html.
ww.syngress.com

 Intrusion Detection and Security Analysis • Chapter 7 297
To read about the work of Ed Skoudis and Mike Poor, see the article at www.
toplayer.com/pdf/IS_110105.pdf.

To learn more about extrusion detection, check out the site from Richard
Bejtlich at www.taosecurity.com.

Enter Nagios
So, how can Nagios help a security professional know what is normal? Configuring
Nagios starts from a different perspective than most security tools. Many security
tools are built around the concept of blacklisting. This is where the developer(s) focus
on identifying malicious traffic and either alert you or block the traffic (hopefully
alerting you in the process). This paradigm in computer security is failing. The excel-
lent article “Six Dumbest Ideas in Computer Security” by Marcus Ranum articulates
this point very well by stating that the amount of malicious traffic is growing faster
than the security community can develop new signatures and methods to detect it.

The whole paradigm shifts with a tool like Nagios. Rather than having a tool
tell you that something bad is happening, Nagios has to be configured to periodically
check what is normal and presumably good. Configuring a tool to automatically audit
normal process states sounds like a fair amount of work to many people who have
been trained to purchase the security product that has the best marketing and/or sales
force. However, identifying normal states is a far more efficient way to secure your
network, because it will reduce the amount of time it takes for your security team to
identify that an incident has occurred and restore operations (Figure 7.1).
Figure 7.1 Service Status Details for Hosts
In this section of this book, we are not going to try to portray Nagios as a
 centralized security-monitoring platform. There are a great number of tools available
to you, and you should learn how to work with as many of them as possible.
www.syngress.com

w

298 Chapter 7 • Intrusion Detection and Security Analysis
Snort, Squil, and OSSEC are all great products that complement Nagios in any size
 environment; here are the links to learn more about these products:

www.snort.org/

sguil.sourceforge.net/

www.ossec.net/

Attackers Make Mistakes
Unfortunately, many administrators have been desensitized to their systems or critical
services crashing. In the days of Windows 2000 or NT, a system or service crashing
was considered more “normal” than a service or system staying up for long periods
of time. Unfortunately, this thought process has carried over to today. Systems like
modern flavors of Linux and the Windows server family are far more stable than the
2000 and NT versions of Windows. Because of this, when a system or service crashes,
it should be investigated immediately. In Figure 7.2, we can see that the Explorer
process has crashed on a Windows 2003 server due to an unsuccessful attempt by an
attacker to install the AFX rootkit.

Attackers make mistakes. Their tools don’t always compile and run correctly.
Sometimes, they crash a service or a system. Sometimes, they crash systems or
 services intentionally for new malicious configurations to take effect. These abnor-
malities need to be investigated by the systems administrators and the security team.
It is not acceptable to simply reboot a system or restart the service. Root cause
analysis must be preformed to identify why a service or system crashed.

In the next few sections, we address some Nagios plug-ins that may assist in detect-
ing an attacker on a system for Windows, Linux, and service-based checks like DNS.

NSClient++ Checks for Windows
We are going to start by going through the standard NSClient++ Windows plug-in
checks that can be performed by having the NSClient++ installed on a remote
Windows system. The directions to install NSClient++ and configure the Nagios

■

■

■

Figure 7.2 Explorer Process Has Crashed
ww.syngress.com

 Intrusion Detection and Security Analysis • Chapter 7 299
server to monitor a Windows system can be found at http://nagios.sourceforge.net/
docs/3_0/monitoring-windows.html.

We will address some the functions of the NSClient++ plug-in and how it can
be used to identify potentially malicious activity on remote Windows systems.

The first NSClient++ check we will review is the ability to monitor the
 memory usage of a remote system. By defining the following configuration param-
eter on the Nagios server, we can monitor the memory utilization on a remote
Windows system:
define service{

 use generic-service

 host_name <Your Server Name Here>

 service_description Memory Usage

 check_command check_nt!MEMUSE!-w 80 -c 90

}

The check_command portion of the configuration tells Nagios to check the
memory usage and generate a warning when memory usage is 80% and a critical
alert when it is 90% (Figure 7.3).
Figure 7.3 Critical Alert
There could be a variety of reasons why a potentially compromised Windows host
would have its memory resources exhausted. Many attackers use large numbers of
systems under their control to attack other networks via denial-of-service attacks,
spam, or possibly utilizing multiple systems to perform distributed password cracking.

The second NSClient++ check we are going to look at is the drive space check:
define service{

 use generic-service

 host_name <Your Server Name Here>

 service_description C:\ Drive Space

 check_command check_nt!USEDDISKSPACE!-l c -w 80 -c 90

}

www.syngress.com

w

300 Chapter 7 • Intrusion Detection and Security Analysis
The preceding check watches how much space is being used by the system being
monitored. If the utilization is greater than 80%, a warning will be issued. If the
utilization is greater than 90%, a critical alert will be issued (Figure 7.4).
Figure 7.4 Critical Alert
Many attackers prefer to store incriminating evidence on other people’s systems.
This way, when the FBI breaks down a door to seize evidence, it won’t be their door.
It should be noted that some of the more advanced rootkits like Hacker Defender
have the capability to mask the true amount of hard drive space that is being used.

The final NSClient++ check we are going to look at is the explorer.exe check.
This check monitors the status of explorer.exe:
define service{

 use generic-service

 host_name <Your Server Name Here>

 service__description Explorer

 check_command check_nt!PROCSTATE!-d SHOWALL -l Explorer.exe

}

This process is associated with the Windows GUI. If this service is not running,
it makes it very difficult to interact with the computer that is being monitored. Many
of the different tools attackers often use try to inject their malicious code into
explorer.exe. Tools like Metasploit have the capability to migrate to this process, and
rootkits like AFX use the explorer.exe process as a place to inject and hide their
malicious code. However, often explorer.exe will become unstable during the process.
If the service crashes, you should investigate the root cause of the crash.

To learn more about dll injection, we recommend Jim Shewmaker’s excellent
presentation on the topic: bluenotch.com/files/Shewmaker-DLL-Injection.pdf.

Securing Communications with NSClient++
It is strongly recommended that you set two parameters in the NSC.ini file on the
Windows clients you are monitoring. You should set a password to access the
NSClient++ plug-in and restrict access to only the Nagios server’s IP address.

The two parameters to set on the remote systems being monitored are:
password=<Your password here>
ww.syngress.com

 Intrusion Detection and Security Analysis • Chapter 7 301
and
allowed_hosts=<Nagios Server IP address>

Do not use the same password as the Administrator account of the system being
monitored, or of any other system on your network for that matter. Use a password
that is unique to the NSClient++ function.

Another great check with NSClient++ is CheckEventLog. The following brute
force password attack check was provided by Mick Douglas:
$ARG1$ = “security”

$ARG2$ = max before warn

$ARG3$ = max before crit

$ARG4$ = “529”

./check_nrpe -H $HOSTNAME$ -c CheckEventLog -a filter=new file=”$ARG1$”
MaxWarn=$ARG2$ MaxCrit=$ARG3$ filter-generated=\<2h filter-eventID==$ARG4$
filter-eventType==error filter=in filter=all

Security Checks with NRPE for Linux
check_load
This check checks the total processing load on a remote system. As with the
NSClient++ checks in Windows, this check is useful for identifying potentially
malicious programs that are using your system’s CPU cycles either to launch attacks
or processing such as password cracking.
define service{

 use generic-service

 host_name <Your Server name here>

 service_description CPU Load

 check_command check_nrpe!check_load

}

check_users
This check monitors the total number of users currently logged in to a system.
If there are servers that should rarely be interacted with by administrators except in
controlled change management functions, you may want to have this check alert you
when a system is logged on to:
define service{

 use generic-service

 host_name <Your Server name here>
www.syngress.com

w

302 Chapter 7 • Intrusion Detection and Security Analysis
 service_description Current Users

 check_command check_nrpe!check_users

}

check_total_procs
This check gets to the core of knowing your network. You should have a solid
understanding of what services are running on your systems. With this check, you
can tell if a system has a service shutdown or if an additional service has been started.
Often, attackers may start additional services like ftp or IRC chat relays once they
have compromised a system.

check_by_ssh
One of the favorite checks in Nagios is the check_by_ssh plug-in. With this plug-
in it is possible to run any script on a remote machine via ssh. It is not recom-
mended to use this check for checks that need to reoccur on a regular and short
time basis because of the bandwidth involved. However, it is a great plug-in to use
when there is something the default NRPE plug-ins will not do. For example,
it is possible to run a bash script that runs various rootkit detection checks and
then emails the results to you every morning. It is nice to have some security
checks initiated remotely rather than via a local cron job. Once attackers compro-
mise a system, they often check the local cron jobs to see what the maintenance
operations are. By initiating some of these checks remotely, you may catch an
attacker off-guard.

Watching for Session Hijacking Attacks
Many attackers attempt to hijack the sessions of servers, services, and users on your
network. There are two main points where attackers will attempt to proxy or inter-
cept user, server, and/or service sessions. The first is by controlling DNS queries and
responses, and the second is by launching a targeted arp-cache poising attack. We will
cover both of these attack scenarios and show how Nagios can assist in identifying
these attacks.

DNS Attacks
There are a couple of different ways an attacker can manipulate DNS queries.
The first is by directly changing the records stored on a DNS server through a remote
cache poisoning attack, or an attacker can take over the DNS server and then change
ww.syngress.com

 Intrusion Detection and Security Analysis • Chapter 7 303
the records. In either case, Nagios can assist a security team in identifying these attacks.
By running the check_dns plug-in from Nagios, an administrator can specify and
monitor which DNS entries should be stored on your DNS server. For example, there
may be an internal Sugar CRM server in an environment. This would be a great
target for an attacker to compromise. By manipulating the DNS records, an attacker
can force internal users to go to the attacker’s system instead of the legitimate Sugar
server. At this point, an attacker can either proxy the connection to the real Sugar
server or mimic the logon screen of the legitimate Sugar server, collect user IDs and
passwords, and return an error page. In both scenarios, the DNS entries will appear
modified to a Nagios server check. By configuring the check_dns plug-in, you can
monitor what the DNS records should be and receive a notification when they have
changed.

For example, you could run the following check:
check_dns -H www.localsugar.com -s 192.168.1.1 -a 192.168.1.100

which states that the DNS server at 192.168.1.1 is going to look up www.localsugar.
com. The expected address is 192.168.1.100. However, check_dns returns the
following:
DNS CRITICAL - expected ‘192.168.1.100’ but got ‘17.250.248.34’

Arp Cache Poisoning Attacks
Another vector used by many malicious attackers is an arp-cache poisoning attack.
This attack is similar to the DNS attack insofar as they redirect traffic to a system
they control. However, they are achieving redirection by manipulating the arp entries
on the victim hosts on a local network segment or LAN.

