

solutions@ s y n g r e s s . c o m

Over the last few years, Syngress has published many best-selling and
critically acclaimed books, including Tom Shinder’s Configuring ISA
Server 2004, Brian Caswell and Jay Beale’s Snort 2.1 Intrusion
Detection, and Angela Orebaugh and Gilbert Ramirez’s Ethereal
Packet Sniffing. One of the reasons for the success of these books has
been our unique solutions@syngress.com program. Through this
site, we’ve been able to provide readers a real time extension to the
printed book.

As a registered owner of this book, you will qualify for free access to
our members-only solutions@syngress.com program. Once you have
registered, you will enjoy several benefits, including:

■ Four downloadable e-booklets on topics related to the book.
Each booklet is approximately 20-30 pages in Adobe PDF
format. They have been selected by our editors from other
best-selling Syngress books as providing topic coverage that
is directly related to the coverage in this book.

■ A comprehensive FAQ page that consolidates all of the key
points of this book into an easy-to-search web page, pro-
viding you with the concise, easy-to-access data you need to
perform your job.

■ A “From the Author” Forum that allows the authors of this
book to post timely updates links to related sites, or addi-
tional topic coverage that may have been requested by
readers.

Just visit us at www.syngress.com/solutions and follow the simple
registration process. You will need to have this book with you when
you register.

Thank you for giving us the opportunity to serve your needs. And be
sure to let us know if there is anything else we can do to make your
job easier.

Register for Free Membership to

332_NSE_FM.qxd 7/14/05 1:51 PM Page i

Neil Archibald
Gilbert Ramirez
Noam Rathaus
Josh Burke Technical Editor

Brian Caswell Technical Editor

Renaud Deraison Technical Editor

Jay Beale’s Open Source Security Series

Nessus, Snort,
& Ethereal
C u s t o m i z i n g O p e n S o u r c e S e c u r i t y
A p p l i c a t i o n s

Power
Tools

332_NSE_FM.qxd 7/14/05 1:51 PM Page iii

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or produc-
tion (collectively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be
obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work is
sold AS IS and WITHOUT WARRANTY.You may have other legal rights, which vary from state to
state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other
incidental or consequential damages arising out from the Work or its contents. Because some states do not
allow the exclusion or limitation of liability for consequential or incidental damages, the above limitation
may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working
with computers, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,”“Ask the Author
UPDATE®,” and “Hack Proofing®,” are registered trademarks of Syngress Publishing, Inc.“Syngress:The
Definition of a Serious Security Library”™,“Mission Critical™,” and “The Only Way to Stop a Hacker is
to Think Like One™” are trademarks of Syngress Publishing, Inc. Brands and product names mentioned
in this book are trademarks or service marks of their respective companies.

KEY SERIAL NUMBER
001 HJIRTCV764
002 PO9873D5FG
003 829KM8NJH2
004 JKKL765FFF
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Nessus, Snort, & Ethereal Power Tools: Customizing Open Source Security Applications
Copyright © 2005 by Syngress Publishing, Inc.All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may be repro-
duced or distributed in any form or by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher, with the exception that the program listings may be entered,
stored, and executed in a computer system, but they may not be reproduced for publication.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 0
ISBN: 1-59749-020-2

Publisher:Andrew Williams Page Layout and Art: Patricia Lupien
Acquisitions Editor: Gary Byrne Copy Editors:Amy Thomson and Judy Eby
Technical Editors: Josh Burke, Brian Caswell, Indexer: Richard Carlson

Renaud Deraison, and Mike Rash Cover Designer: Michael Kavish

Distributed by O’Reilly Media, Inc. in the United States and Canada.
For information on rights and translations, contact Matt Pedersen, Director of Sales and Rights, at
Syngress Publishing; email matt@syngress.com or fax to 781-681-3585.

332_NSE_FM.qxd 7/14/05 1:51 PM Page iv

Acknowledgments

v

Syngress would like to acknowledge the following people for their kindness
and support in making this book possible.

Syngress books are now distributed in the United States and Canada by
O’Reilly Media, Inc.The enthusiasm and work ethic at O’Reilly are incredible,
and we would like to thank everyone there for their time and efforts to bring
Syngress books to market:Tim O’Reilly, Laura Baldwin, Mark Brokering, Mike
Leonard, Donna Selenko, Bonnie Sheehan, Cindy Davis, Grant Kikkert, Opol
Matsutaro, Steve Hazelwood, Mark Wilson, Rick Brown, Leslie Becker, Jill
Lothrop,Tim Hinton, Kyle Hart, Sara Winge, C. J. Rayhill, Peter Pardo, Leslie
Crandell, Regina Aggio, Pascal Honscher, Preston Paull, Susan Thompson, Bruce
Stewart, Laura Schmier, Sue Willing, Mark Jacobsen, Betsy Waliszewski, Dawn
Mann, Kathryn Barrett, John Chodacki, Rob Bullington, and Aileen Berg.

The incredibly hardworking team at Elsevier Science, including Jonathan
Bunkell, Ian Seager, Duncan Enright, David Burton, Rosanna Ramacciotti,
Robert Fairbrother, Miguel Sanchez, Klaus Beran, Emma Wyatt, Chris Hossack,
Krista Leppiko, Marcel Koppes, Judy Chappell, Radek Janousek, and Chris
Reinders for making certain that our vision remains worldwide in scope.

David Buckland, Marie Chieng, Lucy Chong, Leslie Lim,Audrey Gan, Pang Ai
Hua, Joseph Chan, and Siti Zuraidah Ahmad of STP Distributors for the
enthusiasm with which they receive our books.

David Scott, Tricia Wilden, Marilla Burgess, Annette Scott, Andrew Swaffer,
Stephen O’Donoghue, Bec Lowe, Mark Langley, and Anyo Geddes of Woodslane
for distributing our books throughout Australia, New Zealand, Papua New
Guinea, Fiji,Tonga, Solomon Islands, and the Cook Islands.

332_NSE_FM.qxd 7/14/05 1:51 PM Page v

332_NSE_FM.qxd 7/14/05 1:51 PM Page vi

vii

Contributing Authors

Neil Archibald is a security professional from Sydney,Australia. He
has a strong interest in programming and security research. Neil is
employed by Suresec LTD (http://www.suresec.org) as a Senior
Security Researcher. He has previously coauthored Aggressive
Network Self-Defense, (Syngress, ISBN: 1-931836-70-5).

Thanks to Jayne; Feline Menace; Pull The Plug; Johnny Long, for
setting me up with the opportunity to write; James Martelletti, for
writing the GTK interface shown in Chapter 9; and, finally, my boss
at Suresec, Swaraj, for providing me with the time I needed to get
this done.

Neil wrote Chapters 7–10 on Snort.

Ami Chayun is a chief programmer at Beyond Security. Other
than satisfying his real craving for code, he contributes articles and
security newsletters to SecuriTeam.com, the independent security
portal.Ami has written hundreds of articles covering various tech-
nical developments related to security.Ami also occasionally speaks
at industry conferences.

Since a good programmer is a lazy programmer,Ami is in con-
stant search for automatic ways to do the hard work for him.
During his work in Beyond Security, he has developed an auto-
mated vulnerability scanner, but he claims his next invention will be
an underwater DVD player so that he can finally watch his favorite
anime while Scuba diving.

Ami started his academic computer studies at age 15, when he
was bored in high school and searching for the real meaning of life.
He should be finishing his studies “any day now,” but impartial
observers claim that he’ll be saying that to his grandchildren.

Ami wrote Chapter 6 on Nessus.

332_NSE_FM.qxd 7/14/05 1:51 PM Page vii

viii

Gilbert Ramirez was the first contributor to Ethereal after it was
announced to the public and is known for his regular updates to the
product. He has contributed protocol dissectors as well as core logic
to Ethereal. He is a Technical Leader at Cisco Systems, where he
works on tools and builds systems. Gilbert is a family man, a lin-
guist, a want-to-be chef, and a student of tae kwon do.

Gilbert wrote Chapters 11–13 on Ethereal.

Noam Rathaus is the cofounder and CTO of Beyond Security, a
company specializing in the development of enterprise-wide secu-
rity assessment technologies, vulnerability assessment-based SOCs
(security operation centers), and related products. Noam coauthored
Nessus Network Auditing (Syngress, ISBN: 1-931836-08-6). He holds
an Electrical Engineering degree from Ben Gurion University and
has been checking the security of computer systems since the age of
13. Noam is also the editor-in-chief of SecuriTeam.com, one of the
largest vulnerability databases and security portals on the Internet.
He has contributed to several security-related open source projects,
including an active role in the Nessus security scanner project. He
has written more than 150 security tests to the open source tool’s
vulnerability database and also developed the first Nessus client for
the Windows operating system. Noam is apparently on the hit list of
several software giants after being responsible for uncovering secu-
rity holes in products by vendors such as Microsoft, Macromedia,
Trend Micro, and Palm.This keeps him on the run using his Nacra
Catamaran, capable of speeds exceeding 14 knots for a quick get-
away. He would like to dedicate his contribution to the memory of
Carol Zinger, known to us as Tutu, who showed him true passion
for mathematics.

Noam wrote Chapters 1–5 on Nessus.

332_NSE_FM.qxd 7/14/05 1:51 PM Page viii

ix

Brian Wotring is the CTO of Host Integrity, Inc. a company that
specializes in providing software to help monitor the integrity of
desktop and server environments. Brian studied computer science
and mathematics at the University of Alaska and the University of
Louisiana.

Brian founded and maintains knowngoods.org, an online database
of known good file signatures for a number of operating systems. He
also is the developer of ctool, an application that provides limited
integrity verification for prebound Mac OS X executables. Brian is
currently responsible for the continued development of Osiris, an
open source host integrity monitoring system.

As a long-standing member of The Shmoo Group of security
and privacy professionals, Brian has an interest in secure program-
ming practices, data integrity solutions, and software usability.

Brian is author of Host Integrity Monitoring Using Osiris and
Samhain (Syngress, ISBN:1-597490-18-0).And, along with Bruce
Potter and Preston Norvell, Brian co-authored the book, Mac OS X
Security. Brian has presented at CodeCon and at the Black Hat
Briefings security conferences.

Appendix A is excerpted from Brian’s book Host Integrity
Monitoring Using Osiris and Samhain.

Special Contributor

332_NSE_FM.qxd 7/14/05 1:51 PM Page ix

x

Josh Burke, CISSP, is an Information Security Analyst in Seattle,
Washington. He has held positions in networking, systems, and secu-
rity over the past five years.A graduate of the business school at the
University of Washington, Josh concentrates on balancing technical
and business needs in the many areas of information security. His
research interests include improving the security and resilience of
the Domain Name System (DNS) and Internet routing protocols.

Josh edited Chapters 11–13 on Ethereal.

Brian Caswell is a member of the Snort core team, where he is the
primary author for the world’s most widely used intrusion detection
rulesets. He is a member of the Shmoo group, an international not-
for-profit, non-milindustrial independent private think tank. He
was a contributor to Snort 2.0 Intrusion Detection (Syngress, ISBN:
1-931836-74-4), and Snort 2.1 Intrusion Detection, Second Edition
(Syngress: ISBN 1-931836-04-3).Currently, Brian is a Research
Engineer within the Vulnerability Research Team for Sourcefire, a
provider of one of the world’s most advanced and flexible Intrusion
Management solutions. Before joining Sourcefire, Brian was the IDS
team leader and all-around supergeek for MITRE, a government-
sponsored think tank. Not only can Brian do IDS, he was a
Pokémon Master Trainer for both Nintendo and Wizards of the
Coast, working throughout the infamous Pokémon Training League
tours. In his free time, Brian likes to teach his young son Patrick to
write Perl, reverse engineer network protocols, and autocross at the
local SCCA events.

Brian edited Chapters 7–9 on Snort.

Technical Editors

332_NSE_FM.qxd 7/14/05 1:51 PM Page x

xi

Renaud Deraison, Chief Research Officer at Tenable Network
Security, is the Founder and the primary author of the open-source
Nessus vulnerability scanner project. Renaud is the co-author of
Nessus Network Auditing (Syngress, ISBN: 1-931836-08-6).He has
worked for SolSoft and founded his own computing security con-
sulting company, Nessus Consulting. Nessus has won numerous
awards; most notably, is the 2002 Network Computing “Well
Connected” award. Mr. Deraison also is an editorial board member
of Common Vulnerabilities and Exposures Organization. He has
presented at a variety of security conferences, including the Black
Hat Briefings and CanSecWest.

Renaud edited Chapters 1–6 on Nessus.

Michael Rash holds a master’s degree in Applied Mathematics with
a concentration in Computer Security from the University of
Maryland. Mr. Rash works as a Security Research Engineer for
Enterasys Networks, Inc., where he develops code for the Dragon
intrusion detection and prevention system. Before joining Enterasys,
Michael developed a custom host-based intrusion detection system
for USinternetworking, Inc. that was used to monitor the security of
more than 1,000 systems from Linux to Cisco IOS.

Michael frequently contributes to open source projects such as
Netfilter and Bastille Linux and has written security-related articles
for the Linux Journal, Sys Admin Magazine, and USENIX ;login:
Magazine. Mike is coauthor of Snort 2.1 Intrusion Detection, Second
Edition (Syngress, ISBN: 1-931836-04-3) and the lead author of
Intrusion Prevention and Active Response: Deploying Network and Host
IPS (Syngress, ISBN: 1-932266-47-X). Michael is the creator of two
open source tools, psad and fwsnort, both of which were designed
to tear down the boundaries between Netfilter and the Snort IDS.
More information about Michael and various open source projects
can be found at http://www.cipherdyne.org/.

Mike edited Chapter 10 on Snort.

332_NSE_FM.qxd 7/14/05 1:51 PM Page xi

xii

Jay Beale is an information security specialist, well known for his work
on mitigation technology, specifically in the form of operating system and
application hardening. He’s written two of the most popular tools in this
space: Bastille Linux, a lockdown tool that introduced a vital security-
training component, and the Center for Internet Security’s Unix Scoring
Tool. Both are used worldwide throughout private industry and govern-
ment.Through Bastille and his work with CIS, Jay has provided leadership
in the Linux system hardening space, participating in efforts to set, audit,
and implement standards for Linux/Unix security within industry and
government. He also focuses his energies on the OVAL project, where he
works with government and industry to standardize and improve the field
of vulnerability assessment. Jay is also a member of the Honeynet Project,
working on tool development.

Jay has served as an invited speaker at a variety of conferences world-
wide, as well as government symposia. He’s written for Information Security
Magazine, SecurityFocus, and the now-defunct SecurityPortal.com. He has
worked on many books in the information security space including best-
sellers Snort 2.1 Intrusion Detection (Syngress, ISBN: 1-931836-04-3),
Ethereal Packet Sniffing (Syngress, ISBN: 1-932266-82-8), and Nessus
Network Auditing (Syngress, ISBN: 1-931836-08-6) from his Open Source
Security Series. Jay is also a contributing author to the best-selling Stealing
the Network Series of technical fiction having contributed to Stealing the
Network: How to Own a Continent (Syngress, ISBN: 1-931836-05-1) and
Stealing the Network: How to Own an Identity (Syngress, ISBN:
1-597490-06-7).

Jay makes his living as a security consultant with the firm
Intelguardians, which he co-founded with industry leaders Ed Skoudis,
Eric Cole, Mike Poor, Bob Hillery, and Jim Alderson, where his work in
penetration testing allows him to focus on attack as well as defense.

Prior to consulting, Jay served as the Security Team Director for
MandrakeSoft, helping set company strategy, design security products, and
pushing security into the third largest retail Linux distribution.

Series Editor

332_NSE_FM.qxd 7/14/05 1:51 PM Page xii

xiii

Contents

Foreword. xxv

Part I Nessus Tools . 1

Chapter 1 The Inner Workings of NASL
(Nessus Attack Scripting Language) 3

Introduction. 4
What Is NASL? . 4

Structure of a NASL Script .4
The Description Section. 4
The Test Section. 6

Writing Your First Script .7
Commonly Used Functions . 9

Regular Expressions in NASL .11
String Manipulation .12

How Strings Are Defined in NASL 12
String Addition and Subtraction 13
String Search and Replace . 13

Nessus Daemon Requirements to Load a NASL 14
Final Touches . 14

Chapter 2 Debugging NASLs . 15
In This Toolbox .16

How to Debug NASLs Using the Runtime Environment. . . 16
Validity of the Code .16
Validity of the Vulnerability Test 21
How to Debug NASLs Using the Nessus Daemon
Environment .28

Final Touches . 28

332_NSE_TOC.qxd 7/18/05 11:51 AM Page xiii

xiv Contents

Chapter 3 Extensions and Custom Tests 29
In This Toolbox .30

Extending NASL Using Include Files 30
Include Files .30

Extending the Capabilities of TestsUsing the Nessus
Knowledge Base . 34
Extending the Capabilities of Tests Using Process
Launching and Results Analysis . 35

What Can We Do with TRUSTED Functions? 36
Creating a TRUSTED Test .37

Final Touches . 42

Chapter 4 Understanding the Extended Capabilities
of the Nessus Environment . 43

In This Toolbox .44
Windows Testing Functionality Provided by the
smb_nt.inc Include File. 44

Windows Testing Functionality Provided by the
smb_hotfixes.inc Include File .47
UNIX Testing Functionality Provided by the
Local Testing Include Files .50

Final Touches . 55

Chapter 5 Analyzing GetFileVersion and MySQL
Passwordless Test . 57

In This Toolbox .58
Integrating NTLM Authentication into Nessus’ HTTP
Authentication Mechanism . 58

NTLM .58
Improving the MySQL Test by Utilizing Packet Dumps 70
Improving Nessus’ GetFileVersion Function by Creating
a PE Header Parser . 79
Final Touches . 94

Chapter 6 Automating the Creation of NASLs 95
In This Toolbox .96

Plugin Templates: Making Many from Few. 96
Common Web Application Security Issues 96

332_NSE_TOC.qxd 7/18/05 11:51 AM Page xiv

Contents xv

Server-Side Execution (SQL Injection,
Code Inclusion) . 96
Client-Side Execution (Code Injection, Cross-Site
Scripting, HTTP Response Splitting) 98

Creating Web Application Plugin Templates 99
Detecting Vulnerabilities .100
Making the Plugin More General 101

Parameterize the Detection and Trigger Strings 101
Allow Different Installation dirs 101
Allow Different HTTP Methods 102
Multiple Attack Vectors. 103

Increasing Plugin Accuracy .107
The “Why Bother” Checks 107
Avoiding the Pitfalls . 108

The Final Plugin Template .111
Rules of Thumb .114

Using a CGI Module for Plugin Creation 115
CGI .115

Perl’s CGI Class . 115
Template .conf File .116
Plugin Factory .117
Final Setup .124
Example Run .124

Advanced Plugin Generation: XML Parsing for
Plugin Creation . 126

XML Basics .126
XML As a Data Holder. 127

Using mssecure.xml for Microsoft Security Bulletins . . .128
The mssecure XML Schema 128

The Plugin Template .129
Ins and Outs of the Template. 130

Filling in the Template Manually 132
General Bulletin Information 132
The Finished Template . 134

The Command-Line Tool .135
XML::Simple . 135

332_NSE_TOC.qxd 7/18/05 11:51 AM Page xv

xvi Contents

Tool Usage . 136
The Source . 138

Conclusion .146
Final Touches .147

Part II Snort Tools. 149

Chapter 7 The Inner Workings of Snort 151
In This Toolbox .152

Introduction . 152
Initialization . 154

Starting Up .154
Libpcap . 158

Parsing the Configuration File 159
ParsePreprocessor() . 160
ParseOutputPlugin() . 161
Snort Rules . 162
Event Queue Initialization 168
Final Initialization. 168

Decoding . 168
Preprocessing . 172
Detection . 174
Content Matching . 175
The Stream4 Preprocessor . 176
Inline Functionality. 176

Inline Initialization . 176
Inline Detection . 178

Final Touches . 179

Chapter 8 Snort Rules . 181
In This Toolbox .182

Writing Basic Rules . 182
The Rule Header .182
Rule Options .184
Metadata Options .185

sid . 185
rev . 185
msg . 185

332_NSE_TOC.qxd 7/18/05 11:51 AM Page xvi

Contents xvii

reference . 186
classtype . 186
priority . 188

Payload Options .188
content . 188
offset . 188
depth . 189
distance . 189
within . 189
nocase . 190
rawbytes . 190
uricontent . 190
isdataat . 190

Nonpayload Options .190
flags . 190
fragoffset . 191
fragbits . 191
ip_proto . 192
ttl. 192
tos . 192
id. 192
ipopts. 192
ack. 193
seq . 193
dsize. 193
window . 193
itype . 193
icode . 193
icmp_id . 193
icmp_seq . 194
rpc . 194
sameip . 194

Post-detection Options .194
resp . 194
react. 195
logto . 195

332_NSE_TOC.qxd 7/18/05 11:51 AM Page xvii

xviii Contents

session . 195
tag . 196

Writing Advanced Rules . 196
PCRE .196
Byte_test and Byte_jump .205

byte_test. 205
byte_jump . 206

The Flow Options .209
flow . 209
flowbits . 210

Activate and Dynamic Rules .211
Optimizing Rules . 211

Ordering Detection Options .211
Choosing between Content and PCRE 212
Merging CIDR Subnets .212
Optimizing Regular Expressions 213

Testing Rules . 217
Final Touches . 219

Chapter 9 Plugins and Preprocessors 221
In This Toolbox .222

Introduction . 222
Writing Detection Plugins . 222

RFC 3514:The Evil Bit .223
Detecting “Evil” Packets .224
SetupEvilBit() .225
EvilBitInit() .226
ParseEvilBit() .227
CheckEvilBit() .228
Setting Up .229
Testing .230

Writing Preprocessors . 232
IP-ID Tricks .233
Idle Scanning .233
Predictable IP-ID Preprocessor235
SetupIPID() .236
IPIDInit() .236

332_NSE_TOC.qxd 7/18/05 11:51 AM Page xviii

Contents xix

IPIDParse() .237
RecordIPID() .238
Setting Up .241
Prevention .242

Writing Output Plugins . 242
GTK+ .243
An Interface for Snort .244
Glade .244
Function Layout .248
AlertGTKSetup() .249
AlertGTKInit .249
AlertGTK .251
Exiting .251
Setting Up .253
Miscellaneous .254

Final Touches . 254

Chapter 10 Modifying Snort . 255
In This Toolbox .256

Introduction . 256
Snort-AV . 256

Active Verification .256
Snort-AV- Implementation Summary257
Snort-AV Initilization .258

Snort.h. 258
Snort.c . 259
Parser.c. 260
Signature.h . 261
Detect.c . 261

Snort-AV Event Generation .264
Snort-AV Event Verification .266
Setting Up .269

Snort-Wireless . 269
Implementation .270
Preprocessors .272

Anti-Stumbler . 272
Auth Flood . 272

332_NSE_TOC.qxd 7/18/05 11:51 AM Page xix

xx Contents

De-auth Flood . 272
Mac-Spoof . 272
Rogue-AP . 273

Detection Plugins .273
Wifi Addr4 . 274
BSSID . 274
Duration ID . 274
Fragnum . 274
Frame Control . 274
From DS . 274
More Data . 274
More Frags. 275
Order. 275
Power Management . 275
Retry. 275
Seg Number. 275
SSID . 275
Stype . 275
To DS . 276
Type . 276
WEP . 276

Rules .276
Final Touches . 276

Part III Ethereal Tools . 277

Chapter 11 Capture File Formats. 279
In This Toolbox .280

Using libpcap . 280
Selecting an Interface .280
Opening the Interface .283
Capturing Packets .284
Saving Packets to a File .287

Using text2pcap . 289
text2pcap Hex Dumps .289
Packet Metadata .290
Converting Other Hex Dump Formats 292

Extending Wiretap . 295

332_NSE_TOC.qxd 7/18/05 11:51 AM Page xx

Contents xxi

The Wiretap Library .295
Reverse Engineering a Capture File Format 296

Understanding Capture File Formats 296
Finding Packets in the File 298

Adding a Wiretap Module .308
The module_open Function 308
The module_read Function. 312
The module_seek_read Function. 318
The module_close Function 322
Building Your Module. 322

Final Touches . 322

Chapter 12 Protocol Dissectors 323
In This Toolbox .324

Setting up a New Dissector . 324
Built-in versus Plugin .324
Calling Your Dissector .330

Calling a Dissector Directly. 331
Using a Lookup Table . 332
Examining Packet Data as a Last Resort. 333
New Link Layer Protocol . 334

Defining the Protocol .334
Programming the Dissector . 340

Low-Level Data Structures .340
Adding Column Data .343
Creating proto_tree Data .345
Calling the Next Protocol .349

Advanced Dissector Concepts . 350
Exceptions .350
User Preferences .352

Final Touches . 356

332_NSE_TOC.qxd 7/18/05 11:51 AM Page xxi

xxii Contents

Chapter 13 Reporting from Ethereal 357
In This Toolbox. 358
Writing Line-Mode Tap Modules 358

Adding a Tap to a Dissector .358
Adding a Tap Module .361

tap_reset. 366
tap_packet . 367
tap_draw . 370

Writing GUI Tap Modules . 371
Initializer .374
The Three Tap Callbacks .377

Processing Tethereal’s Output. 380
XML/PDML . 388

The PDML Format .390
Metadata Protocols .393
EtherealXML.py .395

Final Touches . 400

Appendix A Host Integrity Monitoring
Using Osiris and Samhain . 401

Introducing Host Integrity Monitoring 402
How Do HIM Systems Work? 403

Scanning the Environment 403
Centralized Management . 405
Feedback . 406

Introducing Osiris and Samhain. 406
Osiris . 407

How Osiris Works .407
Authentication of Components 408
Scan Data. 409
Logging . 410
Filtering Noise . 411
Notifications. 411

Strengths .412
Weaknesses .412

Samhain . 413
How Samhain Works .413

332_NSE_TOC.qxd 7/18/05 11:51 AM Page xxii

Contents xxiii

Authentication of Components 415
Scan Data. 415
Logging . 415
Notifications. 416

Strengths .417
Weaknesses .417

Extending Osiris and Samhain with Modules 418
Osiris Modules . 418

An Example Module: mod_hostname419
Testing Your Module .421
Packaging Your Module .423
General Considerations .423

Samhain Modules . 423
An Example Module: hostname 424
Testing Your Module .430
Packaging Your Module .431

Index. 433

332_NSE_TOC.qxd 7/18/05 11:51 AM Page xxiii

332_NSE_TOC.qxd 7/18/05 11:51 AM Page xxiv

The first three books in my Open Source Security series covered Nessus,
Snort, and Ethereal.The authors and I worked hard to make these books useful
to complete beginners, enterprise-scaled users, and even programmers who
were looking to enhance these tools. Giving programmers the capability to add
components to each tool was one focus of several. For example, I dissected a
preprocessor in the Snort 2.0 and 2.1 books and explained how you might
build another.To do that, I had to learn Snort’s inner workings by reading
much of the code. My material helped you learn how to work on a prepro-
cessor, but you still needed to do much of the same kind of code reading
before you could make something truly complex.We could focus only so much
of that book on development because there were so many other important
topics to cover.

This book closes the gap between the level of understanding of each of
these open source tools you gained in these first books and that of a full-
fledged developer. It teaches you everything you need to understand about the
internal program architecture of each tool and then takes you through mean-
ingful examples in building new components for that tool.The components
can be as simple as basic Snort rules and as complex as an entirely new protocol
dissector for Ethereal.

This kind of access to development information is unique. Normally, adding
components to one of these tools involves tons of code reading in an attempt
to understand how the program works. It’s usually the case in open source that
the code serves as the only developer documentation.This book shortcuts all
that code reading, giving you the developer documentation that we all wish
existed for open source tools.

xxv

Foreword

332_NSE_Foreword.qxd 7/19/05 10:05 AM Page xxv

The best feature of the book in my mind is that it teaches through realistic
examples.Whether they are explaining how to write a rule or a new detection
plugin for Snort, a complex NASL test with custom functions for Nessus, or a
new protocol dissector for Ethereal, the authors have worked to teach you the
thought process.They start you off with a need, say, a new exploit, and teach
you how to figure out what to code and how to finish that code.And there’s a
great team working to teach you: many of the authors have created large
amounts of the code, test scripts, and rules that you’re learning to customize.

I think this book is invaluable to developers who want to work on these
tools, as well as power users who just want to create the best Ethereal function
scripts, Snort rules, and Nessus tests for their organization. I hope you’ll agree.

—Jay Beale
Series Editor

Companion Web Site
Much of the code presented throughout this book is available for download
from www.syngress.com/solutions. Look for the Syngress icon in the mar-
gins indicating which examples are available from the companion Web site.

www.syngress.com

xxvi Foreword

332_NSE_Foreword.qxd 7/19/05 10:05 AM Page xxvi

Part I
Nessus Tools

1

332_NSE_01.qxd 6/30/05 11:55 AM Page 1

332_NSE_01.qxd 6/30/05 11:55 AM Page 2

The Inner Workings
of NASL (Nessus
Attack Scripting
Language)

Scripts and samples in this chapter:

■ What Is NASL?

■ Commonly Used Functions

■ Nessus Daemon Requirements to Load a NASL

Chapter 1

3

332_NSE_01.qxd 6/30/05 11:55 AM Page 3

Introduction
One of the most attractive attributes of Nessus is the simplicity of creating custom extensions (or
plugins) to be run with the Nessus engine.This benefit is gained via the specialized language
NASL (Nessus Attack Scripting Language). NASL supplies the infrastructure to write network-
based scripts without the need to implement the underlying protocols.As NASL does not need
to compile, plugins can be run at once, and development is fast.After understanding these bene-
fits, it should be an easy decision to write your next network-based script using NASL. In this
introduction we will overview how this is done, with an emphasis on usability and tips for
writing your own scripts. If you are already familiar with the NASL language, we hope you will
still find useful insights in this chapter.

What Is NASL?
NASL, as the name implies, is a scripting language specifically designed to run using the Nessus
engine.The language is designed to provide the developer with all the tools he/she needs to
write a network-based script, supporting as many network protocols as required.

Every NASL is intended to be run as a test.Thus, its first part will always describe what the
test is and what a positive result means. In most cases, the test is being done for a specific vulner-
ability, and a successful test means that the target (host/service) is vulnerable.The second part of
the script runs NASL commands to provide a success/fail result.The script can also use the
Nessus registry (the knowledge base) to provide more information on the target.

Structure of a NASL Script
NASL scripts consist of a description section and a test section. Even though the test section is
the one that does the actual testing, the description is equally important.The description part is
crucial to the Nessus environment; without it, the environment would be unable to determine
the order in which tests should be executed, unable to determine which tests require informa-
tion from which other test or tests, unable to determine which test might need to be avoided as
it may cause harm to the host being tested, and finally unable to determine which tests affect
which service on the remote host, thus avoiding running them on irrelevant services or even
hosts. Let’s briefly discuss these sections.

The Description Section
The first part of a NASL file, the NASL description, is used by the Nessus engine to identify the
plugin and provide the user with a description of the plugin. Finally, if the plugin run was suc-
cessful, the engine will use this section to provide the user with the results.The description sec-
tion should look something like the following (code taken from wu_ftpd_overflow):

if(description)

{

script_id(10318);

script_bugtraq_id(113, 2242, 599, 747);

script_version ("$Revision: 1.36 $");

4 Chapter 1 • The Inner Workings of NASL (Nessus Attack Scripting Language)

332_NSE_01.qxd 6/30/05 11:55 AM Page 4

script_cve_id("CVE-1999-0368");

name["english"] = "wu-ftpd buffer overflow";

script_name(english:name["english"]);

desc["english"] = "

It was possible to make the remote FTP server crash

by creating a huge directory structure.

This is usually called the 'wu-ftpd buffer overflow'

even though it affects other FTP servers.

It is very likely that an attacker can use this

flaw to execute arbitrary code on the remote

server. This will give him a shell on your system,

which is not a good thing.

Solution : upgrade your FTP server.

Consider removing directories writable by 'anonymous'.

Risk factor : High";

script_description(english:desc["english"]);

script_summary(english:"Checks if the remote ftp can be buffer overflown");

script_category(ACT_MIXED_ATTACK); # mixed

script_family(english:"FTP");

script_copyright(english:"This script is Copyright (C) 1999 Renaud Deraison");

script_dependencies("find_service.nes", "ftp_write_dirs.nes");

script_require_keys("ftp/login", "ftp/writeable_dir");

script_require_ports("Services/ftp", 21);

exit(0);

}

The section contained in the preceding if command is the description section of the NASL.
When the NASL script is run with the description parameter set, it will run the code in this
clause and exit, instead of running the actual script.

The description sets the following attributes:

■ script_id This globally unique ID helps Nessus identify the script in the knowledge
base, as well as in any other script dependencies.

■ script_bugtraq_id and script_cve_id These functions set CVE and Bugtraq infor-
mation, searchable in the Nessus user interface.This helps to index vulnerabilities and
provide external resources for every vulnerability.

■ script_name A short descriptive name to help the user understand the purpose of
the script.

■ script_description This sets the information displayed to the user if the script result
was successful.The description should describe the test that was done, the consequences,
and any possible solution available. It is also a good idea to set a risk factor for the script.
This can help the user prioritize work when encountering the results of the script.

■ script_category The script category is used by the Nessus engine to determine
when the plugins should be launched.

The Inner Workings of NASL (Nessus Attack Scripting Language) • Chapter 1 5

332_NSE_01.qxd 6/30/05 11:55 AM Page 5

■ script_family A plugin might belong to one or more families.This helps the user to
narrow down the amount of tests to run according to a specific family.

■ script_dependencies If your NASL requires other scripts to be run, their script_ids
should be written here.This is very useful, for example, to cause a specific service to
run on the target machine.After all, there is little sense in running a test that overflows
a command in an FTP (File Transfer Protocol) server if there is no FTP server actually
running on the target host.

■ script_require_keys The usage of the knowledge base as a registry will be explained
later on, but this command can set certain requirements for knowledge base keys to
exist before running the script.

■ script_require_ports One of Nessus’ capabilities is running a service mapping on
the remote host in several ways; we can use this to detect servers running on non-stan-
dard ports. If in our example the target runs an FTP server on port 2100 instead of the
default port 21, and Nessus was able to detect this, we are able to run the test more
accurately, independent of the actual port where the service is running.

The Test Section
A lot of information is presented in the following sections on how to write plugins effectively
and how to benefit from various capabilities of the NASL language, but first of all, what does a
NASL test look like?

The first step will usually be to detect if the target runs the service or network protocol we
want to test.This can be done either via Nessus’ knowledge base or by probing ourselves. If we
discovered the host runs the service we want to test, we will probably want to connect to this
service and send some sort of test request.The request can be for the host to provide a specially
crafted packet, read the service banner, or use the service to get information on the target.After
getting a reply from the server, we will probably search for something in the reply to decide if
the test was successful or not. Based on this decision, we will notify Nessus of our findings and
exit.

For example, the test part of a script reading the banner of a target Web server can be
written like the following:

include("http_func.inc"); #include the NASL http library functions

#Use the knowledge base to check if the target runs a web server

port = get_http_port(default:80);

if (! get_port_state(port)) exit(0);

#Create a new HTTP request

req = http_get(item:"/", port:port);

#Connect to the target port, and send the request

soc = http_open_socket(port);

if(!soc) exit(0);

send(socket:soc, data:req);

r = http_recv(socket:soc);

http_close_socket(soc);

6 Chapter 1 • The Inner Workings of NASL (Nessus Attack Scripting Language)

332_NSE_01.qxd 6/30/05 11:55 AM Page 6

#If the server replied, notify of our success

if(r)

security_note(port:port, data:r);

Writing Your First Script
When writing NASL scripts, it is common practice to test them with the nasl command-line
interpreter before launching them as part of a Nessus scan.The nasl utility is part of the Nessus
installation and takes the following arguments:

nasl [–t <target>] [-T tracefile] script1.nasl [script2.nasl …]

where:

■ -t <target> is the IP (Internet Protocol) address or hostname against which you
would like to test your script.The NASL networking functions do not allow you to
specify the destination address when establishing connections or sending raw packets.
This limitation is as much for safety as for convenience and has worked very well so
far. If this option is not specified, all connections will be made to the loopback address,
127.0.0.1 (localhost).

■ -T <tracefile> forces the interpreter to write debugging information to the speci-
fied file.This option is invaluable when diagnosing problems in complex scripts.An
argument of - will result in the output being written to the console.

This utility has a few other options covered later in this chapter. For a complete listing of
available options, execute this program with the -h argument.

For our first NASL script, we will write a simple tool that connects to an FTP server on
TCP (Transmission Control Protocol) port 21, reads the banner, and then displays it on screen.
The following NASL code demonstrates how easy it is to accomplish this task:

soc = open_sock_tcp(21);

if (! soc) exit(0);

banner = recv_line(socket:soc, length:4096);

display(banner);

Let’s walk through this small example:

soc = open_sock_tcp(21);

This function opens a TCP socket on port 21 of the current target (as specified with nasl
–t).This function returns NULL on failure (the remote port is closed or not responding) and a
nonzero file descriptor on success.

banner = recv_line(socket:soc, length:4096);

This function reads data from the socket until the number of bytes specified by the length
parameter has been received, or until the character \n is received, whichever comes first.

As you can see, the function open_sock_tcp() takes a single, non-named argument, while the
function recv_line() takes two arguments that are prefixed by their names.These are referred to as
anonymous and named functions. Named functions allow the plugin writer to specify only the

The Inner Workings of NASL (Nessus Attack Scripting Language) • Chapter 1 7

332_NSE_01.qxd 6/30/05 11:55 AM Page 7

parameters that he needs, instead of having to supply values for each parameter supported by the
function.Additionally, the writer does not need to remember the exact order of the parameters,
preventing simple errors when calling a function that supports many options. For example, the
following two lines produce identical results:

banner = recv_line(socket:soc, length:4096);

banner = recv_line(length:4096, socket:soc);

Save this script as test.nasl and execute it on the command line:

$ /usr/local/bin/nasl –t ftp.nessus.org test.nasl

** WARNING : packet forgery will not work

** as NASL is not running as root

220 ftp.nessus.org Ready

If you run nasl as a nonroot user, you will notice that it displays a warning message about
packet forgery. NASL scripts are capable of creating, sending, and receiving raw IP packets, but
they require root privileges to do so. In this example, we are not using raw sockets and can safely
ignore this message.

Now, let’s modify our script to display the FTP banner in a Nessus report.To do so, we need
to use one of the three special-purpose reporting functions: security_hole(), security_warning(), and
security_note().These functions tell the Nessus engine that a plugin is successful (a vulnerability
was found), and each denotes a different severity level.A call to the security_note() function will
result in a low-risk vulnerability being added to the report, a call to security_warn() will result in a
medium-risk vulnerability, and security_hole() is used to report a high-risk vulnerability.These
functions can be invoked in two ways:

security_note(<port>)

or

security_note(port:<port>, data:<report>, proto:<protocol>)

In the first case, the plugin simply tells the Nessus engine that it was successful.The Nessus
engine will copy the plugin description (as registered with script_description()) and will place it
into the report.This is sufficient for most plugins; either a vulnerability is there and we provide a
generic description, or it is not and we do not report anything. In some cases, you might want
to include dynamic text in the report.This dynamic text could be the version number of the
remote web server, the FTP banner, the list of exported shares, or even the contents of a cap-
tured password file.

In this particular example, we want to report the FTP banner that we received from the
target system, and we will use the long form of the security_note() function to do this:

soc = open_sock_tcp(21);

if (! soc) exit(0);

banner = recv_line(socket:soc, length:4096);

security_note(port:21, data:"The remote FTP banner is : " + banner, proto:"tcp");

If you execute this script from the command line, you will notice that the data parameter is
written to the console. If no data parameter was specified, it will default to the string

8 Chapter 1 • The Inner Workings of NASL (Nessus Attack Scripting Language)

332_NSE_01.qxd 6/30/05 11:55 AM Page 8

“Successful.” When this plugin is launched by the Nessus engine, this data will be used as the
vulnerability description in the final report.

Now that our plugin code has been modified to report the FTP banner, we need to create
the description section.This section will allow the plugin to be loaded by the Nessus engine:

if (description)

{

script_id(90001);

script_name(english:"Simple FTP banner grabber");

script_description(english:"

This script establishes a connection to the remote host on port 21 and

extracts the FTP banner of the remote host");

script_summary(english:"retrieves the remote FTP banner");

script_category(ACT_GATHER_INFO);

script_family(english:"Nessus Book");

script_copyright(english:"(C) 2004 Renaud Deraison");

exit(0);

}

soc = open_sock_tcp(21);

if (! soc) exit(0);

banner = recv_line(socket:soc, length:4096);

security_note(port:21, data:"The remote FTP banner is : " + banner, proto:"tcp");

Commonly Used Functions
The Nessus NASL language is very versatile and has many different basic functions used for
manipulating strings, opening sockets, sending traffic, generating raw packets, and more. In addi-
tion, many more advanced functions utilize the underlying basic functions to provide more
advanced functionality, such as SSH (Secure Shell) connectivity, SMB (Server Message Block)
protocol support, and advanced HTTP (Hypertext Transmission Protocol) traffic generation.

When writing a NASL you don’t have to know all the functions available via the NASL
interface; rather, you can use the most basic functions when low-level work is necessary or use
more advanced functions that wrap these basic functions when more abstract work is needed,
such as in the case where SQL injection or cross-site scripting vulnerabilities are being tested.

One example of this is using the open_sock_tcp() function to open a socket to a remote
host or using the more common get_http_port() function when connectivity to a Web server is
necessary. get_http_port() does everything for you—from opening the socket to marking it in
the knowledge base as a functioning HTTP host that will be used later to speed up any future
connectivity to this port.

At the time of this writing, more than 1,500 tests utilize the advanced functions provided
for communication with Web servers.These functions reside inside the http_func.inc and
http_keepalive.inc include files.They provide easy access to functionality that allows querying a
remote host for the existence of a certain file, querying a remote host using a special URI
(Universal Resource Identifier) that in turn might or might not trigger the vulnerability.

The Inner Workings of NASL (Nessus Attack Scripting Language) • Chapter 1 9

332_NSE_01.qxd 6/30/05 11:55 AM Page 9

The functions included in the http_func.inc and http_keepalive.inc files make the NASL
writer’s life a lot easier, as they take away the hassle of opening the ports, generating HTTP
traffic, sending this traffic to the remote host, receiving the response, breaking the response into
its two parts (header and body), and finally closing the connection.

Writing a test for a Web-based vulnerability requires writing roughly 22 lines of code
starting with a request to open a Web port if it hasn’t been opened already:

port = get_http_port(default:80);

if (! port) exit(0);

The get_http_port is called with a default port number for this specific vulnerability. In
most cases the default value for the default parameter is 80, as the vulnerability is not expected to
sit on any other port than the default Web server’s port. However, in some cases the product
might be listening by default on another port, for example in the case where a page resides on a
Web server’s administrative port.

Once we have confirmed that the host is in fact listening to HTTP traffic, we can continue by
providing a list of directories under which we want to look for the vulnerability.This is done using
the foreach function, which will call the lines that follow for each of the values provided by it:

foreach dir (cgi_dirs())

Next we issue a call to the http_get function that in turn will construct an HTTP GET
request for us, we need to provide the function with the URI we want it to retrieve for us.The
URI doesn’t have to be a static one, rather we can use the string function or the plus sign to
generate dynamic URIs:

buf = http_get(item:dir + "/store/BrowseCategories.asp?Cat0='1", port:port);

Next we need to send the generated HTTP traffic to the remote server. By utilizing the
wrapper function http_keepalive_send_recv, we can avoid the need to actually call the send/recv
function. Furthermore, we can utilize the remote host’s, HTTP keepalive mechanism so that we
will not be required to close our connection and reopen it whenever we want to send HTTP
traffic to it:

r1 = http_keepalive_send_recv(port:port, data:buf, bodyonly:1);

In some cases we want to analyze only the HTTP response’s body, discarding the header.
This is for two reasons; first, the header might confuse our subsequent analysis of the response,
and second, the content we are looking for will not appear in the header and analyzing its data
would be a waste of time. In such cases where we only want to analyze the body, we can instruct
the http_keepalive_send_recv function to return only the body by providing the bodyonly vari-
able with the value of 1.

Once the data has returned to us, we can do either a static match:

if ("Microsoft OLE DB Provider for ODBC Drivers error '80040e14'" >< r1)

Or a more dynamic match:

if(egrep(pattern:"Microsoft.*ODBC.*80040e14", string:r1))

10 Chapter 1 • The Inner Workings of NASL (Nessus Attack Scripting Language)

332_NSE_01.qxd 6/30/05 11:55 AM Page 10

The value of doing a dynamic match is that error messages are usually localized and stati-
cally testing for a match might cause the test to return a false negative (in which the test deter-
mines that the remote host is immune when in fact it is vulnerable).Therefore, whenever
possible, try to use dynamic rather than static matching.

All that is left is to notify the Nessus environment that a vulnerability has been detected.
This is done by calling up the security_hole, security_warning, or security_note function:

security_note(port: port);

Regular Expressions in NASL
Other commonly used functions are a set of functions that implement an interface to regular
expression processing and handling.A full description of regular expressions is outside the scope
of this book, but a good starting point is the article found at
http://en.wikipedia.org/wiki/Regular_expressions.

To give you an idea of how common the regular expressions are in Nessus, there are over
2000 different tests that utilize the egrep function and over 400 different tests that utilize the ereg-
match function.These two numbers do not take into account that many of the tests use the func-
tionality provided by http_func.inc and http_keepalive.inc, which in turn utilize regular
expressions’ abilities parse data to great extent.

NASL supports egrep(1)-style operations through the ereg(), egrep(), and ereg_replace() func-
tions.These functions use POSIX extended regular expression syntax. If you are familiar with
Perl’s regular expression support, please keep in mind that there are significant differences
between how NASL and Perl will handle the same regular expression.

The ereg() function returns TRUE if a string matches a given pattern.The string must be a
one-line string (in other words, it should not contain any carriage return character). In the fol-
lowing example, the string “Matched!” will be printed to the console:

if (ereg(string:"My dog is brown", pattern:"dog"))

{

display("Matched\n");

}

The egrep() function works like ereg(), except that it accepts multiline strings.This function
will return the actual string that matched the pattern or FALSE if no match was found. In the
following example, the variable text contains the content of a UNIX passwd file. We will use
egrep() to only return the lines that correspond to users whose ID value (the third field) is lower
than 50.

text = "

root:*:0:0:System Administrator:/var/root:/bin/tcsh

daemon:*:1:1:System Services:/var/root:/dev/null

unknown:*:99:99:Unknown User:/dev/null:/dev/null

smmsp:*:25:25:Sendmail User:/private/etc/mail:/dev/null

www:*:70:70:World Wide Web Server:/Library/WebServer:/dev/null

mysql:*:74:74:MySQL Server:/dev/null:/dev/null

sshd:*:75:75:sshd Privilege separation:/var/empty:/dev/null

renaud:*:501:20:Renaud Deraison,,,:/Users/renaud:/bin/bash";

The Inner Workings of NASL (Nessus Attack Scripting Language) • Chapter 1 11

332_NSE_01.qxd 6/30/05 11:55 AM Page 11

lower_than_50 = egrep(pattern:"[^:]*:[^:]:([0-9]|[0-5][0-9]):.*", string:text);

display(lower_than_50);

Running this script in command-line mode results in the following output:

$ nasl egrep.nasl

root:*:0:0:System Administrator:/var/root:/bin/tcsh

daemon:*:1:1:System Services:/var/root:/dev/null

smmsp:*:25:25:Sendmail User:/private/etc/mail:/dev/null

$

ereg_replace(pattern:<pattern>, replace:<replace>, string:<string>);

The ereg_replace() function can be used to replace a pattern in a string with another string.
This function supports regular expression back references, which can replace the original string
with parts of the matched pattern.The following example uses this function to extract the
Server: banner from an HTTP server response:

include("http_func.inc");

include("http_keepalive.inc");

reply = http_keepalive_send_recv(data:http_get(item:"/", port:80), port:80);

if (! reply) exit(0);

Isolate the Server: string from the HTTP reply

server = egrep(pattern:"^Server:", string:reply);

if (! server) exit(0);

server = ereg_replace(pattern:"^Server: (.*)$",

replace:"The remote server is \1",

string:server);

display(server, "\n");

Running this script in command-line mode results in the following output:

$ nasl –t 127.0.0.1 ereg_replace.nasl

The remote server is Apache/1.3.29 (Darwin)

$

String Manipulation
NASL is quite flexible when it comes to working with strings. String operations include addi-
tion, subtraction, search, replace, and support for regular expressions. NASL also allows you to
use escape characters (such as \n) using the string() function.

How Strings Are Defined in NASL
Strings can be defined using single quotes or double quotes. When using double quotes, a string
is taken as is—no interpretation is made on its content—while strings defined with single quotes
interpret escape characters. For example:

A = "foo\n";

B = 'foo\n';

12 Chapter 1 • The Inner Workings of NASL (Nessus Attack Scripting Language)

332_NSE_01.qxd 6/30/05 11:55 AM Page 12

In this example, the variable A is five characters long and is equal to foo\n, while variable B
is four characters long and equal to foo, followed by a carriage return.This is the opposite of
how strings are handled in languages such as C and Perl, and can be confusing to new plugin
developers.

We call an interpreted string (defined with single quotes) a pure string. It is possible to con-
vert a regular string to a pure string using the string() function. In the following example, the
variable B is now four characters long and is equal to foo, followed by a carriage return.

A = "foo\n";

B = string(A);

If you are familiar with C, you might be used to the fact that the zero byte (or NULL byte)
marks the end of a string.There’s no such concept in NASL—the interpreter keep tracks of the
length of each string internally and does not care about the content.Therefore, the string \0\0\0
is equivalent to three NULL byte characters, and is considered to be three bytes long by the
strlen() function.

You may build strings containing binary data using the raw_string() function.This function
will accept an unlimited number of arguments, where each argument is the ASCII code of the
character you want to use. In the following example, the variable A is equal to the string XXX
(ASCII code 88 and 0x58 in hexadecimal).

A = raw_string(88, 0x58, 88);

String Addition and Subtraction
NASL supports string manipulation through the addition (+) and subtraction (–) operators.This
is an interesting feature of the NASL language that can save quite a bit of time during plugin
development.

The addition operator will concatenate any two strings.The following example sets the vari-
able A to the value foobar, and then variable B to the value foobarfoobarfoobar.

A = "foo" + "bar";

B = A + A + A;

The subtraction operator allows you to remove one string from another. In many cases, this
is preferable to a search-and-replace or search-and-extract operation.The following example will
set the variable A to the value 1, 2, 3.

A = "test1, test2, test3";

A = A – "test"; # A is now equal to "1, test2, test3"

A = A – "test"; # A is now equal to "1, 2, test3"

A = A – "test"; # A is now equal to "1, 2, 3"

String Search and Replace
NASL allows you to easily search for one string and replace it with another, without having to
resort to regular expressions.The following example will set the variable A to the value foo1,
foo2, foo2.

A = "test1, test2, test3";

The Inner Workings of NASL (Nessus Attack Scripting Language) • Chapter 1 13

332_NSE_01.qxd 6/30/05 11:55 AM Page 13

Nessus Daemon
Requirements to Load a NASL
The Nessus daemon requires several things that a NASL implements before it will load a NASL
placed in the plugin directory.These items are required as the Nessus daemon needs to know
several things on the test such as its unique ID, name, description, summary, category, family, and
copyright notice. While the name, description, summary, family, and copyright can be left as
blank, the ID and category have to be properly defined or the test will not be listed by the
Nessus daemon as being part of its test list.

The script_id function defines a test’s unique ID.Test IDs are assigned by the Nessus com-
munity members, who make sure that no two tests are given the same ID number.The cate-
gories of the tests can be any of the following:ACT_INIT,ACT_SCANNER,
ACT_SETTINGS,ACT_GATHER_INFO,ACT_ATTACK,ACT_MIXED_ATTACK,
ACT_DESTRUCTIVE_ATTACK,ACT_DENIAL,ACT_KILL_HOST,ACT_FLOOD, or
ACT_END. Depending on the type of category assigned to the test, Nessus will run it at a spe-
cific part of the scan. For example, defining a test as ACT_INIT or ACT_END will restrict the
launch of the test to the beginning or end of the scan, respectively.

Once a test has the aforementioned settings, the Nessus daemon will load the test into its
test list.The Nessus daemon will launch the test whenever the test’s ID is included in a scan’s
plugin list.

Final Touches
Nessus’ NASL language provides an easy-to-use interface for writing tests.The language is also
easy to extend by building wrapper functions that utilize one or more basic functions provided
by the NASL interpreter. Once such a wrapper is constructed, many tests can utilize it and gain
access to otherwise hard-to-use protocols such as SMB, RPC, and so on. In most cases, NASL
plugin writers do not need to hassle with the inner workings of the NASL language or the
inner workings of the wrapper functions because they can call very few functions that handle
HTTP traffic without having to know how to open a socket, send out data, or parse HTTP
traffic.

14 Chapter 1 • The Inner Workings of NASL (Nessus Attack Scripting Language)

332_NSE_01.qxd 6/30/05 11:55 AM Page 14

Debugging NASLs

Scripts and samples in this chapter:

■ How to Debug NASLs Using the Runtime
Environment

■ How to Debug NASLs Using the Nessus Daemon
Environment

Chapter 2

15

332_NSE_02.qxd 7/14/05 9:50 AM Page 15

In This Toolbox
There are two methods of debugging newly created or existing Nessus Attack Scripting
Languages (NASLs): one is to use the command-line interpreter, and the other is to run it using
the Nessus daemon. Each has its shortcomings; for example, running it using the command-line
interpreter doesn’t allow to debug any interaction between two tests that might be required,
while debugging it using the Nessus daemon requires a longer startup process than simply pro-
viding the command-line interpreter with a hostname or IP (Internet Protocol) address and the
name of the script to execute.

How to Debug NASLs
Using the Runtime Environment
We will begin with debugging via the NASL command-line interpreter, as this method is the
easiest to implement and the easiest to utilize. Debugging a NASL script can be composed of
two main components; the easier part is testing the validity of the code and the harder part is
testing the validity of the vulnerability test itself.

Validity of the Code
Testing the validity of the code (that is, ensuring that the code can be understood by the NASL
interpreter) can be done by either running the NASL script with the command-line interpreter
accompanied by the option -p, which in essence instructs the NASL interpreter to just parse
and not execute the code found inside it.

Swiss Army Knife

NASL Reference Guide
NASL is a language of its own, having functions unique to it and sharing similarities
with other scripting languages such as Perl and Python. You can learn more about
how the NASL language is constructed, the different functions supported by it, and
how the language syntax is constructed by reading through the NASL reference
guide by Michel Arboi at http://michel.arboi.free.fr/nasl2ref/.

A skilled NASL code writer can utilize the NASL language to do diverse things and
even write code sections that he will store inside include files that can be later reused
to save on time or even to improve the performance of the Nessus scan process.

The option -p only checks to see whether the command syntax is written properly, not
whether all the functions are available for execution. For example, suppose you are running the
following script:

port = get_http_port(default:80);

16 Chapter 2 • Debugging NASLs

332_NSE_02.qxd 7/14/05 9:50 AM Page 16

With the NASL interpreter and the -p option set, no errors will be returned.An error
should have returned, as the get_http_port() function is not part of the NASL; rather, it is an
extension provided by the http_func.inc file.To overcome this problem the NASL interpreter
comes with another option called -L, or lint, which does more extended testing.

Running the same script as before with the -L option set will result in the following error
being shown:

[5148](beyondsecurity_sample1.nasl) Undefined function 'get_http_port'

The error returned is composed of three components: the number enclosed between the
two square brackets is the process number that caused the error; the entry enclosed between the
two regular brackets is the name of the script being executed; the third part defines the kind of
error that has occurred.

The preceding error can be easily solved by adding the following line:

include("http_func.inc");

Just prior to the get_http_port() function call, the -L option is not able to spot problems
that have occurred within functions; rather, it is only able to detect errors that occur within the
main program. For example, the following code will come out error free by using both the -L
option and the -p option:

function beyondsecurity(num)

{

port = get_http_port(default:num);

}

beyondsecurity(num:80);

This is due to the fact that no calls to the function itself are being preformed by the error
discover algorithm.Therefore, to determine whether your script is written properly or not, the
best method is to actually run it against the target. We ran the following code against a test can-
didate that supports port 80 and Web server under that port number:

$ nasl -t 127.0.0.1 beyondsecurity_sample2.nasl

[5199](beyondsecurity_sample2.nasl) Undefined function 'get_http_port'

As you can see, the NASL interpreter has detected the error we expected it to detect. Some
errors are nested and are caused by external files we included. Unfortunately, in those cases the
error displayed will be the same as what would be displayed if the code used in the include file
was inside the NASL file we wrote.

To demonstrate this we will create two files.The first file is an include file called beyondse-
curity_sample3.inc that will contain the following code:

function beyondsecurity(num)

{

port = get_http_port(default:num);

}

Debugging NASLs • Chapter 2 17

332_NSE_02.qxd 7/14/05 9:50 AM Page 17

The second file, a NASL file that will be called beyondsecurity_sample3.nasl, will contain
the following code:

include("beyondsecurity_sample3.inc");

beyondsecurity(num:80);

Running the script via the command-line interpreter with a valid hostname will result in
the following error being returned:

[5274](beyondsecurity_sample3.nasl) Undefined function 'get_http_port'

As you can see, even though the error code should have been displayed in reference to the
include file, the NASL language makes no differentiation between the include files and the actual
NASL code.This is due to the fact that when an include() directive is present in the NASL code,
the entire code present inside the include file is made part of the NASL code and regarded as an
integrated part of it.

This can be better seen in action by utilizing the -T option.This option tells the NASL
interpreter to trace its actions and print them back to either a file or to the standard output.
Running the code in the previous example with the trace option set to true will result in the
following content being returned by the interpreter:

[5286]() NASL> [080812b0] <- 1

[5286]() NASL> [080812e0] <- 0

[5286]() NASL> [08081310] <- 5

[5286]() NASL> [08081348] <- 6

[5286]() NASL> [08081380] <- 17

[5286]() NASL> [080813b8] <- 1

[5286]() NASL> [080813f0] <- 0

[5286]() NASL> [08081420] <- 2

[5286]() NASL> [08081458] <- 1

[5286]() NASL> [08081488] <- 2

[5286]() NASL> [080814c0] <- 3

[5286]() NASL> [080814f8] <- 4

[5286]() NASL> [08081530] <- 5

[5286]() NASL> [08081568] <- 2201

[5286]() NASL> [08081598] <- 1

[5286]() NASL> [080815c8] <- 2

[5286]() NASL> [080815f8] <- 4

[5286]() NASL> [08081628] <- 8

[5286]() NASL> [08081658] <- 16

[5286]() NASL> [08081688] <- 32

[5286]() NASL> [080816b8] <- 32768

[5286]() NASL> [080816e8] <- 16384

[5286]() NASL> [08081718] <- 8192

[5286]() NASL> [08081748] <- 8191

[5286]() NASL> [08081778] <- 0

[5286]() NASL> [080817a8] <- 3

[5286]() NASL> [080817e0] <- 4

[5286]() NASL> [08081810] <- 5

[5286]() NASL> [08081848] <- 6

[5286]() NASL> [08081888] <- 7

18 Chapter 2 • Debugging NASLs

332_NSE_02.qxd 7/14/05 9:50 AM Page 18

[5286]() NASL> [080818b8] <- 1

[5286]() NASL> [080818f0] <- 2

[5286]() NASL> [08081928] <- 8

[5286]() NASL> [08081960] <- 9

[5286]() NASL> [08081990] <- 10

[5286]() NASL> [080819c0] <- 1

[5286]() NASL> [08081a20] <- 1

[5286]() NASL> [08081a58] <- 0

[5286]() NASL> [08081a90] <- "beyondsecurity_sample3.nasl"

NASL:0003> beyondsecurity(...)

[5286]() NASL> [08081e68] <- 80

[5286](beyondsecurity_sample3.nasl) NASL> Call beyondsecurity(num: 80)

NASL:0003> port=get_http_port(...);

NASL:0003> get_http_port(...)

[5286](beyondsecurity_sample3.nasl) Undefined function 'get_http_port'

[5286]() NASL> [08081d60] <- undef

[5286](beyondsecurity_sample3.nasl) NASL> Return beyondsecurity: FAKE

The first parts are not relevant at the moment. What is more interesting is the part where
we can actually see the script requesting the function beyondsecurity to be called with the value
of 80 for its num parameter. Further, we can see the NASL interpreter looking the function
get_http_port and not being able to locate it and consequently returning an error.

By adding to the preceding code the include (http_func.inc) directive and running the
NASL trace command again, the following output will be returned (the end of the trace was
dropped for simplicity):

[5316]() NASL> [08091d88] <- 1

[5316]() NASL> [08091db8] <- 0

[5316]() NASL> [08091de8] <- 5

[5316]() NASL> [08091e20] <- 6

[5316]() NASL> [08091e58] <- 17

[5316]() NASL> [08091e90] <- 1

[5316]() NASL> [08091ec8] <- 0

[5316]() NASL> [08091ef8] <- 2

[5316]() NASL> [08091f30] <- 1

[5316]() NASL> [08091f60] <- 2

[5316]() NASL> [08091f98] <- 3

[5316]() NASL> [08091fd0] <- 4

[5316]() NASL> [08092008] <- 5

[5316]() NASL> [08092040] <- 2201

[5316]() NASL> [08092070] <- 1

[5316]() NASL> [080920a0] <- 2

[5316]() NASL> [080920d0] <- 4

[5316]() NASL> [08092100] <- 8

[5316]() NASL> [08092130] <- 16

[5316]() NASL> [08092160] <- 32

[5316]() NASL> [08092190] <- 32768

[5316]() NASL> [080921c0] <- 16384

[5316]() NASL> [080921f0] <- 8192

[5316]() NASL> [08092220] <- 8191

[5316]() NASL> [08092250] <- 0

[5316]() NASL> [08092280] <- 3

Debugging NASLs • Chapter 2 19

332_NSE_02.qxd 7/14/05 9:50 AM Page 19

[5316]() NASL> [080922b8] <- 4

[5316]() NASL> [080922e8] <- 5

[5316]() NASL> [08092320] <- 6

[5316]() NASL> [08092360] <- 7

[5316]() NASL> [08092390] <- 1

[5316]() NASL> [080923c8] <- 2

[5316]() NASL> [08092400] <- 8

[5316]() NASL> [08092438] <- 9

[5316]() NASL> [08092468] <- 10

[5316]() NASL> [08092498] <- 1

[5316]() NASL> [080924f8] <- 1

[5316]() NASL> [08092530] <- 0

[5316]() NASL> [08092568] <- "beyondsecurity_sample3.nasl"

NASL:0003> beyondsecurity(...)

[5316]() NASL> [08092ff0] <- 80

[5316](beyondsecurity_sample3.nasl) NASL> Call beyondsecurity(num: 80)

NASL:0005> port=get_http_port(...);

NASL:0005> get_http_port(...)

[5316](beyondsecurity_sample3.nasl) NASL> [08092ff0] -> 80

[5316]() NASL> [080932f0] <- 80

[5316](beyondsecurity_sample3.nasl) NASL> Call get_http_port(default: 80)

Again, the get_http_port function was called, but this time it was located and successfully
launched.As pointed out before, there is no reference to get_http_port being part of the
http_func.inc file, nor whether the beyondsecurity function is even part of the
beyondsecurity_sample3.inc file.

As there is no information about which include file is causing the error, we have to resort to
a more basic method of debugging—printing each step we take and determining which one has
caused the problem by enclosing it between two printed steps.This kind of debugging method is
very basic and very tiresome, as it requires you to either have some clue to where the problem
might be stemmed from or to add a lot of redundant code until the culprit is found.To gener-
alize the method you would need to add display() function calls every few lines and before every
possible call to an external function. In the end, you would achieve something similar to the fol-
lowing:

step 1

step 2

step 3

step 3.1

step 3.2

step 3.3

step 3.1

step 3.2

step 3.3

[3517](beyondsecurity_sample4.nasl) Undefined function 'get_http_port'

step 4

step 5

done

All steps are a few lines apart, and a few steps are repeated, as they are inside some form of
loop.The output in the preceding example tells us that somewhere between our step 3.3 and
step 4 a call to the get_http_port, directly or indirectly via an include file, has been made.

20 Chapter 2 • Debugging NASLs

332_NSE_02.qxd 7/14/05 9:50 AM Page 20

Validity of the Vulnerability Test
Once we have our NASL script up and running and error-free, we can move to a more impor-
tant part of the debugging stage—determining whether the script you have just written does
actually determine the existence or nonexistence of the vulnerability.

There are a few methods you can use to debug your NASL script once the code has been
confirmed to be free of coding mistakes: you can print out any variable you desire via the dis-
play function or, as an alternative, you can dump the contents of binary data via the dump func-
tion provided by the dump.inc file.

In both cases the shortcoming of the two functions is that unless you were the one gener-
ating the packet, both functions cannot display what was sent to the host being tested. Such is in
the case of SMB, RPC, and others where the infrastructure of Nessus’ include files provides the
support for the aforementioned protocols.

In the previous two cases, SMB and RPC, your only alternative to Nessus’ debugging rou-
tines is to do either of the following:

1. Add extensive debugging code to the include files being utilized.

2. Use a sniffer and capture the outgoing and incoming traffic.

As it is no easy feat to add debugging routines to the infrastructure used by the Nessus
daemon, the more viable option would be to use a packet sniffer.To demonstrate how a sniffer
would provide better debugging results, we will run a simple NASL script that tests the exis-
tence of a file inclusion vulnerability:

include("http_func.inc");

include("http_keepalive.inc");

debug = 1;

if (debug)

{

display("First part stats here\n");

}

port = get_http_port(default:80);

if (debug)

{

display("port: ", port, "\n");

}

if(!get_port_state(port))exit(0);

if (debug)

{

display("First part ends here\n");

}

function check(loc)

{

Debugging NASLs • Chapter 2 21

332_NSE_02.qxd 7/14/05 9:50 AM Page 21

if (debug)

{

display("Second part starts here\n");

}

req = http_get (item: string(loc, "/inserter.cgi?/etc/passwd"), port: port);

if (debug)

{

display("Second part ends here\n");

}

if (debug)

{

display("req: ", req, "\n");

}

if (debug)

{

display("Third part starts here\n");

}

r = http_keepalive_send_recv(port:port, data:req);

if (debug)

{

display("Third part ends here\n");

}

if (debug)

{

display("r: ", r, "\n");

}

if(r == NULL)exit(0);

if(egrep(pattern:".*root:.*:0:[01]:.*", string:r))

{

security_warning(port);

exit(0);

}

}

foreach dir (make_list(cgi_dirs()))

{

if (debug)

{

display("dir: ", dir, "\n");

}

check(loc:dir);

}

Once launched against a vulnerable site, the code in the previous example would return the
following results (we are launching it by using the NASL command-line interpreter):

$ nasl -t www.example.com inserter_file_inclusion.nasl

** WARNING : packet forgery will not work

** as NASL is not running as root

First part begins here

22 Chapter 2 • Debugging NASLs

332_NSE_02.qxd 7/14/05 9:50 AM Page 22

[17697] plug_set_key:internal_send(0)['3 Services/www/80/working=1;

']: Socket operation on non-socket

First part ends here

port: 80

dir: /cgi-bin

Second part starts here

Second part ends here

req: GET /cgi-bin/inserter.cgi?/etc/passwd HTTP/1.1

Connection: Close

Host: www.example.com

Pragma: no-cache

User-Agent: Mozilla/4.75 [en] (X11, U; Nessus)

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Third part starts here

[17697] plug_set_key:internal_send(0)['1 www/80/keepalive=yes;

']: Socket operation on non-socket

Third part ends here

res: HTTP/1.1 200 OK

Date: Thu, 28 Apr 2005 09:26:22 GMT

Server: Apache/1.3.35 (Unix) PHP/4.3.3 mod_ssl/2.8.15 OpenSSL/0.9.7b FrontPage/4.0.4.3

Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Transfer-Encoding: chunked

Content-Type: text/html

<meta></meta>document.writeln('root:x:0:0:root:/root:/bin/bash');

document.writeln('bin:x:1:1:bin:/bin:');

document.writeln('daemon:x:2:2:daemon:/sbin:');

document.writeln('adm:x:3:4:adm:/var/adm:');

document.writeln('lp:x:4:7:lp:/var/spool/lpd:');

document.writeln('sync:x:5:0:sync:/sbin:/bin/sync');

document.writeln('shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown');

document.writeln('halt:x:7:0:halt:/sbin:/sbin/halt');

document.writeln('mail:x:8:12:mail:/var/spool/mail:');

document.writeln('news:x:9:13:news:/var/spool/news:');

document.writeln('uucp:x:10:14:uucp:/var/spool/uucp:');

document.writeln('operator:x:11:0:operator:/root:');

document.writeln('games:x:12:100:games:/usr/games:');

document.writeln('gopher:x:13:30:gopher:/usr/lib/gopher-data:');

document.writeln('ftp:x:14:50:FTP User:/var/ftp:');

document.writeln('nobody:x:99:99:Nobody:/:');

Success

Debugging NASLs • Chapter 2 23

332_NSE_02.qxd 7/14/05 9:50 AM Page 23

Master Craftsman…

Ethereal’s Follow TCP Stream
In most cases incoming and outgoing HTTP (Hypertext Transfer Protocol) traffic gets
divided into several packets, in which case debugging the data being transferred
inside such packets cannot be easily read. To workaround such cases Ethereal has the
ability to reconstruct the TCP (Transmission Control Protocol) session and display it in
a single window. To enable Ethereal’s Follow TCP stream option, all that is required
is to capture the relevant packets and right-click on any of the TCP packets in ques-
tion and select the Follow TCP stream option.

By running Ethereal in the background and capturing packets, we would notice the fol-
lowing traffic being generated, some of which will be generated because this is the first time this
host is being contacted:

GET / HTTP/1.1

Host: www.example.com

(Traffic Capture 1)

This is followed by the following traffic:

GET / HTTP/1.1

Connection: Keep-Alive

Host: www.example.com

Pragma: no-cache

User-Agent: Mozilla/4.75 [en] (X11, U; Nessus)

(Traffic Capture 2)

Finally, the following traffic will be generated:

GET /cgi-bin/inserter.cgi?/etc/passwd HTTP/1.1

Connection: Keep-Alive

Host: www.example.com

Pragma: no-cache

User-Agent: Mozilla/4.75 [en] (X11, U; Nessus)

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

(Traffic Capture 3)

As you might have noticed, there is a lot of traffic being generated behind the scenes.
Furthermore, if we compare the traffic capture 3 with the data returned by NASL interpreter for
the parameter req, we see that one specifies the HTTP connection header setting as Close, while
the latter specifies it as Keep-Alive; therefore, something had to not only do this but also deter-
mine whether the remote server even supports a keep-alive state.

To understand a bit more about how a single traffic transfer became three distinguishable
data transfers, we need to drill deeper into the Nessus inner workings. We will start with what

24 Chapter 2 • Debugging NASLs

332_NSE_02.qxd 7/14/05 9:50 AM Page 24

appears to be a very simple function call, calling of the get_http_port(default:80) function.This
function is responsible for initiating any HTTP traffic being done through the http_func.inc and
http_keepalive.inc and not directly to the HTTP socket.

Once the function starts it will try determine whether the port being tested has been previ-
ously marked as Services/www, meaning that it supports WWW services. If so, it will return the
appropriate port number:

port = get_kb_item("Services/www");

if (port) return port;

If this fails, it will try to determine whether the port provided is marked as broken; that is,
not responding, not returning HTTP headers, and so on. If the port is broken the function and
the script will exit:

p = get_kb_item("Services/www/" + default + "/broken");

if (p) exit(0);

If this fails and the function continues, the function will try to determine whether the port
provided is marked as working. Working ports are those ports that can be connected to and that
respond to the most basic HTTP traffic. If the port has been flagged as working, the function
will return with the provided port number as its result:

p = get_kb_item("Services/www/" + default + "/working");

if (p) return default;

If the previous test has not failed, the function will continue to open a socket against the
provided port number; if it fails to do so, it will report the specified port number as broken:

soc = http_open_socket(default);

if (! soc)

{

set_kb_item(name:"Services/www/" + default + "/broken", value:1);

exit(0);

}

Once the socket has been opened successfully, we notice that the function constructs an
HTTP request, sends it to the socket, and waits for a response:

send(socket:soc, data:'GET / HTTP/1.1\r\nHost: ' + get_host_name() + '\r\n\r\n');

r = recv_line(socket:soc, length:4096);

close(soc);

As you might recall, we have seen this packet in our Ethereal capture; this sort of traffic is
generated for any HTTP port being accessed for the first time, and subsequent requests to this
port by the get_http_port function will not go through this, as the port will be marked either
being broken or working.The following code will try to determine whether the provided port
number is in fact broken by testing whether a response has not been received, that it doesn’t
look like HTTP traffic, or that it returns an “HTTP Forbidden” response:

if (! r || "HTTP" >!< r || (ereg(pattern:"^HTTP.* 403 ", string:r) && (now - then >= 5)

))

{

Debugging NASLs • Chapter 2 25

332_NSE_02.qxd 7/14/05 9:50 AM Page 25

set_kb_item(name:"Services/www/" + default + "/broken", value:1);

exit(0);

}

If the function hasn’t exited, the port has to be a valid one. It is marked as working, and the
function returns the port number provided to it as the response:

set_kb_item(name:"Services/www/" + default + "/working", value:1);

return default;

From the code in the previous example, we have determined one of the traffic patterns cap-
tured using the Ethereal sniffer. We are still missing one traffic pattern. We know that the last
piece of traffic was requested by us; the second traffic pattern we have captured.

The debugging code has captured the attempt by the NASL interpreter to write the value
of keepalive=yes to the knowledge base. Consequently, our best hunch would be that the func-
tion http_keepalive_send_recv is the one responsible for generating our mystery traffic.

The function http_keepalive_send_recv is defined inside the http_keepalive.inc file. We will
go into greater detail on this function in Chapter 5, but briefly, support for the keep-alive infras-
tructure has been called up for the first time.The value of __ka_enabled has not yet been set to
any value but –1, which tells the keep-alive infrastructure it has no knowledge of whether the
keep-alive mechanism is supported by the remote host.

Therefore, once the http_keepalive_send_recv is called, the http_keepalive_enabled function
is called:

if(__ka_enabled == -1) __ka_enabled = http_keepalive_enabled(port:port);

As mentioned before, the role of the http_keepalive_enabled function is to determine
whether the remote Web server supports keep-alive traffic by sending a Keep-Alive request to
the server:

req = string("GET / HTTP/1.1\r\n",

"Connection: Keep-Alive\r\n",

"Host: ", get_host_name(), "\r\n",

"Pragma: no-cache\r\n",

"User-Agent: Mozilla/4.75 [en] (X11, U; Nessus)\r\n\r\n");

soc = http_open_socket(port);

if(!soc)return -2;

send(socket:soc, data:req);

r = http_recv(socket:soc);

By processing the response returned by the server, the function can determine whether the
remote host supports keep-alive communication.There are two main types of keep-alive imple-
mentations. In the case of Apache-like servers the response will contain a keep-alive header line.
In the case of IIS-like servers the response does not contain the keep-alive header. We can there-
fore determine that the remote server supports the keep-alive function by sending the previous
request without reopening the previously opened socket and determining whether a response
has been returned. Only IIS implementations would respond to the second request.

26 Chapter 2 • Debugging NASLs

332_NSE_02.qxd 7/14/05 9:50 AM Page 26

Swiss Army Knife…

HTTP Keep-Alive
Keep-alive support has been added to the HTTP protocol in version 1.1. The keep-
alive mechanism’s main objective is to reduce the number of open sockets between
a browser and a server. You can learn more about the HTTP keep-alive mechanism by
reading through RFC 2068 at www.faqs.org/rfcs/rfc2068.html.

Utilizing the HTTP keep-alive interface implemented by the http_keepalive.inc
file will allow any Web-based test to work faster and to greatly reduce the amount
of bandwidth utilized, as fewer sockets are opened and fewer packets are sent
between the testing host and tested host.

The following code implements this concept:

Apache-Like implementation

if(egrep(pattern:"^Keep-Alive:.*", string:r))

{

http_close_socket(soc);

set_kb_item(name:string("www/", port, "/keepalive"), value:"yes");

enable_keepalive(port:port);

return(1);

}

else

{

IIS-Like Implementation

send(socket:soc, data:req);

r = http_recv(socket:soc);

http_close_socket(soc);

if(strlen(r))

{

set_kb_item(name:string("www/", port, "/keepalive"), value:"yes");

enable_keepalive(port:port);

return(1);

}

}

Debugging NASLs • Chapter 2 27

332_NSE_02.qxd 7/14/05 9:50 AM Page 27

Master Craftsman…

Improving the HTTP Keep-Alive Detection Mechanism
The keep-alive detection mechanism is unable to detect IIS Web servers that support
the keep-alive mechanism, but close the socket connected that connected to it unless
the authentication mechanism has been satisfied, such as in the case where NTLM
(NT LAN Manager) authentication has been enabled on the remote IIS server.

You probably noticed that the packet generated in the previous example is exactly the
packet we have captured using Ethereal.As you have just seen, adding debugging code to NASL
for debugging purposes is a good idea. However, it doesn’t always reveal everything about what
NASL is doing, as some code used by the NASL interpreter utilizes sockets and generates traffic
of its own.

How to Debug NASLs
Using the Nessus Daemon Environment
In some cases it is impossible to use the NASL interpreter to debug the scripts.This is especially
true in those cases where a complex system of test dependencies is in place. In these cases the
only option to debug the NASL is to generate debugging code that will be later gathered from
Nessus daemon’s debug log.

The log file to which the Nessus daemon writes is configured in the nessusd.conf file. By
pointing the value of logfile to a file you desire, you can instruct the Nessus daemon where to
create the log file. In most cases when Nessus is stored under the /usr/local/ directory the log
file is stored under the /usr/local/var/nessus/logs/ directory.

The content of the Nessus daemon log file is called nessusd.dump. It contains all the output
returned by the different tests, including errors and display function calls. Unlike when you use
the NASL interpreter and immediately see the debug commands you have used, the log files do
not list which NASL script produced the content you are seeing.The only exception to this is
that when errors are listed, they are accompanied by the process id number, the filename, and the
error that has occurred.

Final Touches
You have learned two ways of debugging your newly written or existing NASLs. Further, you
have seen that there is more than one approach where external tools such as packet sniffers are
utilized to determine the type of traffic traversing the medium between the Nessus daemon and
the tested host.You have also seen a glimpse of the way Nessus communicates with a remote
Web server and how it detects Web servers that support keep-alive.

28 Chapter 2 • Debugging NASLs

332_NSE_02.qxd 7/14/05 9:50 AM Page 28

Extensions and
Custom Tests

Scripts and samples in this chapter:

■ Extending NASL Using Include Files

■ Extending the Capabilities of Tests
Using the Nessus Knowledge Base

■ Extending the Capabilities of Tests
Using Process Launching and Results Analysis

Chapter 3

29

332_NSE_03.qxd 6/30/05 3:18 PM Page 29

In This Toolbox
Most of the security vulnerabilities being discovered utilize the same attack vectors.These attack
vectors can be rewritten in each NASL (Nessus Attack Scripting Language) or can be written
once using an include file that is referenced in different NASLs.The include files provided with
the Nessus environment give an interface to protocols such as Server Message Block (SMB) and
Remote Procedure Call (RPC) that are too complex to be written in a single NASL, or should
not be written in more than one NASL file.

Extending NASL Using Include Files
The Nessus NASL language provides only the most basic needs for the tests written with it.This
includes socket connectivity, string manipulation function, Nessus knowledge base accessibility,
and so on.

Much of the functionality used by tests such as SMB, SSH (Secure Shell), and extended
HTTP (Hypertext Transfer Protocol) connectivity were written externally using include files.
This is due to two main reasons. First, building them within Nesuss’s NASL language implemen-
tation would require the user wanting to change the functionality of any of the extended func-
tion to recompile the Nessus NASL interpreter. On the other hand, providing them through
external include files minimizes the memory footprint of tests that do not require the extended
functionality provided by these files.

Include Files
As of April 2005, there were 38 include files.These include files provide functionality for:

■ AIX, Debian, FreeBSD, HPUX, Mandrake, Red Hat, and Solaris local security patch
conformance

■ Account verification methods

■ NASL debugging routines

■ FTP, IMAP, Kerberos, NetOP, NFS, NNTP, POP3, SMB, SMTP, SSH, SSL,Telnet, and
TFTP connectivity

■ Extended HTTP (keep-alive, banners, etcetera)

■ Cisco security compliance checks

■ Nessus global settings

■ Base64 encoding functions

■ Miscellaneous related functions

■ Test backporting-related functions

■ Cryptographic-related functions

■ NetOP connectivity

■ Extended network functions

30 Chapter 3 • Extensions and Custom Tests

332_NSE_03.qxd 6/30/05 3:18 PM Page 30

■ Ping Pong denial-of-service testing functions

■ Windows compliance testing functions

The aforementioned include files are very extensive and in most cases can provide any func-
tionality your test would require. However, in some cases, new include files are needed, but
before you start writing a new include file, you should understand the difference between an
include file and a test. Once you understand this point, you can more easily decide whether a
new include file is necessary or not.

Include files are portions of NASL code shared by one ore more tests, making it possible to
not write the same code more than once. In addition, include files can be used to provide a
single interface to a defined set of function calls. Unlike NASLs, include files do not include
either a script_id or a description. Furthermore, they are not loaded until they are called through
the include() directive, unlike NASLs, which are launched whenever the Nessus daemon is
restarted.

In every occasion where a NASL calls upon the same include file, a copy of the include file
is read from the disk and loaded into the memory. Once that NASL has exited and no other
NASL is using the same include file, the include file is removed from the memory.

Before providing an example we will give some background on the include file we are
going to build. One of the many tests Nessus does is to try to determine whether a certain
server contains a server-side script, also known as CGI (Common Gateway Interface) and
whether this script is vulnerable to cross-site scripting. More than two hundred tests do practi-
cally all the following steps with minor differences:

■ Determine which ports support HTTP, such as Web traffic.

■ Determine whether the port in question is still open.

■ Depending on the type of server-side script, test whether it is supported. For example,
for PHP (Hypertext Preprocessor)-based server-side scripts, determine whether the
remote host supports PHP scripts.

■ Determine whether the remote host is generically vulnerable to cross-site scripting;
that is, any cross-site scripting attack would succeed regardless of whether the script
exists or not on the remote host.

■ Try a list of possible directories where the script might be found.

■ Try a list of possible filenames for the script.

■ Construct the attack vector using some injection script code, in most cases
%3cscript%3ealert(‘foobar’)%3c/script%3e.

■ Try to use the attack vector on each of the directories and filename combination.

■ Return success if <script>alert(‘foobar’)</script> has been found.

The aforementioned steps are part of a classic include file; further parts of the aforementioned
code are already provided inside include files (for example, the functionality of connecting to the
remote host using keep-alive, determining whether the remote host supports PHP, and so on).

Extensions and Custom Tests • Chapter 3 31

332_NSE_03.qxd 6/30/05 3:18 PM Page 31

We can break the aforementioned steps into a single function and include it in an include
file, and then modify any existing tests to use it instead of using their current code. We will start
off with the original code:

#

Script by Noam Rathaus of Beyond Security Ltd. <noamr@beyondsecurity.com>

include("http_func.inc");

include("http_keepalive.inc");

port = get_http_port(default:80);

if(!get_port_state(port))exit(0);

if(!can_host_php(port:port))exit(0);

if (get_kb_item(string("www/", port, "/generic_xss"))) exit(0);

function check(loc)

{

req = http_get(item: string(loc,

"/calendar_scheduler.php?start=%22%3E%3Cscript%3Ealert(document.cookie)%3C/script%3E"),

port:port);

r = http_keepalive_send_recv(port:port, data:req);

if(r == NULL)exit(0);

if('<script>alert(document.cookie)</script>"' >< r)

{

security_warning(port);

exit(0);

}

}

foreach dir (make_list("/phpbb", cgi_dirs()))

{

check(loc:dir);

}

The script in the previous example can be easily converted to the following more generic
code.The following parameters will hold the attack vector that we will use to detect the pres-
ence of the vulnerability:

attack_vector_encoded = "%3Cscript%3Ealert('foobar')%3C/script%3E";

attack_vector = "<script>alert('foobar')</script>";

The function we will construct will receive the values as parameters:

function test_xss(port, directory_list, filename, other_parameters, inject_parameter)

{

As before, we will first determine whether the port is open:

if(!get_port_state(port))exit(0);

Next, we will determine whether the server is prone to cross-site scripting, regardless of
which CGI is attacked:

32 Chapter 3 • Extensions and Custom Tests

332_NSE_03.qxd 6/30/05 3:18 PM Page 32

if(get_kb_item(string("www/", port, "/generic_xss"))) exit(0);

We will also determine whether it supports PHP if the filename provided ends with a PHP-
related extension:

if (egrep(pattern:"(.php(3?))|(.phtml)$", string:filename, icase:1))

{

if(!can_host_php(port:port))exit(0);

}

Next we will determine whether it supports ASP (Active Server Pages), if the filename pro-
vided ends with an ASP-related extension:

if (egrep(pattern:".asp(x?)$", string:filename, icase:1))

{

if(!can_host_asp(port:port))exit(0);

}

Then for each of the directories provided in the directory_list parameter, we generate a
request with the directory, filename, other_parameters, inject_parameter, and
attack_vector_encoded:

foreach directory (directory_list)

{

req = http_get(item:string(directory, filename, "?", other_parameters, "&",

inject_parameter, "=", attack_vector_encoded), port:port);

We then send it off to the server and analyze the response. If the response includes the
attack_vector, we return a warning; otherwise, we continue to the next directory:

res = http_keepalive_send_recv(port:port, data:req, bodyonly:1);

if(res == NULL) exit(0);

if(egrep(pattern:attack_vector, string:res)){

security_warning(port);

exit(0);

}

If we have called the aforementioned function test_xss and the file in which it is stored
xss.inc, the original code will now look like:

#

Script by Noam Rathaus of Beyond Security Ltd. <noamr@beyondsecurity.com>

include("xss.inc");

port = get_kb_item("Services/www");

if(!port)port = 80;

The filename parameter will list the filename of the vulnerable script:

filename = "vulnerablescript.php";

This directory_list parameter will house a list of paths we will use as the location where the
filename might be housed under:

directory_list = make_list("/phpbb", cgi_dirs());

Extensions and Custom Tests • Chapter 3 33

332_NSE_03.qxd 6/30/05 3:18 PM Page 33

Under the other_parameters value we will store all the required name and value combina-
tions that are not relevant to the attack:

other_parameters = "id=1&username=a";

Under the inject_parameter value, we will store the name of the vulnerable parameter:

inject_parameter = "password";

Finally, we will call up the new test_xss function:

test_xss(port, port, directory_list, filename, other_parameters, inject_parameter);

Swiss Army Knife…

Testing for Other Vulnerabilities
The code in the previous example verifies whether the remote host is vulnerable to
cross-site scripting. The same code can be extended to test for other types of Web-
based security vulnerabilities. For example, we can test for SQL injection vulnerabili-
ties by modifying the tested attack_vector with an SQL injecting attack vector and
modifying the tested response for SQL injected responses.

Repeating this procedure for more than 200 existing tests will reduce the tests’ complexity
to very few lines for each of them, not to mention that this will make the testing more standard-
ized and easier to implement.

For an additional example see Chapter 5, where we discuss how one of the commonly used
functions, GetFileVersion(), can be improved to provide faster response time and save on net-
work resources.The GetFileVersion() function can either be placed in every NASL we want the
improved version to be present at, or we can replace the original GetFileVersion() found in the
smb_nt.inc include file. In the first case, one or more NASLs will use the new GetFileVersion()
function, while in the second case, roughly 20 tests will use the new version, as they all include
the same smb_nt.inc include file.

Extending the Capabilities of Tests
Using the Nessus Knowledge Base
The Nessus daemon utilizes a database to store information that may be useful for one or more
tests.This database is called the knowledge base.The knowledge base is a connected list-style
database, where a father element has one or more child elements, which in turn may have addi-
tional child elements.

For example, some of the most commonly used knowledge base items are the SMB-related
items, more specifically the registry-related SMB items.These are stored under the following
hierarchy: SMB/Registry/HKLM/. Each item in this hierarchy will correspond to some part of

34 Chapter 3 • Extensions and Custom Tests

332_NSE_03.qxd 6/30/05 3:18 PM Page 34

Extensions and Custom Tests • Chapter 3 35

the registry. For example, the registry location of HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services\W3SVC and the value of ImagePath are stored in the knowledge
base under the SMB/Registry/HKLM/SYSTEM/CurrentControlSet/Services/
W3SVC/ImagePath key.

Swiss Army Knife…

Storing More of the Registry in the Knowledge Base
Some parts of the Windows registry are stored inside the Nessus knowledge base.
While other parts of the registry are accessed by different NASLs tests, these repeated
registry accesses are both bandwidth and time consuming.

Registry reading and storing should be done in one centralized NASL and latter
accessed only through the knowledge base. As most of Nessus’ current registry
reading is done in smb_hotfixes.nasl, any additional registry reading and storing
should be added in it.

The entire registry tree is not mapped to the knowledge base; rather, essential parts of it are
mapped smb_hotfixes.nasl, which uses RPC-based functionality to access the registry and
requires administrative privileges or equivalent on the remote machine.

Once the values are there, the majority of NASLs that require information from the registry
no longer access the registry to determine whether the test is relevant or not; rather, they access
the knowledge base.

A good example of a set of NASLs is the smb_nt_msXX-XXX.nasl tests. Each of these tests
utilizes the functions provided by smb_hotfixes.inc to determine whether a hotfix and service
pack were installed on the remote machine, and if not, report a vulnerability.The functionally
provided by smb_hotfixes.inc enumerates beforehand all the installed hotfixes and service packs,
and can perform a simple regular expression search on the knowledge base to determine
whether the patch has been installed or not.

The same method of collaborating information between two NASLs, as in the case of
smb_hotfixes.nasl and the different smb_nt_msXX-XXX.nasl, can be done by your own tests.
One very relevant case is when a certain type of product is found to be present on the remote
machine, and this information can be stored in the knowledge base with any other information
such as the product’s banner.Therefore, if in the future any additional tests require the same
information, network traffic can be spared and the knowledge base can be queried instead.

Extending the Capabilities of Tests Using
Process Launching and Results Analysis
Nessus 2.1.0 introduced a mechanism that allows certain scripts to run more sensitive functions
that would allow such things as the retrieval of locally stored files, execution of arbitrary com-
mands, and so on.

332_NSE_03.qxd 6/30/05 3:18 PM Page 35

Because these functions can be used maliciously by a normal user through the Nessus
daemon to gain elevated privileges on the host running Nessus, they have been restricted to
those scripts that are trusted/authenticated. Each test that has a line that starts with #TRUSTED,
which will be checked to determine whether it is actually tested by taking the string that follows
the #TRUSTED mark and verifying the signature found there with the public key provided
with each installation of Nessus.The public key is stored in a file called nessus_org.pem.The
nessus_org.pem file holds just the RSA public key, which can be used to verify the authenticity
of the scripts, but not the RSA private key, which can be used to sign additional scripts and
make them authenticated.

As authenticated scripts can be used for numerous tasks that cannot be carried out unless
they are authenticated, the only method to allow creation of additional authenticated scripts is by
adding to the nessusd.conf file the directive nasl_no_signature_check with the value of yes.

The change to nessusd.conf allows the creation of authenticated scripts. However, an alterna-
tive such as replacing the public key can also be considered. In both cases either of the following
two problems may arise: First, Nessus.org signed tests may be no longer usable until you re-sign
them with your own public/private key combinations. Second, arbitrary scripts may have been
planted in www.nessus.org’s host by a malicious attacker who compromised the host. Such a mali-
cious script would be blindly executed by the Nessus daemon and in turn could be used to cause
harm to the host running Nessus or to the network upon which this test is being launched.

Even though the latter option is more dangerous, we believe it is easier to do and maintain
because it requires a single change in the Nessus configuration file to enable, whereas the first
option requires constant maintenance every time an authenticated script changes.

What Can We Do with TRUSTED Functions?
The script_get_preference_file_content function allows authenticated scripts to read files stored
in the Nessus daemon’s file system.This function is executed under root privileges and the user
running the Nessus client doesn’t have to be a root user, so this function has the potential to
read files that might allow the user to compromise the machine.Thus, the function cannot be
accessed by unauthenticated scripts.

The script_get_preference_file_location function allows authenticated scripts to retrieve a file’s
preference location from the user.This function by itself poses no security problem because it does
nothing other than get the string of the filename.This function is used in conjunction with the
script_get_preference_file_content function, which requires authentication, and thus, the
script_get_preference_file_location function is deemed allowed by authenticated functions only.

Nessus uses the shared_socket_register, shared_socket_acquire, and shared_socket_release
functions to allow different types of scripts to use the same existing socket for its ongoing com-
munication. Unlike Nessus’s keep-alive support, which isn’t essential, the support for shared
sockets is essential for such connections as SSH because repeatedly disconnecting from, recon-
necting to, and authenticating with the SSH server would cause some stress to the SSH server
and could potentially hinder the tests that rely on the results returned by the SSH connection.

The same_host function allows a script to compare two provided strings containing either a
qualified hostname or a dotted IP (Internet Protocol) address.The same_host function determines
whether they are the same by translating both strings to their dotted IP form and comparing them.

36 Chapter 3 • Extensions and Custom Tests

332_NSE_03.qxd 6/30/05 3:18 PM Page 36

The function has no use for normal tests, so you can’t control the hostname or IP you test; rather,
the test can test only a single IP address that it was launched against.This function has been made
to require authentication, as it could be used to send packets to a third-party host using the DNS
server.

pem_to and rsa_sign are two cryptographic functions that require authentication.The func-
tions utilize the SSL library’s PEM_read_bio_RSAPrivateKey/PEM_read_bio_DSAPrivateKey
and RSA_sign functions, respectively.The first two functions allow for reading a PEM (Privacy
Enhanced Mail) and extracting from inside of it the RSA private key or the DSA private key.
The second function allows RSA to sign a provided block of data.These functions are required
in the case where a public/private authentication mechanism is requested for the SSH traffic
generated between the SSH client and SSH server.

The dsa_do_sign function utilizes the SSL’s library DSA_do_verify function.The DSA_do_
verify function confirms the validity of cryptographically signed content.The dsa_do_sign func-
tion is used by the ssh_func.inc include file to determine whether the traffic being received from
the remote host is trustworthy.The same function is used in the dropbear_ssh.nasl test to deter-
mine the existence of a Dropbear SSH based Trojan as it has a special cryptographic signature.

The pread function allows NASL scripts to execute a command-line program and retrieve
the standard output returned by the program.The aforementioned list of NASLs utilizes the
function to execute the different programs and take the content returned by the pread function
and analyze it for interesting results.

The find_in_path function allows Nessus to determine whether the program being
requested for execution is in fact available; that is, in the path provided to the Nessus daemon for
execution.

The get_tmp_dir function allows the NASL interpreter to determine which path on the
remote host is used as a temporary storage location.

The fwrite, fread, unlink, file_stat, file_open, file_close, file_read, file_write, and file_seek
functions allow the NASL scripts to perform local file manipulation, including writing, reading,
deleting, checking the status of files, and jumping to a specific location inside a file.

Creating a TRUSTED Test
As a demonstration of how trusted tests can be used to build custom tests that can do more than
just probe external ports for vulnerabilities, we have decided to build a ps scanner. For those
who are not familiar with ps, it is a program that reports back to the user the status of the pro-
cesses currently running on the machine.

If we take it a step further, by analyzing from a remote location the list retrieved using this
command, an administrator can easily determine which hosts are currently running a certain
process, such as tcpdump, ethereal, or even nessus, which in turn might be disallowed by the
company policy.

To maintain simplicity we will explain how such a test is created that is only compatible
with UNIX or more specifically with Linux’s ps command-line program.The test can be easily
extended to allow enumeration of running processes via a ps-like tool, such as PsList, which is
available from www.sysinternals.com/ntw2k/freeware/pslist.shtml.

Extensions and Custom Tests • Chapter 3 37

332_NSE_03.qxd 6/30/05 3:18 PM Page 37

#

This script was written by Noam Rathaus of Beyond Security Ltd.

<noamr@beyondsecurity.com>

#

GPL

#

First we need to confirm that our NASL environment supports the function pread. If it does
not, we need to exit, or any subsequent function calls will be useless, and might also cause false
positives:

if (! defined_func("pread")) exit(0);

We then define how our test is called, as well as its version and description.You might have
noticed that the following code does not define a script_id(); this is intentional because only the
maintainers of Nessus can provide you with a unique script_id number. However, if you do not
provide this number, the Nessus daemon will refuse to load the script; instead the Nessus main-
tainers provide the code with a script_id that wouldn’t be used by any future scripts, thus pre-
venting collisions. For example, script_id 90001:

if(description)

{

script_id();

script_version ("1.0");

name["english"] = "Ps 'scanner'";

script_name(english:name["english"]);

desc["english"] = "

This plug-in runs ps on the remote machine to retrieve a list of active processes. You can

also run a regular expression match on the results retrieved to try and detect malicious

or illegal programs.

See the section 'plugins options' to configure it.

Risk factor : None";

script_description(english:desc["english"]);

summary["english"] = "Find running processes with ps";

script_summary(english:summary["english"]);

script_category(ACT_SCANNER);

script_copyright(english:"This script is Copyright (C) 2005 Noam Rathaus");

family["english"] = "Misc.";

script_family(english:family["english"]);

To provide an interface between the Nessus GUI (graphical user interface) and the test, we will tell
the Nessus daemon that we are interested in users being able to configure one of my parameters,
Alert if the following process names are found (regular expression), which in turn will make the
Nessus GUI show an edit box configuration setting under the Plugin Settings tab.The following
code and additional scripts discussed in this section are available on the Syngress Web site:

script_add_preference(name: "Alert if the following process names are found (Regular

expression)", type: "entry", value: ".*");

38 Chapter 3 • Extensions and Custom Tests

332_NSE_03.qxd 6/30/05 3:18 PM Page 38

Our test requires two things to run—a live host and SSH connectivity, so we need to high-
light that we are dependent on them by using the following dependency directive:

script_dependencies("ping_host.nasl", "ssh_settings.nasl");

exit(0);

}

The functions required to execute SSH-based commands can be found inside the
ssh_func.inc file; therefore, we need to include them.

include("ssh_func.inc");

buf = "";

If we are running this test on the local machine, we can just run the command without
having to establish an SSH connection.This has two advantages, the first making it very easy to
debug the test we are about to write, and the second is that no SSH environment is required,
thus we can save on computer and network resources.

if (islocalhost())

In those cases where we are running the test locally, we can call the pread function, which
receives two parameters—the command being called and the list of arguments. UNIX’s style of
executing programs requires that the command being executed be provided as the first argument
of the argument list:

buf = pread(cmd: "ps", argv: make_list("ps", "axje"));

Master Craftsman…

Rogue Process Detection
Rogue processes such as backdoors or Trojan horses, have become the number one
threat of today’s corporate environment. However, executing the ps process might
not be a good idea if the remote host has been compromised, as the values returned
by the ps process might be incorrect or misleading.

A better approach would be to read the content of the /proc directory, which
contains the raw data that is later processed and returned in nicer form by the ps
program.

We need to remember that if we use the pread function to call a program that does not
return, the function pread will not return either.Therefore, it is important to call the program
with those parameters that will ensure the fastest possible execution time on the program.

A very good example of this is the time it takes to run the netstat command in comparison
with running the command netstat -n.The directive -n instructs netstat not to resolve any of
the IPs it has, thus cutting back on the time it takes the command to return.

Extensions and Custom Tests • Chapter 3 39

332_NSE_03.qxd 6/30/05 3:18 PM Page 39

If we are not running locally, we need to initiate the SSH environment.This is done by
calling the function ssh_login_or_reuse_connection, which will use an existing SSH connection
to carry on any command execution we desire. If that isn’t possible, it will open a new connec-
tion and then carry on any command we desire.

else

{

sock = ssh_login_or_reuse_connection();

if (! sock) exit(0);

Once the connection has been established, we can call the same command we just wrote for
the local test, but we provide it via a different function, in this case the function ssh_cmd.This
function receives three parameters—SSH socket, command to execute, and the time-out for the
command.The last parameter is very important because tests that take too long to complete are
stopped by the Nessus daemon. We want to prevent such cases by providing a timeout setting:

buf = ssh_cmd(socket:sock, cmd:"ps axje", timeout:60);

Once the command has been sent and a response has been received or a timeout has
occurred, we can close the SSH connection:

ssh_close_connection();

If the ssh_cmd function returned nothing, we terminate the test:

if (! buf) { display("could not send command\n"); exit(0); }

}

In most cases, buffers returned by command-line programs can be processed line by line; in
the case of the ps command the same rule applies.This means that we can split our incoming
buffer into lines by using the split function, which takes a buffer and breaks it down into an
array of lines by making each entry in the array a single line received from the buffer:

lines = split(buf);

Using the max_index function, we can determine how many lines have been retrieved from
the buffer we received:

n = max_index(lines);

If the number of lines is equal to zero, it means that there is a single line in the buffer, and
we need to modify the value of n to compensate:

if (n == 0) n = 1;

We will use the i variable to count the number of lines we have processed so far:

i = 0;

Because some interaction with the Nessus daemon that will also trickle down to the Nessus
GUI is always a good idea, we inform the GUI that we are going to start scanning the response
we received to the ps command by issuing the scanner_status function.The scanner_status func-
tion receives two parameters: first, a number smaller than or equal to the total number stating
what is the current status and second, another number stating the total that we will reach.

40 Chapter 3 • Extensions and Custom Tests

332_NSE_03.qxd 6/30/05 3:18 PM Page 40

Because we just started, we will tell the Nessus daemon that we are at position 0 and we have n
entries to go:

scanner_status(current: 0, total: n);

The matched parameter will store all the ps lines that have matched the user provided reg-
ular expression string:

matched = "";

The script_get_preference will return the regular expression requested by the user that will
be matched against the buffer returned by the ps command.The default value provided for this
entry, .*, will match all lines in the buffer:

check = script_get_preference("Alert if the following process names are found (Regular

expression)");

foreach line (lines)

{

1 2 3 4 5 6 7

#01234567890123456789012345678901234567890123456789012345678901234567890

12345 12345 12345 12345 12345678 12345 123456 123 123456 ...

PPID PID PGID SID TTY TPGID STAT UID TIME COMMAND

0 1 0 0 ? -1 S 0 0:05 init [2]

22935 22936 11983 24059 pts/132 24564 S 0 0:00 /bin/bash /etc/init.d/xprint

restart

3 14751 0 0 ? -1 S 0 0:00 [pdflush]

if (debug) display("line: ", line, "\n");

As the ps command returns values in predefined locations, we will utilize the substr function
to retrieve the content found in each of the positions:

PPID = substr(line, 0, 4);

PID = substr(line, 5, 10);

PGID = substr(line, 11, 16);

SID = substr(line, 17, 22);

TTY = substr(line, 24, 31);

TPGID = substr(line, 33, 37);

STAT = substr(line, 39, 44);

UID = substr(line, 46, 48);

TIME = substr(line, 50, 55);

left = strlen(line)-2;

COMMAND = substr(line, 57, left);

if (debug) display("PPID: [", PPID, "], PID: [", PID, "] PGID: [", PGID, "] SID: [", SID,

"] TTY: [", TTY, "]\n");

if (debug) display("COMMAND: [", COMMAND, "]\n");

Once we have all the data, we can execute the regular expression:

v = eregmatch(pattern:check, string:COMMAND);

Next we test whether it has matched anything:

Extensions and Custom Tests • Chapter 3 41

332_NSE_03.qxd 6/30/05 3:18 PM Page 41

if (!isnull(v))

{

If it has matched, append the content of the COMMAND variable to our matched variable:

matched = string(matched, "cmd: ", COMMAND, "\n");

if (debug) display("Yurika on:\n", COMMAND, "\n");

}

Master Craftsman…

Advance Rogue Process Detection
The sample code can be easily extended to include the execution of such programs
as md5sum, a program that returns the MD5 value of the remote file, to better deter-
mine whether a certain program is allowed to be executed. This is especially true for
those cases where a user knows you are looking for a certain program’s name and
might try to hide it by changing the file’s name. Conversely, the user might be unin-
tentionally using a suspicious program name that is falsely detected.

As before, to make the test nicer looking, we will increment the i counter by one, and
update location using the scanner_status function:

scanner_status(current: i++, total: n);

}

If we have matched at least one line, we will return it using the security_note function:

if (matched)

{

security_note(port:0, data:matched);

}

Once we have completed running the test, we can inform the GUI that we are done by
moving the location to the end using the following line:

scanner_status(current: n, total: n);

exit(0);

Final Touches
You have learned how to extend the NASL language and the Nessus environment to support
more advance functionality.You have also learned how to use the knowledge base to improve
both the accuracy of tests and the time they take to return whether a remote host is vulnerable
or not.You also now know how to create advanced tests that utilize advanced Nessus functions,
such as those that allow the execution of processes on a remote host, and how to gather the
results returned by those processes.

42 Chapter 3 • Extensions and Custom Tests

332_NSE_03.qxd 6/30/05 3:18 PM Page 42

Understanding
the Extended
Capabilities of the
Nessus Environment

Solutions in this chapter:

■ Windows Testing Functionality Provided by the
smb_nt.inc Include File

■ Windows Testing Functionality Provided by the
smb_hotfixes.inc Include File

■ UNIX Testing Functionality Provided by the Local
Testing Include Files

Chapter 4

43

332_NSE_04.qxd 7/14/05 9:54 AM Page 43

In This Toolbox
Some of the more advanced functions that Nessus’ include files provide allow a user to write more
than just banner comparison or service detection tests; they also allow users to very easily utilize
Windows’ internal functions to determine whether a certain Windows service pack or hotfix has
been installed on a remote machine, or even whether a certain UNIX patch has been installed.

This chapter covers Nessus’ include files implementation of the SMB (Server Message
Block) protocol, followed by Nessus’ include files implementation of Windows-related hotfix
and service pack verification.This chapter also addresses how a similar kind of hotfix and service
pack verification can be done for different UNIX flavors by utilizing the relevant include files.

Windows Testing Functionality
Provided by the smb_nt.inc Include File
Nessus can connect to a remote Windows machine by utilizing Microsoft’s SMB protocol. Once
SMB connectivity has been established, many types of functionality can be implemented,
including the ability to query the remote host’s service list, connect to file shares and open files
that reside under it, access the remote host’s registry, and determine user and group lists.

Swiss Army Knife

SMB Protocol Description
SMB (Server Message Block), aka CIFS (Common Internet File System), is an intricate
protocol used for sharing files, printers, and general-purpose communications via
pipes. Contrary to popular belief, Microsoft did not create SMB; rather, in 1985 IBM
published the earliest paper describing the SMB protocol. Back then, the SMB pro-
tocol was referred to as the IBM PC Network SMB Protocol. Microsoft adopted the
protocol later and extended it to what it looks like today. You can learn more on the
SMB protocol and its history at http://samba.anu.edu.au/cifs/docs/what-is-smb.html.

In the following list of all the different functions provided by the smb_nt.inc file, some of
the functions replace or provide a wrapper to the functions found in smb_nt.inc:

■ kb_smb_name Returns the SMB hostname stored in the knowledge base; if none is
defined, the IP (Internet Protocol) address of the machine is returned.

■ kb_smb_domain Returns the SMB domain name stored in the knowledge base.

■ kb_smb_login Returns the SMB username stored in the knowledge base.

■ kb_smb_password Returns the SMB password stored in the knowledge base.

44 Chapter 4 • Understanding the Extended Capabilities of the Nessus Environment

332_NSE_04.qxd 7/14/05 9:54 AM Page 44

■ kb_smb_transport Returns the port on the remote host that supports SMB traffic
(either 139 or 445).

■ unicode Converts a provided string to its unicode representation by appending for
each of the provided characters in the original string a NULL character.

The following functions do not require any kind of initialization before being called.They
take care of opening a socket to port 139 or 445 and logging in to the remote server.The reg-
istry functions automatically connect to \winreg and open HKLM, whereas smb_file_read() con-
nects to the appropriate share to read the files.

■ registry_key_exists Returns if the provided key is found under the
HKEY_LOCAL_MACHINE registry hive. For example: if (
registry_key_exists(key:“SOFTWARE\Microsoft”)).

■ registry_get_sz Returns the value of the item found under the
HKEY_LOCAL_MACHINE registry hive. For example, the following will return the
CSDVersion item’s value found under the HKEY_LOCAL_MACHINE\SOFT-
WARE\Microsoft\Windows NT\CurrentVersion registyr location:

service_pack = registry_get_sz(key:"SOFTWARE\Microsoft\Windows

NT\CurrentVersion", item:"CSDVersion");

■ smb_file_read Returns the n number of bytes found at the specified offset of the
provided filename. For example, the following will return the first 4096 bytes of the
boot.ini file:

data = smb_file_read(file:"C:\boot.ini", offset:0, count:4096);

To use the following lower-level functions, you need to set up a socket to the appropriate
host and log in to the remote host:

■ smb_session_request Returns a session object when it is provided with a socket and
a NetBIOS name.The smb_session_request function sends a NetBIOS SESSION
REQUEST message to the remote host.The NetBIOS name is stored in the Nessus
knowledge base and can be retrieved by issuing a call to the kb_smb_name() function.
The function also receives an optional argument called transport, which defines the port
that the socket is connected to. If the socket is connected to port 445, then this func-
tion does nothing. If it’s connected to port 139, a NetBIOS message is sent, and this
function returns an unparsed message from the remote host.

■ smb_neg_prot Returns the negotiated response when it is provided with a socket.
This function negotiates an authentication protocol with the remote host and returns a
blob to be used with smb_session_setup() or NULL upon failure.

■ smb_session_setup Returns a session object when it is provided with a socket, login
name, login password, and the object returned by the smb_neg_prot.This function logs
in to the remote host and returns NULL upon failure (could not log in) or a blob to
be used with session_extract_uid().

Understanding the Extended Capabilities of the Nessus Environment • Chapter 4 45

332_NSE_04.qxd 7/14/05 9:54 AM Page 45

■ session_extract_uid Returns the UID (user identifier) from the session object
response.This function extracts the UID sent by the remote server after a successful
login.The UID is needed in all the subsequent SMB functions.

■ smb_tconx Returns a session context when it is provided with a socket, NetBIOS
name, unique identifier, and a share name.This function can be used to connect to
IPC$ (Inter Process Connection) or to any physical share on the remote host. It
returns a blob to use with smb_tconx_extract_tid() upon success or NULL if it’s not
possible to connect to the remote share. For example, the following line will try to
connect to the remote host’s IPC$:

if (smb_tconx(soc:socket, name:kb_smb_name(), uid:my_uid, share:"IPC$") == NULL

) exit(0);

■ smb_tconx_extract_tid Returns the TID (tree id) from the session context reply.

■ smbntcreatex Returns the session context when it is provided with a socket, user id,
tree id, and name.This function connects to a named pipe (such as \winreg). It returns
NULL on failure or a blob suitable to be used by smbntcreatex_extract_pipe().

■ smbntcreatex_extract_pipe Returns the pipe id from the session context returned
by smbntcreatex().

■ pipe_accessible_registry Returns either NULL if it has failed or non-NULL if it
has succeeded in connecting to the pipe when it is provided with a socket, user id, tree
id, and pipe name.This function binds to the winreg MSRPC service and returns
NULL if binding failed, or non-null if you could connect to the service successfully.

■ registry_open_hklm, registry_open_hkcu, registry_open_hkcr Returns the
equivalent to the MSDN’s RegConnectRegistry() when its provided with a socket,
user id, tree id, and a pipe name.The return value is suitable to be used by
registry_get_key().

■ registry_get_key Returns the MSDN’s RegOpenKey() when it is provided with a
socket, user id, tree id, pipe name, key name, and the response returned by one of the
registry_open_hk* functions.The return value is suitable to be used by
registry_get_key_item*() functions.

■ registry_get_item_sz Returns the string object found under the provided registry
key when it is provided with a socket, user id, tree id, pipe name, item name, and the
response returned by the registry_get_key function.The return value needs to be pro-
cessed by the registry_decode_sz() function.

■ registry_decode_sz Returns the string content when it is provided with the reply
returned by the registry_get_item_sz function.

The following functions are not used in any script, but could be useful to clean up a com-
puter filled with spyware:

46 Chapter 4 • Understanding the Extended Capabilities of the Nessus Environment

332_NSE_04.qxd 7/14/05 9:54 AM Page 46

■ registry_delete_key Deletes the specified registry key when it is provided with a
socket, user id, pipe name, key name, and the response returned by the
registry_open_hk* functions.

■ registry_delete_value Deletes the specified registry key value when it is provided
with a socket, user id, pipe name, key name, the response returned by the
registry_open_hk* functions, and the name of the value to delete.

■ registry_shutdown This function will cause the remote computer to shutdown or
restart after the specified timeout. Before the actual shutdown process starts, a message
will be displayed, when it is provided with a socket, user id, tree id, pipe name, message
to display, and timeout in seconds.This message will also need to be provided with
instructions on whether to reboot or shutdown and whether to close all the applica-
tions properly.

The following example shows how to determine whether the remote host’s Norton
Antivirus service is installed and whether it is running. If Norton Antivirus is not running, the
example shows how to start it by utilizing the Microsoft Windows service control manager.

To determine whether the remote host has Norton AntiVirus or Symantec AntiVirus
installed, first run the smb_enum_services.nasl test, which will return a list of all the services
available on the remote host. Next, accommodate the required dependencies for smb_enum_ser-
vices.nasl (netbios_name_get.nasl, smb_login.nasl, cifs445.nasl, find_service.nes, and logins.nasl).
Next, get the value stored in the knowledge base item called SMB/svcs; this knowledge base
item holds a list of all the services that are present on the remote host.You do this by using the
following code:

service_present = 0;

services = get_kb_item("SMB/svcs");

if(services)

{

if("[Norton AntiVirus Server]" >!< services || "[Symantec AntiVirus Server]" >!<

services)

{

service_present = 1;

}

}

Windows Testing Functionality
Provided by the smb_hotfixes.inc Include File
If the remote host’s registry has been allowed access from a remote location, Nessus can gather
information from it and store it in the knowledge base. Once the information is in the knowl-
edge base, different types of tests can be created.The most common tests are service pack and
hotfix presence verification.

All of the following functions work only if the remote host’s registry has been enumerated. If
the registry hasn’t been enumerated, version-returning functions will return NULL, while product
installation-checking functions will return minus one (-1) as the result. Furthermore, because

Understanding the Extended Capabilities of the Nessus Environment • Chapter 4 47

332_NSE_04.qxd 7/14/05 9:54 AM Page 47

registry enumeration relies on the ability to successfully launch the smb_hotfixes.nasl test, it has to
be provided as a dependency to tests you write using any of the following functions:

■ hotfix_check_exchange_installed This function returns the version of the
Exchange Server if one has been installed on the remote host.

■ hotfix_data_access_version This function returns the version of the Access program
if one has been installed on the remote host.

■ hotfix_check_office_version This function returns the version of the remote host’s
Office installation.To determine the version, one of the following programs must be
installed on the remote host: Outlook, Word, Excel, or PowerPoint.

■ hotfix_check_word_version, hotfix_check_excel_version, hotfix_check_power-
point_version, hotfix_check_outlook_version These functions return the version
of the Word, Excel, PowerPoint, or Outlook program if one has been installed on the
remote host.

■ hotfix_check_works_installed This function returns the version of the MS Works
program if one has been installed on the remote host.

■ hotfix_check_iis_installed This function returns either the value of one or zero
depending on whether the remote host has IIS (Internet Information Server) installed
or not.

■ hotfix_check_wins_installed, hotfix_check_dhcpserver_installed These func-
tions return either the value of one or minus one depending on whether the remote
host has the WINS (Windows Internet Naming Service) server or DCHP (Dynamic
Host Control Protocol) server present or not.

■ hotfix_check_nt_server This function returns either zero or one depending on
whether the remote host is a Windows NT server or not.

■ hotfix_check_domain_controler This function returns either zero or one depending
on whether the remote host is a Windows Domain Controller or not.

■ hotfix_get_programfilesdir This function returns the location of the Program Files
directory on the remote host.

■ hotfix_get_commonfilesdir This function returns the location of the Common
Files directory on the remote host.

■ hotfix_get_systemroot This function returns the location of the System Root direc-
tory on the remote host.

■ hotfix_check_sp This function verifies whether a certain service pack has been
installed on the remote host.The function uses the provided services pack levels to
verify whether the remote host is running the specified product type and whether the
remote host has the appropriate service pack installed.The function returns minus one
if the registry hasn’t been enumerated, zero if the requested service pack level has been
properly installed, and one if the requested service pack level hasn’t been installed.

48 Chapter 4 • Understanding the Extended Capabilities of the Nessus Environment

332_NSE_04.qxd 7/14/05 9:54 AM Page 48

■ hotfix_missing This function verifies whether a certain hotfix has been installed on
the remote host.The function returns minus one if the registry hasn’t been enumerated,
zero if the requested hotfix has been properly installed, and one if the requested hotfix
hasn’t been installed.

Master Craftsman

Registry Keys Stored in the Knowledge Base
The functions provided by the smb_hotfixes.inc include file all return values stored in
the registry. By extending the amount of information Nessus holds in its knowledge
base, you can speed up the scanning process. One example of doing this would be
to include information about whether the ISA (Internet Security and Acceleration)
server is installed on the remote server, what version is installed, and if any service
packs/feature packs are installed for it. As of the writing of this book, seven tests can
verify if the ISA server is installed on a remote server. Because all these tests call
cached registry items, the time it takes to verify whether the remote host is vulner-
able is negligible to reconnecting to the remote host’s registry and pulling the
required registry keys seven times.

For example, Microsoft has recently released an advisory called Vulnerability in Web View
Could Allow Remote Code Execution.The vulnerability described in this advisory affects Windows
2000, Windows 98, Windows 98SE, and Windows ME.As you will see later in this chapter, it is
fairly easy to add a registry-based test for the aforementioned security advisory’s hotfix presence
and to inform the user if it is in fact not present on the remote host.

Currently, Nessus supports security testing for only Windows NT, 2000, 2003, and XP.
Moreover, as stated in the advisory, once Service Pack 5 is installed on the remote host, the
Windows 2000 installation will be immune.

To create a test that verifies whether the remote host is immune to the vulnerability, you
first need to verify that such a service pack has not been installed and that in fact the remote
host is running Windows 2000.To do this, utilize the following lines:

nt_sp_version = NULL;

win2k_sp_version = 5;

xp_sp_version = NULL;

win2003_sp_version = NULL;

if (hotfix_check_sp(nt:nt_sp_version,

win2k:win2k_sp_version,

xp:xp_sp_version,

win2003:win2003_sp_version) <= 0) exit(0);

Before calling the aforementioned lines, you must first satisfy a dependency on smb_hot-
fixes.nasl and verify that the remote registry has been enumerated.That is done by ensuring that

Understanding the Extended Capabilities of the Nessus Environment • Chapter 4 49

332_NSE_04.qxd 7/14/05 9:54 AM Page 49

the knowledge base item SMB/Registry/Enumerated is present.This is done by adding the fol-
lowing lines to the script:

script_dependencies("smb_hotfixes.nasl");

script_require_keys("SMB/Registry/Enumerated");

Next, verify that hotfix Q894320 has been installed on the remote host. Do this by exe-
cuting the following lines:

if (hotfix_missing(name: "Q894320") > 0)

security_hole(get_kb_item("SMB/transport"));

The two functions you used in the code in the previous example are defined in the
smb_hotfixes.inc file, which must be included before the functions can be called by adding the
following line to your code:

include("smb_hotfixes.inc");

Swiss Army Knife

Microsoft’s MSSecure.xml
Microsoft’s Windows Update, Microsoft Baseline Security Analyzer, and Shavilk’s
HFNetCheck all use an XML file that contains the most current information on the
latest software versions, service packs, and security updates available for various
Microsoft operating systems, BackOffice components, services, and so on. Microsoft
provides this file to the public for free. The MSSecure.xml file is both machine read-
able and human readable; thus, administrators can use the file to easily spot relevant
patches or make an automated script that performs this task for them.

All the information required for the above Hotfix testing sample can be found
in the MSSecure.xml’s MS05-024 advisory section.

UNIX Testing Functionality
Provided by the Local Testing Include Files
Nessus can connect to a remote UNIX host that supports SSH (Secure Shell). Currently, the fol-
lowing operating systems have tests that verify whether a remote host contains an appropriate
path for a vulnerability:AIX, Debian, Fedora, FreeBSD, Geneto, HP-UNIX, Mandrake, Red Hat,
Solaris, and SuSE.

Verifying whether a remote host has installed the appropriate patch is done via several query
mechanisms, depending on the type of operating system and the type of package querying
mechanism used by that operating system.

In most cases, pkg_list or dpkg, programs whose purpose is to list all available installed soft-
ware on the remote host and each software’s version, are used to retrieve a list of all the products

50 Chapter 4 • Understanding the Extended Capabilities of the Nessus Environment

332_NSE_04.qxd 7/14/05 9:54 AM Page 50

on the remote host.This information is then quantified and stored in the knowledge base under
the item Host/OS Type. For example, in the case of Red Hat, the program rpm is launched, and
the content returned by it is stored in Host/RedHat/rpm-list.

You do not have to directly access the content found in a knowledge base item; rather, sev-
eral helper functions analyze the data found in the software list and return whether the appro-
priate patch has been installed or not.

A list of the software components of an operating system is not the only information that is
indexed by the helper functions; the operating system’s level, or more specifically its patch level,
is also stored in the knowledge base and is used to verify whether a certain patch has been
installed on the remote host.

Currently, several automated scripts take official advisories published by the operating system
vendors and convert them into simple NASL (Nessus Attack Scripting Language) scripts that
verify whether the advisory is relevant to the remote host being scanned. Let’s discuss these
scripts now.

The rpm_check function determines whether the remote host contains a specific RPM
(RPM Package Manager, originally called Red Hat Package Manager) package and whether the
remote host is of a certain release type. Possible release types are MDK, SUSE, FC1, FC2, FC3,
RHEL4, RHEL3, and RHEL2.1.These correspond to Mandrake, SuSE, Fedora Core 1, Fedora
Core 2, Fedora Core 3, Red Hat Enterprise Linux 4, Red Hat Enterprise Linux 3, and Red Hat
Enterprise Linux 2.1, respectively.

The value of one is returned if the package installed on the remote host is newer or exactly
as the version provided, whereas the value of zero is returned if the package installed on the
remote host is newer or exactly the same as the version provided.

For example, the following code will verify whether the remote host is a Red Hat
Enterprise Level 2.1 and whether the remote host has a Gaim package that is the same or later
than version 0.59.9-4:

if (rpm_check(reference:"gaim-0.59.9-4.el2", release:"RHEL2.1"))

The same test can be done for Red Hat Enterprise Level 3 and Red Hat Enterprise Level 4:

if (rpm_check(reference:"gaim-1.2.1-6.el3", release:"RHEL3") || rpm_check(

reference:"gaim-1.2.1-6.el4", release:"RHEL4"))

However, in the preceding case, the Gaim version available for Red Hat Enterprise Level 3
and 4 is newer than the version available for Red Hat Enterprise Level 2.1.

The rpm_exists function is very similar to rpm_check. However, in this case, rpm_exists tests
not for which version of the package is running, but for only whether the RPM package exists
on the remote host.The value of one is returned if the package exists, whereas the value of zero is
returned if the package does not exist.

The return values of rpm_check function are zero if the remote host’s distribution is irrele-
vant and one if the package exists on the remote host.

For example, you can determine whether the remote Fedora Core 2 host has the mldonkey
package installed; if it does, your cooperation policy is broken, and you will want to be informed
of it:

if (rpm_exists(rpm:"mldonkey", release:"FC2"))

Understanding the Extended Capabilities of the Nessus Environment • Chapter 4 51

332_NSE_04.qxd 7/14/05 9:54 AM Page 51

The aix_check_patch function is very similar to rpm_check; however,AIX software patches
are bundled together in a manner similar to the Microsoft’s service packs; therefore, you verify
whether a certain bundle has been installed, not whether a certain software version is present on
a remote host.

The return values of this function are zero if the release checked is irrelevant, one if the
remote host does not contain the appropriate patch, and minus one if the remote host has a
newer version than the provided reference.

– The deb_check function is equivalent to the rpm_check function, but unlike the
rpm_check, the different Debian versions are provided as input instead of providing a release
type (such as Red Hat/Fedora/Mandrake/SuSE). In addition, unlike the rpm_check function,
the version and the package name are broken into two parts: prefix, which holds the package
name, and reference, which holds the version you want to be present on the remote host.

The return values of this function are one if the version found on the remote host is older
than the provided reference and zero if the architecture is not relevant or the version found on
the remote host is newer or equal to the provided reference.

For example, in Debian’s DSA-727, available from www.debian.org/security/2005/dsa-727,
you can see that for stable distribution (woody) this problem has been fixed in version 0.201-
2woody1; therefore, you conduct the following test:

if (deb_check(prefix: 'libconvert-uulib-perl', release: '3.0', reference: '0.201-2woody1'))

For the testing (sarge) and unstable (sid) distributions, this problem has been fixed in version
1.0.5.1-1; therefore, you conduct the following test:

if (deb_check(prefix: 'libconvert-uulib-perl', release: '3.2', reference: '1.0.5.1-1'))

if (deb_check(prefix: 'libconvert-uulib-perl', release: '3.1', reference: '1.0.5.1-1'))

The pkg_cmp function is equivalent to the rpm_check, but is used for the FreeBSD oper-
ating system.The function pkg_cmp doesn’t verify which version of FreeBSD is being queried;
this has to be done beforehand by grabbing the information found under the
Host/FreeBSD/release knowledge base key and comparing it with the FreeBSD release version.
The return values of this function are one or larger if the remote host’s version of the package is
older than the provided reference, zero if both versions match, and minus one or smaller if the
package is irrelevant to the remote host or the version running on the remote host is newer than
the provided reference.

The hpux_check_ctx function determines whether the remote host is of a certain HP
UNIX hardware version and HP UNIX operating system version.This is done by providing
values separated by a space for each relevant hardware and operating system pair. Each such pair
is separated by a colon.The return values of this function are one for architecture matched
against the remote host and zero for architecture that does not match against the remote host.

For example, the string 800:10.20 700:10.20 indicates that you have two relevant sets for
testing.The first hardware version is 800, and its operating system version is 10.20.The second
hardware version is 700, and its operating system version is also 10.20. If one of the pairs is an
exact match, a value of one is returned; if none of them match, the value of zero is returned.The
value of the remote host’s hardware version is stored under the Host/HP-UX/version knowledge

52 Chapter 4 • Understanding the Extended Capabilities of the Nessus Environment

332_NSE_04.qxd 7/14/05 9:54 AM Page 52

base item key, and the remote host’s operating system version is stored under the Host/HP-
UX/hardware knowledge base item key.

The hpux_patch_installed function determines whether a remote HP-UNIX host has an
appropriate patch installed, such as AIX. HP-UNIX releases patches in bundles named in the fol-
lowing convention: PHCO_XXXXX.The return values of this function are one if the patch has
been installed and zero if the patch has not been installed.

Once you have used the hpux_check_ctx function to determine that the remote host’s
hardware and operating system versions are relevant, you can call the hpux_patch_installed func-
tion and determine whether the patch has been installed. Multiple patches can be provided by
separating each patch with a space character.

For example, to create a test for the vulnerability patched by PCHO_22107, available at
ftp://ftp.itrc.hp.com/superseded_patches/hp-ux_patches/s700_800/11.X/PHCO_22107.txt,
you’ll start by verifying that the remote host’s hardware and system operating system versions are
correct:

if (! hpux_check_ctx (ctx:"800:11.04 700:11.04 "))

{

exit(0);

}

Follow up by testing whether the remote host has the appropriate PHCO installed and all
the ones this PHCO_22107 depends on:

if (!hpux_patch_installed (patches:"PCHO_22107 PHCO_21187 PHCO_19047 PHCO_17792

PHCO_17631 PHCO_17058 PHCO_16576 PHCO_16345 PHCO_15784 PHCO_14887 PHCO_14051 PHCO_13606

PHCO_13249"))

{

security_hole(0);

}

However, the code in the previous example doesn’t verify whether the remote host’s patch
files have been installed; instead, it verifies only whether the remote host has launched the
appropriate patches.To verify whether the remote host has been properly patched, you need to
call the hpux_check_patch function.

The hpux_check_patch function verifies whether a remote HP-UNIX system has installed a
patch and if the user has let the patch modify the operating system’s files.The return values of
this function are one if the package is not installed on a remote host and zero if the patch has
been installed or is irrelevant for a remote host.

For example, for the aforementioned PHCO_22107 advisory, you must confirm that OS-
Core.UX-CORE’s version is B.11.04.The following code will verify that OS-Core.UX-CORE is
in fact of the right version; if it is not, it will notify that the remote host is vulnerable:

if (hpux_check_patch(app:"OS-Core.UX-CORE", version:"B.11.04"))

{

security_hole(0);

exit(0);

}

Understanding the Extended Capabilities of the Nessus Environment • Chapter 4 53

332_NSE_04.qxd 7/14/05 9:54 AM Page 53

The qpkg_check function is equivalent to the rpm_check, but it is used for testing the exis-
tence of packages on Gentoo distributions.The function verifies that the package has been
installed on the remote host and then verifies whether a certain version is equal to, lower than, or
greater than the provided version of vulnerable and immune versions.

The return values of this function are zero for irrelevant architecture or when a package is
not installed on a remote host, and one if the patch has been installed.

In the following example, you will verify whether a remote host contains the patches pro-
vided for the gdb package, as described in www.gentoo.org/security/en/glsa/glsa-200505-
15.xml:

For the GLSA-200505-15 you need to check first the package named sys-devel/gdb and then
the unaffected version >= 6.3-r3, meaning you need to write ge 6.3-r3 followed by the vulner-
able version < 6.3-r3. So you need to write l 6.3-r3.The complete line of this code reads as fol-
lows:

if (qpkg_check(package: "sys-devel/gdb", unaffected: make_list("ge 6.3-r3"), vulnerable:

make_list("lt 6.3-r3")))

{

security_hole(0);

exit(0);

}

Master Craftsman

Adding Additional Operating Systems
The aforementioned functions do not cover all available UNIX-based operating sys-
tems. Extending these functions to support other operating systems is easy. Op-
erating systems that are extensions of other operating systems would require little,
if any, changes; for example, Ubuntu, which is an extension of Debian. Other oper-
ating systems would require more changes; however, if you can provide two func-
tions to the Nessus environment, you can easily add support to your operating
system:

■ SSH connectivity
■ A way to list all the packages/products installed on the operating sys-

tems and their corresponding versions

If the preceding two functions are available, you can index the list of packages
and their versions through the SSH channel. You then can create a test that deter-
mines whether the package is installed and if its version is lower than the one that
is immune to attack.

54 Chapter 4 • Understanding the Extended Capabilities of the Nessus Environment

332_NSE_04.qxd 7/14/05 9:54 AM Page 54

The solaris_check_patch function verifies whether a certain patch exists on a remote Solaris
machine.As in the case of HP-UNIX, the function verifies the release type, architecture—hard-
ware type, patch (which can be made obsolete by some other patch), followed by the name of
the vulnerable package.The vulnerable packages can be more than one, in which case they are
separated by the character space.

The return values of this function are minus one if the patch is not installed, zero for irrele-
vant architecture or if the package is not installed on the remote host, and one if the patch has
been installed.

Final Touches
You have learned different functions provided by the smb_nt.inc include file and the smb_hot-
fixes.inc file that can be used to test Windows-based devices. Furthermore, you have seen what
functions are provided by the aix.inc, debian_package.inc, freebsd_package.inc, hpux.inc,
qpkg.inc, rpm.inc, and solaris.inc include files to test UNIX-based devices.After viewing exam-
ples in this chapter, you should understand how to use these various functions.

Understanding the Extended Capabilities of the Nessus Environment • Chapter 4 55

332_NSE_04.qxd 7/14/05 9:54 AM Page 55

332_NSE_04.qxd 7/14/05 9:54 AM Page 56

Analyzing
GetFileVersion
and MySQL
Passwordless Test

Scripts and samples in this chapter:

■ Integrating NTLM Authentication into Nessus’ HTTP
Authentication Mechanism

■ Improving the MySQL Test by Utilizing Packet
Dumps

■ Improving Nesuss’ GetFileVersion Function by
Creating a PE Header Parser

Chapter 5

57

332_NSE_05.qxd 7/14/05 10:32 AM Page 57

In This Toolbox
NTLM (NT LAN Manager) authentication is a widely used type of authentication mechanism,
and until now, Nessus has lacked the support necessary to test Web sites that use NTLM authen-
tication for their protection. In this chapter we will underline the steps that must be taken so
that Nessus can incorporate support for NTLM. We will also look into how the MySQL test
can be improved to work better with the different versions of MySQL servers. We will conclude
with an in-depth analysis of Windows’s PE header file structure and how the GetFileVersion
function can be improved to better utilize this structure to produce less network overhead when
trying to determine a remote file’s version.

Integrating NTLM Authentication into
Nessus’ HTTP Authentication Mechanism
We will begin this chapter by explaining how NTLM-based authentication works, describing
how to write an NTLM testing NASL, discussing where changes to Nessus are needed to sup-
port Nessus-wide NTLM authentication, and finally, illustrating how everything is glued
together.

NTLM
NTLM is an authentication protocol originally constructed by Microsoft to allow its products to
talk securely to each other.The authentication protocol was originally conceived for the file-
sharing service given by Microsoft (implemented by the Server Message Block [SMB] protocol).
However, the proliferation of sites on the Web has created a need for a stronger authentication
mechanism, and Microsoft decided that it would incorporate its NTLM authentication protocol
to its Internet Explorer browser.

The original Hypertext Transfer Protocol (HTTP) did not incorporate any support for
NTLM; Microsoft added NTLM support to HTTP later. Unlike the basic authentication mech-
anism that all browsers support, NTLM is not supported by default. Some browsers such as
Mozilla Firefox have chosen to support it, whereas others like Konqueror have chosen to not
support it for the time being.

Further, the basic authentication mechanism authenticates requests, whereas the NTLM
authentication mechanism authenticates connections.Therefore, we are forced to keep the con-
nection alive as long as possible or else we will be required to reauthenticate the newly created
connection.

However, Nessus uses the HTTP keep-alive mechanism to minimize traffic and minimize
the requirement to open and close connections.Therefore, all that is necessary is to extend the
functionality of the existing keep-alive mechanism to support NTLM.This, however, is no easy
feat, in addition to adding to the existing connection an extensive overhead whenever a keep-
alive connection is closed and reopened.

Before diving into code writing, you will need to understand a bit more about how NTLM
authentication is conducted.This section is by no means a complete guide to NTLM authentica-
tion; there are a lot of resources out there that explain in depth how NTLM authentication works.

58 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 58

Because NTLM authentication is a challenge-response protocol, it requires you to transmit
three different types of messages between the browser and the Web server:

1. The browser has to first send a Type 1 message containing a set of flags of features sup-
ported or requested to the Web server.

2. The Web server then responds with a Type 2 message containing a similar set of flags
supported or required by the Web server and a random challenge (8 bytes).

3. The handshake is completed by the browser client using the challenge obtained from
the Type 2 message and the user’s authentication credentials to calculate a response.The
calculation methods differ based on the NTLM authentication parameters negotiated
before, but in general, MD4/MD5 hashing algorithms and Data Encryption Standard
(DES) encryption are applied to compute the response.The response is then sent to
the Web server in a Type 3 message.

We can illustrate the three-way handshake that takes place between a browser marked as B
and a server marked as S as follows:

1: B --> S GET ...

2: B <-- S 401 Unauthorized

WWW-Authenticate: NTLM

3: B --> S GET ...

Authorization: NTLM <base64-encoded type-1-message>

4: B <-- S 401 Unauthorized

WWW-Authenticate: NTLM <base64-encoded type-2-message>

5: B --> S GET ...

Authorization: NTLM <base64-encoded type-3-message>

6: B <-- S 200 OK

The script in the preceding example is a variation of the example of the NTLM handshake
shown at http://www.innovation.ch/java/ntlm.html.As can be seen, there is quite a bit of over-
head until we get the content of the desired page.This overhead can get a lot bigger if we drop
our connection at stage six instead of keeping the connection alive and conducting another
request.

As mentioned before, NTLM authentication requires our browser and server to handle three
types of messages. Let’s look a little deeper at how they are constructed. Message Type 1 is
described in Table 5.1.

Table 5.1 Construction of Message Type 1

Byte Offset Description Content

0 NTLMSSP Signature Null-terminated ASCII “NTLMSSP”
(0x4e544c4d53535000)

8 NTLM Message Type Long (0x01000000)
12 Flags Long

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 59

Continued

332_NSE_05.qxd 7/14/05 10:32 AM Page 59

Table 5.1 continued Construction of Message Type 1

Byte Offset Description Content

(16) Supplied Domain (Optional) Security buffer
(24) Supplied Workstation (Optional) Security buffer
(32) Start of data block (if required)

Copyright © 2003 Eric Glass at http://davenport.sourceforge.net/ntlm.html

As shown at http://www.innovation.ch/java/ntlm.html, the C structure for message Type 1
is as follows:

struct {

byte protocol[8]; // 'N', 'T', 'L', 'M', 'S', 'S', 'P', '\0'

long type; // 0x01

long flags; // NTLM Flags

short dom_len; // domain string length

short dom_len; // domain string length

short dom_off; // domain string offset

byte zero[2];

short host_len; // host string length

short host_len; // host string length

short host_off; // host string offset (always 0x20)

byte zero[2];

byte host[*]; // host string (ASCII)

byte dom[*]; // domain string (ASCII)

} type-1-message

Message Type 2 is described in Table 5.2.

Table 5.2 Construction of Message Type 2

Byte Offset Description Content

0 NTLMSSP Signature Null-terminated ASCII “NTLMSSP”
(0x4e544c4d53535000)

8 NTLM Message Type Long (0x02000000)
12 Target Name Security buffer
20 Flags Long
24 Challenge 8 bytes
(32) Context (optional) 8 bytes (two consecutive longs)
(40) Target Information Security buffer

(optional)
32 (48) Start of data block

Copyright © 2003 Eric Glass at http://davenport.sourceforge.net/ntlm.html

The C structure (without the optional sections) for message Type 2 is shown in the
following example:

60 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 60

struct {

byte protocol[8]; // 'N', 'T', 'L', 'M', 'S', 'S', 'P', '\0'

long type; // 0x02

long target_name;

long flags; // NTLM Flags

byte challenge[8]; // nonce

} type-2-message

Message Type 3 is described in Table 5.3.

Table 5.3 Construction of Message Type 3

Byte Offset Description Content

0 NTLMSSP Signature Null-terminated ASCII “NTLMSSP”
(0x4e544c4d53535000)

8 NTLM Message Type Long (0x03000000)
12 LM/LMv2 Response Security buffer
20 NTLM/NTLMv2 Response Security buffer
28 Domain Name Security buffer
36 User Name Security buffer
44 Workstation Name Security buffer
(52) Session Key (optional) Security buffer
(60) Flags (optional) Long
52 (64) Start of data block

Copyright © 2003 Eric Glass at http://davenport.sourceforge.net/ntlm.html

The C structure for message Type 3 is as follows.

struct {

byte protocol[8]; // 'N', 'T', 'L', 'M', 'S', 'S', 'P', '\0'

long type; // 0x03

short lm_resp_len; // LanManager response length (always 0x18)

short lm_resp_len; // LanManager response length (always 0x18)

short lm_resp_off; // LanManager response offset

byte zero[2];

short nt_resp_len; // NT response length (always 0x18)

short nt_resp_len; // NT response length (always 0x18)

short nt_resp_off; // NT response offset

byte zero[2];

short dom_len; // domain string length

short dom_len; // domain string length

short dom_off; // domain string offset (always 0x40)

byte zero[2];

short user_len; // username string length

short user_len; // username string length

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 61

332_NSE_05.qxd 7/14/05 10:32 AM Page 61

short user_off; // username string offset

byte zero[2];

short host_len; // host string length

short host_len; // host string length

short host_off; // host string offset

byte zero[6];

short msg_len; // message length

byte zero[2];

short flags; // 0x8201

byte zero[2];

byte dom[*]; // domain string (unicode UTF-16LE)

byte user[*]; // username string (unicode UTF-16LE)

byte host[*]; // host string (unicode UTF-16LE)

byte lm_resp[*]; // LanManager response

byte nt_resp[*]; // NT response

} type-3-message

As you can see, the data transmitted cannot be trivially handled or generated, as different
data types are required. In addition, some parts have to be used by hashing algorithms (for
example, MD4), making it harder to incorporate support for HTTP-based NTLM authentica-
tion for Nessus.

You should not be discouraged, however, because the same authentication mechanism used
by Nessus to connect to Windows machines can be used to enable HTTP-based NTLM
authentication. More specifically, by using crypto_func.inc’s internal functions, you can provide
the necessary hashed response required for the Type 3 message without much effort.

To give you a better understanding of how we are going to extend the functionality of
Nessus, let’s start off by building an NASL script that connects to a remote host, generates the
necessary message types, and retrieves an NTLM-protected Web page. Our code will start off by
setting a few parameters that will we will user later on, and we don’t want to redefine them each
time.The following code and additional scripts discussed in this section are available on the
Syngress Web site:

username = "administrator";

domain = "beyondsecurity.com";

hostname = "ntlm.securiteam.beyondsecurity.com";

host_off = raw_string(0x20); # host string offset (always 0x20)

domain_off = host_off + strlen(hostname);

type_1_message = raw_string("NTLMSSP", 0x00,

0x01,0x00, 0x00, 0x00, # type 0x01 - NTLM_NEGOTIATE

0x02, 0x32, # Flags

0x00, 0x00, # Two more zeros

0x00, 0x00, # We don't sent any of the optional fields

0x00, 0x00, # We don't sent any of the optional fields

0x00, 0x00, 0x00, 0x00, # We don't sent any of the optional fields

0x00, 0x00, # We don't sent any of the optional fields

0x00, 0x00, # We don't sent any of the optional fields

62 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 62

0x00, 0x00, 0x00, 0x00);

We can easily dump the raw_string data by using the dump.inc function dump():

include("dump.inc");

dump(dtitle: "type_1_message", ddata: type_1_message);

Before we can send this Type 1 message, we need to base64 encode it.The required function
can be found in the misc_func.inc file and can be used by writing the following lines into your
NASL script:

include("misc_func.inc");

type_1_message_base64 = base64(str: type_1_message);

All we need to do now is generate an HTTP request. Remember that NTLM authentica-
tion works only on persistent connections, so for now, we will assume that the remote host sup-
ports it.A more intelligent test would first try to determine whether such persistent connections
are even supported.

request = string("GET / HTTP/1.1\r\n",

"Host: ntlm.securiteam.beyondsecurity.com\r\n",

"User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7.5)\r\n",

"Accept: text/html\r\n",

"Keep-Alive: 300\r\n",

"Connection: keep-alive\r\n",

"Authorization: NTLM ", type_1_message_base64, "\r\n",

"\r\n");

The keep-alive headers are shown in two lines. One states that we want to keep the connec-
tion alive for the next 300 seconds; the other tells the server that we are requesting a keep-alive
connection.

All we have to do now is write up all the functions that will open the required port, send
the data, and receive the response from the server.

port = 80;

if(get_port_state(port))

{

soc = open_sock_tcp(port);

if(soc)

{

send(socket:soc, data:request);

res = recv(socket:soc, length:2048);

display("res: [", res, "]\n");

We have requested that Nessus read just the first 2,048 bytes, as we are looking for some-
thing that is found in the headers. However, prior to receiving the actual page we requested, as
the connection is persistent, we will need to read the whole buffer waiting for us.

We can grab the response sent back by the server by using a regular expression such as this
one:

v = eregmatch(pattern: "WWW-Authenticate: NTLM (.+)$", string: res);

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 63

332_NSE_05.qxd 7/14/05 10:32 AM Page 63

We can then verify whether it is found in the headers sent back by the server by checking
whether the parameter v is not NULL:

if (!isnull(v))

{

Once we have determined that the parameter is not NULL, we need to strip any characters
found after our buffer by issuing the following command:

v[1] = v[1] - strstr(v[1], string("\r\n"));

We can display the Type 2 message response that is base64 encoded:

display("NTLM: ", v[1], "\n");

We can then follow through and base64 decode the data using the following command:

type_2_response = base64_decode(str: v[1]);

As the response is in binary form, we can dump its content by reusing the dump() function:

dump(dtitle: "type_2_response", ddata: type_2_response);

Once we have our binary data, we can start to extract the response type to verify that the
response received is in fact what we are expecting.The function hexstr() allows us to quickly
compare a stream of bytes with a string by returning a hex string form from binary data.

type = hexstr(raw_string(type_2_response[8], type_2_response[9], type_2_response[10],

type_2_response[11]));

display("type: ", type, "\n");

As we sent an NTLMSSP_NEGOTIATE message, we are expecting the Web server to
return an NTLMSSP_CHALLENGE whose type is 0x02000000. We verify that the type is as
such:

if (type == "02000000") # NTLMSSP_CHALLENGE

{

display("Type is NTLMSSP_CHALLENGE\n");

}

Once we have verified that the data is in fact of the right type, we can proceed to process
the target type and target length being returned. Because we aren’t creating extensive support for
NTLM, we won’t cover the different target types and their corresponding target lengths; rather,
we will assume that the type returned is the right one.

target_type = hexstr(raw_string(type_2_response[12], type_2_response[13]));

display("target type: ", target_type, "\n");

target_len = ord(type_2_response[14]) + ord(type_2_response[15])*256;

display("target len: ", target_len, "\n");

As mentioned before, the response provides a list of different flags; each flag has a different
meaning (Table 5.4). Note that the flags are bit-wise. If they are there, the flag is on; if they
aren’t there, the flag is off.

64 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 64

Table 5.4 Flags Provided by the Server Response

Flag Name Description

0x00000001 Negotiate Unicode Indicates that Unicode strings are sup-
ported for use in security buffer data.

0x00000002 Negotiate OEM Indicates that OEM strings are supported
for use in security buffer data.

0x00000004 Request target Requests that the server’s authentication
realm be included in the Type 2 message.

0x00000008 Unknown This flag’s usage has not been identified.
0x00000010 Negotiate sign Specifies that authenticated communication

between the client and server should carry
a digital signature (message integrity).

0x00000020 Negotiate seal Specifies that authenticated communication
between the client and server should be
encrypted (message confidentiality).

0x00000040 Negotiate datagram Indicates that datagram authentication is
style being used.

0x00000080 Negotiate LAN Indicates that the LAN manager session key
manager key should be used for signing and sealing

authenticated communications.
0x00000100 Negotiate Netware This flag’s usage has not been identified.
0x00000200 Negotiate NTLM Indicates that NTLM authentication is being

used.
0x00000400 Unknown This flag’s usage has not been identified.
0x00000800 Unknown This flag’s usage has not been identified.
0x00001000 Negotiate domain Sent by the client in the Type 1 message to

supplied indicate that the name of the domain in
which the client workstation has member-
ship is included in the message. This is used
by the server to determine whether the
client is eligible for local authentication.

0x00002000 Negotiate workstation Sent by the client in the Type 1 message to
supplied indicate that the client workstation’s name

is included in the message. This is used by
the server to determine whether the client
is eligible for local authentication.

0x00004000 Negotiate local call Sent by the server to indicate that the
server and client are on the same machine.
Implies that the client may use the estab-
lished local credentials for authentication
instead of calculating a response to the
challenge.

0x00008000 Negotiate always sign Indicates that authenticated communication
between the client and server should be
signed with a “dummy” signature.

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 65

Continued

332_NSE_05.qxd 7/14/05 10:32 AM Page 65

Table 5.4 continued Flags Provided by the Server Response

Flag Name Description

0x00010000 Target type domain Sent by the server in the Type 2 message to
indicate that the target authentication
realm is a domain.

0x00020000 Target type server Sent by the server in the Type 2 message to
indicate that the target authentication
realm is a server.

0x00040000 Target type share Sent by the server in the Type 2 message to
indicate that the target authentication
realm is a share. Presumably, this is for
share-level authentication. Usage is unclear.

0x00080000 Negotiate NTLM2 key Indicates that the NTLM2 signing and
sealing scheme should be used for pro-
tecting authenticated communications.
Note that this refers to a particular session
security scheme, and is not related to the
use of NTLMv2 authentication. This flag
can, however, have an effect on the
response calculations (as detailed in the
“NTLM2 Session Response” section).

0x00100000 Request init response This flag’s usage has not been identified.
0x00200000 Request accept response This flag’s usage has not been identified.
0x00400000 Request Non-NT This flag’s usage has not been identified.

session key
0x00800000 Negotiate target info Sent by the server in the Type 2 message to

indicate that it is including a Target
Information Block in the message. The
Target Information Block is used in the cal-
culation of the NTLMv2 response.

0x01000000 Unknown This flag’s usage has not been identified.
0x02000000 Unknown This flag’s usage has not been identified.
0x04000000 Unknown This flag’s usage has not been identified.
0x08000000 Unknown This flag’s usage has not been identified.
0x10000000 Unknown This flag’s usage has not been identified.
0x20000000 Negotiate 128 Indicates that 128-bit encryption is sup-

ported.
0x40000000 Negotiate key exchange Indicates that the client will provide an

encrypted master session key in the
“Session Key” field of the Type 3 message.
This is used in signing and sealing, and is
RC4-encrypted using the previous session
key as the encryption key.

0x80000000 Negotiate 56 Indicates that 56-bit encryption is supported.

Copyright © 2003 Eric Glass at http://davenport.sourceforge.net/ntlm.html

66 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 66

We don’t plan to provide support for all the different flags, nor is it required if we are only
trying to build the most basic support for HTTP-based NTLM authentication. However, we
will provide a short example just to illustrate how the flags are used. Consider the following
message that is specified:

Negotiate Unicode (0x00000001)

Request Target (0x00000004)

Negotiate NTLM (0x00000200)

Negotiate Always Sign (0x00008000)

The combined numerical code in the preceding example equals 0x00008205.This would be
physically laid out as 0x05820000 (it is represented in little-endian byte order).

The following code will extract the flags returned in the response and provide it as a hex
string:

flags = hexstr(raw_string(type_2_response[16+4+target_len],

type_2_response[17+4+target_len], type_2_response[18+4+target_len],

type_2_response[19+4+target_len]));

display("flags: ", flags, "\n");

We are expecting the following as the response for our NTLM authentication:

if (flags == "b2020000")

{

display("flags as expected\n");

}

The next bytes are the challenge provided by the remote Web server that will be combined
with the password to create the MD4 response required to complete the authentication process:

challenge = raw_string(type_2_response[20+4+target_len],

type_2_response[21+4+target_len], type_2_response[22+4+target_len],

type_2_response[23+4+target_len], type_2_response[24+4+target_len],

type_2_response[25+4+target_len], type_2_response[26+4+target_len],

type_2_response[27+4+target_len]);

dump(dtitle: "Challenge", ddata: Challenge);

Once we have extracted them, we can include the required authentication functions already
created for us in the crypto_func.inc file:

include("crypto_func.inc");

We also can start building our response to the Web server by first converting the password
to Unicode form. Note that this is a quick hack to generating a Unicode string from a plain
ASCII string; this is by no means a real method of converting an ASCII string to Unicode.
Mainly this form doesn’t enable support for non-ASCII characters in the password; that is, there
is no support for any language other than English.

password = "beyondsecurity";

pass = NULL;

for (i=0;i < strlen(password);i++)

pass += password[i] + raw_string(0x00);

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 67

332_NSE_05.qxd 7/14/05 10:32 AM Page 67

Once we have converted our password to Unicode, we can feed it into the
NTLM_Response function, which in turn will compute the required NTLM response to the
challenge:

ntlm_response = NTLM_Response(password:pass, challenge:challenge);

if (!isnull(ntlm_response))

ipass = ntlm_response[0];

dump(dtitle: "ipass", ddata: ipass);

The challenge response will then be stored in the variable ipass.You probably noticed that
the ntlm_response returned from the NTLM_Response function contains an array of values;
however, we are interested in only the data found at location zero.The rest of the data is of no
use to us.

We are almost ready to create our response. We first need to compute a few values:

domain_off = 66;

username_off = domain_off + strlen(domain);

hostname_off = username_off + strlen (username);

lm_off = hostname_off + strlen(hostname);

Now we put everything together: domain name, hostname, username, and challenge
response.

type_3_message = raw_string("NTLMSSP", 0x00,

0x03, 0x00, 0x00, 0x00, # Type 3 message

0x18, 0x00, # LanManager response length (always 0x18)

0x18, 0x00, # LanManager response length (always 0x18)

lm_off, 0x00, # LanManager response offset (4 bytes)

0x00, 0x00, # Zeros

0x18, 0x00, # NT response length (always 0x18)

0x18, 0x00, # NT response length (always 0x18)

lm_off, 0x00, # NT response offset (4 bytes)

0x00, 0x00, # Zeros

strlen(domain), 0x00, # domain string length

strlen(domain), 0x00, # domain string length

domain_off, 0x00, # domain string offset (4 bytes)

0x00, 0x00, # Zeros

strlen(username), 0x00, # username string length

strlen(username), 0x00, # username string length

username_off, 0x00, # username string offset (4 bytes)

0x00, 0x00, # Zeros

strlen(hostname), 0x00, # host string length

strlen(hostname), 0x00, # host string length

hostname_off, 0x00, # host string offset (4 bytes)

0x00, 0x00, # Zeros

0x00,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, # Session key

0x82, 0x01, # Flags

0x00, 0x00, # Zeros

0x00,

domain,

username,

hostname,

68 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 68

ipass,

0x00);

dump(dtitle: "type_3_message", ddata: type_3_message);

Once we have constructed our Type 3 message, we just need to encode it, put it inside an
HTTP request, and send it off to the server.All these steps, of course, are done without discon-
necting our existing socket, as the challenge response is valid for only this connection:

type_3_message_base64 = base64(str:type_3_message);

request = string("GET / HTTP/1.1\r\n",

"Host: 192.168.1.243\r\n",

"User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7.5) Beyond Security\r\n",

"Accept: text/html\r\n",

"Keep-Alive: 300\r\n",

"Connection: keep-alive\r\n",

"Authorization: NTLM ", type_3_message_base64, "\r\n",

"\r\n");

soc = open_sock_tcp(port);

send(socket:soc, data:request);

The data returned from the next lines should be the requested page, if a HTTP error code

401 is returned our authentication process wasn't completed properly:

while (response = recv(socket:soc, length: 2048))

{

display("response: ", response, "\n");

}

close(soc);

}

}

}

Swiss Army Knife…

Bringing It All Together
Now that we have a working NTLM implementation, we can place it into the
http_keepalive.inc mechanism which in turn will allow any Web-based sessions being
conducted against an NTLM-requiring server to be properly authenticated. The
changes required in http_keepalive.inc include resending the type_1_message when-
ever a connection is dropped, retrieving the response, and generating the
type_3_message to complete the NTLM session.

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 69

332_NSE_05.qxd 7/14/05 10:32 AM Page 69

Improving the MySQL
Test by Utilizing Packet Dumps
Many of the product tests incorporated into Nessus try to determine the existence of a vulnera-
bility with the least effort possible.This is due to two main reasons: the sheer number of tests
being created makes it impossible to spend too much time on each test, and most vulnerabilities
can be determined without implementing the full range of the protocol required.

However, this approach poses a problem once the products have become more advanced and
different versions of the product come out. Not talking to the product with its protocol is most
likely to cause false positives or, even worse, false negatives.

One such example is the MySQL Unpassworded test. Version 1.22 of the test used a very
simple algorithm to extract the database names returned by the show databases command.The
algorithm simply went through the response, looked into predefined positions for mark points,
and read anything afterward.This kind of algorithm is prone to problems because it lacks the
proper implementation of the protocol, and as such, can cause false positives or in some cases,
false negatives. One such false negative is the protocol difference that exists between MySQL
version 3.xx and MySQL version 4.xx, which caused the tests to return garbage or empty values
in some cases.

These kinds of false positives and false negatives can be easily remedied by implementing the
MySQL protocol, or at least part of it. In our case all we are interested in is connecting to the
MySQL server, authenticating with a NULL password, and extracting a list of all the databases
available to us.This can be done with very little understanding of the whole MySQL protocol,
using a very commonly used network sniffer called Ethereal.

For our development environment, we will be using MySQL version 3.23.58 and will fool-
proof our updates by running it against MySQL version 4.xx.xx. We will begin with capturing
the traffic generated by the command-line utility mysql and then comparing it to our existing
test, currently at version 1.22.

The command line mysql executed with the following commands will return the packets
shown in the following example (this example displays an abbreviated form of the packets):

Master Craftsman…

Further Improving the MySQL Implementation
The code illustrated in the following example doesn’t completely implement the
MySQL protocol. For example, it lacks support for its cryptographic layer because
supporting the cryptographic layer is currently outside the scope of this test.

Future versions of this script that will support the cryptographic layer will
improve the ability of this script to detect whether a remote host is vulnerable or not.

70 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 70

heart.beyondsecurity.com:$ mysql -h 192.168.1.56 -u root

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 19300 to server version: 3.23.58

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> show databases;

+-------------+

| Database |

+-------------+

| SecuriTeam |

| mysql |

| test |

+-------------+

2 rows in set (0.00 sec)

mysql> \q

Bye

Upon connecting to the MySQL server, we send the following packet to it:

MySQL Protocol

Packet Length: 40

Packet Number: 0

Server Greeting

Protocol: 10

Version: 3.23.58

Thread ID: 19300

Salt: |".b%-Q2

Caps: 0x002c

....0 = Long Password: Not set

....0. = Found Rows: Not set

....1.. = Long Flag: Set

.... 1... = Connect With Database: Set

....0 = Dont Allow database.table.column: Not set

....1. = Can use compression protocol: Set

....0.. = ODBC Client: Not set

.... 0... = Can Use LOAD DATA LOCAL: Not set

.... ...0 = Ignore Spaces before (: Not set

.... ..0. = Support the mysql_change_user(): Not set

.... .0.. = an Interactive Client: Not set

.... 0... = Switch to SSL after handshake: Not set

...0 = Ignore sigpipes: Not set

..0. = Client knows about transactions: Not set

Charset: latin1 (8)

Status: AUTOCOMMIT (2)

Unused:

We don’t need any of the aforementioned information to conclude an authentication pro-
cess with the MySQL server; therefore, we can move ahead to the next packet:

MySQL Protocol

Packet Length: 10

Packet Number: 1

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 71

332_NSE_05.qxd 7/14/05 10:32 AM Page 71

Login Packet

Caps: 0x2485

....1 = Long Password: Set

....0. = Found Rows: Not set

....1.. = Long Flag: Set

.... 0... = Connect With Database: Not set

....0 = Dont Allow database.table.column: Not set

....0. = Can use compression protocol: Not set

....0.. = ODBC Client: Not set

.... 1... = Can Use LOAD DATA LOCAL: Set

.... ...0 = Ignore Spaces before (: Not set

.... ..0. = Support the mysql_change_user(): Not set

.... .1.. = an Interactive Client: Set

.... 0... = Switch to SSL after handshake: Not set

...0 = Ignore sigpipes: Not set

..1. = Client knows about transactions: Set

MAX Packet: 16777215

Username: root

Password:

As you can see, we are logging in with the username root with an empty password. We now
need to start processing the response as it contains whether we were successful or not:

MySQL Protocol

Packet Length: 3

Packet Number: 2

Response Code: 0

Payload:

Response code 0 means that we were able to complete the previous transaction (that is, log
on to the remote MySQL server). We can now continue and send our show databases request:

MySQL Protocol

Packet Length: 15

Packet Number: 0

Command

Command: Query (3)

Parameter: show databases

What follows next is the response to our show databases request:

MySQL Protocol

Packet Length: 1

Packet Number: 1

Response Code: 1

MySQL Protocol

Packet Length: 20

Packet Number: 2

Response Code: 0

Payload: \bDatabase\003@

MySQL Protocol

Packet Length: 1

Packet Number: 3

Response Code: 254

72 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 72

MySQL Protocol

Packet Length: 11

Packet Number: 4

Response Code: 11

Payload: SecuriTeam

MySQL Protocol

Packet Length: 6

Packet Number: 5

Response Code: 5

Payload: mysql

MySQL Protocol

Packet Length: 5

Packet Number: 6

Response Code: 4

Payload: test

MySQL Protocol

Packet Length: 1

Packet Number: 7

Response Code: 254

As you can see, the packet is fairly simple to parse because its structure is the same for all
blocks found in the response.The following example is a pseudo-structure because we are not
quoting it from the official protocol specification:

struct mysql_reponse

{

byte Packet_Len[3];

byte Packet_Num;

byte Response_Code;

byte *Additional_Data;

}

The Additional_Data section’s structure and length depend on two factors: the Packet_Len
value and the Response_Code value. We will concentrate on one Response_Code, response
code number 254.

The first instance of response code number 254 means that from this point any additional
structures that follow are part of the response to the command show databases, whereas the
second instance of response code number 254 means that no additional responses to the com-
mand show databases will follow.

Once the response code number 254 has been specified, the value returned within the
response code field is the length in bytes of the name of the database present on the remote
MySQL server. For example:

MySQL Protocol

Packet Length: 11

Packet Number: 4

Response Code: 11

Payload: SecuriTeam

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 73

332_NSE_05.qxd 7/14/05 10:32 AM Page 73

Thus, we need to build a fairly simple response interpreter that supports two states—grab
database name after the first appearance of response code 254 and stop grabbing database names
after the second appearance of the response code 254.

Let’s begin with writing the improved NASL:

#

MySQL Unpassworded improved by Noam Rathaus of Beyond Security Ltd.