The problem with arp is that any unsolicited arp responses will be stored for
future reference by the machines that receive them. Because of this “feature” of the
arp protocol, an attacker can pretend to be any system on the local segment he wants
to be. For example, he could be an internal company Web server, or pretend to be
the default gateway for the network. By becoming the default gateway, all traffic sent
beyond the current network segment or out to the Internet would be sent to a
machine the attacker owns, where it can be captured, sniffed, hijacked, and routed
to the legitimate destination.

If an attacker spoofs an internal IP address on a local network segment in this
way, the normal Nagios checks that would be run against the spoofed system may
fail. This is because the Nagios checks sent to the legitimate host will be run against
www.syngress.com

w

304 Chapter 7 • Intrusion Detection and Security Analysis
the IP address of the attacker’s system. It should be noted that attackers can mimic
Nagios client responses to the centralized server requests.

It is also possible for an attacker to spoof the IP address of the default gateway for
a LAN segment. Nagios has the capability to run a number of SNMP checks against
SNMP enabled devices. Again, if an attacker is spoofing the address of the SNMP
enabled gateway, these Nagios queries will not be answered correctly and will gener-
ate alerts for the network and security administrators to respond to. As a special note,
whenever possible use SNMP v3, as it has multiple security improvements over
previous versions.

Let’s look at an arp spoofing attack and its effect on Nagios monitoring. First, let’s
look at the arp table of our monitoring system.
monitor# arp -a

Router1.localhost.net (10.98.63.97) at 00:12:01:a9:75:00 on fxp0 [ethernet]

monitor.localhost.net (10.98.63.111) at 00:06:5b:04:d3:39 on fxp0 permanent
[ethernet]

Router2.localhost.net (10.98.63.115) at 00:01:80:10:50:25 on fxp0 [ethernet]

We then initiate an ARP Spoof from another host on the same switched network.

./arpspoof -i fxp0 10.98.63.115

00:06:5b:04:d3:39 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.98.63.115 is-at
00:02:b3:d0:28:4c

00:06:5b:04:d3:39 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.98.63.115 is-at
00:02:b3:d0:28:4c

00:06:5b:04:d3:39 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.98.63.115 is-at
00:02:b3:d0:28:4c

00:06:5b:04:d3:39 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.98.63.115 is-at
00:02:b3:d0:28:4c

00:06:5b:04:d3:39 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.98.63.115 is-at
00:02:b3:d0:28:4c

00:06:5b:04:d3:39 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.98.63.115 is-at
00:02:b3:d0:28:4c

00:06:5b:04:d3:39 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.98.63.115 is-at
00:02:b3:d0:28:4c

00:01:80:10:50:25 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.98.63.115 is-at
00:02:b3:d0:28:4c

00:01:80:10:50:25 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.98.63.115 is-at
00:02:b3:d0:28:4c

00:01:80:10:50:25 ff:ff:ff:ff:ff:ff 0806 42: arp reply 10.98.63.115 is-at
00:02:b3:d0:28:4c

We also see that we lose our connectivity to the original device:
ww.syngress.com

 Intrusion Detection and Security Analysis • Chapter 7 305
monitor# ping 10.98.63.115

PING 10.98.63.115 (10.98.63.115): 56 data bytes ^C

--- 10.98.63.115 ping statistics ---160 packets transmitted, 0 packets received,
100% packet loss

and that the new device is listed in our arp table now.
monitor# arp -a

Router1.localhost.net (10.98.63.97) at 00:12:01:a9:75:00 on fxp0 [ethernet]
monitor.localhost.net (10.98.63.111) at 00:06:5b:04:d3:39 on fxp0 permanent
[ethernet]

Router2.localhost.net (10.98.63.115) at 00:02:b3:d0:28:4c on fxp0 [ethernet]

Finally, we see the effect of this attack from our Nagios Web page (Figure 7.5).
www.syngress.com

Figure 7.5 Nagios Displays Attack Effect

w

306 Chapter 7 • Intrusion Detection and Security Analysis
As you can see, as far as Nagios is concerned the device it is supposed to be
monitoring is down.

Nagios and Compliance
Unfortunately, many network and security administrators fear external and internal
audits more than they fear an attack. Further, many security teams spend far more
time documenting and “proving” that they are secure than actually securing their
networks or trying to identify possible intrusions. This may be one of the reasons
why many security professionals put so much trust in their security appliances and
software. They just do not have enough time to do anything else.

In this section, we identify ways in which Nagios can assist network and security
administrators to provide “proof” that they are compliant.

One of the key points any security manager needs to understand is that compliance
rules change over time. What qualifies as due diligence this year may not be the same
next year. Many security managers spend a tremendous amount of time trying to “meet
the minimum” when it comes to their security architecture and expenditures. While a
good risk assessment and a solid cost benefit analysis is always a good way to plan archi-
tecture modifications, utilizing tools like Nagios to monitor the status of systems and
services will be an applicable addition in most compliance-driven security environments.

Sarbanes-Oxley
Passed in 2002, the Sarbanes-Oxley (SOX) or Public Company Accounting Reform
and Investors Protection Act is focused on protecting shareholders. It is the direct
result of a wave of corporate scandals and outright fraud. For your company to fall
under the SOX Act it has to be a publicly traded company.

The majority of SOX relates to the accounting practices of a company and how
it is to undergo financial reporting. Section 404 of SOX requires that a company
must safeguard its data and provide controls to protect its integrity. Failure to comply
with SOX can have a dire impact on a company in the form of penalties and possible
jail time for the CEO and CFO.

SOX 404 requires the use of an internal control framework. Under COBIT and
COSO (which are commonly used for SOX compliance), there are requirements for
the monitoring of internal systems and services. Nagios can help your organization in
areas ranging from monitoring systems and services to assisting in verifying they are
in a trusted state.
ww.syngress.com

 Intrusion Detection and Security Analysis • Chapter 7 307
SOX and COBIT
COBIT’s main goal is to align the business drivers of an organization with the man-
agement of their information technology. It also includes the ability to incorporate
metrics or measurable objectives to the management of information technology,
which includes large portions of a company’s security architecture.

All IT management plans, processes, and procedures need to meet the following
two criteria from the COBIT 4.1 executive overview:

Business objectives are achieved.

Undesired events are prevented or detected and corrected.

These two objectives tie in very closely with using network-monitoring software
like Nagios. While an organization may not be looking for specific signs of a com-
promise, detecting and preventing “Undesirable events” definitely falls under the
Availability aspect of the Confidentially, Integrity, and Availability (CIA) triad.

Under COBIT, four core domains cover the life cycle of an information system.
While Nagios can be helpful in most core domains, the two where it provides the
greatest value to an organization is Delivery and Support and Monitor and Evaluate.
Under Delivery and Support, the control objective most applicable to Nagios is DS13:
Manage Operations. However, your organization may also want to check DS7, which is
Educate and Train Users. One of the main problems facing many organizations is how
to retain talent, and the institutional knowledge of their IT teams. It would be a
good idea for your team to have a cross-training plan on how to monitor and effec-
tively manage your Nagios installation.

Under Monitor and Evaluate, Nagios can directly support all the control objectives
(ME1-4) listed here:

ME1 Monitor and Evaluate IT Processes

ME2 Monitor and Evaluate Internal Control

ME3 Ensure Regulatory Compliance

ME4 Provide IT Governance

SOX and COSO
Under the Committee of Sponsoring Organizations of the Treadway Commission
(COSO), five components of the internal control framework for Nagios can be

■

■

■

■

■

■

www.syngress.com

w

308 Chapter 7 • Intrusion Detection and Security Analysis
directly applied to the fifth component, Monitoring. While the majority of the COSO
framework applies to financial processes, the Monitoring component can apply to IT
and financial monitoring.

It should be noted that under SOX it is not enough to run a tool like Nagios.
Your team needs to document how it is using Nagios and how it supports the core
objectives of your SOX-compliant environment. As with any compliance framework,
if you don’t document how you do something and prove it is being done, it will not
matter in an audit.

Payment Card Industry
The Payment Card Industry (PCI) Data Security Standard (DSS) was created in late
2004 when all the major credit card companies stopped their respective security
standards and merged them into a unified standard.

Under the PCI DSS are six groups of security principals that break down further
into 12 requirements. The group most applicable to utilizing Nagios on your net-
work is Regularly Monitor and Test Networks. Under this principal, the two require-
ments are:

Requirement 10 Track and monitor all access to network resources and
cardholder data.

Requirement 11 Regularly test security systems and processes.

While it may seem that Requirement 10 is not applicable to Nagios, remember
that you need to monitor the systems and processes that are performing transactions
involving cardholder data. For Requirement 11, using Nagios to regularly poll
security systems and processes can support this requirement.

DCID 6/3
The Director of Central Intelligence Directive (DCID) 6/3 puts forth seven goals for
protecting Sensitive Compartmentalized Information (SCI) and information relating
to Special Access Programs (SAPs):

Provide policy and procedures for the security and protection of systems that
create, process, store, and transmit intelligence information.

Provide administrative and system security requirements, including those for
interconnected systems.

■

■

■

■

ww.syngress.com

 Intrusion Detection and Security Analysis • Chapter 7 309
Define and mandate the use of a risk management process.

Define and mandate the use of a certification and accreditation process.

Promote the use of efficient procedures and cost-effective, computer-based
security features and assurances.

Describe the roles and responsibilities of the individuals who constitute the
decision-making segment of the IS security community and its system users.

Require a life-cycle management approach to implementing system security
requirements.

Introduce the concepts Levels-of-Concern and Protection Level of
information.

The Director of Central Intelligence Directive 6/3 specifically relates to the
protection of information systems that process sensitive compartmented information.
The two main sections of DCID 6/3 that can be addressed by Nagios are:

[SysAssur1] System Assurance shall include…

1. features and procedures to validate the integrity and the
expected operation of the security-relevant software, hardware,
and firmware; and

2. features or procedures for protection of the operating system
from improper changes.

and

[SysAssur2] System Assurance shall include…

1. control of access to the Security Support Structure (i.e., the
hardware, software, and firmware that perform operating
systems or security functions); and

2. assurance of the integrity of the Security Support Structure.

It should be noted that during audits performed by the Designated Accrediting
Authority (DAA) Representative, the concept of what is part of the Security Support
Structure and what is not tends to become elastic, meaning that almost every compo-
nent of an architecture can qualify as being part of the Security Support Structure.
With this in mind, it is helpful to have a tool like Nagios regularly check the systems
and services on your network to validate that they are operating in an expected and
approved manner.

■

■

■

■

■

■

www.syngress.com

w

310 Chapter 7 • Intrusion Detection and Security Analysis
Finally, there are additional classified sections of the DCID 6/3. Please, verify
with your DAA whether these sections apply to you.