#

#

The following is a complete rewrite of the mysql_unpassworded.nasl file

making it more compatible throughout the versions of MySQL Noam Rathaus

#

We will use the dump() function found in the dump.inc file to allow us to better debug our
progress:

include("dump.inc");

debug = 0;

We will start off with determining which port MySQL is listening on. By default, it will
listen on port 3306; however, this doesn’t have to be so.

port = get_kb_item("Services/mysql");

if(!port)port = 3306;

if(!get_port_state(port))exit(0);

Once we know the port MySQL listens on, we can open a connection to it and start recre-
ating what we have just seen using Ethereal and the mysql command-line client:

soc = open_sock_tcp(port);

if(!soc)exit(0);

r1 = recv(socket:soc, length:1024);

As the minimum length of the response received from a MySQL is 7 bytes, we first need to
determine that we aren’t processing a response that isn’t from a MySQL server:

if(strlen(r1) < 7)exit(0);

Because some MySQL servers will automatically respond with an Access Denied response or
something similar, we can quickly determine this by checking for predetermined strings. We can
also alter the user if MySQL is blindly refusing connections because of high load, which means
that it would be worthwhile to re-scan the MySQL service when it is less loaded with connec-
tions:

if (" is not allowed to connect to this MySQL" >< r1) exit(0);

if ("Access denied" >< r1)exit(0);

if ("is blocked because of many connection errors" >< r1) {

security_note(port:port, data:'This MySQL server is temporarily refusing

connections.\n');

exit(0);

}

74 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 74

Once we have established a connection, we can proceed to tell MySQL that we are inter-
ested in logging on to it:

str = raw_string(0x0A, 0x00, 0x00, # Packet Length

0x01, # Packet Number

0x85, 0x04, # Capabilities (Long Password, Long Flag, Can Use LOAD DATA LOCAL,

Interactive Client, Client Knows Transactions

0x00, 0x00, 0x80, # Max Packet (arbitrary value is also OK)

0x72, 0x6F, 0x6F, 0x74, 0x00 # NULL terminated root username

);

Once we have constructed our packet, we can send it to the MySQL server and monitor its
response:

send(socket:soc, data:str);

r1 = recv(socket:soc, length:4096);

If needed we can also dump the content of the response:

if (debug)

{

dump(dtitle: "r1", ddata: r1);

}

If the response returned is of length zero, we shamefully exit the test, as something must
have gone wrong:

if(!strlen(r1))exit(0);

We can now proceed to disassemble the packet received. We start with determining the
packet length, packet number, and response code:

packetlen = ord(r1[0]) + ord(r1[1])*256 + ord(r1[2])*256*256 - 1; # Packet Length of 1 is

actually 0

packetnumber = ord(r1[3]);

responsecode = ord(r1[4]);

As we already have proceeded to disassemble some parts of the packet, we can capture just
the payload part by using the handy substr function, which reads a stream from an initial position
up to number of bytes we want (i.e. length):

payload = substr(r1, 5, 5+packetlen-1);

Because we find debugging a handy tool in determining that we have done everything cor-
rectly up to a certain point, we used the following line to display all of the processed variables:

if (debug)

{

display("packetlen: ", packetlen, " packetnumber: ", packetnumber, "\n");

display("responsecode: ", responsecode, "\n");

dump(dtitle: "payload", ddata: payload);

}

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 75

332_NSE_05.qxd 7/14/05 10:32 AM Page 75

As you recall, the response code of zero indicates that we in fact were able to log on to the
remote MySQL server.The following code will determine if this is true by verifying the
response code’s value.

If the response code is as we expected, we can move forward and again create a much
smaller payload for processing. If it’s not, for example in this case, response code number 255 or
Access Denied, we need to exit gracefully.

if (responsecode == 255)

{

errorcode = ord(r1[5]) + ord(r1[6])*256;

payload = substr(r1, 7, 7+packetlen-1);

By steadily decreasing the size of the payload, we can verify that we have in fact successfully
analyzed all previous parts of the packet.Again, we can dump the newly acquired error code and
payload with the following code:

if (debug)

{

display("errorcode: ", errorcode, "\n");

dump(dtitle: "payload", ddata: payload);

}

Again, as error code 255 means Access Denied, we need to close the socket and exit:
ErrorCode 255 is access denied

close(soc);

exit(0);

}

Once we have completed the logon process, we can proceed to querying the remote
MySQL server for a list of its databases.This step is done by generating such a packet as this one:

str = raw_string(

0x0F, 0x00, 0x00, # Packet length

0x00, # Packet number

0x03 # Command: Query

) + "show databases"; # The command we want to execute

Swiss Army Knife…

MySQL Query Support
Once this implementation of the MySQL protocol is utilized, the show databases
command can be replaced with other more informative commands, for example the
show tables or a list of the users on the remote host via the select * from mysql.user
command.

76 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 76

As before, once we have constructed the packet to send, we send it, await the MySQL’s
server response, and disconnect the connection, as we require no additional information from the
remote MySQL server:

send(socket:soc, data:str);

r = recv(socket:soc, length:2048);

close(soc);

if (debug)

{

dump(dtitle: "r", ddata: r);

display("strlen(r): ", strlen(r), "\n");

}

We will use a few markers to help us analyze the response.The first one is pos, which will
store the position inside the packet we are at.The dbs marker will be a comma separated by a list
of databases we have discovered, whereas ok will store the state of the packet analysis (that is,
whether additional data has to be processed or not).

pos = 0;

dbs = "";

ok = 1;

We will store the state of the database name-capturing process using two parameters:

Database_response = 0;

Database_capture = 0;

We will also verify whether we have handled this section of the packet using the following
parameter:

skip = 0;

The following algorithm can be used to analyze the data returned by the remote MySQL
server:

■ Subtract a subsection packet from the original one depending on the pos parameter
and pass it on

■ Check the value of the response code. If it’s the first appearance of error code 254, it
will initiate the database name-capturing process. If it’s the second appearance of the
error code 254, it will terminate the database name-capturing process.

■ The pos parameter will be moved to next subsection of the packet.

■ Return to 1 unless no additional data is available for processing.

The following is the NASL interpretation of the preceding algorithm.

while(ok)

{

skip = 0;

if (debug)

{

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 77

332_NSE_05.qxd 7/14/05 10:32 AM Page 77

display("pos: ", pos, "\n");

}

packetlen = ord(r[pos]) + ord(r[pos+1])*256 + ord(r[pos+2])*256*256 - 1; # Packet Length

is 1 is actually 0 bytes

packetnumber = ord(r[pos+3]);

responsecode = ord(r[pos+4]);

payload = substr(r, pos+5, pos+5+packetlen-1);

if (debug)

{

display("packetlen: ", packetlen, " packetnumber: ", packetnumber, " responsecode: ",

responsecode, "\n");

dump(dtitle: "payload", ddata: payload);

}

if ((!skip) && (responsecode == 254) && (Database_capture == 1))

{

skip = 1;

Database_capture = 0;

if (debug)

{

display("Stopped capturing DBS\n");

}

}

if ((!skip) && (responsecode == 254) && (Database_capture == 0))

{

skip = 1;

Database_capture = 1;

if (debug)

{

display("Capuring DBS\n");

}

}

if ((!skip) && (payload >< "Database") && (responsecode == 0))

{

skip = 1;

if (debug)

{

display("Found Database list\n");

}

Database_response = 1;

}

if ((!skip) && Database_capture)

{

if (debug)

{

display("payload (dbs): ", payload, "\n");

}

if (dbs)

78 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 78

{

dbs = string(dbs, ", ", payload);

}

else

{

dbs = payload;

}

}

pos = pos + packetlen + 5;

if (pos >= strlen(r))

{

ok = 0;

}

}

Once the algorithm has completed its job, all that is left is to print the results and dynami-
cally add our comma-separated database list to the response displayed by the Nessus client:

report = string("Your MySQL database is not password protected.\n\n",

"Anyone can connect to it and do whatever he wants to your data\n",

"(deleting a database, adding bogus entries, ...)\n",

"We could collect the list of databases installed on the remote host :\n\n",

dbs,

"\n",

"Solution : Log into this host, and set a password for the root user\n",

"through the command 'mysqladmin -u root password <newpassword>'\n",

"Read the MySQL manual (available on www.mysql.com) for details.\n",

"In addition to this, it is not recommended that you let your MySQL\n",

"daemon listen to request from anywhere in the world. You should filter\n",

"incoming connections to this port.\n\n",

"Risk factor : High");

security_hole(port:port, data:report);

If you compare the NASL code in the preceding example with the original version of
NASL that didn’t include the preceding interpretation of the MySQL protocol, you will prob-
ably notice that the version in the preceding example is more complex and that it requires a
deeper understanding of the MySQL protocol.

It doesn’t mean that the original version was not able to detect the presence of the vulnera-
bility; rather, it wasn’t able to handle any changes to what it expected to receive, whereas this
version “understands” how the MySQL protocol works and would work as long as the MySQL
protocol remains the same.

Improving Nessus’ GetFileVersion
Function by Creating a PE Header Parser
Some of Nessus’ Windows-based security tests, mainly those related to MSXX-XXX advisories,
require the ability to open executables or DLLs (Dynamic Link Libraries) and retrieve from
them the product version.This product version is then used to determine whether the version

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 79

332_NSE_05.qxd 7/14/05 10:32 AM Page 79

being used on the remote host is vulnerable to attack.This kind of testing is very accurate and in
most cases imitates the way Microsoft’s Windows Update determines whether you are running a
vulnerable version.

Nessus includes a special function called GetFileVersion() provided by the smb_nt.inc
include file that handles this version retrieval.The function receives four parameters, a socket
through which all communication will be conducted, a uid and tid pair that are assigned to each
SMB communication channel, and an fid, the file descriptor that will be used to read informa-
tion in the remote file.

The current version of the GetFileVersion() function reads 16,384 bytes from the file
descriptor using the ReadAndX function:

tmp = ReadAndX(socket: soc, uid: uid, tid: tid, fid: fid, count:16384, off:off);

It removes all the NULL characters:

tmp = str_replace(find:raw_string(0), replace:"", string:tmp);

It also goes off to look for the string ProductVersion:

version = strstr(data, "ProductVersion");

Once it has found the product version, it will start off by reading the content of the bytes
that follow it, and it will accumulate into its v buffer only those characters that are either the
number zero through nine or are the character that represents the character dot:

for(i=strlen("ProductVersion");i<len;i++)

{

if((ord(version[i]) < ord("0") || ord(version[i]) > ord("9")) && version[i] != ".")

return (v);

else

v += version[i];

}

If the string is not found, the function will move to the next 16,384 bytes. If none are found
there as well and there are no more bytes available for reading, the function will terminate and
return NULL as the version.

As you probably understand, this is not a very good method of finding what we seek, mainly
because reading 16,384 bytes and then looking for the string ProductVersion can be made redun-
dant if we would beforehand read the file’s headers and jump to the right offsets where the
ProductVersion data is stored.

Before we begin writing the actual code, we need to first understand how the executable
and DLL files are structured in Windows. Both executable and DLL files of Windows are
defined by the PE (Portable Executable) file format.

PE files can be outlined in the following manner:

■ MS-DOS header

■ MS-DOS stub

■ PE header

■ Section header

80 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 80

■ Section 1

■ Section 2

■ Section ...

■ Section n

PE files must start with a simple DOS MZ header that allows the DOS operating system to
recognize this file as its own and proceed to running the DOS stub that is located just after the
DOS MZ header.The DOS stub holds inside it a very simple executable that in very plain
words just writes to the user that:“This program requires Windows.” Programmers may replace
this section with any other executable they desire; however, in most cases they leave it to the
assemblers or compilers to add. In any case both these sections are of no interest to us.

After the DOS stub you can find the PE header. This is the first section that we are interested
in reading.This section contains essential things that the PE requires for its proper execution.
The section is constructed in accordance with the IMAGE_NT_HEADERS data structure.

To save time and network traffic, we would want to skip the DOS stub section altogether;
therefore, we could do what the operating system does: read the DOS MZ header, retrieve the
offset where the PE header can be found, and read from that offset skipping the entire DOS stub
section.

The PE header contains a Signature variable that actually consists of the following constant
four bytes: PE\0\0, the letters P and E followed by two NULL characters, and two variables that
contain information on the file.As before this section can be skipped, as it doesn’t hold the value
of ProductVersion.

Next, we stumble upon Section Header, or as it’s called by Microsoft, COFF File Header.The
section contains the information shown in Table 5.5.

Table 5.5 The GetFileVersion() Section Header

Size Field Description

2 Machine Number identifying type of target machine.
2 NumberOfSections Number of sections; indicates size of the Section Table,

which immediately follows the headers.
4 TimeDateStamp Time and date the file was created.
4 PointerToSymbolTable File offset of the COFF symbol table or 0 if none is pre-

sent.
4 NumberOfSymbols Number of entries in the symbol table. This data can be

used in locating the string table, which immediately fol-
lows the symbol table.

2 SizeOfOptionalHeader Size of the optional header, which is required for exe-
cutable files but not for object files. An object file
should have a value of 0 here. The format is described
in the section “Optional Header.”

2 Characteristics Flags indicating attributes of the file.

© Microsoft Corp. at http://www.cs.ucsb.edu/~nomed/docs/pecoff.html

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 81

332_NSE_05.qxd 7/14/05 10:32 AM Page 81

The only information found here that is of interest to us is the NumberOfSections field, as it
holds the size of the Section table that follows the Section header. Inside one of the Sections that
follow is our ProductVersion value. Once we know the NumberOfSections value, we can proceed to
reading through them.The structure of each section is shown in Table 5.6.

Table 5.6 The Structure of Each Section of GetFileVersion()

Size Field Description

8 Name An 8-byte, null-padded ASCII string. There is no termi-
nating null if the string is exactly eight characters long. For
longer names, this field contains a slash (/) followed by an
ASCII representation of a decimal number. This number is
an offset into the string table. Executable images do not
use a string table and do not support section names
longer than eight characters. Long names in object files
will be truncated if emitted to an executable file.

4 VirtualSize Total size of the section when loaded into memory. If this
value is greater than SizeofRawData, the section is zero-
padded. This field is valid only for executable images and
should be set to 0 for object files.

4 VirtualAddress For executable images this is the address of the first byte
of the section, when loaded into memory, relative to the
image base. For object files, this field is the address of the
first byte before relocation is applied; for simplicity, com-
pilers should set this to zero. Otherwise, it is an arbitrary
value that is subtracted from offsets during relocation.

4 SizeOfRawData Size of the section (object file) or size of the initialized
data on disk (image files). For executable image, this
must be a multiple of FileAlignment from the optional
header. If this is less than VirtualSize, the remainder of
the section is zero filled. Because this field is rounded
while the VirtualSize field is not, it is possible for this to
be greater than VirtualSize as well. When a section con-
tains only uninitialized data, this field should be 0.

4 PointerToRawData File pointer to section’s first page within the COFF file.
For executable images, this must be a multiple of
FileAlignment from the optional header. For object files,
the value should be aligned on a four-byte boundary for
best performance. When a section contains only uninitial-
ized data, this field should be 0.

4 PointerToRelocations File pointer to beginning of relocation entries for the sec-
tion. Set to 0 for executable images or if there are no
relocations.

4 PointerToLinenumbers File pointer to beginning of line-number entries for the
section. Set to 0 if there are no COFF line numbers.

2 NumberOfRelocations Number of relocation entries for the section. Set to 0 for
executable images.

82 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

Continued

332_NSE_05.qxd 7/14/05 10:32 AM Page 82

Table 5.6 continued The Structure of Each Section of GetFileVersion()

Size Field Description

2 NumberOfLine-numbers Number of line-number entries for the section.
4 Characteristics Flags describing section’s characteristics.

© Microsoft Corp. at http://www.cs.ucsb.edu/~nomed/docs/pecoff.html

Inside each section we are interested just in the PointerToRawData that we read from and the
SizeOfRawData, which tells us how many bytes we need to read from PointerToRawData. Once
we have found the Unicode representation of the string ProductVersion, any bytes that follow it
will be our product version.

Master Craftsman…

Shortening the PE Header Analysis Algorithm
The algorithms in the following example represent an almost complete description
of Windows’ PE header file parsing algorithms, but it lacks a few sections such as
those made to support internationalization. The algorithm, however, is not opti-
mized to the task at hand, (returning the remote host’s file version), so it can be fur-
ther trimmed down by making assumptions regarding the different sizes the
algorithm tries to determine from the file, such as in the case of section sizes,
resource locations, etcetera.

We can summarize the algorithms as follows:

1. Read the first 64 bytes off the file (DOS_HEADER_SIZE).

2. Verify that it contains the string MZ.

3. Return the PE_HEADER_OFFSET value from DOS_HEADER.

4. Read the first 4 bytes off the file while taking into account the offset (PE_SIGNA-
TURE_SIZE).

5. Verify that it contains the string PE\0\0 (the letters P and E followed by two NULL
characters).

6. Read 64 bytes off the file while taking into account the offset of PE_HEADER.This
would return the Optional Header section.

7. Extract the NumberOfSections field found inside the Optional Header section

8. Extract the size of the OPTIONAL_HEADER_SIZE if it's larger than zero; align
any future file reading accordingly.

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 83

332_NSE_05.qxd 7/14/05 10:32 AM Page 83

9. Read the OPTIONAL_HEADER_SIZE data section and verify that it is in fact an
Optional Header by verifying that the first two bytes are 0x0B and 0x01.

10. Extract the SectionAligment field from the Optional Header—this is optional, as
most PE files are properly aligned.

11. Extract the FileAligment field from the Optional Header—this is optional, as most PE
files are properly aligned.

12. Skip to the Section Table by moving out offset past the Optional Header section.

13. Read the first 40 bytes off the file while taking into account the offset we just calculated.

14. Extract the SectionName field by analyzing the first 8 bytes of the buffer we just read.

15. Compare the value given inside with the constant string .rsrc, if it isn’t equal, return to
step 13.

16. Extract the ResourceSectionVA, the resource section virtual address, by reading
the 4 bytes that follow the SectionName.

17. Extract the ResourceSectionOffset by reading the 4 bytes that follow the
ResourceSectionVA field.

18. Return to step 13 until the number of sections defined by NumberOfSections haves
been processed.

19. Move our offset position to the last ResourceSectionOffset and read the first 16 bytes.

20. Extract the value of NumberOfTypes and NumberOfNames found at the beginning
of the buffer.

21. Move forward our offset position by 16 bytes (IMAGE_RESOURCE_DIREC-
TORY_SIZE).

22. Move forward our offset position by NumberOfNames multiplied by 2 (for the
Unicode calculation) and by 2 again (for the unsigned short calculation).

23. Now we can go through all the resources found and find the entry that lists the
ProductVersion value.

24. Read the first 8 bytes off the file while taking into account the offset we just calcu-
lated (IMAGE_RESOURCE_DIRECTORY_ENTRY_SIZE).

25. Extract the ResourceName by reading the first 4 bytes from the buffer.

26. Compare it with 0x10000000 if no match, move the offset by 8 more bytes
(IMAGE_RESOURCE_DIRECTORY_ENTRY_SIZE) and return to step 24.

27. If it matches, extract the ResourceOffset by reading the next 4 bytes.

28. Move the offset by the value found in ResourceOffset and ResourceSectionOffset.

29. Read the first 4 bytes off the file while taking into account the offset we just
calculated.

30. Extract the value of NumberOf VersionResources and NumberOf VersionNames.

84 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 84

31. In the case where there is more than one NumberOf VersionResources or
Numberof VersionNames, move the offset accordingly.

32. Read the first 8 bytes off the file while taking into account the offset we just
calculated.

33. The first 8 bytes are the ResourceVirtualAddress, whereas the next 8 bytes are the
ResourceVirtualAddressSize.

34. Once we have both of these values, we can read the content of the Virtual Address,
and compare whether it contains the Unicode representation of the string
ProductVersion; if it does pull out the ProductVersion value.

35. We are done.

The algorithms look complicated; however, it is much more efficient than reading 16 kilo-
bytes. In fact much less bandwidth is required by the aforementioned algorithms.They are also
faster than reading 16 kilobytes, as they require fewer large files reading via ReadAndX().

The following is a representation of how the new GetFileVersion() function would look:

#####

Improved version of GetFileVersion by Beyond Security Ltd.

Authors:

Noam Rathaus

Ami Chayun

Eli Kara

function GetFileVersionEx(socket, uid, tid, fid)

{

debug_fileversion = 0;

if (debug_fileversion)

{

include("dump.inc");

}

DOS_HEADER_OFFSET = 0;

DOS_HEADER_SIZE = 64;

USHORT_SIZE = 2;

ULONG_SIZE = 4;

local_var PE_HEADER_OFFSET;

PE_HEADER_SIZE = 20;

PE_SIGNATURE_SIZE = 4;

OPTIONAL_HEADER_OFFSET = 0;

OPTIONAL_HEADER_SIZE = 0;

SECTION_HEADER_SIZE = 40;

SECTION_NAME_LENGTH = 8;

SECTION_NAME_RESOURCE = ".rsrc";

IMAGE_RESOURCE_DIRECTORY_SIZE = 2*ULONG_SIZE + 4*USHORT_SIZE;

IMAGE_RESOURCE_DIRECTORY_ENTRY_SIZE = 2*ULONG_SIZE;

IMAGE_RESOURCE_DATA_ENTRY_SIZE = 4*ULONG_SIZE;

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 85

332_NSE_05.qxd 7/14/05 10:32 AM Page 85

UNICODE_PRODUCT_VERSION = raw_string("P", 0x00, "r", 0x00, "o", 0x00, "d", 0x00, "u",

0x00, "c", 0x00, "t", 0x00, "V", 0x00, "e", 0x00, "r", 0x00, "s", 0x00, "i", 0x00, "o",

0x00, "n", 0x00);

UNICODE_FILE_VERSION = raw_string("F", 0x00, "i", 0x00, "l", 0x00, "e", 0x00, "V", 0x00,

"e", 0x00, "r", 0x00, "s", 0x00, "i", 0x00, "o", 0x00, "n", 0x00);

open the PE file and read the DOS header (first 64 bytes)

validate DOS signature and get pointer to PE signature

section = ReadAndX(socket: soc, uid: uid, tid: tid, fid: fid, count:DOS_HEADER_SIZE,

off:DOS_HEADER_OFFSET);

if (debug_fileversion)

{

dump(dtitle: "section", ddata: section);

display("strlen(section): ", strlen(section), "\n");

}

if (strlen(section) == 0)

{

if (debug_fileversion)

{

display("File empty?! maybe I was unable to open it..\n");

}

return NULL;

}

DOSSig = substr(section, 0, USHORT_SIZE);

if (debug_fileversion)

{

dump(dtitle: "DOSSig", ddata: DOSSig);

}

if (!((strlen(DOSSig) == 2) && (hexstr(DOSSig) == "4d5a")))

{ # not a MZ file

display("invalid DOS signature or missing DOS header in PE file\n");

return NULL;

}

get pointer to PE signature (e_lfanew)

data = substr(section, DOS_HEADER_SIZE-ULONG_SIZE, DOS_HEADER_SIZE);

if (debug_fileversion)

{

dump(dtitle: "data PE_HEADER_OFFSET", ddata: data);

}

PE_HEADER_OFFSET = ord(data[0])+ord(data[1])*256;

if (debug_fileversion)

{

display("PE_HEADER_OFFSET: ", PE_HEADER_OFFSET, "\n");

}

get PE signature (validate it) and header

section = ReadAndX(socket: soc, uid: uid, tid: tid, fid: fid, count:PE_SIGNATURE_SIZE,

off:PE_HEADER_OFFSET);

86 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 86

if (debug_fileversion)

{

dump(dtitle: "PE", ddata: section);

}

PESig = substr(section, 0, PE_SIGNATURE_SIZE);

if (debug_fileversion)

{

dump(dtitle: "PESig", ddata: PESig);

}

if (!((strlen(PESig) == 4) && (hexstr(PESig) == "50450000")))

{

display("invalid PE signature before PE header\n");

return NULL;

}

real offset to header

PE_HEADER_OFFSET += PE_SIGNATURE_SIZE;

if (debug_fileversion)

{

display ("* PE header found at offset ", PE_HEADER_OFFSET, "\n");

}

OPTIONAL_HEADER_OFFSET = PE_HEADER_OFFSET + PE_HEADER_SIZE;

section = ReadAndX(socket: soc, uid: uid, tid: tid, fid: fid, off: PE_HEADER_OFFSET, count:

PE_HEADER_SIZE);

data = substr(section, 2, 2+USHORT_SIZE);

nSections = ord(data[0]) + ord(data[1])*256;

if (debug_fileversion)

{

display("* Number of sections: ", nSections, "\n");

}

data = substr(section, PE_HEADER_SIZE-(2*USHORT_SIZE), PE_HEADER_SIZE-USHORT_SIZE);

OPTIONAL_HEADER_SIZE = ord(data[0]) + ord(data[1])*256;

if (debug_fileversion)

{

display("* Optional header size: ", OPTIONAL_HEADER_SIZE, "\n");

}

read optional header if present and extract file and section alignments

if (OPTIONAL_HEADER_SIZE > 0)

{

section = ReadAndX(socket: soc, uid: uid, tid: tid, fid: fid, off: OPTIONAL_HEADER_OFFSET,

count: OPTIONAL_HEADER_SIZE);

OptSig = substr(section, 0, USHORT_SIZE);

if (!((strlen(OptSig) == 2) && (hexstr(OptSig) == "0b01")))

{

display ("invalid PE optional header signature or no optional header found where one

SHOULD be!\n");

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 87

332_NSE_05.qxd 7/14/05 10:32 AM Page 87

return NULL;

}

get file and section alignment

data = substr(section, 8*ULONG_SIZE, 9*ULONG_SIZE);

SectionAlignment = ord(data[0]) + ord(data[1])*256 + ord(data[2])*256*256 +

ord(data[3])* 256 * 256 * 256;

if (debug_fileversion)

{

display("* Section alignment: ", SectionAlignment, "\n");

}

data = substr(section, 9*ULONG_SIZE, 10*ULONG_SIZE);

FileAlignment = ord(data[0]) + ord(data[1]) * 256 + ord(data[2]) * 256 * 256 +

ord(data[3])* 256 * 256 * 256;

if (debug_fileversion)

{

display ("* File alignment: ", FileAlignment, "\n");

}

}

iterate the section headers by reading each until we find the resource section (if

present)

we're starting right after the optional header

pos = OPTIONAL_HEADER_OFFSET + OPTIONAL_HEADER_SIZE;

local_var i;

found = 0;

local_var ResourceSectionVA;

local_var ResourceSectionOffset;

for(i = 0 ; (i < nSections) && (!found) ; i++)

{

read section and get the name string

section = ReadAndX(socket: soc, uid: uid, tid: tid, fid: fid, off: pos, count:

SECTION_HEADER_SIZE);

SectionName = substr(section, 0, strlen(SECTION_NAME_RESOURCE));

if (debug_fileversion)

{

dump(dtitle: "SectionName", ddata: SectionName);

}

if (SectionName >< raw_string(SECTION_NAME_RESOURCE))

{

found resource section, extract virtual address of section (VA for later use) and

offset to raw data

found = 1;

data = substr(section, SECTION_NAME_LENGTH + ULONG_SIZE, SECTION_NAME_LENGTH + 2 *

ULONG_SIZE - 1);

ResourceSectionVA = ord(data[0]) + ord(data[1]) * 256 + ord(data[2]) * 256 * 256 +

ord(data[3]) * 256 * 256 * 256;

88 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 88

if (debug_fileversion)

{

display("* Resource section VA: ", ResourceSectionVA, "\n");

}

data = substr(section, SECTION_NAME_LENGTH + (3*ULONG_SIZE), SECTION_NAME_LENGTH +

(4*ULONG_SIZE));

ResourceSectionOffset = ord(data[0]) + ord(data[1]) * 256 + ord(data[2]) * 256 * 256 +

ord(data[3]) * 256 * 256 * 256;

if (debug_fileversion)

{

display("* Resource section found at raw offset: ", ResourceSectionOffset, "\n");

}

}

we haven't found the resource section, move on to next section

pos += SECTION_HEADER_SIZE;

}

if (!found)

{

display ("\n* Couldn't locate resource section, aborting..\n");

return NULL;

}

moving to the rsrc section, reading the first RESOURCE_DIRECTORY which is the root of

the resource tree

read the number of resource types

pos = ResourceSectionOffset;

section = ReadAndX(socket:soc, uid: uid, tid: tid, fid: fid, off: pos, count:

IMAGE_RESOURCE_DIRECTORY_SIZE);

if (debug_fileversion)

{

dump(dtitle: "section of rsc", ddata: section);

}

data = substr(section, IMAGE_RESOURCE_DIRECTORY_SIZE-USHORT_SIZE,

IMAGE_RESOURCE_DIRECTORY_SIZE);

nTypes = ord(data[0]) + ord(data[1])*256;

data = substr(section, IMAGE_RESOURCE_DIRECTORY_SIZE - (2 * USHORT_SIZE),

IMAGE_RESOURCE_DIRECTORY_SIZE - USHORT_SIZE - 1);

nNames = ord(data[0]) + ord(data[1]) * 256;

if (debug_fileversion)

{

display("* Number of resource names at root node: ", nNames, "\n");

}

optional step if there are resource names would be to SKIP them :)

This is because resource names at the root node CANNOT be a Version resource type, at

the root they

are always user-defined types

pos += IMAGE_RESOURCE_DIRECTORY_SIZE; # offset to entries array

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 89

332_NSE_05.qxd 7/14/05 10:32 AM Page 89

if (nNames > 0)

{

pos += 2*nNames*ULONG_SIZE;

}

if (debug_fileversion)

{

display("* Number of resource types (RESOURCE_DIRECTORY_ENTRYs in root node): ", nTypes,

"\n");

}

iterate the resource types and locate Version information resource

node offsets are from the BEGINNING of the raw section data

our 'pos' was already incremented to skip over to the entries

local_var ResourceName;

local_var ResourceOffset;

found = 0;

for(i = 0 ; (i < nTypes) && (!found) ; i++)

{

get one RESOURCE_DIRECTORY_ENTRY struct and check name

in the root level, resource names are type IDs. Any ID not listed in the spec is user-

defined

any name (not ID) is always user-defined here

section = ReadAndX(socket: soc, uid: uid, tid: tid, fid: fid, off: pos, count:

IMAGE_RESOURCE_DIRECTORY_ENTRY_SIZE);

ResourceName = substr(section, 0, ULONG_SIZE);

if (((strlen(ResourceName) == 4) && (hexstr(ResourceName) == "10000000")))

{

found it, get the offset and clear the MSB (but consider that the byte ordering is

reversed)

found = 1;

data = substr(section, ULONG_SIZE, 2 * ULONG_SIZE - 1);

if (debug_fileversion)

{

dump(dtitle: "ResourceOffset", ddata: data);

}

ResourceOffset = ord(data[0]) + ord(data[1]) * 256 + ord(data[2]) * 256 * 256 +

(ord(data[3]) & 127) * 256 * 256 * 256;

if (debug_fileversion)

{

display("* Version resources found at offset ", ResourceSectionOffset+ResourceOffset,

"\n");

}

}

pos += IMAGE_RESOURCE_DIRECTORY_ENTRY_SIZE; # next entry

}

if (!found)

{

90 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 90

display ("\n* Couldn't find any Version information resource in resource section,

aborting..\n");

return NULL;

}

found Version resource in tree, now we parse ID or name, there should only be one

Version resource here

offset from beginning of raw section data

pos = ResourceSectionOffset + ResourceOffset;

section = ReadAndX(socket: soc, uid: uid, tid: tid, fid: fid, off: pos, count:

IMAGE_RESOURCE_DIRECTORY_SIZE);

data = substr(section, IMAGE_RESOURCE_DIRECTORY_SIZE-USHORT_SIZE,

IMAGE_RESOURCE_DIRECTORY_SIZE);

nVersionResources = ord(data[0]) + ord(data[1])*256;

data = substr(section, IMAGE_RESOURCE_DIRECTORY_SIZE-(2*USHORT_SIZE),

IMAGE_RESOURCE_DIRECTORY_SIZE-USHORT_SIZE);

nVersionNames = ord(data[0]) + ord(data[1])*256;

if (debug_fileversion)

{

display("* Number of Version resource IDs: ", nVersionResources," \n");

display("* Number of Version resource Names: ", nVersionNames, "\n");

}

TODO: iterate the resource names and IDs in case there is more than 1 (highly unlikely)

for now just use the first ID

pos += IMAGE_RESOURCE_DIRECTORY_SIZE; # offset to entries array

section = ReadAndX(socket: soc, uid: uid, tid: tid, fid: fid, off:pos,

count:IMAGE_RESOURCE_DIRECTORY_ENTRY_SIZE);

data = substr(section, ULONG_SIZE, 2*ULONG_SIZE);

ResourceOffset = ord(data[0]) + ord(data[1])*256 + ord(data[2])*256*256 + (ord(data[3]) &

127)* 256 * 256 * 256;

if (debug_fileversion)

{

display ("* Language ID node found at offset ", ResourceSectionOffset+ResourceOffset,

"\n");

}

we're in the language ID node, just going one more level to get to the DATA_DIRECTORY

struct

TODO: check that there are no more than 1 language IDs and if so take the default

0x0409 (us-en)

pos = ResourceSectionOffset + ResourceOffset;

section = ReadAndX(socket: soc, uid: uid, tid: tid, fid: fid, off:pos,

count:IMAGE_RESOURCE_DIRECTORY_SIZE);

nLanguageIDs = substr(section, IMAGE_RESOURCE_DIRECTORY_SIZE-USHORT_SIZE,

IMAGE_RESOURCE_DIRECTORY_SIZE);

pos += IMAGE_RESOURCE_DIRECTORY_SIZE; # go to the entries array

section = ReadAndX(socket: soc, uid: uid, tid: tid, fid: fid, off:pos,

count:IMAGE_RESOURCE_DIRECTORY_ENTRY_SIZE);

data = substr(section, 0, ULONG_SIZE);

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 91

332_NSE_05.qxd 7/14/05 10:32 AM Page 91

ResourceName = ord(data[0]) + ord(data[1])*256 + ord(data[2])*256*256 + ord(data[3])* 256

* 256 * 256;

data = substr(section, ULONG_SIZE, 2*ULONG_SIZE);

ResourceOffset = ord(data[0]) + ord(data[1])*256 + ord(data[2])*256*256 + ord(data[3])*

256 * 256 * 256;

if (debug_fileversion)

{

display("* Found ", nLanguageIDs, " language IDs in node: ");

display("Language ID ", ResourceName, ", Offset ", ResourceSectionOffset+ResourceOffset,

"\n");

}

we're in the RESOURCE_DATA_ENTRY which is the last leaf. It's the one pointing to the

raw resource binary block. However, only the VA is given so a bit calculation is needed

pos = ResourceSectionOffset + ResourceOffset;

if (debug_fileversion)

{

display("ResourceSectionOffset + ResourceOffset: ", pos, "\n");

}

section = ReadAndX(socket: soc, uid: uid, tid: tid, fid: fid, off:pos,

count:IMAGE_RESOURCE_DATA_ENTRY_SIZE);

data = substr(section, 0, ULONG_SIZE);

ResourceVA = ord(data[0]) + ord(data[1])*256 + ord(data[2])*256*256 + ord(data[3])* 256 *

256 * 256;

if (debug_fileversion)

{

display("ResourceVA calculated: ", ResourceVA, "\n");

}

data = substr(section, ULONG_SIZE, 2*ULONG_SIZE);

ResourceSize = ord(data[0]) + ord(data[1])*256 + ord(data[2])*256*256 + ord(data[3])* 256

* 256 * 256;

if (debug_fileversion)

{

display("ResourceSize calculated: ", ResourceSize, "\n");

}

ResourceOffset = ResourceVA - ResourceSectionVA;

if (debug_fileversion)

{

display("* Raw version resource VA: ", ResourceVA, " (raw offset: ",

ResourceSectionOffset+ResourceOffset, "), Size: ", ResourceSize, "\n");

}

read the raw block and look for the UNICODE string 'Product Version'

pos = ResourceSectionOffset + ResourceOffset;

section = ReadAndX(socket: soc, uid: uid, tid: tid, fid: fid, off:pos, count:ResourceSize);

92 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 92

if (debug_fileversion)

{

dump(dtitle: "Product Version chunk", ddata: section);

}

look for ProductVersion string

stroff = -1;

stroff = stridx(section, UNICODE_PRODUCT_VERSION);

if (stroff >= 0)

{

data = substr(section, stroff-4, stroff-4+USHORT_SIZE);

if (debug_fileversion)

{

dump(dtitle: "UNICODE_PRODUCT_VERSION", ddata: data);

}

len = ord(data[0]) + ord(data[1])*256;

if (debug_fileversion)

{

display("len: ", len, "\n");

}

start = stroff+strlen(UNICODE_PRODUCT_VERSION)+2;

end = stroff+strlen(UNICODE_PRODUCT_VERSION)+2+2*(len)-2;

if (debug_fileversion)

{

display("start: ", start, " end: ", end, "\n");

}

ProductVersion = substr(section, start, end);

if (debug_fileversion)

{

dump(dtitle: "RAW ProductVersion", ddata: ProductVersion);

}

ProductVersion = str_replace(find:raw_string(0), replace:"", string:ProductVersion);

if (debug_fileversion)

{

display("\n* ProductVersion: ", ProductVersion, "\n");

}

return ProductVersion;

}

stroff = -1;

stroff = stridx(section, UNICODE_FILE_VERSION);

if (stroff >= 0)

{

data = substr(section, stroff-4, stroff-4+USHORT_SIZE);

if (debug_fileversion)

{

dump(dtitle: "UNICODE_FILE_VERSION", ddata: data);

}

Analyzing GetFileVersion and MySQL Passwordless Test • Chapter 5 93

332_NSE_05.qxd 7/14/05 10:32 AM Page 93

len = ord(data[0]) + ord(data[1])*256;

if (debug_fileversion)

{

display("len: ", len, "\n");

}

start = stroff+strlen(UNICODE_FILE_VERSION)+2;

end = stroff+strlen(UNICODE_FILE_VERSION)+2+2+2*(len);

if (debug_fileversion)

{

display("start: ", start, " end: ", end, "\n");

}

FileVersion = substr(section, start, end);

if (debug_fileversion)

{

dump(dtitle: "RAW FileVersion", ddata: FileVersion);

}

FileVersion = str_replace(find:raw_string(0), replace:"", string:FileVersion);

if (debug_fileversion)

{

display("* FileVersion: ", FileVersion, "\n");

}

return FileVersion;

}

return NULL;

}

You can learn more about PE by going to Microsoft Portable Executable and Common
Object File Format Specification at www.microsoft.com/whdc/system/
platform/firmware/PECOFF.mspx.

Final Touches
You have learned how to improve the three mechanisms provided by the Nessus environment.
Once these mechanisms are improved they will each contribute to making the test being
launched by the Nessus environment become more accurate and faster. Each of these mecha-
nisms can be improved without harming or modifying large sections of the Nessus code base.
Moreover, each of these mechanisms can be improved by better implementing the protocol that
the Nessus functionality tried to implement.

94 Chapter 5 • Analyzing GetFileVersion and MySQL Passwordless Test

332_NSE_05.qxd 7/14/05 10:32 AM Page 94

Automating the
Creation of NASLs

Scripts and samples in this section:

■ Plugin Templates: Making Many from Few

■ Using a CGI Module for Plugin Creation

■ Advanced Plugin Generation:
XML Parsing for Plugin Creation

Chapter 6

95

332_NSE_06.qxd 7/14/05 1:57 PM Page 95

In This Toolbox
Nessus’ most powerful feature is that it enables users to write custom plugins.At first glance,
writing your own plugin seems to be an intimidating job, requiring deep knowledge in security
and networking.This chapter’s goal is to present several tools to automate and simplify plugin cre-
ation. First, we will examine the similarities among plugins from the same family with the goal of
creating templates that can be used for more than one plugin. Second, we will discuss the more
general approach to plugin creation using XML (Extensible Markup Language) data structures.

Plugin Templates: Making Many from Few
To get the most out of Nessus, you need powerful plugins.An effective plugin should have max-
imum detection abilities and minimum false positives. Instead of reinventing the wheel for every
plugin, templates provide a solid and tested base for entire plugin families. In this section, we will
discuss templates that you can create for Web applications.

Web applications have gained increasing popularity in the last couple of years.Additionally,
Web standards allow Web applications (if written properly) to be almost platform-independent.

Web applications typically include several security issues, some of them quite different from
the ones classic applications suffer. Because the user has much more control over the input the
application receives, the application must enforce strict content filtering. Insufficient content fil-
tering is the main cause of all Web application security problems.

Common Web Application Security Issues
The security issues that we will discuss here are divided into two distinct families; server-side exe-
cution and client-side execution. In the first type of vulnerability, the attacker has control over code
being run on the application server itself, whether the application is running the script (PHP, or
Hypertext Preprocessor, engine, for example) or a database that the application communicates
with.The latter type allows an attacker to inject code that runs on clients of the application.

Server-Side Execution (SQL Injection, Code Inclusion)
Common server-side execution techniques include SQL injection and code inclusion. In this
section we will cover the subject only superficially because there are many resources about this
subject available on the Internet.The following paragraphs, will, however, describe the subject
briefly.This background information was taken from frequently asked questions that appeared on
a Web page titled “SQL Injection Walkthrough” on Beyond Security’s Securiteam Web site,
http://www.securiteam.com/securityreviews/5DP0N1P76E.html.

SQL (Structured Query Language) injection is a trick to inject SQL queries and commands
as input via Web pages. Many Web pages take parameters from users, and make SQL queries to
the database. For instance, when a user logs in, the login Web page queries the database to deter-
mine if that username and password are valid. Using SQL injection, someone can send a crafted
username and/or password field that will change the SQL query and grant that person gained
privileges (i.e., arbitrary access to the database).

96 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 96

When trying to determine SQL injection vulnerabilities, you should look for pages that
allow you to submit data such as login page, search pages, and so on. Sometimes HTML pages
use the POST command to send parameters to another active server page (ASP).Therefore, you
may not see the parameters in the URL. However, you can check the source code of the HTML
and look for the FORM tag in the HTML code.You may find something like this in some
HTML codes:

<FORM action=Search/search.asp method=post>

<input type=hidden name=A value=C>

</FORM>

Everything between <FORM> and </FORM> has parameters that could potentially be
exploited.

You should also look for vulnerabilities on ASP, Java Server Page (JSP), Common Gateway
Interface (CGI), or PHP Web pages with URLs like http://duck/index.asp?id=10.

Any page containing URL encoded parameters, like id in the preceding example, is inter-
esting and should be tested for SQL injection.

Once you have located a potentially vulnerable Web page, you can test it for vulnerabilities.
Start with a single quote trick. Enter something like hi’ or 1=1--in the login, password, or URL
(Uniform Resource Locator) field.

If you must do this with a hidden field, just download the source HTML from the site, save
it in your hard disk, and modify the URL and hidden field accordingly. For example:

<FORM action=http://duck/Search/search.asp method=post>

<input type=hidden name=A value="hi' or 1=1--">

</FORM>

If there is a vulnerability, you will be able to log in without a valid username or password.
Let us look at why ’ or 1=1-- is important. Other than bypassing login pages, it is also pos-

sible to view extra information that is not normally available.Take an ASP that will link you to
another page using the URL

http://duck/index.asp?category=food.
In the URL, category is the variable name, and food is the value assigned to the variable. In

this case, an ASP might contain the following code:

v_cat = request("category")

sqlstr="SELECT * FROM product WHERE PCategory='" & v_cat & "'"

set rs=conn.execute(sqlstr)

As you can see, the variable will be wrapped into v_cat and thus the SQL statement should
become:

SELECT * FROM product WHERE PCategory='food'

The query should return a result set containing one or more rows that match the WHERE
condition, in this case, food.

Now, assume that we change the URL into something like this: http://duck/index.asp?cate-
gory=food’ or 1=1--

Automating the Creation of NASLs • Chapter 6 97

332_NSE_06.qxd 7/14/05 1:57 PM Page 97

Now, our variable v_cat equals food or 1=1-- “. If we substitute this in the SQL query, we
will have:

SELECT * FROM product WHERE PCategory='food' or 1=1--'

The query should now select everything from the product table regardless if PCategory is
equal to food or not.A double dash (--) tells the SQL server to ignore the rest of the query,
which will get rid of the last hanging single quote (‘). Sometimes, it may be possible to replace
double dash with single hash (#).

However, if it is not an SQL server, or you simply cannot ignore the rest of the query, you
also may try:

' or 'a'='a

The SQL query will now become:

SELECT * FROM product WHERE PCategory='food' or 'a'='a'

And it should return the same result.

Client-Side Execution (Code Injection,
Cross-Site Scripting, HTTP Response Splitting)
On the other side of the Web application vulnerability rainbow are the client-side vulnerabilities.
This type of vulnerability is caused by the same issue as SQL injections: unfiltered user parame-
ters. When user parameters are passed to the Web application, they can contain HTML
(Hypertext Markup Language) or HTTP (Hypertext Transfer Protocol) special characters. Even if
the input is never used in SQL or exec commands, an attacker can use this weakness if the user
input is printed back by the script as a result. For example, if the user is required to fill his or her
name in an HTML field, the HTML source can look something like:

<INPUT NAME="username" VALUE="please provide a valid username">

The attacker can enter something like:

"><SCRIPT SRC="http://hostilepage/evilscript.asp"></SCRIPT>

If the content is printed back unfiltered, the resultant HTML will include:

<INPUT NAME="username" VALUE=" "><SCRIPT SRC="http://hostilepage/evilscript.asp"></SCRIPT>

">

As you can see, the attacker injected arbitrary HTML code into the original HTML page,
and the resultant HTML will run the attacker’s script.

This is, of course, being run on the client browser, not on the server.This does present a
threat, though. For example, let us assume that a company holds a Web portal for its employees.

If the company’s site is vulnerable to cross-site scripting, an attacker can exploit the vulnera-
bility combined with some social engineering.The attacker can send an e-mail to all the
employees of the company, falsely stating that all the employees must renew their passwords
owing to a problem in the database.The e-mail would also contain a link that points to the
company’s site.To the untrained eye it will look valid, but actually it will point the person to the
attacker’s page to harvest passwords.

98 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 98

Creating Web Application Plugin Templates
Let’s begin with an example, a plugin that tests a simple SQL Injection vulnerability in phpBB’s
(http://phpbb.com) Calendar Pro Mod (www.securiteam.com/exploits/5XP021FFGU.html).

The first part is divided into two sections:The first part of the plugin is the description used
if the vulnerability was detected. Usually the description supplies details on the vulnerable
product, the vulnerability, and a proposed solution.The second part runs the test and detects the
vulnerability.

#

Copyright 2005 Ami Chayun

#

if (description) {

script_version("$Revision: 1.0 $");

name["english"] = "SQL Injection in phpBB 2.0.13 Calendar Pro Mod";

script_name(english:name["english"]);

desc["english"] = "

The remote host is running a version of phpBB that suffers from an SQL injection flaw in

the cal_view_month.php script.

An attacker can execute arbitrary SQL commands by injecting SQL code in the category

parameter.

Solution : Upgrade to a version after phpBB 2.0.13 when it becomes available and disable

the Calendar Pro mod until then.

Risk factor : Medium";

script_description(english:desc["english"]);

summary["english"] = "Checks for SQL injection in phpBB Calendar Pro Mod";

script_summary(english:summary["english"]);

script_category(ACT_GATHER_INFO);

script_copyright(english:"This script is Copyright (C) 2005 Ami Chayun");

family["english"] = "CGI abuses";

script_family(english:family["english"]);

script_require_ports("Services/www", 80);

exit(0);

}

include("http_func.inc");

include("http_keepalive.inc");

Test starts here

port = get_http_port(default:80);

if (!get_port_state(port)) exit(0);

req = http_get(item: "/cal_view_month.php?&month=04&year=2005&category='&action=print",

port:port);

buf = http_keepalive_send_recv(port:port, data:req, bodyonly:1);

Automating the Creation of NASLs • Chapter 6 99

332_NSE_06.qxd 7/14/05 1:57 PM Page 99

if(buf == NULL)exit(0);

if("SQL Error : 1064" >< buf)

security_warning(port);

Detecting Vulnerabilities
So how does the plugin detect the vulnerability? The vulnerability occurs in the category param-
eter of the script. We are able to inject arbitrary SQL content into the script by requesting a
page like:

http://target/cal_view_month.php?month=04&year=2005&category=’&action=print
As shown in Figure 6.1, a vulnerable server would usually contain the following text in the

reply:
“SQL Error: 1064 You have an error in your SQL syntax near ‘\’’ at line 1.”

SELECT cat_name FROM phpbb_cal_categories WHERE cat_id = \'

Figure 6.1 Exploiting a Vulnerability on a Vulnerable Site

The vendor released a patch for the issue, and trying to exploit the vulnerability on an
immune site should give a reply like the one shown in Figure 6.2.

Figure 6.2 Exploiting a Vulnerability on an Immune Site

The script requests the vulnerable page with an injected quote (‘).This will trigger the SQL
injection and will output the desired error. If the error is found in the reply, we can conclude
that the target host is vulnerable.

100 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 100

Making the Plugin More General
Let’s start generalizing the plugin. From here on we will change only the test itself; the descrip-
tion will be written again only if it is changed.

Parameterize the Detection and Trigger Strings
We are interested in a plugin suitable for general purposes, so we need to parameterize the URI
that triggers the error and the error string:

...

vulnerable_string = "SQL Error : 1064";

page = "cal_view_month.php";

params = "month=04&year=2005&category='&action=print";

uri = "/"+page+params;

req = http_get(item:uri, port:port);

buf = http_keepalive_send_recv(port:port, data:req, bodyonly:1);

if(buf == NULL)exit(0);

if(vulnerable_string >< buf)

security_warning(port);

After getting the strings out of the code, we can replace them with appropriate tags:

port = get_http_port(default:80);

if (!get_port_state(port)) exit(0);

vulnerable_string = "<VulnerableString/>";

page = "<Page/>";

params = "<CGIParams/>";

uri = string("/", page, params);

req = http_get(item:uri, port:port);

buf = http_keepalive_send_recv(port:port, data:req, bodyonly:1);

if(buf == NULL)exit(0);

if(vulnerable_string >< buf)

security_warning(port);

Allow Different Installation dirs
Another thing to consider is the installation path. What if the script is installed under /cgi-bin
and not in the Web server root? Nessus supplies us with a function just for this:

The cgi_dirs() function in the http_func include file will return the default installation path
cgi-bin (in apache) and /scripts (in IIS). If the user configured custom Web dirs in the knowl-
edge base, they will also be included.

An extended functionality is included in the DDI_Directory_Scanner.nasl plugin, which scans
for more than 700 known paths.This capability, combined with webmirror.nasl, which will be dis-
cussed next, provides accurate mapping of the target’s CGI paths. Both
DDI_Directory_Scanner.nasl and webmirror.nasl update the cgi_dirs list, so the only requirement is to
include either DDI_Directory_Scanner.nasl or webmirror.nasl (as it includes
DDI_Directory_Scanner.nasl) in the script dependencies.

Webmirror.nasl is a directory crawler, which allows a method of mapping a Web server by the
contents of its pages. For example, if the main index page contains a link to: /my-cgis/login.php,

Automating the Creation of NASLs • Chapter 6 101

332_NSE_06.qxd 7/14/05 1:57 PM Page 101

webmirror will add the my-cgis directory to the cgi_dir() list.This, of course, simplifies the work of
our plugin because we can use the knowledge gathered from this plugin in our test.

So the general approach to test under several directories will be:

foreach d (cgi_dirs())

{

req = http_get(item:string(d, uri), port:port);

buf = http_keepalive_send_recv(port:port, data:req, bodyonly:1);

if(buf == NULL) exit(0);

if(vulnerable_string >< buf)

{

security_warning(port);

exit(0);

}

}

NOTE

The downside of depending on webmirror.nasl or its counterpart, DDI_Directory_
Scanner.nasl, is the fact that these tests take a substantial amount of time to run,
especially on a Web server containing a lot of content or that responds slowly. When
testing the plugin before releasing it, you can remove webmirror.nasl from the
dependency list.

Also, if you plan to run your plugin as a stand-alone, or if you are sure that the
target application is installed in one of the default paths, it is not absolutely neces-
sary to depend on the webmirror.nasl or DDI_Directory_Scanner.nasl plugins. For
general usage, however, we highly recommend using these plugins.

Another important task is to check whether the page actually exists.This can be done with
is_cgi_installed_ka in http_func.

if(is_cgi_installed_ka(item: string(d, page), port:port))

{

req = http_get(item:string(d, uri), port:port);

buf = http_keepalive_send_recv(port:port, data:req,

...

}

Allow Different HTTP Methods
HTTP supports two major protocols to send form information: one is URI-encoded GET, and
the other is POST. Parameters passed in the GET method are written after a question mark (?),
for example, http://target/page.cgi?param=value.
The actual HTTP request will look like the following:

GET /page.cgi?param=value HTTP/1.1

Host: target

...

Passing parameters via GET is simple because it can be written as a URI (link to a browser)
where a POST command requires a FORM part in the HTML.The main reason POST is

102 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 102

sometimes preferred over GET is that some Web servers enforce maximum size on URI length,
limiting the amount of data that can be sent.

The same command in POST will look like the following:

<form action="/page" method="POST">

<input type="hidden" name="param" value="value">

<input type=submit value="Click Me" name="button">

</form>

According to the preceding command, the user will see a Click Me button. When this
button is clicked, the browser will perform a POST request like the following:

POST /page.cgi HTTP/1.1

Host: target

Content-Type: application/x-www-form-urlencoded

Content-Length: 27

param=value&button=Click+Me

...

The same parameters that were passed in the URI of the GET request are now encoded in
the body of the POST request. Because there is no limit to the size of the body, we must pass
the server the length of the content, in this case 27.

We want to be able to test SQL injection in POST as well as GET; therefore, we can
change the template to allow the user to select the preferred method:

if(method == "GET")

{

uri = string(d, page, "?", cgi_params);

req = http_get(item: uri, port:port);

}

else if (method == "POST")

{

req = http_post(item: string(d, page), port:port);

idx = stridx(req, '\r\n\r\n');

req = insstr(req, '\r\nContent-Length: ' + strlen(data) + '\r\n' +

'Content-Type: application/x-www-form-urlencoded\r\n\r\n' + cgi_params, idx);

}

buf = http_keepalive_send_recv(port:port, data:req, bodyonly:1);

if(buf == NULL)exit(0);

...

Multiple Attack Vectors
The power of a good plugin is in its attack vector.A string that would set off a vulnerability in
one product can be useless in another. Server reply strings are even more complicated and can
be completely different from one product version to the next.

The plugin template presented in this section aims to help the user build an effective plugin
with minimum effort.To provide this, we need to generalize the mechanism that searches for the
vulnerability.

Until now, the user supplied a URI and an expected response. How about letting the plugin
do the hard work for us?

We add this code to the beginning of the test, letting the users be as flexible as they need:

Automating the Creation of NASLs • Chapter 6 103

332_NSE_06.qxd 7/14/05 1:57 PM Page 103

user_vulnerable_string = "";

user_trigger_string = "";

vulnerable_param = "category";

page = string("/","cal_view_month.php");

cgi_params = "month=04&year=2005&category=&action=print";

test_dir_traversal = 1;

test_sql_injection = 1;

test_xss = 1;

First, we provide a valid page and parameter set, so our requests are legal to the target appli-
cation. Next, we provide a vulnerable CGI parameter name. We suspect that the category param-
eter is vulnerable to SQL injection, so we mark that we want to test for SQL injection. We
know that the vendor fixed the SQL injection in this parameter, but was the cross-site scripting
fixed, too? We would like to know, so we mark all three test options.

The next part of this addition is the attack vectors themselves. Here are some common
attack vectors and reply strings to match them:

###

Attack vectors

dir_traversal[0] = "/etc/passwd";

dir_traversal[1] = "../../../../../../../../etc/passwd";

dir_traversal[2] = "../../../../../../../../etc/passwd%00";

passwd_file[0] = "root:";

sql_injection[0] = "'";

sql_injection[1] = "%27";

sql_injection[2] = " group by";

sql_error[0] = "SQL Error : 1064";

sql_error[1] = "ODBC Microsoft Access Driver";

sql_error[2] = "SQLServer JDBC Driver";

sql_error[3] = "Microsoft JET Database Engine error '80040e14'";

XSS[0] = "<script>alert(document.cookie)</script>";

XSS[1] = "%22%3E%3Cscript%3Ealert%28document.cookie%29%3C%2Fscript%3E";

XSS[2] = "%22+onmouseover%3D%22javascript:alert%28%27foo%27%29%22+%22";

XSS_reply[0] = "<script>alert(document.cookie)</script>";

XSS_reply[1] = "javascript:alert('foo')";

From these attack vectors we can build the pool of options we will have for the attack. We
build a list of trigger strings and vulnerable reply strings:

trigger_strings = make_list(user_trigger_string);

vulnerable_strings = make_list(user_vulnerable_string);

if(test_dir_traversal)

{

trigger_strings = make_list(trigger_strings, dir_traversal);

vulnerable_strings = make_list(vulnerable_strings, passwd_file);

104 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 104

}

if(test_sql_injection)

{

trigger_strings = make_list(trigger_strings, sql_injection);

vulnerable_strings = make_list(vulnerable_strings, sql_error);

}

if(test_xss)

{

trigger_strings = make_list(trigger_strings, XSS);

vulnerable_strings = make_list(vulnerable_strings, XSS_reply);

}

The user_trigger_string and user_vulnerable_string are custom strings the user can add for the
test without modifying the generic strings.

Now for the test loop itself (this loop shows only the GET method. See the complete tem-
plate later for the entire loop):

foreach d (cgi_dirs())

{

if(is_cgi_installed_ka(item: string(d, page), port:port))

{

foreach trigger_string (trigger_strings)

{

attack_vector = ereg_replace(string:cgi_params,

pattern:vulnerable_param + "=[^&]*",

replace:vulnerable_param + "="+ trigger_string);

uri = string(d, page, "?", attack_vector);

req = http_get(item: uri, port:port);

#Send the request, and put in buf the response (body only or entire result)

buf = http_keepalive_send_recv(port:port, data:req, bodyonly:test_only_body);

if(buf == NULL) exit(0);

foreach vulnerable_string (vulnerable_strings)

{

if(strlen(vulnerable_string) > 0 && vulnerable_string >< buf)

{

display(req,"\n");

security_warning(port);

exit(0);

}

}

} #foreach attack vector

} #Is CGI installed

} #foreach web dir

The test is performed in two parts. First, we make sure the page we want exists in the cur-
rent directory.Then we take the original parameter list and change it to contain the trigger
string.The regular expression grabs the vulnerable_param=value part of the parameter list. We then
replace it with vulnerable_param=trigger_string to try to trigger the vulnerability.

The second part of the test id is the detection string in the server response. For each of the
strings in hand, we try to see if the information we want exists in the response.

Automating the Creation of NASLs • Chapter 6 105

332_NSE_06.qxd 7/14/05 1:57 PM Page 105

This algorithm actually performs a comprehensive test for all the known attack vectors.This
allows the user to perform vulnerability research on a specific Web application; all you need to
pass to the NASL is the parameter you suspect to be vulnerable, and the test will work its magic.

We now have several vulnerabilities at our disposal, so it would be wise to alert the user
about the exact situation that triggered the vulnerability. If we detect a vulnerability, we return
the exact details in the security warning:

if(strlen(vulnerable_string) > 0 && vulnerable_string >< buf)

{

report = "By injecting: '" + trigger_string +

"' to the '" + vulnerable_param +

"' parameter of " + page + " via " + method +

", we were able to trigger the following response '" +

vulnerable_string;

security_warning(port:port, data:report);

exit(0);

}

Swiss Army Knife…

Creepy Crawlers: Learn More about
Web Application Vulnerability Scanning
Writing a test for a specific Web application security flaw is one thing, but finding
new flaws in custom in-house applications is a completely different art. The Whisker
project provides a framework in Perl that supplies functionality for HTTP-based vul-
nerability testing. For more information visit the tool’s Web page at www.wire-
trip.net/rfp/lw.asp.

The most popular application based on this library is Nikto
(www.cirt.net/code/nikto.shtml). It performs a thorough scan of a Web server for
many known Web-based security flaws.

Nessus also has its own Web application scanner, a test known as tor-
turecgis.nasl. This test runs a set of attack vectors on each of the CGIs discovered by
webmirror.nasl.

Think you can do even better? The templates described here can easily be
turned into your own personal Web application scanners. Once you are thoroughly
acquainted with Nessus’ built-in functionality, you can write a plugin that scans your
in-house application for an abundance of security holes and flaws.

106 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 106

Increasing Plugin Accuracy
The weak spot of every security analysis is its credibility. If you fail to detect a real vulnerability,
you’re in trouble. If you falsely detect a vulnerability, you’re in trouble again. What causes these
troubles, and how can we overcome them?

The “Why Bother” Checks
If the target host doesn’t run an HTTP server, there is no point in testing it for SQL injection,
right?

A plugin can run a series of tests to avoid being run uselessly:

■ Test if the service is running on the target host. This is done with the fol-
lowing commands:

script_require_ports("Services/www", 80);

and in the plugin body:

port = get_http_port(default:80);

if (!get_port_state(port)) exit(0);

These lines determine if a Web server is running on the target host and will abort
if it is not.

■ Test for server capabilities. Let’s assume we are testing for a vulnerability in an ASP-
based Web application.Testing a target running Apache HTTP server is quite futile, as
Apache cannot serve ASP pages. Nessus provides the functionality to test for server capa-
bilities with the can_host_php and can_host_asp functions in http_func. Before we decide if
we want to use these functions, first let’s see how this check is being done.

Every Web server should return a Server header when it replies to any HTTP
request. For Apache HTTP server, this header usually looks like the following:

Server: Apache/1.3.27 (Linux/SuSE) PHP/4.3.1 mod_perl/1.27 mod_ssl/2.8.12

OpenSSL/0.9.6i

The server declares it is an Apache server and lists its capabilities (mod_perl,
mod_ssl, OpenSSL version and PHP). It makes sense to look in this reply to see
whether we should run the test or not.

An IIS server will usually answer with the simple header,“Server: Microsoft-
IIS/6.0,” stating only that it is in fact a Microsoft IIS server, and its version.

Looks quite simple, right? Actually too simple. In the effort to enforce security on
Web servers, a popular trend requires diligent system administrators to obscure the
Server header as much as possible. Load balancers and other content-aware firewalls also
sometimes decide that the Server header is too informative and cut it to a bare min-
imum. Even though the can_host_* functions try to evade such tricks, it is still easily
fooled, and the user should consider whether to test for capabilities beforehand.

One trick up our sleeves comes again from the friendly webmirror.nasl plugin.
When webmirror crawls the target’s Web site, it will look for PHP and ASP pages; if it
stumbles upon any, it will make sure to set the can_host_php and can_host_asp reliably,
even if the Web server banner does not include any useful information.

Automating the Creation of NASLs • Chapter 6 107

332_NSE_06.qxd 7/14/05 1:57 PM Page 107

Avoiding the Pitfalls
Here are some ways to avoid pitfalls:

■ Test for generic XSS. Assume the following scenario.You have discovered a new
vulnerability in a popular Web platform.The reckless designers forgot to test the id
parameter for metacharacters, allowing any hacker to show his l33t skillz
(http://en.wikipedia.org/wiki/Leet), take over the board and write his too-cool name
everywhere.You are eager to write a test for Nessus and gain eternal glory.Your test
looks something like the following:

if (description)

{

script_name(english:"Popular Web Forum (R) XSS");

desc["english"] = "A serious security flaw in Popular Web Forum 2.0.13 allows an

attacker to run arbitrary commands on your host.

Solution : Reinstall from scratch. No one is safe!

Risk factor : High";

script_description(english:desc["english"]);

}

include("http_func.inc");

include("http_keepalive.inc");

port = get_http_port(default:80);

if(!get_port_state(port))exit(0);

req = http_get(item:

"/index.asp?id=%3cscript%3ealert('I%20was%20here')%3c/script%3e", port:port);

buf = http_keepalive_send_recv(port:port, data:req, bodyonly:1);

if(buf == NULL)exit(0);

if("<script>alert('I was here')</script>" >< buf)

security_warning(port);

Besides the writer’s overenthusiasm, this plugin suffers from a serious flaw; it does
not check to see if we already detected generic SQL injection on the target.

Let’s say the target is an in-house Web application that is also written in ASP, and
by blind luck, it does not filter user input. Requesting http://target/index.
asp?id=%3Cscript would also affect the target host, even though the host doesn’t run
Popular Web Forum. If we had run a scan on this host and not tested for generic XSS,
the user would be alerted with more than he or she bargained for. Upon receiving the
results, you can be sure to expect a mail or phone call in the spirit of,“All this auto-
mated vulnerability assessment may be good for kids, but how do you expect us to
trust your results when you alert us that we have a problem in a product we don’t
even have installed?” Now go try and explain to the customer that the flaw does actu-
ally exist, but under different name.

For this type of scenario, it is the better-safe-than-sorry policy that will save your
hide. So we should add the generic XSS test:

if (get_kb_item(string("www/", port, "/generic_xss"))) exit(0);

■ Test for product installation. A popular approach in Web application testing states
that to make sure a target host is vulnerable to a specific vulnerability, first check that

108 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 108

the vulnerable product is even installed. Nessus provides various NASLs that test for
many Web applications. For example, the plugin phpbb_detect.nasl tests for an installa-
tion of phpbb.The plugin looks in the source of several pages (index.php and
/docs/CHANGELOG.html) for the regular expression Powered by.*phpBB.

To use the installation check, you should use script_dependencies(“phpbb_detect.nasl”)
and perform the following test in the test phase:

install = get_kb_item(string("www/", port, "/phpBB"));

if (isnull(install)) exit(0);

If the target host has an installation of phpBB, the string will exist, and the test
will run.The license of phpBB requires you to leave the docs directory intact, but if
someone decides to remove all the “Powered by ...” strings, the test will fail to detect
the installation.Again, the user has a choice of whether to use detection plugins.

■ Test for no404. A known issue when testing for Web application insecurities is the
infamous no 404 page.According to the HTTP 1.0 protocol (www.w3.org/Protocols/
rfc1945/rfc1945), when a server fails to find a requested URI, it should return a reply
with the code 404. When we build a request, we create something like the following:

http_get(item: uri, port:port);

buf = http_keepalive_send_recv(port:port, data:req);

If the page in the uri does not exist, buf should return with the server reply for
nonexistent pages. Preferably the reply will contain the “404 Not Found” header.

Some Web developers prefer to redirect the user to a known page when an
unknown page is requested.Although this usually does not affect the end user of the
product, when testing for a security vulnerability, this can be disastrous. For example, if
we request index.php?id=’ , the page does not exist, but instead of getting a 404
response, we get the main index page. In most cases this should present no problem,
but in the unlikely situation where the index page contains the string “SQL Error :
1064,” we will get a false positive.

Fortunately, there are a few countermeasures at our disposal:

■ Look for distinctive replies from the server. Looking for the string “Error” in
the reply is obviously more prone to false positives than looking for “You have an
error in your SQL syntax near ‘\’’.”The key is to find the right balance between
testing for too specific a string, and too generic a string.

■ Require script_dependencies(“no404.nasl”). The no404 plugin connects to the Web
server on the target host and requests several pages. Some of these should be existing
pages (like /, for example, which should be the page index) and some that should
never exist (random page names, for example). From the replies of the server, the script
tries to dig a string that appears only when a nonexistent page is requested. If it finds
such a string, it is saved in the knowledge base under the following line:

no404 = get_kb_item(strcat(“www/no404/”, port));
This string can be used later to detect whether the page we requested actually

exists on the server, or the page we received is a canned response.This will make your
life a lot easier when trying to debug false positive issues.

Automating the Creation of NASLs • Chapter 6 109

332_NSE_06.qxd 7/14/05 1:57 PM Page 109

■ Use is_cgi_installed_ka. The is_cgi_installed_ka function is aware of the no404 issue.
If the script has included no404.nasl in the dependencies, it will check if the no404
string was set. If the no404 string is set, the function will return FALSE, preventing
false positives.

Following these guidelines when writing a Web-based test will improve your
accuracy and help you evade the 404 situation.

■ Use body only when needed. Nessus was designed to be a network-oriented
auditing tool.This means that most of the built-in capabilities provide low-level access
to network protocol. When we use buf = http_keepalive_send_recv(, the reply will con-
tain the page we requested, but it will contain also all of the HTTP headers! When we
search for a string in the reply of the server, we may stumble upon a header containing
the string we sought, resulting in a false positive.

On the other hand, sometimes the body of the response will not contain any
useful information. For example, if the vulnerability triggers an internal server error
(code 500 family), the body of the response will probably be empty, but if we look in
the headers, we can see that the server replied with an error status.
Once again, it is up to the user to decide where to look for the result string.

Master Craftsman…

Getting Accurate: Add Attack
Vectors to Increase Your Detection Abilities
Web applications are odd creatures. User input is being parsed several times before
it reaches the target application. A firewall, an IDS (intrusion detection system), and
finally the Web server can all carry out different functions on your input.

Some Web application developers trust content filtering in the hands of dedi-
cated software such as Urlscan for the IIS (Internet Information Services) Web server
(www.microsoft.com/windows2000/downloads/recommended/urlscan/
default.asp) and mod_security for Apache (www.modsecurity.org/).

We all know that the < character is dangerous if not filtered properly and that
it can lead to cross-site scripting, but how many ways can one encode the < char-
acter? Here are just a few possibilities: %3C < < < < \x3C

To gain the real benefits of your Web application plugin, you need to increase
the amount of attack vectors in hand. Testing only for < can be insufficient, as it can
be filtered along the way, and the scan will come up empty. The more possibilities of
encoding you supply the plugin, the more accurate the scan will be. One handy tool
is Rsnake’s XSS Cheatsheet (www.shocking.com/~rsnake/xss.html), which supplies
some nifty tricks to enhance your ability to detect XSS and other Web application
insecurities.

110 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 110

The Final Plugin Template
Here is the final plugin, following the guidelines to be as general as possible.The plugin now has
tags instead of specific contents.

#

Web application test template

Copyright 2005 Ami Chayun

#

if (description) {

script_version("$Revision: 1.0 $");

name["english"] = "<Name/>";

script_name(english:name["english"]);

desc["english"] = "

<Description/>

Solution : <Solution/>

Risk factor : <RiskFactor/>";

script_description(english:desc["english"]);

summary["english"] = "<Summary/>";

script_summary(english:summary["english"]);

script_category(ACT_GATHER_INFO);

script_copyright(english:"This script is Copyright (C) 2005 <Author/>");

family["english"] = "CGI abuses";

script_family(english:family["english"]);

script_dependency("no404.nasl", "cross_site_scripting.nasl",

"webmirror.nasl");

script_require_ports("Services/www", 80);

exit(0);

}

include("http_func.inc");

include("http_keepalive.inc");

###

#User defined variables

user_trigger_string = '<UserTrigger/>'; #User custom trigger string

user_vulnerable_string = '<UserReply/>'; #User custom reply string

vulnerable_param = "<VulnerableParam/>";

page = string("/","<Page/>"); #web page containing the vulnerability

cgi_params = "<CGIParams/>"; #URL encoded parameter list

method = "<Method/>"; #GET | POST

#Test for web server capabilities

#1 test for server capability, 0 skip capability test

do_test_php = <TestPHPCap/>;

do_test_asp = <TestASPCap/>;

Automating the Creation of NASLs • Chapter 6 111

332_NSE_06.qxd 7/14/05 1:57 PM Page 111

#Test the response body or also headers?

test_only_body = <BodyOnly/>;

#1 include the family of attack vectors in test

#0 exclude the family

test_dir_traversal = <TestTraversal/>;

test_sql_injection = <TestSQLInject/>;

test_xss = <TestXSS/>;

End variable part

###

Attack vectors

dir_traversal[0] = "/etc/passwd";

dir_traversal[1] = "../../../../../../../../etc/passwd";

dir_traversal[2] = "../../../../../../../../etc/passwd%00";

passwd_file[0] = "root:";

sql_injection[0] = "'";

sql_injection[1] = "%27";

sql_injection[2] = " group by";

sql_error[0] = "SQL Error : 1064";

sql_error[1] = "ODBC Microsoft Access Driver";

sql_error[2] = "SQLServer JDBC Driver";

sql_error[3] = "Microsoft JET Database Engine error '80040e14'";

XSS[0] = "<script>alert(document.cookie)</script>";

XSS[1] = "%22%3E%3Cscript%3Ealert%28document.cookie%29%3C%2Fscript%3E";

XSS[2] = "%22+onmouseover%3D%22javascript:alert%28%27foo%27%29%22+%22";

XSS_reply[0] = "<script>alert(document.cookie)</script>";

XSS_reply[1] = "javascript:alert('foo')";

#Build the attack vector list to the user's wishes

trigger_strings = make_list(user_trigger_string);

vulnerable_strings = make_list(user_vulnerable_string);

if(test_dir_traversal)

{

trigger_strings = make_list(trigger_strings, dir_traversal);

vulnerable_strings = make_list(vulnerable_strings, passwd_file);

}

if(test_sql_injection)

{

trigger_strings = make_list(trigger_strings, sql_injection);

vulnerable_strings = make_list(vulnerable_strings, sql_error);

}

if(test_xss)

{

trigger_strings = make_list(trigger_strings, XSS);

vulnerable_strings = make_list(vulnerable_strings, XSS_reply);

112 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 112

}

###

Test mechanism starts here

port = get_http_port(default:80);

if (!get_port_state(port)) exit(0);

#If the user requested, check that the server is ASP/PHP capable

if(do_test_php && !can_host_php(port:port)) exit(0);

if(do_test_asp && !can_host_asp(port:port)) exit(0);

#First check for generic XSS and. Don't do other plugin't job

if (get_kb_item(string("www/", port, "/generic_xss"))) exit(0);

foreach d (cgi_dirs())

{

if(is_cgi_installed_ka(item: string(d, page), port:port))

{

foreach trigger_string (trigger_strings)

{

attack_vector = ereg_replace(string:cgi_params,

pattern:vulnerable_param + "=[^&]*",

replace:vulnerable_param + "="+ trigger_string);

if(method == "GET")

{

uri = string(d, page, "?", attack_vector);

req = http_get(item: uri, port:port);

}

else if (method == "POST")

{ #Build a valid POST, with content length

req = http_post(item: string(d, page), port:port);

idx = stridx(req, '\r\n\r\n');

req = insstr(req, '\r\nContent-Length: ' + strlen(data) + '\r\n' +

'Content-Type: application/x-www-form-urlencoded\r\n\r\n' +

attack_vector, idx);

}

#Send the request, and put in buf the response (body only or entire result)

buf = http_keepalive_send_recv(port:port, data:req, bodyonly:test_only_body);

if(buf == NULL) exit(0);

#Try to detect a vulnerable reply

foreach vulnerable_string (vulnerable_strings)

{

if(strlen(vulnerable_string) > 0 && vulnerable_string >< buf)

{

#Report to the user of our findings

report = "By injecting: '" + trigger_string +

"' to the '" + vulnerable_param +

"' parameter of " + page + " via " + method +

", we were able to trigger the following response '" +

vulnerable_string;

Automating the Creation of NASLs • Chapter 6 113

332_NSE_06.qxd 7/14/05 1:57 PM Page 113

security_warning(port:port, data:report);

exit(0);

}

}

} #foreach attack vector

} #Is CGI installed

} #foreach web dir

Master Craftsman…

The Work Is Never Over: Expanding
Capabilities of the Web Application Template
The final template serves its goal, but it can be extended far more. The plugin can
include cookie information or any other HTTP header information. By using Nessus’
library functions the plugin can also accept authentication information and attempt
brute-force attacks. The more ideas you come up with on weaknesses in the Web
application, the more powerful the template can be. It is worthwhile to check the
Nessus plugin archive to see examples for advanced Web application insecurities.

Rules of Thumb
In this section we have seen a method of creating a plugin and generalizing so that it can serve
as a family template. Rules of thumb that you should follow are:

1. Allow different installation paths and different commands.

2. Use Nessus Knowledge Base items to see if the service you want to test is running on
the target host.

3. Increase the amount of attack vectors and consider different encodings and different
commands. Research for similar vulnerabilities in other products to add their attack
vectors to yours.

4. Don’t overtest! For example, if you are testing a Simple Mail Transfer Protocol
(SMTP) server for a vulnerability in the AUTH command, consider checking the
server capabilities before running the attack.This will save network traffic and increase
plugin accuracy.

5. Consider using application banner information. Sometimes it is the simplest way to
test for a vulnerability, and sometimes it’s the only way. If you decide to use banner
information, consider the consequences! A user can easily change banners. If there is
no other way than checking in the banner, alert the user that according to its version
the server is vulnerable to certain issues.

114 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 114

6. Alert the user about exactly what you found.This aids debugging false positives and
helps the user to find a solution.

7. Avoid other people’s mistakes. Use script_dependencies to include tests that increase
accuracy (no404, for example).

8. Use library functions. Don’t reinvent the wheel. Really, Nessus provides a wide inter-
face to almost any known network protocol, so avoid hard-coded requests.

9. Divide and conquer. Separate the user variable part of the test from the mechanism. It
will make life easier for other people to look in the final source.

10. Don’t hide your code. Publishing your code as much as possible is the best way for it
to become the best all-around code; the more people who see and use your code, the
more stable and accurate it will be. Use Nessus’ community to improve your code.

Using a CGI Module for Plugin Creation
Presented here is a simple and effective interface for filling plugin templates.The interface will
be Web based, and we will use Perl’s CGI module to create the page.

Apache’s Web server (http://httpd.apache.org) is the most popular HTTP server in the
world, and we will use the out-of-the-box installation of Apache 1.3.33, installed from the
Debian Linux APT system (apt-get install apache).

The default configuration of Apache in Debian is enough for our purposes, so we will not
go into details on how to configure Apache. If you wish to learn more on Apache’s configura-
tion file, see http://httpd.apache.org/docs/configuring.html.

CGI
The Common Gateway Interface is an agreement between HTTP server implementers about
how to integrate such gateway scripts and programs. It is typically used in conjunction with
HTML forms to build database applications. For more information see www.w3.org/CGI/.

HTML forms are sections of a document containing normal content, markup, special ele-
ments called controls (checkboxes, radio buttons, and menus), and labels on those controls. Users
generally complete a form by modifying its controls (entering text, selecting menu items, and so
on), before submitting the form to an agent for processing (for example, to a Web server or to a
mail server). For a complete specification of form elements in the HTML standard see
www.w3.org/TR/REC-html40/interact/forms.html.

Perl’s CGI Class
Perl’s CPAN repository includes a CGI library that supplies an interface to the CGI function-
ality. It also supports form elements for simplifying the creation of forms.The package’s docu-
mentation can be found at http://search.cpan.org/~lds/CGI.pm-3.10/CGI.pm.

Automating the Creation of NASLs • Chapter 6 115

332_NSE_06.qxd 7/14/05 1:57 PM Page 115

NOTE

CPAN is the Comprehensive Perl Archive Network, a large collection of Perl software
and documentation. For more information see www.cpan.org.

Although the package can be installed from CPAN, we will install it via Debian’s Advanced
Package Tool (APT).The required package is apache-perl.This package includes Perl::CGI and
the supplementary Apache support. Once all packages are installed, it’s time to see what the CGI
looks like.

Template .conf File
We would like to present the user with an HTML form that supplies all the template needs. We
will also like to include several attributes to each customizable field, such as type and default
value. We might also want to include a help item on each of the fields to explain to the user
how to fill the form.To this end, we will create a configuration file for each of the templates in
the system.The .conf file is an XML, containing information on each field that can be cus-
tomized by the user:

<?xml version="1.0" encoding="utf-8"?>

<TemplateConf name="web_application_template">

<Variables>

<Variable name="UserTrigger" type="string" required="yes">

<help>Custom trigger string, for example:

<SCRIPT a=">" SRC="javascript:alert('XSS');"></SCRIPT>

</help>

</Variable>

...

</Variables>

</TemplateConf>

For more information on XML see the section titled “Advanced Plugin Generation: XML
Parsing for Plugin Creation” later in this chapter.

The example Variable element shows the attributes available for the UserTrigger field available
in the web_application_template.nasl discussed in the previous section.The attributes used here are:

■ name Parameter name as it appears in the .nasl template

■ type Type of input the user submits.The types supported are:

■ string Free text INPUT control

■ checkbox Tickmark CHEECKBOX control

■ select Multiple option SELECT control

■ required Specifies whether this is field essential to the result plugin

■ default Default value of element

The .conf file XML can be extended by adding elements, for example by adding label and
language attributes, to allow localization.

116 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 116

Plugin Factory
The Plugin Factory includes two files. One is the HTML template to be filled by the CGI, and
the other is the Plugin Factory CGI itself.The HTML template allows maximal flexibility, sepa-
rating data from style information.The HTML source follows:

<HTML>

<BODY>

<FORM METHOD="GET" ACTION="pluginfactory.cgi">

<TABLE BORDER="0" CELLPADDING="4">

<TR>

<TD CLASS="header" COLSPAN="2">Nessus Plugin Factory</TD>

</TR>

<TR>

<TD>Plugin template</TD><TD><!-- #PluginTemplates# --></TD>

</TR>

<!-- #BEGINTemplateSelection# -->

<TR>

<TD><INPUT TYPE="Submit" Name="Action" Value="Choose Template"></TD>

</TR>

<!-- #ENDTemplateSelection# -->

</TABLE>

</FORM>

<FORM METHOD="POST" ACTION="pluginfactory.cgi">

<!-- #BEGINPluginDetails# -->

<INPUT TYPE="Hidden" NAME="template" VALUE="<!-- #PluginTemplates# -->">

<TABLE BORDER="0">

<TR>

<TD>Author's name</TD>

<TD><INPUT TYPE="Text" NAME="Author" SIZE="50"></TD>

</TR>

<TR>

<TD>Plugin name</TD><TD>

<INPUT TYPE="Text" NAME="Name" SIZE="50"></TD>

</TR>

<TR>

<TD>Plugin Summary</TD><TD>

<INPUT TYPE="Text" NAME="Summary" SIZE="50"></TD>

</TR>

<TR>

<TD COLSPAN="2" CLASS="header">Vulnerability Details</TD>

</TR>

<TR>

<TD>Description</TD><TD>

<TEXTAREA NAME="Description" ROWS="6" COLS="70">

Here is the place to write a description of the vulnerability,

how the vulnerability is triggered,

and what damage an attacker might cause exploiting this vulnerability.

</TEXTAREA></TD>

</TR>

<TR>

<TD>Solution</TD><TD><TEXTAREA NAME="Solution" ROWS="6" COLS="70">

Write down at least one solution available to the problem.

Automating the Creation of NASLs • Chapter 6 117

332_NSE_06.qxd 7/14/05 1:57 PM Page 117

If the affected product did not release a patch or a newer version,

suggest a practical method to prevent the vulnerability,

for example filtering access to the port.</TEXTAREA></TD>

</TR>

<TR>

<TD>Risk Factor</TD>

<TD><SELECT NAME="RiskFactor">

<OPTION VALUE="High">High</OPTION>

<OPTION VALUE="Medium">Medium</OPTION>

<OPTION VALUE="Low">Low</OPTION></SELECT></TD>

</TR>

<TR>

<TD COLSPAN="2" CLASS="header">Plugin Settings</TD>

<!-- #BEGINParams# -->

<TR>

<TD><!-- #ParamName# --></TD><TD><!-- #ParamInput# --></TD>

</TR>

<TR>

<TD CLASS="help"><!-- #ParamHelp# --></TD>

</TR>

<!-- #ENDParams# -->

<TR><TD COLSPAN="2" CLASS="header">Actions</TD></TR>

<TR>

<TD>Display plugin source</TD>

<TD>Save generatred plugin to file.

Filename: <INPUT TYPE="text" NAME="filename" VALUE=""></TD>

</TR>

<TR>

<TD><INPUT TYPE="submit" NAME="Action" VALUE="Generate"></TD>

<TD><INPUT TYPE="submit" NAME="Action" VALUE="Save"></TD>

</TR>

</TABLE>

</FORM>

<!-- #ENDPluginDetails# -->

<!-- #BEGINResultNasl# -->

<TABLE BORDER="0">

<TR>

<TD CLASS="header">Generated Plugin</TD>

</TR>

<TR>

<TD><PRE><!-- #ResultNasl# --></PRE></TD>

</TR>

</TABLE>

<!-- #ENDResultNasl# -->

</BODY>

</HTML>

118 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 118

The HTML file consists of three parts:

■ The template selection The first part of the HTML requires users to choose which
template they would like to use to generate the plugin.

■ Vulnerability details and template parameters Once users have selected a valid
template, they fill in the details regarding the vulnerability and complete the appro-
priate template parameters.

■ Generation actions Users choose the format in which the resulting plugin will be
generated.The CGI can either print the content of the generated plugin or generate a
.nasl file and prompt the user to save it.

The HTML includes special tags that will be replaced with the appropriate text.Tags are
simply HTML comments with pound (#) sign in each end.

The second Plugin Factory element, the CGI itself, uses the following helper subroutines:

■ getSection Returns the contents of the text between two section tags (<!—
#BEGINtagname# —> and <!— #ENDtagname# —>).

■ replaceSection Replaces the contents of the block between two section tags
and the tags themselves.

■ replaceTag Replaces a simple tag in the format of <!— #tagname# —>.

■ replaceNaslTag Replaces a single tag in the format of <tagname/> used in
the plugin template.

■ sanitize_name Returns a string that contains only allowed characters (-_a-
zA-Z0-9.).

■ booleanFromString Returns 1 from true/yes/on strings, 0 otherwise.

■ error_message Prints an error message to the user and dies.

The CGI requires two Perl modules: Perl::CGI and XML::Simple.The CGI module is used
to parse the CGI queries and generate appropriate HTML forms. XML::Simple is used to parse
the template .conf XML file.An elaborate explanation of the XML::Simple module is given in
the section titled “Advanced Plugin Generation: XML Parsing for Plugin Creation” later in this
chapter.

Here is the CGI’s code:

my $query = new CGI;

Automating the Creation of NASLs • Chapter 6 119

332_NSE_06.qxd 7/14/05 1:57 PM Page 119

my $html_template = "";

open HTML, "HTML/pluginFiller.html"

or error_message("Could not open HTML file");

while(<HTML>)

{

$html_template .= $_;

}

close HTML;

The code begins by trying to read the HTML file to be filled by the script.The code then
separates two cases; an HTTP GET request is used to build the form and choose a valid plugin
template:

my $selected_plugin_template = sanitize_name($query->param('template'));

#The GET method is used to present the user the plugin form

if($query->request_method() eq "GET")

{

#If the user has not chosen a template yet,

#Show the selection box, and hide the plugin details

if(! $selected_plugin_template)

{

opendir TEMPLATES, "templates"

or error_message("Could not open templates dir");

my @plugin_templates = grep { /^(.*?).nasl$/ } readdir(TEMPLATES);

closedir TEMPLATES;

@plugin_templates or error_message("No valid plugin templates found");

#Create a list of all the available plugin templates

$selected_plugin_template = $query->scrolling_list(-name=>'template',

-values=>@{ @plugin_templates },

-multiple=>'false',

-labels => @{ @plugin_templates },

-default => [$plugin_templates[0]]);

#Delete the Plugin Details section.

$html_template = replaceSection($html_template, "PluginDetails");

}

else {

$html_template = fillHTMLTemplateParams($html_template,

$selected_plugin_template);

#Delete the template selection section.

$html_template = replaceSection($html_template, "TemplateSelection");

}

#Show the selected template name or a list of available templates

$html_template = replaceTag($html_template, "PluginTemplates",

$selected_plugin_template);

#Show resulting plugin section

$html_template = replaceSection($html_template, "ResultNasl");

120 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 120

#Print the final HTML file

print $query->header;

print $html_template;

} #GET

If the user chooses a valid plugin template, the fillHTMLTemplateParams subroutine is called
to build the form defined by the template .conf file. If the user has not yet chosen a template
(the request did not contain a valid template parameter), a selection of the available templates is
presented, and the user should choose one.

The other option is the POST method. If the script was called via a POST request, it
expects to have all the parameters required to fill the template. It then takes the data provided by
the user and generates a plugin.

#The POST method is used to actually generate the plugin

elsif($query->request_method() eq "POST")

{

my $result_filename = $query->param('filename');

#Read the desired plugin template

open PLUGIN, "templates/$selected_plugin_template"

or error_message("Template file does not exist");

my $plugin_template = "";

while(<PLUGIN>)

{

$plugin_template .= $_;

}

close PLUGIN;

my %formParams = $query->Vars; #Get the form parameters as hash

delete $formParams{'template'}; #Previously used

delete $formParams{'filename'};

$plugin_template = fillNaslTemplate($selected_plugin_template,

$plugin_template, %formParams);

The fillNaslTemplate generates a NASL plugin from the parameters supplied by the user.
The template and filename parameters are deleted from the hash, as both were already used and
there is no need to pass them to the function. Once we have successfully generated the plugin,
we can either print the result or prompt the user to save the file:

#Check what output should be done

if($query->param('Action') eq 'Save' and $result_filename)

{

#Allow 'Save as'

print $query->header(-type => 'text/nasl',

-attachment => $result_filename);

print $plugin_template;

}

else

{

#Delete the template selection section.

Automating the Creation of NASLs • Chapter 6 121

332_NSE_06.qxd 7/14/05 1:57 PM Page 121

$html_template = replaceSection($html_template, "TemplateSelection");

#Delete the Plugin Details section.

$html_template = replaceSection($html_template, "PluginDetails");

#Show the selected template name or a list of avaliable templates

$html_template = replaceTag($html_template, "PluginTemplates",

$selected_plugin_template);

#Show resulting plugin

$html_template = replaceTag($html_template, "ResultNasl",

$query->escapeHTML($plugin_template));

#Print the final HTML

print $query->header;

print $html_template;

}

}#POST

#Tell Apache we're done.

#No reason to keep the connection open more than needed

exit 0;

Here are the two core subroutines used by the CGI.The first subroutine initializes the XML
parser, reads the XML elements, and then fills in the HTML template accordingly. It generates
controls according to the desired type as defined in the .conf file.

sub fillHTMLTemplateParams

{

my ($html_template, $plugin_template_file) =@_;

$plugin_template_file =~ s/\.nasl/.conf/; #Load the appropriate .conf file

my @ForceArray = ("Variable", "option");

my $xml = new XML::Simple (ForceArray => [@ForceArray],

KeyAttr => 0, #Don't fold arrays

);

stat "templates/$plugin_template_file"

or error_message("Template file does not exist");

my $data = $xml->XMLin("templates/$plugin_template_file")

or error_message("Selected template doesn't have a valid .conf file");

my $param_template = getSection($html_template, "Params");

my $temp_param = ""; #The filled params sections

my $Variables = $data->{'Variables'};

foreach my $Variable (@{ $Variables->{'Variable'} })

{

$temp_param .= $param_template;

my $name = $Variable->{'name'};

$temp_param = replaceTag($temp_param, "ParamName", $name);

$temp_param = replaceTag($temp_param, "ParamHelp",

$query->escapeHTML($Variable->{'help'}));

my $default = $query->escapeHTML($Variable->{'default'});

my $input = "";

122 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 122

if($Variable->{'type'} eq "checkbox")

{

$input = $query->checkbox(-name => "$name",

-checked => booleanFromString($default),

-label => $name);

}

elsif($Variable->{'type'} eq "string")

{

$input = $query->textfield(-name => "$name",

-value => $default,

-size => 50);

}

elsif($Variable->{'type'} eq "select" and $Variable->{'option'})

{

$input = $query->scrolling_list(-name => "$name",

-values => $Variable->{'option'},

-size => 1, -default => $default);

}

$temp_param = replaceTag($temp_param, "ParamInput", $input);

}

$html_template = replaceSection($html_template, "Params", $temp_param);

return $html_template;

}

The second function fills in the NASL template.The function runs on every parameter
defined in the .conf file and then checks to determine if the user filled in that parameter. If a
required parameter is missing, the function raises an error message.

sub fillNaslTemplate

{

my ($plugin_template_file, $plugin_template, %formParams) = @_;

$plugin_template_file =~ s/\.nasl/.conf/;

my @ForceArray = ("Variable");

my $xml = new XML::Simple (ForceArray => [@ForceArray],

KeyAttr => 0, #Don't fold arrays

);

my $data = $xml->XMLin("templates/$plugin_template_file")

or error_message("Selected template doesn't have a valid .conf file");

#Fill default plugin parameters

$plugin_template = replaceNaslTag($plugin_template, 'Author',

$formParams{'Author'});

$plugin_template = replaceNaslTag($plugin_template, 'Name',

$formParams{'Name'});

$plugin_template = replaceNaslTag($plugin_template, 'Summary',

$formParams{'Summary'});

$plugin_template = replaceNaslTag($plugin_template, 'Description',

$formParams{'Description'});

$plugin_template = replaceNaslTag($plugin_template, 'Solution',

$formParams{'Solution'});

$plugin_template = replaceNaslTag($plugin_template, 'RiskFactor',

Automating the Creation of NASLs • Chapter 6 123

332_NSE_06.qxd 7/14/05 1:57 PM Page 123

$formParams{'RiskFactor'});

my $Variables = $data->{'Variables'}

or error_message("Error parsing XML .conf file");

#Fill Optional parameters

foreach my $Variable (@{ $Variables->{'Variable'} })

{

my $name = $Variable->{'name'};

my $value = $formParams{$name};

if(! $value and $Variable->{'required'} eq "yes")

{

error_message("Missing essential parameter: $name");

}

#Checkboxes in CGI are not sent if they are not checked,

#so if there is no $formParams{$name} assume unchecked

if($Variable->{'type'} eq 'checkbox')

{

$value = booleanFromString($value);

}

$plugin_template = replaceNaslTag($plugin_template, $name, $value);

}

return $plugin_template;

}

Final Setup
Copy the pluginfactory.cgi file to your cgi-bin directory (default in the Debian install is
/usr/lib/cgi-bin). Make sure it is executable by all (chmod 755 pluginfactory.cgi).The cgi-bin folder
should include two subfolders: HTML and templates. In HTML, place the pluginFiller.html file
and under templates copy the template .nasls and and their appropriate .conf files.

Once all the files are in the target directory, open a Web browser and visit the Plugin
Factory page at http://127.0.0.1/cgi-bin/pluginfactory.cgi.

Example Run
As an example we will look at a vulnerability in Awstats, a popular open source Web statistics
and log parsing utility.Awstats suffered from a remote command execution vulnerability in ver-
sions 5.7 through 6.2. Figure 6.3 shows the vulnerability information filled in the CGI form.

Now for the plugin configuration. We will test the vulnerability by running the exploit on
the configdir parameter.The trigger will be the string: |echo;cat+/etc/passwd;echo|.

On vulnerable machines this will print the contents of the /etc/passwd file to the user (see
Figure 6.4).

124 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 124

Figure 6.3 Awstats Remote Command Execution Vulnerability Details

Figure 6.4 Awstats Remote Command Execution Plugin Configuration

Automating the Creation of NASLs • Chapter 6 125

332_NSE_06.qxd 7/14/05 1:57 PM Page 125

Detecting if a server is vulnerable is quite simple. Because we already have a test that com-
pares the result against /etc/passwd (when we test for directory traversal), we can check
TestTraversal, and we do not have to supply a custom result string (see Figure 6.5).

Figure 6.5 Using Awstats to Detect If a Server Is Vulnerable

That’s it. Now a plugin for the Awstats remote command execution vulnerability can be
generated.

The CGI presented here supplies an easy way to create plugins from plugin templates.As
the example shows, a security advisory can be easily turned into a plugin.This kind of plugin
creation automation can help security analysis of a system because the analyst can generate plu-
gins while testing, and after gaining some experience, the resulting plugins will be effective and
reliable.

Advanced Plugin Generation:
XML Parsing for Plugin Creation
In the previous section we introduced a method of creating generic plugin families with
common templates. We are now going to approach the problem of efficient plugin creation from
a different angle; namely, the data.

XML Basics
XML is a standard for keeping and parsing data.An introduction to XML can be found at
www.w3.org/XML.

XML recent development news can be found through various XML interest groups such as
http://xml.org/.

126 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 126

We will use the XML as a data holder for our plugin creation. Since XML can easily be
parsed, we can use several readily available parsing tools to take the data from the XML and turn
it to a usable plugin.

Because we will use a simple implementation of the XML standard, here is a crash course
on the XML file structure that we will use.

To make the explanation less alien to people unfamiliar with XML, we will use examples
from HTML. HTML can actually be parsed as an XML, and it is a special case of general XML.

In XML, a document is a block of characters that make the XML. In this context we will
usually mean a physical file, but the document can be any character stream.

Header:

<?xml version="1.0" encoding="UTF-8"?>

The XML document (file) starts with a header line that indicates the client parser that the
file type is XML.The line can also hold information about the file content, like charset informa-
tion.

An element in XML is a name for a block of data (that can also hold child elements).
Elements start with a tag; for example, <ThisIsAnElement>.

The tag name can is decided by the user and cannot contain spaces.The name is placed
between greater than (<) and less than (>) signs.To mark an ending of an element, the block ends
with an ending tag, such as </ThisIsAnElement>.

An element that has no child elements can also be written as <ThisIsAnotherElement />.
Notice that before the closing smaller than sign there is a forward slash (/).

In XML, an attribute is a name-value pair that can describe an element; for example, <Work
station ip=“192.168.0.2” />.
The name of an attribute must not contain spaces, and the value must be enclosed in double

quotation (“”) marks.
Every XML document must have exactly one top-level element. For example, HTML files

have the following as a top-level element:
<html>

...

</html>

All the contents of the file (except the header) must be inside this element.

XML As a Data Holder
One common implementation of XML is a data holder. XML can be used to create data struc-
tures that can be parsed later by code.The official name for this use is Document Object Model
(DOM). Here is a simple example:

<?xml version="1.0" encoding="UTF-8"?>

<PersonFile>

<Name>My first name</Name>

<Address>123 Main St.</Address>

Automating the Creation of NASLs • Chapter 6 127

332_NSE_06.qxd 7/14/05 1:57 PM Page 127

<Occupation>IT manager</Occupation>

</PersonFile>

This very simple configuration structure holds the details of one person.The top-level ele-
ment, PersonFile, contains three child elements: Name,Address, and Occupation.The same data
structure can be written with attributes instead if child elements like this:

<?xml version="1.0" encoding="UTF-8"?>

<PersonFile>

<Person name="My first name" address="123 Main St." occupation="IT manager" />

</PersonFile>

The Person element contains the same data, but this time as attributes. Using elements is
sometimes preferred over attributes, usually if the data spans over multiple lines.

The preceding configuration files can be parsed into a data structure; for example, in C the
structure can be written as:

struct Person {

char *name;

char *address;

char *occupation;

};

Using mssecure.xml for Microsoft Security Bulletins
Shavlik Technologies, LLC (http://shavlik.com/) created HFNetChkPro, a patch management
tool for the Microsoft Windows platform.This tool uses an XML schema for storing the data of
the automatic patching system.The file is called mssecure.xml and an updated version can be
downloaded from http://xml.shavlik.com/mssecure.xml.

Because the rights for the tool belong to Microsoft, the mssecure.xml is now a part of the
Microsoft Baseline Security Analyzer tool (www.microsoft.com/technet/security/tools/mbsa-
home.mspx), Microsoft’s patch management solution.

We will use mssecure.xml as an example of automatic plugin creation for Microsoft’s secu-
rity bulletins.

The mssecure XML Schema
The mssecure.xml top-level structure is described as follows:

<BulletinDatastore DataVersion="1.1.2.409" LastDataUpdate="4/15/2005" ...>

+ <Bulletins></Bulletins>

+ <Products></Products>

+ <ProductFamilies></ProductFamilies>

+ <ServicePacks></ServicePacks>

+ <RegKeys></RegKeys>

+ <Files></Files>

+ <Commands></Commands>

+ <Severities></Severities>

+ <MSSeverities></MSSeverities>

+ <SupercededBys></SupercededBys>

+ <WellKnownURLs></WellKnownURLs>

</BulletinDatastore>

128 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 128

NOTE

The plus (+) prefix before an element means its contents were not shown. It is not
a part of the XML document, just an accepted abbreviation.

Here is a short description of the elements that contain information we use in our plugins:

■ BulletinDatastore Top-level element.All data (except for document header)
must be inside this element.

■ Bulletins Information included in a security bulletin; for example, summary,
effected platforms, patch information, and so on.

■ Products Listing of all the known products. Products are referred by their
ProductIDs.

■ ProductFamilies List of general product families as pointed by Product.

■ ServicePacks Information regarding software service pack updates.

■ MSSeverities Microsoft’s classification of risk levels in their bulletins.

We will use all the aforementioned elements to create a registry-based test for vulnerabilities
affecting Microsoft Windows operating System.

The Plugin Template
The plugin is a simple NASL file that contains tags for replacement. Later we will see the com-
mand-line tool that fills these tags automatically. Here is the template we will use to generate
our plugins:

smb_nt_ms_template.nasl

#

Automatically generated by MSSecure to NASL

#

if(description)

{

script_id(<ScriptID/>);

script_cve_id(<CVEID/>);

script_version("$Revision: 1.0 $");

name["english"] = "<ScriptName/>";

script_name(english:name["english"]);

desc["english"] = "

<ScriptSummary/>

Solution : <ScriptSolution/>

Risk factor : <ScriptRiskFactor/>";

script_description(english:desc["english"]);

summary["english"] =

"Determines if hotfix <ScriptHotfix/> has been installed";

Automating the Creation of NASLs • Chapter 6 129

332_NSE_06.qxd 7/14/05 1:57 PM Page 129

script_summary(english:summary["english"]);

script_category(ACT_GATHER_INFO);

script_copyright(english:

"This script is Copyright (C) <Author/>");

family["english"] =

"Windows : Microsoft Bulletins";

script_family(english:family["english"]);

script_dependencies("smb_hotfixes.nasl");

script_require_keys("SMB/Registry/Enumerated");

script_require_ports(139, 445);

exit(0);

}

include("smb_hotfixes.inc");

#Check if target has installed the Service Pack that includes the hotfix

nt_sp_version = <NTServicePack/>;

win2k_sp_version = <Win2kServicePack/>;

xp_sp_version = <XPServicePack/>;

win2003_sp_version = <Win2003ServicePack/>;

if (hotfix_check_sp(nt:nt_sp_version,

win2k:win2k_sp_version,

xp:xp_sp_version,

win2003:win2003_sp_version) <= 0) exit(0);

#Check if target has installed a hotfix that mitigates the vulnerability

if (hotfix_missing(name: "<ScriptHotfix/>") > 0)

security_hole(get_kb_item("SMB/transport"));

© 2005 Microsoft Corporation.All rights reserved.

NOTE

Although it is possible to automatically write plugins for MS security bulletins, these
plugins cannot be redistributed because they include the text of advisories that are
copyrighted by Microsoft.

Ins and Outs of the Template
As we can see, the plugin is divided into two sections.The description section contains the infor-
mation to be displayed to the user in case we detect the vulnerability. Details that will be filled
in are the CVE numbers for this security bulletin, the name, summary, solution, and more.

The description also states two prerequisites. First, the script requires that smb_hotfixes.nasl be
run before launching the plugin. Second, we also must have access to the target host’s registry;
this is done via the SMB/Registry/Enumerated knowledge-base item.

130 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 130

The second part of the NASL tests for the vulnerability.A patch for a certain security bul-
letin can be applied in two ways: either install the hotfix issued in the security bulletin itself or
install a Service Pack that already includes the hotfix.

To test if a certain Service Pack or hotfix is missing, we need to include the
smb_hotfixes.inc file.This file contains functions we’ll use later; namely, hotfix_check_sp and
hotfix_missing.

Next, we need to test whether the target has installed a Service Pack that resolves the issue.
This is done by the following code:

nt_sp_version = <NTServicePack/>;

win2k_sp_version = <Win2kServicePack/>;

xp_sp_version = <XPServicePack/>;

win2003_sp_version = <Win2003ServicePack/>;

For each affected operating system, we will fill a service pack number that includes the
patch for the vulnerability. If no available Service Pack includes the hotfix, we will fill in here
the upcoming service pack.

if (hotfix_check_sp(nt:nt_sp_version,

win2k:win2k_sp_version,

xp:xp_sp_version,

win2003:win2003_sp_version) <= 0) exit(0);

This line actually performs the test for installed Service Pack.The function can return the
following values:

-1 The test does not affect the target host’s operating system (for example, the
vulnerability affects Windows 2003, but the target host is running Microsoft
Windows 2000).This obviously means the host is not vulnerable to the secu-
rity issue, so we end our test.

0 The service pack we tested for is installed.This means that the host installed
a service pack that includes the hotfix.This means that the host is not vulner-
able, and again, we end the test.

1 The service pack is missing on the target host. In this case, the host might be
vulnerable to the security issue, and we need to test further if the hotfix itself is
installed.

In case no relevant service packs were installed, we need to test for the actual hotfix:

if (hotfix_missing(name: "<ScriptHotfix/>") > 0)

security_hole(get_kb_item("SMB/transport"));

If the hotfix_missing function return with a positive value, the target host is marked to be
vulnerable.

Automating the Creation of NASLs • Chapter 6 131

332_NSE_06.qxd 7/14/05 1:57 PM Page 131

Filling in the Template Manually
After we looked at how the plugin performs the test for the vulnerability, let’s see how we get
the data from the MSSecure.XML file.As an example, let’s look at Microsoft’s security bulletin
MS03-026 (this vulnerability was the one exploited by the MSBLAST worm).

General Bulletin Information
Here is the beginning of the Bulletin element for the advisory. For the example, we listed here
only the first patch in the structure:

<Bulletin BulletinID="MS03-026" BulletinLocationID="73" FAQLocationID="73"

FAQPageName="FQ03-026" Title="Buffer Overrun In RPC Interface Could Allow Code Execution

(823980)" DatePosted="2003/07/16" DateRevised="2003/07/16" Supported="Yes" Summary="Remote

Procedure Call (RPC) is a protocol used by the Windows operating system..." Issue="">

<BulletinComments/>

<QNumbers>

<QNumber QNumber="Q823980"/>

</QNumbers>

<Patches>

<Patch PatchName="Q823980i.EXE" PatchLocationID="1815" SBID="178" SQNumber="Q823980"

NoReboot="0" MSSeverityID="1" BugtraqID="8205" CVEID="CAN-2003-0352"

ShavlikPatchComment="This patch has been superseded by the patch for MS03-039">

<PatchComments/>

<AffectedProduct ProductID="2" FixedInSP="0">

<AffectedServicePack ServicePackID="7"/>

</AffectedProduct>

<AffectedProduct ProductID="3" FixedInSP="0">

<AffectedServicePack ServicePackID="7"/>

</AffectedProduct>

<AffectedProduct ProductID="1" FixedInSP="0">

<AffectedServicePack ServicePackID="7"/>

</AffectedProduct>

</Patch>

</Patches>

</Bulletin>

In the preceding example of code, we put the interesting data in bold text. BulletinID is the
unique identifier for every bulletin. We will use it as a search key in the command-line tool pre-
sented later.

Title is the attribute we replace with our <Name/> tag, and Summary (appear in abbreviated
form here) will replace the <Summary/> tag.

The QNumber element contains the name of the hotfix to be used in the plugin registry
search. It’s value, in this example, Q823980 replaces the <ScriptHotfix/> tag.

From the patch information we draw the CVEID attribute, to replace the <CVEID/>.
That’s it? Not exactly.There is one more piece of information we need to get to complete

our plugin; the service pack that includes the hotfix. We will do this by looking in the
AffectedProduct element.

The patch lists three affected products.All these products can use the patch executable to
resolve the vulnerability.The affected product information is described like this:

132 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 132

<AffectedProduct ProductID="1" FixedInSP="0">

ProductID is a unique identifier in the XML to point to a specific version of a product (in
our case a version of Microsoft Windows).The FixedInSP attribute equals 0, which means that
there is no service pack that includes the hotfix.This is not entirely accurate, as we’ll see later in
this chapter.

How do we link the ProductID attribute to a version of Microsoft Windows? The answer is
in the <Product> sections of the XML.The <Products> element contains a list of subelements
named <Product>, each describing a specific product version.

Here is the <Product> element of ProductID 1, 2, and 3 we are looking for:

<Product ProductID="1" Name="Windows NT Workstation 4.0"

MinimumSupportedServicePackID="4" CurrentServicePackID="7" CurrentVersion="4.00.1381">

...

</Product>

<Product ProductID="2" Name="Windows NT Server 4.0" MinimumSupportedServicePackID="4"

CurrentServicePackID="7" CurrentVersion="4.00.1381">

...

</Product>

<Product ProductID="3" Name="Windows NT Server 4.0, Enterprise Edition"

MinimumSupportedServicePackID="4" CurrentServicePackID="7" CurrentVersion="4.00.1381">

...

</Product>

The XML element provides plenty of information. In this example we look for the name of
the product; in this case, Windows NT.

NOTE

Nessus does not separate different subversions of the same product, so both
Windows NT Workstation 4.0 and Windows NT Server 4.0 belong to the Windows
NT family.

If a more specific version detection is required, the user can use the library
function supplied in smb_hotfixes.inc to check for NT /2000 Server -
hotfix_check_nt_server.

We can also find from this element the service pack number to write in the plugin tem-
plate. Since no service pack resolves the issue, we need to know what is the last supported ser-
vice pack for Windows NT.This information can also be found in the XML, in the
<ServicePacks> section:

<ServicePack ServicePackID="7" Name="Windows NT4 Service Pack 6a" URL =

"http://support.microsoft.com/support/servicepacks/WinNT/4.0/SP6a.asp"

ReleaseDate="1999/11/30"/>

The latest service pack issued to Windows NT 4.0 was Service Pack 6a.This means that a
host with Service Pack 7 installed does not require an installation of the hotfix. Because
Windows NT 4.0 is no longer supported by Microsoft, there is no plan to issue such a service
pack. By looking for a missing Service Pack 7, we will actually catch all the Windows NT 4.0
machines with any service pack installed.

Automating the Creation of NASLs • Chapter 6 133

332_NSE_06.qxd 7/14/05 1:57 PM Page 133

The Finished Template
After digging all the information required to fill the template, here is the final result:

smb_nt_ms03_026_example.nasl

if(description)

{

script_cve_id("CAN-2003-0352");

script_version("$Revision: 1.0 $");

name["english"] = "Buffer Overrun In RPC Interface Could Allow Code Execution (823980)";

script_name(english:name["english"]);

desc["english"] = "

Remote Procedure Call (RPC) is a protocol used by the Windows operating system. RPC

provides an inter-process communication mechanism that allows a program running on one

computer to seamlessly execute code on a remote system. The protocol itself is derived

from the Open Software Foundation (OSF) RPC protocol, but with the addition of some

Microsoft specific extensions. There is a vulnerability in the part of RPC that deals with

message exchange over TCP/IP. The failure results because of incorrect handling of

malformed messages. This particular vulnerability affects a Distributed Component

ObjectModel (DCOM) interface with RPC, which listens on TCP/IP port 135. This interface

handles DCOM object activation requests that are sent by client machines (such as

Universal Naming Convention (UNC) paths) to the server. An attacker who successfully

exploited this vulnerability would be able to run code with Local System privileges on an

affected system. The attacker would be able to take any action on the system, including

installing programs, viewing changing or deleting data, or creating new accounts with full

privileges. To exploit this vulnerability, an attacker would need to send a specially

formed request to the remote computer on port 135.

Solution : http://microsoft.com/technet/security/bulletin/MS03-026.mspx

Risk factor : High";

script_description(english:desc["english"]);

summary["english"] =

"Determines if hotfix Q823980 has been installed";

script_summary(english:summary["english"]);

script_category(ACT_GATHER_INFO);

script_copyright(english:

"This script is Copyright (C) 2005 Ami Chayun");

family["english"] =

"Windows : Microsoft Bulletins";

script_family(english:family["english"]);

script_dependencies("smb_hotfixes.nasl");

script_require_keys("SMB/Registry/Enumerated");

script_require_ports(139, 445);

exit(0);

}

include("smb_hotfixes.inc");

#Check if target has installed the Service Pack that includes the hotfix

nt_sp_version = 7;

134 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 134

win2k_sp_version = NULL;

xp_sp_version = NULL;

win2003_sp_version = NULL;

if (hotfix_check_sp(nt:nt_sp_version,

win2k:win2k_sp_version,

xp:xp_sp_version,

win2003:win2003_sp_version)

<= 0) exit(0);

#Check if target has installed a hotfix that mitigates the vulnerability

if (hotfix_missing(name: "Q823980") > 0)

security_hole(get_kb_item("SMB/transport"));

NOTE

In this example we filled win2k_sp_version (and all sp_version parameters except
Windows NT 4.0) to be NULL. This will cause hotfix_check_sp to return -1 for any
operating system except Windows NT 4.0. Of course if we wanted to complete the
plugin, we would need to look in the Bulletin element of the XML for all the
Patches elements and dig the missing service pack numbers from them. We leave
this dirty work for the automatic tool.

The Command-Line Tool
The tool we present here is command line based. It will read an XML file in the format of the
MSSecure.XML described already in this chapter, and will generate a NASL plugin for a specific
bulletin MSB-ID the user specifies as a parameter in the command line. Remember, the tool is
meant to be extended, so almost all its parameters are in the source, rather than as command-line
parameters.

XML::Simple
Grant McLean’s XML::Simple (http://homepages.paradise.net.nz/gmclean1/cpan/index.html) is
a Perl module that provides, as the name implies, a simple API (application program interface) to
XML files. For the complete API see http://search.cpan.org/dist/XML-
Simple/lib/XML/Simple.pm.For our purposes it’s the perfect tool. It will convert the raw XML
data to structured hashes and arrays.This is exactly what we need to dig out the required infor-
mation.

To be able to run the script, first you need to make sure that the XML::Simple library is
installed.This can be done either by downloading the sources from either of the links in the pre-
ceding paragraph, or preferably, installing it via CPAN.

The usage of XML::Simple is very straightforward:

use XML::Simple qw(:strict);

my $xml = new XML::Simple (); #<-- optional construction parameters

my $data = $xml->XMLin("file.xml");

Automating the Creation of NASLs • Chapter 6 135

332_NSE_06.qxd 7/14/05 1:57 PM Page 135

After successful initialization, $data will hold the XML document in form of hashes and
arrays.

XML::Simple allows the user to control some aspects of the data structure that will be cre-
ated by passing instructions to the constructor. We will use a couple of these features:

my $xml = new XML::Simple (

ForceArray => ["Bulletin", "QNumber"],

KeyAttr => {Bulletin => "BulletinID"});

The ForceArray parameter tells the parser that all elements named Bulletin or QNumber will
be in an array.The default behavior of XML::Simple is to store elements in an array only if they
have siblings (for example, if a bulletin has only one QNumber item under the QNumbers ele-
ment, it will be stored as a hash, and not an array).This instruction, by forcing elements to be in
an array instead of a hash, makes it easier to handle because there will be no need to deal with
the special case where there is only one element.

The KeyAttr instruction controls array folding. XML::Simple can fold an array into a hash,
with any attribute acting as a key. By default the parser will fold arrays with the attributes name,
key or id. In our XML each element has a different attribute for a unique identifier, so we can
set it here.This feature is especially useful for the Bulletin element. Instead of iterating over the
entire Bulletins array, we can access the desired element directly.

For example, without the instruction, data will be stored like this:

Bulletins {

Bulletin => [0..n]

}

With array folding with BulletinID as key the data will be stored as:

Bulletins {

Bulletin => MS98-001 => { } ...

}

NOTE

Any element used in array folding must also be included in the ForceArray list.

Tool Usage
To run the tool, get the latest version of mssecure.xml and make sure you have XML::Simple
installed.The tool takes one obligatory parameter, the MSB-ID, which we will create a plugin
for. Here is an example run:

<ami@Briareos [~]> Perlmssecure_dig.pl MS03-027

Reading XML file...

Extracting data...

Extracting patch information for: Unchecked Buffer in Windows Shell Could Enable System

Compromise (821557)

136 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 136

Product name: Windows XP Home Edition

NESSUSProductID: xp CheckForInstalledSP: 2

Product name: Windows XP Professional

NESSUSProductID: xp CheckForInstalledSP: 2

Product name: Windows XP Tablet PC Edition

NESSUSProductID: xp CheckForInstalledSP: 2

Product name: Windows XP Home Edition

NESSUSProductID: xp CheckForInstalledSP: 2

Product name: Windows XP Professional

NESSUSProductID: xp CheckForInstalledSP: 2

Product name: Windows XP Tablet PC Edition

NESSUSProductID: xp CheckForInstalledSP: 2

Filling NASL template.

Creating smb_nt_ms03-027.nasl

And the resulting NASL for this vulnerability is as follows:

#

Automatically generated by MSSecure to NASL

#

if(description)

{

script_id(90000);

script_cve_id("CAN-2003-0306");

script_version("$Revision: 1.0 $");

name["english"] = "Unchecked Buffer in Windows Shell Could Enable System Compromise

(821557)";

script_name(english:name["english"]);

desc["english"] = "

The Windows shell is responsible for providing the basic framework of the Windows user

interface experience. It is most fa

miliar to users as the Windows desktop. It also provides a variety of other functions to

help define the user's computing s

ession, including organizing files and folders, and providing the means to start programs.

An unchecked buffer exists in on

e of the functions used by the Windows shell to extract custom attribute information from

certain folders. A security vulne

rability results because it is possible for a malicious user to construct an attack that

could exploit this flaw and execut

e code on the user's system. An attacker could seek to exploit this vulnerability by

creating a Desktop.ini file that conta

ins a corrupt custom attribute, and then host it on a network share. If a user were to

browse the shared folder where the f

ile was stored, the vulnerability could then be exploited. A successful attack could have

the effect of either causing the

Automating the Creation of NASLs • Chapter 6 137

332_NSE_06.qxd 7/14/05 1:57 PM Page 137

Windows shell to fail, or causing an attacker's code to run on the user's computer in the

security context of the user.

Solution : http://www.microsoft.com/technet/security/bulletin/MS03-027.mspx

Risk factor : Medium";

script_description(english:desc["english"]);

summary["english"] =

"Determines if hotfix Q821557 has been installed";

script_summary(english:summary["english"]);

script_category(ACT_GATHER_INFO);

script_copyright(english:

"This script is Copyright (C) Ami Chayun");

family["english"] =

"Windows : Microsoft Bulletins";

script_family(english:family["english"]);

script_dependencies("smb_hotfixes.nasl");

script_require_keys("SMB/Registry/Enumerated");

script_require_ports(139, 445);

exit(0);

}

include("smb_hotfixes.inc");

#Check if target has installed the Service Pack that includes the hotfix

nt_sp_version = NULL;

win2k_sp_version = NULL;

xp_sp_version = 2;

win2003_sp_version = NULL;

if (hotfix_check_sp(nt:nt_sp_version,

win2k:win2k_sp_version,

xp:xp_sp_version,

win2003:win2003_sp_version) <= 0) exit(0);

#Check if target has installed a hotfix that mitigates the vulnerability

if (hotfix_missing(name: "Q821557") > 0)

security_hole(get_kb_item("SMB/transport"));

The Source
Here is the source code for generating a NASL that tests for a specific MS BID.

#!/usr/bin/perl -w

############

The script will generate a NASL that tests for a specific MS BID

Copyright 2005 Ami Chayun

use strict;

use XML::Simple qw(:strict);

#http://xml.shavlik.com/mssecure.xml

138 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 138

my $MSSecure = "mssecure.xml";

my $template_file = "smb_nt_ms_template.nasl";

my $Author = "Ami Chayun";

my $ScriptID = "10000";

my %SeveritiesMap = (1 => 'High', #Critical

2 => 'Medium', #Important

3 => 'Medium', #Moderate

4 => 'Low', #Low

);

#Product families list

my %ProductsMap = (1 => "nt",

2 => "win2k",

3 => "win9x",

4 => "xp",

5 => "win2003",

);

#Servicepack tags in the nasl template

my %ProductTags = ("nt" => "NTServicePack",

"win2k" => "Win2kServicePack",

"win9x" => "Win9xServicePack",

"xp" => "XPServicePack",

"win2003" => "Win2003ServicePack",

);

#Get the MS_BID From the user

my $MS_BID = shift @ARGV or die "Usage: $0 MS??-???\n";

#Before parsing the XML, tell the parser which elements will !Always!

be an array, even if there are no siblings.

#Rule of thumb: Everything we later use in a 'foreach'

#or in folding must be in the @ForceArrays list

my @ForceArrays = ("QNumber", "Bulletin", "Patch", "Product",

"AffectedProduct", "ServicePack",

"ProductFamily", "Location", "RegChg", "RegChange", "RegKey"

);

#Items that will be enumerated into a hash, and what string is the key

my @FoldArrays = (Bulletin => "BulletinID",

Product => "ProductID",

ServicePack => "ServicePackID",

Location => "LocationID",

ProductFamily => "ProductFamilyID",

RegChange => "RegChangeID",

Location => "LocationID");

#Items that are overcomplicated can be simplified.

#We 'flatten' RegKeys in one level

my @GroupTags = (RegKeys => "RegKey");

#Construct a new XML::Simple object

my $xml = new XML::Simple (ForceArray => [@ForceArrays],

KeyAttr => {@FoldArrays},

GroupTags => {@GroupTags}

#Notice that we use KeyAttr => { list } NOT

KeyAttr => [list]

Automating the Creation of NASLs • Chapter 6 139

332_NSE_06.qxd 7/14/05 1:57 PM Page 139

);

###

1. Read the template file

open TEMPLATE, $template_file

or die "Could not open template file: $!\n";

my $template = "";

while(<TEMPLATE>)

{

$template .= $_;

}

###

2. Read XML file

print "Reading XML file...\n";

my $data = $xml->XMLin($MSSecure)

or die "Cannot open XML file:". $!."\n";

###

3. Start digging...

print "Extracting data...\n";

Find and read the desired <Bulletin>...</Bulletin> section

my $BulletinXML = get_Bulletin($data, $MS_BID)

or die "Could not find bulletin: $MS_BID\n";

###

4. Get the data from the XML in a hash form

my %Bulletin = parse_MS_BID($BulletinXML);

$Bulletin{'AdvisoryURL'} =

"http://www.microsoft.com/technet/security/bulletin/$MS_BID.mspx";

###

5. Replace tags

print "Filling NASL template.\n";

$template = replaceTag($template, "Author", $Author);

$template = replaceTag($template, "ScriptID", $ScriptID);

#Convert the CVE array to a comma separated string

my $CVEList = "CVE-NO-MATCH";

if(defined $Bulletin{'CVE'})

{

$CVEList = "\"".join("\", \"", @{$Bulletin{'CVE'}})."\"";

}

$template = replaceTag($template, "CVEID", $CVEList);

$template = replaceTag($template, "ScriptHotfix", $Bulletin{'QNumber'});

$template = replaceTag($template, "ScriptName", $Bulletin{'Title'});

$template = replaceTag($template, "ScriptSummary", $Bulletin{'Summary'});

$template = replaceTag($template, "ScriptSolution", $Bulletin{'AdvisoryURL'});

$template = replaceTag($template, "ScriptRiskFactor", $Bulletin{'RiskFactor'});

140 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 140

#Fill in the missing service packs tags

while (my ($productName,$productTags) = each (%ProductTags))

{

my $ServicePackVer = $Bulletin{'ServicePacks'}{$productName};

if(defined $ServicePackVer)

{

$template = replaceTag($template, $productTags, $ServicePackVer);

}

else

{

$template = replaceTag($template, $productTags, "NULL");

}

}

###

6. Write target nasl

my $target_nasl_name = "smb_nt_".lc($MS_BID).".nasl";

print "Creating $target_nasl_name\n";

if(! -f $target_nasl_name)

{

open NASL, ">$target_nasl_name" or die "Could not create target nasl $!\n";

print NASL $template;

}

else

{

print "Target nasl: $target_nasl_name already exist. Aborting\n";

}

#All done.

exit 0;

SUBS

sub parse_MS_BID

{

my ($Bulletin) = @_;

my %MS_Bulletin; #Result hash

#QNumber. Take only the first, as Windows advisories have only one

my @QNumbers = @{$Bulletin->{'QNumbers'}->{'QNumber'}};

$MS_Bulletin{'QNumber'} = $QNumbers[0]->{'QNumber'};

my @AffectedProducts;

#Patches. Check if the advisory contain at least one patch

if($Bulletin->{'Patches'} && $Bulletin->{'Patches'}->{'Patch'})

{

print "Extracting patch information for: ".$Bulletin->{'Title'}."\n";

my @CVEs;

my @BulletinPatches;

my $HighestSeverity;

my %CheckForSPs;

foreach my $Patch (@{$Bulletin->{'Patches'}->{'Patch'}})

{

Automating the Creation of NASLs • Chapter 6 141

332_NSE_06.qxd 7/14/05 1:57 PM Page 141

my %PatchInfo;

#Read the registry changes for this patch. The registry changes

#can contain HOTFIX path and ServicePack information

my @HotfixPathInRegistry;

if($Patch->{'RegChgs'})

{

@HotfixPathInRegistry = parse_RegChgs($Patch->{'RegChgs'}, $data);

}

#Record the highest severity for the final `Risk Level` tag

if($Patch->{'MSSeverityID'})

{

my $SeverityID = $Patch->{'MSSeverityID'};

if(!$HighestSeverity || $HighestSeverity > $Patch->{'MSSeverityID'})

{

$HighestSeverity = $SeverityID;

}

}

#Get the CVE, and if it does not already exist, add it

my $CVEID = $Patch->{'CVEID'};

if($CVEID && ! grep(/^\Q$CVEID\E$/, @CVEs)) #See /Note 1/

{

push @CVEs, $CVEID;

}

if($Patch->{'AffectedProduct'}) #See /Note 2/

{

#Go over each AffectedProduct, if the product is a version of

#Microsoft Windows, get Service Pack information

foreach my $AffectedProduct (@{$Patch->{'AffectedProduct'}})

{

#Get the Nessus product name and the latest service pack

my ($NESSUSProductID, $CurrentSPID) =

parse_ProductID($AffectedProduct->{'ProductID'}, $data);

#Check if the patch is alreay included in a service pack

my $CheckForInstalledSP =

parse_SPID($AffectedProduct->{'FixedInSP'}, $data);

#Try to see if the patch is part of a Service Pack

if(! defined $CheckForInstalledSP)

{

foreach my $RegistryPath (@HotfixPathInRegistry)

{

if($RegistryPath =~ /\\SP(\d)\\/) #See /Note 3/

{

$CheckForInstalledSP = $1;

last;

}

}

if(! $CheckForInstalledSP && defined $CurrentSPID)

{

print "Patch is not included in any existing ServicePack.".

142 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 142

"Setting CheckForInstalledSP to be the upcoming one\n";

$CheckForInstalledSP = $CurrentSPID + 1;

}

}

#If the patch is relevant to a Windows product,

#set the global required service packs to the one we found

if(defined $NESSUSProductID && defined $CheckForInstalledSP)

{

print "NESSUSProductID: $NESSUSProductID".

" CheckForInstalledSP: $CheckForInstalledSP\n";

if((! defined $CheckForSPs{$NESSUSProductID}) ||

($CheckForInstalledSP > $CheckForSPs{$NESSUSProductID}))

{

$CheckForSPs{$NESSUSProductID} = $CheckForInstalledSP;

}

}

}

}#AffectedProduct

push @BulletinPatches, %PatchInfo;

print "------\n\n";

} #foreach patch

#Fill the target hash

$MS_Bulletin{'Title'} = $Bulletin->{'Title'};

$MS_Bulletin{'Summary'} = $Bulletin->{'Summary'};

$MS_Bulletin{'RiskFactor'} = $SeveritiesMap{$HighestSeverity};

$MS_Bulletin{'Patches'} = [@BulletinPatches];

$MS_Bulletin{'CVE'} = [@CVEs];

$MS_Bulletin{'ServicePacks'} = { %CheckForSPs };

} #If Patches exist

else

{

print "Bulletin ".$MS_BID. " has no Patch information\n";

}

return %MS_Bulletin;

}

sub get_Bulletin

{

my ($xml_data, $MS_BID) = @_;

my %Bulletins = %{$xml_data->{'Bulletins'}->{'Bulletin'}};

my $Bulletin = $Bulletins{$MS_BID};

return $Bulletin;

}

###

#Convert ServicePackID -> Nessus ServicePackID

sub parse_SPID

{

my ($MSSP_ID, $data) = @_;

my $SP_ID_String = "";

my $SP_ID;

Automating the Creation of NASLs • Chapter 6 143

332_NSE_06.qxd 7/14/05 1:57 PM Page 143

my %ServicePacks = %{ $data->{'ServicePacks'}->{'ServicePack'} };

my $SP = $ServicePacks{$MSSP_ID};

if($SP)

{

$SP_ID_String = $SP->{'Name'};

#Gold edition is service pack 0

if($SP_ID_String =~ /Gold/)

{

$SP_ID = 0;

}

#Otherwise, get the number of the service pack (6a == 6)

elsif($SP_ID_String =~ /Service Pack (\d+)/)

{

$SP_ID = $1;

}

}

return $SP_ID;

}

###

Convert Patch{ProductID} -> Nessus Product

sub parse_ProductID

{

my ($MSProductID, $data) = @_;

my $NESSUSProductID;

my $CurrentSPID;

Map products to a hash

my %MSProductsMap = %{ $data->{'Products'}->{'Product'} };

my $Product = $MSProductsMap{$MSProductID}

or return ($NESSUSProductID, $CurrentSPID);

print "Product name: ".$Product->{'Name'}."\n";

$CurrentSPID = parse_SPID($Product->{'CurrentServicePackID'}, $data);

#Map ProductFamilies to a hash

my %ProductFamilies =

%{ $Product->{'ProductFamilies'}->{'ProductFamily'} };

#Try to find each of Nessus product names in the ProductFamilies hash

foreach my $MSProductID (keys %ProductsMap)

{

if($ProductFamilies{$MSProductID})

{

$NESSUSProductID = $ProductsMap{ $MSProductID };

}

}

return ($NESSUSProductID, $CurrentSPID);

}

#Try to find Service Pack information from registry changes

sub parse_RegChgs

{

my ($RegChgs, $data) = @_;

my @RegistryChanges; #Resulting registry changes information

my %Locations = %{ $data->{'Locations'}->{'Location'} };

144 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 144

#Go over all the reg keys and look for ours

foreach my $RegKeyList (@{ $data->{'RegKeys'} })

{

#If the RegKey list contain any data

if($RegKeyList->{'RegChanges'}->{'RegChange'})

{

my %RegKeysInstalled = %{ $RegKeyList->{'RegChanges'}->{'RegChange'} };

foreach my $RegChg (@{ $RegChgs->{'RegChg'} })

{

my $RegChangeID = $RegChg->{'RegChangeID'};

if($RegKeysInstalled{$RegChangeID})

{

my $LocationID = $RegKeysInstalled{$RegChg->{'RegChangeID'}}->

{'LocationID'};

push @RegistryChanges, $Locations{$LocationID}->{'Path'};

}

}

}

}

return @RegistryChanges;

}

#Replace a tag with contents. If there is no contents, delete the tag

sub replaceTag

{

my ($template, $tag, $contents) = @_;

if(defined $template and defined $tag and defined $contents)

{

$template =~ s/<$tag\/>/$contents/sgi;

}

else

{

$template =~ s/<$tag\/>//sgi;

}

return $template;

}

In the grep command: grep(/^\Q$CVEID\E$/, @CVEs) we require an exact match.This is
done by anchoring the regular expression with ^ (start of string) and $ (end of string).The \Q
and \E around the $CVEID variable escapes the content of the variable so that if it contains
regular expression metacharacters; they are not being treated as such, but rather escaped.The
loop for each Patch->AffectedProduct finds the missing service pack information. If an
AffectedProduct matches a Windows version, we get the following:

■ $CurrentSPID Latest supported service pack for this version of Windows.

■ $CheckForInstalledSP A service pack containing the patch (if available).

If $CheckForInstalledSP is 0, no service pack contains the patch, and we will set the missing
service pack to the upcoming service pack ($CurrentSPID + 1).

The method we usually use to detect if a patch is included in a service pack is looking in
the AffectedProducts elements:

Automating the Creation of NASLs • Chapter 6 145

332_NSE_06.qxd 7/14/05 1:57 PM Page 145

<AffectedProduct ProductID="7" FixedInSP="3">

If the FixedInSP attribute is set to 0, this can mean two things:

1. There is no service pack available for this hotfix. We discussed this option before, and
in this case, we simply set the service pack number to the upcoming service pack.

2. There is a service pack that contains the hotfix, and it appears in the registry.To find
out which service pack includes the hotfix, we need to look in the registry changes
made by the patch, under the Locations section of the XML:

If we find a registry key in the form of:
<Location LocationID=”824” Path=”HKLM\SOFTWARE\Microsoft\Windows

NT\CurrentVersion\Hotfix\Q305399”AbsolutePath=””/>
this means that the patch is an independent hotfix, not included in any service pack.
However, if the patch installs a registry key like:
<Location LocationID=”821” Path=”HKLM\SOFTWARE\Microsoft\Updates\Windows

2000\SP3\Q252795”AbsolutePath=””/>
then the patch is included in Service Pack 3 of Windows 2000.
This helps us find which service pack includes the hotfix, even without the specific

FixedInSP attribute.

Swiss Army Knife…

Looking for Other Products
The information inside the mssecure.xml contains more than just information on
Microsoft Windows operating systems. By using the registry changes and file
changes of every patch, you can detect any installed patch on the system. Nessus
provides a simple interface for checking the versions of executables (.dll and .exe files
for example). This is also done via the smb interface used to access the registry.

This powerful extension can be used to check that even your Microsoft Office
suites are patched to the latest version.

Conclusion
The command-line tool presented here provides a simple and automatic way to create a Nessus
plugin from the mssecure.xml scheme. More important, this shows a general approach to vulner-
ability detection.

The idea is to separate the testing mechanism (in our case remote registry access) from the
actual vulnerability assessment data (stored in mssecure.xml). XML is extremely versatile and can
be used to store the data on any type of vulnerability.

The benefits are quite obvious; here are just a few:

146 Chapter 6 • Automating the Creation of NASLs

332_NSE_06.qxd 7/14/05 1:57 PM Page 146

■ Multi-language support The mssecure.xml file is supplied from Microsoft also in
French, German, and Japanese. It is possible to create plugins in different language by
parsing different XML versions.

■ Data syndication XML is a magnificent tool to spread data. RSS feeds are simply a
type of XML; there is no need to publish entire plugins if a suitable framework is built
to spread the only the data required to detect the vulnerability.

Final Touches
In this chapter we’ve seen several approaches to simplifying Nessus plugin creation.The methods
suggested can help you create plugins with little effort and benefit from the experience of
others. Moreover, writing your own templates and data structures can help others extend your
work without going into the details of the implementation.

Automating the Creation of NASLs • Chapter 6 147

332_NSE_06.qxd 7/14/05 1:57 PM Page 147

332_NSE_06.qxd 7/14/05 1:57 PM Page 148

Part II
Snort Tools

149

332_NSE_07.qxd 7/14/05 2:02 PM Page 149

332_NSE_07.qxd 7/14/05 2:02 PM Page 150

The Inner
Workings of Snort

Solutions in this chapter:

■ Initialization

■ Decoding

■ Preprocessing

■ Detection

■ The Stream4 Preprocessor

■ Inline Functionality

Chapter 7

151

332_NSE_07.qxd 7/14/05 2:02 PM Page 151

In This Toolbox
This chapter is aimed at people who have prior experience setting up and maintaining Snort
source code.To reap the full benefits from the remaining chapters of this book, it will be helpful
to have a firm understanding of the inner workings of Snort.

The best way to obtain an understanding of Snort is to read the source code. Snort source
code is relatively straightforward and written in modular form, thereby allowing for easy reading
and development.

This chapter aims to help readers understand Snort source code. It is suggested that readers
download a copy of the Snort source code from www.snort.org to refer to throughout this
chapter.

Introduction
To help develop an understanding of the inner workings of Snort, this chapter runs through the
Snort engine and briefly explains the code involved in each part of the process.

This chapter also examines how Snort’s inline capability works, and explains the various data
structures Snort uses.

Master Craftsman

Vim + ctags Code Browsing Made Easy
The Vi IMproved (vim) text editor and the ctags utility form a partnership that makes
browsing a semi-complex code tree like Snort, easy.

The vim editor has long been a favorite of UNIX system administrators and com-
puter geeks. It features an (arguably) intuitive user interface with an enormous range
of options available for navigating source code and manipulating text. Vim is avail-
able at www.vim.org.

The ctags utility generates an index (tag) file that stores the location of the sym-
bols in a block of code, allowing for fast and easy browsing of the source code. Ctags
supports languages such as C, C++, Common Business-Oriented Language (COBOL),
Python, Perl, and Hypertext Preprocessor (PHP), and is available from
http://ctags.sourceforge.net.

When combining the ctags utility with vim, you must first run the ctags utility
in your chosen directory, using the -R option to make it recursively run through the
entire source tree.

-[nemo@snortbox:~/snort-2.3.2]$ ctags –R .

Once the tags are generated, run vim as normal.
When a symbol such as a function call or a variable reference is used, position

the cursor over the function call (see Figure 7.1).

152 Chapter 7 • The Inner Workings of Snort

Continued

332_NSE_07.qxd 7/14/05 2:02 PM Page 152

With the ParseCmdLine() symbol selected, type ^] (control +]) to follow the
symbol to its destination (see Figure 7.2).

To return to the previous position, type ^t (control + t).
This is only a small portion of the useful things that can be achieved using ctags

and vim.

Figure 7.1 Selecting the Function Call

The Inner Workings of Snort • Chapter 7 153

332_NSE_07.qxd 7/14/05 2:02 PM Page 153

Figure 7.2 Running the ParseCmdLine() Function

Initialization
The first section of the Snort source code deals with initializing the Snort engine, which consists
of setting up the data structures, parsing the configuration file, initializing the interface, and per-
forming various other steps, depending on the mode selected by the user.

The following sections explain the initialization of the Snort engine.

Starting Up
Snort begins in the main() function; however, most of Snort’s initialization takes place in the
SnortMain() function.To start Snort as a Windows service, the main() function performs validation
on the parameters passed to Snort, and checks for the /SERVICE keyword to see if Snort is
compiled for Windows.

Next, the SnortMain() function is called. When SnortMain() finishes, the return value from
this function is returned to the shell.

154 Chapter 7 • The Inner Workings of Snort

332_NSE_07.qxd 7/14/05 2:02 PM Page 154

The SnortMain() function begins by associating a set of handlers for the signals Snort
receives. It does this using the signal() function.A list of these signals, their handler, and what the
handler does is shown in Table 7.1.

Table 7.1 Signal Handlers

Signal Handler Description

SIGTERM SigTermHandler() This handler calls the CleanExit() function to
free up Snort resources and exit cleanly.

SIGINT SigIntHandler() This function calls the CleanExit() function.
SIGQUIT SigQuitHandler() The CleanExit() function is called by this

handler to correctly shut Snort down.
SIGHUP SigHupHandler() The SigHupHandler() function calls the

Restart() function. This frees all data
required and closes the pcap object that
was created. If Snort is compiled with the
PARANOID variable defined, the execv()
function is used to reexecute Snort.
Otherwise, execvp() is used.

SIGUSR1 SigUsr1Handler() The SIGUSR1 signal is used as a program-
specific signal. The handler for this calls the
DropStats() function to output the current
Snort statistics. It then resumes program
execution.

To remain portable, Snort checks the value of errno after each call to signal(). On Windows,
some of these signals do not exist and errno is set. In this case, errno must be reset to 0 to avoid
invalid results during later checks of errno.

Snort defines a structure pv in the src/snort.h file.This structure is used to store a set of
global variables for Snort to use, including command-line arguments and various other global
variables.

Snort instantiates a global instance of the pv struct to parse and store its arguments and var-
ious options. During the first half of the SnortMain() function, the pv struct is populated by var-
ious default settings.The following example shows the pv struct:

typedef struct _progvars

{

int stateful;

int line_buffer_flag;

int checksums_mode;

int assurance_mode;

int max_pattern;

int test_mode_flag;

int alert_interface_flag;

The Inner Workings of Snort • Chapter 7 155

332_NSE_07.qxd 7/14/05 2:02 PM Page 155

int verbose_bytedump_flag;

int obfuscation_flag;

int log_cmd_override;

int alert_cmd_override;

int char_data_flag;

int data_flag;

int verbose_flag;

int readmode_flag;

int show2hdr_flag;

int showwifimgmt_flag;

#ifdef GIDS

int inline_flag;

#ifndef IPFW

char layer2_resets;

u_char enet_src[6];

#endif

#ifdef IPFW

int divert_port;

#endif /* USE IPFW DIVERT socket instead of IPtables */

#endif /* GIDS */

#ifdef WIN32

int syslog_remote_flag;

char syslog_server[STD_BUF];

int syslog_server_port;

#ifdef ENABLE_WIN32_SERVICE

int terminate_service_flag;

int pause_service_flag;

#endif /* ENABLE_WIN32_SERVICE */

#endif /* WIN32 */

int promisc_flag;

int rules_order_flag;

int track_flag;

int daemon_flag;

int quiet_flag;

156 Chapter 7 • The Inner Workings of Snort

332_NSE_07.qxd 7/14/05 2:02 PM Page 156

int pkt_cnt;

int pkt_snaplen;

u_long homenet;

u_long netmask;

u_int32_t obfuscation_net;

u_int32_t obfuscation_mask;

int alert_mode;

int log_plugin_active;

int alert_plugin_active;

u_int32_t log_bitmap;

char pid_filename[STD_BUF];

char *config_file;

char *config_dir;

char *log_dir;

char readfile[STD_BUF];

char pid_path[STD_BUF];

char *interface;

char *pcap_cmd;

char *alert_filename;

char *binLogFile;

int use_utc;

int include_year;

char *chroot_dir;

u_int8_t min_ttl;

u_int8_t log_mode;

int num_rule_types;

char pidfile_suffix[MAX_PIDFILE_SUFFIX+1]; /* room for a null */

DecoderFlags decoder_flags; /* if decode.c alerts are going to be enabled */

#ifdef NEW_DECODER

char *daq_method;

char *interface_list[MAX_IFS];

int interface_count;

char *pcap_filename;

The Inner Workings of Snort • Chapter 7 157

332_NSE_07.qxd 7/14/05 2:02 PM Page 157

char *daq_filter_string;

#endif // NEW_DECODER

} PV;

It then uses the ParseCmdLine() function to break up the arguments that have been passed to
it on the command line, and assigns the appropriate values in the pv struct.The outcome of this is
used to determine if Snort is running Integrated Decision Support (IDS) mode, simple packet
logging, or packet dumping in real time.The initialization of Snort differs depending on the
mode selected.

If a configuration file is specified on the command line, Snort assumes that IDS mode is
selected and sets the appropriate flag, unless specifically told otherwise.

NOTE

If no configuration file was provided on the command line and an IDS mode was
requested, the ConfigFileSearch() function is used to try to locate a configuration
file. This file checks (in order) /etc/snort.conf, ./snort.conf, and ~/.snortrc before
testing for .snort.conf in the current user’s home directory.

If Snort is unable to find a specified mode to run in, it exits with the message “Uh, you
need to tell me to do something....”

Finally, if Log mode is selected, Snort validates the log directory specified by the user by
calling the CheckLogDir() function to make sure that the permissions specified on the log direc-
tory are acceptable.

WARNING

The CheckLogDir() test does not make it okay to set the Set User ID (SUID) bit on
the Snort binary to allow other users to run it. This function tests the CheckLogDir()
permissions using the stat() function, a one-off function that does not verify that
the directory specified will not be removed and replaced with a symbolic link. This
function is merely a convenience check and should not be considered secure.

Once Snort has finished verifying the command-line options, the OpenPcap() function is
used to open the selected interface for packet capture.This is accomplished using the libpcap
library.

Libpcap
The libpcap library (written by the Lawrence Berkeley National Laboratory) provides Snort with
an easy and portable way to capture packets.Among other things, the pcap library is used by
Snort to handle the opening of interfaces, packet capture, and filter parsing (e.g., src ip
192.168.0.123).

158 Chapter 7 • The Inner Workings of Snort

332_NSE_07.qxd 7/14/05 2:02 PM Page 158

The libpcap library is free, and available for download at www.tcpdump.org. (libpcap is
covered in detail in Chapter 1.)

In the OpenPcap() function, Snort begins by opening the interface as a pcap object. If a filter
has been provided, it is applied while opening the interface, which limits the packets that are
received by Snort.

Snort defines a global pcap_t struct named pd to hold this open pcap interface.This is initial-
ized using the following function call:

/* get the device file descriptor */

pd = pcap_open_live(pv.interface, snaplen,

pv.promisc_flag ? PROMISC : 0, READ_TIMEOUT, errorbuf);

Following this, the SnortMain() function tests to see if it was invoked with the parameters
required to run as a daemon. If this is the case, the goDaemon() function is used to fork() and
begin daemon mode. It is also responsible for making the daemon “quiet” by redirecting all
input and output to /dev/null.

Depending on the parameters passed, Snort uses different methods for low-layer packet
decoding. For ease of writing new decoders, Snort sets up a function pointer called grinder that
points Snort at the appropriate decoders.The grinder function pointer is set using the
SetPktProcessor() function.

typedef void (*grinder_t)(Packet *, struct pcap_pkthdr *, u_char *); /* ptr to the packet

processor */

grinder_t grinder;

What happens after the packet processor is selected varies depending on the mode in which
Snort was executed. For the purposes of this chapter, the initialization is run in IDS mode,
which is the main mode in which Snort is usually executed.

Snort calls the InitPreprocessors() and InitPlugins() functions.These functions (discussed in
detail in Chapter 9) are used to call the appropriate Setup() functions for each of the preproces-
sors and plugins. Each of these Setup() functions is responsible for associating the plugins Setup()
function with the keyword that triggers it, and is also responsible for initializing any data needed
by the plugin.These functions are found in the src/plugbase.c file.

The InitTag() function is also called to set up Snort’s tagging functionality, which is found in
the src/tag.c file.

Parsing the Configuration File
Once Snort has finished setting up its plugins and preprocessors, the next step is to call the
ParseRuleFile() function to parse the selected configuration file.

This function (found in src/parser.c) reads in the configuration file line-by-line and passes it
to the ParseRule() function for testing. If a \ is found on the line, the following lines are read
from the configuration file and concatenated to the original line before the ParseRule() function
is called.

The ParseRule() function tests the start of the rule to determine what type of rule has been
passed.

The Inner Workings of Snort • Chapter 7 159

332_NSE_07.qxd 7/14/05 2:02 PM Page 159

ParsePreprocessor()
The ParsePreprocessor() function is called if the rule line is a preprocessor statement.

There are two structures used to store information about preprocessors.These structures are
defined in the src/plugbase.h file.The list is made up of a series of PreprocessKeywordEntry structs,
each containing a PreprocessKeywordNode struct and a pointer to the next item in the list.

typedef struct _PreprocessKeywordList

{

PreprocessKeywordNode entry;

struct _PreprocessKeywordList *next;

} PreprocessKeywordList;

Each PreprocessKeyWordNode struct within the list contains the keyword associated with the
preprocessor, and a void function pointer to the Init() function for the preprocessor.

typedef struct _PreprocessKeywordNode

{

char *keyword;

void (*func)(char *);

} PreprocessKeywordNode;

The ParsePreprocessor() function goes through the list to determine if the preprocessor exists.
(This list was initialized by the InitPreprocessors() function earlier.)

When an appropriate match is found for the given keyword, the function pointer that is
stored in this struct is called to initialize the preprocessor.This entire process is accomplished
using the following code:

PreprocessKeywordList *pl_idx; /* index into the preprocessor

* keyword/func list */

...

/* set the index to the head of the keyword list */

pl_idx = PreprocessKeywords;

...

while(pl_idx != NULL)

{

DEBUG_WRAP(DebugMessage(DEBUG_CONFIGRULES,

"comparing: \"%s\" => \"%s\"\n",

funcname, pl_idx->entry.keyword););

/* compare the keyword against the current list element's keyword */

if(!strcasecmp(funcname, pl_idx->entry.keyword))

{

pl_idx->entry.func(pp_args);

found = 1;

}

if(!found)

{

pl_idx = pl_idx->next;

160 Chapter 7 • The Inner Workings of Snort

332_NSE_07.qxd 7/14/05 2:02 PM Page 160

}

else

break;

}

ParseOutputPlugin()
If the line in the configuration file being parsed describes an output plugin, the
ParseOutputPlugin() function is called to set up the appropriate data structures.

The structures used in this function are defined in the src/spo_plugbase.h file. During the
InitOutputPlugins() function’s execution, a linked list of the OutputKeywordList data structure is
defined.

typedef struct _OutputKeywordList

{

OutputKeywordNode entry;

struct _OutputKeywordList *next;

} OutputKeywordList;

Each of the members of this list consists of an OutputKeywordNode data structure and a
pointer to the next element in the list.

The OutputKeywordNode consists of the keyword itself, the associated function pointer, and a
character representing the type of node.

typedef struct _OutputKeywordNode

{

char *keyword;

char node_type;

void (*func)(char *);

} OutputKeywordNode;

Much like the ParsePreprocessor() function, the ParseOutputPlugin() function uses a temporary
pointer to the linked list of structures and goes through the list searching for the appropriate
output plugin. However, it uses the GetOutputPlugin() function from the src/plugbase.c file to per-
form the search.

OutputKeywordNode *GetOutputPlugin(char *plugin_name)

{

OutputKeywordList *list_node;

if(!plugin_name)

return NULL;

list_node = OutputKeywords;

while(list_node)

{

if(strcasecmp(plugin_name, list_node->entry.keyword) == 0)

return &(list_node->entry);

The Inner Workings of Snort • Chapter 7 161

332_NSE_07.qxd 7/14/05 2:02 PM Page 161

list_node = list_node->next;

}

FatalError("unknown output plugin: '%s'",

plugin_name);

return NULL;

}

Once the appropriate OutputKeywordNode has been retrieved, the ParseOutputPlugin() func-
tion tests the node_type variable and performs various actions based on it.

Regardless of node_type, the node pointer is de-referenced and the configuration function
pointer is called.

Snort Rules
In cases where the line being evaluated in the ParseRule() function belongs to a typical Snort
rule, (Pass,Alert, Log), a struct local to the ParseRule() function is populated and added to the list
of rules.

The ParseRule() function defines a local instance of the RuleTreeNode structure called
proto_node. It then populates this structure, depending on the type of rule being parsed.

typedef struct _RuleTreeNode

{

RuleFpList *rule_func; /* match functions.. (Bidirectional etc..) */

int head_node_number;

int type;

IpAddrSet *sip;

IpAddrSet *dip;

int not_sp_flag; /* not source port flag */

u_short hsp; /* hi src port */

u_short lsp; /* lo src port */

int not_dp_flag; /* not dest port flag */

u_short hdp; /* hi dest port */

u_short ldp; /* lo dest port */

u_int32_t flags; /* control flags */

/* stuff for dynamic rules activation/deactivation */

int active_flag;

int activation_counter;

int countdown;

ActivateList *activate_list;

struct _RuleTreeNode *right; /* ptr to the next RTN in the list */

162 Chapter 7 • The Inner Workings of Snort

332_NSE_07.qxd 7/14/05 2:02 PM Page 162

OptTreeNode *down; /* list of rule options to associate with this

rule node */

struct _ListHead *listhead;

} RuleTreeNode;

First, the protocol field is set, followed by the source Internet Protocol (IP) address range
list, which is populated using the ProcessIP() function to expand the Classless Inter-Domain
Routing (CIDR) notation form of the source IP address. Next, the source port and directional
operator is parsed. Following this, a second call to ProcessIP() is used to parse the destination IP
address before finally reaching the destination port.

NOTE

If the keyword “any” is used in the IP field, the IP and netmask fields are set to 0 to
symbolize this.

The rest of the initialization of the RuleTreeNode struct differs depending on the type of rule.
The ListHead structure is used to organize the rules into their appropriate categories. It con-

tains several RuleTreeNode lists, one for each protocol.

typedef struct _ListHead

{

RuleTreeNode *IpList;

RuleTreeNode *TcpList;

RuleTreeNode *UdpList;s

RuleTreeNode *IcmpList;

struct _OutputFuncNode *LogList;

struct _OutputFuncNode *AlertList;

struct _RuleListNode *ruleListNode;

} ListHead;

The src/parser.c file declares several global instances of the ListHead struct to store each of the
rules depending on their rule_type.These global variables are shown in the following example:

ListHead Alert; /* Alert Block Header */

ListHead Log; /* Log Block Header */

ListHead Pass; /* Pass Block Header */

ListHead Activation; /* Activation Block Header */

ListHead Dynamic; /* Dynamic Block Header */

ListHead Drop;

ListHead SDrop;

ListHead Reject;

For each of the rules, the RuleTreeNode and the appropriate ListHead is passed (by reference)
to the ProcessHeadNode() function, to populate the rules OptTreeNode pointer (down).

The OptTreeNode struct is used by the RuleTreeNode struct to store all of the options associated
with a rule.The struct contains attributes about the rule, including some of the options that do
not require a test such as the Threshold option and the Activates option.

The Inner Workings of Snort • Chapter 7 163

332_NSE_07.qxd 7/14/05 2:02 PM Page 163

typedef struct _OptTreeNode

{

/* plugin/detection functions go here */

OptFpList *opt_func;

RspFpList *rsp_func; /* response functions */

OutputFuncNode *outputFuncs; /* per sid enabled output functions */

/* the ds_list is absolutely essential for the plugin system to work,

it allows the plugin authors to associate "dynamic" data structures

with the rule system, letting them link anything they can come up

with to the rules list */

void *ds_list[64]; /* list of plugin data struct pointers */

int chain_node_number;

int type; /* what do we do when we match this rule */

int evalIndex; /* where this rule sits in the evaluation sets */

int proto; /* protocol, added for integrity checks

during rule parsing */

struct _RuleTreeNode *proto_node; /* ptr to head part... */

int session_flag; /* record session data */

char *logto; /* log file in which to write packets which

match this rule*/

/* metadata about signature */

SigInfo sigInfo;

u_int8_t stateless; /* this rule can fire regardless of session state */

u_int8_t established; /* this rule can only fire if it is established */

u_int8_t unestablished;

Event event_data;

TagData *tag;

/* stuff for dynamic rules activation/deactivation */

int active_flag;

int activation_counter;

int countdown;

int activates;

int activated_by;

u_int8_t threshold_type; /* type of threshold we're watching */

u_int32_t threshold; /* number of events between alerts */

u_int32_t window; /* number of seconds before threshold times out */

struct _OptTreeNode *OTN_activation_ptr;

struct _RuleTreeNode *RTN_activation_ptr;

struct _OptTreeNode *next;

struct _RuleTreeNode *rtn;

164 Chapter 7 • The Inner Workings of Snort

332_NSE_07.qxd 7/14/05 2:02 PM Page 164

} OptTreeNode;

The OptTreeNode struct’s most important members are two linked lists consisting of the
OptFPList and RspFPList data structures.The OptFPList is responsible for holding a linked list of
all of the detection plugins Check() functions that must be called in order for a rule to be consid-
ered a successful match.

typedef struct _OptFpList

{

/* context data for this test */

void *context;

int (*OptTestFunc)(Packet *, struct _OptTreeNode *, struct _OptFpList *);

struct _OptFpList *next;

} OptFpList;

The RspFPList is used to store a list of function pointers that are called when the rule per-
forms a successful match.

typedef struct _RspFpList

{

int (* ResponseFunc)(Packet *, struct _RspFpList *);

void *params; /* params for the plugin.. type defined by plugin */

struct _RspFpList *next;

} RspFpList;

In the ProcessHeadNode() function, the appropriate list in the ListHead is selected depending
on the protocol field of the new rule.A new RuleTreeNode data structure is then allocated using
the calloc() function, and then appended to the selected list .

The existing rule header from the temporary rule created during the ParseRule() function is
copied into the new RuleTreeNode (rtn_tmp) using the XferHeader() function.This function copies
the entire header between the two RuleTreeNodes.

void XferHeader(RuleTreeNode * rule, RuleTreeNode * rtn)

{

rtn->type = rule->type;

rtn->sip = rule->sip;

rtn->dip = rule->dip;

rtn->hsp = rule->hsp;

rtn->lsp = rule->lsp;

rtn->hdp = rule->hdp;

rtn->ldp = rule->ldp;

rtn->flags = rule->flags;

rtn->not_sp_flag = rule->not_sp_flag;

rtn->not_dp_flag = rule->not_dp_flag;

}

The ProcessHeadNode() function then sets the RuleTreeNode (rtn_temp)’s down pointer to null
before passing it to the SetupRTNFuncList() function to be populated.

The Inner Workings of Snort • Chapter 7 165

332_NSE_07.qxd 7/14/05 2:02 PM Page 165

This function is responsible for changing the source and destination IP addresses and ports,
and changing the directional operator into function calls and adding them to the OptFpList
belonging to rule.This is achieved by using the AddRuleFuncToList() function, which adds a new
member to the OptFpList and copies in the appropriate function pointer.

The PortToFunc() and AddrFunc() functions are used to convert the port and IP address
values, respectively, into function pointers. It then adds them to the rule using the
AddRuleFuncToList() function,.

The source code for the SetupRTNFuncList() function is shown in the following example:

void SetupRTNFuncList(RuleTreeNode * rtn)

{

DEBUG_WRAP(DebugMessage(DEBUG_CONFIGRULES,"Initializing RTN function list!\n"););

DEBUG_WRAP(DebugMessage(DEBUG_CONFIGRULES,"Functions: "););

if(rtn->flags & BIDIRECTIONAL)

{

DEBUG_WRAP(DebugMessage(DEBUG_CONFIGRULES,"CheckBidirectional->\n"););

AddRuleFuncToList(CheckBidirectional, rtn);

}

else

{

/* Attach the proper port checking function to the function list */

/*

* the in-line "if's" check to see if the "any" or "not" flags have

* been set so the PortToFunc call can determine which port testing

* function to attach to the list

*/

PortToFunc(rtn, (rtn->flags & ANY_DST_PORT ? 1 : 0),

(rtn->flags & EXCEPT_DST_PORT ? 1 : 0), DST);

/* as above */

PortToFunc(rtn, (rtn->flags & ANY_SRC_PORT ? 1 : 0),

(rtn->flags & EXCEPT_SRC_PORT ? 1 : 0), SRC);

/* link in the proper IP address detection function */

AddrToFunc(rtn, SRC);

/* last verse, same as the first (but for dest IP) ;) */

AddrToFunc(rtn, DST);

}

DEBUG_WRAP(DebugMessage(DEBUG_CONFIGRULES,"RuleListEnd\n"););

/* tack the end (success) function to the list */

AddRuleFuncToList(RuleListEnd, rtn);

}

Finally, the RuleListEnd() function callback is appended to the list to indicate when a rule
has finished matching and is successful.

Now that the rule has been set up with the basic set of functions in its OptFPList list, the
other options need to be parsed and added.To do this, Snort uses the ParseRuleOptions(). This

166 Chapter 7 • The Inner Workings of Snort

332_NSE_07.qxd 7/14/05 2:02 PM Page 166

function breaks up the rules options and adds the appropriate function pointers to the list.
Several of the Snort rule options are hard-coded into this function.These parsing functions store
the option in the appropriate attributes of the OptTreeNode struct.Table 7.2 includes a list of
those options and their appropriate parsing functions.

Table 7.2 Hard-Coded Options

Option Parsing Function

msg ParseMessage()
logto ParseLogto()
activates ParseActivates()
activated_by ParseActivatedBy()
count ParseCount()
Tag ParseTag()
Threshold ParseThreshold()
Sid ParseSID()
Rev ParseRev()
reference ParseReference()
Priority ParsePriority()
classtype ParseClassType()
Stateless No function is used; however, the stateless attribute is set from

within the ParseRuleOptions() function.

The KeywordList linked list is searched for any rule that contains detection options not listed
in Table 7.2.The following code shows this:

kw_idx = KeywordList;

found = 0;

while(kw_idx != NULL)

{

DEBUG_WRAP(DebugMessage(DEBUG_INIT, "comparing: \"%s\" => \"%s\"\n",

option_name, kw_idx->entry.keyword););

if(!strcasecmp(option_name, kw_idx->entry.keyword))

{

if(num_opts == 2)

{

kw_idx->entry.func(option_args, otn_tmp, protocol);

}

else

{

kw_idx->entry.func(NULL, otn_tmp, protocol);

}

DEBUG_WRAP(DebugMessage(DEBUG_INIT, "%s->", kw_idx-

>entry.keyword););

found = 1;

break;

The Inner Workings of Snort • Chapter 7 167

332_NSE_07.qxd 7/14/05 2:02 PM Page 167

}

kw_idx = kw_idx->next;

}

When a match is found, the initialization function is called to set up the detection option.
The initialization function for each detection option is responsible for calling the
AddOptFuncToList() to add its own Check() function to the list.

Event Queue Initialization
Now that the configuration file has been parsed and the appropriate data structures set up, exe-
cution returns to the SnortMain() function in the src/snort.c file.

The flowbits rules are sanity checked using the FlowBitsVerify() and then the SnortEventqInit()
function.This function performs a few checks and then calls the feventq_init() function to start up
the event queue.The source to this function is found in the src/sfutil/sfeventq.c file.This function
allocates the memory required by the event queue to store max_nodes numbers of events in
memory.

Final Initialization
The SnortMain() function finishes off by chroot()’ing Snort (if needed) and dropping privileges,
outputting the banner and statistical information, and calling the InterfaceThread() to begin cap-
turing packets.

The InterfaceThread() function uses the pcap_loop() function to associate a callback function
pointer with a pcap interface. Because a newly created pcap interface (pd) was created by the user
complete with any filters supplied, the pd interface is used.The callback function used is the
ProcessPacket().The pcap_loop() function sits and blocks until an error occurs (or a signal is
received).This is where the main loop of Snort occurs. Whenever a packet is received, the
ProcessPacket() function is called to process it.