DIACAP
The DoD Information Assurance Certification and Accreditation Process (DIACAP)
is the replacement for the Department of Defense Information Technology Security
Certification and Accreditation Process (DITSCAP). The main difference is that the
DIACAP treats risk and the assessment of a system’s risk as an ongoing process.

The Department of Defense Information Assurance Certification and
Accreditation Process references DoD 8500.2 for the Information Assurance
Controls that are to be utilized when reviewing DoD systems for IA compliance.
Within the 8500.2 section, DCSS-2 relates specifically to the functions Nagios
provides.

DCSS-2 System State Changes
System initializations, shutdowns, and aborts are configured to ensure the system
remains in a secure state. Tests are provided and periodically run to ensure the
integrity of the system state. It should be noted that definition of a “system” could
include the critical processes as well. In this section, we covered a few of the many
compliance controls that can be bolstered utilizing Nagios. It should be clear that
other compliance standards may not call out specifically for system and service
monitoring (e.g., HIPPA), but Nagios can still be very valuable in these
environments.

Securing Nagios
We have discussed a variety of different ways to use Nagios to help secure your
network and identify when a possible attack has occurred. However, we also need to
discuss how Nagios can be hardened against attack. There are few targets as useful to
an attacker as the very systems used to identify potentially malicious activities. Nagios
has the capability to interact with Windows systems via the NSClient++ plug-in,
which runs as the local System account on a Windows system. The System account
has virtually unlimited privileges on a local Windows computer. On Linux, Nagios
interacts with the NRPE plug-in, which is running with root level permissions.
If an attacker compromises your core Nagios server, he will get virtually unlimited
access to the systems being monitored.
ww.syngress.com

 Intrusion Detection and Security Analysis • Chapter 7 311
Hardening Linux and Apache
A full write-up on securing a Linux system with Apache is beyond the scope of this
section. However, a number of different tools will assist you in securing the under-
lying operating system and Web server of your Nagios server.

The first recommendation is Bastille by Jay Beale (www.bastille-linux.org)
(Figure 7.6).
Figure 7.6 Bastille
The second recommended tool is the Center for Internet Security’s scoring
tool for Linux. They also have an excellent guide for securing Apache. Please note
that the CIS guide for Apache has a write-up on utilizing SSL on your Apache
server. SSL should be used with every Nagios installation (www.cisecurity.org/)
(Figure 7.7).
www.syngress.com

w

312 Chapter 7 • Intrusion Detection and Security Analysis

Figure 7.7 SSL
Finally, there are the Defense Information Systems Agency’s Security Readiness
Review (SRR) scripts for Linux and Apache (http://iase.disa.mil/stigs/SRR/index.html).

Basics
One of the core basics for securing Nagios is to establish different user accounts
to log on to the Nagios Web server. Too often, organizations use the same Nagios
admin account for all of the networks and systems administrators to monitor Nagios.
This makes it extremely difficult to identify who did what, and when. Attackers love
shared accounts because they make it easy for them to blend in their attacks and
activities along with standard maintenance activity. A good rule to follow is that
every user of the Nagios system should have his own uniquely identified accounts,
ww.syngress.com

 Intrusion Detection and Security Analysis • Chapter 7 313
and no one should use the nagiosadmin account unless he has to for a specific and
justified purpose.

The next key to securing a Nagios server is to restrict who can even see
the server at all. Nagios is installed on a Linux platform, so use iptables to restrict
which systems or subnets can access the server. An excellent resource on iptables is
www.netfilter.org.
www.syngress.com

314 Chapter 7 • Intrusion Detection and Security Analysis
Summary
This section explained some basic ways you can use Nagios to support your security
posture. It should be noted that this should serve as a starting place for your
 organization to expand and tune Nagios to best suit your environment. No two
environments are the same. Do not ever use “one size fits all” tools.
www.syngress.com

Chapter 8
Case Study: Acme
Enterprises
315

w

316 Chapter 8 • Case Study: Acme Enterprises
Case Study Overview
Nagios is a free, powerful, open source software application designed to monitor
hosts, services, and networks. Large organizations that invest in information tech-
nology—government, commercial, research, or academic—would be hard-pressed
to not employ an effective network and systems monitoring solution. The following
case study demonstrates how a fictitious large organization, ACME Enterprises,
leverages the monitoring and reporting capabilities of Nagios to oversee network
and service operations. The focus of this case study consolidates the concepts of the
previous chapters, and ties them all together by showing the technologies and
Nagios add-ons you might wish to consider when deploying Nagios.

Who Are You?
In this case study, you are part of the systems integration team in the European office
with some experience in implementing a network and systems monitoring solution.
For the sake of simplicity, systems integrators in this scenario also act as systems
administrators, who in turn, work closely with IT support personnel. Keep in mind
that there is a separate systems administration group dedicated to servicing end users;
your core objective is to deploy Nagios, verify the installation, and hand off the
operations and maintenance (O&M) duties of this new Nagios installation to systems
administration staff. In addition, your job is to shadow the more experienced
systems integrators and assist them as needed. Finally, the more senior systems integra-
tors insist that you follow system design, implementation, and verification best
 practices to verify that Nagios is effectively monitoring the hosts and services it is
configured to monitor.

ACME Enterprises
Network: What’s under the Hood?
Acme Enterprises is a Fortune 500 company that writes commercial Web-based software
in the supply-chain management market. It has offices in Europe, North America, and
Japan. Each office implements a multi-layer security model for its’ network.

Security zones are:

DMZ Load balancer, Web services, and DNS services sit in the DMZ along
with the incoming mail server.

■

ww.syngress.com

 Case Study: Acme Enterprises • Chapter 8 317
Developer network Developers and system integrators work here,
corporate does not want them to have access to any production equipement;
access rules are enforced by a hardware firewall.

Corporate HR, accounting, and other overhead groups work on this
network segment.

IT Desktop support services, network services, corporate data center.

Each company office is connected to the others by hardware-based VPNs routing
over the public Internet. Each company also hosts a regionalized version of the
company’s Website. Europe is the headquarters for monitoring although each office
does have personnel experienced in configuring and troubleshooting servers and
network devices. SNMP is allowed only within the developer, corporate, and IT
zones. SNMP may be used across the VPN links but is also not allowed to traverse
the open Internet.

Acme runs the following applications on its global networks:

Three-tiered Web application on production Web sites:

Bluecoat web proxies on the front-end

Apache/PHP application middle tier

MySQL database back end

Oracle database servers may be sprinkled within ACME Enterprises as there
is “talk” about supporting both Oracle and MySQL

Windows-based Active Directory (AD) network for desktop users with two
domain controllers at each site.

Network layout:

All three offices have VPN connections between them

Each office is scheduled for Nagios deployment, starting with Europe
(Figure 8.1)

USA—Slave

Japan—Slave

Europe—Master

■

■

■

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

318 Chapter 8 • Case Study: Acme Enterprises

Figure 8.1 ACME Enterprises

Europe-master

VPN VPN

Asia-slaveUSA-slave
ACME Enterprises Management
and Staff: Who’s Running the Show?
ACME has the following technical and management groups, show in Table 8.1, who
need to be notified when services or hosts are down.
www.syngress.com

Table 8.1 ACME Management and Staff

ACME Group Role and Description within ACME Enterprises

IT managers IT managers represent the system administrators,
system integrators, developers, and network staff.
This group makes purchasing decisions, drives the
software release schedules for developers, and
ensures technical personnel have the tools, training,
and environment needed to maximize productivity.

System administrators System administrators report to the IT managers and
support all of the servers within ACME Enterprises.
This group ensures that all other groups are able to
access servers. They provide second-level application
support on servers, and work to ensure high availabil-
ity of servers for all end users employed by ACME
Enterprises.

Continued

 Case Study: Acme Enterprises • Chapter 8 319

ACME Group Role and Description within ACME Enterprises

Developers Developers report to IT managers; developers design,
implement, and test the software packages they create
for Acme enterprises. Developers, IT managers, and
non-technical staff are the major consumers of network
and host services, which are maintained by the system
administrators, system integrators, and network staff.

System integrators System integrators report to IT managers; they maintain
the hardware and software services in the developer
network. Unlike system administrators, the system
integration team provides third-level support for server
applications, troubleshoots server environment issues,
and works closely with the system administrators and
network staff in diagnosing problems that are soft-
ware, operating system, or network related.

Network staff The network staff reports to the IT management
group and supports all network devices within ACME
Enterprises. They also work to ensure that all end users
are able to connect to network resources as well as the
host servers and software applications maintained by
the system administrators and system integrators.

Table 8.1 Continued. ACME Management and Staff
ACME Enterprises and
Nagios: Rubber Meets the Road!
Recall that ACME Enterprises has offices throughout the world, and each office
location implements a multilayer security network broken into four zones. These
security zones are the DMZ zone, the developer zone, the corporate zone, and finally
the IT support zone. The systems integrators are enthusiastic, but methodical (yes,
“methodical”) in their deployment of Nagios to monitor ACME Enterprise networks.
The systems integrators are seasoned professionals, and have successfully deployed
software-driven systems and hardware-oriented solutions employing network appli-
ances. While every organization is different, the systems integrators are accustomed to
their internal customers, which are generally managers, other administrative personnel,
and of course engineers, developers, and other IT support staff. As with all successful
systems deployments, the systems integrators divide their plan to deploy Nagios into
three phases—pre-deployment, deployment, and post-deployment.
www.syngress.com

320 Chapter 8 • Case Study: Acme Enterprises
Table 8.2 captures most of the activities the systems integrators within ACME
Enterprises will be following. The provide a high-level picture of the efforts needed
to successfully deploy Nagios. What’s more, the system integrators working for
ACME Enterprises wear two hats—the non-technical information gathering hat and
the technical soup-to-nuts hat.

Entries shown in BOLD under the Activities column are discussed below the
table. As can be seen, pre-deployment and deployment phases are the main focus of
this case study.
www.syngress.com

Table 8.2 Nagios Deployment Phases

Nagios Deployment Phases Activities

Pre-deployment ■ Determine where Nagios will be deployed!

■ Engage the customer early, and determine
what goals the customer wishes to achieve
through the use of enterprise-wide monitoring
with Nagios.

■ Determine what network servers, services, and
applications will be monitored. Prioritize them
accordingly.

■ Identify the resources, people, and equipment
that will actually carry out or assist in the
scheduled deployment of Nagios.

■ Survey and evaluate possible strategies that
will be used to integrate Nagios within the
enterprise network.

■ Determine the scope of deployment including
the scheduling, level of effort, and trade-offs in
applying certain technologies (for integration)
over another.

■ Download Nagios software.

■ Download Nagios add-ons and other software
that will be deployed if integrating Nagios with
other software packages deployed within the
enterprise.