Decoding
Now that Snort has finished initializing and the main body of the Snort engine is working, exe-
cution begins at the ProcessPacket() function when a new packet is received. It is at this point that
all of the hard work spent setting it up pays off and you can use data structures that you spent so
much time and effort setting up.

The definition of the ProcessPacket() function is shown in the following example:

void ProcessPacket(char *user, struct pcap_pkthdr * pkthdr, u_char * pkt)

When the ProcessPacket() function is called, it begins by incrementing the packet count and
storing the time the packet was captured.

Following this, the grinder function pointer is called and the arguments to ProcessPacket() are
passed to it.

(*grinder) (&p, pkthdr, pkt);

168 Chapter 7 • The Inner Workings of Snort

332_NSE_07.qxd 7/14/05 2:02 PM Page 168

A previous example in this chapter showed how the grinder function pointer was initialized
to point to the selected decoder function, depending on the arguments that were provided to
Snort by the user.This was done during the SetPktProcessor() function.

The possible decoders and their descriptions are shown in Table 7.3. Each of these decoders
can be found in the src/decode.c file.

Table 7.3 Possible Decoders

Decoder Description

DecodeIptablesPkt This decoder is used to decode Iptables packets in Inline
mode. It is basically a wrapper around the DecodeIP()
function.

DecodeIpfwPkt This decoder is used to decode packets from the Internet
Protocol Firewall (IPFW) firewall; at the moment, this func-
tion is also a wrapper around the function.

DecodeEthPkt This decoder checks the ether_type field of the Ethernet
header, and calls the appropriate packet decoders to break
the packet down further.

DecodeIEEE80211Pkt This decoder examines 802.11 Wireless Local Area Network
(WLAN) packets.

DecodeTRPkt This decoder is used for Token Ring packets. It verifies the
header fields according to Request For Comment (RFC)
1042. It is then passed to various other decoders such as
DecodeVlan() or DecodeIP(), depending on the Ethernet-
type header field.

DecodeFDDIPkt This decoder is used to decode Fiber Distributed Data
Interface (FDDI) packets.

DecodeChdlcPkt This decoder is used to decode High-Level Data Link Control
(HDLC) encapsulated packets. It tests the size of the packet
and the various HDLC fields before passing to the
DecodeIP() function.

DecodeSlipPkt This decoder is used to decode SLIP traffic. A test is made
to determine if the size of the packet is greater than or
equal to the size of a SLIP header, before passing the packet
to the ParseIP() function.

DecodePppPkt This decoder is used to decode Point-to-Point Protocol (PPP)
traffic. It does this using RFC 1661 standards.

decodepppserialpkt This decoder is used to decode mixed PPP and HDLC traffic.
It tests the length and second byte of the packet before
passing it to either the DecodePppPktEncapsulated() or the
DecodeChdlcPkt() decoder.

DecodeLinuxSLLPkt This decoder is used to decode LinuxSLL (cooked socket)
traffic. Once the LinuxSLL header is parsed, the packet is
passed to the appropriate decoder for its network type.

The Inner Workings of Snort • Chapter 7 169

Continued

332_NSE_07.qxd 7/14/05 2:02 PM Page 169

Table 7.3 continued Possible Decoders

Decoder Description

DecodePflog This decoder is for pflog packets. It passes the packets to
the DecodeIP() or DecodeIPV6() functions depending on the
header.

DecodeNullPkt This decoder is used for loopback devices. It tests the
caplen before passing to the DecodeIP() function.

DecodeRawPkt This decoder is basically a wrapper around DecodeIP(). It
does not perform any checks.

DecodeI4LRawIPPkt This decoder is for decoding packets that are coming in raw
on Layer 2. It tests the packet length, and if it is less than 2,
rejects it. The DecodeIP() function is then called.

DecodeI4LCiscoIPPkt This decoder tests the length of the packet. A packet length
of less than four is rejected. Otherwise, the DecodeIP() func-
tion is called.

At a basic level, each of these decoders parses its appropriate header data, validating certain
fields before setting the packet pointer to the next header and passing the pointer to the next
decoder.

To understand the life of a packet inside a typical decoder, trace through the source for the
DecodeEthPkt() function.

void DecodeEthPkt(Packet * p, struct pcap_pkthdr * pkthdr, u_int8_t * pkt)

{

u_int32_t pkt_len; /* suprisingly, the length of the packet */

u_int32_t cap_len; /* caplen value */

bzero((char *) p, sizeof(Packet));

p->pkth = pkthdr;

p->pkt = pkt;

/* set the lengths we need */

pkt_len = pkthdr->len; /* total packet length */

cap_len = pkthdr->caplen; /* captured packet length */

if(snaplen < pkt_len)

pkt_len = cap_len;

DEBUG_WRAP(DebugMessage(DEBUG_DECODE, "Packet!\n");

DebugMessage(DEBUG_DECODE, "caplen: %lu pktlen: %lu\n",

(unsigned long)cap_len, (unsigned long)pkt_len);

);

/* do a little validation */

if(cap_len < ETHERNET_HEADER_LEN)

{

if(pv.verbose_flag)

{

170 Chapter 7 • The Inner Workings of Snort

332_NSE_07.qxd 7/14/05 2:02 PM Page 170

ErrorMessage("Captured data length < Ethernet header length!"

" (%d bytes)\n", p->pkth->caplen);

}

return;

}

/* lay the ethernet structure over the packet data */

p->eh = (EtherHdr *) pkt;

DEBUG_WRAP(

DebugMessage(DEBUG_DECODE, "%X %X\n",

*p->eh->ether_src, *p->eh->ether_dst);

);

/* grab out the network type */

switch(ntohs(p->eh->ether_type))

{

case ETHERNET_TYPE_PPPoE_DISC:

case ETHERNET_TYPE_PPPoE_SESS:

DecodePPPoEPkt(p, pkthdr, pkt);

return;

case ETHERNET_TYPE_IP:

DEBUG_WRAP(

DebugMessage(DEBUG_DECODE,

"IP datagram size calculated to be %lu bytes\n",

(unsigned long)(cap_len - ETHERNET_HEADER_LEN));

);

DecodeIP(p->pkt + ETHERNET_HEADER_LEN,

cap_len - ETHERNET_HEADER_LEN, p);

return;

case ETHERNET_TYPE_ARP:

case ETHERNET_TYPE_REVARP:

DecodeARP(p->pkt + ETHERNET_HEADER_LEN,

cap_len - ETHERNET_HEADER_LEN, p);

return;

case ETHERNET_TYPE_IPV6:

DecodeIPV6(p->pkt + ETHERNET_HEADER_LEN,

(cap_len - ETHERNET_HEADER_LEN));

return;

case ETHERNET_TYPE_IPX:

DecodeIPX(p->pkt + ETHERNET_HEADER_LEN,

(cap_len - ETHERNET_HEADER_LEN));

return;

case ETHERNET_TYPE_8021Q:

DecodeVlan(p->pkt + ETHERNET_HEADER_LEN,

cap_len - ETHERNET_HEADER_LEN, p);

return;

The Inner Workings of Snort • Chapter 7 171

332_NSE_07.qxd 7/14/05 2:02 PM Page 171

default:

pc.other++;

return;

}

return;

}

The DecodeEthPkt() function takes the following three arguments:

■ Packet * p A pointer to storage for the Decoded packet.

■ struct pcap_pkthdr * A pointer to the packet header.

■ pkthdr, u_int8_t * pkt A pointer to the actual packet data.

The first thing the DecodeEthPkt() function does is bzero() the Packet struct.The bzero() func-
tion sets the values of the specified memory addresses to 0.The Packet struct (defined in the
src/decode.h file) is a long struct that contains attributes for all of the different decoder packet data
Snort supports.

Next, the pkth field of the newly zeroed Packet struct is set to a pointer to the pkthdr argu-
ment and passed to the function.The pkt field of the struct is also set to the pkt argument.

Some validation is then done to make sure that the length of the captured packet is greater
than or equal to the size of an Ethernet header. If this is not the case, the decoder ends and an
error message is generated.

The current position of the pkt pointer that was passed to the decoder is then interpreted as
an Ethernet header, and the location of this is stored in the Packet struct as the eh field.

This newly located Ethernet header is then tested to determine the type of Ethernet packet
that is being decoded.

Depending on the type of Ethernet packet, the appropriate Decode() function is called to
decode the next layer of the packet.The size of the Ethernet header is added to the pkt pointer
to determine where the next header should be stored.

This is done until everything is decoded and all of the possible Packet struct fields are
populated.

Preprocessing
After the packet decoding is finished, the ProcessPacket() function tests the mode in which Snort
is running. If Snort is only running in Packet Log mode, the CallLogPlugins() function is used to
log the packet accordingly. However, if Snort is running in IDS mode, the decoded Packet struct
is passed to the Preprocess() to begin the preprocessing (and eventually detection) phase.

The PreProcess() function begins by declaring a temporary pointer (idx) to the linked list of
ProprocessFuncNode structures called PreprocessList.This preinitialized list holds the function
pointers to each of the Check() functions in the preprocessors that have been initialized by the
configuration file.

172 Chapter 7 • The Inner Workings of Snort

332_NSE_07.qxd 7/14/05 2:02 PM Page 172

The function then uses the idx pointer to go through the list de-referencing and calling the
check functions for each of the preprocessors.

The Decoded Packet struct is passed to each of the preprocessors in turn.

int Preprocess(Packet * p)

{

PreprocessFuncNode *idx;

int retval = 0;

/*

* If the packet has an invalid checksum marked, throw that

* traffic away as no end host should accept it.

*

* This can be disabled by config checksum_mode: none

*/

if(p->csum_flags)

{

return 0;

}

do_detect = 1;

idx = PreprocessList;

/*

** Reset the appropriate application-layer protocol fields

*/

p->uri_count = 0;

UriBufs[0].decode_flags = 0;

/*

** Turn on all preprocessors

*/

p->preprocessors = PP_ALL;

while(idx != NULL)

{

assert(idx->func != NULL);

idx->func(p);

idx = idx->next;

}

check_tags_flag = 1;

if(do_detect)

Detect(p);

/*

** By checking tagging here, we make sure that we log the

** tagged packet whether it generates an alert or not.

*/

CheckTagging(p);

retval = SnortEventqLog(p);

The Inner Workings of Snort • Chapter 7 173

332_NSE_07.qxd 7/14/05 2:02 PM Page 173

SnortEventqReset();

otn_tmp = NULL;

/*

** If we found events in this packet, let's flush

** the stream to make sure that we didn't miss any

** attacks before this packet.

*/

if(retval && p->ssnptr)

AlertFlushStream(p);

/**

* See if we should go ahead and remove this flow from the

* flow_preprocessor -- cmg

*/

CheckFlowShutdown(p);

return retval;

}

After all of the preprocessors have been called, the PreProcess() function checks the value of
the do_detect variable set during the initialization of Snort. It calls the Detect() function if the
do_detect variable is set.The Packet struct is passed to this function.The do_detect variable is a
quick way to tell Snort not to process rules through the detection engine. If a preprocessor
decides that a packet should not be examined, it can unset the do_detect variable.

Detection
The detection phase begins in the Detect() function. However, this function does nothing more
than verify the existence of the packet and IP header before passing the packet to the
fpEvalPacket() function for further testing.

The old detection algorithm involved calling the EvalHeader() function and going through
the OTN list to test each option.This algorithm was slow and has been replaced with a faster
and more complicated algorithm.

The fpEvalPacket() function tests the ip_proto field of the IP header to determine what to do
next. If the packet is Transmission Control Protocol/User Datagram Protocol (TCP/UDP) or
Internet Control Message Protocol (ICMP), then the fpEvalHeaderTcp(), fpEvalHeaderUdp(), and
fpEvalHeaderICMP() functions are called. Otherwise, the fpEvalHeaderIp() function is used to
check based on IP.

By checking ports and protocols up front for a given packet, Snort is able to limit the
amount of rules that must be evaluated, greatly reducing the amount of work Snort would need
to perform.

For all of the fpEval() functions except for the fpEvalHeaderICMP(), the first step is to call the
prmFindRuleGroup() function.This is done to make sure a match exists for the source and desti-
nation port mentioned in the rule.This is a quick way to eliminate rules without complex pat-
tern matching.

174 Chapter 7 • The Inner Workings of Snort

332_NSE_07.qxd 7/14/05 2:02 PM Page 174

This function returns a number representing the appropriate rule group that requires more
inspection.The block comment for this function defines the behavior for the return value as the
following:

int - 0: No rules

1: Use Dst Rules

2: Use Src Rules

3: Use Both Dst and Src Rules

4: Use Generic Rules

Once a successful match for the ports is found, the fpEvalHeaderSW() function is entered.
This function begins by testing if there are any Uniform Resource Identifier (URI) rules. If
there are, the rule data is normalized first.

Eventually, the OTN and RTN lists are gone through to test the rest of the detection
options. However, in this model, when a match is found an event is added to the appropriate
queue using the fpAddMatch() function.

There are three event queues set up: alert, log, and pass.The order in which these queues are
checked is based on the order specified by the user at runtime. By default, the alert queue is
checked first, followed by the log queue and finally the pass queue.

Content Matching
To accomplish the complex pattern matching used in Snort rules, the Snort team has imple-
mented a series of string matching and parsing functions.

These functions are contained in the src/mstring.c and src/mstring.h files in the Snort source
tree.The functions shown in Table 7.4 are defined in these files.

Table 7.4 Content-Matching Functions

Function Description

int mSearch(char *, int, The mSearch() function is also used to test for the
char *, int, int *, int *); occurrence of a substring within another string.
int mSearchCI(char *, int, The mSearchCI() function is a case-insensitive version of the
char *, int, int *, int *); mSearch() function.
int *make_skip(char *, int); Creates a Boyer-Moore skip table.
int *make_shift(char *, int); Creates a Boyer-Moore shift table.

Content matching implemented with the mSearch() function utilizes the Boyer-Moore algo-
rithm to accomplish the match.The Boyer-Moore algorithm has an interesting property that the
longer the pattern is, the more the algorithms performance improves.

This algorithm was invented in the 1970s by Bob Boyer and J. Strother Moore. It is used in
many different applications today.

The Inner Workings of Snort • Chapter 7 175

332_NSE_07.qxd 7/14/05 2:02 PM Page 175

The Stream4 Preprocessor
The stream4 preprocessor was originally implemented to provide stateful functionality to Snort.
It was directly created in response to the “Stick and Snot” tools, at which time both provided a
dangerous attack vector against a non-stateful IDS. With the stream4 preprocessor enabled, Snort
users are able to drop packets that are not associated with an established TCP stream. Because
this applies to most traffic generated by these tools, this is a quick remedy for this problem. By
doing this, however, you have to discard UDP and ICMP traffic.

Inline Functionality
The inline functionality of Snort is implemented utilizing the iptables or ipfw firewall to provide
the functionality for a new set of rule types, Drop, Reject and SDROP.

The ./configure script detects which firewall option you have available and will compile
Snort with inline support.

Master Craftsman

The ipqueue iptables Module
In order for Snort to implement inline functionality via the iptables firewall, a kernel
module called the ipqueue module must be installed and functional. This module
allows packets to be scheduled before being dropped, or accepted.

The IPTables::IPv4::IPQueue Perl module provides an easy way to utilize this
functionality in your own applications. Packets can be modified, accepted, or
dropped in real time in a simple Perl script of less than 10 lines.

The CPAN.org documentation on this module will get you started.

In order for Snort to have any effect on the packets it can see, the packets must be selected
and queued via the ipqueue module for iptables.

The following commands can be used to queue all of the network traffic that the IDS
sensor can see.

iptables -A OUTPUT -j QUEUE

iptables -A INPUT -j QUEUE

iptables -A FORWARD -j QUEUE

Now we will take a look at the inline functionality in the Snort 2.3.3 source tree.

Inline Initialization
The inline_flag variable contained inside the pv structure is used to toggle the use of inline func-
tionality in Snort. Snort defines the InlineMode() function to test the status of this variable.

176 Chapter 7 • The Inner Workings of Snort

332_NSE_07.qxd 7/14/05 2:02 PM Page 176

int InlineMode()

{

if (pv.inline_flag)

return 1;

return 0;

}

During the execution of the SnortMain() function, the InlineMode() function is tested and, if
true, the InitInline() function is used to initialize the Snort inline functionality.

/* InitInline is called before the Snort_inline configuration file is read. */

int InitInline()

{

int status;

#ifdef DEBUG_GIDS

printf("Initializing Inline mode \n");

#endif

printf("Initializing Inline mode \n");

#ifndef IPFW

ipqh = ipq_create_handle(0, PF_INET);

if (!ipqh)

{

ipq_perror("InlineInit: ");

ipq_destroy_handle(ipqh);

exit(1);

}

status = ipq_set_mode(ipqh, IPQ_COPY_PACKET, PKT_BUFSIZE);

if (status < 0)

{

ipq_perror("InitInline: ");

ipq_destroy_handle(ipqh);

exit(1);

}

#endif /* IPFW */

ResetIV();

/* Just in case someone wants to write to a pcap file

* using DLT_RAW because iptables does not give us datalink layer.

*/

pd = pcap_open_dead(DLT_RAW, SNAPLEN);

return 0;

}

The InitInline() function begins by creating a new ipqueue handle with which to receive
packets.This is accomplished using the ipq_create_handle() function.The ipq_set_mode() function is
then used to change the mode of the ipqh handle.

The Inner Workings of Snort • Chapter 7 177

332_NSE_07.qxd 7/14/05 2:02 PM Page 177

Finally the pd pcap_t struct is initialized using DLT_RAW.As mentioned, this is done because
iptables does not provide the Data Link layer data via ipqueue.

After the configuration file has been parsed, the InlineMode() function is used again to check
for Inline mode. If Inline mode is selected, the InitInlinePostConfig() function is called to perform
post-configuration initialization of the inline functionality.

Inline Detection
To receive packets from ipqueue or ipfw, calls to the IpqLoop() and IpfwLoop() functions are added
to the SnortMain() function.These functions read packets from the appropriate source and inject
them back into the Snort engine to be processed.This is accomplished via the ProcessPacket()
function.

When an event is generated, the ruletype is checked to determine the appropriate action to
take.The event classification code is used to check for the inline rule types.

If a drop, sdrop or reject rule is found, the DropAction(), SDropAction, and RejectAction() func-
tions are called accordingly.The event classification code looks like this:

#ifdef GIDS

case RULE_DROP:

DropAction(p, otn, &otn->event_data);

break;

case RULE_SDROP:

SDropAction(p, otn, &otn->event_data);

break;

case RULE_REJECT:

RejectAction(p, otn, &otn->event_data);

break;

#endif /* GIDS */

Swiss Army Knife

The Flawfinder Utility
For those of you who have less experience with code auditing and programming but
wish to get some idea of the security of a piece of code before running it on your
network, the Flawfinder tool can be a useful way to quickly assess some code for
easily spotted vulnerabilities.

Flawfinder is a free tool that is available at www.dwheeler.com/flawfinder/; it
can easily be run against any source tree.

Although the Flawfinder tool sometimes produces a large number of false pos-
itives, the output from this tool could make the difference between whether or not
you run a new piece of code on a corporate network. Certain classifications of bugs,
such as an inappropriate use of the gets() function or a format string bug, can easily
be spotted, even by a novice.

178 Chapter 7 • The Inner Workings of Snort

332_NSE_07.qxd 7/14/05 2:02 PM Page 178

Depending on the event type, the appropriate flags are set to allow the rule to be dropped
later. Once the packet has been processed, the HandlePacket() function is called to test the out-
come.This function tests the results of the packet and checks to see if action needs to be taken.
In the case of ipqueue, the ipq_set_verdict() function is used to set the appropriate action for
ipqueue to take with the packet. Snort uses the NF_ACCEPT and NF_DROP arguments of this
function, depending on the desired result.

Final Touches
Now that you have finished this chapter, we hope that you have picked up enough information
about the Snort engine to be able to read it yourself.This chapter provides enough background
about Snort to enable you to continue with the chapters in this book and to understand how
your rules, plugins, and preprocessors will be handled by the Snort engine.This will allow you to
easily debug your creations and understand them on a much deeper level.

After seeing the volumes of code that are involved in a security tool like Snort, it can be
theorized that a certain amount of risk is involved with running that code on your network. No
programmer’s source code is perfect and free of bugs; this is something that needs to be consid-
ered when implementing the latest security tool in a classified environment. Snort should be
chroot()’ed using the -t option whenever possible.

The Inner Workings of Snort • Chapter 7 179

332_NSE_07.qxd 7/14/05 2:02 PM Page 179

332_NSE_07.qxd 7/14/05 2:02 PM Page 180

Snort Rules

Scripts and samples in this chapter:

■ Writing Basic Rules

■ Writing Advanced Rules

■ Optimizing Rules

■ Testing Rules

Chapter 8

181

332_NSE_08.qxd 7/15/05 10:03 AM Page 181

In This Toolbox
In this chapter you will learn how to write your own custom Snort rules.You will also learn
methods of testing and optimizing the rules for speed and accuracy.

Writing Basic Rules
Snort uses a simple to learn rule format that is flexible enough to cater for even the most com-
plex situations. Each rule comprises two logical sections, the rule header and the rule options.
The header contains the appropriate action to take if the rule is triggered.Along with the pro-
tocol to match, the source and destination IP (Internet Protocol) addresses, netmasks, and the
source and destination ports.

The rule options section contains the appropriate detection keywords, which describe how
to inspect the packet.This section also includes options for what to display when the alert is
triggered.The following example shows a sample rule:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-IIS scripts-browse

access"; flow:to_server,established; uricontent:"/scripts/ "; nocase; classtype:web-

application-attack; reference:nessus,11032; sid:1029; rev:8;)

The Rule Header
The first field of any rule is the rule action.The rule action describes what Snort should do when
a valid match has been made for the signature.

Table 8.1 shows the name and descriptions of the default rule actions.

Table 8.1 Default Snort Rule Actions

Action Description

Pass The packet is ignored.
Alert An alert is generated and the packet is logged.
Log The packet is simply logged; no alert is generated.
Dynamic A rule with dynamic actions remain dormant until triggered by an acti-

vate rule. Following this they act as a log rule.
Activate An activate rule alerts and then turns on a dynamic rule.

Table 8.2 shows the actions that are available using the inline blocking functionality of
Snort.

182 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 182

Table 8.2 Snort Inline Rule Actions

Action Description

Drop The packet is not allowed to pass through to the destination host.
Reject The packet will be dropped by iptables and Snort will log it. A TCP

(Transmission Control Protocol) “reset” will be returned if the protocol
is TCP, and an ICMP (Internet Control Message Protocol) “port unreach-
able” packet will be sent if it is UDP (User Datagram Protocol).

Sdrop The sdrop action silently drops the packet without logging it.

TIP
It is easy to define your own rule actions in the Snort config file. You can do this
with the ruletype keyword. The syntax of this is:
ruletype <name> { <body> }

This is covered in greater detail in the output plug-in section of this book.

The next field in the rule header is the protocol field.This field dictates which protocol the
rule should match. Currently, Snort supports only the following four protocols, but there are
plans to support more options in the future:

■ TCP

■ UDP

■ IP

■ ICMP

Following the protocol field is the IP address and port information for the rule.The syntax of
this section is as follows:

<1ST IP ADDRESS> <1ST PORT> <DIRECTION OPERATOR> <2nd IP> <2nd PORT>

IP addresses in this section are specified in Classless Inter-Domain Routing (CIDR) nota-
tion. In CIDR notation, a group of IP addresses are specified in the format A.B.C.D/netmask.
The keyword “any” can be used to specify any IP address.The “!” operator can be used to negate
the IP selection. For example, !192.168.0.0/24 will match any IP address outside of the
192.168.0.0-192.168.0.255 range.A list of IP addresses can also be provided by delimiting the list
using the comma (,) character and enclosing the list in square brackets.

Port numbers can be specified in several different ways.Table 8.3 lists each of these, along
with an example and an English explanation of what will be matched.

Snort Rules • Chapter 8 183

332_NSE_08.qxd 7/15/05 10:03 AM Page 183

Table 8.3 Methods of Specifying Port Numbers

Method Example Description

The “any” keyword will any This will match ALL ports.
result in a match for any
port number.
A static port can be 22 This will match the SSH port 22.
specified such as 22 for
SSH (Secure Shell) or 80
for HTTP (Hypertext
Transfer Protocol).
Ranges of ports can be 8000:9000 This will match ports 800 to 9000.
specified using the (:) 22: This will match any port greater than
operator. or equal to 22.

:100 This will match any ports with a
number less than or equal to 100.

Negation (matches !22 This will match all ports except for
everything but the ports port 22.
or range specified).

The directional operator is a symbol that describes the orientation of the traffic needed to
trigger the alert.This operator can be one of the two possible options shown in Table 8.4

Table 8.4 The Directional Operator

Operator Description

<> The bidirectional operator. The rule will trigger on traffic flowing in
either direction.

-> The traffic is flowing from the CIDR notation IP address (and port)
on the left to the CIDR notation IP (and port) on the right.

WARNING

There is no <- operator. This was removed from Snort in version 1.8.7 so that rules
read more consistently.

Rule Options
The main body of any Snort rule is composed of the rule options.The rule options allow you to
specify exactly what you want to match and what you want to display after a successful match.
They form a semicolon (;) delimited list directly after the rule header and are enclosed in paren-
theses ().

There are four main classifications of rule options.These are shown in Table 8.5.

184 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 184

Table 8.5 Classifications of Rule Options

Category Description

Metadata The metadata options provide information related to the rule, but do
not have any effect on the detection itself.

Payload As the name suggests, these options look for data inside the payload
of a packet.

Nonpayload These options look at data that is not in the payload.
Post-detection Post-detection options are events that happen after a rule has been

triggered.

We will now look at all of the available options, broken down into the appropriate categories.

Metadata Options
First, we’ll look at the metadata options.

sid
The sid option is used to provide a unique identifier for Snort rules.The Snort manual suggests
that the sid keyword should always be used with the rev option, and that the convention shown
in Table 8.6 should be adopted when numbering the rules.

Table 8.6 sid Numbering Conventions

Category Description

< 100 Reserved for future use.
100-1,000,000 Rules included with the Snort distribution.
> 1,000,000 Used for local (custom) rules.

The sid rule option uses the following syntax:

sid:<rule id number>;

rev
The rev option is used to provide a unique version number of the rule.This, combined with the
sid field, makes it easier to update and maintain your signatures.The syntax of the rev option is
as follows:

rev:<revision number>;

msg
The msg option can be used to specify the text string that should be printed along with an alert
or packet log.The format of this option is simple.

msg:"<Message text>";

Snort Rules • Chapter 8 185

332_NSE_08.qxd 7/15/05 10:03 AM Page 185

NOTE

Special characters that would otherwise be interpreted as Snorts rule syntax, such
as the quote (“) or semi-colon (;) characters must be escaped using a backslash (\).

reference
The reference option provides the rule author with a way to direct the end user to relevant informa-
tion about the vulnerability that has triggered the alert.The reference system supports several of the
most popular information security databases on the Internet by ID, along with the ability to enter
unique URLs (Uniform Resource Locators).The options available are shown in Table 8.7.

Table 8.7 Support Reference Systems

Category Description

URL This keyword is used to specify a unique URL. The http:// prefix is
appended to the URL.

Cve The cve keyword indicates that the vulnerability has associated
common vulnerabilities and exposures identified. Snort will then
append the number provided to the URL: http://cve.mitre.org/cgi-
bin/cvename.cgi?name=

Bugtraq The bugtraq keyword takes a Bug Track ID argument and prepends
the URL http://www.securityfocus.com/bid/ to it.

Nessus This keyword takes the ID of a Nessus plugin used to detect the vul-
nerability. It then appends this to the URL: http://cgi.nessus.org/plu-
gins/dump.php3?id=

Mcafee The McAfee virus id is appended to the URL:
http://vil.nai.com/vil/dispVirus.asp?virus_k=

Arachnids The arachnids reference number is appended to: http://www.white-
hats.com/info/IDS

Multiple references can be specified.The format of the reference option is shown in the
following example:

reference: <id system>,<id>; [reference: <id system>,<id>;]

classtype
Snort provides a set of default classifications that are grouped into three priorities (high,
medium, and low), which can be used to classify alerts.Table 8.8 shows a list of these (taken from
the Snort manual).

186 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 186

Table 8.8 Snort Default Classifications

Classtype Description Priority

attempted-admin Attempted Administrator Privilege Gain High
attempted-user Attempted User Privilege Gain High
shellcode-detect Executable code was detected High
successful-admin Successful Administrator Privilege Gain High
successful-user Successful User Privilege Gain High
trojan-activity A Network Trojan was detected High
unsuccessful-user Unsuccessful User Privilege Gain High
web-application-attack Web Application Attack High
attempted-dos Attempted Denial of Service Medium
attempted-recon Attempted Information Leak Medium
bad-unknown Potentially Bad Traffic Medium
denial-of-service Detection of Denial of Service xAttack Medium
misc-attack Misc Attack Medium
nonstandard-protocol Detection of a nonstandard protocol Medium

of event
rpc-portmap-decode Decode of an RPC Query Medium
successful-dos Denial of Service Medium
successful-recon-largescale Large Scale Information Leak Medium
successful-recon-limited Information Leak Medium
suspicious-filename-detect A suspicious filename was detected Medium
suspicious-login An attempted login using a suspicious Medium

username was detected.
system-call-detect A system call was detected Medium
unusual-client-port- A client was using an unusual port Medium
connection
web-application-activity Access to a potentially vulnerable Web Medium

application
icmp-event Generic ICMP event Low
misc-activity Misc activity Low
network-scan Detection of a Network scan Low
not-suspicious Not Suspicious Traffic Low
protocol-command-decode Generic Protocol Command Decode Low
string-detect A suspicious string was detected Low
Unknown Unknown Traffic Low

The classtype option is used to categorize a rule.The format of this option is as follows:

classtype:<class name>;

Snort Rules • Chapter 8 187

332_NSE_08.qxd 7/15/05 10:03 AM Page 187

NOTE

Class types are defined in the classifications.config file. To define your own
classtype the following format is used:

config classification: <class name>,<class description>,<default priority>

priority
A priority option can be used to overwrite the default priority assigned to the rule via the
classtype option.The syntax of this option is:

priority:<priority number>;

Payload Options
Snort rules use several payload options.

content
One of the most important options, the content option, is used to search a packet’s contents for a
particular pattern.The content option is implemented using a Boyer-Moore algorithm, which
requires a relatively large computational load.The pattern supplied to this option can consist of
ASCII or binary data (or both). Keep in mind that the content option performs case sensitive
searching by default.

When matching binary data the values are specified in hexadecimal format and enclosed
between two pipe (|) separators. Here is the syntax of the content option:

content:[!] "<content string>";

Here is an example of the content option being used with a mixed, binary and ASCII pattern.

alert tcp any any -> 192.168.0.1 1337 (msg:"Script Kiddies"; content:"|de ad be

ef|0WN3D";)

Several other options work in conjunction with the content option to modify its behavior:

■ offset

■ depth

■ distance

■ within

■ nocase

■ rawbytes

offset
The offset option changes the behavior of the previous content option in a rule.The offset value
tells the rule how many bytes into the payload to start the content match.An offset of 50, for

188 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 188

example, will cause the content option to match the pattern if it exists anywhere after the first
50 bytes of the payload.The format of this option is as follows:

offset: <number>;

depth
The depth option is the opposite of the offset option.Again it acts on the previous content
option in a rule; however, rather than starting the search at the depth value, the search starts from
the start of the payload and stops at the number of bytes specified.

depth: <number>;

distance
When a content option matches, a cursor that is commonly referred to as the doe_ptr or detect
offset end pointer is set to the location within the payload where the match occurred. By
default, the cursor is always set to the beginning of the packet until the content match has
occurred.

The distance option acts upon the previous content option in a rule. It allows the rule author
to control the distance between the previous placement of the cursor and where the next con-
tent option should match in the payload.A distance of 10, for example, will cause the previous
content to match 10 or more bytes after the content option before it.The format of this option
is as follows:

distance: <number>;

Here is an example of the use of the distance option:

alert tcp any any -> 192.168.0.1 42 (content:"FOO"; content:"BAR"; distance:10;)

This rule will match any packet traveling to port 42 on 192.168.0.1 that contains the string
“FOO” followed by 10 or more bytes of data, followed by the string “BAR”.

within
The within option is used to modify the behavior of the previous content option. It is used to
specify the maximum distance between the content option and the placement of the cursor
(mentioned in the distance option description).The syntax of this option is:

within: <number>;

NOTE

The within and distance keywords are similar to the offset and depth keywords. The
difference is that the within and distance keywords are relative to the last place-
ment of the cursor (the doe_ptr).

Snort Rules • Chapter 8 189

332_NSE_08.qxd 7/15/05 10:03 AM Page 189

nocase
The nocase option modifies the content option. It is used to specify that the content option
should match the specific pattern regardless of the case.The syntax of the nocase option is
shown here:

nocase;

rawbytes
The rawbytes option is also used to modify the content option's behavior. It causes the
immediately preceding content option to match the raw bytes of the packet without addi-
tional decoding provided by the pre-processors. The syntax of this option is:
rawbytes;

uricontent
URLs can be written in many different ways. Because of this fact, it can be very difficult for an
IDS (intrusion detection system) to match abnormalities in a URL.The uricontent option allows
the rule author to perform a content match against a normalized URL.This means that direc-
tory traversals (../) and encoded values will be converted to ASCII before the match is made.

The syntax of the uricontent option is the same as the content option.

uricontent:[!] <pattern>;

isdataat
The isdataat option is used to verify that data exists at a particular location in the payload. If the
keyword relative follows it, then isdataat verifies the existence of data relative to the end of the
previous content match.The isdataat option uses the following syntax:

isdataat:<int>[,relative];

Nonpayload Options
Now let’s discuss nonpayload options.

flags
The flags option is used to determine the status of various TCP flags (listed in Table 8.9).

Table 8.9 TCP Flags

Flag Description

S SYN
A ACK
R RST
P PSH

190 Chapter 8 • Snort Rules

Continued

332_NSE_08.qxd 7/15/05 10:03 AM Page 190

Table 8.9 continued TCP Flags

Flag Description

F FIN
U URG
1 Reserved bit 1
2 Reserved bit 2
0 No Flags Set

There are also three modifiers for this option.They are shown in Table 8.10.

Table 8.10 flags Modifiers

Modifiers Description

+ Matches if all the specified bits are set.
* Matches if any of the specified bits are set.
! Matches if none of the specified bits are set.

The syntax of the flags option is shown here:

flags:[!|*|+]<FSRPAU120>[,<FSRPAU120>];

The second set of options following the comma is used to ignore the state of the specific
bits provided.An example of this is S,12, which will match if the SYN bit , ignoring the two
reserved bits, is the only bit set.

fragoffset
The fragoffset option is used to check the IP fragment offset field.The < and > operators can be
used to determine if the fragoffset value is less than or greater than the decimal value provided.

fragoffset:[<|>]<number>

fragbits
The fragbits option allows the rule author to test for the presence of the fragmentation and
reserved bits.The flags shown in Table 8.11 are used to select which bits to match.

Table 8.11 fragbits Flags

Bit Description

M More fragments
D Don’t fragment
R Reserved bit
+ Match if the provided bits are set.
- Match if any of the bits provided are set.
! Match if the provided bits are NOT set.

Snort Rules • Chapter 8 191

332_NSE_08.qxd 7/15/05 10:03 AM Page 191

The syntax of the fragbits option is:

fragbits:[+-*]<[MDR]>

ip_proto
The ip_proto option allows the rule author to test for a particular protocol name or number.The
usage of this is:

ip_proto:[!><]<number or name>;

ttl
The ttl option tests the value in the time to live (TTL) field of the IP header.The conditional
operators > > and = can be used.Also the range operator (min num-max num) can be used to
specify the range.

ttl:[[<number>-]><=]<number>;

tos
The tos option is used to match the TOS field in the IP header.

tos:<number>;

id
The id option matches the ip-id field of the IP header.

id:<number>;

ipopts
The ipopts option is used to test for the presence of a specific IP option.Table 8.12 shows the
possible IP options.

Table 8.12 IP Options

Option Description

Rr Record Route
Eol End of list
Nop No op
Ts Time Stamp
Sec IP Security Option
Lsrr Loose source routing
Ssrr Strict source routing
Satid Stream identifier
Any Any of the aforementioned options.

192 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 192

Here is the syntax for the ipopts option:

ipopts:<rr|eol|nop|ts|sec|lsrr|ssrr|satid|any>;

ack
The ack options checks for a given number in the TCP acknowledgement field of the TCP
header.

ack:<number>;

seq
The seq option allows the rule author to test for a specific TCP sequence number.The usage is
shown here:

seq:<number>;

dsize
The dsize option can be used to test if the size of the payload falls into a given range.The < and
> operators can be used to provide the range.

dsize: [<>]<number>[<><number>]

window
The window option tests the TCP window size.

window:[!]<number>;

itype
The itype option is used to test the ICMP type field in the ICMP header for a specific value.

itype:[<|>]<number>[<><number>];

icode
The icode option is used to test the icode field in the ICMP header.The > and < operators can
be used to determine if the icode option is greater or less than the value provided.

icode: [<|>]<number>[<><number>];

icmp_id
The icmp_id option is used to test the ID field of the ICMP header. Its syntax is shown here:

icmp_id:<number>;

Snort Rules • Chapter 8 193

332_NSE_08.qxd 7/15/05 10:03 AM Page 193

icmp_seq
The icmp_seq option is useful for checking the ICMP sequence number field of the ICMP
header. Its syntax is similar to many of the other options.

icmp_seq:<number>;

rpc
The rpc option is implemented to test the application number, version number, and procedure
numbers of SUNRPC CALL requests.

rpc: <application number>, [<version number>|*], [<procedure number>|*]>;

WARNING

As the Snort manual notes, the rpc option keyword is actually slower than Snort’s
fast pattern matching functionality. For this reason rpc should not be used.

sameip
The sameip option simply checks to determine if the source and destination IP is the same in a
packet.

sameip;

Post-detection Options
We’ll now discuss post-detections options.

resp
The resp option can be used to respond to the alert in various ways in an attempt to close the
session.The Snort team calls this a flexible response.Table 8.13 shows the various methods of
response available.

Table 8.13 Methods of Response

Method Description

rst_all A spoofed TCP RST packet is sent to both the client and server.
rst_rcv A spoofed TCP RST packet is sent to the socket that is receiving the

packet that triggered the alert.
rst_snd A spoofed TCP RST is sent to the sender of the packet that triggered

the alert.
icmp_all Three ICMP packets are sent to the sender of the packet that triggered

the alert. These are a combination of the icmp_net, icmp_port, and
icmp_host methods.

194 Chapter 8 • Snort Rules

Continued

332_NSE_08.qxd 7/15/05 10:03 AM Page 194

Table 8.13 continued Methods of Response

Method Description

icmp_net An ICMP_NET_UNREACH is sent to the sender of the packet that trig-
gered the alert.

icmp_port An ICMP_PORT_UNREACH is sent to the sender.
icmp_host An ICMP_HOST_UNREACH packet is sent to the sender.

The syntax of this option is as follows:

resp: <resp_mechanism>[,<resp_mechanism>];

NOTE

Multiple flexible responses can be defined for a single alert.

react
The react option also provides a method of flexible response. Some of the functionality of the
react option is not completely functional at this time.The most common use of this option is to
block access to HTTP websites by using the block modifier.This will send a TCP FIN packet to
both the client and the server.The ability to inform the user that a particular Web site has been
blocked is being worked on using the warn modifier.The format of the react option is:

react: <react_basic_modifier[, react_additional_modifier]>;

NOTE

In order to enable the flexible response aspects of Snort it must be compiled using
the --enable-flexresp flag to the ./configure script.

logto
The logto option allows the rule author to specify a separate output file for Snort to log the
packets that triggered the alert.This option does not work when Snort is run using the binary
logging mode.

logto: filename;

session
The session option is used capture the data from a TCP stream after an alert has occurred.The
session option can use two modifiers; the printable modifier can be used to output only printable

Snort Rules • Chapter 8 195

332_NSE_08.qxd 7/15/05 10:03 AM Page 195

ASCII characters, and if the all modifier is used, the ASCII values for nonprintable characters
will be substituted in their place.

The session option is useful in conjunction with the logto option to output the data from a
TCP stream to an evidence log file.The syntax for this rule is as follows:

session: [printable|all];

tag
The tag option is used to log additional packets after the packet that actually triggered the alert.
Several arguments can be provided in order to select the type, number, and direction of the
packets captured.The arguments and their descriptions are shown in Table 8.14.

Table 8.14 tag Arguments

Argument Description

Type The type argument is used to select between logging packets from a
session (session keyword) or logging packets from an individual host
(host keyword).

Count The count argument specifies the number of units to capture.
Metric The metric argument specifies the type of unit to capture. This is a

choice between packets and seconds.
Direction The optional direction argument is used to specify which host to log

packets from, if the type field is set to host.

The syntax of the tag option is as follows:

tag: <type>, <count>, <metric>, [direction]

Writing Advanced Rules
Although the basic Snort detection options provide a wide range of functionality that can be
utilized to write flexible custom rules, certain problems require the use of Snort’s more advanced
detection options.This section discusses the more advanced of Snort’s options that give you the
power to match even the most complex traffic.

PCRE
Since version 2.1.0, Snort has included support for PCRE (Perl-Compatible Regular
Expressions).The PCRE library is an implementation of regular expression pattern matching. It
shares the semantics and syntax of the native pattern matching used by the Perl programming
language. Currently PCRE (release 5.x at the time of publication) implements the Perl 5.8 fea-
tures. For more information about the features and use of the pcre library, visit www.pcre.org.

Regular expressions should be used in Snort rules when a complex pattern matching is
needed (outside the limitations of the strcmp() function in libc).

Snort implements PCRE support in its rules via the pcre keyword.The syntax of the
keyword is:

196 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 196

pcre:[!]"(/<regex>/|m<delim><regex><delim>)[ismxAEGRUB]";

The <regex> field denotes the regular expression string to match data against.The modifiers
on the right are a series of options that determine the behavior of certain metacharacters or
behaviors during the evaluation of the expression.

There are three different groups of modifiers supported by Snort’s implementation of
PCRE.The first is the Perl-compatible modifiers.These modifiers are the same as those available
to a Perl programmer.These can be seen in Table 8.15.The second group includes additional
modifiers, which are available in the current version of the PCRE library, and can be seen in
Table 8.16. Finally, the third group (Table 8.17) includes modifiers specific to Snort that offer
additional functionality.

Table 8.15 Perl-Compatible Modifiers

Modifier Description

I Case-insensitive matching (/foo/i will match for strings “foobar” and
“FoObar”).

S Includes new-line characters in the dot (.) metacharacter.
M Without the m modifier, a string is considered to be a single long line

of characters. The ^ and $ metacharacters will match at the start and
finish of the string. However, with m set, the ^ and $ characters
match directly before and after a newline character in the buffer.

X Permits whitespace and comments to be used in the expression in
order to increase readability.

Table 8.16 PCRE-Compatible Modifiers

Modifier Description

A The pattern must match the start of the string (the same as the ^
metacharacter).

E Causes the $ metacharacter to match only at the end of the string.
Without the E modifier, $ will also match immediately before the final
character when the last character is a newline.

G Inverts the greediness of the quantifiers so that they are not greedy by
default, but become greedy if followed by ?.

Table 8.17 Snort-Specific Regular Expression Modifiers

Modifier Description

R Match relative to the end of the last pattern match (similar to dis-
tance:0;).

U Match the decoded URI buffers (similar to uricontent).
B Do not use the decoded buffers (similar to rawbytes).

Snort Rules • Chapter 8 197

332_NSE_08.qxd 7/15/05 10:03 AM Page 197

NOTE

The modifiers R and B should NOT be used together.

A regular expression itself is made up of two types of characters.These are literal characters,
which are the characters themselves, and metacharacters, such as wildcards.The simplest example
of a rule that contains a regular expression is a literal string matching rule. In the following
example, the Snort rule will match on any traffic containing the word foo.

alert ip any any -> any any (pcre:"/foo/";)

Along with literal characters, metacharacters can be used to match particular patterns.Table
8.18 shows some of the basic metacharacters used in regular expressions, and their meanings.

Table 8.18 Basic Metacharacters

Metacharacter Description

\ Quote the following metacharacter, causing it to be interpreted in
its literal sense.

^ Match the start of the line, or when inside a character class
becomes logical NOT.

. Match all characters (except for the newline character).
$ Match the end of the line or directly before the final newline char-

acter (at the end).
| Logical OR operator.
() Grouping characters into a string.
[] Character class.
- Match a range of characters.

Table 8.19 shows the quantifiers that can be used to select the number of instances in a row
that a subpattern and the pattern will match.

Table 8.19 Quantifiers

Quantifiers Description

+ Match exactly one instance.
? Match one or 0.
{n} Match exactly n times.
{n,} Match at least n times.
{n,m} Match at least n, but no more than m times.

198 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 198

NOTE

Ordinarily, any subpattern that is quantified will match in a greedy fashion. This
means that it will match the most times possible. To change this characteristic, a ?
metacharacter can be appended to a specific quantifier. Also, as mentioned earlier,
the G modifier can be appended to the expression, to invert all of the quantifiers in
an expression.

When used together these metacharacters provide a flexible and powerful way to define
what should be matched.

Escape characters can be used to match classes of characters or unprintable characters.These
range from specific single escape characters like \n for newline, to groups of characters like \w
for an alphanumeric or _ character.Table 8.20 shows the escape characters that are supported by
C and PCRE.Table 8.21 shows the PCRE-specific escape characters.

Table 8.20 C Style Escape Characters

Escape Character Description

\t Tab
\n Newline
\r Return
\f Form Feed
\a Alarm Bell
\e Escape
\033 Octal character
\x1B Hexadecimal character
\x{263a} Wide Hexadecimal character
\xc[Control Character
\N{name} Named Character

Table 8.21 PCRE-Specific Escape Characters

Escape Character Description

\w Matches any word character, consisting of alphanumeric and _
characters.

\W Matches any non-word character (the opposite of \w).
\s Matches a whitespace character.
\S Matches any non-whitespace character (the opposite of \s).
\d Match any digit character (0-9).
\D Matches a non-digit character.

Snort Rules • Chapter 8 199

332_NSE_08.qxd 7/15/05 10:03 AM Page 199

Many of the rules in Snort’s default ruleset use regular expressions to achieve their goals.
One of these is the EXPLOIT CHAR IRC Ettercap parse overflow attempt rule (GEN:SID
1:1382). We will now analyze the regular expression in this rule to get a better understanding of
how they can be used to provide accurate matches.

alert tcp any any -> any 6666:7000 (msg:"EXPLOIT CHAT IRC Ettercap parse overflow attempt";

flow:to_server,established; content:"PRIVMSG"; nocase; content:"nickserv"; nocase;

content:"IDENTIFY"; nocase; isdataat:100,relative;

pcre:"/^PRIVMSG\s+nickserv\s+IDENTIFY\s[^\n]{100}/smi";

reference:url,www.bugtraq.org/dev/GOBBLES-12.txt; classtype:misc-attack; sid:1382; rev:9;)

The vulnerability that this signature alerts exists in Ettercap’s parsing of the IRC traffic
while logging in with a registered nickname.The advisory that is referenced by the signature
(www.bugtraq.org/dev/GOBBLES-12.txt) shows the vulnerable section of code.

typedef struct connection // connection list

{

char source_ip[16];

char dest_ip[16];

char source_mac[20];

char dest_mac[20];

u_long fast_source_ip;

u_long fast_dest_ip;

u_short source_port;

u_short dest_port;

u_long source_seq;

u_long dest_seq;

char flags;

char proto;

short datalen;

char status[8];

char type[18]; // from /etc/services

char user[30]; // pay attention on buffer overflow !!

char pass[30];

char info[150]; // additional info... (smb domain, http page ...)

} CONNECTION;

...

if (!strncasecmp(collector, "IDENTIFY ", 9))

{

char nick[25] = "";

char *pass = strstr(collector, " ") + 1;

if (*pass == ':') pass += 1;

strcpy(data_to_ettercap->pass, pass);

strcat(data_to_ettercap->pass, "\n");

Dissector_StateMachine_GetStatus(data_to_ettercap, nick);

if (!strcmp(nick, "")) strcpy(nick, "unknown (reg. before)");

sprintf(data_to_ettercap->user, "%s\n", nick);

sprintf(data_to_ettercap->info, "/identify password");

}

200 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 200

In this example it can be seen that in order to exploit this vulnerability, following the
IDENTIFY string, more than 100 bytes will have to be passed in order to overwrite anything
outside of the structure itself.

pcre:"/^PRIVMSG\s+nickserv\s+IDENTIFY\s[^\n]{100}/smi";

First, we can see that the regular expression uses the three modifiers s, m, and i.This means
that it will match any case, the . metacharacter will include the newline character, and the ^ and
$ characters match before and after the newline character.

The regular expression starts with the ^ metacharacter, which will match after a newline
character. It then matches the literal string PRIVMSG followed by one or more whitespace
characters. Following this must be the string nickserv, more whitespace, and the string IDEN-
TIFY.The final section of this regular expression shows that following the IDENTIFY string
there must be a single whitespace, followed by 100 (or more) characters that aren’t the \n new-
line character.

A useful tool for testing PCRE is coincidentally named pcretest. It is installed with the
PCRE library, and can be used to verify regular expressions against data.The usage of this tool is
shown in the following example:

Usage: pcretest [-d] [-i] [-o <n>] [-p] [-s] [-t] [<input> [<output>]]

-C show PCRE compile-time options and exit

-d debug: show compiled code; implies -i

-i show information about compiled pattern

-o <n> set size of offsets vector to <n>

-p use POSIX interface

-s output store information

-t time compilation and execution

Without any arguments, the pcretest tool will read in a regular expression from stdin followed
by a series of data. For each line of data entered, pcretest will output the value of the regular
expression and what was matched with each () group.

Example 2.51 shows use of the pcretest tool in testing the regular expression from the
EXPLOIT CHAT IRC regular expression.The regexp is simply pasted into the re> prompt.
Following this, the data> prompt is given, and test data is provided.

The first example of test data shows a normal person identifying with Nickserv, so the reg-
ular expression doesn’t match on this.The second test shows a malicious user providing a pass-
word with a length greater than 100 bytes.As expected, the regular expression matches this.

-[nemo@snortbox:~]$ pcretest

PCRE version 4.2 14-Apr-2003

re> /^PRIVMSG\s+nickserv\s+IDENTIFY\s[^\n]{100}/smi

data> PRIVMSG Nickserv IDENTIFY testuser

No match

data> PRIVMSG Nickserv IDENTIFY

AA

AA

Snort Rules • Chapter 8 201

332_NSE_08.qxd 7/15/05 10:03 AM Page 201

0: PRIVMSG Nickserv IDENTIFY

AA

AAAAAAAAAA

data>

Swiss Army Knife

Utilizing the pcretest Tool
The pcretest tool can be a very valuable tool when dealing with PCRE. As well as the
functionality demonstrated in this chapter, pcretest also has the ability to take files
as input for the regular expression and test data. This allows us to easily test our reg-
ular expressions against packet capture files and other binary data. It can also display
more information about the regular expression, such as compiled code, compile time
options and even compilation and execution times. The optimization section in this
chapter deals with optimizing and timing regular expressions in greater detail.

Now that we have dealt with understanding a prewritten rule using PCRE, we will try to
write our own rule for a public vulnerability using PCRE. Sometimes more complex problems
can call for some more advanced regular expressions. Some of the more advanced features of reg-
ular expressions are available through a set of extended patterns beginning with the (? characters.

Some of these extended patterns, along with their uses, are shown in Table 8.22.

Table 8.22 PCRE Extended Patterns

Pattern Description

(?=pattern) A zero-width positive look-ahead assertion. This pattern determines
whether a match is found, without storing the match. This isn’t typi-
cally used in Snort rules. An example of this is /foo(?=bar)/. This will
match foo as long as it is followed by bar.

(?!pattern) A zero-width negative look-ahead assertion. This will check to deter-
mine that a match is not found. An example of this is /foo(?!bar)/, This
will match as long as foo is found and is NOT followed by the word
bar.

(?<=pattern) A zero-width positive look-behind assertion. This is almost the same as
the (?=) pattern. However, it can be used to look behind, rather than
ahead. For example, /(?<=foo)bar/ will match any instance of bar that
is preceded by the word foo.

(?<!pattern) A zero-width negative look-behind assertion. This is almost the same
as the (?!) pattern. It differs in the fact it can be used to look behind
rather than ahead. An example of this is /(?!foo)bar/. This will match
any instance of bar that is NOT preceded by the word foo.

202 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 202

An example of a public vulnerability that has lately been released (at the time of publishing)
is the Ethereal Distcc Network Protocol Dissection Buffer Overflow Vulnerability.An advisory for this
vulnerability was published by Ilja van Sprundel from the Suresec security company.The advi-
sory can be found at www.suresec.org/advisories/adv2.pdf.

In the following example, we can see the vulnerable code, taken from the Suresec advisory,
which causes the problem.The parameter variable is read from the user-defined buffer using the
sscanf() function. It is then passed to the dissect_distcc_argv() function, without validation, into a
signed integer variable.

If the parameter variable is set to a negative number at this stage, it passes the
argv_len=len>255?255:len; check. However, when it is passed to the memcpy() function it is
interpreted as an unsigned integer, and therefore becomes a massive number, resulting in an
overflow of the destination buffer.

static void dissect_distcc(tvbuff_t *tvb, packet_info *pinfo, proto_tree *parent_tree)

{

char token[4];

guint32 parameter;

while(1){

tvb_memcpy(tvb, token, offset, 4);

...

sscanf(tvb_get_ptr(tvb, offset, 8), "%08x", ¶meter);

...

} else if(!strncmp(token, "ARGV", 4)){

offset=dissect_distcc_argv(tvb, pinfo, tree, offset,

parameter);

}

...

}

}

static int dissect_distcc_argv(tvbuff_t *tvb, packet_info *pinfo _U_,

proto_tree *tree, int offset, gint parameter)

{

char argv[256];

int argv_len;

gint len=parameter;

argv_len=len>255?255:len;

tvb_memcpy(tvb, argv, offset, argv_len);

...

}

Now that we understand the bug, we can begin to write a regular expression for it.The
advisory states that the vulnerability exists in the parsing of the ARGV, SERR, and SOUT mes-
sages of the Distcc protocol.

From this information we can derive the start of the regexp: (ARGV|SERR|SOUT) to
match packets containing any of those messages. From the sscanf() call we can see that directly
following the message type, an ASCII representation of a negative hexadecimal number, 8 char-
acters long, would be needed to exploit this vulnerability. Before we look at writing a regular

Snort Rules • Chapter 8 203

332_NSE_08.qxd 7/15/05 10:03 AM Page 203

expression pattern to match this, we must first look at how negative numbers are stored in
memory.

On 32-bit architecture such as IA32, both signed and unsigned integers are 32 bits (4 bytes).
The only difference between the two is that signed integers use the first bit to represent the sign
of the integer. If the first bit is set to 1 the integer will be negative and if the bit is set to 0 the
integer will be positive.

In hex, this means that the first byte will have to be in the range 0x80-0xff for the first bit
to be set. Since we are representing this in ASCII, this gives us the next part of the regular
expression: [8-F].This will give us a false positive with ASCII value 0x40 @, but at this stage if
there is a @ character, there is something not quite right anyway.

In order for the first byte to be set, we need to make sure we have received 8 ASCII values
(for the 32 bit value). We know the range of a hexadecimal character is 0-F, therefore we can
complete the regular expression to match 7 characters in this range.The following pattern will
match this: [0-F]{7}.

We can put this all together to produce the signature.

alert tcp any any -> any 3632 (msg:"EXPLOIT Ethereal Distcc Network Protocol Dissection

Buffer Overflow Vulnerability"; pcre:"/(ARGV|SERR|SOUT)[8-F][0-F]{7}/smi";)

To test this signature out, we simply insert it into one of our Snort rule files and start Snort.

snort -c test.conf -A cmg -d

Then, in another terminal, we run one of the exploits for this vulnerability.

-[nemo@snortbox:/0day]$./etherealex

Doing shellcode packetstorm!

..

..........

Sending the evil packet

Waiting 5 second to let it take it's effect :)

******Remote root, w00t w00t

Linux snortbox 2.4.25-grsec #6 Tue Sep 2 17:43:01 PDT 2003 i686 unknown unknown GNU/Linux

uid=0(root) gid=0(root)

groups=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel),11(floppy)

exit

If we look back at our first terminal, we should see that Snort triggers the appropriate

alert.

[**] [1:1000010:1] EXPLOIT Ethereal Distcc Network Protocol Dissection Buffer Overflow

Vulnerability [**]

[Classification: Attempted Administrator Privilege Gain] [Priority: 1]

04/22-22:36:33.740933 192.168.0.121:60201 -> 192.168.0.3:3632

TCP TTL:64 TOS:0x0 ID:5107 IpLen:20 DgmLen:364 DF

AP Seq: 0x3B9878D1 Ack: 0x2C943E73 Win: 0xFFFF TcpLen: 32

TCP Options (3) => NOP NOP TS: 1670115386 224280301

[Xref => http://www.suresec.org/advisories/adv2.pdf]

Of course, before we would even think about implementing this rule in a real world situa-
tion, we would want to make sure that this isn’t going to alert every single time someone tries to
use the Distcc protocol on a network. In addition, if we were writing a rule that was looking for

204 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 204

an attack on a normal TCP service, we would want to include additional checks such as flow to
validate that Snort is looking at an established session. However, for the sake of this chapter we
will finish with the rule here.

Byte_test and Byte_jump
The byte_test and byte_jump detection options are some of the most commonly used plugins in
the official ruleset.They are also two of the most commonly misunderstood plugins. Because of
this they are included here in the advanced section.

byte_test
The byte_test option is useful for testing a protocol field against a provided value. Operators for
testing are provided by the rule author, as well as a variety of other arguments to describe where
the bytes that require testing are, and how they should be interpreted.

The arguments are described in Table 8.23.The syntax of the option is:

byte_test: <bytes to convert>, [!]<operator>, <value>, <offset> [,relative] [,<endian>]

[,<number type>, string];

Table 8.23 byte_test Arguments

Arguments Description

Bytes to convert This argument specifies the number of bytes in the payload to
compare. This is a required argument.

Operator The operator to test the value is provided with the operator argu-
ment.
The possible options for this are:
< Less than
> Greater than
= Equals
& Bitwise AND
! NOT
- Bitwise OR
This argument is also required.

Value The value to test the bytes against. Also a required argument.
Offset The distance (in bytes) from the last placement of the cursor (or

the start of the payload if the cursor has not yet been placed) at
which to attempt the match. This argument must be supplied.

Relative This argument causes the match to begin from the end of the last
pattern match and is optional.

Endian The optional endian argument lets the rule author select between
little or big endian.
(0xefbeadde OR 0xdeadbeef).

Number type This argument allows the author to choose which type of number
is being matched.

Snort Rules • Chapter 8 205

Continued

332_NSE_08.qxd 7/15/05 10:03 AM Page 205

Table 8.23 continued byte_test Arguments

Arguments Description

There are three possibilities for this argument:
hex The string is represented in a hexadecimal (base 16) format.
dec The string is represented in a decimal (base 10) format.
oct The string is represented in an octal (base 8) format.

NOTE

The ! operator is used to negate an operator. The behavior of the provided operator
is reversed. This means you can specify !=, !&, etcetera. If a ! operator is used by
itself, != is assumed.

byte_jump
The byte_jump option is a corollary function to byte_test. It can be used to analyze protocols that
contain length encoded data. Length encoded data refers to a situation where the length of data
is passed first, followed by the data itself.This is common in Remote Procedure Call (RPC) pro-
tocols and file sharing protocols such as Server Message Block (SMB) and Advanced Function
Printing (AFP).

This option basically reads an offset from the payload, then jumps that distance and positions
a cursor at that location.This allows fields following this variable-sized string to be tested relative
to the placement of the cursor.

NOTE

The cursor mentioned in the preceding section is the same cursor or doe_ptr that
was mentioned earlier during the explanation of the within and distance payload
detection options.

Several arguments can be passed to the byte_jump option to control its behavior.These are
shown in Table 8.24.

Table 8.24 byte_jump Arguments

Arguments Description

bytes to convert This argument specifies the number of bytes in the payload to com-
pare. This option is required.

Offset The distance (in bytes) into the payload to start matching. This option
is required.

206 Chapter 8 • Snort Rules

Continued

332_NSE_08.qxd 7/15/05 10:03 AM Page 206

Table 8.24 continued byte_jump Arguments

Arguments Description

Relative This argument causes the match to begin from the end of the last pat-
tern match.

Big This causes the detection plugin to manipulate data in big endian
format.

Little This causes the detection plugin to manipulate data in little endian
format.

Multiplier Multiplies the number of bytes skipped by the value provided.
frpm_beginning Start skipping relative to the start of the file instead of the last match.
Hex The converted bytes are expressed in hexadecimal (base 16) format.
Dec The converted bytes are expressed in octal (base 8) format.
Oct The converted bytes are expressed in octal (base 8) format.
Align The number of converted bytes is rounded to a 32-bit (word)

boundary.
String If this argument is provided, data is tested in string format.

The (long) syntax for this option is shown in the following example:

byte_jump: <bytes_to_convert>, <offset>

[,relative] [,multiplier <multiplier value>] [,big] [,little][,string]

[,hex] [,dec] [,oct] [,align] [,from_beginning];

To demonstrate the functionality of the byte_test and byte_jump options, we can look at a
protocol where the details of a particular person are passed between a client and a server. In this
particular protocol the length of the name of the person is passed through first in a short-sized
value (2 bytes).This is followed by the actual name of the person.After this, the age of the
person is sent as a short-sized value.This is shown in the breakdown of a packet payload in the
following example.

0000000: 000d 4a6f 686e 6e79 2048 6163 6b65 7200 ..Johnny Hacker.

0000010: 16 .

In this example you can see the length of the name has been sent (0x000d), which is 13 in
decimal. Following this, 13 bytes of ASCII values have been sent, Johnny Hacker, representing
the name of the person. Finally the age of the person (0x0016) has been sent.

For the sake of this example, let’s assume that a wraparound exists when values greater than
0x7fff (the maximum positive value that can be stored in a signed short before it wraps around
to negative) are sent as the age of the person, which can be used to exploit the server. When
trying to write a rule that will detect if this vulnerability is being exploited, we are required to
understand where the string representing the name finishes and where the age begins.

Because we know the payload will begin with the size of the name field, we can use this in
a byte_jump to effectively jump over the name string and perform our test against the age field.
The example rule is constructed to do just that.

Snort Rules • Chapter 8 207

332_NSE_08.qxd 7/15/05 10:03 AM Page 207

alert tcp any any -> any 493 (msg:"EXPLOIT Person has grown too old."; byte_jump: 2,0;

byte_test:2,>, 32767,0,relative;)

By writing a small C program to send a name and age using this protocol, we can test that our
rule works.The small C program listed in the following example will take a name and age as
arguments. It then generates a payload using the protocol described in the preceding example
and outputs to standard out.The following code and additional Snort rules discussed in this sec-
tion are available on the Syngress Web site:

/*

* sendname.c

* nemo 2005

*/

#include <stdio.h>

#include <stdlib.h>

int main(int ac, char **av)

{

char *name;

short length;

short age;

if(ac != 3) {

printf("usage: %s <name> <age>\n",av[0]);

exit(1);

}

name = av[1];

length = strlen(name);

age = atoi(av[2]);

write(1,&length,2);

write(1,name,strlen(name));

write(1,&age,2);

return 0;

}

By combining this with Hobbit’s netcat utility, we can direct the output from this to our
Snort sensor.The command shown in the following example can be used to send a payload that
our rule will trigger on (by running this program with an age that is greater than 32767).

-[nemo@gir:~]$./sendname "Johnny Hacker" 32768 | nc snortbox 493

Now in our Snort alert file, the alert is generated:

[**] [1:0:0] EXPLOIT Person has grown too old. [**]

[Priority: 0]

05/29-18:48:41.284494 XXX.XXX.XXX.XXX:53396 -> XXX.XXX.XXX.XXX:493

TCP TTL:49 TOS:0x0 ID:40300 IpLen:20 DgmLen:69 DF

AP Seq: 0xA0201238 Ack: 0xB5E73652 Win: 0xFFFF TcpLen: 32

TCP Options (3) => NOP NOP TS: 820937957 36844216

208 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 208

Swiss Army Knife

Netcat—the Ultimate Swiss Army Knife
For anyone who is unfamiliar with hobbit’s netcat tool, it is definitely one of the most
useful tools in the arsenal of any Snort rule developer. Netcat allows the user to bind
the standard input and output of a process to a network socket. This functionality is
a godsend for rule developers because it allows any program that outputs to stan-
dard out to be redirected down the network in order to trigger a rule. Files can also
be redirected with the < and > operators in order to send them down the network.
GNU netcat is available from: http://netcat.sourceforge.net. However, the original
version of this tool was written by Hobbit from @stake.

The Flow Options
The flow options utilize the functionality of the flow preprocessor. In order to use these options
the flow preprocessor must be enabled.They are used for connection tracking.

flow
The flow option is used to select which directions of traffic flow to alert on in a TCP stream.
The flow option accepts several modifiers as parameters to dictate the direction of the flow.The
modifiers are shown in Table 8.25.

Table 8.25 flow Modifiers

Modifiers Description

to_client Matches on server response to the client.
to_server Matches on requests from the client to the server.
from_client Internally this modifier works identically to the to_server modifier. The

difference exists only in the readability. from_client indicates that an
attempt to exploit the client is occurring, and to_server indicates that
an attempt to exploit the server is taking place.

from_server The from_server modifier internally operates the same as the to_client
modifier. to_client should be used when alerting on client bugs. The
from_server modifier should be used when alerting on vulnerabilities
in the server.

Established Matches on established TCP connections.
Stateless Matches regardless of the state of the stream processor.
no_stream Do not match reassembled stream packets.
only_stream Exclusively match reassembled stream packets.

Snort Rules • Chapter 8 209

332_NSE_08.qxd 7/15/05 10:03 AM Page 209

Here is the syntax of the flow option:

flow: [(established|stateless)]

[,(to_client|to_server|from_client|from_server)]

[,(no_stream|only_stream)]

flowbits
The flowbits option is used to utilize the conversation tracking feature of the flow preprocessor. It
can be used to set or check a user-defined state variable. It is typically used to make sure a spe-
cific packet has been seen before the current alert triggers, usually in a very protocol-specific
fashion.An example of this is a user logging in to an FTP (File Transfer Protocol) server before
issuing a vulnerable command that requires the user to be logged in.

Table 8.26 shows the modifiers that can be used with this option.

Table 8.26 flowbits Modifiers

Modifiers Description

Set Sets the bit of the name provided by the rule author.
Unset Unsets the provided bit.
Toggle Toggle the bit. If the bit is set, unset it; otherwise, set it.
Isset Tests that the bit has previously been set.
Isnotset Tests that the bit has NOT previously been set.
Noalert Causes the rule not to provide an alert. This is useful when the whole

purpose of the rule is to set the flowbit for use by another rule.

The syntax of the flowbits option is:

flowbits: [set|unset|toggle|isset,reset,noalert][,<STATE_NAME>];

Another example of a situation that requires the flow and flowbits options is that which
occurs when looking for vulnerable JPEG code. JPEG files have be larger than a single packet,
however if we only match the small amount of JPEG data that triggers the offset, we might open
ourselves to a variety of false positives.To limit this, we can set a flowbits bit when a valid JPEG
header is seen. In the official Snort ruleset there exists a rule to do just that is shown.

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB-CLIENT JPEG transfer";

flow:from_server,established; con tent:"image/"; nocase; pcre:"/^Content-

Type\s*\x3a\s*image\x2fp?jpe?g/smi"; flowbits:set,http.jpeg; flowbits:noalert;

classtype:protocol-c

ommand-decode; sid:2706; rev:2;)

Once this rule has been triggered we can search for the vulnerable JPEG data.The rule in
the following example will search for this data when the flowbits bit http.jpeg has been set by
the rule in the preceding example.

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"WEB-CLIENT JPEG parser

multipacket heap overflow"; flow:from_server,established; flowbits:isset,http.jpeg;

content:"|FF|"; pcre:"/\xFF[\xE1\xE2\xED\xFE]\x00[\x00\x01]/"; reference:bugtraq,11173;

210 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 210

reference:cve,2004-0200;

reference:url,www.microsoft.com/security/bulletins/200409_jpeg.mspx; classtype:attempted-

admin; sid:2707; rev:2;)

Activate and Dynamic Rules
The activate and dynamic rule actions allow the rule author to trigger a second rule after the first
rule’s criteria is met.Although this behavior is being phased out of Snort in the later releases, it is
still useful to understand how it works. In most cases, the activate and dynamic rules can be
replaced using the flowbits option.This feature may be removed from Snort altogether in the
future, but for now it is best to understand how it works when looking at older rules.

In an activate rule, the activates: detection option is used to select another rule to activate
upon a successful match.The chosen rule must be a dynamic rule.

An example in which the activate/dynamic options could be used is when capturing some
of the conversation to a TCP backdoor on port 1337.The conversation is only worth moni-
toring after the LOGIN details have been received.The following example shows an activate
rule that will activate the dynamic rule.

activate tcp !$HOME_NET any -> $HOME_NET 1337 (flags: PA; content: "LOGIN "; activates: 1;

msg: "Backdoor Login Detected";) ?

When this rule is triggered it activates any dynamic rule that contains the activated_by: 1
option.The main use for this is to log a number of packets after an attack has occurred.The
count option is used in a dynamic rule to specify the number of packets to collect. In this case,
when the dynamic rule is activated by the rule in the preceding example, it will log 50 packets.
To check, use the following:

dynamic tcp !$HOME_NET any -> $HOME_NET 1337 (activated_by: 1; count: 50;)

This rule will log 50 packets from any ip address which is not the $HOME_NET, inbound
to the $HOME_NET on port 1337, capturing the backdoor traffic.

Optimizing Rules
While Snort provides a mechanism for creating custom rules to fit a given situation, this can also
cause its own problems.A few poorly thought out rules can quickly bring your IDS to its knees.

When writing your own rules it is usually best to analyze the problem in detail first.A good
Snort rule is written to detect the vulnerability itself, not just a single exploit. Whenever possible it
is best to write your rule targeting anomalies in the underlying application’s protocol. However,
sometimes doing this can result in too many false positives for it to be a feasible approach.

Ordering Detection Options
Snort detection options are evaluated in the same order that they are provided by the rule
author.This can be both a blessing and a curse.This characteristic allows the rule author to order
his rules in a way that can increase the efficiency of the rule. However, a poorly ordered rule can
end up recursively checking an invalid packet for a much longer period of time.

Snort Rules • Chapter 8 211

332_NSE_08.qxd 7/15/05 10:03 AM Page 211

Pattern matching detection plugins such as regular expressions and the content detection
plugin are very costly in relation to some of the other options. Because of this it is often best to
be as specific as you can with the discrete Snort options before the content option.This way,
packets can quickly be passed if they do not meet the less expensive criteria, without ever
reaching the pattern matching options.

Checks that are not repeatedly used, such as the dsize option, will greatly improve the speed
of the rule.

An example of this is while matching an HTTP exploit, first we would make sure that we
have a TCP packet on port 80. We might then use flow:to_server,established; to make sure
we have a valid TCP session before finally using a content option to limit it further.

Here is a real example of a rule doing just that:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS wget command

attempt"; flow:to_server,established; content:"wget%20"; nocase; classtype:web-application-

attack; reference:bugtraq,10361; sid:1330; rev:6;)

NOTE

The content detection plugin uses a recursive algorithm in order to provide an accu-
rate evaluation of certain situations where a portion of the pattern is matched
directly before the full pattern match.

Choosing between Content and PCRE
Sometimes the choice between the content and PCRE detection plugins isn’t clear-cut, as nei-
ther will provide any additional required functionality to the signature. When choosing between
the two, the better of the two depends entirely on the situation.

When matching a single string match in a rule it makes very little difference which plugin
you choose. In this case both PCRE and the content option use the Boyer-Moore algorithm.
Because the PCRE detection plugin uses the libpcre library, there is an additional function call
overhead that means the content option is slightly faster in this case.

When matching a single string in multiple rules, PCRE is much faster than the content
option. This is because it eliminates the function call overhead involved with evaluating multiple
rules.An obvious problem with this is that only one message will be generated for all of the pat-
ters that the PCRE comprises.

Finally, when using multiple rules, each matching a single string, and using other detection
plugins, the content option wins hands down because of the function overhead involved
with PCRE.

If the Snort default rule set is being used, then the content option will have a significant
speed improvement due to the vast number of other rules using this option.

Merging CIDR Subnets
Merging CIDR subnets is a useful way to save resources. Whenever possible, CIDR subnets
should be merged in order to improve Snort’s efficiency.

212 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 212

A Perl module (Net::CIDR) is available on CPAN (Comprehensive Perl Archive Network)
and can be used to easily merge CIDR masks.To install this module, you can use the perl
–MCPAN –eshell command, then simply type i Net::CIDR to install the module.

The following example shows some sample code that will merge any CIDR subnets passed
to it on the command line.

#!/usr/bin/perl

-[cidrmerge.pl]-

(c) nemo 2005

#

Merge subnet masks provided on

the command line.

use strict;

use warnings;

use Net::CIDR;

@ARGV or die("usage: $0 <list of CIDR subnets>\n");

print "$_\n" for Net::CIDR::cidradd(@ARGV);

The following example shows some sample output of the program:

-[nemo@snortbox:~]$./cidrmerge.pl

usage: ./cidrmerge.pl <list of CIDR subnets>

-[nemo@snortbox:~]$./cidrmerge.pl 192.168.0.12/32 192.168.0.20/26

192.168.0.0/26

Optimizing Regular Expressions
Using PCRE in your rules can be a very expensive option. If rules can be easily created without
using heavy content matching and regular expressions, then it is best to avoid them.The subject
of optimizing regular expressions alone is large enough to fill an entire book. For this reason, this
section will simply highlight some general optimization concepts and show some examples.

Optimizing regular expressions follows the same principles as optimizing Snort rules.The
aim when optimizing regular expressions is to write the expression in a way that results in the
least work and time consumption for the engine. We will look at some ways to do this.

An example optimization that shows one method to reduce the amount of work the engine
needs to do to test a match is shown in the following example. One way to match the two
words mum and mom is shown in the following regular expression:

/^capitalize|capitalise$/

Although this is a valid expression and will still perform the same task, rephrasing it as
shown in the following example will result in a significant increase in speed, as only one byte
requires more than a single check.

/^capitali[zs]e$/

Regular expressions are checked in the exact order of the units (literal character, quantifiers,
etc.) provided. Because of this, arranging the units in an order that is more likely to be rejected,
or matched earlier in the evaluation, will cause the regular expression to be evaluated faster.An
example of this would be seen when writing a regular expression to match the strings optimize

Snort Rules • Chapter 8 213

332_NSE_08.qxd 7/15/05 10:03 AM Page 213

and optimise. Since the more common spelling is optimize, it makes sense to test for that
spelling first. For example;

/^optimi[zs]e$/

This way the more likely match is evaluated first, speeding up the regular expression. When
multiple options are provided in a regular expression, the PCRE engine uses a technique called
backtracking in order to make sure each option is evaluated.This method involves choosing the
first option and remembering the location of the branch.This is deemed a backtrack.The engine
then continues evaluating the expression until the match succeeds or fails. In the case of a failed
match, the engine resumes matching at the previous backtrack. Because of this, it is best to opti-
mize your regular expressions to avoid backtracks whenever possible and to order your back-
tracks for maximum efficiency.

Greediness can play a factor in the speed of a regular expression. Whenever you are given
the choice it’s best to make operands non-greedy (via the “?” operator).This way the match can
be accomplished earlier and the regular expression can, ultimately, finish earlier. Conveniently,
PCRE supports the G modifier, which inverts the greediness of all the operands.

Regular expressions should be anchored to the beginning and end of a line, using the ^ and
$ operands whenever possible.This will improve both the accuracy and speed of the rule. By
doing this, Snort can quickly end if the first character does not match.Almost every rule in the
Snort default rule set that uses the PCRE detection option anchors their patterns for these rea-
sons, however in some cases it is not needed.

In order to demonstrate the optimization of a regular expression, we will use the Snort sig-
nature that was created earlier in the regular expression section.

alert tcp any any -> any 3632 (msg:"EXPLOIT Ethereal Distcc Network Protocol Dissection

Buffer Overflow Vulnerability"; pcre:"/(ARGV|SERR|SOUT)[8-F][0-F]{7}/smi";

reference:url,www.suresec.org/advisories/adv2.pdf; classtype:attempted-admin; sid:1000010;

rev:1;)

The PCRE test tool, which was discussed earlier in the PCRE section of this chapter, can
be used to time PCRE compilation and execution. It does this when the –t option is passed to
it. We can use this to measure our regular expression efficiency and optimize them to make a
better rule. Unfortunately the pcretest tool does not support the Snort-specific modifiers.

In order to test our rule against some sample packet data, we can use the Ethereal program to
capture the packets generated by our exploit.To do this we simply fire up Ethereal and start a new
capture.While this is running we run the exploit, to generate the appropriate traffic.At this stage
we can also load the distcc program to generate some legitimate traffic to help with our testing.

Once we have captured packets from the exploit, we right click on the TCP packet we wish
to save. We then right-click and select Follow TCP Stream. Select Raw output mode, and
then save the file. Figure 8.1 shows this process.

To verify that our packet is intact, we can use the xxd tool.The xxd tool can be used to
dump the contents of binary files in various formats. By default it will dump a hexadecimal
format, along with the ASCII values.The xxd tool is used to dump the contents of the packet
capture.

214 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 214

Figure 8.1 Using Ethereal to Capture Exploit Packets

-[nemo@snortbox:~]$ xxd distccdump

0000000: 4152 4756 4646 4646 4646 4646 6161 6161 ARGVFFFFFFFFaaaa

0000010: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

0000020: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

0000030: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

0000040: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

0000050: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

0000060: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

0000070: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

0000080: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

0000090: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

00000a0: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

00000b0: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

00000c0: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

00000d0: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

00000e0: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

00000f0: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

0000100: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

0000110: 6161 6161 6161 6161 6161 6161 6161 6161 aaaaaaaaaaaaaaaa

0000120: 6161 6161 0814 a848 0814 a848 0814 a848 aaaa...H...H...H

0000130: bfff fff8 0000 0000

In this dump we can see the ARGV string that we will match, followed by the length (-1)
and then a long string of a’s. Our regular expression should match this easily.

Snort Rules • Chapter 8 215

332_NSE_08.qxd 7/15/05 10:03 AM Page 215

Once we have a saved copy of our packets we can run the pcretest program. We specify the
–t flag to time the run of our regular expression.The pcretest program can take a command line
argument that specifies an input file.To run our packet dump using our pre-made regular
expression we use the following piece of code:

-[nemo@snortbox:~]$ (echo /\(ARGV\|SERR\|SOUT\)\[8-F\]\[0-F\]\{7\}/smi; cat distccdump) >

tst.rxp; pcretest -t tst.rxp

PCRE version 5.0 13-Sep-2004

/(ARGV|SERR|SOUT)[8-F][0-F]{7}/smi

Compile time 0.004 milliseconds

ARGVFFFFFFFFaa

aa

aa

aaaaaaaaaaaaaaaaaaaaa???H????Execute time 0.001 milliseconds

0: ARGVFFFFFFFF

1: ARGV

In the preceding example, we can see that a successful match has been made, as expected.
The regular expression compiled and ran relatively fast with no real problems. However, there is
a problem with this rule. What if we append the packet dump to the string “ARGARGAR-
GARGARGSERSERARGSOUTFFFFFFFFFFFF?”The regular expression will follow each of
its options the entire way through, using backtracks for each.The following example shows this
string being added:

-[nemo@snortbox:~]$ (echo -n ARGARGARGARGARGSERSERARGSOUTFFFFFFFFFFFF; cat distccdump) >

distccdump2

Now if we run this modified packet dump through pcretest –t, we can see that the execu-
tion time for the regular expression has become much higher.

-[nemo@snotbox:~]$ (echo /\(ARGV\|SERR\|SOUT\)\[8-F\]\[0-F\]\{7\}/smi; cat distccdump2) >

tst.rxp; pcretest -t tst.rxp

PCRE version 5.0 13-Sep-2004

/(ARGV|SERR|SOUT)[8-F][0-F]{7}/smi

Compile time 0.004 milliseconds

ARGARGARGARGARGSERSERARGSOUTFFFFFFFFFFFFARGVFFFFFFFFaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aa

aa

aaa???H????Execute time 0.013

milliseconds

0: SOUTFFFFFFFF

1: SOUT

On top of the fact that it slowed down dramatically, this regular expression also has a match.
So how can we fix this problem? This regular expression (as with most of the Snort rules)
requires its PCRE to be anchored to the start of the payload. In order to do this we can insert a
^ caret character into the start of the regular expression.This leaves us with the following rule:

alert tcp any any -> any 3632 (msg:"EXPLOIT Ethereal Distcc Network Protocol Dissection

Buffer Overflow Vulnerability"; pcre:"/^(ARGV|SERR|SOUT)[8-F][0-F]{7}/smi";

reference:url,www.suresec.org/advisories/adv2.pdf; classtype:attempted-admin; sid:1000010;

rev:1;)

216 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 216

If we test this rule in the same way, we can see that the execution time has dropped right off
again.Also no match was made.This is now a much better rule.

-[nemo@snortbox:~]$ (echo /^\(ARGV\|SERR\|SOUT\)\[8-F\]\[0-F\]\{7\}/smi; cat distccdump2)

> tst.rxp; pcretest -t tst.rxp

PCRE version 5.0 13-Sep-2004

/^(ARGV|SERR|SOUT)[8-F][0-F]{7}/smi

Compile time 0.004 milliseconds

ARGARGARGARGARGSERSERARGSOUTFFFFFFFFFFFFARGVFFFFFFFFaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aa

aa

aaa???H????Execute time 0.002

milliseconds

No match

Testing Rules
A similar method to the one we used to test our regular expressions can be used to test custom
Snort rules. By looking at the parameters that can be passed to Snort, we can see that the -r
parameter can be used to replay a saved packet capture

-[neil@snortbox:~]$ snort -?

,,_ -*> Snort! <*-

o")~ Version 2.3.0RC1 (Build 8)

'''' By Martin Roesch & The Snort Team: http://www.snort.org/team.html

(C) Copyright 1998-2004 Sourcefire Inc, et al.

USAGE: snort [-options] <filter options>

Options:

-A Set alert mode: fast, full, console, or none (alert file alerts only)

"unsock" enables UNIX socket logging (experimental).

-b Log packets in tcpdump format (much faster!)

-c <rules> Use Rules File <rules>

-C Print out payloads with character data only (no hex)

-d Dump the Application Layer

-D Run Snort in background (daemon) mode

-e Display the second layer header info

-f Turn off fflush() calls after binary log writes

-F <bpf> Read BPF filters from file <bpf>

-g <gname> Run snort gid as <gname> group (or gid) after initialization

-h <hn> Home network = <hn>

-i <if> Listen on interface <if>

-I Add Interface name to alert output

-k <mode> Checksum mode (all,noip,notcp,noudp,noicmp,none)

-l <ld> Log to directory <ld>

-L <file> Log to this tcpdump file

-m <umask> Set umask = <umask>

-n <cnt> Exit after receiving <cnt> packets

-N Turn off logging (alerts still work)

-o Change the rule testing order to Pass|Alert|Log

Snort Rules • Chapter 8 217

332_NSE_08.qxd 7/15/05 10:03 AM Page 217

-O Obfuscate the logged IP addresses

-p Disable promiscuous mode sniffing

-P <snap> Set explicit snaplen of packet (default: 1514)

-q Quiet. Don't show banner and status report

-r <tf> Read and process tcpdump file <tf>

-R <id> Include 'id' in snort_intf<id>.pid file name

-s Log alert messages to syslog

-S <n=v> Set rules file variable n equal to value v

-t <dir> Chroots process to <dir> after initialization

-T Test and report on the current Snort configuration

-u <uname> Run snort uid as <uname> user (or uid) after initialization

-U Use UTC for timestamps

-v Be verbose

-V Show version number

-w Dump 802.11 management and control frames

-X Dump the raw packet data starting at the link layer

-y Include year in timestamp in the alert and log files

-z Set assurance mode, match on established sesions (for TCP)

-? Show this information

<Filter Options> are standard BPF options, as seen in TCPDump

We can also use the -P option to make sure our snaplen is the same as the MTU we used
to capture the packets.

In order to sufficiently test our custom rule, we need to make sure that it produces no false
negatives.To do this we can use Ethereal to capture sample packets from the exploit. It is also
best to think about what exactly can exploit the bug, what kind of protocol anomalies can occur
and the entire scope of the bug, and make sure that you capture several different packet captures
for each.

NOTE

The objective of this stage is to make sure that it is impossible to trigger the bug
without your rule detecting it.

The next thing to be done is to test a custom rule is to make sure that normal, everyday
traffic of the same protocol doesn’t regularly trigger the alert.To do this we can again fire up
Ethereal, and this time capture valid session traffic for the appropriate protocol. Once again we
can use the -r option to Snort to read our captures in and modify our rules accordingly.

The final aspect when testing rules is to ensure that other protocol traffic doesn’t trigger it.
Because Snort cannot differentiate (easily) between two different types of protocols running on
the same port, it can be useful to change the rule’s destination port option to any and see if any
new false positives appear while running this rule on an active network (preferably a staging box
can be used). Doing this for a planned period of time should show any noticeable false positives
that can be cleared up.

During this stage it is useful to run the perf-mon preprocessor.This preprocessor allows you
to specify an interval in which to log, and log performance information.You can enable this
plugin by adding the following line to your snort.conf file.

218 Chapter 8 • Snort Rules

332_NSE_08.qxd 7/15/05 10:03 AM Page 218

preprocessor perfmonitor: time 60 file <log file name> pktcnt 500

Once a log file has been collected the perfmon-graph utility (available from
http://people.su.se/~andreaso/perfmon-graph/) can be used to output an easily visible graph of
Snort performance over time.This graph can be correlated with alert logs, and the pcap dump
file in order to locate problems with your rule.

Final Touches
Hopefully after reading this chapter, you are familiar with the basic and advanced Snort detection
options.You should also have gained the knowledge needed to create efficient rules without hin-
dering your Snort performance. Finally you should be able to test your rules for performance, false
positives, and false negatives in a productive and thorough way. If you develop any rules that you
find beneficial, it’s good practice to share them with the rest of the Snort community whenever
possible.To see some of the rules that other people have created, visit http://bleedingsnort.com/.

Snort Rules • Chapter 8 219

332_NSE_08.qxd 7/15/05 10:03 AM Page 219

332_NSE_08.qxd 7/15/05 10:03 AM Page 220

Plugins and
Preprocessors

Solutions in this chapter:

■ Writing Detection Plugins

■ Writing Preprocessors

■ Writing Output Plugins

Chapter 9

221

332_NSE_09.qxd 7/14/05 4:14 PM Page 221

In This Toolbox
In this chapter you will learn how to navigate the Snort source tree.You will also learn how to
create new detection plugins, output plugins, and preprocessors, and modify existing plugins in
order to add new functionality to Snort.

Introduction
Plugins and preprocessors can be used to vastly alter the behavior and functionality of Snort.
Before starting out and creating your own plugin or preprocessor, it is usually best to try and
make sure that someone else has not already written what you desire.As the famous saying goes,
“Why reinvent the wheel?”

If there is not an exact implementation of what you need, perhaps there is one that is close,
and even if there is not, it’s usually best to take a prewritten plugin and strip the code that you
don’t need rather than writing one from scratch.

Each of the different types of plugins has its own directory in the Snort source tree. Because
Snort is released under an open source license, the following license block comment should be
inserted into the top of newly written custom plugins. It also should not be removed from other
plugins when modifying them. However, the name can be changed to reflect the author of the
plugin.

/*

** Copyright (C) 2005 Neil Archibald <neil@suresec.org>

**

** This program is free software; you can redistribute it and/or modify

** it under the terms of the GNU General Public License as published by

** the Free Software Foundation; either version 2 of the License, or

** (at your option) any later version.

**

** This program is distributed in the hope that it will be useful,

** but WITHOUT ANY WARRANTY; without even the implied warranty of

** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

** GNU General Public License for more details.

**

** You should have received a copy of the GNU General Public License

** along with this program; if not, write to the Free Software

** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

*/

Writing Detection Plugins
Detection plugins make up the body of the Snort ruleset. Each of the options that we have used
in the previous chapter has an associated detection plugin that provides the functionality of the
option.

The code for these detection plugins is found in the src/detection-plugins/ folder relative to
the source tree.The following example shows a listing of the files in this directory:

222 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:14 PM Page 222

Makefile.am sp_dsize_check.c sp_icmp_type_check.c sp_ip_tos_check.c

sp_react.c sp_tcp_flag_check.c

Makefile.in sp_dsize_check.h sp_icmp_type_check.h sp_ip_tos_check.h

sp_react.h sp_tcp_flag_check.h

sp_asn1.c sp_flowbits.c sp_ip_fragbits.c sp_ipoption_check.c

sp_respond.c sp_tcp_seq_check.c

sp_asn1.h sp_flowbits.h sp_ip_fragbits.h sp_ipoption_check.h

sp_respond.h sp_tcp_seq_check.h

sp_byte_check.c sp_icmp_code_check.c sp_ip_id_check.c

sp_isdataat.c sp_rpc_check.c sp_tcp_win_check.c

sp_byte_check.h sp_icmp_code_check.h sp_ip_id_check.h

sp_isdataat.h sp_rpc_check.h sp_tcp_win_check.h

sp_byte_jump.c sp_icmp_id_check.c sp_ip_proto.c sp_pattern_match.c

sp_session.c sp_ttl_check.c

sp_byte_jump.h sp_icmp_id_check.h sp_ip_proto.h sp_pattern_match.h

sp_session.h sp_ttl_check.h

sp_clientserver.c sp_icmp_seq_check.c sp_ip_same_check.c

sp_pcre.c sp_tcp_ack_check.c sp_clientserver.h sp_icmp_seq_check.h

sp_ip_same_check.h sp_pcre.h sp_tcp_ack_check.h

In this listing you can see that along with the Makefiles, this directory contains a separate file
for most of the detection options. Some of the options share a file, such as the fragoffset and frag-
bits options.These are grouped together in the file sp_fragbits.c.

RFC 3514: The Evil Bit
On April 1, 2003, a startling RFC (request for changes) was released on the Internet.This RFC
documented the previously unknown usage for the high-most bit of the Frag offset field in the
IP (Internet Protocol) header.The following example shows the IP header and the aforemen-
tioned Frag offset field:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| IHL |Type of Service| Total Length |

+-+

| Identification |Flags| Fragment Offset |

+-+

| Time to Live | Protocol | Header Checksum |

+-+

| Source Address |

+-+

| Destination Address |

+-+

| Options | Padding |

+-+

The RFC describes the high-most bit of the Frag offset field as an evil bit, which dictates the
ethical intent of the packet. If the bit is set to 0 the packet is without evil intent and is safe to
allow into the network. However, if the bit is set to 1, the packet is deemed evil and any well-
configured network should drop the packet.

Plugins and Preprocessors • Chapter 9 223

332_NSE_09.qxd 7/14/05 4:14 PM Page 223

Unfortunately, at the time the Snort community didn’t take this warning seriously enough,
and Snort rules are still missing this crucial option, which should be enabled on every single
Snort rule. In the following section we will run through the process of creating a Snort detection
option that can be used to detect or block the evil packets on the Internet.

Detecting “Evil” Packets
To test the status of the evil bit, we can create a new detection plugin that uses the keyword evil.
The fragoffset plugin already exists, and since this is the field we are concerned with, modifying
this plugin to suit our needs seems appropriate.

First, we can copy the file sp_ip_fragbits.c in the /src/detection-plugins directory and name
our copy sp_ip_evilbit.c in order to maintain snort standard file naming conventions. Next, we
can remove all of the fragbit-related functionality from the file, as we need to modify only the
fragoffset functions for this plugin.
All Snort plugins usually begin with the same block comment section.This section indicates the
author of the plugin and clearly states its purpose and usage.The block comment section of our
evil bit detection plugin is as follows.The following code and additional Snort rules discussed in
this section are available on the Syngress Web site:

/* sp_ip_evilbit

*

* Purpose:

*

* Test the status of the evil bit. (The high order bit in the frag offset

* field of the IP header).

*

* Arguments:

*

* The '!' operand can be used to test if the bit has NOT been set.

*

* Effect:

*

* Indicates if the evil bit has been set.

*

* Comments:

*

* Saving the internet from evil packets.

*

*/

All the detection plugins typically include a standard set of headers.These define the Snort
functions and data that we use in our plugin.The standard headers that are included or will be
included in our sp_ip_evilbit plugin are:

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include <sys/types.h>

#include <stdlib.h>

#include <ctype.h>

224 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:14 PM Page 224

#include <string.h>

#include "rules.h"

#include "plugbase.h"

#include "decode.h"

#include "parser.h"

#include "debug.h"

#include "util.h"

#include "plugin_enum.h"

Detection plugins define their own data structure, which contains each of the global vari-
ables required by the plugin. In the evil bit plugin we can define the following structure for our
data:

typedef struct _EvilBitData

{

u_int8_t notset;

} EvilBitData;

The notset variable can be used to determine if the “!” operand is provided as an argument
to our plugin. If this is the case, we return true when the evil bit is not set.

There are typically four core functions used to implement the fundamental functionality of
detection plugins.These fundamental functions serve the following purposes:

■ Map the chosen keyword to the appropriate function.

■ Initialize the plugin.

■ Parse the parameters provided by the rule author.

■ Perform the appropriate tests required by the option.

In the case of our evil bit plugin, the following four functions are used to provide this func-
tionality:

■ void SetupEvilBit(void);

■ void EvilBitInit(char *, OptTreeNode *, int);

■ void ParseEvilBit(char *, OptTreeNode *);

■ int CheckEvilBit(Packet *, struct _OptTreeNode *, OptFpList *);

SetupEvilBit()
The setup function has the purpose of associating a provided keyword with the function that is
used to initialize it.The SetupEvilBit() function is added to the plugbase.c file in the Snort src
directory in order to set up the detection option when Snort starts.

In order to perform this association, Snort provides the RegisterPlugin() function.This func-
tion takes two parameters: the keyword that should be used to use the detection options, and a
function pointer to the initialization function for the plugin (in our case the EvilBitInit() function).

Plugins and Preprocessors • Chapter 9 225

332_NSE_09.qxd 7/14/05 4:14 PM Page 225

In our setup function we also use the DebugMessage() function to output a debug message.
The DEBUG_WRAP macro is used to wrap the DebugMessage() function call in an #ifdef
DEBUG statement.The full function is shown in the following example:

void SetupEvilBit(void)

{

/* map the keyword to an initialization/processing function */

RegisterPlugin("evil", EvilBitInit);

DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN, "Plugin: EvilBit Setup\n"););

}

EvilBitInit()
The init function is called when a rule containing the detection option is found. It is used to
allocate the data structure needed by the option. In the case of our EvilBitInit() function this is
done using the calloc() function.This function allocates a block of data on the heap and sets it to
zero bytes (\x00).

The parse function is then called to evaluate the arguments passed to the option from the
rule. Finally, the AddOptFuncToList() function is called.This function is used to add the function
pointer for the check function to a list of function pointers associated with the current rule.This
is part of the OptTreeNode.

The PLUGIN_EVIL_BIT value is taken from an enum data type, which is declared in the
plugin_enum.h file in the Snort src/ directory.This is discussed later. Here is code for the
EvilBitInit() function:

void EvilBitInit(char *data, OptTreeNode *otn, int protocol)

{

/* allocate the data structure and attach it to the

rule's data struct list */

otn->ds_list[PLUGIN_EVIL_BIT] = (EvilBitData *) calloc(sizeof(EvilBitData),

sizeof(char));

/* this is where the keyword arguments are processed and placed into the

rule option's data structure */

ParseEvilBit(data, otn);

/* finally, attach the option's detection function to the rule's

detect function pointer list */

AddOptFuncToList(CheckEvilBit, otn);

}

226 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:14 PM Page 226

NOTE

Although we used the ds_list method of storing our arguments here, this is gener-
ally being phased out and replaced with the OTN method. By using the ds_list we
limit ourselves to a single instance of the specified plugin per rule.

An example of the use of the OTN struct to store rule option arguments can be
seen in the PCRE plugin found in src/detection-plugins/sp_pcre.c. The initialization
function for this plugin is as follows:

void SnortPcreInit(char *data, OptTreeNode *otn, int protocol)

{

PcreData *pcre_data;

OptFpList *fpl;

/*

* allocate the data structure for pcre

*/

pcre_data = (PcreData *) SnortAlloc(sizeof(PcreData));

if(pcre_data == NULL)

{

FatalError("%s (%d): Unable to allocate pcre_data node\n",

file_name, file_line);

}

SnortPcreParse(data, pcre_data, otn);

fpl = AddOptFuncToList(SnortPcre, otn);

/*

* attach it to the context node so that we can call each instance

* individually

*/

fpl->context = (void *) pcre_data;

return;

}

ParseEvilBit()
The parse function typically parses the arguments passed to the option by the rule author. It uses
the values provided to populate the data struct values to be used later by the check function
when testing the match.

In the case of our evil bit plugin, the only argument that can be provided is the “!” operand.
When this operand is found, the notset variable in the data structure is set. If this operand is not
found, the function simply returns, leaving the notset variable set to 0.

The following example shows the code for the ParseEvilBit() function:

void ParseEvilBit(char *data, OptTreeNode *otn)

Plugins and Preprocessors • Chapter 9 227

332_NSE_09.qxd 7/14/05 4:14 PM Page 227

{

char *fptr;

EvilBitData *ds_ptr; /* data struct pointer */

/* set the ds pointer to make it easier to reference the option's

particular data struct */

ds_ptr = otn->ds_list[PLUGIN_EVIL_BIT];

/* manipulate the option arguments here */

fptr = data;

/* Initialize the notset variable to false */

ds_ptr->notset = 0;

/* If no options are provided return */

if(!fptr)

return;

/* remove the whitespace from the options */

while(isspace((u_char) *fptr))

fptr++;

/* If there is nothing but whitespace return */

if(strlen(fptr) == 0)

return;

/* If a '!' operand is provided, set the notset flag */

if(*fptr == '!')

{

ds_ptr->notset = 1;

return;

}

}

CheckEvilBit()
The check function is where the main functionality of a detection plugin is implemented.This
function performs the actual check on the packet to determine the success of failure of the rule.

A linked list of function pointers is passed to the function as the fp_list parameter.This list is
set to the current option.The list contains all the function pointers that are required to be called
successfully for a rule to prove true. If the check function fails, it must immediately return the
value 0.This way the rule is known to fail. If the check is successful, the next function pointer in
the list is called in order to perform the next check in the rule.

In the case of our CheckEvilBit() function, the IP field frag_offset is bitwise AND’ed with
the hexadecimal value 0x1000 (using the & operator).This value is such that the evil bit is 1 and
the rest of the bits are 0.Thus, when AND’ed with any value, if the evil bit is set the result will
be greater than 0. However, if the evil bit is unset the result will be zero.

228 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:14 PM Page 228

Once the status of the evil bit is checked, the notset variable, which was set by the parsing of
the arguments to the option, is checked. If the variable is false and the evil bit is set, the next
function pointer is called. However, if the variable is true, the evil bit should not be set for a suc-
cessful match.This is also reflected in the else { } statement. If the evil bit is unset, the notset
variable needs to be true for a successful match to occur.

#define EVILMASK 0x1000

int CheckEvilBit(Packet *p, struct _OptTreeNode *otn, OptFpList *fp_list)

{

EvilBitData *ipd; /* data struct pointer */

ipd = otn->ds_list[PLUGIN_EVIL_BIT];

DEBUG_WRAP(

DebugMessage(DEBUG_PLUGIN,

"[!] EvilBit is %s\n", (p->frag_offset & EVILMASK) ? "set" : "unset"));

/* If the evil bit is set, test the notset value */

if(p->frag_offset & EVILMASK)

{

return ipd->notset ? 0 :

fp_list->next->OptTestFunc(p, otn, fp_list->next);

}

else {

DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN,"No match\n"););

return ipd->notset ? fp_list->next->OptTestFunc(p, otn,

fp_list->next) : 0;

}

}

Setting Up
In order for the detection plugin to be compiled during the compilation of the Snort source, the
filename must be added to the src/detection-plugins/Makefile.am file.This instructs the con-
figure tool to create makefiles that include the appropriate files.

The file src/plugbase.c must be modified in order to include the setup function for the
detection plugin in the InitPlugins() function.This function is called when Snort is initialized
and is used to initialize each of the detection plugins in turn.The modified function in this case
is shown in the following example:

void InitPlugIns()

{

if(!pv.quiet_flag)

{

LogMessage("Initializing Plug-ins!\n");

}

SetupPatternMatch();

SetupTCPFlagCheck();

SetupIcmpTypeCheck();

SetupIcmpCodeCheck();

Plugins and Preprocessors • Chapter 9 229

332_NSE_09.qxd 7/14/05 4:14 PM Page 229

SetupTtlCheck();

SetupIpIdCheck();

SetupTcpAckCheck();

SetupTcpSeqCheck();

SetupDsizeCheck();

SetupIpOptionCheck();

SetupRpcCheck();

SetupEvilBit();

SetupIcmpIdCheck();

SetupIcmpSeqCheck();

SetupSession();

SetupIpTosCheck();

SetupFragBits();

SetupFragOffset();

SetupTcpWinCheck();

SetupIpProto();

SetupIpSameCheck();

SetupClientServer();

SetupByteTest();

SetupByteJump();

SetupIsDataAt();

SetupPcre();

SetupFlowBits();

SetupAsn1();

#ifdef ENABLE_RESPONSE

SetupReact();

SetupRespond();

#endif

}

We also need to add our enum identified to the src/plugin_enum.h file to allow our setup
function to add the appropriate pointer to our data structure. Once this is done, the Snort source
can be compiled in the usual way (./configure; make). Before we test a detection plugin, how-
ever, we obviously need to create a rule that uses it.

Testing
To test our detection plugin we can create the simple rule shown in the following example:

alert ip any any -> any any (msg:"Evil packet detected"; evil;)

WARNING

This rule will trigger on any packets that have the evil bit set. If you are on an open
network with lots of malicious Internet hackers, this may flood your system with
alerts.

Once this rule is in our snort rules file, we can start Snort to test it. In order to test this rule
we can use a custom Perl script to generate traffic with the evil bit set.The Perl module

230 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:14 PM Page 230

Net::Rawip can be used to generate raw IP traffic easily.The script seenoevil.pl is listed in the
following example:

#!/usr/bin/perl

#

seenoevil.pl

-(nemo)-

2005

#

Send evil packets to a host.

use Net::RawIP;

use Time::HiRes;

if(!$ARGV[0]) {

die "usage: $0 <count>\n";

}

$pkt = new Net::RawIP;

$pkt->set({

ip => {

saddr => '192.168.0.254',

daddr => '192.168.0.1',

frag_off => 0x1000

},

tcp=> {

dest => 80,

syn => 1,

seq => 0,

ack => 0

}

});

for(1..$ARGV[0]){ $pkt->set({tcp=>{source=>int(rand(65535))}});Time::HiRes::sleep(2);

$pkt->send; };

Swiss Army Knife

The Net::Rawip Module
The Perl module Net::Rawip provides a quick and easy interface that allows you to
create custom packets in almost any shape or form. It was written by Sergey
Kolychev and the latest version can be found at http://www.ic.al.lg.ua/
~ksv/index.shtml.

There is documentation available on CPAN for this module or with the
command perldoc Net::Rawip.

Plugins and Preprocessors • Chapter 9 231

332_NSE_09.qxd 7/14/05 4:14 PM Page 231

By running this script, you can specify a packet count on the command line while Snort is
running with this rule enabled. We can see that the following alerts are generated:

[**] [1:0:0] Evil packet detected [**]

[Priority: 0]

06/04-10:52:26.021775 192.168.0.254 -> 192.168.0.1

TCP TTL:64 TOS:0x10 ID:24590 IpLen:20 DgmLen:40

Frag Offset: 0x1000 Frag Size: 0x0014

So now we can use our evil option in any rules we want, in conjunction with other options
to make our rules more accurate, and provide a safer Internet for all.

WARNING

For those of you who didn’t pick up on the tongue-in-cheek humor in this section, I
will point out again that the RFC regarding the evil bit was released on April 1,
2003. Although this RFC is a joke, I personally feel that it provides a clear situation
with which to demonstrate the methods and code required to implement a custom
detection plugin.

Writing Preprocessors
Preprocessors are modular pieces of code that are handed packet data after Snort has parsed the
packets and broken them down into their appropriate fields. However, this occurs before the
rules are matched against the packet.This leaves room for a preprocessor to perform such tasks as
flow control and protocol anomaly-based detection, as well as miscellaneous tasks.

The modular design of preprocessors enables new functionality to be easily added to the
Snort source and disabled by default.This allows Snort to be minimal and stable, while still pro-
viding end users with a wide variety of complex and useful functionality at their fingertips.

Many preprocessors are shipped with the Snort source.The code for these is available in the
Snort src/preprocessors directory.The next example includes a full directory listing.

HttpInspect perf.h spp_conversation.c spp_portscan.h

spp_xlink2state.c

Makefile.am portscan.c spp_conversation.h spp_portscan2.c

spp_xlink2state.h

Makefile.in portscan.h spp_flow.c spp_portscan2.h

str_search.c

flow sfprocpidstats.c spp_flow.h spp_rpc_decode.c

str_search.h

perf-base.c sfprocpidstats.h spp_frag2.c

spp_rpc_decode.h stream.h

perf-base.h snort_httpinspect.c spp_frag2.h

spp_sfportscan.c xlink2state.c

perf-event.c snort_httpinspect.h spp_httpinspect.c

spp_sfportscan.h xlink2state.h

perf-event.h spp_arpspoof.c spp_httpinspect.h spp_stream4.c

perf-flow.c spp_arpspoof.h spp_perfmonitor.c spp_stream4.h

232 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:14 PM Page 232

perf-flow.h spp_bo.c spp_perfmonitor.h

spp_telnet_negotiation.c

perf.c spp_bo.h spp_portscan.c

spp_telnet_negotiation.h

The amount of time required for the design and implementation of a Snort preprocessor can
vastly fluctuate depending on the magnitude of the problem and the skill level of the programmer
attempting the task.This time period usually ranges from a day or two to a couple of weeks.

In order to learn about preprocessors, we will look at the process of designing and coding
one now.

IP-ID Tricks
The IP datagram header contains a field called the IP-ID field.This field (As defined by RFC
791) “is used to distinguish the fragments of one datagram from those of another.The origi-
nating protocol module of an Internet datagram sets the identification field to a value that must
be unique for that source-destination pair and protocol for the time the datagram will be active
in the Internet system.”

Around five years ago, a security researcher named Salvatore Sanfilippo reported some inter-
esting uses for this field in the information gathering aspects of information security.The basis of
most of his tricks revolved around machines that would increment the IP-ID field for each
packet sent, in a predictable manner.These techniques ranged from stealthily scanning a host to
enumerating firewall rules and guessing the throughput of a host.

NOTE

Salvatore’s papers on these subjects can be found at www.kyuzz.org/
antirez/papers.html.

Idle Scanning
Possibly the most useful, and definitely the most well known, of Salvatore’s IP-ID tricks is the
technique termed idle scanning. Idle scanning is a port scanning technique that utilizes a machine
with a predictable IP-ID field in order to scan another remote machine without sending any
packets from the original host.

This section presents a rough overview of the technique.This technique is more thoroughly
documented in a paper at http://www.insecure.org/nmap/idlescan.html and is also implemented
by the nmap security scanner.

To illustrate this scanning technique we will look at the process an attacker goes through in
order to test if a port is open on a given target machine. For the sake of this example we will
refer to the attacker’s machine as A, the idle zombie machine with the predictable IP-ID as Z,
and the target machine as T.

Plugins and Preprocessors • Chapter 9 233

332_NSE_09.qxd 7/14/05 4:14 PM Page 233

To begin the attack the attacker sends a packet from machine A to machine Z and records
the IP-ID of the response.This can be done using the hping2 tool, which was written by
Salvatore.

Swiss Army Knife

Hping2
Hping2 is a command-line ping replacement utility that provides a flexible way to
create custom packets with an almost endless supply of options and functions. The
tool is available via a free download from http://www.hping.org/. Hping2 is a valu-
able asset in the toolkit of any security professional’s arsenal.

In the following example we can see the output from the hping2 command being used to
probe the current IP-ID field from the zombie machine:

-[nemo@snortbox:~]$ sudo hping -c 1 -1 zombiebox

HPING zombiebox (eth0 192.168.0.10): icmp mode set, 28 headers + 0 data bytes

len=28 ip=192.168.0.1 ttl=64 id=48485 icmp_seq=0 rtt=0.1 ms

len=28 ip=192.168.0.1 ttl=64 id=48486 icmp_seq=1 rtt=0.2 ms

len=28 ip=192.168.0.1 ttl=64 id=48487 icmp_seq=2 rtt=0.1 ms

--- zombiebox hping statistic ---

3 packets transmitted, 3 packets received, 0% packet loss

round-trip min/avg/max = 0.1/0.1/0.2 ms

From this output we can see that the machine zombiebox has a predictable IP identification
field.The machine will continue to increment the IP-ID field each time a new packet is sent.
We also can see in this output that the current value of the IP-ID field is set to 48487.

Once this value has been identified, the attacker can use this information.A packet can be
crafted that looks like it has originated from Z, and can be sent to T.

Depending on the open/closed status of the target port on T, the zombie box will respond
in different ways. If the port on T is closed, it will respond to Z with a TCP RST. Z will not
react to this. However, if the target port is open, a SYN/ACK packet will be sent back to Z.
Because Z was not expecting this packet, it responds to T, incrementing its IP-ID in doing so.

By querying the IP-ID status of Z before and after the spoofed packet is sent, it is possible
to determine if the port on T is open or closed.All this is done without sending a single packet
from the attacker’s machine.

The nmap security scanner, as mentioned earlier, can automate this entire process. Because this
attack can incriminate a machine on your own network, it is best to locate machines on your
network with predictable IP-IDs and patch them to remove the problem. Snort provides an
excellent framework for implementing this functionality.The process of designing and imple-
menting this as a preprocessor is discussed in the next section of this chapter.

234 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:14 PM Page 234

Predictable IP-ID Preprocessor
The layout of a preprocessor is very similar to that of a detection plugin, the main difference
being that the main body of the plugin consists of a function that takes only a packet struct as
input rather than a list of other functions to call. Like a detection plugin, a preprocessor consists
of four main functions in order to implement most of its functionality.These functions should
do the following:

■ Map the chosen keyword to the appropriate function.

■ Initialize the plugin.

■ Parse the parameters passed to the preprocessor via the snort.conf file.

■ Perform the main functionality of the preprocessor on a packet struct passed in as
input.

For the Predictable IP-ID preprocessor, the following functions will be used to achieve this:

■ void SetupIPID()

■ void IPIDInit(u_char *)

■ void IPIDParse(char *portlist)

■ void RecordIPID(Packet *p)

Several other functions will be defined and discussed in order to provide clarity to the pro-
gram. For the sake of this book, efficiency will be sacrificed in order to achieve more readable
code. For this reason a linked list will be used to store data instead of a more complex hashing
function.

For clarity the options passed to the preprocessor are parsed and stored in a user-defined
structure. In the case of the IP-ID preprocessor the arguments shown in Table 9.1 will be
implemented.

Table 9.1 Preprocessor Options

Option Description

threshold The threshold option is used to supply the number of packets to
capture from a single IP address before testing the IP-IDs for
sequential predictability. A higher value will provide more accurate
results, however may pose the risk of interference from other
sources or the inability to capture enough packets to formulate a
result. A good value for this option is typically 10.

timeout The timeout option is used to specify the amount of time (in sec-
onds) to withhold from re-checking an IP address after the packet
threshold has been reached. A value of 0 will maintain the blacklist
of IPs forever.

Plugins and Preprocessors • Chapter 9 235

332_NSE_09.qxd 7/14/05 4:14 PM Page 235

To store these variables, we define the following data structure:

typedef struct _IPIDData

{

u_int threshold; /* Number of ip-id's to sample */

time_t timeout; /* Length of time to ignore tested IPs */

} IPIDData;

As well as the options for our preprocessor, a data structure must be defined in order to hold
information about the IP-IDs gathered so that they can be evaluated.The following example
shows the structure that has been defined for this:

typedef struct _ip {

struct _ip *next; /* Pointer to the next ip */

u_long ipaddr; /* IP address */

u_long *ipids; /* An array of ipids */

time_t ignored; /* Time the ip was ignored */

} ip;

Some global variables also have to be declared:

ip *ips; /* global list of ips */

ip *blacklist; /* list of blacklists */

IPIDData *ipdata; /* parsed arguments */

u_long pcount; /* packet count */

Now we will discuss the various functions that provide the functionality of this preprocessor.

SetupIPID()
The SetupIPID() function is used to register the appropriate keyword to be used in the
snort.conf file and associate this with an initiation function. In this case we chose the ipid_pre-
dictable keyword.
The source code for this function is:

void SetupIPID()

{

RegisterPreprocessor("ipid_predictable", IPIDInit);

DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN, "Preprocessor: Predictable IP-ID Detection

Preprocessor is setup...\n"););

}

A debug statement is also provided to make things easier.This function is called once upon
Snort initialization.

IPIDInit()
The IPIDInit() function is called when the appropriate keyword is found in the snort.conf file;
the arguments from snort.conf are passed to this function. IPIDInit() is also responsible for ini-
tializing the data structures that are required by the preprocessor.The source code for this func-
tion is shown in the following example:

236 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:14 PM Page 236

void IPIDInit(u_char *args)

{

IPIDParse(args);

pcount = 0; // init packet counter

/* Allocate space for the first IP */

ips = calloc(1, sizeof(ip));

/* Allocate space for the first blacklist */

blacklist = calloc(1,sizeof(ip));

/* Allocate space for the ipids */

ips->ipids = calloc(ipdata->threshold + 1, sizeof(u_long));

/* Set the preprocessor function into the function list */

AddFuncToPreprocList(RecordIPID);

if(!(ips && blacklist && ips->ipids))

FatalError("Error, not enough memory to allocate space for the IP-ID

Detection Preprocessor\n");

DEBUG_WRAP(DebugMessage(DEBUG_PLUGIN, "Preprocessor: Predictable IP-ID Detection

Initialized\n"););

}

First, the IPIDParse() function is called to parse the arguments and store them in a newly
created structure.After this we can see that the calloc() function is used to allocate data for the
initial elements of the linked lists and initialize the data to be filled with zeroes (0).The ips list is
used to store the relevant IPIDs of the IPs seen.The blacklist list is used to store information
about IPs that have previously been checked.

IPIDParse()
As mentioned in the previous section, it is the IPIDParse() function’s responsibility to break up
the argument string provided in the snort.conf file and store it in the appropriate data structure
for later use. It achieves this functionality by using the strtok() function.This function breaks up
the string based on a delimiter provided (in this case the possible delimiters are the tab character
and the space character). It then compares the key with the static strings threshold and timeout to
store the appropriate value in the struct.

This function also uses calloc() in order to allocate memory for the stored arguments.

void IPIDParse(char *args)

{

char *key, *value;

char *myargs = NULL;

const char *delim = " \t";

if(!(ipdata = calloc(1, sizeof(IPIDData)))) {

FatalError("An error occured allocating space for options.");

}

Plugins and Preprocessors • Chapter 9 237

332_NSE_09.qxd 7/14/05 4:14 PM Page 237

if(args) {

myargs = strdup(args);

if(myargs == NULL) {

FatalError("Out of memory parsing flow arguments\n");

}

} else

FatalError("Error, invalid arguments passed to the IP-ID Detection

Preprocessor\n");

key = strtok(myargs, delim);

while(key != NULL) {

value = strtok(NULL, delim);

if(!value) {

FatalError("%s(%d) key %s has no value\n", file_name, file_line,value);

}

if(!strcmp(key,"threshold")) {

ipdata->threshold = atoi(value);

if(ipdata->threshold < 3)

FatalError("The threshold value specified is too low. (<

3)\n");

}

if(!strcmp(key,"timeout")) {

ipdata->timeout = atoi(value);

}

key = strtok(NULL, delim);

}

if(myargs)

free(myargs);

if(!ipdata->threshold || !ipdata->timeout)

FatalError("Error, invalid arguments passed to the IP-ID Detection

Preprocessor\n");

return;

}

RecordIPID()
This function is where it all happens! When Snort receives a packet and decodes it, the packet is
passed directly to this function as a pointer to a Packet struct. It is here that we can pull the IP-
ID out and store it in our linked list.

We begin by testing that the IP header data we have been passed is valid; we can never be
too careful here.After this, the function checks a packet count to see if it should try to clean up

238 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:14 PM Page 238

the blacklist (using the ipunlink() function) and expire entries that have timed out. It is more
efficient to do this here than fork() and poll it.

We then run through the ips list and check if the current packet’s source IP address has
already been seen. If it has, then the ip_id is stored in the appropriate field. If it hasn’t, a new
entry in the ips list is created for the IP.

Once the threshold number of packets has been captured for a particular IP address, the IP
address is added to the blacklist and removed from the ips list using the ipunlink() function.The
full code listing for the RecordIPID() function is shown in the following example:

void RecordIPID(Packet *p)

{

ip *c_bl,*curr_ptr = ips;

int n;

u_long tempip ;

/* Make sure we have a valid packet */

if(!p || !p->iph || !(tempip = ntohl((uint32_t)(p->iph->ip_src.s_addr)))) {

return;

}

/* Do we need to cleanup our blacklist? (cleaner than forking imo) */

if(pcount && ipdata->threshold && ipdata->timeout && !(pcount % ipdata->threshold

* 2)) {

cleanup_blacklist();

}

do {

n = -1;

if(curr_ptr->ipaddr == tempip) {

while(curr_ptr->ipids[++n]);

if(n == (ipdata->threshold - 1)) {

curr_ptr->ipids[n] = p->iph->ip_id;

TestIPID(curr_ptr->ipids);

if(!(c_bl = calloc(1,sizeof(ip)))) {

FatalError("Error, not enough memory to allocate

space for the IP-ID Detection Preprocessor\n");

}

if(ipdata->timeout) {

/* BLACKLIST */

curr_ptr->ipaddr = c_bl->ipaddr;

c_bl->next = blacklist;

c_bl->ignored = time(NULL);

blacklist = c_bl;

}

/* Remove IP */

lunlink(curr_ptr->ipaddr,&ips);

return;

} else {

curr_ptr->ipids[n] = p->iph->ip_id;

return;

Plugins and Preprocessors • Chapter 9 239

332_NSE_09.qxd 7/14/05 4:14 PM Page 239

}

}

} while((curr_ptr=curr_ptr->next));

curr_ptr = blacklist;

do {

if(curr_ptr->ipaddr == tempip)

return;

} while((curr_ptr=curr_ptr->next));

/* add ip here */

if(!(c_bl = calloc(1,sizeof(ip)))) {

FatalError("Error, not enough memory to allocate space for the IP-ID

Detection Preprocessor\n");

}

c_bl->ipaddr = ntohl(p->iph->ip_src.s_addr);

c_bl->next = ips;

if(!(c_bl->ipids = calloc(ipdata->threshold + 1, sizeof(u_long)))) {

FatalError("Error, not enough memory to allocate space for the IP-ID

Detection Preprocessor\n");

}

ips = c_bl;

}

The ipunlink() function provides the ability to search through a linked list based on an
IPaddress and unlink the associated entry.This is used to remove entries from both the ips and
blacklist lists. It simply runs through the list until it finds a match, then replaces the previous next
pointer to skip the entry. It then frees the memory:

void ipunlink(u_long ipkey,ip **list)

{

ip *prev_ptr,*curr_ptr;

u_int n=0;

if(!list || !*list) return;

curr_ptr = *list;

prev_ptr = curr_ptr;

do {

if(curr_ptr->ipaddr == ipkey) {

if(!n) {

*list = (*list)->next;

return;

}

prev_ptr->next = curr_ptr->next;

free(curr_ptr);

return;

}

prev_ptr = curr_ptr;

n++;

} while((curr_ptr=curr_ptr->next));

}

240 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:14 PM Page 240

The TestIPID() function is called once the threshold is reached for a particular IP.This func-
tion runs through the array of IP-IDs and notes the differences between each one. If the differ-
ence remains the same throughout the whole list, a Snort alert is generated.

This is done by using the SnortEventqAdd() function, available when the event_queue.h
header is included.

void TestIPID(u_long *ipids)

{

u_int n, diff=0;

for(n=1 ; n <= (ipdata->threshold-1) ; n++) {

if(n==1) {

diff = ipids[n] - ipids[n-1];

continue;

}

if(diff != (ipids[n] - ipids[n-1]))

return;

}

SnortEventqAdd(GENERATOR_SPP_IPID_PREDICTABLE,

IPID_PREDICTABLE,

1,

0,

3,

IPID_PREDICTABLE_DETECT,

0

);

}

The #define values that are passed to SnortEvendqAdd() are defined in the src/
generators.h file.

Setting Up
Setting up a preprocessor is much the same as setting up a detection plugin.The src/plugbase.c
file must be modified to include a function call to your setup function. However, this call must
be appended to the InitPreprocessors() function instead of InitPlugins().The following example
shows the modified InitPreprocessors() function:

void InitPreprocessors()

{

if(!pv.quiet_flag)

{

LogMessage("Initializing Preprocessors!\n");

}

SetupPortscan();

SetupPortscanIgnoreHosts();

SetupRpcDecode();

SetupBo();

SetupTelNeg();

SetupStream4();

SetupFrag2();

Plugins and Preprocessors • Chapter 9 241

332_NSE_09.qxd 7/14/05 4:15 PM Page 241

SetupARPspoof();

SetupConv();

SetupScan2();

SetupHttpInspect();

SetupPerfMonitor();

SetupFlow();

SetupPsng();

SetupIPID();

}

Also, the Makefile.am in the src/preprocessors/ directory must be modified to include a ref-
erence to any files which contain your preprocessor. Once this is done Snort can be compiled as
normal.

To load the preprocessor we must insert our keyword into the snort.conf file. Passing in the
correct arguments to initialize it is also a must.The following is a sample entry that was used in
our snort.conf:

preprocessor ipid_predictable:timeout 5000 threshold 10

Finally Snort can be run. When connections are made to or from a machine with a pre-
dictable IP-ID within the visible scope of the Snort sensor, the following alerts are triggered:

[**] [123:1:1] (spp_ipid_predictable) Predictable IP-ID detected on network [**]

06/06-17:33:32.787172 192.168.0.246:443 -> 192.168.0.1:52410

TCP TTL:64 TOS:0x10 ID:53049 IpLen:20 DgmLen:1240 DF

AP Seq: 0x768318BE Ack: 0xB10EF383 Win: 0x31E0 TcpLen: 32

TCP Options (3) => NOP NOP TS: 37164675 451370217

Prevention
Once idle machines are detected on your network with predictable IP-IDs, it makes sense to try
and remedy the problem to counteract the situations mentioned earlier in this chapter.There are
many different ways to combat this problem.The easiest way is to simply install a kernel patch
such as grsecurity and enable the IP-ID randomization features.

NOTE

The grsecurity kernel patch is available for Linux, and can be downloaded from
www.grsecurity.net.

Writing Output Plugins
There are many reasons why you might want to roll out your own Snort output plugin.The
company you work for might use a proprietary output format, or maybe you just want to use
Snort as a personal IDS (Intrusion Detection System) on your notebook. Whatever the reason,
the Snort development team has created an API (application program interface) that makes cre-
ating your own custom output plugin as painless as possible.

242 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:15 PM Page 242

As with the other types of plugins, it’s usually best to try and modify an existing plugin
rather than creating your own from scratch.There is already a wide variety of output formats to
choose from, so make sure you search thoroughly before committing to writing your own.

The current Snort distribution at the time of this writing (version 2.3.3) ships with many
useful output plugins.These are stored in the src/output-plugins directory of the Snort source.A
full directory listing of these are shown in the following example:

Makefile.am spo_alert_full.c spo_alert_syslog.c

spo_csv.c spo_log_ascii.c spo_log_tcpdump.c

Makefile.in spo_alert_full.h spo_alert_syslog.h

spo_csv.h spo_log_ascii.h spo_log_tcpdump.h

spo_alert_fast.c spo_alert_sf_socket.c spo_alert_unixsock.c spo_database.c

spo_log_null.c spo_unified.c

spo_alert_fast.h spo_alert_sf_socket.h spo_alert_unixsock.h spo_database.h

spo_log_null.h spo_unified.h

These plugins provide Snort with the ability to log alerts in various formats such as the pcap
format or to an SQL database. Writing a Snort output plugin is very similar to writing a detec-
tion plugin or a preprocessor. In order to demonstrate the process of designing and writing a
Snort output plugin we will run through the implementation of a GTK output plugin for
Snort.

GTK+
The Gimp Tool Kit (GTK+) is a free multiplatform library that can be used to create graphical
user interfaces (GUIs). GTK+ was originally developed for use by the GIMP (Gnu Image
Manipulation Program) tool, which is an open source graphics manipulation program of similar
design to Adobe Photoshop. GIMP is available from http://www.gimp.org/ and supports Linux,
Windows, and Mac OS X.

GTK+ is based on a combination of three libraries.These are shown in Table 9.2.

Table 9.2 GTK+ Libraries

Library Description

Glib The Glib library provides a low level core of functions ranging from
threads and event loops to C structure handling and a functional
object system.

Pango Pango is a library designed to cater to the rendering and layout of
text. It is especially designed around internationalization.

ATK ATK is used to provide accessibility options to the interface. This can
be in the form of magnification, readers, and other input devices.

GTK+ supports a variety of languages such as C, C++, C#, Perl, and many others. In our
case the C interface is used as this is the language of choice for Snort.The source and binaries
for GTK+ can be downloaded from www.gtk.org.

Plugins and Preprocessors • Chapter 9 243

332_NSE_09.qxd 7/14/05 4:15 PM Page 243

An Interface for Snort
The output plugin shown in this section implements a GTK interface for which the Snort
engine can output alerts in real time.Another way this problem could have been solved is to
create a script that constantly reads and parses the Snort alert file; however this wouldn’t have
made a very good output plugin, now would it?

In order to keep the plugin simple for the purposes of this writing, a very limited function-
ality has been provided by the interface.The interface will simply present the source and destina-
tion IP addresses as well as the name of the alert. Next to each alert a checkbox will be
provided. Once alerts are selected they can be acknowledged by clicking a button at the bottom
of the form.

When GTK+ is initialized the program sits in a loop waiting for GUI events. Because this
behavior would result in Snort being unable to process any more alerts, we need to use threads
in order to process GUI events and allow Snort to raise new events at the same time.

For the sake of keeping code small, the POSIX thread interface was used.This means that
this plugin will only compile successfully on a POSIX-compliant operating system such as Linux
or Mac OS X. In order to improve the portability of this code, #define statements could be used
to utilize the appropriate thread implementation for the desired operating system.

Glade
To design the GUI, a tool called Glade was used. Glade is a free user interface builder developed
by members of the Gnome team. It allows a user to simply drag and drop widgets onto the form
and instantly create a user interface.The tool can be downloaded for free from the Gnome Web
site, http://glade.gnome.org, and is easy to install and set up.An excellent tutorial for beginners
can be found at http://writelinux.com/glade/index.php.

To begin designing our interface, the window icon (top left on the Palette toolbar) is
selected to create our new window.A vbox is created in order to position our widgets correctly
inside the window. We then simply drag the required widgets onto the window, change their
properties, and save our changes. Figure 9.1 shows the Glade interface at work creating our
Snort GUI.

244 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:15 PM Page 244

Figure 9.1 Using a Glade Interface to Create a Snort GUI

Once the design is finished there are two options. We can either use the Glade program to
generate C source code, or import the generated XML from within the program using a library
called libglade.

To contain this plugin in a single file, we will generate C source and cut and paste this into
our program. We do this by clicking Build on the toolbar. We then cut and paste the generated
code into it’s own function, create_windowSnort(), in our Snort plugin.The generated code is
shown in the following example:

GtkWidget* create_windowSnort(void)

{

GtkWidget *vboxSnort;

GtkWidget *menubarSnort;

GtkWidget *menuFile;

GtkWidget *menuFile_menu;

GtkWidget *menuQuit;

GtkWidget *scrolledwindowAlerts;

GtkWidget *listviewAlerts;

GtkWidget *hboxControls;

GtkWidget *hbuttonboxAck;

GtkWidget *buttonAck;

GtkWidget *alignmentAck;

GtkWidget *hboxAck;

GtkWidget *imageAck;

GtkWidget *labelAck;

Plugins and Preprocessors • Chapter 9 245

332_NSE_09.qxd 7/14/05 4:15 PM Page 245

GtkAccelGroup *accel_group;

GtkCellRenderer *columnAck;

GtkCellRenderer *columnSrc;

GtkCellRenderer *columnDst;

GtkCellRenderer *columnAlert;

accel_group = gtk_accel_group_new();

windowSnort = gtk_window_new(GTK_WINDOW_TOPLEVEL);

gtk_window_set_title(GTK_WINDOW(windowSnort), "Snort-GTK");

gtk_window_set_default_size(GTK_WINDOW(windowSnort), 600, 300);

vboxSnort = gtk_vbox_new(FALSE, 0);

gtk_widget_show(vboxSnort);

gtk_container_add(GTK_CONTAINER(windowSnort), vboxSnort);

scrolledwindowAlerts = gtk_scrolled_window_new(NULL, NULL);

gtk_widget_show(scrolledwindowAlerts);

gtk_box_pack_start(GTK_BOX(vboxSnort), scrolledwindowAlerts, TRUE, TRUE, 0);

gtk_scrolled_window_set_policy(GTK_SCROLLED_WINDOW(scrolledwindowAlerts),

GTK_POLICY_NEVER, GTK_POLICY_AUTOMATIC);

gtk_scrolled_window_set_shadow_type(GTK_SCROLLED_WINDOW(scrolledwindowAlerts),

GTK_SHADOW_IN);

listviewAlerts = gtk_tree_view_new();

columnAck = gtk_cell_renderer_toggle_new();

g_object_set(columnAck, "activatable", TRUE, NULL);

gtk_tree_view_insert_column_with_attributes(GTK_TREE_VIEW(listviewAlerts), -1,

"Ack", columnAck, "active", COL_ACK, NULL);

columnSrc = gtk_cell_renderer_text_new();

gtk_tree_view_insert_column_with_attributes(GTK_TREE_VIEW(listviewAlerts), -1,

"Source", columnSrc, "text", COL_SRC, NULL);

columnDst = gtk_cell_renderer_text_new();

gtk_tree_view_insert_column_with_attributes(GTK_TREE_VIEW(listviewAlerts), -1,

"Destination", columnDst, "text", COL_DST, NULL);

columnAlert = gtk_cell_renderer_text_new();

gtk_tree_view_insert_column_with_attributes(GTK_TREE_VIEW(listviewAlerts), -1,

"Alert", columnAlert, "text", COL_ALERT, NULL);

storeAlerts = gtk_list_store_new(4, G_TYPE_BOOLEAN, G_TYPE_STRING, G_TYPE_STRING,

G_TYPE_STRING);

gtk_tree_view_set_model(GTK_TREE_VIEW(listviewAlerts),

GTK_TREE_MODEL(storeAlerts));

gtk_widget_show(listviewAlerts);

gtk_container_add(GTK_CONTAINER(scrolledwindowAlerts), listviewAlerts);

gtk_tree_view_set_rules_hint(GTK_TREE_VIEW(listviewAlerts), TRUE);

hboxControls = gtk_hbox_new(FALSE, 0);

gtk_widget_show(hboxControls);

gtk_box_pack_start(GTK_BOX(vboxSnort), hboxControls, FALSE, TRUE, 0);

gtk_container_set_border_width(GTK_CONTAINER(hboxControls), 5);

hbuttonboxAck = gtk_hbutton_box_new();

gtk_widget_show(hbuttonboxAck);

gtk_box_pack_start(GTK_BOX(hboxControls), hbuttonboxAck, FALSE, FALSE, 0);

246 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:15 PM Page 246

buttonAck = gtk_button_new();

gtk_widget_show(buttonAck);

gtk_container_add(GTK_CONTAINER(hbuttonboxAck), buttonAck);

GTK_WIDGET_SET_FLAGS(buttonAck, GTK_CAN_DEFAULT);

alignmentAck = gtk_alignment_new(0.5, 0.5, 0, 0);

gtk_widget_show(alignmentAck);

gtk_container_add(GTK_CONTAINER(buttonAck), alignmentAck);

hboxAck = gtk_hbox_new(FALSE, 2);

gtk_widget_show(hboxAck);

gtk_container_add(GTK_CONTAINER(alignmentAck), hboxAck);

hboxAck = gtk_hbox_new(FALSE, 2);

gtk_widget_show(hboxAck);

gtk_container_add(GTK_CONTAINER(alignmentAck), hboxAck);

imageAck = gtk_image_new_from_stock("gtk-apply", GTK_ICON_SIZE_BUTTON);

gtk_widget_show(imageAck);

gtk_box_pack_start(GTK_BOX(hboxAck), imageAck, FALSE, FALSE, 0);

labelAck = gtk_label_new_with_mnemonic("Acknowledge");

gtk_widget_show(labelAck);

gtk_box_pack_start(GTK_BOX(hboxAck), labelAck, FALSE, FALSE, 0);

g_signal_connect((gpointer) columnAck, "toggled",

G_CALLBACK(on_columnAck_toggled), NULL);

g_signal_connect((gpointer) buttonAck, "clicked",

G_CALLBACK(on_buttonAck_clicked), NULL);

g_object_set_data(G_OBJECT(windowSnort), "windowSnort", windowSnort);

g_object_set_data_full(G_OBJECT(windowSnort), "vboxSnort",

gtk_widget_ref(vboxSnort), (GDestroyNotify) gtk_widget_unref);

g_object_set_data_full(G_OBJECT(windowSnort), "scrolledwindowAlerts",

gtk_widget_ref(scrolledwindowAlerts), (GDestroyNotify) gtk_widget_unref);

g_object_set_data_full(G_OBJECT(windowSnort), "listviewAlerts",

gtk_widget_ref(listviewAlerts), (GDestroyNotify) gtk_widget_unref);

g_object_set_data_full(G_OBJECT(windowSnort), "hboxControls",

gtk_widget_ref(hboxControls), (GDestroyNotify) gtk_widget_unref);

g_object_set_data_full(G_OBJECT(windowSnort), "hbuttonboxAck",

gtk_widget_ref(hbuttonboxAck), (GDestroyNotify) gtk_widget_unref);

g_object_set_data_full(G_OBJECT(windowSnort), "buttonAck",

gtk_widget_ref(buttonAck), (GDestroyNotify) gtk_widget_unref);

g_object_set_data_full(G_OBJECT(windowSnort), "alignmentAck",

gtk_widget_ref(alignmentAck), (GDestroyNotify) gtk_widget_unref);

g_object_set_data_full(G_OBJECT(windowSnort), "hboxAck",

gtk_widget_ref(hboxAck), (GDestroyNotify) gtk_widget_unref);

g_object_set_data_full(G_OBJECT(windowSnort), "imageAck",

gtk_widget_ref(imageAck), (GDestroyNotify) gtk_widget_unref);

g_object_set_data_full(G_OBJECT(windowSnort), "labelAck",

gtk_widget_ref(labelAck), (GDestroyNotify) gtk_widget_unref);

gtk_window_add_accel_group(GTK_WINDOW(windowSnort), accel_group);

Plugins and Preprocessors • Chapter 9 247

332_NSE_09.qxd 7/14/05 4:15 PM Page 247

return windowSnort;

}

In this code we can see each of the GTKWidgets are instantiated. Following this the appro-
priate GTK+ functions are called to set the properties of the widgets. Finally, the widgets are
displayed.

We also take some of the widgets from the code and make them global.This way all the
functions in our program (regardless of thread) can access them.This allows our alerts widget to
be updated from a separate thread.

GtkWidget *windowSnort; // The main window.

GtkListStore *storeAlerts; // Global list store for alerts.

GtkTreeIter iter; // Iterator

GtkWidget *text; // Global textbox.

Function Layout
To use our interface, we first need to set up our plugin and register it with the Snort engine to
accept events.The process of setting up an output plugin is much the same as for the other types
of plugins.The plugin’s setup function must be appended to the src/plugbase.c file.The output
plugin’s setup function is entered into the InitPlugins() function in the same way as our detec-
tion plugin.

The modified InitPlugins() function, with our setup function AlertGTKSetup(), is shown
here:

void InitPlugIns()

{

if(!pv.quiet_flag)

{

LogMessage("Initializing Plug-ins!\n");

}

SetupPatternMatch();

SetupTCPFlagCheck();

SetupIcmpTypeCheck();

SetupIcmpCodeCheck();

SetupTtlCheck();

SetupIpIdCheck();

SetupTcpAckCheck();

SetupTcpSeqCheck();

SetupDsizeCheck();

SetupIpOptionCheck();

SetupRpcCheck();

SetupIcmpIdCheck();

SetupIcmpSeqCheck();

SetupSession();

SetupIpTosCheck();

SetupFragBits();

SetupFragOffset();

SetupTcpWinCheck();

SetupIpProto();

248 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:15 PM Page 248

SetupIpSameCheck();

SetupClientServer();

SetupByteTest();

SetupByteJump();

SetupIsDataAt();

SetupPcre();

SetupFlowBits();

SetupAsn1();

AlertGTKSetup();

#ifdef ENABLE_RESPONSE

SetupReact();

SetupRespond();

#endif

}

When Snort starts up, it calls this function, which in turn calls the setup functions for each
of the Snort plugins.

AlertGTKSetup()
When the AlertGTKSetup() function is called, it registers the appropriate keyword to be found
in the snort.conf file. It does this using the RegisterOutputPlugin() function.The keyword that
is associated is passed as the first argument to this function. We use the keyword alert_gtk.The
third argument to this function is used to provide the callback function to call when the key-
word is found. We associate the AlertGTKInit() function with our keyword.

void AlertGTKSetup(void)

{

RegisterOutputPlugin("alert_gtk", NT_OUTPUT_ALERT, AlertGTKInit);

DEBUG_WRAP(DebugMessage(DEBUG_INIT,"Output plugin: AlertGTK is setup...\n"););

}

A debug statement is also inserted into this function to make testing easier.

AlertGTKInit
Once the alert_gtk keyword is found in the snort.conf file, the AlertGTKInit() function is called,
and any arguments that follow the keyword are passed in as the u_char *args parameter. In our
case no arguments are needed; therefore, the args parameter is ignored. In most cases the args
parameter would be passed to a parsing function as seen in the other plugins.

Our AlertGTKInit() function begins by declaring a new pthread. It then uses a debug mes-
sage to announce that the initialisation is occurring. Our alert function (AlertGTK) is added to
our list of output functions. When a new event is created Snort runs through this list and passes
the event to each function.

Our pthread is then created.The startinterface() function is used in the new thread in order
to create the GTK+ interface. Here is the code listing for the AlertGTKInit() function:

Plugins and Preprocessors • Chapter 9 249

332_NSE_09.qxd 7/14/05 4:15 PM Page 249

void AlertGTKInit(u_char *args)

{

pthread_t thread;

pthread_attr_t attr;

DEBUG_WRAP(DebugMessage(DEBUG_INIT, "Output: AlertGTK Initialized\n"););

pv.alert_plugin_active = 1;

/* Set the preprocessor function into the function list */

DEBUG_WRAP(DebugMessage(DEBUG_INIT,"Linking AlertGTK functions to call

lists...\n"););

AddFuncToOutputList(AlertGTK, NT_OUTPUT_ALERT, NULL);

/* Initialize the threads */

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

if(pthread_create(&thread,&attr,&startinterface,NULL)) {

DEBUG_WRAP(DebugMessage(DEBUG_INIT,"An error has occured while creating a

pthread.\n"););

exit(EXIT_FAILURE);

}

}

At this stage, the startinterface() function starts up in a new thread.

void startinterface(void)

{

GtkWidget *windowSnort;

gtk_set_locale();

gtk_init(NULL, NULL);

windowSnort = create_windowSnort();

g_signal_connect (G_OBJECT (windowSnort), "delete_event", G_CALLBACK (destroy),

NULL);

gtk_widget_show(windowSnort);

gtk_main();

pthread_exit(EXIT_SUCCESS);

}

This function is the main body of our newly created thread. It first instantiates the
windowSnort widget, calling the create_windowSnort() function containing the code that was
cut and pasted from our newly created form from Glade.

It then connects the signal that occurs when the window is closed, using the appropriate
destroy function, destroy().The gtk_widget_show() function is used to display the window on the
screen before finally the gtk_main() function is called.The gtk_main() function sits and blocks
until it receives events from the user or a signal is caught.

250 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:15 PM Page 250

When a input event occurs, the gtk_main() function passes execution to the appropriate
handler function. Once the handler has finished, execution resumes in this function and it con-
tinues to block.

AlertGTK
The AlertGTK() function is registered by the AlertGTKInit() function to be called by Snort
when an alert is added to the queue.This function call occurs in the originating thread, rather
than in the newly created GTK+ pthread.

An event struct is passed to this function and is parsed and passed to the insertAlert() func-
tion.This function contains the code necessary to add the alert to the GTK+ widgets on the
window.

void AlertGTK(Packet *p, char *msg, void *arg, Event *event)

{

char src[17],dst[17];

snprintf(src,16,"%s",inet_ntoa(p->iph->ip_src));

snprintf(dst,16,"%s",inet_ntoa(p->iph->ip_dst));

insertAlert(src, dst, msg);

}

This insertAlert() function simply uses the gtk_list_store_append() function and the
gtk_list_store_set() function to add a new element to the global storeAlerts widget.This widget
is redrawn in the gtk_main() loop, displaying the alert to the user.

gboolean insertAlert(char *dst, char *src, char *alert)

{

gtk_list_store_append(storeAlerts, &iter);

gtk_list_store_set(storeAlerts, &iter, COL_ACK, FALSE, COL_SRC, dst, COL_DST, src,

COL_ALERT, alert, -1);

return TRUE;

}

Exiting
When a user exits the main window, the delete_event is thrown, and the handler destroy() is called,
due to the signal association which occurred earlier in the startinterface() function. Because our
alerts are only stored in volatile memory (and the Snort alert file or database if needed) accidentally
closing the window might prove to be a bad thing for our user. Because of this our destroy() func-
tion prompts the user to confirm the quit action before closing anything down.

The destroy() function begins by creating a new dialog box.This dialog box contains the
message “Are you sure you want to quit?” and the GTK_BUTTONS_YES_NO Yes and No
buttons. When the dialog box returns the selection, the function tests it. If the user selects the
No button the function simply returns to the calling function in order to resume the gtk_main()
loop. However, if the Yes button is clicked, the function begins the (evil) process of closing
down Snort.This function is shown in the following example:

Plugins and Preprocessors • Chapter 9 251

332_NSE_09.qxd 7/14/05 4:15 PM Page 251

static void destroy(GtkWidget *widget, gpointer data)

{

GtkWidget *dialog;

GtkWidget *msgbox = gtk_window_new (GTK_WINDOW_TOPLEVEL);;

gint choice;

dialog = gtk_message_dialog_new (msgbox,

GTK_DIALOG_DESTROY_WITH_PARENT,

GTK_MESSAGE_QUESTION,

GTK_BUTTONS_YES_NO,

"Are you sure you want to quit?"

);

choice = gtk_dialog_run (GTK_DIALOG (dialog));

if(choice == GTK_RESPONSE_YES) {

gtk_widget_destroy (dialog);

gtk_main_quit ();

gtk_thread = pthread_self();

atexit(exitgracefully); // lies

kill(getpid(),SIGINT);

exit(EXIT_SUCCESS);

}

gtk_widget_hide (dialog);

return;

}

Because the destroy() function is called in the second thread, exit()’ing this thread will leave
the Snort thread running and unaware that anything has been changed. Because of this we need
to either modify the Snort source or perform an evil thread closing dance. Because we are
implementing this as a Snort plugin rather than a patch to Snort we use the latter method.

Our function retrieves the number of the current thread and stores it in the global
gtk_thread variable:

pthread_t gtk_thread; // Used by ugly exit hack.

It then uses the atexit() function to associate a callback function that will be called when the
program is exit()ing.The associated callback function is the exitgracefully() function.

Because Snort normally expects a user to press Ctrl + C to exit, a signal handler is set up to
catch the SIGINT signal using the signal() function. In this handler function, Snort cleans up
after itself to shutdown safely. Because we want Snort to exit quickly but safely we use the kill()
function to send a SIGINT to our own process.This causes Snort to branch execution to its
signal handler and clean up appropriately after itself.

After this happens Snort tries to exit cleanly; however we have associated an atexit() handler.
Execution is then passed to this handler.

void exitgracefully()

{

pthread_kill(gtk_thread,SIGKILL); // EVIL HACK

}

Finally, inside our exitgracefully() function, the stored thread number is retrieved and a
SIGKILL (9) signal is sent to our thread, causing it to forcefully exit.Although not great, this is

252 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:15 PM Page 252

safe at this stage because we have cleaned up appropriately after ourselves.This leaves the Snort
process terminated entirely.

Setting Up
Now that our plugin is complete, all that is left is to compile and run Snort to test it. In order
for the GTK+ library to be included with Snort, we need to set environment variables used by
the ./configure utility.

The small script in the next example can be used to work out the appropriate libraries
needed, set the environment variables, and run the ./configure utility:

#!/bin/sh

export LDFLAGS="`pkg-config --cflags --libs gtk+-2.0` -pthread"

export CFLAGS=`pkg-config --cflags gtk+-2.0`-ggdb

./configure

Once this script has finished running, all that is left is to compile Snort as normal using the
make command, followed by make install.

Once Snort is built correctly, the appropriate initialization keyword must be added to the
snort.conf file. No options are required for our plugin, so simply using the keywords shown in
the following example will be sufficient to initiate the plugin:

output alert_gtk

We can now start Snort in the usual method and (assuming X11 and GTK+ are set up cor-
rectly on the target system) our shiny new interface will appear. Figure 9.2 shows our interface
running with some generated alerts.

Figure 9.2 The Finished Interface

Plugins and Preprocessors • Chapter 9 253

332_NSE_09.qxd 7/14/05 4:15 PM Page 253

Miscellaneous
The snort.conf syntax supports the ruletype keyword.This keyword allows the user to group sets
of output plugins together and provide a name and classification for the group.This classification
can be used in Snort rules in the type field (see Chapter 8).The syntax of the ruletype keyword
is similar to that of C and is as follows:

ruletype type_name

{

type <type>

output <output plugin>

…

}

In the case of our output plugin in the previous example, we might define a ruletype that
goes straight to the GUI and also logs to a database.To accomplish this we could use the fol-
lowing:

ruletype guidb_alert

{

type alert

output gtk_alert

output database: log, mysql, user=myuser password=mypass dbname=snort host=sqlserver

}

Final Touches
Although the Snort API provides an easy way to jump right in and start building your own
custom Snort plugins for your every need, you have to be careful! A lot of the code you write in
a Snort plugin is going to be directly accessible remotely.This means that any mistakes you make
while coding these plugins can increase the chances of a remote compromise of your Snort IDS
sensor. Not to mention that a badly implemented preprocessor can easily bring Snort to a
grinding halt. Don’t let this scare you from writing your plugin, but it might be a useful exercise
to have other people auditing the source of your plugins before implementing them on a pro-
duction site.

254 Chapter 9 • Plugins and Preprocessors

332_NSE_09.qxd 7/14/05 4:15 PM Page 254

Modifying Snort

Chapter 10

255

Solutions in this chapter:

■ Snort-AV

■ Snort-Wireless

332_NSE_10.qxd 7/18/05 3:08 PM Page 255

In This Toolbox
In this chapter, you will learn how to modify the Snort source code to solve an otherwise diffi-
cult task.You will also become familiar with various open source projects that build on Snort to
achieve their functionality, and the limitations of the Snort engine.

Introduction
There are many reasons why you would want to modify the Snort source. Perhaps you want to
add new functionality to Snort, or you know that the Snort engine can provide an excellent
building block as a base system in almost any kind of packet-sniffing utility. Whatever the reason,
this chapter provides you with enough background knowledge to get you well on your way
with your new project.

Currently, many projects use the Snort engine to get the job done. During the course of this
chapter, we will look at two different variations to the source:

■ Snort-AV An active verification modification for Snort.

■ Snort-Wireless A wireless packet sniffer and IDS similar to the AirDefense

product.

Snort-AV
The Snort-AV project is an open source implementation of the concept of active verification using
the Snort engine. Before we look at the implementation, let’s discuss the concept of active verifi-
cation.To achieve its functionality, the Snort-AV project modifies the core Snort source func-
tions and changes their behavior.

The Snort-AV package is available for a free download from www.cs.ucsb.edu/~wkr/pro-
jects/ids_alert_verification/.

Active Verification
The concept of active verification is relatively new to the IDS world. One of the biggest prob-
lems an IDS faces is the vast quantity of false positives it receives after being plugged in to an
active network.

A false positive is the condition in which an IDS generates an event for a condition that
never exists in reality.

In the case of a home network, false positives can be annoying; however, for a large corpo-
rate company, the time spent by analysts investigating and validating false positives can be devas-
tating in terms of time and money.

Active verification is a concept that attempts to solve the problem of false positives in an
automated way. It sets out to emulate as much of the IDS analyst’s role in investigating the alert
as possible, before actually generating an alert.

To do so, an extra step is taken after the IDS processes a packet and discovers a match for a
particular signature.At this stage, typically, the IDS would generate an alert; however, with active

256 Chapter 10 • Modifying Snort

332_NSE_10.qxd 7/18/05 3:08 PM Page 256

verification, the IDS will follow up the alert with a vulnerability scan of the particular service on
which the alert was generated.This scan is performed using signatures that correlate with the
actual IDS signature.This way, if the scan determines that the service being attacked is not vul-
nerable to the particular attack, an alert is not generated.

NOTE
The active verification strategy does not help reduce false negatives, where a real
attack happens but is not picked up by the IDS.

Figure 10.1 shows the order in which this process happens.

Figure 10.1 Active Verification

1. The IDS sensor detects the attacker sending malicious packets to the server.

2. The IDS sensor sends a similar attack to verify the existence of the vulnerability.

3. The sensor responds to the attack, the content of which is used to determine if the
original attack was successful.

This method can save a company time and resources investigating each alert by hand.
However, in many cases, performing a vulnerability scan of a service can be risky, and there is a
risk of crashing the service. For this reason, this method is often not implemented on major cor-
porate networks.

Snort-AV- Implementation Summary
The Snort-AV project implements active verification using the Snort source as a base.To verify
Snort alerts when they occur, NASL (Nessus Attack Scripting Language) scripts, which are dis-
cussed in Chapter 1,“The Inner Workings of NASL (Nessus Attack Scripting Language),” are
used to perform follow-up scans for the targeted vulnerability.

To correlate the Snort rules with the NASL plugins, the CVE ID (Common Vulnerabilities
and Exposures) associated with the vulnerability targeted by both the NASL plugin and the
Snort rule is used.

Modifying Snort • Chapter 10 257

332_NSE_10.qxd 7/18/05 3:08 PM Page 257

At the time of writing, the Snort-AV patch is implemented as a .diff file.The file
contains a list of additions and removals from the Snort source tree, which are indicated
by a “+” or “-” character starting each line.The Snort-AV patch is available for only the
snort-2.1.3 source tree.

To install Snort-AV, simply download the .diff .gz file from the Web site and the
snort-2.1.3 source tree from www.snort.org.

Once the tree has been extracted, the command zcat snort-av-2.1.3-
0.9.6.diff.gz | patch -p1 can be used in the Snort directory to apply the patch.

Master Craftsman

Creating Patches with diff
Once you have patched a source tree, you can use the GNU diff utility to create
a patch that can be reapplied to the fresh source tree.

To create a diff patch for a source tree, you need to have two directories.
One directory must contain the original source, and the other must contain the
modified source.

Once this is done, the following UNIX command can be used to create
the diff patch:

diff -uNr <original source> <modified source> > <diff file>

The “–u” flag is used to output the diff file in unified format. The “-N”
flag means that diff will take into account new or removed files. The “-r” flag
causes diff to recursively spider the source tree for changes.

Snort-AV Initialization
We will now run through the changes that Snort-AV makes to the Snort source to ini-
tialize itself during Snort’s startup process. Each change is grouped according to the file in
which it is contained.

Snort.h
The first changes we will look at occur in the snort.h file.Two new attributes are
appended to the PV struct, which is used to store arguments and settings.These attributes
are used to store the location of the alert verification scripts and the status of alert verifi-
cation (enabled/disabled).

int alert_verification;

char *verify_script_dir;

The PacketCount struct is also modified to keep track of the number of verified,
unverifiable, and unverified alerts.These values are appended to the struct in the form of
the following variables:

258 Chapter 10 • Modifying Snort

332_NSE_10.qxd 7/18/05 3:08 PM Page 258

/* Alert verification stats */

u_long verified;

u_long unverifiable;

u_long unverified;

Snort.c
The snort.c file contains several changes after the diff patch is applied.This file (as seen in
Chapter 7,“The Inner Workings of Snort”) contains a large body of the Snort initialization
code.

The first change to the file is performed on the ShowUsage() function.This is merely a cos-
metic change to present the new command-line options to the user.

The following example shows the newly added command-line options:

FPUTS_UNIX (" -a <mode> Enable alert verification (mode = mark|suppress)\n");

FPUTS_UNIX (" mark : Tag alerts with verification status\n");

FPUTS_UNIX (" suppress: Suppress unverified alerts\n");

FPUTS_UNIX (" -H <num> Number of verification threads\n");

FPUTS_UNIX (" -K <secs> Set alert verification cache timeout to <secs>\n");

FPUTS_UNIX (" -x <dir> Specify directory containing verification scripts\n");

For these command-line options to take effect, the ParseCmdLine() function is also modi-
fied.The appropriate argument values are added to the valid_options string.

The following example shows the new valid_options string with the Snort active verifica-
tion related options appended.

valid_options = "?a:A:bB:c:CdDefF:g:h:H:i:Ik:K:l:L:m:n:NoOpP:qr:R:sS:t:Tu:UvVwx:Xyz";

This string is used to indicate to the getopts() function called by Snort, which options
should be provided on the command line when it is executed.The “:” character is used to indi-
cate that the flag requires an additional parameter to be passed along with it on the command
line. For example, the “a:” part of the string is used to indicate that the –a flag can be used and
should be followed by the “mode” parameter.

In addition, in the ParseCmdLine() function, handlers are created to set the appropriate vari-
ables in the PV struct to indicate alert verification settings.

case 'a': /* enable alert verification */

if (!strcasecmp(optarg, "mark"))

pv.alert_verification = VERIFICATION_MODE_MARK;

else if (!strcasecmp(optarg, "suppress"))

pv.alert_verification = VERIFICATION_MODE_SUPPRESS;

else

FatalError("Unrecognized alert verification mode, supported modes

are 'mark' or 'suppress'\n");

break;

case 'H':

if (!optarg)

FatalError("Verification thread pool size needs a numeric

argument.\n");

numVerificationThreads = strtoul(optarg, NULL, 10);

break;

Modifying Snort • Chapter 10 259

332_NSE_10.qxd 7/18/05 3:08 PM Page 259

case 'K': /* verification cache timeout */

vcacheTimeout = strtoul(optarg, NULL, 10);

break;

case 'x': /* specify verification script directory */

if ((pv.verify_script_dir = strdup(optarg)) == NULL)

FatalError("Unable to assign verification script directory\n");

if (access(pv.verify_script_dir, 2) != 0)

FatalError("Unable to access verification script directory (%s)\n",

pv.verify_script_dir);

break;

Finally, a call to the InitializeAlertVerification() function is added to the SnortMain() func-
tion to initialize the alert verification system during Snort startup.An equivalent call to the
HaltAlertVerification() function is added to the CleanExit() function to shut down the alert ver-
ification system when Snort is terminated.

Parser.c
The parser.c file is modified to set up the structures associated with each rule so that they hold
information pertaining to active verification.

The code in the following example is added to the ParseRuleOptions() function.

else if (!strcasecmp(option_name, "verify"))

{

ONE_CHECK(one_verify, opts[0]);

if (num_opts != 2)

FatalError("\n%s(%d) => Malformed verify keyword\n",

file_name, file_line);

if (!strcasecmp(opts[1], "true")) {

otn_tmp->sigInfo.doVerify = 1;

} else if (!strcasecmp(opts[1], "false")) {

otn_tmp->sigInfo.doVerify = 0;

} else {

FatalError("\n%s(%d) => verify keyword requires true/false argument\n",

file_name, file_line);

}

}

The preceding code is used to check for the verify keyword in a rule followed by a true or
false value reflecting whether to verify the rule. If the value is set to true, the Siginfo data in the
OptTreeNode struct is modified to set the doVerify attribute to 1 appropriately; otherwise, the
attribute is set to 0.

260 Chapter 10 • Modifying Snort

332_NSE_10.qxd 7/18/05 3:08 PM Page 260

NOTE
The ONE_CHECK macro is used inside the parser.c file to make sure that the option
specified in a rule is provided only once. It does this using a temporary variable that
is passed to the ONE_CHECK macro. The macro increments this, and tests to make
sure the count has not gone above 1.

#define ONE_CHECK(_onevar,xxx) \

(_onevar)++; \
if ((_onevar) > 1) \
{ \

FatalError("%s(%d) => Only one '%s' option per rule\n",\
file_name, file_line, xxx); \

}

Signature.h
The signature.h file has only a single change made to it. In this file, an entry is added to the
SigInfo structure, which holds information about a given signature, to test if the signature should
be verified.The modified structure is shown here:

typedef struct _SigInfo

{

u_int32_t generator;

u_int32_t id;

u_int32_t rev;

u_int32_t class_id;

ClassType *classType;

u_int32_t priority;

u_int32_t doVerify;

char *message;

ReferenceNode *refs;

} SigInfo;

Detect.c
The detect.c file holds a large portion of the Snort-AV patches’ functionality.The following
headers are included by this file:

#include <nessus/libnessus.h>

#include <nessus/nessus-devel.h>

#include <nessus/nasl.h>

These headers are added in order to use the libnasl functionality to perform the verification.
As we saw earlier, during the initialization of Snort the InitializeAlertVerification() function

is called.This function is defined here in detect.c.
The function begins by testing the alert_verification attribute of the PV struct to determine

what mode the user has selected.

Modifying Snort • Chapter 10 261

332_NSE_10.qxd 7/18/05 3:08 PM Page 261

void

InitializeAlertVerification(void)

{

int i;

char *mode = NULL;

if (pv.alert_verification == VERIFICATION_MODE_NONE)

return;

verify = 1;

switch (pv.alert_verification) {

case VERIFICATION_MODE_MARK:

mode = "mark";

break;

case VERIFICATION_MODE_SUPPRESS:

mode = "suppression";

break;

default:

FatalError("Unknown verification mode '%d'\n", pv.alert_verification);

}

LogMessage("Initializing alert verification v" VERIFICATION_VERSION

" [%s mode, %d verification threads]\n", mode, numVerificationThreads);

/* Check for verification script directory */

if (!pv.verify_script_dir && (pv.verify_script_dir = (char *)

VarGetNonFatal(VSCRIPT_DIR)) == NULL)

FatalError("Must specify a verification script directory with '-x <dir>' or by

setting " VSCRIPT_DIR "\n");

/* Initialize statistics */

if (pthread_mutex_init(&vstats.lock, NULL))

FatalError("Unable to initialize verification statistics lock\n");

/* Initialize verification cache buckets */

for (i = 0; i < VCACHE_SIZE; i++) {

vcache[i].head = NULL;

pthread_mutex_init(&vcache[i].lock, NULL);

}

/* Initialize unverified alert queue */

if ((unverifiedAlerts = CreateAlertQueue()) == NULL)

FatalError("Unable to initialize unverified alert queue\n");

/* Initialize verified alert queue */

if ((verifiedAlerts = CreateAlertQueue()) == NULL)

FatalError("Unable to initialize verified alert queue\n");

/* Initialize queued alerts condition */

if (pthread_mutex_init(&queuedAlertsLock, NULL))

262 Chapter 10 • Modifying Snort

332_NSE_10.qxd 7/18/05 3:08 PM Page 262

FatalError("Unable to initialize queued alerts condition\n");

if (pthread_cond_init(&queuedAlerts, NULL))

FatalError("Unable to initialize queued alerts condition\n");

/* Initialize verification threads */

if ((verificationThreads = malloc(sizeof(*verificationThreads) * numVerificationThreads))

== NULL)

FatalError("Unable to allocate verification thread array\n");

for (i = 0; i < numVerificationThreads; i++) {

if (pthread_create(&verificationThreads[i], NULL, VerifyAlerts, NULL))

FatalError("Unable to create verification thread %d\n", i);

}

}

This function uses the CreateAlertQueue() function to create a set of AlertQueue structures
to hold each of the events that need to be verified, and a list of verified alerts.The AlertQueue
structure contains an AlertNode pointer to the start of a linked list of AlertNodes.The two
structures used to create this alert queue are shown in the following example, and are both
defined in the src/detect.h file.

typedef struct _AlertQueue

{

AlertNode *head;

pthread_mutex_t lock;

} AlertQueue;

typedef struct _AlertNode

{

struct _AlertNode *next;

Packet *pkt;

char *msg;

ListHead *head;

Event event;

OptTreeNode *otn;

} AlertNode;

The Snort-AV project uses an array of pthreads to perform multiple verifications at the same
time.The number of threads used is passed to Snort via the “-H” option.This value is stored in
the numVerificationThreads variable.The code in the following example is used by the
InitializeAlertVerification() function to allocate space for each of the threads and initialize them.

if ((verificationThreads = malloc(sizeof(*verificationThreads) * numVerificationThreads))

== NULL)

FatalError("Unable to allocate verification thread array\n");

for (i = 0; i < numVerificationThreads; i++) {

if (pthread_create(&verificationThreads[i], NULL, VerifyAlerts, NULL))

FatalError("Unable to create verification thread %d\n", i);

}

Modifying Snort • Chapter 10 263

332_NSE_10.qxd 7/18/05 3:08 PM Page 263

The pthread_create() function is used to create a new thread and call the VerifyAlerts() func-
tion when the thread starts.This function uses the pthread_cond_wait() function to wait for the
engine to generate an alert.This is used to wait for a signal sent by the pthread_cond_signal()
function.The signal in this case is the “queuedAlerts” signal generated during event generation.
This function operates as the “main loop” for the Snort-AV functionality.