Continued

 Case Study: Acme Enterprises • Chapter 8 321

Nagios Deployment Phases Activities

Deployment ■ Nagios configuration strategies

■ Software staging of Nagios add-ons, and other
software

■ Verify installation of Nagios software on server

■ Verify installation of Nagios add-ons

■ Test Nagios and verify that alerts are being sent
by Nagios and SNMP traps and NSCA messages
are being collected properly by Nagios

Post-deployment ■ Training of end users

■ Train the IT support staff that will maintain
Nagios in the enterprise

■ Official hand off to operations and mainte-
nance personnel

■ Provide technical and consulting support as
needed

Table 8.2 Continued. Nagios Deployment Phases
Nagios Pre-Deployment
Activities: What Are We Monitoring?
Determine where Nagios will be deployed! This step is crucial and is the main
precursor before deployment. If Nagios will be deployed into your network, it must
have a home. Sure, you can slap Nagios onto any Unix box and have it start collect-
ing traps in no time flat, right? Yes, no, maybe?

In all cases, the Nagios server should be installed onto a host that can “see” all of
the hosts it will be monitoring. At a minimum, monitored hosts should be able to send
traps to the Nagios server. Unless Nagios and the database used to store SNMP traps
are installed on the same physical server, we’ll need at least two servers—one for
Nagios, and one for the back-end database. These two servers form the hardware core
of our Nagios deployment. We will elaborate on the layout of Nagios and the mini-
mum components needed to successfully monitor all of the hosts we will be monitor-
ing with Nagios at Acme Enterprises.

Engage the customer early, and determine what meaningful alerts can
be captured /collected in a needs assessment. Pre-deployment planning is
www.syngress.com

w

322 Chapter 8 • Case Study: Acme Enterprises
critical to the success of a Nagios implementation. During this phase we determine
what personnel and hardware resources will be needed for our Nagios implementa-
tion. We also create a deployment schedule, determine what dependencies exist for
each deployment phase, and then add some small additional time to the schedule for
unexpected delays and problems that may occur. Management must be involved with
this process and must approve of our plan. The end result of pre-planning is a docu-
ment that clearly explains the deployment process.

Needs assessment starts by soliciting technical requirements from customers and
users. Engaging the customer from the very outset of the requirements process estab-
lishes expectations systems integrators begin by conducting a needs assessment, iden-
tifying their internal customers, and surveying the actual computer network that will
be monitored. There will be requirements planning meetings, information gathering,
resource gathering (personnel and equipment), schedule planning, risk assessment,
verifying connectivity, and of course, management approval.

At this point you have convinced both your customers and management to use
Nagios as a monitoring solution. A needs assessment has been conducted, and both
the requirements plan and a risk assessment have been approved. The resources,
which are the people and equipment needed to deploy Nagios monitoring, that will
be supporting the systems integrators have been identified. What’s next?

Now is the time to determine which systems are the most critical to monitor,
identify any other stakeholders who need to be involved with the implementation
process, and schedule deployment and post-deployment activities. We will discuss
deployment and post deployment activities in later sections of this chapter. The systems
integration team should now schedule meetings with management, technical leads, and
the customer to answer the following general questions. The responses to these questions
will influence the scope, level of effort, and scheduling of the overall Nagios rollout.

Who are the stakeholders?

Who needs to be informed of system outages?

Which users are directly impacted from deployment?

Who will be using the monitoring solution?

What metrics are important to the customer?

What critical network servers and devices are important to monitor?

Which alerts will be meaningful to the customer?

Which alerts will be meaningful to IT management?

■

■

■

■

■

■

■

■

ww.syngress.com

 Case Study: Acme Enterprises • Chapter 8 323
Which alerts will be meaningful to the systems administrators?

Which alerts will be meaningful to the software developers?

Which alerts will be meaningful to the network staff?

Which alerts will be meaningful to us, the systems integrators?

Who at ACME knows the most about the important devices within ACME
Enterprises?

Who at ACME knows the most about the important applications operating
within ACME Enterprises?

After this set of meetings, the systems integration team summarized the general
network monitoring requirements (see Table 8.3) and expectations from all technical
groups (including themselves).

■

■

■

■

■

■

www.syngress.com

Table 8.3 ACME Management and Staff Monitoring Requirements

ACME Group / Internal Customer
Monitoring Information Needed / Monitoring
Requirements

IT managers Want to know that service level agreements
(SLAs) are being met for production hosts,
would like a graphical dashboard to make
it very easy for them to see the status of
services and devices on each network at the
office they work in.

System administrators Status of all servers on all networks; need
to know immediately if any servers are
unreachable; second-tier support for applica-
tions on the servers.

Developers Need to know that all hosts and services on
hosts in the developer network are available.

System integrators Maintain hardware and software services in the
developer network; need to know if applica-
tions are performing poorly, critical software
services go offline, or hosts become unavailable.

Network staff Need to know how network devices are per-
forming, if any network paths become unavail-
able, or if any connections between the offices
or security zones become congested.

w

324 Chapter 8 • Case Study: Acme Enterprises
Although the information-gathering efforts by the system integrators are general,
the monitoring requirements collected are precursors in answering questions specific
to the internal customers within ACME Enterprises. In all cases, Nagios has the ability
to monitor the health of hardware, services, or applications via plug-ins and event
handlers. Nagios can also ingest data from external applications via passive checks and
external commands.

Identify the resources, people, and equipment needed to deploy Nagios.
Sure, the systems integration team is a bright bunch, and you are part of that elite
team (cough cough). Let’s not forget that information gathering also includes identify-
ing the personnel who know the most about the important devices and applications
within ACME Enterprises. This includes systems administrators, developers, and yes, IT
managers.

Determine what network devices, servers, services, and applications will
be monitored. Prioritize them accordingly. Ok, so we have ACME manage-
ment’s blessing to keep going. At this point, it’s important to take inventory and build
a list of the servers and services, devices, and applications that warrant monitoring.
As you go through the list of servers in ACME Enterprises, be sure to the purpose of
the server, what security zone the server resides in, which users directly log in to the
server, and what services and applications are running on each server. We’ll create a
sample list of servers, the security zones they reside in, and look at some possible
approaches in monitoring the server itself, or what’s running on those network
servers.

Nagios has rich capabilities that allow it to transmit notifications to external
applications used by IT support and systems administrators. The systems integrators
look under the hood again of ACME Enterprises’ network to take an inventory of
what will be monitored. While the comprehensive list neither provides the total
number of server hosts to be monitored, nor their operating system we continue,
knowing that Nagios is flexible enough to monitor every server, device and applica-
tion at our organization. We can use clustering as well to expand the number of
devices and services we monitor if one Nagios server is not able to monitoring every-
thing at ACME by itself (see Chapter 2, “Designing Configurations for Large
Organizations,” and Chapter 3, “Scaling Nagios”).
ww.syngress.com

 Case Study: Acme Enterprises • Chapter 8 325

Table 8.4 ACME Enterprises Comprehensive List of Network Host Servers

ACME Stakeholder Group Security Zone Network Host Servers

System administrators
System integrators
Network staff

DMZ Load balancers
Bluecoat proxy appliances
Mail servers
DNS servers
Web servers

IT management

Developers

System integrators

Developer Network Development Web servers
Development mail servers
Development portal servers
Development application
servers
Development database
servers
Development LDAP servers
Development software build
servers
Development configuration
management (CM) server

All end users, which
include technical and
nontechnical staff

Corporate Network Corporate database servers
Corporate backup servers
Corporate file and document
management servers

IT management
System administrators
System integrators
Network staff

IT Support Enterprise CM server
Enterprise backup servers
Enterprise FTP servers
Now that the system integration team has put together its comprehensive list of
host servers to monitor, they can work with other teams in identifying what services
and applications for each server should be monitored based on customer input, and
then prioritize accordingly.

Survey and evaluate possible strategies that will be used to integrate
Nagios within the enterprise network. This is the meat and potatoes of Nagios
integration, and builds on the previous section capturing the list of host servers and
services that can be monitored.
www.syngress.com

w

326 Chapter 8 • Case Study: Acme Enterprises
Nagios offers a rich set of core monitoring capabilities for both servers and
services. Nagios provides self-explanatory status codes, for servers: UP, DOWN,
PENDING, or UNREACHABLE. Host service states (or application services
running within the server hosts) are OK, WARNING, CRITICAL, UNKNOWN,
or PENDING.

The system integration team decides that their approach will entail the following:

1. Determine the minimum “basic host metrics” that will be monitored
for all server hosts (Table 8.5). These metrics will be monitored and
collected from all servers. Although it is possible to capture a large number of
metrics using the core Nagios “checks” library, the systems integration staff, will
start monitoring a few a metrics per server host, and then expand as needed.
w

Table 8.5 Basic Server Metrics

Metric Description

CPU Monitors CPU utilization on a server

Disk utilization Monitors hard disk space utilization

Load average Monitors the overall system load on a server

RAM Monitors RAM utilization on a server

Swap space Monitors virtual memory utilization on a server
2. Determine the different types of servers by purpose or role (Table
8.6). Nagios provides the flexibility to monitor server hosts according to
their role. For example, Web servers and database servers each run different
services that require different types of checks. An alternative monitoring
approach would be to focus on host monitoring and group devices by
environment. This approach works well for system administrators and net-
work administrators who are more concerned with the health of the system
and network infrastructure within an organization.
w.syngress.com

 Case Study: Acme Enterprises • Chapter 8 327

Table 8.6 Types of Server Hosts Inside ACME Enterprises

Type of Server Host
Special Host Service Metrics Beyond
Basic Host Service Metrics

Load balancers

Bluecoat proxy appliances

Mail servers SSH, SMTP, or POP3

DNS servers SSH, DNS

Web servers SSH, HTTP, Apache, and Tomcat

Portal servers SSH, HTTP, Apache, and Tomcat

Application servers SSH

Database servers SSH, Oracle TNS Listener

LDAP servers SSH, LDAP/TLS, Bluecoat agents

Software build servers

Configuration management (CM) servers

Backup servers

File and document management servers

FTP servers SSH, FTP
3. Determine what core Nagios functionality and add-ons will be
integrated with Nagios (Table 8.7). Core functionality includes basic host
checks and a suite of plugins that perform a variety of protocol level checks,
from HTTP to SMTP to FTP. Active checks, passive checks, and add-ons will
be evaluated by the sytem integration team. While Nagios is excellent out of
the box, it is even better when augemented with complimentary software
packages and plugins such as eHealth or NagVis. The system integration team
has decided to use the core technologies and add-ons listed in Table 8.7.
www.syngress.com

w

328 Chapter 8 • Case Study: Acme Enterprises

Table 8.7 Nagios Core Technologies and Add-ons for ACME Enterprises

Core Technology Brief Description

Host Escalations Escalates notifications for a particular server host

Service Escalations Escalates notifications for a particular service within
a server host

Nagios Clustering Distributed monitoring of server hosts and services

Read-only front-end Provides a Nagios UI for reviewing conditions of server
hosts and services

Plug-ins Custom or third-party code to augment capabilities of
Nagios

Nagios Add-ons

NRPE Allows monitoring host to execute plug-ins on remote
server hosts

NSCA Allows remote server hosts to send passive check results to
monitoring host

NagVis Visual display alternative for Nagios that displays network
and system paths, and high-level application and service
status

eHealth Commercial trending and trap management software as
Nagios add-on

Puppet An agent-based open source system administration and
configuration management automation tool that allows
remote server hosts running the puppet to apply policies
and rules from the Puppet server (Master)

Splunk Provides full text search capabilities for system and appli-
cation log files.
4. Decide on an alerting or notification scheme for each ACME stake-
holder group (our internal customers).

Nagios Deployment
Activities: Can You See Me?
Before proceeding in the deployment phase, the systems integration team does a sanity
check by reviewing all completed activities. So far we have done the following:
ww.syngress.com

 Case Study: Acme Enterprises • Chapter 8 329
Meet with internal customers (IT managers, developers, network and system
administration staff) to determine what is important to monitor.

Determine where Nagios, will live on the network.

Determine which hosts and services will be monitored

Get an idea of which core Nagios checks and which plugins will be used to
implement the monitoring solution

Time to deploy; let’s take a quick look at the ACME Enterprises network
environment.

We will monitor three offices: one in Japan, one in the United States, and one
in Europe.

Each office implements multi-layer network security:

DMZ—load balancer, Web services, and DNS services sit in the DMZ along
with the incoming mail server.

Developer network

Corporate network

IT support network

SNMP is allowed only within the developer, corporate, and IT zones.

SNMP may be used across the VPN links, but is not allowed to traverse the
open Internet.

ACME Enterprises runs the following applications on its global networks:

Three-tier Web application on production Web sites

Bluecoat front end

Apache/PHP application middle tier

MySQL database back-end

Some Oracle database servers may be sprinkled within ACME Enterprises
as there is “talk” about supporting database vendors.

AD network for desktop users with two domain controllers at each site

Since the European ACME office is home for monitoring operations, we’ll start
by going over the most suitable Nagios core technologies followed by the add-ons.

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

www.syngress.com

w

330 Chapter 8 • Case Study: Acme Enterprises
The system integration team in the European office has decided that it makes sense
to start Nagios deployment in their local office first, then roll out to the U.S. and
Japan office locations. The remaining portion of the deployment phase section will
introduce Nagios core technologies, followed by add-ons, and apply those compo-
nents relative to ACME Enterprises’ monitoring needs. Let’s step through the imple-
mentation approaches of how Nagios can be deployed in ACME Enterprises
by determining where certain technologies may be used in the ACME Enterprises.

Enterprise and
Remote Site Monitoring
Since the European office is the network monitoring headquarters for ACME
Enterprises, it also hosts the Nagios master monitoring server. The American and
Japanese offices host slave Nagios servers that monitor each offices’ system and net-
work resources and then report results back to the European office.

In the European office the master Nagios server a combined Nagios configura-
tion. Furthermore, the European monitoring server runs the NSCA daemon, and
accepts incoming passive checks from the U.S. and Japan Nagios monitoring servers.
This topology allows the master monitoring server to capture an entire view of the
network and systems being monitored within ACME Enterprises. The master Nagios
server holds the configurations for notifications and host/service escalations, and
requires that any host and service definitions at the remote offices are loaded in the
master monitoring server’s configuration. To make maintaining the configuration
easier, the system integration team in the European office created the following
directories in the master monitoring server:
$NAGIOS_ROOT/etc/usa

$NAGIOS_ROOT/etc/japan

The system integration team leverages Nagios’ ability to read configurations from
multiple directories; combined with a custom shell script running as a cron job we
will be able to keep configurations synchronized between the slave servers and master
Nagios server. The system integration team decides to schedule the configuration file
synchronization cron job every 24 hours.

Nagios clustering is ideal when monitoring multiple offices in geographically
distant locations. The advantage of an distributed approach is load sharing, especially
if bandwidth between each office location is limited. Clustering allows each remote
ww.syngress.com

 Case Study: Acme Enterprises • Chapter 8 331
office to easily view the status of devices and services on their network. The system
integration team and NOC team at the central office can easily monitor all networks
from one location, making troubleshooting easier and lowering response time to
problems that occur at any location. Now that we have our basic fault management
architecture in place, how about trending?

eHealth
eHealth, a commercial trending and trap management suite of programs, can act as a
monitor of monitors (MOM) in Figure 8.2. In our scenario, eHealth would be
installed in the European office location, but not on the same physical server hard-
ware as Nagios eHealth is designed to be a MOM, and comes with Trap Exploder,
which provides flexible trap handling and filtering. Within ACME, eHealth serves as
the monitor of monitors, leveraging it’s strength in trap handling, while Nagios is
used as the master fault manager and network visualization console. In this scenario,
eHealth will forward all traps to Nagios for display and notification where applicable.
Europe-master eHealth Server

VPN VPN

Asia-slaveUSA-slave

Figure 8.2 eHealth as a Monitor of Monitors (MOM)
ACME IT staff will implement both active and passive checks within Nagios as
both are useful and necessary in a large-scale installation. For example, NRPE is an
active checking plug-in Nagios add-on that can be used to monitor servers at remote
office locations. NRPE will be covered when we discuss how the system integration
team will monitor hosts and services in the DMZ.
www.syngress.com

w

332 Chapter 8 • Case Study: Acme Enterprises
A variety of add-ons may be integrated with Nagios. The remainder of this
section describes how the different groups within ACME Enterprises might use
several of the Nagios add-ons described in this book. Specifically we will discuss
NagTrap, NagVis, Puppet, and Splunk.

NagTrap
NagTrap is an open-source Nagios add-on that reads SNMP traps from a database
created by SNMPTT (SNMP Trap Translator). Both the system integration and
system administration teams would use NagTrap to view, query, and filter traps by
host name, severity, and category from a PHP-based Web interface running on one
an Apache Web server. The system integration team will make use of the custom
script described in the section on SNMPTT to forward traps from SNMPTT to
Nagios as passive checks.

NagVis
Remember that ACME Enterprises is a large company. In global enterprises where a
large number of system and host problems are captured on the monitoring server’s
console, the sheer number of alerts may clutter up the screen. The different groups
within ACME may not care about network maps, alert tables, or they might care
about application health and not care about system and network health. For example,
the IT managers and developers within ACME may care tremendously about applica-
tion health, while systems integration, systems administration, and network staff pay
attention to system and network health. Whatever the case, NagVis is a Nagios add-on
with a PHP front end that allows Nagios administrators to set up service-oriented
views of the host and service check data collected by Nagios. NagVis can read host
and service data directly from the Nagios CGIs (not recommended) or from a
MySQL database using the NDO Utils add-on. The systems integration team chooses
to use NDO Utils and a database backend for performance and scalability reasons.

NagVis enables system administrators, system integrators, and developers to visual-
ize the status of multiple environments from a single interface. In system or network
operation centers, NagVis may shorted the learning curve of new NOC staff at
ACME. How? We can take the logical network maps created by the network staff and
drag and drop icons representing the hosts and services onto the network maps. New
network staff now immediately see where a host or service resides on the network
when a problem occurs. This allows network operations staff to easily communicate
ww.syngress.com

 Case Study: Acme Enterprises • Chapter 8 333
problem status and context with developers, other network staff, or more senior staff
members at ACME.

Puppet
Puppet is an agent-based open source system administration and configuration
management automation tool; each managed server runs a Puppet agent. The Puppet
agent on each server retrieves its configuration from a central Puppet server (Puppet
master), and applies the policies and rules it receives from the Puppet master to the
managed system. Puppet is a standalone open source project that complements the
network and system monitoring capabilities of Nagios. For example, the policies and
rules enforced by Puppet clients may range from reporting changes in critical files
and directories to ensuring no changes are made to specific files, managing and
monitoring services and objects (cron jobs, groups, users, mail aliases), or running
periodic jobs when specific system conditions are set. A typical example would entail
deleting old core files under /var/core if the /var file system is nearly full. From the
perspective of Nagios, the just described example would ensure that the disk usage
check (i.e., check_disk) does not send alerts. The output of the results from these
rules and policies may be used for troubleshooting or investigating alerts generated by
Nagios for managed devices and services.

Splunk
Splunk integration was introduced in Nagios release 3.x. Splunk provides sophisti-
cated “Google-like” search capabilities for text-based log files. The Splunk integration
serves to enhance both the monitoring and troubleshooting capabilities of Nagios by
allowing users of Nagios to easily “jump” to the Splunk web UI from Nagios using
the name of a service or host as the search term within Splunk.

Host and Service
Escalations, and Notifications
Host and service escalation types allow an organization to configure Nagios to
conform to tiered support systems where group N is initially notified but then after
X notifications to group N group P needs to be notified.The systems administration
team supporting ACME Enterprises may have a dedicated two-tiered group, and in
cases where a particular server host is DOWN or in the UNREACHABLE state
www.syngress.com

w

334 Chapter 8 • Case Study: Acme Enterprises
after several notifications, a tier-three system administration or system integration
group would be notified and begin to investigate the issue. Keep in mind that host
escalation intervals are configurable, and can be associated with host groups. This
flexibility simplifies trouble ticket assignment to specialized technical groups within
an organization.

Service Escalations
Like host problems service problems can also be escalated to different technical
support personnel within ACME based on problem duration. For a large organization
such as ACME, if services are escalated and associated with host groups rather than
hosts or services, it becomes quite easy to apply service escalation rules across large
groups of services. For example, ACME Enterprises may have Web and database
server host groups for each office location. In this scenario, any new host added to
either the Web servers or database servers group immediately inherits the service
escalation policies created for that host group.

Notification Schemes
Email is the undisputed king of notification, but there are alternative means to reach
network monitoring support personnel. Other methods include one-way pagers, SMS,
and instant messenger. There are plenty of situations in which administrators might
prefer to send or receive alerts using methods other than email. In all cases, support
personnel and management need to discuss and agree on what notification methods
will be used to ensure timely delivery of alerts to Acme staff. All companies, including
our lovely ACME Enterprises, should regularly review notification methods and survey
the staff receiving notifications to ensure that methods chosen are effective and efficient.

Nagios Configuration Strategies
DMZ Monitoring—Active
versus Passive Checking
Why Passive Service Checks?
Passive service and host checking is not an end-all be-all solution, but rather an
approach. Passive checks minimize the load on the monitoring server and scale well
for a distributed set up; they will not provide host UNREACHABLE or DOWN
ww.syngress.com

 Case Study: Acme Enterprises • Chapter 8 335
alerts as quickly as active checks do nor will they in general alert us as quickly to
service problems as active checks will. For these reasons, Acme chooses to use a
combination of passive and active checks.