Snort-AV Event Generation
Once Snort-AV has been set up and the appropriate data structs are populated for each of the
rules, the next step is to perform the verification.

To catch Snort events and determine if they require verification, Snort-AV needs to be able
to catch events after they have been generated.The GenerateSnortEvent() function is located in
the src/event_wrapper.c file within the Snort source, and is used to add events to the event
queue to be processed by the output plugins.

The code for this function begins by creating a new Event structure. It then populates this
event using the SetEvent() function and passes it to the CallAlertFuncs() function for processing
by the output plugins.

u_int32_t GenerateSnortEvent(Packet *p,

u_int32_t gen_id,

u_int32_t sig_id,

u_int32_t sig_rev,

u_int32_t classification,

u_int32_t priority,

char *msg)

{

Event event;

if(!msg)

{

return 0;

}

SetEvent(&event, gen_id, sig_id, sig_rev, classification, priority, 0);

CallAlertFuncs(p, msg, NULL, &event);

Here, Snort-AV performs its interception of the event.The CallAlertFuncs() code stored in
the src/detect.c file is renamed to the DoCallAlertFuncs() function. Snort-AV implements its
own CallAlertFuncs() function to process the event. In this way, when an event is generated, it is
passed directly to Snort-AV code to be processed.

The code for this function first checks to see if the active verification mode selected by the
invoking user requires action. If the alert_verification attribute of the PV struct is set to VERI-
FICATION_MODE_NONE during initialization (the user selected to disable active verifica-
tion.), the old (renamed) function is called to skip the process of verifying the event.

264 Chapter 10 • Modifying Snort

332_NSE_10.qxd 7/18/05 3:08 PM Page 264

Otherwise, the doVerify attribute of the SigInfo struct is tested to determine if active verifi-
cation is enabled for the signature that generated the alert.This value was set earlier in the
ParseRuleOptions() function during the initialization of the Snort-AV functionality.

After determining that active verification is required for the alert specified, the
QueueAlerts() function is used to add the event to the unverifiedAlerts queue to be processed
by the initialized threads.

void

CallAlertFuncs(Packet *p, char *message, ListHead *head, Event *event)

{

AlertNode *n;

/* If no verification, safe to simply alert */

if (pv.alert_verification == VERIFICATION_MODE_NONE) {

DoCallAlertFuncs(p, message, head, event);

return;

}

n = CreateAlertNode(p, message, head, event, otn_tmp);

/* Check if verification turned off for this rule */

if (otn_tmp->sigInfo.doVerify == 0) {

n->event.verified = ALERT_UNVERIFIABLE;

IncrementUnverifiable(&vstats);

QueueAlerts(verifiedAlerts, n);

} else {

/* Queue up alert for verification */

QueueAlerts(unverifiedAlerts, n);

/* Signal verification thread */

pthread_mutex_lock(&queuedAlertsLock);

pthread_cond_signal(&queuedAlerts);

pthread_mutex_unlock(&queuedAlertsLock);

}

/* Output any verified alerts */

OutputVerifiedAlerts();

}

Once the event has been queued, the pthread_cond_signal() function is used to let the
worker threads know an event has occurred.This takes us back to VerifyAlerts(), discussed at the
end of the Initialization phase, which suddenly springs to life in the worker thread.

Back in the CallAlertFuncs() function, when an event was originally generated, the
OutPutVerifiedAlerts() function is called.This function runs through the alerts in the
verifiedAlerts queue and passes them to the DoCallAlertFuncs() function to be output by the
enabled Snort output plugins.

static void

OutputVerifiedAlerts(void)

{

AlertNode *n;

Modifying Snort • Chapter 10 265

332_NSE_10.qxd 7/18/05 3:08 PM Page 265

while ((n = DequeueAlert(verifiedAlerts)) != NULL) {

DoCallAlertFuncs(n->pkt, n->msg, n->head, &n->event);

DestroyAlertNodes(n);

}

}

Snort-AV Event Verification
Now that an event has been added to the unverifiedAlerts queue and the worker threads have
been signaled to begin work, execution continues in the VerifyAlerts() function to perform the
follow-up assessment of the target service with a scan.The code for this function is shown here:

static void *

VerifyAlerts(void *data)

{

AlertNode *n;

int vulnerable;

while (1) {

while ((n = DequeueAlert(unverifiedAlerts)) == NULL && verify) {

pthread_mutex_lock(&queuedAlertsLock);

pthread_cond_wait(&queuedAlerts, &queuedAlertsLock);

pthread_mutex_unlock(&queuedAlertsLock);

}

if (!n && !verify)

break;

vulnerable = VerifyAlert(n);

if (pv.alert_verification == VERIFICATION_MODE_MARK ||

n->event.verified == ALERT_VERIFIED ||

n->event.verified == ALERT_UNVERIFIABLE)

QueueAlerts(verifiedAlerts, n);

else

DestroyAlertNodes(n);

}

return NULL;

}

To accomplish the task of verifying an alert, the VerifyAlerts() function pops an event
(AlertNode) from the top of the unverifiedAlerts queue.This occurs using the DequeueAlert()
function.

The event is then passed to the VerifyAlert() function to be tested.This function begins by
using the GetDestination() function to extract the destination IP address and port from the event
to determine where the scan should occur. It then runs through the rules SigInfo structs
ReferenceNode list, which was created using the reference keyword in the rule, and continues

266 Chapter 10 • Modifying Snort

332_NSE_10.qxd 7/18/05 3:08 PM Page 266

until a valid CVE ID is found. If the signature does not have an appropriate CVE ID, no corre-
lation can be performed.

An entry is added to Snort-AV’s VCache for the destination IP and port, with an unverified
result.The CachePut() function is used for this.The VCache is used to store the status of each
scan for a designated timeout period, which avoids running the same scan repeatedly, wasting
time and CPU. If an entry for the provided IP address, port, and CVE ID exists in the VCache,
the status of the previous scan is returned.

If the VCache does not contain an existing entry for the event, the ExecuteNASL() function
is then called, passing in the CVE ID and destination host.This function is used to perform the
actual scan.

The return value from the ExecuteNASL() function is evaluated, and the VCacheUpdate()
function is called to update the status of the scan for future checks.

The ExecuteNASL() function uses the functionality of the libnasl library (shown in the sec-
tion of this book titled “Nessus Tools”) to perform a scan of the target.

This function fork()’s to create a new process before running the scan.The new process then
exits as soon as the execute_nasl_script() function finishes.

The appropriate NASL plugin is selected by appending the CVE ID number to the selected
script directory, using the snprintf() Libc function.

A check is then performed on the NASL plugin to make sure it exists and is accessible by
the user ID in which Snort is running. Next, a call to the libnasl function execute_nasl_script()
is used to run the script.

The return value of the ExecuteNASL() function is then used to determine if the alert was
successful.

static int

ExecuteNASL(unsigned int addr, const char *id)

{

pid_t pid;

int status, len, ret, fd[2];

char buf[PATH_MAX], *hostname;

struct arglist *args, *hostinfo, *portinfo;

ntp_caps caps;

struct in_addr *in;

if ((args = malloc(sizeof(*args))) == NULL)

FatalError("ERROR: Unable to allocate NASL argument list\n");

memset(args, 0, sizeof(*args));

if ((hostinfo = malloc(sizeof(*hostinfo))) == NULL)

FatalError("ERROR: Unable to allocate NASL host information list\n");

memset(hostinfo, 0, sizeof(*hostinfo));

if ((portinfo = malloc(sizeof(*portinfo))) == NULL)

FatalError("ERROR: Unable to allocate NASL port information list\n");

memset(portinfo, 0, sizeof(*portinfo));

if ((in = malloc(sizeof(*in))) == NULL)

FatalError("ERROR: Unable to allocate address struct\n");

memset(in, 0, sizeof(*in));

Modifying Snort • Chapter 10 267

332_NSE_10.qxd 7/18/05 3:08 PM Page 267

if (socketpair(AF_UNIX, SOCK_STREAM, 0, fd) < 0)

FatalError("ERROR: Unable to allocate NASL socket pair\n");

memset(&caps, 0, sizeof(caps));

caps.ntp_version = 12;

caps.ciphered = 0;

caps.ntp_11 = 1;

caps.scan_ids = 1;

caps.pubkey_auth = 0;

in->s_addr = addr;

if ((hostname = inet_ntoa(*in)) == NULL)

FatalError("ERROR: Unable to get hostname\n");

len = strlen(hostname);

arg_add_value(hostinfo, "FQDN", ARG_STRING, len, (void *) hostname);

arg_add_value(hostinfo, "NAME", ARG_STRING, len, (void *) hostname);

arg_add_value(hostinfo, "IP", ARG_PTR, sizeof(*in), (void *) in);

arg_add_value(hostinfo, "PORTS", ARG_ARGLIST, -1, portinfo);

arg_add_value(args, "HOSTNAME", ARG_ARGLIST, -1, hostinfo);

arg_add_value(args, "SOCKET", ARG_INT, sizeof(fd[1]), (void *) fd[1]);

arg_add_value(args, "NTP_CAPS", ARG_STRUCT, sizeof(caps), (void *) &caps);

switch ((pid = fork())) {

case 0:

snprintf(buf, sizeof(buf), "%s/%s", pv.verify_script_dir, id);

#ifdef DEBUG_NASL

fprintf(stderr, "DEBUG: executing %s\n", buf);

#endif

if (access(buf, R_OK | F_OK)) {

#ifdef DEBUG_NASL

fprintf(stderr, "ERROR: Unable to access %s, aborting...\n", buf);

#endif

exit(1);

}

#ifndef DEBUG_NASL

fclose(stderr);

#endif

execute_nasl_script(args, buf, 0);

exit(0);

case -1:

fprintf(stderr, "ERROR: Unable to fork NASL process\n");

exit(1);

}

close(fd[1]);

268 Chapter 10 • Modifying Snort

332_NSE_10.qxd 7/18/05 3:08 PM Page 268

ret = TARGET_INVULNERABLE;

while ((len = recv(fd[0], buf, sizeof(buf), 0)) > 0) {

buf[len] = 0;

send(fd[0], "A", 2, 0);

if (strstr(buf, "<|> HOLE <|>")) {

#ifdef DEBUG_NASL

fprintf(stderr, "DEBUG: HOLE [%s]\n", buf);

#endif

ret = TARGET_VULNERABLE;

}

}

waitpid(pid, &status, 0);

if (WIFEXITED(status) && WEXITSTATUS(status)) {

#ifdef DEBUG_NASL

fprintf(stderr, "DEBUG: error executing NASL script\n", buf);

#endif

ret = TARGET_UNDETERMINED;

}

free(args);

free(hostinfo);

free(portinfo);

free(in);

close(fd[0]);

return ret;

}

Setting Up
The Snort-AV diff patch also makes changes to the configure script and various Makefiles
among the source tree.This is done to make sure the user has the appropriate libraries required
to build Snort-AV, and to ensure the libnasl library is linked with the final binary.

The Snort-AV authors have also included a bash shell script, create_nasl_links.sh, to assist in
setting up Snort-AV.This script loops through each of the NASL plugins in a directory searching
for the CVE ID. It then creates a series of symbolic links to each of the NASL plugins in
another directory, all of which use their appropriate CVE ID as a name.This way, the Snort-AV
source can look up the appropriate CVE ID simply by opening the file with the correct name.

Snort-Wireless
The Snort-Wireless project is a Snort modification targeted at providing Layer 2 wireless IDS
functionality to Snort. It was written as an open source alternative to commercial products such
as AirDefense (www.airdefense.net).

Modifying Snort • Chapter 10 269

332_NSE_10.qxd 7/18/05 3:08 PM Page 269

Snort-Wireless is available for download from www.snort-wireless.com as a diff patch or tar
ball.A patched version of the Snort 2.3.3 (the latest Snort at the time of publication) is available.

Implementation
To achieve its functionality, the Snort-Wireless modification adds a selection of preprocessors and
detection plugins. It also makes several changes to the Snort source to integrate the functionality
cleanly, and to add decoders, as there is no clean modular way to add decoders at the time of
writing (all decoders are contained in a single file: src/decodec).

Snort-Wireless implements a new style of rule in which source and destination MAC
addresses can be specified, along with a new series of detection options specifically related to
802.11x wireless protocols.

The following example shows the syntax of the Snort-Wireless specific rule type:

<action> wifi <src mac> -> <dst mac> (<rule options>)

The official Snort-Wireless user’s guide is available online at http://snort-
wireless.org/docs/usersguide/ and shows examples of the new rule options.

To accommodate the new “Wi-Fi” protocol in the rule type, the wireless protocol code is
inserted into the WhichProto() function.This code returns the appropriate #define to represent
the Wi-Fi protocol type:

#ifdef WIRELESS

if(!strcasecmp(proto_str, "wifi")){

#ifdef DEBUG

fprintf(stderr, "WhichProto() returning: DLT_IEEE802_11\n");

#endif

return DLT_IEEE802_11;

#warning "need to make a REAL protocol #define for wifi"

}

#endif /* WIRELESS */

To perform detection on the captured packets, Snort must first populate the Packet struct
via the decoders. Before the protocol is decoded, there needs to be space in the Packet struct for
the data to be stored.This is added to the Packet struct in the decode.h file.The following code
shows the fields added to the Packet structure:

WifiHdr *wifih; /* wireless LAN header */

#ifdef WIRELESS

PrismHdr *prismh; /* PRISM header */

WSTIdx wstidx;

#endif /* WIRELESS */

typedef struct _PrismHdr {

u_int32_t msg_code;

u_int32_t msg_len;

char dev_name[16];

prism_val host_time;

270 Chapter 10 • Modifying Snort

332_NSE_10.qxd 7/18/05 3:08 PM Page 270

prism_val mac_time;

prism_val channel;

prism_val rssi;

prism_val sq;

prism_val signal;

prism_val noise;

prism_val rate;

prism_val is_tx;

prism_val frame_len;

} PrismHdr;

/*

* Wireless Header (IEEE 802.11)

*/

typedef struct _WifiHdr

{

#ifdef WIRELESS

union{

#endif /* WIRELESS */

u_int16_t frame_control;

#ifdef WIRELESS

struct {

u_int16_t version:2;

u_int16_t type:2;

u_int16_t stype:4;

u_int16_t to_ds:1;

u_int16_t from_ds:1;

u_int16_t more_frags:1;

u_int16_t retry:1;

u_int16_t pwr_mgmt:1;

u_int16_t more_data:1;

u_int16_t wep:1;

u_int16_t order:1;

};

};

#endif /* WIRELESS */

u_int16_t duration_id;

u_int8_t addr1[6];

u_int8_t addr2[6];

u_int8_t addr3[6];

#ifdef WIRELESS

union {

u_int16_t seq_control;

struct {

u_int16_t fragnum:4;

u_int16_t seqnum:12;

};

};

#endif /* WIRELESS */

u_int8_t addr4[6];

} WifiHdr;

Modifying Snort • Chapter 10 271

332_NSE_10.qxd 7/18/05 3:08 PM Page 271

To break down a prism header into its appropriate fields in the Packet struct, the
DecodePrismHdr() decoder is added. Its definition is shown here:

#ifdef WIRELESS

void DecodePrismHdr(Packet *, struct pcap_pkthdr *, u_int8_t *);

#endif /* WIRELESS */

Preprocessors
Snort-Wireless implements most of its features using the modular plugin interface that Snort
provides. Several preprocessors are included in the bundle to analyze wireless traffic in various
ways.

Each of these preprocessors is included in its own file.A listing of the new files in the
src/preprocessors directory is shown here:

spp_antistumbler.c

spp_antistumbler.h

spp_auth_flood.c

spp_auth_flood.h

spp_deauth_flood.c

spp_deauth_flood.h

spp_macspoof.c

spp_macspoof.h

spp_rogue_ap.c

spp_rogue_ap.h

Anti-Stumbler
The anti stumbler preprocessor is designed to detect wireless devices that are scanning for active
access points (stumbling).To do so, it checks for probe request frames on the network that have
NULL SSID fields.

Auth Flood
The auth flood preprocessor is used to detect a flood of auth frames, which could cause a denial-
of-service attack against the access point or be used to generate key frames to crack WEP
encryption. Values are passed to the preprocessor during its initialization to configure the
threshold values on which to trigger.

De-Auth Flood
Much like the spp_auth_flood preprocessor, the de-auth flood preprocessor is used to detect a
flood of de-auth frames.This preprocessor also accepts parameters dictating the threshold values
to use when detecting this attack.

Mac-Spoof
The mac-spoof preprocessor is written in an attempt to detect MAC addresses that are being
spoofed on the network to bypass MAC address filtering. It does so by checking the difference
in sequence numbers in a connection.

272 Chapter 10 • Modifying Snort

332_NSE_10.qxd 7/18/05 3:08 PM Page 272

Rogue-AP
The Rogue-AP preprocessor is used to detect unauthorized access points in the airspace around
your network.A list of the SSID values and corresponding MAC addresses must be specified in
the configuration for each of the authorized access points in your network.This way, any
unspecified access points can be considered dangerous and alerted on.

Detection Plugins
To implement rules specific to the Wi-Fi protocol type, Snort-Wireless implements a variety of
detection plugins, each contained in its own file. Each option provides a method of testing a dif-
ferent aspect of the packet.

The file wifi_datatypes.h is used to store data structure definitions for various aspects of a
Wi-Fi frame.

sp_wifi_addr4.c

sp_wifi_addr4.h

sp_wifi_bssid.c

sp_wifi_bssid.h

sp_wifi_duration_id.c

sp_wifi_duration_id.h

sp_wifi_fragnum.c

sp_wifi_fragnum.h

sp_wifi_frame_control.c

sp_wifi_frame_control.h

sp_wifi_from_ds.c

sp_wifi_from_ds.h

sp_wifi_more_data.c

sp_wifi_more_data.h

sp_wifi_more_frags.c

sp_wifi_more_frags.h

sp_wifi_order.c

sp_wifi_order.h

sp_wifi_pwr_mgmt.c

sp_wifi_pwr_mgmt.h

sp_wifi_retry.c

sp_wifi_retry.h

sp_wifi_seqnum.c

sp_wifi_seqnum.h

sp_wifi_ssid.c

sp_wifi_ssid.h

sp_wifi_stype.c

sp_wifi_stype.h

sp_wifi_to_ds.c

sp_wifi_to_ds.h

sp_wifi_type.c

sp_wifi_type.h

sp_wifi_wep.c

sp_wifi_wep.h

wifi_datatypes.h

Modifying Snort • Chapter 10 273

332_NSE_10.qxd 7/18/05 3:08 PM Page 273

As you can see, each of the Wi-Fi detection options is stored in a file with the “sp_wifi”
prefix.

We will now look at each of the new detection plugins added by Snort-Wireless.The
format of a detection plugin is discussed in Chapter 9,“Plugins and Preprocessors.”All these new
detection plugins adhere to the format discussed.

Wifi Addr4
The Wifi Addr4 detection plugin is used to test an 802.11 frame’s fourth address field, and asso-
ciates the addr4 keyword with this task.The “!” and {} characters can be used in conjunction
with the MAC address, which is required for a match.

BSSID
This detection plugin is used to test the BSSID field in the 802.11 frame; again, the “!” and {}
characters can be used.The bssid keyword is associated with this option.

Duration ID
This detection option is used to test the Duration ID field. It associates the duration_id keyword.
The “!” and {} options can be used, along with a number on which to match.

Fragnum
This plugin associates the fragnum keyword with a check for the fragnum control field of the
802.11 frame.The plugin takes the “!” and {} options, and a number between 0 and 15 repre-
senting the Fragnum to test.

Frame Control
The frame control plugin is used to test the frame_control field of the 802.11 frame.The param-
eters for this option are “!”, {}, and a number between 0 and 65535.This plugin uses the
frame_control keyword.

From DS
The from_ds plugin tests the from_ds field of the 802.11 frame, and is used to associate the
from_ds keyword with a check of this field.This plugin, like most of the Snort-Wireless detection
plugins, accepts the operators “!” and {}.This plugin also accepts the values “ON,”“OFF,”
“TRUE,” and “FALSE” to determine what value to test for.

More Data
The more_data plugin is used to test the more_data field in the 802.11 frame, and uses the
more_data keyword.This plugin takes the operators “!” and {}, and a value representing the state
with which to test the more_data field.This field can also have the possible values “ON,”“OFF,”
“TRUE,” and “FALSE.”

274 Chapter 10 • Modifying Snort

332_NSE_10.qxd 7/18/05 3:08 PM Page 274

More Frags
The more_frags plugin is used to test the value of the more_frags control field of the 802.11
frame, and associates the more_frags keyword with this check.The operators “!” and {} can be
used with this plugin, and the values “ON,”“OFF,”“TRUE,” and “FALSE” to test the status of
this field.

Order
The order plugin is used to check the 802.11 frame’s order control field value.The keyword
order is associated with this plugin.The operators “!” and {} can also be used with this plugin.
The values “ON,”“OFF,”“TRUE,” and “FALSE” are also used to test the status of this field.

Power Management
This plugin is used to test the power management control field of the 802.11 frame. Like many
of the other plugins, the operators “!” and {} can also be used.The values “ON,”“OFF,”
“TRUE,” and “FALSE” are also used to test the status of this field.The keyword pwr_mgmt is
used to perform this test.

Retry
The Retry plugin tests the retry field of the 802.11 frame.The keyword retry is used to per-
form the test.Again, the arguments “!” and {} can be provided, as well as the values “ON,”
“OFF,”“TRUE,” and “FALSE.”

Seg Number
The Seg Number plugin is used to test the segnum control field of the 802.11 frame.The key-
word segnum is used to perform this test.This option takes the usual “!” and {} operators, and a
number representing the segnum.This number may be specified in either hex or decimal and
must be between 0 and 4095.

SSID
The SSID plugin is used to test the SSID field of the 802.11 frame.The ssid keyword is used to
indicate that this field is to be tested.The operators “!” and {} can again be used, followed by the
SSID to be tested.

Stype
The Stype detection plugin is used to test the frame’s subtype.The stype keyword is used for this.
This plugin accepts the “!” and {} operators, followed by the Wi-Fi subtype to match.

Modifying Snort • Chapter 10 275

332_NSE_10.qxd 7/18/05 3:08 PM Page 275

To DS
This plugin tests the to_ds field of the 802.11 frame.The to_ds keyword is used for this. It
accepts the operators “!” and {}, and the values “ON,”“OFF,”“TRUE,” and “FALSE” to deter-
mine what value to test for.

Type
This plugin associates the type keyword with a test of the 802.11 frame’s type.The “!” and {}
can be specified, as well as the type.The available types are TYPE_MANAGEMENT,
TYPE_CONTROL, and TYPE_DATA.

WEP
The WEP plugin is used to test the WEP field in the 802.11 frame.The wep keyword is used for
this.This plugin again takes the “!” and {} operators, and the “ON,”“OFF,”“TRUE,” and
“FALSE” values.

Rules
To use the functionality added by the Snort-wireless Package, custom rules must be created
using the keywords defined by the detection plugins, and the Wi-Fi protocol type.
The Snort-Wireless package provides a series of custom rules in the rules/wifi.rules file, a
few of which are shown here:

alert wifi any -> any (msg:"Probe Request"; stype:STYPE_PROBEREQ;)

alert wifi any -> any (msg:"Probe Response"; stype:STYPE_PROBERESP;)

alert wifi any -> any (msg:"Beacon"; stype:STYPE_BEACON;)

alert wifi any -> any (msg:"ATIM"; stype:STYPE_ATIM;)

alert wifi any -> any (msg:"Disassociation"; stype:STYPE_DISASSOC;)

alert wifi any -> any (msg:"Authentication"; stype:STYPE_AUTH;)

alert wifi any -> any (msg:"Deauthentication"; stype:STYPE_DEAUTH;)

Final Touches
In this chapter, you learned some of the methods other people have used to build on top of the
Snort source tree, and some ideas for added functionality to Snort. Whenever possible, it makes
sense to modularize your code using Snort’s plugin functionality; however, modification is some-
times required to write the best code possible.

276 Chapter 10 • Modifying Snort

332_NSE_10.qxd 7/18/05 3:08 PM Page 276

Part III
Ethereal Tools

277

332_NSE_11.qxd 7/14/05 11:34 AM Page 277

332_NSE_11.qxd 7/14/05 11:34 AM Page 278

Capture
File Formats

Scripts and samples in this chapter:

■ Using libpcap

■ Using text2pcap

■ Extending Wiretap

Chapter 11

279

332_NSE_11.qxd 7/14/05 11:34 AM Page 279

In This Toolbox
In this chapter you will learn how to enable Ethereal to read from new data sources.
Programming with libpcap is introduced.You will be able to read ASCII hex dump files into
Ethereal. For a more integrated solution, you will be able to teach Ethereal to read and possibly
write a new file format natively.

Using libpcap
The most commonly used open source library for capturing packets from the network is libpcap,
whose name is an abbreviation of packet capture library. Originally developed at the Lawrence
Berkeley Laboratory, it is currently maintained by the same loosely knit group of people who
maintain tcpdump, the venerable command-line packet capture utility. Both libpcap and tcp-
dump are available online at www.tcpdump.org.A Windows version called WinPcap is available
from http://winpcap.polito.it/.

Libpcap is able to save captured packets to a file.The pcap file format is unique to libpcap,
but because so many open source applications use libpcap, a variety of applications can make use
of these pcap files.The routines provided in libpcap allow you to save packets you have captured
and to read pcap files from disk to analyze the stored data.

Selecting an Interface
The first issue to decide when capturing packets is which network interface to capture from.You
can have libpcap pick a default interface for you. In that case, it picks the first active, non-loop-
back interface.The pcap_lookupdev function picks the default interface.

char errbuf[PCAP_ERRBUF_SIZE];

char *default_device;

pcap_t *ph;

default_device = pcap_lookupdev(errbuf);

if (!default_device) {

fprintf(stderr, "%s\n", errbuf);

exit(1);

}

printf("Capturing on %s\n", default_device);

The errbuf parameter deserves a special mention. Many pcap functions make use of errbuf. It is
a character array that you define in our program’s address space, of at least PCAP_ERRBUF_SIZE
length.The PCAP_ERRBUF_SIZE macro is defined in pcap.h, the file that provides the libpcap
API (application program interface). If an error occurs in the pcap function, a description of the
error is put into errbuf so that your program can present it to the user.

Alternatively, you can tell libpcap which interface to use. When starting a packet capture, the
name of the interface is passed to libpcap.That is why pcap_lookupdev returns a char*; the func-
tion for opening an interface, pcap_open_live, expects the name of the interface as a string.The
name of the interface differs according to the operating system. On Linux, the names of network

280 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 280

interfaces are their simple, unadorned names, like eth0, and eth1. On BSD, the network interfaces
are represented as device files, so the device filenames are given, like /dev/eth0. On Windows
the names become more complicated; you shouldn’t expect a user to be able to give the name of
the network interface without aid.

To help users pick a network interface, libpcap provides a function that gives the calling pro-
gram the list of available interfaces. It is the calling program’s responsibility to present the list of
interfaces to the user so that the user can choose the interface.The following example shows
how to use this facility. If the program is run with no arguments, the list of interfaces is printed.
If the program is run with a numeric argument, that number is used as an index to select the
interface.

#include <stdio.h>

#include <pcap.h>

static char errbuf[PCAP_ERRBUF_SIZE];

void show_interfaces(void);

char* lookup_interface(int);

int

main(int argc, char **argv)

{

pcap_t *ph;

char *interface;

int index;

if (argc == 1) {

/* No arguments; show the list of interfaces. */

show_interfaces();

exit(0);

}

else if (argc == 2) {

/* Use the argument as an index */

index = atoi(argv[1]);

if (index < 0) {

fprintf(stderr, "Number must be positive.\n");

exit(1);

}

interface = lookup_interface(index);

if (!interface) {

fprintf(stderr, "No such interface: %d\n", index);

exit(1);

}

}

printf("Using %s\n", interface);

exit(0);

}

/* Show the list of interfaces to the user. */

void

show_interfaces(void)

{

Capture File Formats • Chapter 11 281

332_NSE_11.qxd 7/14/05 11:34 AM Page 281

pcap_if_t *interface_list;

pcap_if_t *if_list_ptr;

int result;

int i;

/* Ask libpcap for the list of interfaces */

result = pcap_findalldevs(&interface_list, errbuf);

if (result == -1) {

fprintf(stderr, "%s\n", errbuf);

exit(1);

}

/* Show them to the user */

if_list_ptr = interface_list;

i = 0;

while (if_list_ptr) {

if (if_list_ptr->description) {

printf("%d. %s (%s)\n", i, if_list_ptr->name,

if_list_ptr->description);

}

else {

printf("%d. %s\n", i, if_list_ptr->name);

}

if_list_ptr = if_list_ptr->next;

i += 1;

}

pcap_freealldevs(interface_list);

}

/* Convert the user's argument to an interface name. */

char*

lookup_interface(int index)

{

pcap_if_t *interface_list;

pcap_if_t *if_list_ptr;

int result;

int i;

/* Ask libpcap for the list of interfaces */

result = pcap_findalldevs(&interface_list, errbuf);

if (result == -1) {

fprintf(stderr, "%s\n", errbuf);

exit(1);

}

/* Find the right interface, according to the user's

argument. */

if_list_ptr = interface_list;

i = 0;

while (if_list_ptr) {

if (i == index) {

pcap_freealldevs(interface_list);

return if_list_ptr->name;

282 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 282

}

if_list_ptr = if_list_ptr->next;

i += 1;

}

/* If we reached here, then there's no such interface. */

pcap_freealldevs(interface_list);

return NULL;

}

As you can tell from the preceding example, the pcap_findalldevs function returns a linked list
of pcap_if_t structures.The pcap_if_t structure definition can be found in pcap.h, the header file
that defines the interface for libpcap.

/*

* Item in a list of interfaces.

*/

typedef struct pcap_if pcap_if_t;

struct pcap_if {

struct pcap_if *next;

char *name; /* name to hand to "pcap_open_live()" */

char *description; /* textual description of interface, or NULL */

struct pcap_addr *addresses;

bpf_u_int32 flags; /* PCAP_IF_ interface flags */

};

Table 11.1 summarizes the functions provided by libpcap to help identify the interface
where packets will be captured on. Of course, these functions don’t have to be used if you wish
to hard code the interface name into your program or have the user type the full name of the
interface.

Table 11.1 Selecting Network Interfaces

Function Use

pcap_lookup_dev Return the name of the default network interface
pcap_find_alldevs Return a list of available interfaces
pcap_free_alldevs Free the memory allocated by pcap_findalldevs

Opening the Interface
Once your program has decided which interface to use, proceeding to capture packets is easy.
The first step is to open the interface with pcap_open_live.

pcap_t *pcap_open_live(const char *device, int snaplen,

int promisc, int to_ms, char *errbuf);

The device is the name of the network interface.The number of bytes you wish to capture
from the packet is indicated by snaplen. If your intent is to look at all the data in a packet, as a
general packet analyzer like Ethereal would do, you should specify the maximum value for
snaplen, which is 65535.The default behavior of other programs, like tcpdump, is to return only

Capture File Formats • Chapter 11 283

332_NSE_11.qxd 7/14/05 11:34 AM Page 283

a small portion of the packet, or a snapshot (thus the term snaplen).Tcpdump’s original focus was
to analyze TCP (Transmission Control Protocol) headers, so capturing all the packet data was a
waste of time.

The promisc flag should be 1 or 0. It tells libpcap whether to put the interface into promis-
cuous mode.A zero value does not change the interface mode; if the interface is already in
promiscuous mode because of another application, libpcap simply uses the interface as is.
Capturing packets in promiscuous mode lets you see all the packets that the interface can see,
even those destined for other machines. Nonpromiscuous mode captures only let you see packets
destined for your machine, which includes broadcast packets and multicast packets if your
machine is part of a multicast group.

A timeout value can be given in to_ms, which stands for timeout, milliseconds.The time-out
mechanism tells libpcap how long to wait for the operating system kernel to queue received
packets, even if a packet has been seen.Then libpcap can efficiently read a buffer full of packets
from the kernel in one call. Not all operating systems support such a read time-out value.A zero
value for to_ms tells the operating system to wait as long as necessary to read enough packets to
fill the packet buffer, if it supports such a construct. For what it’s worth, ethereal passes 1,000 as
to_ms value.

Finally, errbuf is the same errbuf seen in other pcap functions. It points to space for libpcap to
store an error or warning message.

Upon success, a pcap_t pointer is returned. On failure, a NULL value is returned.

Capturing Packets
There are two ways to capture packets from an interface in libpcap.The first method is to ask
libpcap for a packet at a time, and the second is to start a loop in libpcap that calls your callback
function when packets are ready.

There are two functions that deliver the packet-at-a-time approach:

const u_char *pcap_next(pcap_t *p, struct pcap_pkthdr *h);

int pcap_next_ex(pcap_t *p, struct pcap_pkthdr **pkt_header,

const u_char **pkt_data);

If you look closely at the two functions, you will notice that there are two types of informa-
tion relevant for the captured packet. One is the pcap_pkthdr, or the packet header.The other is
the u_char array of packet data.The u_char array is the actual data of the packet, whereas the
packet header is the metadata about the packet.The definition of pcap_pkthdr is found in pcap.h.

struct pcap_pkthdr {

struct timeval ts; /* time stamp */

bpf_u_int32 caplen; /* length of portion present */

bpf_u_int32 len; /* length this packet (off wire) */

};

The time stamp, ts, is the time at which that packet was captured.The caplen is the number
of bytes captured from the packet. Remember that the snaplen parameter used when opening the
interface may limit the portion of a packet that we capture.The number of bytes in the u_char
array will be caplen.The last field in a pcap_pkthdr is len, which is the size of the packet on the

284 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 284

wire.Thus, caplen will always be less than or equal to len, because we may always capture part or
all of a packet, but never more than a packet.

The pcap_next function is very basic. If a problem occurs during the capture, a NULL
pointer is returned; otherwise a pointer to the packet data is returned. Unfortunately, a problem
may not always mean an error.A NULL can mean that no packets were read during a time-out
period, if a time-out period is supported on that platform.To rectify this uncertain return code,
pcap_next_ex, where ex is an abbreviation for extended, was added to the libpcap API. Its return
value does specify exactly what happened during the capture, as shown in Table 11.2.

Table 11.2 pcap_next_ex Return Codes

Return Code Meaning

1 Success
0 The timeout expired during a live capture.
-1 An error occurred while reading the packet.
-2 There are no more packets to read from a file.

The other way to capture packets with libpcap is to set up a callback function and have
libpcap process packets in a loop.Your program can break the execution of that loop when a
condition is met, like when the user presses a key or clicks a button.This callback method is the
way most packet analyzers utilize libpcap.As before, there are two libpcap functions for capturing
packets in this manner.They differ in how they handle their count (cnt) parameters.

int pcap_dispatch(pcap_t *p, int cnt,

pcap_handler callback, u_char *user);

int pcap_loop(pcap_t *p, int cnt,

pcap_handler callback, u_char *user);

In both cases, the callback function, which is defined in your program, has the same function
signature, as both pcap functions expect a callback to be of the pcap_handler type.

typedef void (*pcap_handler)(u_char *user,

const struct pcap_pkthdr *pkt_header,

const u_char *pkt_data);

The user parameter is there for your program to pass arbitrary data to the callback function.
Libpcap does not interpret this data or add to it in anyway.The same user value that was passed
by your program to pcap_dispatch or pcap_loop is passed to your callback function.The pkt_header
and pkt_data parameters are the same as we saw in the discussion of pcap_next and pcap_next_ex.
These two fields point to the packet metadata and data, respectively.

The cnt parameter to pcap_dispatch specifies the maximum number of packets that libpcap
will capture before stopping the execution of the loop and returning to your application, while
honoring the time-out value you set for that interface.This is different from pcap_loop, which
uses its cnt parameter to specify the number of packets to capture before returning.

In both cases, a cnt value of -1 has special meaning. For pcap_dispatch, a cnt of -1 tells libpcap
to process all packets received in one buffer from the operating system. For pcap_loop, a cnt of -1

Capture File Formats • Chapter 11 285

332_NSE_11.qxd 7/14/05 11:34 AM Page 285

tells libpcap to continue capturing packets ad infinitum, until your program breaks the execution
of the loop with pcap_breakloop, or until an error occurs.This is summarized in Table 11.3.

Table 11.3 cnt Parameter for pcap_dispatch and pcap_loop

Function cnt parameter Meaning

pcap_dispatch > 0 Maximum number of packets to capture during
time-out period

pcap_dispatch -1 Process all packets received in one buffer from
the operating system

pcap_loop > 0 Capture this many packets
pcap_loop -1 Capture until an error occurs, or until the

program calls pcap_breakloop

The following example shows a simple example of using pcap_loop with a pcap_handler
callback function to capture 10 packets. When you run this on UNIX, make sure you have the
proper permissions to capture on the default interface.You can run the program as the root user
to ensure this.

#include <stdio.h>

#include <pcap.h>

void

pcap_handler_cb(u_char *user, const struct pcap_pkthdr *pkt_header,

const u_char *pkt_data)

{

printf("Got packet: %d bytes captured:",

pkt_header->caplen);

if (pkt_header->caplen > 2) {

printf("%02x %02x ... \n", pkt_data[0], pkt_data[1]);

}

else {

printf("...\n");

}

}

#define NUM_PACKETS 10

int

main(void)

{

char errbuf[PCAP_ERRBUF_SIZE];

char *default_device;

pcap_t* ph;

default_device = pcap_lookupdev(errbuf);

if (!default_device) {

fprintf(stderr, "%s\n", errbuf);

286 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 286

Capture File Formats • Chapter 11 287

exit(1);

}

printf("Opening %s\n", default_device);

ph = pcap_open_live(default_device, BUFSIZ, 1, 0, errbuf);

printf("Capturing on %s\n", default_device);

pcap_loop(ph, NUM_PACKETS, pcap_handler_cb, NULL);

printf("Done.\n");

exit(0);

}

Swiss Army Knife

Filtering Packets
The libpcap library is also famous for providing a packet filtering language that lets
your application capture only the packets that the user is interested in. The syntax to
the filter language is documented in the tcpdump man (manual) page. There are
three functions you need to know to use filters.

To compile a filter string into bytecode, use pcap_compile. To attach the filter
to your pcap_t object, use pcap_setfilter. Finally, to free the space used by the com-
piled bytecode, use pcap_freecode. This can be called immediately after a pcap_set-
filter call.

Saving Packets to a File
To save packets to a file, libpcap provides a struct named pcap_dumper_t that acts as a file handle
for your output file.There are five functions dealing with the dump file, or the pcap_dumper_t
struct.They are listed in Table 11.4.

Table 11.4 pcap_dumper_t Functions

Function Use

pcap_dump_open Create an output file and pcap_dumper_t object
pcap_dump Write a packet to the output file
pcap_dump_flush Flush buffered packets immediately to output file
pcap_dump_file Return the FILE member of the pcap_dumper_t struct
pcap_dump_close Close the output file

332_NSE_11.qxd 7/14/05 11:34 AM Page 287

Because of its function prototype, the pcap_dump function can be used directly as a callback
to pcap_dispatch or pcap_loop.Although the first argument is u_char*, in reality pcap_dump expects
a pcap_dumper_t* argument.

void pcap_dump(u_char *, const struct pcap_pkthdr *, const u_char *);

In the following example, the pcap_handler_cb function is kept as the callback, and pcap_dump
is called after printing information to stdout.

#include <stdio.h>

#include <pcap.h>

void

pcap_handler_cb(u_char *pcap_out, const struct pcap_pkthdr *pkt_header,

const u_char *pkt_data)

{

printf("Got packet: %d bytes captured:", pkt_header->caplen);

if (pkt_header->caplen > 2) {

printf("%02x %02x ... \n", pkt_data[0], pkt_data[1]);

}

else {

printf("...\n");

}

pcap_dump(pcap_out, pkt_header, pkt_data);

}

#define NUM_PACKETS 10

int

main(void)

{

char errbuf[PCAP_ERRBUF_SIZE];

char *default_device;

pcap_t* ph;

pcap_dumper_t *pcap_out;

default_device = pcap_lookupdev(errbuf);

if (!default_device) {

fprintf(stderr, "%s\n", errbuf);

exit(1);

}

printf("Opening %s\n", default_device);

ph = pcap_open_live(default_device, BUFSIZ, 1, 0, errbuf);

printf("Writing to out.cap\n");

pcap_out = pcap_dump_open(ph, "out.cap");

if (!pcap_out) {

printf("Could not open out.cap for writing.\n");

exit(1);

}

288 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 288

printf("Capturing on %s\n", default_device);

pcap_loop(ph, NUM_PACKETS, pcap_handler_cb, (u_char*) pcap_out);

printf("Done.\n");

pcap_dump_close(pcap_out);

exit(0);

}

Master Craftsman

Writing pcap Files without Capturing Packets
The pcap_dump_open function requires a pcap_t object. What if you want to write
pcap files using libpcap, but the source of your packets is not the libpcap capture
mechanism? Libpcap provides the pcap_open_dead, which will return a pcap_t
object as if you had opened an interface, but does not open any network interface.
The pcap_open_dead function requires two parameters: the link layer type (a DLT
value defined in pcap-bpf.h) and the snaplen, or how many bytes of each packet you
intended to capture. It’s safe to set snaplen to its maximum value, 65535. That max-
imum value comes from the filter bytecode compiler, which uses a two-byte integer
to report packet lengths. With those two values, link layer type and snaplen, libpcap
can write the file header for the generated pcap file.

Using text2pcap
text2pcap is a command-line tool that comes with Ethereal that helps you convert ASCII hex
dump files to pcap files that can be loaded into Ethereal. While flexible about the style of hex
dump it reads, it does expect a certain format of hex dump file.

text2pcap Hex Dumps
Another way to analyze a file that Ethereal cannot read is to convert it to a file format that
Ethereal does know how to read.This can be done by using an ASCII hex dump file as an inter-
mediate representation, and using text2pcap, supplied in the Ethereal distribution, to convert the
hex dump file to a pcap file.The hex dump format is a useful intermediate representation
because many packet analyzers can produce a hex dump in addition to saving their data in their
proprietary file format.The hex dump format is also easy to produce with other tools.

The hex dump format that text2pcap expects is a hexadecimal offset, starting at 0, followed
by hexadecimal bytes. Of course, a single packet can consist of multiple lines of hex dump, but
the offset must increase correctly.The following is a valid hex dump for text2pcap.

Capture File Formats • Chapter 11 289

332_NSE_11.qxd 7/14/05 11:34 AM Page 289

000000 ff ff ff ff ff ff 00 09

000008 6b 50 f9 ed 08 06 00 01

000010 08 00 06 04 00 01 00 09

000018 6b 50 f9 ed 0a 0a 0a 39

000020 00 00 00 00 00 00 0a 0a

000028 0a 04

The offsets are the first field in the line.They are more than two hexadecimal digits wide, to
distinguish them from the data bytes.The data bytes are fields of two hexadecimal digits.
text2pcap is flexible in the format of the hex dump that it accepts.The offsets do not have to
increase by 0x08, but by any value that you wish. For example, each line of hexadecimal digits
can have 16 data bytes.

0000 ff ff ff ff ff ff 00 09 6b 50 f9 ed 08 06 00 01

0010 08 00 06 04 00 01 00 09 6b 50 f9 ed 0a 0a 0a 39

0020 00 00 00 00 00 00 0a 0a 0a 04

You can have more than one packet in a file by separating their data by a blank line.

0000 ff ff ff ff ff ff 00 09 6b 50 f9 ed 08 06 00 01

0010 08 00 06 04 00 01 00 09 6b 50 f9 ed 0a 0a 0a 39

0020 00 00 00 00 00 00 0a 0a 0a 04

0000 00 09 6b 50 f9 ed 00 50 e8 01 42 ec 08 06 00 01

0010 08 00 06 04 00 02 00 50 e8 01 42 ec 0a 0a 0a 04

0020 00 09 6b 50 f9 ed 0a 0a 0a 39 00 00 00 00 00 00

0030 00 00 00 00 00 00 00 00 00 00 00 00

Many packet analyzers print extra characters to the right of the hex dump to show the
ASCII equivalent of the hexadecimal bytes. For hexadecimal values that don’t have a printable
ASCII character, many packet analyzers print a period. text2pcap ignores these extra characters
automatically.

0000 ff ff ff ff ff ff 00 09 6b 50 f9 ed 08 06 00 01kP......

0010 08 00 06 04 00 01 00 09 6b 50 f9 ed 0a 0a 0a 39kP.....9

0020 00 00 00 00 00 00 0a 0a 0a 04

0000 00 09 6b 50 f9 ed 00 50 e8 01 42 ec 08 06 00 01 ..kP...P..B.....

0010 08 00 06 04 00 02 00 50 e8 01 42 ec 0a 0a 0a 04P..B.....

0020 00 09 6b 50 f9 ed 0a 0a 0a 39 00 00 00 00 00 00 ..kP.....9......

0030 00 00 00 00 00 00 00 00 00 00 00 00

Packet Metadata
The hex dump file format is a simple way to feed packet data into text2pcap, but it has no
means of providing packet metadata to text2pcap.The minimal metadata that is interesting
includes the time stamp of the arrival of the packet and the data link type, which indicates the
first protocol in the packet. By default, text2pcap will invent a time stamp for the packets, incre-
menting the time stamp by one second.This is a workable, if not elegant solution. text2pcap’s -l
option lets you specify the data link type for all the packets in the hex dump.The libpcap file

290 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 290

format allows one data link type for the entire file; you cannot have packets with different data
link types in the same file.

Table 11.5 shows some of the more useful data link types from libpcap, defined in the pcap-
bpf.h file in the libpcap distribution.These are the values that are passed into text2pcaps with
the -l option.The pcap-bpf.h has many more values defined; read the file to find more if you
need to.

Table 11.5 Some libpcap Data Link Type Values

Value Meaning

1 Ethernet
6 IEEE 802 Networks (Token-Ring)
8 SLIP
9 PPP
10 FDDI
12 Raw IP
14 Raw IP (on OpenBSD)
19 Classical IP over ATM, on Linux
104 Cisco HDLC
107 Frame Relay
120 Aironet link-layer

Suppose your hex dump file is named hex.txt, and the packets have an Ethernet data link
type.The text2pcap command line to convert the hex dump file to a pcap file would be written
as follows:

$ text2pcap -l 1 hex.txt newfile.cap

Or, since Ethernet is the default data link type, the -l 1 can be removed.

$ text2pcap hex.txt newfile.cap

A new file, newfile.cap, is produced and can be loaded into Ethereal as you would any other
capture file.

Swiss Army Knife

Using text2cap for Higher Protocol Layers
The text2pcap tool has options to prepend fake data to each packet. This is useful if
your hex dump shows data at a higher layer than the link layer. The –e, -i, -T, -u, -s,
and –S options prepend dummy Ethernet, IP (Internet Protocol), TCP, UDP (User
Datagram Protocol), and SCTP (Stream Control Transmission Protocol) headers. Both
the –s and –S options prepend SCTP headers in different ways.

Capture File Formats • Chapter 11 291

Continued

332_NSE_11.qxd 7/14/05 11:34 AM Page 291

This functionality is useful for application developers whose programs can save
their socket data as a hex dump to a file. A program that acts as an HTTP (Hypertext
Transfer Protocol) proxy, for example, could save the HTTP data to a hex dump file.
Then text2pcap could prepend a TCP header to each HTTP packet. The packets would
have to be in one direction, going to the server or going to the client, since the
text2pcap command-line indicates source and destination TCP ports. The text2pcap
command line includes the following code:

$ text2pcap –T 2000,80 input.hex output.cap

Converting Other Hex Dump Formats
text2pcap is flexible in its ability to read hex dump files. It skips extra white space and ignores
extra characters. But it does expect the offsets to exist before the data and to be more than two
hex digits long. Sometimes you are presented with a hex dump format that does not meet the
minimum requirements of text2pcap. However, it is simple to write a script to convert your cur-
rent hex dump format to a hex dump format that text2pcap will read. For example, the hex
dump produced by Juniper Network’s NetScreen firewall product is not compatible with
text2pcap because it does not have offsets.The following example was posted to the ethereal-dev
mailing list on October 19, 2004.You can get it from www.ethereal.com/lists/ethereal-
dev/200410/msg00295.html.

13301.0: 0(i):0003ba0f9adf->0010db621640/0800

10.0.33.254->10.0.33.35/1, tlen=84

vhl=45, tos=00, id=59119, frag=4000, ttl=255

icmp:type=8, code=0

00 10 db 62 16 40 00 03 ba 0f 9a df 08 00 45 00

00 54 e6 ef 40 00 ff 01 3d 98 0a 00 21 fe 0a 00

21 23 08 00 30 d1 14 f2 00 00 41 75 40 c1 00 07

44 fc 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15

16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25

26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35

36 37

13301.0: 0(o):0010db621640->0003ba0f9adf/0800

10.0.33.35->10.0.33.254/1, tlen=84

vhl=45, tos=00, id=3662, frag=0000, ttl=64

icmp:type=0, code=0

00 03 ba 0f 9a df 00 10 db 62 16 40 08 00 45 00

00 54 0e 4e 00 00 40 01 15 3b 0a 00 21 23 0a 00

21 fe 00 00 38 d1 14 f2 00 00 41 75 40 c1 00 07

44 fc 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15

16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25

26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35

36 37

The format is almost exactly what text2pcap needs; individual packets are separated by a
blank line and the data bytes are represented by two hex digits.A script can convert this format
to a text2pcap-compatible format if it can provide the offsets to the data lines. We might also
want to throw away the packet information that precedes the actual packet data. Even though

292 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 292

text2pcap will ignore them, there’s a small chance that some packet could have extra information
that looks like packet data, and that would confuse text2pcap.

The program in the following example is a small Python script that will convert the
NetScreen hex dump format to a format that is readable by text2pcap. It uses regular expressions
to find the data lines in the hex dump, and then it counts the hexadecimal pairs in those lines to
produce correct offsets. It prints just the offsets and the data, ignoring the additional packet
information and the ASCII characters to the right of the hex dump.

#!/usr/bin/env python

import sys

import re

This regular expression pattern finds a sequence of

1 - 16 pairs of hexadecimal digits, separated by spaces.

re_hex_line = re.compile(r"(?P<hex>([0-9a-f]{2}){1,16})")

def main():

datalines = []

for line in sys.stdin.xreadlines():

m = re_hex_line.search(line)

if m:

If we see a valid data line, append

it to our list of data lines.

datalines.append(m)

else:

If we don't see a data line, then

check to see if we have already found some

data lines. If so, then we reached the end of

the packet, so print the packet, and reset

the list of datalines.

if datalines:

print_datalines(datalines)

datalines = []

We've reached the end of the file. See if we have

any data lines to print (in the case of an EOF being

reached directly after a packet, instead of finding blank

lines after a packet) and print the packet.

if datalines:

print_datalines(datalines)

def print_datalines(datalines):

offset = 0

for hexgroup in datalines:

Retrieve the substring that has the hex digits.

hexline = hexgroup.group("hex")

Create an array by splitting the substring on

whitspace.

hexpairs = hexline.split()

Capture File Formats • Chapter 11 293

332_NSE_11.qxd 7/14/05 11:34 AM Page 293

Print the data

print "%08x %s" % (offset, hexline)

Increae the offset by the number of bytes

that were represented in the data line.

offset += len(hexpairs)

Print a blank line

print

if __name__ == "__main__":

main()

This is what is produced when the Python script is run.

00000000 00 10 db 62 16 40 00 03 ba 0f 9a df 08 00 45 00

00000010 00 54 e6 ef 40 00 ff 01 3d 98 0a 00 21 fe 0a 00

00000020 21 23 08 00 30 d1 14 f2 00 00 41 75 40 c1 00 07

00000030 44 fc 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15

00000040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25

00000050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35

00000060 36 37

00000000 00 03 ba 0f 9a df 00 10 db 62 16 40 08 00 45 00

00000010 00 54 0e 4e 00 00 40 01 15 3b 0a 00 21 23 0a 00

00000020 21 fe 00 00 38 d1 14 f2 00 00 41 75 40 c1 00 07

00000030 44 fc 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15

00000040 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25

00000050 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35

00000060 36 37

You can then run textpcap on this output and produce a pcap file. Figure 11.1 shows what
that pcap file looks like when loaded in Ethereal.

Figure 11.1 Ethereal Reading the Generated pcap File

294 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 294

Extending Wiretap
A more powerful way to have Ethereal read a new file format is to teach Ethereal how to read it
natively. By integrating this code with Ethereal, you will no longer have to go through the trans-
formation step of running textp2cap before you can read your file.This approach is most useful
if you intend to use Ethereal on your new file format very often.

The Wiretap Library
Ethereal uses a library called wiretap, which comes with the Ethereal source code, to read and
write many packet analyzer file formats. Most people don’t realize that Ethereal uses libpcap only
for capturing packets. It does not use libpcap for reading pcap files. Ethereal’s wiretap library
reads pcap files.The reason wiretap reimplemented the pcap-reading code is that wiretap has to
read many variations of the pcap file format.There are various vendors that have modified the
pcap format, sometimes without explicitly changing the version number inside the file. Wiretap
uses heuristics to determine which format the pcap file is, and it is generally successful.

Wiretap currently reads these file formats (this list is from the Ethereal Web site at
www.ethereal.com/introduction.html):

■ libpcap

■ NAI’s Sniffer (compressed and uncompressed) and Sniffer Pro

■ NetXray

■ Sun snoop and atmsnoop

■ Shomiti/Finisar Surveyor

■ AIX’s iptrace

■ Microsoft’s Network Monitor

■ Novell’s LANalyzer

■ RADCOM’s WAN/LAN Analyzer

■ HP-UX nettl

■ i4btrace from the ISDN4BSD project

■ Cisco Secure IDS iplog

■ pppd log (pppdump-format)

■ The AG Group’s/WildPacket’s EtherPeek/TokenPeek/AiroPeek

■ Visual Networks’ Visual UpTime

■ Lucent/Ascend WAN router traces

■ Toshiba ISDN routers traces

■ VMS’s TCPIPtrace utility’s text output

■ DBS Etherwatch utility for VMS

Capture File Formats • Chapter 11 295

332_NSE_11.qxd 7/14/05 11:34 AM Page 295

Because Wiretap makes use of zlib, a compression library, any of these files can be com-
pressed with gzip, and wiretap will automatically decompress them while reading them. It doesn’t
save the uncompressed version of the file; it decompresses the portion of the file, in memory,
that it is currently reading.

Reverse Engineering a Capture File Format
To teach Ethereal how to read a new file format, you will add a module to the wiretap library.
To do this, you must understand enough of your file format to be able to find the packet data.
It’s easiest, of course, if you have documentation for the file format, or if you designed the file
format yourself. But in the case of a lack of documentation, it is usually relatively easy to reverse
engineer a packet file format, simply because you can examine the packets in the tool that cre-
ated that file. By using the original tool, you know the data in each packet. By creating a hex
dump of the file, you can look for the same packet data.The non-data portion of the packet is
the metadata, part of which you may be able to decode. Not all packet file formats save the
packet data unadulterated. For example, the Sniffer tool can save packets with its own compres-
sion algorithm, which makes reverse engineering a more difficult task. But the great majority of
tools simply save packet data as is.

Understanding Capture File Formats
Commonly, packet trace files have simple formats. First there is a file header that indicates the
type and perhaps version of the file format.Then the packets themselves will follow, each with a
header giving metadata, followed by the packet data shown in the following example:

File Header

Packet #1 Header

Packet #1 Data

Packet #2 Header

Packet #2 Data

Packet #3 Header

Packet #3 Data

etc.

There are sometimes variations that allow different record types to be stored in the file so
that not each record is a packet.These are commonly called TLV format, for type, length, value,
as those are the three fields that are necessary in order to have variable record type and sizes.

The next example shows a TLV capture file format. Usually, by correlating your packet ana-
lyzer’s analysis with the contents of the trace file, you can determine enough of the file format
so that the wiretap library can read the file.

File Header

Record #1 Type

Record #1 Length

Record #1 Value Packet Header and Data

Record #2 Type

Record #2 Length

Record #2 Value Other Data

etc.

296 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 296

As an example of reverse engineering, we take a look at an iptrace file produced on an old
AIX 3 machine. On this operating system there were two programs related to packet capturing.
The iptrace program captured packets into a file.The ipreport program read one of these trace
files and produced a protocol dissection in text format.The first step in reverse engineering the
file format is to produce the protocol dissection so that you know which bytes belong to which
packet.The next example shows the protocol dissection of the first three packets in a trace file.

ETHERNET packet : [08:00:5a:cd:ba:52 -> 00:e0:1e:a6:dc:e8] type 800 (IP)

IP header breakdown:

< SRC = 192.168.225.132 >

< DST = 192.168.129.160 >

ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=20884, ip_off=0

ip_ttl=255, ip_sum=859e, ip_p = 1 (ICMP)

ICMP header breakdown:

icmp_type=8 (ECHO_REQUEST) icmp_id=9646 icmp_seq=0

00000000 383e3911 00074958 08090a0b 0c0d0e0f |8>9...IX........|

00000010 10111213 14151617 18191a1b 1c1d1e1f |................|

00000020 20212223 24252627 28292a2b 2c2d2e2f | !"#$%&'()*+,-./|

00000030 30313233 34353637 |01234567 |

=====(packet received on interface en0)=====Fri Nov 26 07:38:57 1999

ETHERNET packet : [00:e0:1e:a6:dc:e8 -> 08:00:5a:cd:ba:52] type 800 (IP)

IP header breakdown:

< SRC = 192.168.129.160 >

< DST = 192.168.225.132 >

ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=47965, ip_off=0

ip_ttl=251, ip_sum=1fd5, ip_p = 1 (ICMP)

ICMP header breakdown:

icmp_type=0 (ECHO_REPLY) icmp_id=9646 icmp_seq=0

00000000 383e3911 00074958 08090a0b 0c0d0e0f |8>9...IX........|

00000010 10111213 14151617 18191a1b 1c1d1e1f |................|

00000020 20212223 24252627 28292a2b 2c2d2e2f | !"#$%&'()*+,-./|

00000030 30313233 34353637 |01234567 |

=====(packet transmitted on interface en0)=====Fri Nov 26 07:38:58 1999

ETHERNET packet : [08:00:5a:cd:ba:52 -> 00:e0:1e:a6:dc:e8] type 800 (IP)

IP header breakdown:

< SRC = 192.168.225.132 >

< DST = 192.168.129.160 >

ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=20890, ip_off=0

ip_ttl=255, ip_sum=8598, ip_p = 1 (ICMP)

ICMP header breakdown:

icmp_type=8 (ECHO_REQUEST) icmp_id=9646 icmp_seq=1

00000000 383e3912 00074d6c 08090a0b 0c0d0e0f |8>9...Ml........|

00000010 10111213 14151617 18191a1b 1c1d1e1f |................|

00000020 20212223 24252627 28292a2b 2c2d2e2f | !"#$%&'()*+,-./|

00000030 30313233 34353637 |01234567 |

The next step is to produce a hex dump of the packet trace file. It is useful to print this hex
dump to paper so that you can make scribbles on it as you analyze the format.A good tool for
producing hex dumps from a file is xxd, a command-line program that comes with the vim

Capture File Formats • Chapter 11 297

332_NSE_11.qxd 7/14/05 11:34 AM Page 297

editor package available from www.vim.org.As you see in the following line of code, using xxd
is simple:

$ xxd input-file output-file

By default, xxd prints bytes in groups of two.The following code shows these two groups:

0000000: 6970 7472 6163 6520 312e 3000 0000 7838 iptrace 1.0...x8

0000010: 3e39 1100 0000 0065 6e00 0001 4575 1001 >9.....en...Eu..

The following example shows the first 25 lines of the hex dump for the trace file that cor-
responds to the protocol analysis in the preceding example.The offset values were added to the
top of the hex dump after the fact to aid you in reading the data.

offset 00 02 04 06 08 0a 0c 0e

offset 01 03 05 07 09 0b 0d 0f

0000000: 6970 7472 6163 6520 312e 3000 0000 7838 iptrace 1.0...x8

0000010: 3e39 1100 0000 0065 6e00 0001 4575 1001 >9.....en...Eu..

0000020: 4594 5000 0000 0006 0100 e01e a6dc e808 E.P.............

0000030: 005a cdba 5208 0045 0000 5451 9400 00ff .Z..R..E..TQ....

0000040: 0185 9ec0 a8e1 84c0 a881 a008 002c a025,.%

0000050: ae00 0038 3e39 1100 0749 5808 090a 0b0c ...8>9...IX.....

0000060: 0d0e 0f10 1112 1314 1516 1718 191a 1b1c

0000070: 1d1e 1f20 2122 2324 2526 2728 292a 2b2c ... !"#$%&'()*+,

0000080: 2d2e 2f30 3132 3334 3536 3700 0000 7838 -./01234567...x8

0000090: 3e39 1108 000e 0065 6e00 0001 4575 1001 >9.....en...Eu..

00000a0: 4594 5000 0000 0006 0008 005a cdba 5200 E.P........Z..R.

00000b0: e01e a6dc e808 0045 0000 54bb 5d00 00fbE..T.]...

00000c0: 011f d5c0 a881 a0c0 a8e1 8400 0034 a0254.%

00000d0: ae00 0038 3e39 1100 0749 5808 090a 0b0c ...8>9...IX.....

00000e0: 0d0e 0f10 1112 1314 1516 1718 191a 1b1c

00000f0: 1d1e 1f20 2122 2324 2526 2728 292a 2b2c ... !"#$%&'()*+,

0000100: 2d2e 2f30 3132 3334 3536 3700 0000 7838 -./01234567...x8

0000110: 3e39 1200 0000 0065 6e00 0001 4575 1001 >9.....en...Eu..

0000120: 4594 5000 0000 0006 0100 e01e a6dc e808 E.P.............

0000130: 005a cdba 5208 0045 0000 5451 9a00 00ff .Z..R..E..TQ....

0000140: 0185 98c0 a8e1 84c0 a881 a008 0028 8a25(.%

0000150: ae00 0138 3e39 1200 074d 6c08 090a 0b0c ...8>9...Ml.....

0000160: 0d0e 0f10 1112 1314 1516 1718 191a 1b1c

0000170: 1d1e 1f20 2122 2324 2526 2728 292a 2b2c ... !"#$%&'()*+,

0000180: 2d2e 2f30 3132 3334 3536 3700 0000 7838 -./01234567...x8

Finding Packets in the File
The first step is to find the locations of the packet data.The locations are easy to find because
the protocol dissection shows the packet data as hex bytes, and the hex dump shows the same
thing. However, the ipreport protocol dissection is tricky.The hex data shown is not the entire
packet data; it is only the packet payload.The protocol information that the report shows as
header breakdown is not shown in the hex dump in the report.At this point it is important to
realize that these packets are Ethernet packets, and that Ethernet headers, like many link layers,

298 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 298

begin by listing the source and destination Ethernet addresses (also known as hardware addresses,
or MAC addresses). In the case of Ethernet, the destination Ethernet address is listed first, fol-
lowed by the source destination address. Luckily for us, the Ethernet hardware addresses in the
report are represented by sequences of six hex digits.To find the beginning of the packet in our
hex dump, we have to find the sequences of hex digits in Table 11.6.

Table 11.6 Bytes to Look For

Packet Starts with Followed by Soon Followed Ends with
Number (Destination) (Source) by (Payload) (Payload)

1 00:e0:1e:a6:dc:e8 08:00:5a:cd:ba:52 383e3911 00074958 30313233
34353637

2 08:00:5a:cd:ba:52 00:e0:1e:a6:dc:e8 383e3911 00074958 30313233
34353637

3 00:e0:1e:a6:dc:e8 08:00:5a:cd:ba:52 383e3912 00074d6c 30313233
34353637

Searching for these sequences of bytes in the hex dump, we find the offsets listed in
Table 11.7.

Table 11.7 Packet Data Start and End Offsets

Packet Number Data Start Offset Data End Offset

1 0x29 0x8a
2 0xa9 0x10a
3 0x129 0x18a

To determine the size of the packet metadata, we look at the number of bytes preceding
each packet.At first we don’t consider the space before the first packet because we are guessing
that it contains both a file header and a packet header.To calculate the size of the packet header,
we find the difference between the two offsets and subtract 1 because we want the number of
bytes between the offsets, not including either of the offsets.

(Beginning of Packet) - (End of Previous Packet) - 1

From this formula, we see in Table 11.8 that the packet headers for packets 2 and 3 are the
same length.

Table 11.8 Computed Packet Lengths

Between
Packet Numbers Equation (hex) Equation (decimal) Result (decimal)

1 and 2 0xa9 - 0x8a - 1 169 - 138 – 1 30
2 and 3 0x129 - 0x10a - 1 297 - 266 – 1 30

Capture File Formats • Chapter 11 299

332_NSE_11.qxd 7/14/05 11:34 AM Page 299

There are 30 bytes between the packets, so the packet header is probably 30 bytes long.The
initial packet starts at offset 0x29, or 41 decimal. If we guess that the initial packet also has a
packet header of 30 bytes, then the remaining space must be the file header, which will be 11
bytes long (41 - 30 == 11). Our proposed file format is beginning to take shape in Table 11.9.

Table 11.9 File Format Proposal

Item Length

File header 11 bytes
Packet #1 header 30 bytes
Packet #1 data n bytes
Packet #2 header 30 bytes
Packet #2 data n bytes
Packet #3 header 30 bytes
Packet #3 data n bytes

Master Craftsman

Reverse Engineering for text2pcap
Once enough of the file format is reverse engineered so that you know where
packets begin and end, you could write a script that would read the file, pass over
all packet headers, and simply write the packet data to a file in hex dump format.
Then text2pcap could be run on that file, making sure to set the right encapsulation
type via the –l option. The resulting pcap file could then be loaded into Ethereal. This
is a viable option for people who don’t have a development environment set up on
their computer to enable them to re-build Ethereal from sources.

First we attack the file header. What data does our first 11 bytes contain? Look at bytes 0x00
through 0x0a in the hex dump.

offset 00 02 04 06 08 0a 0c 0e

offset 01 03 05 07 09 0b 0d 0f

0000000: 6970 7472 6163 6520 312e 3000 0000 7838 iptrace 1.0...x8

The first 11 bytes of the file are a string giving the tool name and version that created this
file: iptrace 1.0.This type of identifying information is exactly what we would expect to find in
a file header. It lets a tool, like the wiretap library, uniquely identify the format of this file.

Now we must understand the contents of the packet header. We know that four types of
information must be in the packet header.The length of the packet data must exist so that the
ipreport tool can know how much data to read for each packet. In addition, the following data
are in the dissection produced by ipreport, so they must exist in the packet data:

300 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 300

■ Time stamp

■ Interface name

■ Direction (transmit/receive)

We might also expect to find a field that identifies the link layer of the capture, although it
is possible that the ipreport tool could infer this from the name of the interface.The only way
we will determine that, however, is to have an iptrace file for two different link layers.This trace
was made on and Ethernet interface. We would need to have an iptrace file for something else,
like Token-Ring or FDDI (Fiber Distributed Data Interface), to see which field varied along
with the link layer type.

We can organize what we know.Table 11.10 calculates the packet data length by using the
data offsets.This time the equation is as follows:

(End Offset) - (Start Offset) + 1

We add 1 to the difference because we want the number of bytes between the offsets, but
this time we include the offsets in the count. Doing this calculation in Table 11.10, we see that
each byte is 98, or 0x62, bytes long.

Table 11.10 Computed Packet Data Lengths

Answer
Packet Data Data (Hexa- Answer
Number Start Offset End Offset Equation decimal) (Decimal)

1 0x29 0x8a 0x8a - 0x29 + 1 0x62 98
2 0xa9 0x10a 0x10a - 0xa9 + 1 0x62 98
3 0x129 0x18a 0x18a - 0x129 + 1 0x62 98

Table 11.11 shows the packet length and time stamp of each packet.Table 11.12 shows the
header data.

Table 11.11 All Metadata Summarized

Packet Number Data Length Time Stamp Interface Direction

1 0x62 Fri Nov 26 07:38:57 1999 en0 Transmit
2 0x62 Fri Nov 26 07:38:57 1999 en0 Receive
3 0x62 Fri Nov 26 07:38:58 1999 en0 Transmit

Table 11.12 All Packet Header Data Bytes

Packet Number Header Data

1 00 00 00 78 38 3e 39 11 00 00
00 00 65 6e 00 00 01 45 75 10
01 45 94 50 00 00 00 00 06 01

Capture File Formats • Chapter 11 301

Continued

332_NSE_11.qxd 7/14/05 11:34 AM Page 301

Table 11.12 continued All Packet Header Data Bytes

Packet Number Header Data

2 00 00 00 78 38 3e 39 11 08 00
0e 00 65 6e 00 00 01 45 75 10
01 45 94 50 00 00 00 00 06 00

3 00 00 00 78 38 3e 39 12 00 00
00 00 65 6e 00 00 01 45 75 10
01 45 94 50 00 00 00 00 06 01

We can see right away that the packet data length is not represented verbatim in the packet
header. Each packet is 0x62 bytes long, but there is not a 0x62 value in any of the headers.
Unfortunately, these first three packets do not have enough variation in them to make analysis
easy. We must pick some data from another packet that has a different length. We use the same
analysis technique we have used so far to find another packet.An interesting packet later in the
trace file, packet number 7, is shown in the following example:

=====(packet transmitted on interface en0)=====Fri Nov 26 07:39:05 1999

ETHERNET packet : [08:00:5a:cd:ba:52 -> 00:e0:1e:a6:dc:e8] type 800 (IP)

IP header breakdown:

< SRC = 192.168.225.132 >

< DST = 192.168.129.160 >

ip_v=4, ip_hl=20, ip_tos=16, ip_len=44, ip_id=20991, ip_off=0

ip_ttl=60, ip_sum=4847, ip_p = 6 (TCP)

TCP header breakdown:

<source port=4257, destination port=25(smtp) >

th_seq=b6bfbc01, th_ack=0

th_off=6, flags<SYN |>

th_win=16384, th_sum=f034, th_urp=0

00000000 020405b4 |...´ |

offset 00 02 04 06 08 0a 0c 0e

offset 01 03 05 07 09 0b 0d 0f

0000300: 2d2e 2f30 3132 3334 3536 3700 0000 5238 -./01234567...R8

0000310: 3e39 1900 0000 0065 6e00 0001 4575 1001 >9.....en...Eu..

0000320: 4594 5000 0000 0006 0100 e01e a6dc e808 E.P.............

0000330: 005a cdba 5208 0045 1000 2c51 ff00 003c .Z..R..E..,Q...<

0000340: 0648 47c0 a8e1 84c0 a881 a010 a100 19b6 .HG.............

0000350: bfbc 0100 0000 0060 0240 00f0 3400 0002`.@..4...

0000360: 0405 b400 0000 0000 5238 3e39 1908 000eR8>9....

To be sure, we also find another interesting packet, packet 10, shown in the next example.
It’s important to use packets that have lengths that vary, to make it easier to determine which
field in the packet header indicates length.

=====(packet received on interface en0)=====Fri Nov 26 07:39:05 1999

ETHERNET packet : [00:e0:1e:a6:dc:e8 -> 08:00:5a:cd:ba:52] type 800 (IP)

IP header breakdown:

< SRC = 192.168.129.160 >

< DST = 192.168.225.132 >

302 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 302

ip_v=4, ip_hl=20, ip_tos=0, ip_len=60, ip_id=48148, ip_off=0(don't fragment)

ip_ttl=60, ip_sum=9e31, ip_p = 6 (TCP)

TCP header breakdown:

<source port=1301, destination port=113(auth) >

th_seq=eeb744f6, th_ack=0

th_off=10, flags<SYN |>

th_win=32120, th_sum=ab9a, th_urp=0

00000000 020405b4 0402080a 0151fff8 00000000 |...´.....Q.ø....|

00000010 01030300 |.... |

offset 00 02 04 06 08 0a 0c 0e

offset 01 03 05 07 09 0b 0d 0f

0000410: f600 0000 0000 0000 0000 0000 6038 3e39`8>9

0000420: 1908 000e 0065 6e00 0001 4575 1001 4594en...Eu..E.

0000430: 5000 0000 0006 0008 005a cdba 5200 e01e P........Z..R...

0000440: a6dc e808 0045 0000 3cbc 1440 003c 069eE..<..@.<..

0000450: 31c0 a881 a0c0 a8e1 8405 1500 71ee b744 1...........q..D

0000460: f600 0000 00a0 027d 78ab 9a00 0002 0405}x.......

0000470: b404 0208 0a01 51ff f800 0000 0001 0303Q.........

0000480: 0000 0000 5238 3e39 1900 0000 0065 6e00R8>9.....en.

Looking at the hex dumps we see the string en in the ASCII shown to the right. Because
en0 is the name of the interface for each packet, our suspicion is that bytes 13 and 14 are
involved with recording the interface name. However, the number of the interface, 0 for en0, is
not visible in the ASCII. Perhaps the hex values after en, or byte 15, is the number of the inter-
face. It would require more packet capture files, with varying interface names and numbers to
confirm this suspicion.

The analysis of the data locations and size calculation is not shown, but the results, showing
the first three packets, and packets 7 and 10, are shown in Table 11.13.The header data is sum-
marized in Table 11.14.

Table 11.13 All Metadata Summarized

Packet Number Data Length Time Stamp Interface Direction

1 0x62 Fri Nov 26 07:38:57 1999 en0 Transmit
2 0x62 Fri Nov 26 07:38:57 1999 en0 Receive
3 0x62 Fri Nov 26 07:38:58 1999 en0 Transmit
7 0x3c Fri Nov 26 07:39:05 1999 en0 Transmit
10 0x4a Fri Nov 26 07:39:05 1999 en0 Receive

Table 11.14 All Packet Header Data Bytes

Packet Number Header Data

1 00 00 00 78 38 3e 39 11 00 00
00 00 65 6e 00 00 01 45 75 10
01 45 94 50 00 00 00 00 06 01

Capture File Formats • Chapter 11 303

Continued

332_NSE_11.qxd 7/14/05 11:34 AM Page 303

Table 11.14 continued All Packet Header Data Bytes

Packet Number Header Data

2 00 00 00 78 38 3e 39 11 08 00
0e 00 65 6e 00 00 01 45 75 10
01 45 94 50 00 00 00 00 06 00

3 00 00 00 78 38 3e 39 12 00 00
00 00 65 6e 00 00 01 45 75 10
01 45 94 50 00 00 00 00 06 01

7 00 00 00 52 38 3e 39 19 00 00
00 00 65 6e 00 00 01 45 75 10
01 45 94 50 00 00 00 00 06 01

10 00 00 00 60 38 3e 39 19 08 00
0e 00 65 6e 00 00 01 45 75 10
01 45 94 50 00 00 00 00 06 00

Immediately some interesting facts show themselves.Table 11.15 shows that byte 8 in the
header differs between each packet by the number of seconds that differ between the time
stamps in each packet.There’s a good chance byte 8 is involved in recording the time stamp.

Table 11.15 Time Stamp Differences

Packet Time Stamp Seconds Since
Previous Time Stamp Byte 8 Difference

1 Fri Nov 26 07:38:57 1999 n/a 0x11 n/a
2 Fri Nov 26 07:38:57 1999 0 0x11 0
3 Fri Nov 26 07:38:58 1999 1 0x12 1
7 Fri Nov 26 07:39:05 1999 7 0x19 7
10 Fri Nov 26 07:39:05 1999 0 0x19 0

Table 11.16 shows that the last byte in the header, byte 30, toggles between 0x00 and 0x01,
with the same pattern of the transmit and receive values.

Table 11.16 Direction Values

Packet Direction Byte 30

1 Transmit 01
2 Receive 00
3 Transmit 01
7 Transmit 01
10 Receive 00

Byte 4 in the header is the same for the first three packets, but different for the last packets.
The difference between the values in byte 4 is the same as the difference between the packet
data lengths (Table 11.17).

304 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 304

Table 11.17 Length Field Differences

Difference
from Previous Difference from

Packet Data Length Data Length Byte 4 Previous Byte 4

1 0x62 n/a 0x78 n/a
2 0x62 0 0x78 0
3 0x62 0 0x78 0
7 0x3c -0x26 0x52 -0x26
10 0x4a 0xe 0x60 0xe

The difference between byte 4 values is constant, in the same way that the difference
between data lengths is constant. It appears that that byte 4 encodes the packet data length as the
data length plus some constant:

(Data Length) + (Some Unknown Constant) = (Value of Byte 4)

To find the unknown constant, simply subtract the value of byte 4 from the packet data
length for each packet (see Table 11.18):

(Some Unknown Constant) = (Value of Byte 4) - (Data Length)

Table 11.18 Data Length Constant Calculations

Packet Byte 4 Value Data Length Calculated Constant

1 0x78 0x62 0x16
2 0x78 0x62 0x16
3 0x78 0x62 0x16
7 0x52 0x3c 0x16
10 0x60 0x4a 0x16

Our suspicion is confirmed. Byte 4 stores the length of the packet data, plus 0x16.Table
11.19 shows what we know so far of the format of the packet header.

Table 11.19 Packet Header Information

Byte(s) Use

4 Data length + 0x16
8 Time stamp
13 – 14 Interface name
30 Direction

To further map out the format of the packet header, we need to remember how computers
store integer values. Each byte can hold 256 values, from 0x00 to 0xff, or 0 to 255.To count
higher than 255, a number has to be stored in multiple bytes.Table 11.20 shows the number of
values that a particular number of bytes can represent.

Capture File Formats • Chapter 11 305

332_NSE_11.qxd 7/14/05 11:34 AM Page 305

Table 11.20 Integer Sizes

Bytes Formula Number of Values

1 28 256
2 216 65,536
3 224 16,777,216
4 232 4,294,967,296

Since packets can have more than 256 bytes of data, we know that byte 4 in the packet
header cannot be the only byte that is used to represent the length of the packet. Furthermore, it
is easy to see from the hex dumps that bytes 5 through 7 have a nonzero value that seems to be
constant across packets.Those bytes seem to be part of a number whose last byte, byte 8, varies
with the number of seconds.These facts, plus the fact that we know that using 4 bytes to repre-
sent an integer is very common because many processors are 32-bit CPUs, where 32-bits means
4 bytes, allows us to guess the following field lengths in Table 11.21.

Table 11.21 Hypothesized Field Lengths

Bytes Use

1 – 4 Data length
5 – 8 Time stamp

Table 11.22 focuses in on those bytes in the sample packets.

Table 11.22 Length and Time Stamp Bytes

Packet Data Length Time Stamp Header Bytes 1-8

1 0x62 Fri Nov 26 07:38:57 1999 00 00 00 78
38 3e 39 11

2 0x62 Fri Nov 26 07:38:57 1999 00 00 00 78
38 3e 39 11

3 0x62 Fri Nov 26 07:38:58 1999 00 00 00 78
38 3e 39 12

7 0x3c Fri Nov 26 07:39:05 1999 00 00 00 52
38 3e 39 19

10 0x4a Fri Nov 26 07:39:05 1999 00 00 00 60
38 3e 39 19

If bytes 1 through 4 represent a single 32-bit (4-byte) integer, then we can tell that the
integer is big endian.This shouldn’t come as a surprise to us, as the PowerPC processors that run
AIX are big-endian CPUs.To understand the term big endian and its opposite, little endian, you
must understand how computers store multiple-byte integers into memory.A 32-bit number
0x78, can be stored in memory in two ways, shown in Table 11.23.

306 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 306

Table 11.23 0x78 Stored Two Ways

Number Big Endian Little Endian

0x78 00 00 00 78 78 00 00 00

Choosing a big endian representation in our file format makes bytes 1 through 4 work for
us.To be sure, you must find a packet that has more than 256 bytes of data in it and see what
bytes 1 through 4 look like.An example won’t be shown here, but suffice it to say that our
hypothesis is correct.Applying that fact to bytes 5 through 8, we surmise that the time stamps
are also big-endian integers, shown in Table 11.24.