Why Active Service Checks?
In a typical network, Internet-facing hosts reside in a DMZ with restrictions placed on
the traffic allowed to the managed systems from both the Internet and the internal
network. While SNMP traffic within DMZs is often not allowed (this is the case for
ACME), DMZ systems still must be actively monitored by Nagios. Managed servers
within the DMZ represent a company’s Internet presence; any outage to DMZ hosted
managed servers directly impacts key applications hosted within most organizations.
ACME chooses to use NRPE, the Nagios monitoring agent. This agent does not use
SNMP and all traffic between Nagios and the agent is encrypted, a perfect fit for
exposed servers that may not run SNMP agents. NRPE uses TCP as it’s layer 4 trans-
mission protocol, making it also easy to restrict the traffic between the Nagios server
and the managed agent via firewall rules.

NRPE and ACME Enterprises
NRPE allows the Nagios monitoring server to run any normal Nagios plug-ins on a
managed server and collect the results as if the plugin were run on the Nagios server
itself. Any Nagios check plugin installed on the managed Nagios client can be exe-
cuted from the Nagios server using the check_nrpe plugin from the Nagios server.Each
NRPE client must have any required Nagios check plugins installed on it and must
have SSL installed as well before NRPE can be used on it. After OpenSSL is installed,
the check_nrpe plugin will be able to communicate with the NRPE client using SSL.
The Nagios monitoring server performs active checks by executing commands on
remote monitored server hosts via NRPE.

Keep in mind that a single NRPE client should be installed onto the DNS, mail,
and Web servers to collect basic server metrics (see Table 8.5), by calling check com-
mands such as check_load or check_disk on the remote server hosts. Simply put:

Nagios monitoring server (check_nrpe) -> Nagios client (NRPE)-> check_
command on monitored hosts.

Monitoring for the Load balancers and Bluecoat proxy servers would be
approached by employing plug-ins. In this book you will find several examples of
Bluecoat plugins that use SNMP to poll Bluecoat devices for a variety of basic
www.syngress.com

336 Chapter 8 • Case Study: Acme Enterprises
 metrics, including CPU and memory utilization. These proxy devices (SG410, 510,
and 810) provide a set of SNMP MIBs that include HTTP status distribution, CPU,
memory, and disk utilization, proxy activity, and Web server utilization.

Developer, Corporate,
and IT Support Network Monitoring
NSCA to the Rescue!
NSCA is a Nagios add-on that allows you to send passive check results from managed
remote server hosts to the Nagios daemon running on the monitoring server. Passive
service and host checking is ideal when restrictions on management traffic type do
not exist the way they do in a restricted security zone. In ACME Enterprises, NSCA
will be used extensively within corporate, developer and IT networks. NSCA will
also be used by the slave hosts in the Nagios cluster; they will submit passive checks
to the central Nagios server using NSCA. In general, a passive checking scheme
proves useful in distributed and redundant/failover monitoring setups.

NSCA uses a client server approach; a passive check is submitted by the managed
client to the NSCA daemon which runs on the Nagios hosts. Each client that
wishes to submit NSCA checks to the Nagios server must have the send_nsca installed
on the client along with a configuration file that specifies the type of encryption the
send_nsca utility should use to communicate with the client along with an optional
password (highly recommended). Of course, managed servers can also be monitoring
also monitoring servers in a monitor-of-monitors setup. NSCA allows devices and
applications to send asynchronous events to Nagios.

NRPE Revisited
So, in the grand scheme of things, the distributed monitoring approach may call for
a monitoring server for each security zone—one for the developer, corporate, and
IT support networks reporting to an overall monitoring server at that remote site. In
turn, the main monitoring server for each office location may monitor peer moni-
toring servers for each office location. Thus, the main Nagios monitoring server
observes the main monitoring servers in the U.S. and Japan:
www.syngress.com

 Case Study: Acme Enterprises • Chapter 8 337

MySQL

Trap Listener
(ex. SNMPTT)

NCSA Passive
Checks

DMZ

NRPE-Active
Checks

Reads from
database via

NagVis or
default
Nagios

console.

Trusted Zones

Figure 8.3 NSCA and NRPE in Action
Select Advice for Integrating
Nagios as the Enterprise
Network Monitoring Solution
ACME Enterprises has established a network operations center (NOC) in each
of their offices. However, the European office hosts the main Nagios monitoring
server and serves as the main NOC. Like most enterprise NOCs, ACME defines
www.syngress.com

w

338 Chapter 8 • Case Study: Acme Enterprises
three tiers of technical support. The first tier fields phone calls, opens tickets, and is
the first line of technical support. Unlike the second- and third-tier NOC support
teams, tier one offers limited help, but is accountable for observing and resolving
problems reported by Nagios. All host and service faults as well as problems with
Nagios itself should be captured in the service desk ticketing system. In contrast, the
second and third tier NOC support teams have specialized skill they use to resolve
escalated problems due to tier-one workload or technical capabilities. ACME dis-
patches problems to second- and third-tier teams based on application, hardware, or
network issues. It is important to ensure that escalation policies are well defined and
configured properly in Nagios. In other words, problems reported by Nagios should
be exactly that—problems. Why? False positives causing “cry wolf ” results teach your
NOC support teams to ignore host and service alerts. The Nagios administrator or
systems integration team within ACME needs to configure and thoroughly test all
host and service checks to minimize the possibility of Nagios notifying when it
should not. As with notification policies, this is an area of configuration that the
ACME team should revisit regularly to minimize the number of false positives and
ensure that SOC and NOC personnel can trust that when Nagios shows an alert an
action needs to be taken.

The Nagios Software
Nagios software and monitoring plug-ins should be installed before the network
monitoring system goes live. Host and service fault scenarios should be tested to
validate that thresholds actually work.During the pre-deployment phase, all system
and application dependencies should be captured so that status screens are not clut-
tered when dependent faults are the Nagios monitoring software should also be
regularly audited for software upgrades. Software upgrades include the base Nagios
software, custom plugins, and add-ons integrated with Nagios.

In larger organizations there will often be more than one person involved in writing
and maintaining Nagios configuration files. The Nagios administrator (or multiple
administrators, depending on the size and scope of the devices monitored by Nagios)
needs to ensure Nagios is maintained post-deployment. Maintenance activities include
updating Nagios configuration files and plugins and add-ons used by Nagios to monitor
hosts and services. Why would Nagios configuration files ever need to be updated, you
ww.syngress.com

 Case Study: Acme Enterprises • Chapter 8 339
ask? In a networked environment the most common cases would include managed
devices being decommissioned, replaced, or moved from one network segment to a
different network segment that uses an IP address range, gateway, and network mask that
differs from the original network segment. It is important to point out that managed
devices that have been decommissioned or are no longer being monitored by Nagios
represent another form of maintenance: “cleaning up” your configuration files! Who
wants to see red covering the monitoring console resulting from decommissioned hosts
in a DOWN state? Sure, Nagios is doing its job by reporting back that these unused
hosts are unreachable, but the information is useless and does nothing more than clutter
up Nagios status screens with meaningless alerts. If anything, reporting that a host is
DOWN that we “know” has been decommissioned should immediately cause Nagios
staff to delete the host from Nagios. We highly recommend that notifying the network
monitoring staff is added as a mandatory part of the decommissioning process within
any organization, as it is at ACME.

As with hosts that are decommissioned, hosts that are moved and service configu-
rations that are changed require Nagios administrators to update the Nagios configu-
ration as well. If this is not done in a timely manner, once again our Nagios console
becomes cluttered with meaningless alerts, frustrating NOC staff and ruining any
trust they have in the urgency of alerts sent out by Nagios. ACME makes sure that
the network monitoring group is notified when service or host configurations are
changed; the last thing they want is for Nagios to be known as ‘the boy who cries
wolf.’

Nagios Integration and Deployment
When a new monitoring system nearly ready to be deployed in production, a schedule
to transition the system into the production operations center is necessary. A thorough
testing effort can take place in an integration or development environment where users
will be more understanding and forgiving of false alerts and misconfigurations. Once
configurations are vetted in a development or integration environment, they can then
be deployed to test and production environments to provide the information testers
and NOC staff require to help them meet the needs of a customer. ACME sees the
value of Nagios and makes use of it in all development, integration and production
environments. We hope that your experience with Nagios is as fulfilling and useful as
ACMEs’ experience is. Good luck and happy monitoring!
www.syngress.com

This page intentionally left blank

341

Index
A
ACME Enterprises

applications used by, 317
eHealth software, as monitor of

monitors, 331
management and staff, role of, 318–319
monitoring requirements, 323
multilayer security network, 319

model, 316–317, 329
Nagios core technologies and add-ons

for, 328
network host servers, list of, 325
network operations center (NOC), 337
remote site monitoring, 330–331
server host, type of, 327

Apache HTTP server, 20
A/V health check, 233–235

B
base service template, for passive

service, 267
Bennet, Derrick, 92, 109
Bluecoat proxy devices

concept of, 224
CPU utilization

MIB and OIDs, 225
script, 226–227

memory utilization
MIB needed, 227
OIDs used, 228
script, 228–230

network interface utilization
MIB and OIDs needed, 230
script, 230–233

SNMP MIBs, 223
states for manageable elements, 224–225

C
Cacinda

data retrieval from Nagios and Cacti, 261
installation of, 260–261
screenshot, 262
templates, 261

Cacti, 150
LDAP authentication, 279
network-centric plug-ins, 279–280
plug-in framework, 278

check_snmp_storage.pl, 162
check_tcp, 222
CIA triad, aspect of, 307
clustering

Nagios data flow, 97
Nagios network outage, 103
NSCA and Nagios, 99–100
passive host checking, 103–104
passive service checking, 100–102
sending data without NSCA, 104
server configuration file trees, 97

COBIT, objectives of, 307
Committee of Sponsoring Organizations

of Treadway commission (COSO),
307–308

complete sensor check and alert script
call to, 237–243
MIB and OIDs needed, 236–237

computer security
malicious traffic, 297–298
service crashing, 298
threats, 296

contactgroups definitions, 5
custom variables, 11

custom check graph template, 258–259
custom variables, 11

www.syngress.com

342	 Index

D
database

monitoring with Nagios
check script, 222
perl scripts, 223

NDOMOD, and NDO2DB files, 251–252
problems, 73
support in Nagios, 111, 113

Data Security Standard (DSS), 308
DCSS–2 system, 310
Designated Accrediting Authority (DAA), 309
digi event service, template for, 267–268
Director of Central Intelligence Directive

(DCID) 6/3, 308–310
disk utilization check script, 162–174
Display status screen, 86–87
DoD Information Assurance Certification and

Accreditation Process (DIACAP), 310

E
eHealth

with Nagios, 280–281
Trap Exploder, 280

email notifications
CPU utilization, 43–44
Lotus Notes HTML email output, 50
notification script, 44–49
standard subject prefix, 44

embedded Perl for Nagios (ePN), 23
embedded Perl interpreter (ePN), 10,

126–127
Enviromux-Mini, 235

F
fault management systems, in Nagios

configuration
alert monitoring services, 27
customer satisfaction, 28
“less is more approach,” 26–27
users data list, 26

first_notification_delay, 152, 186
flap detection, 8–9

G
GNU compiler collection (GCC), 20–21
group definitions, 5

H
hijacking attacks

arp-cache poisoning attack,
303–306

DNS attacks, 302–303
host alive check, 150
hostgroup definitions, 5

custom variables, 11
flap detection, 8–9

HOST-RESOURCES-MIB, 178
HTTP scraping plug-ins, 203

robotic network-based tests, 204
Web-based applications, testing

response time and content,
home page, 204

search functionality, 205–211

I
information system, life cycle of, 307
Instant Messenger protocol

resource.cfg file, 52
specifications, 53

Internet Web Server and NRPE, 248
Inter–Process Communication (IPC), 7
ISPs (intrusion prevention systems), 296

L
LDAP server

authentication
shared group accounts, 276–277
user accounts, 275–276
user data flow, 276

monitoring, replication testing, 211–222

www.syngress.com

	 Index	 343

Linux, security checks with NRPE
check_load, 301
check_total_procs, 302

M
master boot record (MBR) viruses, 296
metasploit attack code, 296
MOM (monitor of monitors), 274
multi-layer security model network,

316–317
multiple GUI users, 95–96

N
Nagios

ACME Enterprises, 319–320
add-ons and enhancements

Cacinda, 260–262
Nagios Looking Glass (NLG), 262–263
NagTrap, 265–269, 332
NagVis, 332–333
NCSA, 99–100
NRPE, 246–248, 335–337
NSCA, 249, 336–337
PNP, 255–260
Puppet, 333
SNMP trap handling, 264
SNMPTT, 264–265
Splunk, 333
text-to-speech system, 269–270
visualization, 250–255

administrator, 250
attack effect displays, 305
A/V health check, 233–235
basic server metrics, 326
Bluecoat proxy devices, specialized

hardware
concept of, 224
CPU utilization, 225–227
memory utilization, 227–230
network interface utilization, 230–233

SNMP MIBs, 223
states for manageable elements, 224–225

check_command, critical alert, 299
command categories, 16–17
compliance-driven security

environments, 306
computer security, 296
configuration. See Nagios configuration
control objectives supported by, 307
core technologies and add-ons for ACME

enterprises, 328
database persistence, 111
deployment phases of, 320–321
display SNMP traps using SNMPTT, 275
DMZ monitoring, active vs. passive

checking, 334–335
Enterprise NOC

administrator, 285
deployments, 286–287
integration, 286
maintenance configuration, 287
monitoring plug-ins and software,

285–286
process, 287–288
types of, 284

and environmental monitoring systems
complete sensor check and alert script,

236–243
Enviromux-Mini, 235

failover, 106
master and secondary server, 108
sequence, 109–110

front-end CGI, 112–113
host and service escalation, 333–334
integration with

Cacti, 278–280
deployment, 339
eHealth, 280–281
NOCs, 284–285
Puppet, 282–283

www.syngress.com

344	 Index

Nagios (Continued)
Splunk, 277–278
trouble tickets, 283–284

LDAP authentication, 275–277
monitor of monitors (MOM), 274
multiple administrators, 281–282
network securing

basics, 312–313
Bastille, 311
hardening Linux and Apache, 311–312
NRPE plug-in, Linux, 310
SSL, 312

notification methods, 334
operations centers

Enterprise NOC, 288–290
fault monitoring, 291
ongoing maintenance, 292
smaller NOCs, 292–293

partition utilization, 162
passive check configuration in, 267
plug-ins

check_by_ssh plug-in, 302
database plugin, 222–223
malicious detection, 298
software and monitoring, 338–339

pre-deployment activities, 321–328
primary vs. secondary servers, 105–108
redundant configuration of, 105–106
SNMP checks against SNMP enabled

devices, 304
typical workflow, 289
“virtual” host in, 149–150
writers configuration, 281–282

Nagios 2
data storage, 2–3
migration to Nagios 3, 18–19

Nagios configuration
email notification

CPU utilization, 43–44
Lotus Notes HTML email output, 50

notification script, 44–49
standard subject prefix, 44

fault management process
alert monitoring services, 27
customer satisfaction, 28
“less is more approach,” 26–27
users data list, 26

host dependency, 76–77
host escalation relationships, 71–72
language, 39–40
object relationship

contact and time period, 32–33
host dependencies, 35–36
host escalations, 37–38
host groups, 33–34
service configuration, 32
service dependencies, 36–37, 74–75
service escalations, 38–39, 73–74
service group, 34–35

pager notifications, 50–51
planning process

application monitoring, 31
customers and users requirements, 28–29
device monitoring, 30–31

rotating schedules and dynamic
notification, 68–70

SMS notifications, 50–51
strategies, 334–336
template maximization, 77–83
text-to-speech notifications, 54–68
version control process

configuration code, 43
configuration language support, 39–40
custom scripts and custom

attributes, 41–42
Nagios Data Output Utils (NDO Utils), 113
Nagios event broker (NEB), 8, 112–113
Nagios GUI

color properties, 90
Host status screen

www.syngress.com

	 Index	 345

for normal user, 93
for read-only user, 94

informational display problems, 86–88
primary display problems, 86
for read-only configuration, 92
standard HTML colors, 91

Nagios Looking Glass (NLG)
client and server, 262
data flow, 263
PHP-based project, 262

Nagios master monitoring server, 330
Nagios::Plug-in, 119
Nagios::Plug-in::SNMP module, 119–126

load average checks, 175–177
Nagios Service Check Acceptor

(NSCA), 249
Nagios 3 software

backup files, 18
command categories, 16–17
data storage

scheduled downtime, 2
state retention and status data, 3

embedded Perl for Nagios (ePN), 23
Macros and description, 11–17
migration from Nagios 2 to, 18–19
object configuration, 4

object definitions, 5
object inheritance, 6

operational mechanism
debugging information, 8
flap detection, 8–9
Nagios event broker (NEB), 8, 112–113
performance improvements and time

periods, 7
service Notification options, 9

service, host and freshness check features
of, 3–4

upgrading
from RPM installation, 22
using Source Code, 20–21

usability enhancements
adaptive monitoring capabilities, 10
custom variables, 11
plug-in output, 10–11
web interface, 9

vs. Nagios, 2–3
NagTrap

installation of, 265–266
SNMP trap analysis, 265

NagVis
configuring, 250–251
data visualization, 250, 254
in Network Operations

Center (NOC), 255
NCSA and Nagios, 99–100
NDO Utils (Nagios Data

Output Utils), 113
and Nagios on same host, 251–252
NagVis configuring, 253–254
NDOMOD and NDO2DB files,

installing, 252–253
service and host configuration

information, 251
NEB (Nagios event broker), 2, 8
Net::SNMP and Net-SNMP agent, 264

CPU utilization, 151
first_notification_delay, 152
script, 153–156

RAM utilization, 156–159
swap utilization

code for, 160–161
MIB and OIDs needed, 159

network devices
bandwidth utilization

MIB and OIDs needed, 141
script for monitoring, 141–149

component temperature
MIB and OIDs needed,

135–136
script for monitoring, 136–140

www.syngress.com

346	 Index

network devices (Continued)
CPU utilization

MIB needed, 127
OIDs needed, 128
script for monitoring, 128–132

interface as Nagios host, 149–150
memory utilization

MIB and OIDs needed, 132
script for monitoring, 133–135

Network Operations Center (NOC), 68,
255, 337

Network Technologies
Incorporated (NTI), 235

NLG (Nagios Looking Glass), 262–263
notification methods

Instant Messenger protocol
resource.cfg file, 52
specifications, 53

text-to-speech notifications, 54–68
notification script, 44–49
NRPE

DMZs and network security, 246–247
in enterprise, 248
security caveats, 247

NSCA (Nagios Service Check Acceptor),
99–100, 249

NSClient++
CheckEventLog, 301
memory usage of remote system,

monitoring, 299
plug-in, 300
securing communications with, 300–301
Windows, checks for, 298–300

NTI (Network Technologies
Incorporated), 235

O
object (monitoring and notification

logical units)
definitions, 5

inheritance, 6
variables, 6

operational interface status check, command
definition for, 150

Outages to servers, 246

P
pager notifications, 50–51
Payment Card Industry (PCI), 308
Perl module. See Nagios::Plug-in
PHP-based Web interface, 332
planning management systems, in Nagios

configuration
application and application failure

for users, 30
application monitoring, 31
customers and users requirements,

28–29
device monitoring, 30–31

plug-ins
process behavior checks

critical services, 186–203
number of processes, 178–185

service checks
bandwidth utilization, 141–149
component temperature, 135–140
CPU utilization, 127–132
ePN, 126–127
load averages, 174–175
memory utilization, 132–135
SNMP plug-ins, 117–126

SNMP, 117–119
swap utilization, 159

code for, 160–161
command definition for, 161

version control and output performance
data, 117

PNP
based Net-SNMP CPU utilization graph,

259–260

www.syngress.com

	 Index	 347

configuring Nagios and, 256, 260
graphing framework, 255
Nagios performance data processing,

256–257
primary Nagios server, 105–107, 110
Public Company Accounting Reform

and Investors Protection Act.
See Sarbanes-Oxley (SOX)

Puppet server, 282–283

R
resource.cfg file, 52
round-robin database tool

(RRDT), 278
RRDT (round-robin

database tool), 278
rsync command, 107–108

S
Sarbanes-Oxley (SOX), 306
scheduled host checks, 4
script

for LDAP tree testing, 211–222
for monitoring

bandwidth utilization,
142–149

component temperature,
136–140

CPU utilization, 127–132
memory utilization, 133–135

passive check from SNMPTT to Nagios,
268–269

secondary Nagios server, 107
Security Readiness Review (SRR)

scripts, 312
Sensitive Compartmentalized Information

(SCI), 308
servers

metrics, monitoring, 150
process behavior checks, 177

critical services by number of processes,
186–203

number of processes by state and
process type, 178–185

system checks, basic
CPU utilization, 151–156
load averages, 174–177
partition utilization, 161–174
RAM utilization, 157–159
Swap utilization, 159–161

service checks, 3–4
servicegroup definitions, 5

custom variables, 11
flap detection, 8–9

SMS notifications, 50–51
SNMP plug-ins. See also plug-ins

monitoring agent
Internet-exposed hosts, 119
process activity and private

services, 118
network devices and

bandwidth utilization, 141–149
component temperature, 135–140
CPU utilization, 127–132
memory utilization, 132–135

security risk, 117
snmptrapd, 264
SNMP trap handling, 264
SNMPTT (SNMP Trap Translator)

check script, 266
configuration of, 265
SNMP trap analysis, 264

SourceForge.net, 20
Special Access Programs (SAPs), 308
Splunk

integration options, 277, 333
status screen showing link, 278

Splunk integration options, 9
standalone Perl interpreter. See embedded

Perl for Nagios (ePN)

www.syngress.com

348	 Index

status.cgi options, 88–92
status parameter types, 88–92
status screen critical alerts, 88

T
TCP connection metric tests, 186
Telnet-like interfaces, testing, 211
text-to-speech for Nagios alerts, 269–270
trouble ticketing systems and Nagios,

283–284

U
usr/local/bin/perl, 133, 136, 142, 153,

157, 175, 188, 212, 228, 230, 233

V
version-controlled repository, 40
version control systems, in Nagios

configuration
configuration code, 43
configuration language support, 39–40
custom scripts and custom attributes,

41–42

W
Web-based applications, testing

response time and content, home page, 204
search functionality, 205–211

wget command, 20

	Front Cover
	Nagios 3 Enterprise Network Monitoring Including Plug-Ins and Hardware Devices
	Copyright Page
	Authors
	Contents
	Foreword
	Introduction
	A Brief History of Nagios
	In the Beginning, There Was Netsaint
	Enter Nagios 3
	Nagios in the Enterprise—a Flexible Giant Awakens

	Chapter 1: Nagios 3
	What’s New in Nagios 3?
	Storage of Data
	Scheduled Downtime
	Comments
	State Retention
	Status Data

	Checks
	Service Checks
	Host Checks
	Freshness Checks

	Objects
	Object Definitions
	Object Inheritance

	Operation
	Performance Improvements
	Inter-Process Communication (IPC)
	Time Periods
	Nagios Event Broker
	Debugging Information
	Flap Detection
	Notifications

	Usability
	Web Interface
	External Commands
	Embedded Perl
	Adaptive Monitoring
	Plug-in Output
	Custom Variables

	Macros

	Backing up Your Nagios 2 Files
	Migrating from Nagios 2 to 3
	Upgrading Using Nagios 3 Source Code
	Upgrading from an RPM Installation
	Converting Nagios Legacy Perl Plug-ins

	Chapter 2: Designing Configurations for Large Organizations
	Introduction
	Fault Management Configuration Best Practices
	Solicit Input from Your Users First
	Use a "Less Is More" Approach
	Take an Iterative Approach to Growing Your Configuration
	Only Alert on the Most Important Problems
	Let Your Customers and Users Tell You What Is Important

	Planning Your Configuration
	Soliciting Requirements from Your Customers and Users
	Start High-Level and Work Down the Application Stack
	Find Out What Applications Are the Most Important to Your Users
	Find Out What the Most Important Indicators of Application Failure/Stress Are
	Start By Only Monitoring the Most Critical Indicators of Health/Failure
	Device Monitoring
	Application Monitoring

	Nagios Configuration Object Relationship Diagrams
	Hosts and Services
	Contacts, Contact Groups, and Time Periods
	Hosts and Host Groups
	Services and Service Groups
	Hosts and Host Dependencies
	Services and Service Dependencies
	Hosts and Host Escalations
	Services and Service Escalations
	Version Control

	Notification Rules and Output Formats
	Notification via Email
	Minimize the Fluff
	Make Notification Emails Easy to Filter
	Enhancing Email Notifications to Fit Your Users' Environment

	Notification Via Pager/SMS
	Minimize Included Information
	Only Notify in the Most Important Situations
	Respect Working Hours and Employee Schedules

	Alternative Notification Methods
	Instant Messenger
	Text-to-Speech

	On-Call Schedules
	Rotating Schedules and Dynamic Notification

	Dependencies and Escalations
	Host and Service Escalation Rules
	Escalate on a Host Level or a Service Level?

	Host and Service Dependencies

	Maximizing Templates
	How Do We Make a Template?
	Multiple Hosts
	Multiple Host Groups
	Regular Expression Tricks in Config Files

	Chapter 3: Scaling Nagios
	Scaling the GUI
	Rule 1: Only Show Outstanding Problems on Your Primary Display
	Rule 2: Keep Informational Displays Simple
	Detailed Information on Parameters Used by status.cgi
	hoststatustypes
	servicestatustypes
	style
	noheader

	Limiting the View to Read-Only
	Multiple GUI Users (Users/Groups)
	One Administrator, One Shared Read-Only Account
	One Administrator, Multiple Read-Only Accounts
	Multiple Administrators, Multiple Semi-Privileged Accounts, One Read-Only Account

	Clustering
	NSCA and Nagios
	Passive Service Checking
	Passive Host Checking
	Sending Data without NSCA

	Failover or Redundancy
	Redundancy
	Failover
	Establish Data Synchronization between Two Nagios Servers

	The Future
	Database Persistence

	CGI Front End
	Even More
	A Pluggable Core

	Chapter 4: Plug-ins, Plug-ins, and More Plug-ins
	Introduction
	Plug-in Guidelines and Best Practices
	Use Plug-ins from the Nagios Community
	Use Version Control
	Output Performance Data

	Software Services and Network Protocols
	SNMP Plug-ins
	What SNMP Is Good For
	What SNMP Is Not Good For
	Nagios::Plug-in and Nagios::Plug-in::SNMP
	ePN-The Embedded Nagios Interpreter
	Example

	Network Devices-Switches, Routers
	CPU Utilization
	MIB needed
	OIDs needed

	Example Call to the Script
	The Script
	Memory Utilization
	MIB needed
	OIDs needed

	Example Call
	The Script
	Component Temperature
	MIB needed
	OIDs needed

	Example Call to the Script
	The Script
	Bandwidth Utilization
	MIB needed
	OIDs needed

	Example Call to the Script
	The Script

	Network Interface as Nagios Host?
	Host Definition Example

	Servers
	Basic System Checks
	CPU utilization
	MIB needed:
	OIDs used:

	Example Call and Output
	The Script
	RAM utilization
	MIB needed
	OIDS used

	The Script
	Swap utilization
	MIB needed
	OIDs used

	Partition Utilization
	MIB needed
	OIDs needed
	Example output

	Load Averages
	MIB needed
	OIDs used

	Example call and output
	And here is the code for the plug-in
	Number of Processes by State and Number of Processes By Process Type
	MIB Needed
	OIDs used

	Critical Services by Number of Processes
	MIB needed
	OIDS used

	The Code for the Script

	HTTP Scraping Plug-ins
	Robotic Network-Based Tests
	Testing HTTP-based Applications
	Ensuring the Home Page Performs Well and Has the Content We Expect
	Ensuring a Search Page Performs as Expected and Meets SLAs
	Example Call to the Script
	The Library (WWW::UltimateDomains)

	Testing Telnet-like Interfaces (Telnet or SSH)
	Network Devices

	Monitoring LDAP
	Testing Replication
	Example Call to This Script
	The Script

	Monitoring Databases
	Specialized Hardware
	Bluecoat Application Proxy and Anti-Virus Devices
	SNMP-based Checks

	Proxy Devices (SG510, SG800)
	CPU Utilization
	MIB needed
	OIDs used

	Memory Utilization
	MIB needed
	OIDs used

	Network Interface Utilization
	MIB needed
	OIDs used

	Anti-Virus Devices
	A/V Health Check
	MIB needed
	OIDs needed

	Environmental Probes
	Complete Sensor Check and Alert Script
	MIB needed
	OIDs used
	Example call to the script

	Summary

	Chapter 5: Add-ons and Enhancements
	Introduction
	Checking Private Services when SNMP Is Not Allowed
	NRPE
	DMZs and Network Security
	Security Caveats
	NRPE Details
	NRPE in the Enterprise
	Scenario 1: The Internet Web Server

	NSCA

	Visualization
	NagVis
	Enable the Event Broker in Nagios

	Install the NDO Utils Package
	Download and Install NagVis, Configure It to Use the Database Back End You Set up with NDO

	PNP-PNP Not PerfParse
	Cacinda
	NLG-Nagios Looking Glass
	SNMP Trap Handling
	Net-SNMP and snmptrapd

	SNMPTT
	Configuring SNMPTT for Maintainability and Configuration File Growth

	NagTrap
	Text-to-Speech for Nagios Alerts
	Summary

	Chapter 6: Enterprise Integration
	Introduction
	Nagios as a Monitor of Monitors
	LDAP Authentication
	One LDAP User, One Nagios User
	One LDAP Group, One Nagios User

	Integration with Splunk
	Integrating with Third-Party Trend and Analysis Tools
	Cacti
	eHealth

	Multiple Administrators/Configuration Writers
	Integration with Puppet
	Integration with Trouble Ticketing Systems
	Nagios in the NOC
	The Nagios Administrator
	The Nagios Software
	Integration
	Deployment
	Maintenance
	The Process
	The Operations Centers
	The Enterprise NOC

	The Incident
	Ongoing Maintenance
	Smaller NOCs

	Summary

	Chapter 7: Intrusion Detection and Security Analysis
	Know Your Network
	Security Tools under Attack
	Enter Nagios
	Attackers Make Mistakes
	NSClient++ Checks for Windows
	Securing Communications with NSClient++

	Security Checks with NRPE for Linux
	check_load
	check_users
	check_total_procs
	check_by_ssh

	Watching for Session Hijacking Attacks
	DNS Attacks
	Arp Cache Poisoning Attacks

	Nagios and Compliance
	Sarbanes-Oxley
	SOX and COBIT
	SOX and COSO
	Payment Card Industry
	DCID 6/3
	DIACAP
	DCSS-2 System State Changes

	Securing Nagios
	Hardening Linux and Apache
	Basics

	Summary

	Chapter 8: Case Study: Acme Enterprises
	Case Study Overview
	Who Are You?

	ACME Enterprises Network: What’s under the Hood?
	ACME Enterprises Management and Staff: Who’s Running the Show?
	ACME Enterprises and Nagios: Rubber Meets the Road!
	Nagios Pre-Deployment Activities: What Are We Monitoring?
	Nagios Deployment Activities: Can You See Me?
	Enterprise and Remote Site Monitoring
	eHealth
	NagTrap
	NagVis
	Puppet
	Splunk

	Host and Service Escalations, and Notifications
	Service Escalations
	Notification Schemes

	Nagios Configuration Strategies
	DMZ Monitoring-Active versus Passive Checking
	Why Passive Service Checks?

	Why Active Service Checks?
	NRPE and ACME Enterprises

	Developer, Corporate, and IT Support Network Monitoring
	NSCA to the Rescue!
	NRPE Revisited

	Select Advice for Integrating Nagios as the Enterprise Network Monitoring Solution
	The Nagios Software

	Nagios Integration and Deployment

	Index