Table 11.24 Time Stamp Integers

Packet Time Stamp Header Bytes 5-8 Big Endian Integer

1 Fri Nov 26 07:38:57 1999 38 3e 39 11 943,601,937
2 Fri Nov 26 07:38:57 1999 38 3e 39 11 943,601,937
3 Fri Nov 26 07:38:58 1999 38 3e 39 12 943,601,938
7 Fri Nov 26 07:39:05 1999 38 3e 39 19 943,601,945
10 Fri Nov 26 07:39:05 1999 38 3e 39 19 943,601,945

It is obvious that the 4-byte integer that represents the time stamp is an offset from some
time in the past. Since the ipreport analysis of the iptrace file suggests that the time resolution is
only 1 second, and our integer value indicates one-second differences, the time stamp integer
must represent the number of seconds since some beginning point in time.The C library has
routines to store as the number of seconds since the Epoch, which is 00:00:00 UTC, January 1,
1970. Our first guess as to what time zero in the iptrace file is should be the C library Epoch,
because iptrace runs on UNIX computers, and they use the C library.To test this hypothesis, we
will use a small program that loads the time stamp value from packet 1 into a variable and runs
the C library ctime command to see the character representation of the time stamp.

#include <stdio.h>

#include <time.h>

int

main(void)

{

char *text;

time_t ts;

ts = 0x383e3911;

text = ctime(&ts);

printf("%u is %s\n", ts, text);

return 0;

}

Capture File Formats • Chapter 11 307

332_NSE_11.qxd 7/14/05 11:34 AM Page 307

Running this program returns a result that is almost the expected value:

$./test-timestamp

943601937 is Fri Nov 26 01:38:57 1999

You have to be sure to set your time zone to UTC.The ctime function reports a perfect
match in that case:

$ TZ=UTC ./test-timestamp

943601937 is Fri Nov 26 07:38:57 1999

Luckily for us, the iptrace time stamp is compatible with the C library time_t value. It’s the
number of seconds since the Epoch.That will make writing our wiretap module to read iptrace
files that much easier.

Adding a Wiretap Module
Ethereal uses the wiretap library to read a capture file in three distinct steps. Its useful to know
that Ethereal keeps metadata from all packets in memory, but the packet data is only read when
needed.That’s why the wiretap module must provide the ability to read a packet capture file in a
random-access fashion:

1. The capture file is opened. Wiretap determines the file type.

2. Ethereal reads through all packets sequentially, recording metadata for each packet. If
color filters or read filters are set, the packet data is dissected at this time, too.

3. As the user selects packets in the GUI (graphical user interface), in a random access
fashion, Ethereal will ask wiretap to read that packet’s data.

To add a new file format to the wiretap library, you create a new C file in the wiretap direc-
tory of the Ethereal source distribution.This new wiretap module plugs into wiretap’s mecha-
nism for detecting file types.The new module is responsible for being able to recognize the file
format by reading a few bytes from the beginning of the file.The wiretap library distinguishes
file formats by examining the contents at the beginning of the file, instead of using a superficial
method like using a file name suffix as a key to the file type.

To start, add a new file type macro to the list of WTAP_FILE macros in the wtap.h file.
Choose a name that is related to your file, and set its value to be one greater than the last
WTAP_FILE macro.Also increase the value of WTAP_NUM_FILE_TYPES by one.

The module_open Function
In your new module, write a routine for detecting the file type.The functions in your new
module should be prefixed with a name that distinguishes your module from others.The func-
tion that detects file types is called the open function in wiretap, so your module’s open function
should be named module_open, where module is the prefix you choose for the functions. For
example, the functions in the iptrace.c wiretap module are prefixed with the name iptrace.

You should have a module.h file that gives the prototype for your open function.To plug your
new module into wiretap, you must modify the file_access.c file in wiretap. First #include your
module.h file from file_accesss.c.Then add your module’s open routine to the array open_routines.

308 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 308

The comments inside that array identify two sections to the array.The first part of the list has the
modules that look for identifying values at fixed locations in the file.The second part of the list has
modules that scan the beginning of the file looking for certain identifying values somewhere in the
file.You should list your module’s open routine in the appropriate section.

Then modify the dump_open_table array in file_access.c. It contains, in order, names and
pointers for each file format.The structure is as follows:

const char *name;

const char *short_name;

int (*can_write_encap)(int);

int (*dump_open)(wtap_dumper *, gboolean, int *);

The name field gives a long descriptive name that is useful in a GUI.The short_name field
gives a short unique name that is useful in a command-line-based program.The can_write_encap
and dump_open functions are used if your wiretap module can write files.This chapter won’t
describe writing files, as the intent is to have wiretap read new file formats. But if you are
extending your wiretap module to write files, the can_write_encap function lets Ethereal know if
your file format can handle a particular encapsulation type.The dump_open function is the func-
tion in your module that opens a file for writing.

Your open routine has this function prototype:

int module_open(wtap *wth, int *err, gchar **err_info);

The return value of module_open is one of three values (see Table 11.25).

Table 11.25 module_open Return Values

Value Meaning

-1 An I/O error occurred. Wiretap will discontinue trying to read the file.
0 No I/O error occurred, but the file is not of the right format.
1 The file format is correct for this module.

The wtap struct is the data structure that wiretap uses to store data about a capture file.The
err variable is for your function to return error codes to the program that called wiretap.The
err_info variable is the way for the error code returned in err to be accompanied by additional
information.

The layout of the wtap struct is as follows:

struct wtap {

FILE_T fh;

int fd; /* File descriptor for cap file */

FILE_T random_fh; /* Secondary FILE_T for random access */

int file_type;

int snapshot_length;

struct Buffer *frame_buffer;

struct wtap_pkthdr phdr;

union wtap_pseudo_header pseudo_header;

long data_offset;

Capture File Formats • Chapter 11 309

332_NSE_11.qxd 7/14/05 11:34 AM Page 309

union {

libpcap_t *pcap;

lanalyzer_t *lanalyzer;

ngsniffer_t *ngsniffer;

i4btrace_t *i4btrace;

nettl_t *nettl;

netmon_t *netmon;

netxray_t *netxray;

ascend_t *ascend;

csids_t *csids;

etherpeek_t *etherpeek;

airopeek9_t *airopeek9;

erf_t *erf;

void *generic;

} capture;

subtype_read_func subtype_read;

subtype_seek_read_func subtype_seek_read;

void (*subtype_sequential_close)(struct wtap*);

void (*subtype_close)(struct wtap*);

int file_encap; /* per-file, for those

file formats that have

per-file encapsulation

types */

};

When wiretap is attempting to identify a capture file format, it will call all the functions listed
in the open_routines array in file_access.c.When your module_open function is called, it will be able
to use the fh member of the wtap struct. It is an open file handle set at the beginning of the file.
The FILE_T type is a special file handle type. It is used like the C library FILE type, but if
Ethereal, and thus wiretap, is linked with the zlib compression library, which it normally is, then the
FILE_T type gives wiretap the ability to read compressed files.The zlib compression library
decompresses the file on the fly, passing decompressed chunks to wiretap.The functions to use
FILE_T types are similar to those for using FILE types, but the functions are prefixed with file_
instead of f.These functions are listed in file_wrappers.h, and are summarized in Table 11.26.

Table 11.26 FILE_T Functions

stdio FILE function Wiretap FILE_T function

open file_open
dopen filed_open
seek file_seek
read file_read
write file_write
close file_close
tell file_tell
getc file_getc

310 Chapter 11 • Capture File Formats

Continued

332_NSE_11.qxd 7/14/05 11:34 AM Page 310

Table 11.26 continued FILE_T Functions

stdio FILE function Wiretap FILE_T function

gets file_gets
eof file_eof
n/a file_error

The file_error function is specific to wiretap. It returns a wiretap error code for an I/O
(input/output) stream. If no error has occurred, it returns 0. If a file error occurs, an errno value
is returned.Any other error causes file_error to return a WTAP_ERR code, which is defined in
wtap.h.

To read the iptrace 1.0 file format, for example, the first 11 bytes of the file must be read
and compared with the string iptrace 1.0.That’s easy.The more difficult part is remembering to
check for errors while reading the file and to set all appropriate error-related variables.To be
safe, use the standard boilerplate code that sets errno, calls file_read, then checks for either an error
condition or simply the fact that the file was too small to contain the requested number of bytes.

/* Sets errno in case we return an error */

errno = WTAP_ERR_CANT_READ;

/* Read 'num_recs' number of records, each 'rec_size' bytes long. */

bytes_read = file_read(destination, rec_size, num_recs, wth->fh);

/* If we didn't get 'size' number of bytes... */

if (bytes_read != size) {

*err = file_error(wth->fh);

/* ...if there was an error, return -1 */

if (*err != 0)

return -1;

/* ...otherwise, the file simply didn't have 'size' number of bytes.

It can't be our file format, so return 0. */

return 0;

}

To see how this works in practice, the following example shows how iptrace_open would
look. Notice how the data_offset member of wtap is incremented after the call to file_read.The
data_offset variable will be used during the sequential read of the capture file. If iptrace_open
detects that the file is an iptrace 1.0 file, then three members of the wtap struct are set: file_type,
subtype_read, and subtype_seek_read.

#define IPTRACE_VERSION_STRING_LENGTH 11

int

iptrace_open(wtap *wth, int *err, gchar **err_info)

{

int bytes_read;

char name[12];

errno = WTAP_ERR_CANT_READ;

bytes_read = file_read(name, 1, IPTRACE_VERSION_STRING_LENGTH, wth->fh);

Capture File Formats • Chapter 11 311

332_NSE_11.qxd 7/14/05 11:34 AM Page 311

if (bytes_read != IPTRACE_VERSION_STRING_LENGTH) {

*err = file_error(wth->fh);

if (*err != 0)

return -1;

return 0;

}

wth->data_offset += IPTRACE_VERSION_STRING_LENGTH;

name[IPTRACE_VERSION_STRING_LENGTH] = 0;

if (strcmp(name, "iptrace 1.0") == 0) {

wth->file_type = WTAP_FILE_IPTRACE_1_0;

wth->subtype_read = iptrace_read;

wth->subtype_seek_read = iptrace_seek_read;

wth->file_encap = WTAP_ENCAP_PER_PACKET;

}

else {

return 0;

}

return 1;

}

Some capture file formats allow each packet to have a separate link layer, or encapsulation
type. Other file formats allow only one type per file. Since the interface name is given in the
packet header in the iptrace file format that we investigated, the encapsulation type in this file
format is per-packet. So we set the file encapsulation type to WTAP_ENCAP_PER_PACKET
to indicate that.

The module_read Function
The subtype_read function is used when the capture file is initially opened. Ethereal will read all
packet records in the capture file, sequentially.The subtype_seek_read function is the random
access function that is called when an Ethereal user selects a packet in the GUI.

The following code represents the subtype_read function prototype:

static gboolean

module_read(wtap *wth, int *err, gchar **err_info, long *data_offset);

The first three arguments are the same as in module_open.The long* data_offset argument is
the way for module_read to send the offset of the packet record to Ethereal. It should point to the
packet’s record, including metadata, within the capture file.This offset will be passed to the
random access function later, if the user selects the packet in the GUI.

Additional metadata about the packet is returned to Ethereal via the phdr member of the
wtap struct.The phdr, or packet header, member is a wtap_pkthdr struct. Its definition is as follows:

struct wtap_pkthdr {

struct timeval ts; /* Timestamp */

guint32 caplen; /* Bytes captured in file */

guint32 len; /* Bytes on wire */

int pkt_encap; /* Encapsulation (link-layer) type */

};

312 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 312

The time stamp value records when the packet was recorded.The timeval struct that is used
is defined in system header files as a two-member struct, recording seconds and microseconds.

struct timeval {

int32_t tv_sec; /* seconds since Epoch */

int32_t tv_usec; /* microseconds since second*/

};

The caplen member represents how many bytes of the packet are present in the capture file.
This value will be less than or equal to the len value, which is the number of bytes of the packet
present on the wire.The reason for two separate length values is that some tools, like tcpdump,
allow you to capture only a portion of the packet.This is useful if you want to capture many
packets, but only need the first few bytes of them, perhaps to analyze TCP headers, but not the
payload.

The pkt_encap variable signifies the first protocol in the packet payload.This can be called
the link layer, or more generally, the encapsulation type.This value should be a WTAP_ENCAP
value.These are defined in wtap.h.The pkt_encap value is the value that Ethereal uses to begin
dissection of the packet data.

The module_read function returns TRUE if a packet was read, or FALSE if not.A FALSE
may be returned on an error, or if the end of a file has been reached.

A module_read function template looks like this:

/* Read the next packet */

static gboolean

module_read(wtap *wth, int *err, gchar **err_info,

long *data_offset)

{

/* Set the data offset return value */

*data_offset = wth->data_offset;

/* Read the packet header */

/* Read the packet data */

/* Set the phdr metadata values */

return TRUE;

}

To handle reading the packet header and data, a helper function will be used that reads data
and sets the error codes appropriately.This function returns -1 on an error, 0 on end of file, and
1 on success.

static int

iptrace_read_bytes(FILE_T fh, guint8 *dest, int len, int *err)

{

int bytes_read;

errno = WTAP_ERR_CANT_READ;

bytes_read = file_read(dest, 1, len, fh);

if (bytes_read != len) {

*err = file_error(fh);

if (*err != 0)

Capture File Formats • Chapter 11 313

332_NSE_11.qxd 7/14/05 11:34 AM Page 313

return -1;

if (bytes_read != 0) {

*err = WTAP_ERR_SHORT_READ;

return -1;

}

return 0;

}

return 1;

}

Then we define some helpful macros values to aid in reading the iptrace packet
header.

#define IPTRACE_1_0_PHDR_LENGTH_OFFSET 0

#define IPTRACE_1_0_PHDR_TVSEC_OFFSET 4

#define IPTRACE_1_0_PHDR_IF_NAME_OFFSET 12

#define IPTRACE_1_0_PHDR_DIRECTION_OFFSET 29

#define IPTRACE_1_0_PHDR_SIZE 30

#define IPTRACE_1_0_PHDR_LENGTH_CONSTANT 0x16

#define ASCII_e 0x65

#define ASCII_n 0x6e

We define the offset macros instead of defining a struct, which corresponds to the packet
header because the architecture of the machine that is reading the iptrace file may not be the
same as that of the machine that wrote the file.You never know what the compiler is going to
do to your struct with regards to field alignments. It’s safer to pull the values out of the header
one by one than trying to align a struct to the header layout.

To read the packet header, our function evolves to the following:

/* Read the next packet */

static gboolean

iptrace_read(wtap *wth, int *err, gchar **err_info,

long *data_offset)

{

int ret;

guint8 header[IPTRACE_1_0_PHDR_SIZE];

/* Set the data offset return value */

*data_offset = wth->data_offset;

/* Read the packet header */

ret = iptrace_read_bytes(wth->fh, header,

IPTRACE_1_0_PHDR_SIZE, err);

if (ret <= 0) {

/* Read error or EOF */

return FALSE;

}

wth->data_offset += IPTRACE_1_0_PHDR_SIZE;

/* Read the packet data */

314 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 314

/* Set the phdr metadata values */

return TRUE;

}

Now that the packet header has been read into the header array, we can read the packet length
from the header.To convert the series of 4 bytes, arranged in big endian order, also known as net-
work order, use the pntohl macro.The letters pntohl stand for pointer, network to host, long. By
long, the macro means 32 bits, or 4 bytes.The abbreviations used to name the macros are listed in
Table 11.27.The collection of macros in wtap-int.h is summarized in Table 11.28.

Table 11.27 Pointer-to-Integer Macro Abbreviations

Abbreviation Meaning

p Pointer
n Network order, big endian
le Little endian
to “to”
h Host order, usable by the host CPU
s Short, 2 bytes
24 24 bytes, or 3 bytes
l Long, 4 bytes
ll Double long, 8 bytes

Table 11.28 Pointer-to-Integer Macros

Bytes Big Endian Little Endian

2 pntohs pletohs
3 pntoh24 pletoh24
4 pntohl pletohl
8 pntohll pletohll

To extend our read function to read packet data, we convert the packet length with pntohl,
subtract the constant 0x16 that is added to the length, and read that number of bytes.The bytes
for the packet data are read into the frame_buffer member of the wtap struct.The frame_buffer
member is a Buffer struct, a resizable array of bytes that is part of the wiretap library.To deal with
the frame_buffer, you need to know only two functions (see Table 11.29).

Table 11.29 Buffer Functions

Function Use

buffer_assure_space Ensures that there’s enough free space in the buffer for new data
of a known length to be copied to it.

buffer_start_ptr Returns the pointer where you can start copying data into it.

Capture File Formats • Chapter 11 315

332_NSE_11.qxd 7/14/05 11:34 AM Page 315

Combining the pointer-to-integer macros and the buffer function calls, our iptrace_read func-
tion can now read data.

/* Read the next packet */

static gboolean

iptrace_read(wtap *wth, int *err, gchar **err_info,

long *data_offset)

{

int ret;

guint8 header[IPTRACE_1_0_PHDR_SIZE];

guint32 packet_len;

guint8 *data_ptr;

/* Set the data offset return value */

*data_offset = wth->data_offset;

/* Read the packet header */

ret = iptrace_read_bytes(wth->fh, header,

IPTRACE_1_0_PHDR_SIZE, err);

if (ret <= 0) {

/* Read error or EOF */

return FALSE;

}

wth->data_offset += IPTRACE_1_0_PHDR_SIZE;

/* Read the packet data */

packet_len = pntohl(&header[IPTRACE_1_0_PHDR_LENGTH_OFFSET]) -

IPTRACE_1_0_PHDR_LENGTH_CONSTANT;

buffer_assure_space(wth->frame_buffer, packet_len);

data_ptr = buffer_start_ptr(wth->frame_buffer);

ret = iptrace_read_bytes(wth->fh, data_ptr, packet_len, err);

if (ret <= 0) {

/* Read error or EOF */

return FALSE;

}

wth->data_offset += packet_len;

/* Set the phdr metadata values */

return TRUE;

}

Finally, the metadata is set in the phdr member of the wtap struct. Because the iptrace file
doesn’t distinguish between the number of bytes originally in a packet and the number of bytes
captured from the packet, the len and caplen values are set to the same value. We haven’t investi-
gated enough iptrace files to fully know how the encapsulation type is encoded, but so far we
know that if the interface name begins with en then the encapsulation type is Ethernet. In the
future, when we investigate iptrace files of other encapsulation types, we can refine the
iptrace_read function.The following example shows the final evolution of the iptrace_read func-
tion. Notice how we can set the time stamp value without any modification because the time

316 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 316

stamp is already the integer number of seconds since the C library Epoch.The iptrace file does
not have microsecond resolution, so tv_usec is set to 0.

/* Read the next packet */

static gboolean

iptrace_read(wtap *wth, int *err, gchar **err_info,

long *data_offset)

{

int ret;

guint8 header[IPTRACE_1_0_PHDR_SIZE];

guint32 packet_len;

guint8 *data_ptr;

/* Set the data offset return value */

*data_offset = wth->data_offset;

/* Read the packet header */

ret = iptrace_read_bytes(wth->fh, header,

IPTRACE_1_0_PHDR_SIZE, err);

if (ret <= 0) {

/* Read error or EOF */

return FALSE;

}

wth->data_offset += IPTRACE_1_0_PHDR_SIZE;

/* Read the packet data */

packet_len = pntohl(&header[IPTRACE_1_0_PHDR_LENGTH_OFFSET]) -

IPTRACE_1_0_PHDR_LENGTH_CONSTANT;

buffer_assure_space(wth->frame_buffer, packet_len);

data_ptr = buffer_start_ptr(wth->frame_buffer);

ret = iptrace_read_bytes(wth->fh, data_ptr, packet_len, err);

if (ret <= 0) {

/* Read error or EOF */

return FALSE;

}

wth->data_offset += packet_len;

/* Set the phdr metadata values */

wth->phdr.len = packet_len;

wth->phdr.caplen = packet_len;

wth->phdr.ts.tv_sec = pntohl(&header[IPTRACE_1_0_PHDR_TVSEC_OFFSET]);

wth->phdr.ts.tv_usec = 0;

if (header[IPTRACE_1_0_PHDR_IF_NAME_OFFSET] == ASCII_e &&

header[IPTRACE_1_0_PHDR_IF_NAME_OFFSET+1] == ASCII_n) {

wth->phdr.pkt_encap = WTAP_ENCAP_ETHERNET;

}

else {

/* Unknown encapsulation type */

wth->phdr.pkt_encap = WTAP_ENCAP_UNKNOWN;

Capture File Formats • Chapter 11 317

332_NSE_11.qxd 7/14/05 11:34 AM Page 317

}

return TRUE;

}

The module_seek_read Function
The subtype_seek_read function in a module provides the means for Ethereal to request a specific
packet in the capture file.The prototype for the subtype_seek_read function is substantially dif-
ferent from that of the subtype_read function.

static gboolean

module_seek_read(wtap *wth, long seek_off,

union wtap_pseudo_header *pseudo_header, guchar *pd, int packet_size,

int *err, gchar **err_info);

Table 11.30 lists the meanings of those arguments.

Table 11.30 subtype_seek_read Arguments

Argument Meaning

wth The wtap struct that represents the file.
seek_off The offset of the packet record that is being requested.
pseudo_header A structure that holds additional data for some encapsulation types

that have to send more information to Ethereal.
pd The byte array where the packet data should be copied.
packet_size The size of the packet data. This was recorded during the run of the

subtype_read function.
err Means to pass error condition to caller.
err_info Means to pass error string to caller.

The return value of module_seek_read is either TRUE or FALSE, indicating success or failure.
A module_seek_read function template looks like this.

/* Seek and read a packet */

static gboolean

module_seek_read(wtap *wth, long seek_off,

union wtap_pseudo_header *pseudo_header, guchar *pd, int packet_size,

int *err, gchar **err_info);

{

/* Seek to the proper file offset */

/* Read the packet header if necessary */

/* Read the packet data */

/* Fill in the pseudo_header, if necessary */

return TRUE;

}

In the module_seek_read function, the random_fh FILE_T variable is used instead of the fh
FILE_T variable.This allows the user to select packets to look at while Ethereal is also capturing

318 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 318

packets and updating its GUI to show them.The functions for reading from random_fh are the
same as those for reading from fh.This code shows how we seek and read.

/* Seek and read a packet */

static gboolean

iptrace_seek_read(wtap *wth, long seek_off,

union wtap_pseudo_header *pseudo_header, guchar *pd, int packet_size,

int *err, gchar **err_info)

{

int ret;

guint8 header[IPTRACE_1_0_PHDR_SIZE];

int pkt_encap;

/* Seek to the proper file offset */

if (file_seek(wth->random_fh, seek_off, SEEK_SET, err) == -1)

return FALSE;

/* Read the packet header if necessary. We need to read it to find

the encapsulation type for this packet. */

ret = iptrace_read_bytes(wth->random_fh, header,

IPTRACE_1_0_PHDR_SIZE, err);

if (ret <= 0) {

/* Read error or EOF */

if (ret == 0) { /* EOF */

*err = WTAP_ERR_SHORT_READ;

}

return FALSE;

}

/* Read the encapsulation type.

if (header[IPTRACE_1_0_PHDR_IF_NAME_OFFSET] == ASCII_e &&

header[IPTRACE_1_0_PHDR_IF_NAME_OFFSET+1] == ASCII_n) {

pkt_encap = WTAP_ENCAP_ETHERNET;

}

else {

/* Unknown encapsulation type */

return FALSE;

}

/* Read the packet data. We'll use 'packet_size' instead of

retrieving the packet length from the packet header. */

ret = iptrace_read_bytes(wth->random_fh, pd, packet_size, err);

if (ret <= 0) {

/* Read error or EOF */

if (ret == 0) { /* EOF */

*err = WTAP_ERR_SHORT_READ;

}

return FALSE;

}

/* Fill in the pseudo_header, if necessary */

Capture File Formats • Chapter 11 319

332_NSE_11.qxd 7/14/05 11:34 AM Page 319

return TRUE;

}

Wiretap’s pseudo-header mechanism allows the encapsulation protocol to return additional
information to Ethereal.The definition of the wtap_pseudo_header union, in wtap.h, lists the dif-
ferent encapsulations that have such additional information.

union wtap_pseudo_header {

struct eth_phdr eth;

struct x25_phdr x25;

struct isdn_phdr isdn;

struct atm_phdr atm;

struct ascend_phdr ascend;

struct p2p_phdr p2p;

struct ieee_802_11_phdr ieee_802_11;

struct cosine_phdr cosine;

struct irda_phdr irda;

};

The Ethernet protocol has a pseudo-header.That pseudo header struct is also defined in
wtap.h.

/* Packet "pseudo-header" information for Ethernet capture files. */

struct eth_phdr {

gint fcs_len; /* Number of bytes of FCS - -1 means "unknown" */

};

The FCS (frame check sequence) bytes are extra bytes that are added to the actual transmis-
sion over the Ethernet cable to detect transmission errors. In most cases the host operating
system strips those bytes before the packet analyzer program sees them, but some packet ana-
lyzers do record the FCS bytes.The Ethernet pseudo-header lets Ethereal know if there are any
of these extra bytes.The iptrace file does not contain them, so we must set fcs_len to 0.The fol-
lowing example shows the final version of iptrace_seek_read:

/* Seek and read a packet */

static gboolean

iptrace_seek_read(wtap *wth, long seek_off,

union wtap_pseudo_header *pseudo_header, guchar *pd, int packet_size,

int *err, gchar **err_info)

{

int ret;

guint8 header[IPTRACE_1_0_PHDR_SIZE];

int pkt_encap;

/* Seek to the proper file offset */

if (file_seek(wth->random_fh, seek_off, SEEK_SET, err) == -1)

return FALSE;

/* Read the packet header if necessary. We need to read it to find

the encapsulation type for this packet. */

ret = iptrace_read_bytes(wth->random_fh, header,

IPTRACE_1_0_PHDR_SIZE, err);

if (ret <= 0) {

320 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 320

/* Read error or EOF */

if (ret == 0) { /* EOF */

*err = WTAP_ERR_SHORT_READ;

}

return FALSE;

}

/* Read the encapsulation type. We don't have to return this

to Ethereal, because it already knows it. But we don't have

that information handy. We have to re-retrieve that value

from the packet header. */

if (header[IPTRACE_1_0_PHDR_IF_NAME_OFFSET] == ASCII_e &&

header[IPTRACE_1_0_PHDR_IF_NAME_OFFSET+1] == ASCII_n) {

pkt_encap = WTAP_ENCAP_ETHERNET;

}

else {

/* Unknown encapsulation type */

return FALSE;

}

/* Read the packet data. We'll use 'packet_size' instead of

retrieving the packet length from the packet header. */

ret = iptrace_read_bytes(wth->random_fh, pd, packet_size, err);

if (ret <= 0) {

/* Read error or EOF */

if (ret == 0) { /* EOF */

*err = WTAP_ERR_SHORT_READ;

}

return FALSE;

}

/* Fill in the pseudo_header, if necessary */

if (pkt_encap == WTAP_ENCAP_ETHERNET) {

pseudo_header->eth.fcs_len = 0;

}

return TRUE;

}

If your module_read or module_seek_read functions need additional information about the file
in order to process packets, the wtap struct can be extended by defining a structure type and
adding it to the capture union.The capture union in the struct wtap shows that many file for-
mats do save extra information.

union {

libpcap_t *pcap;

lanalyzer_t *lanalyzer;

ngsniffer_t *ngsniffer;

i4btrace_t *i4btrace;

nettl_t *nettl;

netmon_t *netmon;

netxray_t *netxray;

Capture File Formats • Chapter 11 321

332_NSE_11.qxd 7/14/05 11:34 AM Page 321

ascend_t *ascend;

csids_t *csids;

etherpeek_t *etherpeek;

airopeek9_t *airopeek9;

erf_t *erf;

void *generic;

} capture;

The module_close Function
When your file format allocates memory in this capture union, your wiretap module has to pro-
vide close functions to properly free that memory.As there were two open functions, one for
sequential and one for random access, there are two close functions:

void (*subtype_sequential_close)(struct wtap*);

void (*subtype_close)(struct wtap*);

If your module does not need them, as the iptrace module does not, then those two fields in
the wtap struct are left alone. If your module needs them, then during the module_open function,
they should be set to point to your functions, in the same manner as subtype_read and
subtype_seek_read are dealt with.

Building Your Module
To integrate your new wiretap module into the wiretap library, it must be added to the list of
files to be built. Edit the makefile.common file in the wiretap directory of the Ethereal distribu-
tion.Add your module.c file to the NONGENERATED_C_FILES list and add your module.h
file to the NONGENERATED_HEADER_FILES list. Both the UNIX build and the Windows
build use the lists in makefile.common.You can use the normal Ethereal build procedure;
wiretap will build and include your module.

Final Touches
You have learned three ways of feeding data into Ethereal. If you have an application that has the
opportunity to deal with network interfaces, you can use libpcap to capture packets and save
them to a file. text2pcap is a tool that will convert from hex dumps to the pcap format.You have
seen the range of hex dump formats that text2pcap will accept, and how to produce a hex dump
format from another file. Finally, you not only learned how to extend the wiretap library so that
Ethereal can read a new file format natively but also saw a practical example of how to reverse
engineer a packet capture file format for which you had no documentation.

322 Chapter 11 • Capture File Formats

332_NSE_11.qxd 7/14/05 11:34 AM Page 322

Protocol Dissectors

Scripts and samples in this chapter:

■ Setting up a New Dissector

■ Programming the Dissector

■ Advanced Functions

Chapter 12

323

332_NSE_12.qxd 7/14/05 10:46 AM Page 323

In This Toolbox
You will learn how to program your own protocol dissector, either linked into Ethereal or as a
plugin.You will see how Ethereal calls your dissector and how to best integrate it into Ethereal.
The various structures that you need to know about to retrieve your packet data and process it
will be explained. Finally, some advanced topics are introduced that allow you to give your dis-
sector even more functionality.

Setting up a New Dissector
Before writing the main part of a dissector, the code that reads packets and organizes data into the
GUI protocol tree, some setup has to be done. Besides the logistical concerns of placing your dis-
sector directly in Ethereal or making it a dynamically loadable plugin, you need to be familiar with
the general layout of the code within a dissector source file.There is a registration step, which tells
Ethereal about your dissector and can play a part in telling Ethereal when to call your dissector.
Beyond that, there is much static information about your protocol that needs to be registered with
Ethereal: the fields, their descriptions, and even the possible values of some of them.

Built-in versus Plugin
The first thing to decide when creating a new protocol dissector is how it will be integrated
with Ethereal. Linking the dissector directly into the Ethereal binary allows a very quick start to
development, but limits your options when distributing your dissector. Obviously, when linked
with the Ethereal binary, your dissector can only be distributed as part of an Ethereal distribu-
tion. However, if you develop your dissector as a plugin, you can distribute your dissector inde-
pendently of an Ethereal distribution. Practically speaking, the application binary interface (ABI)
of Ethereal’s plugin architecture changes quite often, so distributing binaries of a plugin dissector
would require frequent updates to correspond to new Ethereal versions.

A frequent misunderstanding about plugins is their licenses. When dissectors are linked into
the main Ethereal binary, the license of the dissector must be the GNU General Public License
(GPL), or a compatible license, because that is the license of Ethereal.Although plugin dissectors
can be distributed independently of Ethereal, when the are loaded by Ethereal they become part
of the Ethereal program’s address space, thus becoming one program.Therefore the plugin dis-
sector must be compatible with the GPL. For more information on this, the GPL FAQ
(Frequently Asked Questions) is at www.gnu.org/licenses/gpl-faq.html.The section that talks
about modules running a shared address space is at www.gnu.org/licenses/gpl-
faq.html#MereAggregation.

To create a dissector that is linked directly into the Ethereal binary, begin by creating a C
file in the epan/dissectors directory of the Ethereal source code.The name of the file should be
packet-NAME.c, where NAME is the name of your protocol, or something similar to the name
of your protocol. Modify the Makefile.common file and add your new file name to the DIS-
SECTOR_SRC makefile variable.You may start your file by copying a template from the
doc/README.developr file of the Ethereal distribution. Find the section in that file that shows
an example of a file named packet-PROTOABBREV.c. It is listed between two dashed lines that
contain the words “Cut here.”The template has the following sections:

324 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 324

1. Comments indicating the name of the file, author, and copyright.

2. Standard #include statements.

3. Variables for fields, preferences, and tree states.

4. The dissector function itself.

5. A dissector registration function.

6. A handoff registration function.

Now we’ll take a look at the dissector template from doc/README.developer.The tem-
plate shown here is from Ethereal 0.10.11.Any future changes to this template should be minor,
but be sure to check the version in the Ethereal distribution that you download.The
README.developer document itself should explain any changes to the template.The template
shown here is broken into six sections to correspond to the sections listed previously.The first
section shows the initial comments, including the copyright.

/* packet-PROTOABBREV.c

* Routines for PROTONAME dissection

* Copyright 2005, YOUR_NAME <YOUR_EMAIL_ADDRESS>

*

* Id

*

* Ethereal - Network traffic analyzer

* By Gerald Combs <gerald@ethereal.com>

* Copyright 1998 Gerald Combs

*

* Copied from WHATEVER_FILE_YOU_USED (where "WHATEVER_FILE_YOU_USED"

* is a dissector file; if you just copied this from README.developer,

* don't bother with the "Copied from" - you don't even need to put

* in a "Copied from" if you copied an existing dissector, especially

* if the bulk of the code in the new dissector is your code)

*

* This program is free software; you can redistribute it and/or

* modify it under the terms of the GNU General Public License

* as published by the Free Software Foundation; either version 2

* of the License, or (at your option) any later version.

*

* This program is distributed in the hope that it will be useful,

* but WITHOUT ANY WARRANTY; without even the implied warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

* GNU General Public License for more details.

*

* You should have received a copy of the GNU General Public License

* along with this program; if not, write to the Free Software

* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

*/

Next come standard #include statements.These are the basic ones; you may need more as
you use more Ethereal functions.

#ifdef HAVE_CONFIG_H

include "config.h"

Protocol Dissectors • Chapter 12 325

332_NSE_12.qxd 7/14/05 10:46 AM Page 325

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <glib.h>

#include <epan/packet.h>

#include <epan/prefs.h>

/* IF PROTO exposes code to other dissectors, then it must be exported

in a header file. If not, a header file is not needed at all. */

#include "packet-PROTOABBREV.h"

/* Forward declaration we need below */

void proto_reg_handoff_PROTOABBREV(void);

The next section of a dissector lists the global variables for the dissector.These will be
explained further later in the chapter. For now it is enough to realize that integer variables are set
aside for each protocol and field defined for use in display filters. Dissectors can have user-modi-
fiable preferences, and the values are also stored in global variables. Finally, Ethereal keeps track of
GUI (graphical user interface) tree states in gint (integers from the glib library) variable types. If a
user opens a protocol’s tree in the dissection pane of the Ethereal GUI, then Ethereal will keep
track of that in these variables. When the user clicks on a new packet in the GUI, if the protocol
is present in the new packet, then its GUI tree will also be open. In this way, if a user is inter-
ested in certain protocols, that information will be shown in detail as new packets are shown.

/* Initialize the protocol and registered fields */

static int proto_PROTOABBREV = -1;

static int hf_PROTOABBREV_FIELDABBREV = -1;

/* Global sample preference ("controls" display of numbers) */

static gboolean gPREF_HEX = FALSE;

/* Initialize the subtree pointers */

static gint ett_PROTOABBREV = -1;

Finally we come to the template for the dissection function itself. It is a simplified version of
the example found in the doc/README.developer file in the Ethereal distribution.This will be
explained in more detail later, but you can see routines for adding information to the various
fields (or columns) in the packet summary portion of the Ethereal GUI. Following that you see
routines for adding fields to the protocol tree, or the dissection portion of the Ethereal GUI.

/* Code to actually dissect the packets */

static void

dissect_PROTOABBREV(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{

/* Set up structures needed to add the protocol subtree and manage it */

proto_item *ti;

326 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 326

proto_tree *PROTOABBREV_tree;

/* Make entries in Protocol column and Info column on summary display */

if (check_col(pinfo->cinfo, COL_PROTOCOL))

col_set_str(pinfo->cinfo, COL_PROTOCOL, "PROTOABBREV");

if (check_col(pinfo->cinfo, COL_INFO))

col_set_str(pinfo->cinfo, COL_INFO, "XXX Request");

if (tree) {

/* create display subtree for the protocol */

ti = proto_tree_add_item(tree, proto_PROTOABBREV, tvb, 0, -1, FALSE);

PROTOABBREV_tree = proto_item_add_subtree(ti, ett_PROTOABBREV);

/* add an item to the subtree, see section 1.6 for more information */

proto_tree_add_item(PROTOABBREV_tree,

hf_PROTOABBREV_FIELDABBREV, tvb, offset, len, FALSE)

/* Continue adding tree items to process the packet here */

}

/* If this protocol has a sub-dissector call it here */

}

Basic information about the protocol that your dissector handles is then registered with
Ethereal.These registration functions are called when Ethereal starts, before any dissection
occurs.

/* Register the protocol with Ethereal */

/* this format is require because a script is used to build the C function

that calls all the protocol registration.

*/

void

proto_register_PROTOABBREV(void)

{

module_t *PROTOABBREV_module;

/* Setup list of header fields See Section 1.6.1 for details*/

static hf_register_info hf[] = {

{ &hf_PROTOABBREV_FIELDABBREV,

{ "FIELDNAME", "PROTOABBREV.FIELDABBREV",

FIELDTYPE, FIELDBASE, FIELDCONVERT, BITMASK,

"FIELDDESCR", HFILL }

},

};

Protocol Dissectors • Chapter 12 327

332_NSE_12.qxd 7/14/05 10:46 AM Page 327

/* Setup protocol subtree array */

static gint *ett[] = {

&ett_PROTOABBREV,

};

/* Register the protocol name and description */

proto_PROTOABBREV = proto_register_protocol("PROTONAME",

"PROTOSHORTNAME", "PROTOABBREV");

/* Required function calls to register the header fields and subtrees used */

proto_register_field_array(proto_PROTOABBREV, hf, array_length(hf));

proto_register_subtree_array(ett, array_length(ett));

/* Register preferences module (See Section 2.6 for more on preferences) */

PROTOABBREV_module = prefs_register_protocol(proto_PROTOABBREV,

proto_reg_handoff_PROTOABBREV);

/* Register a sample preference */

prefs_register_bool_preference(PROTOABBREV_module, "showHex",

"Display numbers in Hex",

"Enable to display numerical values in hexidecimal.",

&gPREF_HEX);

}

Finally a protocol dissector may perform some other registrations after all initial protocol
registrations take place.The function may find handles (pointers) to other dissectors so that the
next protocol dissector can be called when necessary.The function can also register when it
wants to be called, that is, due to the value of other fields.

/* If this dissector uses sub-dissector registration add a registration routine.

This exact format is required because a script is used to find these routines

and create the code that calls these routines.

This function is also called by preferences whenever "Apply" is pressed

(see prefs_register_protocol above) so it should accommodate being called

more than once.

*/

void

proto_reg_handoff_PROTOABBREV(void)

{

static gboolean inited = FALSE;

if(!inited) {

dissector_handle_t PROTOABBREV_handle;

PROTOABBREV_handle = create_dissector_handle(dissect_PROTOABBREV,

proto_PROTOABBREV);

dissector_add("PARENT_SUBFIELD", ID_VALUE, PROTOABBREV_handle);

inited = TRUE;

}

}

328 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 328

The same template is used for dissectors written as plugins, but a few modifications are
required.The doc/README.plugins file in the Ethereal source distribution explains this.The
plugin file needs to export a few symbols.

■ version To provide a version string.

■ plugin_register Like proto_register_PROTOABBREV.

■ plugin_reg_handoff Like proto_reg_handoff_PROTOABBREV.

The version string is set as a global variable. Some operating systems have to explicitly
export the variable, so the G_MODULE_EXPORT macro is used. On systems where not export
is necessary (UNIX), nothing happens. On Windows, it exports the symbol. It is defined with an
#ifndef block for ENABLE_STATIC, because not all platforms that Ethereal supports themselves
support dynamically loaded modules. On those platforms the plugins are compiled as statically
linked into the Ethereal binary.

#define VERSION "0.0.4"

#ifndef ENABLE_STATIC

G_MODULE_EXPORT const gchar version[] = VERSION;

#endif

The functions plugin_register and plugin_reg_handoff are required so that Ethereal can look for
fixed function names after loading the plugin into its address space.These two functions can call
the proto_register_PROTOABBREV and proto_reg_handoff_PROTOABBREV functions in your
dissector module.

#ifndef ENABLE_STATIC

G_MODULE_EXPORT void

plugin_register(void)

{

/* register the new protocol, protocol fields, and subtrees */

if (proto_PROTOABBREV == -1) { /* execute protocol initialization only once */

proto_register_PROTOABBREV();

}

}

G_MODULE_EXPORT void

plugin_reg_handoff(void){

proto_reg_handoff_PROTOABBREV();

}

#endif

Compiling the plugin dissector is more complicated than compiling the linked-in dissector.
First make a directory for your plugin in the plugins directory of the Ethereal source distribu-
tion. Name it after your protocol.You should copy the following files from another Ethereal
plugin directory to your new directory.

Protocol Dissectors • Chapter 12 329

332_NSE_12.qxd 7/14/05 10:46 AM Page 329

■ Makefile.am

■ Makefile.nmake

■ moduleinfo.h

The files should be modified to reflect your dissectors name. Just like the linked-in case,
your protocol dissector’s C source file should be named packet-PROTOABBREV.c, and it
should also be placed in this new directory.The automake build files also need the following files
to exist in the directory.

■ AUTHORS

■ COPYING

■ ChangeLog

The AUTHORS file should list some information about you and any other contributor to
the dissector.The COPYING file should contain the text of the distribution license, be it the
GPL or some other license. Finally, ChangeLog exists to record the change to the source, at a
high level, that would be of interest to the users of your dissector. Many developers simply create
an empty file named ChangeLog and never add to its contents.

Finally, to have the Ethereal build system build your plugin, you must change the
plugins/Makefile.am and plugins/Makefile.nmake makefiles to reference your new plugin direc-
tory.The plugin_libs variable in the top level Makefile.am file must be changed to include the
library that is built for your plugin.The top-level configure.in file must be changed to create the
Makefile in your plugins directory; so add an entry for your plugin in the AC_OUTPUT section
of that file.

Calling Your Dissector
The data in a packet is divided among different protocols, one after the other.The beginning of
a packet may contain an Ethernet header, followed by an Internet Protocol (IP) header, then a
User Datagram Protocol (UDP) header, and finally data specific to some program.The logic in
Ethereal is similar to the layout of the protocol headers.The frame protocol dissector starts dis-
secting the packet, to show packet metadata in the Ethereal GUI.After that, the first real pro-
tocol dissector is called. In our example, the Ethernet dissector would be called.After it does its
dissection, the IP dissector is called, followed by the UDP dissector, and then any other dissector
that might be applicable.

This arrangement of protocols is referred to as a stack, since one protocol is stacked on top
of the other in the packet. For programming in Ethereal, however, it’s more convenient to think
of the protocol arrangement as a parent-child relationship. By thinking of it this way, you can
more easily visualize the chain of function calls that happen inside Ethereal. For example, the
Ethernet dissector is the parent and invokes the IP dissector as the child.The IP dissector in turn
calls the UDP dissector as a child.

Ethereal sets up the dissectors so that they can be called when necessary, as in the previous
examples. However, there are times when protocols don’t have a pre-defined indicator in their
parent protocol. For example, a protocol may be used on any TCP (Transmission Control

330 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 330

Protocol) port instead of a fixed one. In that case a dissector has to examine the packet data to
determine if the packet matches the protocol that the dissector knows how to dissect.

To summarize, there are three ways to have your dissector called when appropriate:

■ A dissector can call another dissector directly.

■ A dissector can set up a look up table that other dissectors register themselves to.

■ Dissectors can ask to look at the data of packets that don’t match any other protocol.

After understanding how each type works, you can decide how to best have Ethereal inter-
face with your new protocol dissector.

Calling a Dissector Directly
To have a parent dissector call a child dissector, the parent dissector has to grab a handle, or
pointer, to the child dissector.This is normally done during the proto_reg_handoff_PROTOAB-
BREV function of the parent dissector, because the proto_reg_handoff_PROTOABBREV func-
tions are called after all the protocols have registered themselves with Ethereal’s core routines.As
an example, the token-ring proto_reg_handoff_tr function looks up the handles for three other dis-
sectors and stores them in global variables.

static dissector_handle_t trmac_handle;

static dissector_handle_t llc_handle;

static dissector_handle_t data_handle;

void

proto_reg_handoff_tr(void)

{

dissector_handle_t tr_handle;

/*

* Get handles for the TR MAC and LLC dissectors.

*/

trmac_handle = find_dissector("trmac");

llc_handle = find_dissector("llc");

data_handle = find_dissector("data");

tr_handle = find_dissector("tr");

dissector_add("wtap_encap", WTAP_ENCAP_TOKEN_RING, tr_handle);

}

The names used in the find_dissector function are the names that the protocols register them-
selves under during their respective proto_register_PROTOABBREV function.The trmac protocol
is the Token Ring Media Access Control (MAC) protocol.The llc protocol is the Link Layer
Control protocol.The data protocol dissector is used by Ethereal to denote any payload that is
not analyzed by any dissector.

Inside the Token Ring protocol dissector a decision is made on a particular field, the frame_type
field.Then the token-ring dissector calls one of the three dissectors for which it has handles.

/* The package is either MAC or LLC */

switch (frame_type) {

Protocol Dissectors • Chapter 12 331

332_NSE_12.qxd 7/14/05 10:46 AM Page 331

/* MAC */

case 0:

call_dissector(trmac_handle, next_tvb, pinfo, tree);

break;

case 1:

call_dissector(llc_handle, next_tvb, pinfo, tree);

break;

default:

/* non-MAC, non-LLC, i.e., "Reserved" */

call_dissector(data_handle, next_tvb, pinfo, tree);

break;

}

Using a Lookup Table
If a parent dissector has the potential to call many possible child dissectors, then it usually sets up
a dissector lookup table to have the Ethereal core code handle the registration and calling of dis-
sectors. In this way when a new child dissector is added to the Ethereal code base, the parent
dissector source code does not need to change.

The IP dissector uses a dissector lookup table.You can see that its proto_register_ip function it
sets it up with the name of ip.proto, which coincidentally is the display-filter name of the field
that is used as the key. But the name of the dissector lookup table does not have to have any
relation to the name of the display-filter field.

ip_dissector_table = register_dissector_table("ip.proto",

"IP protocol", FT_UINT8, BASE_DEC);

The FT_UINT8 value indicates the type of field it is; an unsigned integer that is 8 bits
wide.The BASE_DEC indicates that when the value of the field should be shown as decimal in
the protocol GUI tree.

The Internet Control Message Protocol (ICMP) dissector adds its handle to the ip.proto dis-
sector lookup table so that the ICMP dissector can be called when appropriate.The part of the
proto_reg_handoff_icmp function that does this is shown in the following example. It looks up the
handle for its own dissector, and uses dissector_add to register it.The IP_PROTO_ICMP macro in
the example is previously #defined as 1.

icmp_handle = create_dissector_handle(dissect_icmp, proto_icmp);

dissector_add("ip.proto", IP_PROTO_ICMP, icmp_handle);

Finally, the IP dissector has to call the Ethereal routine that uses the dissector lookup table to
call the next dissector.The nxt variable contains the value of the IP proto field, which is the key
for the lookup table.

if (!dissector_try_port(ip_dissector_table, nxt, next_tvb,

pinfo, parent_tree)) {

/* do some work to show that no child dissector was called */

}

332 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 332

Examining Packet Data as a Last Resort
Like the dissector lookup table, parent protocol dissectors can also set up a heuristic dissector
table.A heuristic dissector, in Ethereal parlance, is a dissector that examines a packet payload to
see if it can dissect the data as a protocol.The dissector has to make guesses about the data in the
payload, hence the name heuristic.

Master Craftsman

Heuristic? Or User Preferences? Or Decode As?
One reason for writing a heuristic dissector is that the protocol you are dissecting is
not sent on a well-known port; perhaps it is never sent on the same port at all. By
using a heuristic dissector, you could potentially find your protocol in a packet
regardless of the port. Another way to get around this not-so-well-known port
problem is through user preferences, discussed near the end of this chapter. In some
cases it makes more sense to have the user specify the port, or range of ports, that
the protocol will travel on. Via user preferences, you could write a normal dissector,
and let the user decided when to use your protocol. Finally, another way for the user
to handle this is through the Analyze | Decode As menu option in Ethereal. This
interface lets the user specify a port and a protocol dissector to handle that port.

The TCP dissector sets up a heuristic dissector table. In fact, it sets up both a dissector
lookup table and a heuristic dissector table.

/* subdissector code */

subdissector_table = register_dissector_table("tcp.port",

"TCP port", FT_UINT16, BASE_DEC);

register_heur_dissector_list("tcp", &heur_subdissector_list);

As you can tell from the code, the dissector lookup table is named tcp.port, while the
heuristic dissector table is named simply tcp.The JXTA dissector takes advantage of the heuristic
dissector table. Its proto_reg_handoff_jxta registers with two tables, one for UDP and one for TCP.

void proto_reg_handoff_jxta(void)

{

static gboolean init_done = FALSE;

if (!init_done) {

new_register_dissector("jxta.udp", dissect_jxta_udp, proto_jxta);

heur_dissector_add("udp", dissect_jxta_UDP_heur, proto_jxta);

new_register_dissector("jxta.tcp", dissect_jxta_tcp, proto_jxta);

tcp_jxta_handle = find_dissector("jxta.tcp");

heur_dissector_add("tcp", dissect_jxta_TCP_heur, proto_jxta);

init_done = TRUE;

Protocol Dissectors • Chapter 12 333

332_NSE_12.qxd 7/14/05 10:46 AM Page 333

}

}

In this case, the JXTA dissector has two heuristic entry points, dissect_jxta_udp and
dissect_jxt_tcp. Heuristic dissectors have a different function prototype than non-heuristic dissec-
tors. Non-heuristic dissectors return a void type, while heuristic dissectors return an integer
whose value indicates whether the dissector will dissect the packet (true or false).

The TCP dissector makes calls to dissector_try_port and to dissector_try_heuristic to see if any
dissectors match. Here is a simplified version of what happens in the TCP dissector.

/* Try the lower of the Source/Destination ports */

if (low_port != 0 &&

dissector_try_port(subdissector_table, low_port, next_tvb,

pinfo, tree)) {

return TRUE;

}

/* Try the higher of the Source/Destination ports */

if (high_port != 0 &&

dissector_try_port(subdissector_table, high_port, next_tvb,

pinfo, tree)) {

return TRUE;

}

/* do lookup with the heuristic subdissector table */

if (dissector_try_heuristic(heur_subdissector_list, next_tvb,

pinfo, tree)) {

return TRUE;

}

New Link Layer Protocol
If the protocol that your new dissector handles is a link layer protocol, or rather, if it is the first
protocol to be dissected in the packet, then it has to be handled in a special way. First, the
wiretap library must indicate the protocol via a wiretap encapsulation type.The
WTAP_ENCAP_* values are defined in the wiretap/wtap.h file in the Ethereal distribution. If
an existing WTAP_ENCAP_* value does not suffice for your protocol, you can add one. Of
course, you must modify have a wiretap module which will know that send the new
WTAP_ENCAP_* value to Ethereal.

Once wiretap support for your protocol is ensured, your protocol dissector must register its
wiretap encapsulation value with the wtap_encap dissector lookup table.This table is set up in the
frame dissector, which exists to show packet metadata in the Ethereal protocol tree GUI.

Defining the Protocol
During the registration process your protocol dissector defines its fields to Ethereal.These field
definitions are used to put information into the GUI protocol tree and to filter packets.The
fields that are registered define the display filter language.

In the proto_register_PROTOABBREV function you define an array of hf_register_info structs.
The abbreviation hf stands for header field, as the struct deals with fields in protocol headers.The
hf_register_info struct is defined in epan/proto.h.

334 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 334

typedef struct hf_register_info {

int *p_id; /**< written to by register() function */

header_field_info hfinfo; /**< the field info to be registered */

} hf_register_info;

The hf_register_info struct has an integer that is written to during the registration process.
The struct in turn contains a header_field_info struct, which contains the definition of the field in
question. Its definition is shown here.

struct _header_field_info {

/* ---------- set by dissector --------- */

/**< full name of this field */

char *name;

/**< abbreviated name of this field */

char *abbrev;

/**< field type, one of FT_ (from ftypes.h) */

enum ftenum type;

/**< one of BASE_, or number of field bits for FT_BOOLEAN */

int display;

/**< _value_string (or true_false_string for FT_BOOLEAN),

typically converted by VALS() or TFS(). If this is an FT_PROTOCOL

then it points to the associated protocol_t structure*/

const void *strings;

/**< bitmask of interesting bits */

guint32 bitmask;

/**< Brief description of field. */

char *blurb;

/* ------- set by proto routines

(prefilled by HFILL macro, see below) ------ */

/**< Field ID */

int id;

/**< parent protocol tree */

int parent; /**< parent protocol tree */

/* This field keeps track of whether a field is

* referenced in any filter or not and if so how

* many times. If a filter is being referenced the

* refcount for the parent protocol is updated as well

*/

int ref_count;

/**< bits to shift (FT_BOOLEAN only) */

int bitshift;

/**< Link to next hfinfo with same abbrev*/

header_field_info *same_name_next;

/**< Link to previous hfinfo with same abbrev*/

header_field_info *same_name_prev;

};

The first half of the struct is what your dissector defines.The second half is filled in by
Ethereal.The UDP dissector, packet-udp.c, shows an example of setting up global variables that
correspond to the p_id variable of the hf_register_info struct, and then defining each field in the
proto_register_udp function.

static int hf_udp_srcport = -1;

static int hf_udp_dstport = -1;

Protocol Dissectors • Chapter 12 335

332_NSE_12.qxd 7/14/05 10:46 AM Page 335

static int hf_udp_port = -1;

static int hf_udp_length = -1;

static int hf_udp_checksum = -1;

static int hf_udp_checksum_bad = -1;

static hf_register_info hf[] = {

{ &hf_udp_srcport,

{ "Source Port", "udp.srcport", FT_UINT16, BASE_DEC, NULL, 0x0,

"", HFILL }},

{ &hf_udp_dstport,

{ "Destination Port", "udp.dstport", FT_UINT16, BASE_DEC,

NULL, 0x0, "", HFILL }},

{ &hf_udp_port,

{ "Source or Destination Port", "udp.port", FT_UINT16, BASE_DEC,

NULL, 0x0, "", HFILL }},

{ &hf_udp_length,

{ "Length", "udp.length", FT_UINT16, BASE_DEC, NULL, 0x0,

"", HFILL }},

{ &hf_udp_checksum_bad,

{ "Bad Checksum", "udp.checksum_bad", FT_BOOLEAN, BASE_NONE,

NULL, 0x0, "", HFILL }},

{ &hf_udp_checksum,

{ "Checksum", "udp.checksum", FT_UINT16, BASE_HEX, NULL, 0x0,

"", HFILL }},

};

The HFILL macro takes care of filling in the second half of the header_field_info struct,
which is the part that Ethereal fills in.This leaves the first part of the struct for you to fill in.As
noted in the definition of the header_field_info struct, those fields are:

■ The full name of the field.

■ The short display-filter name for this field.

■ The field type, an FT_* value.

■ For an integer, the base in which it should be shown. If a boolean type, then the
number of bits used by the integer representing the boolean.

■ Pointer to structure mapping integer values to strings, or NULL.

■ A bitmask to find the interesting bits for the field.

■ A string describing the field.

The field type comes from a list of FT_* values that are defined in epan/ftypes/ftypes.h in
the Ethereal distribution. Chapter 5 of Ethereal Packet Sniffing, published by Syngress Publishing,
gives a good description of the meanings and uses of each FT_* value.Table 12.1 summarizes
their meanings.

336 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 336

Table 12.1 FT_* values

Field Type Use

FT_NONE Not for use in protocol dissectors; used by Ethereal for simple
text labels.

FT_PROTOCOL Not for use in protocol dissectors; used by Ethereal to mark
protocols.

FT_BOOLEAN True/False values.
FT_UINTn An unsigned integer, n bits wide.
FT_INTn A signed integer, n bits wide.
FT_FLOAT Single-precision floating point number.
FT_DOUBLE Double-precision floating point number.
FT_ABSOLUTE_TIME A timestamp.
FT_RELATIVE_TIME Number of seconds and nanoseconds between two times-

tamps.
FT_STRING A string.
FT_STRINGZ A string that ends with an ASCII \0 value.
FT_UINT_STRING A string that is preprended with its length.
FT_ETHER A 6-byte hardware address.
FT_BYTES A sequence of arbitrary byte.
FT_UINT_BYTES A sequence of arbitrary bytes, prepended with its length.
FT_IPv4 An IPv4 address.
FT_IPv6 An IPv6 address.
FT_IPXNET An IPX network number.
FT_FRAMENUM A UINT32 value; it has the property of allowing the GUI user to

jump between frames.
FT_PCRE Not for use in protocol dissectors; used by Ethereal for regular

expression display filters.
FT_NUM_TYPES Not for use in protocol dissectors; it’s the number of FT_*

values.

If the field is an integer type (FT_UINTn or FT_INTn), you have the ability of providing a
map of integer values to text descriptions.You do this by defining a value_string array and using
the name of that array as the strings member of the header_field_info struct.The SNA (Systems
Network Architecture) field sna.th.piubf uses a value_string array.The last entry is extremely
important; since the array is not predefined to be a certain length, a terminating record must be
used to let Ethereal know that there are no more records in the array.

/* PIUBF */

static const value_string sna_th_piubf_vals[] = {

{ 0, "Single PIU frame" },

{ 1, "Last PIU of a multiple PIU frame" },

{ 2, "First PIU of a multiple PIU frame" },

{ 3, "Middle PIU of a multiple PIU frame" },

Protocol Dissectors • Chapter 12 337

332_NSE_12.qxd 7/14/05 10:46 AM Page 337

{ 0x0, NULL }

};

This is the registration of the sna.th.pibuf field.
{ &hf_sna_th_piubf,

{ "PIU Blocking Field", "sna.th.piubf", FT_UINT8, BASE_HEX,

VALS(sna_th_piubf_vals), 0x03, "", HFILL }},

The FT_UINT8 tells Ethereal that the sna.th.piubf value is a small integer that can fit in 8
bits. BASE_HEX tells it that the value should be displayed in hexadecimal.The reference to
sna_th_pibuf_values, the value_string array, tells Ethereal about the value/description map.The
VALS macro simply sets the casting so that the C compiler won’t complain.The 0x03 is a
bitmap; the value for sna.th.piubf is obtained from the first (or last, depending on how you look
at it) 2 bits of the single FT_UINT8 byte.There is no description for the field, so the empty
string is the final argument before the HFILL, which is the macro that fills in the non-user-
defined parts of the header_field_info struct.

Without the value_string array, Ethereal would show just a boring integer for this field:

PIU Blocking Field: 0x02

With the value_string array, Ethereal automatically adds informative text:

PIU Blocking Field: First PIU of a multiple PIU Frame (0x02)

Similar to integers, if the field is a boolean type (FT_BOOLEAN), you have the ability to
provide text descriptions for the True/False values.This is useful if the meanings of the boolean
field are not exactly True/False. Perhaps the meanings are Yes/No. For example, the SNA dis-
sector uses the true_false_string struct, a struct with 2 string fields, to define the boolean meanings
for sna.rh.sdi.

/* Sense Data Included */

static const true_false_string sna_rh_sdi_truth =

{ "Included", "Not Included" };

The registration of the boolean field is almost the same as the registration process for fields
with integer fields.

{ &hf_sna_rh_sdi,

{ "Sense Data Included", "sna.rh.sdi", FT_BOOLEAN, 8,

TFS(&sna_rh_sdi_truth), 0x04, "", HFILL }},

The difference here is that the TFS macro is used, to provide the proper casting, and the
address of the true_false_strings struct is given with the ampersand (&).

338 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 338

Swiss Army Knife

Accessing Ethereal’s Header Field Database
Each dissector effectively lists all the fields it can dissect from a protocol. Given that
each dissector does this, it seems that Ethereal would have a gigantic database of
protocols and fields that it could provide. And it does. Ethereal and tethereal have
an undocumented –G command-line option. Run tethereal –G to have tethereal print
the database to stdout. The –G option can also take an argument; the valid argu-
ments are fields, fields2, protocols, values, and decodes. Each option prints out
something different. Look in the epan/proto.c file, searching for the function names
with dump in them, and read the comments that describe the format of the –G
output.

In addition to the header fields, sub-tree state indicators are also registered. Each state indi-
cator remembers the state (opened or closed) of each type of sub-tree within the GUI protocol
tree. For example, if the IP protocol branch is opened in the GUI, because the user is inspecting
the values of the IP fields, then Ethereal has to remember that so when the next packet is dis-
sected and displayed, it can open the IP protocol branch automatically for the user.The fol-
lowing example shows the various branch state indicators registered in the HTTP dissector.
Ethereal programmers use the nomenclature ett_* to indicate a sub-tree state indicator.The let-
ters meaning is undocumented, but probably stand for Ethereal Tree Type.

/* Global static variables */

static gint ett_http = -1;

static gint ett_http_ntlmssp = -1;

static gint ett_http_request = -1;

static gint ett_http_chunked_response = -1;

static gint ett_http_chunk_data = -1;

static gint ett_http_encoded_entity = -1;

void

proto_register_http(void)

{

/* other code */

static gint *ett[] = {

&ett_http,

&ett_http_ntlmssp,

&ett_http_request,

&ett_http_chunked_response,

&ett_http_chunk_data,

&ett_http_encoded_entity,

};

proto_register_subtree_array(ett, array_length(ett));

/* other code */

}

Protocol Dissectors • Chapter 12 339

332_NSE_12.qxd 7/14/05 10:46 AM Page 339

Programming the Dissector
Once your dissector is set up and callable by Ethereal, work on the dissection part itself can
begin.To write this part, you need to know how to retrieve the packet data and manipulate it.
Then you must format it and add it to the data structures that Ethereal provides to create the
packet summary and protocol tree that Ethereal displays to the user.

Low-Level Data Structures
To program a dissector for Ethereal you must be familiar with the basic data types that the glib
library provides.The glib library is a platform-independent library of data types and functions
that can form the basis of any cross-platform C program.The GTK+ library and GIMP use the
glib library, as does the GNOME desktop environment.Although it is closely associated with
GTK+ and GNOME, the glib library itself has nothing to do with GUIs, since it concerns itself
only with low-level C routines.

You can peruse the data types and functions that are supplied by glib. Look in the header
files for glib, which will be installed if you have installed glib from source. If you install it from a
binary package, you might have to install a separate glib-dev package, depending on your oper-
ating system distribution. Look in /usr/include/glib-${VERSION}/glib.h, where ${VER-
SION} is the version of glib that you have installed. Glib versions 1.x have one big header file,
while glib versions 2.x have a header file which then includes other header files.

You can read online documentation from the GTK+ Web site.At www.gtk.org/api you can
view or download API (application program interface) documentation in HTML (Hypertext
Markup Language) format.

Most importantly, you need to understand the data types.The reason the glib data types are
so important is that they hide the issues involved with programming C on different platforms.
Since Ethereal can run on a wide variety of platforms, you have to be able to program without
wondering if the basic char on your system is signed or unsigned, or if a long integer is 32 bits
or 64 bits, or if an int is the same size as a long. Integers of a specific number of bits are used so
often in dissectors, since they pull bytes out of packets, that the n-bit-specific integers defined by
glib are used extremely often.They are summarized in Table 12.2.

Table 12.2 n-Bit-Specific Integers

glib Integer Meaning

gint8 Signed integer, 8-bits wide
guint8 Unsigned integer, 8-bits wide
gint16 Signed integer, 16-bits wide
guint16 Unsigned integer, 16-bits wide
gint32 Signed integer, 32-bits wide
guint32 Unsigned integer, 32-bits wide
gint64 Signed integer, 64-bits wide, on platforms that support it
guint64 Unsigned integer, 64-bits wide, on platforms that support it

340 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 340

In C programming, it is common to use an unsigned char data type to handle single bytes of
data, but in Ethereal we always use guint8 types, as they are explicitly defined as 8-bit unsigned
integers. Other glib data types that can be found in Ethereal source code are shown in Table 12.3.

Table 12.3 Other glib Data Types

glib Type Meaning

gboolean A boolean variable, either TRUE or FALSE
gpointer A pointer to any typed data
gconstpointer A pointer to any typed data of constant value
gchar The equivalent of the C char type
guchar The equivalent of the C unsigned char type
gint The equivalent of the C int type
guint The equivalent of the C unsigned int type

Besides the basic data types, glib provides more complex data types that make programming
easy. Many of these types are types that come standard with higher-level languages like Perl and
Python. Having them available in glib means you don’t have to re-invent the wheel every time a
new dissector requires something as basic as a linked list or a hash table. Some of the more com-
monly used glib data types are shown in Table 12.4.The Prefix column shows the prefix used for
all function names that deal with that type. For example, to append to a GList, you use the
g_list_append function.

Table 12.4 Complex glib Data Types

Type Prefix Meaning

GList g_list Doubly-linked list
GSList g_slist Singly-linked list
GQueue g_queue Double-ended queue
GHashTable g_hash_table Hash table (dictionary, map, associative array)
GString g_string Text buffers that can grow in size
GArray g_array Arrays that can grow
GPtrArray g_ptr_array Arrays of pointers, which can grow
GByteArray g_byte_array Arrays of bytes, which can grow
GTree g_tree Balanced binary tree
GNode g_node Trees with any number of branches

To actually retrieve data, be it guint8s, guint16s, or guint32s, or anything else from packet
data, the tvbuff data structure is used. Ethereal passes a tvbuff to your dissector.The tvbuff repre-
sents a buffer of data of a fixed size which begins at the boundary where your protocol begins.
When Ethereal starts dissecting a packet, it starts with a tvbuff that covers all the data in the
packet. Once the first protocol dissector does its job of parsing the headers for its protocol, it
creates a tvbuff that is a subset of the tvbuff that was given, and passes this new tvbuff to the next

Protocol Dissectors • Chapter 12 341

332_NSE_12.qxd 7/14/05 10:46 AM Page 341

dissector.This narrowing of the data window continues to the last dissector. In this way, each dis-
sector only sees the data that applies to it, and cannot reach above into its parent’s data.

The tvbuff API also ensures that the dissector can only read data that is there; if a dissector
attempts to read beyond the boundary of the tvbuff, an exception is thrown and Ethereal will
show a boundary error in the protocol tree for that packet. In most cases you do not need to
worry about catching the exception, since the core Ethereal code will catch it and add the
appropriate message to the protocol tree.

The list of tvbuff functions is in epan/tvbuff.h.The most basic functions give you access to
the data in the tvbuff by asking for very basic data types.The guint8 data type is used to store a
single byte.Additionally, integers of 2, 3, 4, or 8 bytes in size can be retrieved from the tvbuff.
There are different functions for retrieving them depending if they are in little endian or big
endian (network order) format. Finally, even floating-point numbers, stored in the IEEE
(Instritute of Electrical and Electronic Engineers) floating-point format can be retrieved.The
functions are listed in Table 12.5. Since each function knows the size of the data it is retrieving
innately, the only parameters you need to pass these functions are the pointer to the tvbuff and
the offset within that tvbuff.

Table 12.5 Basic tvbuff Functions

Function Use

tvb_get_guint8 Retrieve a byte
tvb_get_ntohs Retrieve a 16-bit integer stored in big endian order
tvb_get_ntoh24 Retrieve a 24-bit integer stored in big endian order
tvb_get_ntohl Retrieve a 32-bit integer stored in big endian order
tvb_get_ntoh64 Retrieve a 64-bit integer stored in big endian order
tvb_get_ntohieee_float Retrieve a floating pointer number stored in big endian

order
tvb_get_ntohieee_double Retrieve a double-precision floating point number stored in

big-endian order
tvb_get_letohs Retrieve a 16-bit integer stored in little endian order
tvb_get_letoh24 Retrieve a 24-bit integer stored in little endian order
tvb_get_letohl Retrieve a 32-bit integer stored in little endian order
tvb_get_letoh64 Retrieve a 64-bit integer stored in little endian order
tvb_get_letohieee_float Retrieve a floating pointer number stored in little endian
order
tvb_get_letohieee_double Retrieve a double-precision floating point number stored in

little endian order

The tvbuff API has many functions letting you retrieve strings from tvbuffs.The exact
description of how they work can be found in tvbuff.h, but a summary is given in Table 12.6.

342 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 342

Table 12.6 tvbuff String Functions

Function Use

tvb_get_ptr Simply returns a pointer, ensuring that enough data exists for the
requested length.

tvb_get_string Return a string of a known maximum length from a tvbuff,
appending a trailing \0 to it.

tvb_get_stringz Return a string that is supposed to end with a \0. If no such termi-
nating \0 is found, an exception is thrown.

tvb_get_nstringz Return a string that is supposed to end with a \0, but only copy n
bytes, including the \0.

tvb_get_nstringz0 Like tvb_get_nstringz, but different behavior on encountering the
end of a packet.

The difference between tvb_get_nstringz and tvb_get_nstringz0 is subtle. If the terminating
NUL (\0) character is found, then the functions act identically.They copy the string to the
buffer, and return the length of the string. However, if the NUL is not found, either because n
bytes were read and it wasn’t there, or the tvbuff didn’t have enough data to read n bytes, the
functions act differently.A short string causes tvb_get_nstringz to return -1.The other function,
tvb_get_nstringz0, returns the length of the string that was copied to the buffer, even if was less
than n bytes.

WARNING

Instead of using the battery of tvbuff accessor functions, you could just use
tvb_get_ptr to retrieve a pointer to an array of data that contains all the data for
your protocol. While this might work, beware of short packets. If the packet is
short and doesn’t contain all the data you think it should, a single call to
tvb_get_ptr to grab all the packet data will immediately raise an exception, causing
none of the fields in your protocol to be dissected. That’s the beauty of using the
tvbuff accessor functions. As your dissector proceeds, dissecting individual fields,
the information will be added to the GUI protocol tree until the point that the
tvbuff runs out of data.

Adding Column Data
After setting up the registration functions, registering the fields, and learning how to access data
from the tvbuffs, you can begin to write the actual dissector code.A normal dissector will have a
function prototype that returns nothing, while a heuristic dissector returns a gboolean.

static void

dissect_PROTOABBREV(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree);

static gboolean

dissect_PROTOABBREV_heur(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree);

Protocol Dissectors • Chapter 12 343

332_NSE_12.qxd 7/14/05 10:46 AM Page 343

However, the heuristic dissector should be set up in such a way that it tests a few bytes in
the header and either returns FALSE or calls the normal dissector, then returns TRUE. It’s a
convenient way of segregating the logic of guessing a protocol from dissecting a protocol.

The tvbuff_t argument is the tvbuff that contains the data that your dissector can look at. If
your dissector can call another dissector, then it will be your dissector’s responsibility to know
where the next protocol’s data starts, create a new tvbuff as a subset of the one that was passed to
you, and pass it to the next dissector.

The packet_info struct contains metadata about the packet. It’s a surprisingly large structure
that you won’t need to master entirely. Finally, the proto_tree structure represents the protocol
tree. It is directly translated to the GUI tree shown in the Ethereal GUI.The top level is a series
of protocols, and each protocol can contain fields and sub-fields.

But note that the proto_tree that is passed to your dissector can be NULL, in which case is
Ethereal is not interested in knowing the full dissection for the protocol. When proto_tree is
NULL, Ethereal only wants to know the summary information for the protocols, so that dissec-
tors that want to update the packet summary portion of the GUI can do so. However, it is
common practice for Ethereal dissectors to always attempt to provide the summary information,
but dissect the rest of the fields only if the proto_tree is not NULL. Regardless of the value of
proto_tree, your dissector must parse enough of the packet to be able to call the next dissector, if
your dissector indeed can call another dissector.

Since the user can change which columns are displayed in the packet summary, each dis-
sector must check to see if a column is asked for before putting data into it.The columns are
defined in epan/column_info.h, as a series of COL_* values, like COL_PROTOCOL,
COL_INFO, and so on.Your dissector will almost always want to set the Protocol and Info
columns, so if it is the last protocol in the packet then its information is shown in the packet
summary. Setting the Protocol column is simple, as it’s just a string. Setting the Info column
requires more work.You must retrieve information from the packet and format it to be displayed
in the column. Here is a simplification of what the UDP dissector does.

guint16 uh_sport;

guint16 uh_dport;

if (check_col(pinfo->cinfo, COL_PROTOCOL))

col_set_str(pinfo->cinfo, COL_PROTOCOL, "UDP");

if (check_col(pinfo->cinfo, COL_INFO))

col_clear(pinfo->cinfo, COL_INFO);

uh_sport=tvb_get_ntohs(tvb, 0);

uh_dport=tvb_get_ntohs(tvb, 2);

if (check_col(pinfo->cinfo, COL_INFO))

col_add_fstr(pinfo->cinfo, COL_INFO, "Source port: %s Destination port: %s",

get_udp_port(uh_sport), get_udp_port(uh_dport));

The check_col function is used to see if the column is present or not. If it is present, then
action is taken.The Protocol column is set to the value UDP, while the Info column is cleared.
After that, four bytes are read.The source port is a short value, a 16-bit integer, stored in big
endian order, so tvb_get_ntohs is used.Then the next 16-bits, or 2 bytes, are read to obtain the

344 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 344

destination port. If the packet had been missing data and ended before the ports could be read
from it, the tvbuff routines would have thrown an exception and the dissector would have
stopped. However, with no such error, processing continues to the next check_col call, which for-
mats the source and destination ports as a string and puts the string into the Info column.The
get_udp_port function is used to provide a name for the UDP port if it is known.

The various column functions are defined in epan/column-utils.h, and are summarized in
Table 12.7.

Table 12.7 Column Utility Functions

Function Use

col_clear Clears the contents of a column
col_set_str Sets the contents of a column to a constant string
col_add_str Copies a string and sets the conents of a column to that string
col_append_str Appends a string to the current value of the column
col_append_sep_str Appends, but knows about separators between items
col_add_fstr Like col_add_str, but accepts a printf-style format and arguments
col_append_fstr Like col_append_str, but accepts a printf-style format and argu-

ments
col_append_sep_fstr Like col_append_sep_str, but accepts a printf-style format and

arguments
col_prepend_fstr Like col_append_fstr, but preprends to the string

Creating proto_tree Data
The proto_tree that your dissector is passed is the single, global proto_tree for that packet.You must
add a branch to it for your protocol, and under that add items for each field.To add any text to
the tree, you use a proto_tree_add_* function, regardless of whether that text is simply a textual
label, or is the value of a field.To add a branch to the tree, you must first add an item to a tree,
then add a sub-tree to that item using the proto_item_add_subtree call.As an example, this code
shows how the IPX SAP dissector adds a branch.

static gint ett_ipxsap = -1;

static void

dissect_ipxsap(tvbuff_t *tvb, packet_info *pinfo, proto_tree *tree)

{

proto_item *ti;

proto_tree *sap_tree;

/* other code */

if (tree) {

ti = proto_tree_add_item(tree, proto_sap, tvb, 0, -1, FALSE);

sap_tree = proto_item_add_subtree(ti, ett_ipxsap);

Protocol Dissectors • Chapter 12 345

332_NSE_12.qxd 7/14/05 10:46 AM Page 345

/* code adds items to sap_tree */

}

}

The first thing to notice is that the code dealing with proto_trees is in an if-block that tests
the value of tree. Since tree, the proto_tree passed to the dissector can be NULL, then we only
want the proto_tree logic to run if indeed we have a proto_tree to work with.The first thing that
happens after that is that we add the name of our protocol to the protocol tree.This is done by
adding a pre-defined item, proto_sap, to the tree via the proto_tree_add_item call.The proto_sap
protocol was registered and defined elsewhere in packet-ipx.c.

static int proto_sap = -1;

void

proto_register_ipx(void)

{

/* other code */

proto_sap = proto_register_protocol("Service Advertisement Protocol",

"IPX SAP", "ipxsap");

register_dissector("ipxsap", dissect_ipxsap, proto_sap);

/* other code */

}

A branch is added to the proto_tree at the place where proto_sap was added.The
proto_item_add_subtree function does this, and uses a static integer value to tell Ethereal about the
state of the branch, that is, whether the GUI version of the branch is opened or closed.Any
branch with a GUI state that you want to remember, which should be all of them, should have a
distinct ett_* variable to hold its state.The proto_item_add_subtree function returns a new
proto_tree value, which the rest of your dissector can use to add values to.

Of course you can use proto_item_add_subtree on this new proto_tree to create sub-trees within
your dissection.This is acceptable, especially if you need to display individual bit-fields within an
integer, or need your protocol simply organizes data that way. Figure 12.1 is an example.

The proto_tree_add_item is the most generic way to add a registered field to a proto_tree. Its
function prototype is straightforward.The parameters are described in Table 12.8.

proto_item *

proto_tree_add_item(proto_tree *tree, int hfindex, tvbuff_t *tvb,

gint start, gint length, gboolean little_endian);

Table 12.8 The proto_tree_add_Item Parameters

Parameter Meaning

tree The proto_tree you are adding the item to.
hfindex The integer that represents the registered field.
tvb The tvbuff that holds the data.
start The offset within the tvbuff where the field starts.

346 Chapter 12 • Protocol Dissectors

Continued

332_NSE_12.qxd 7/14/05 10:46 AM Page 346

Table 12.8 continued The proto_tree_add_Item Parameters

Parameter Meaning

length The length of the field within the tvbuff. -1 indicates “to the end of the
tvbuff”.

little_endian If the field is an integer, then TRUE indicates little-endian storage and
FALSE indicates big endian storage; otherwise, this parameter is unused.

Figure 12.1 Screenshot of Token-Ring Frame Control Bit Field

The start and length parameters serve dual purposes. When you are adding a field,
proto_tree_add_item uses the start and length to retrieve the field’s data from the tvbuff. For fields
that have a pre-defined length, like 16-bit integers, proto_tree_add_item merely double-checks that
length corresponds to the pre-defined length of the field.The start and length parameters also let
Ethereal highlight the correct bytes in the hex pane of the GUI.This is important even when
adding protocols, as we showed in code snippet of dissect_ipxsap. In that case, proto_tree_add_item
doesn’t retrieve any data, but merely gives Ethereal the data it needs so that if a user clicks on
the IPX SAP protocol tree entry, then all the bytes that correspond to the IPX SAP protocol in
the hex dump are highlighted, or put in bold characters.

There are other proto_tree_add_* functions that you will use regularly.They are all modifica-
tions of proto_tree_add_item and exist to allow you to adjust the way the field data is displayed in
the protocol tree. By default Ethereal puts the name of the field, a colon, and then the value of
the field in the protocol tree. It can do some minor adjustments, like display integer fields in
your choice of bases (decimal, octal, or hexadecimal), but there are many times when the default
formatting is not good enough. For example, the TCP dissector adds the word bytes to the text
by using proto_tree_add_uint_format.

Protocol Dissectors • Chapter 12 347

332_NSE_12.qxd 7/14/05 10:46 AM Page 347

mss = tvb_get_ntohs(tvb, offset + 2);

proto_tree_add_uint_format(opt_tree, hf_tcp_option_mss_val, tvb, offset,

optlen, mss, "%s: %u bytes", optp->name, mss);

The function call looks like proto_tree_add_item, but the value was retrieved from the tvbuff
separately, and a printf-style format string and arguments were passed to the function call.

TIP

You really want to use proto_tree_add_item as much as possible. It will call the cor-
rect tvbuff accessor function for you. If you use the other proto_tree_add_* calls,
your dissector is responsible for retrieving data from the tvbuff beforehand, but
sometimes this is necessary. For example, if you need to retrieve a length value
from the packet in order to direct the rest of the dissection, then you will have
retrieved the length value and stored it in a C variable. At that point you might as
well use proto_tree_add_uint to add the value to the protocol tree, rather than
having proto_tree_add_item re-retrieve the value.

For each major type of field (remember the FT_* values), you will find three
proto_tree_add_* functions:

1. proto_tree_add_TYPE Adds a previously retrieved value to the proto_tree.

2. proto_tree_add_TYPE_hidden The same function as proto_tree_add_TYPE, but
makes the item invisible.

3. proto_tree_add_TYPE_format – Similar to proto_tree_add_TYPE, but lets you
define the exact text for the proto_tree.

Why make an item hidden? This is important if you need to add some data to the proto_tree
so that a display filter can find the packet, but you don’t want that information to be shown.The
display filter mechanism works directly on the proto_tree, so if the data is in the proto_tree, the dis-
play filter will find it. Well, almost.The one exception is text fields, which are simply text strings
added to the proto_tree, but which have no registered field associated with them.They are added
with this function.

proto_item *

proto_tree_add_text(proto_tree *tree, tvbuff_t *tvb, gint start,

gint length, const char *format, ...)

You should try to never use proto_tree_add_text, as you really do want all fields to be filter-
able by Ethereal.Yes, it is more work to define and register all the fields in your protocol, but
you never know what you or another user will need to find in a packet trace some day.The only
reason that proto_tree_add_text exists is due to history. Originally Ethereal did not have the display
filter mechanism, and all data was added to the proto_tree as simple text. In fact, there used to not
be a proto_tree at all; dissectors would add text directly to the GUI tree objects. But changes hap-
pened, for the better, and work was done to fix all the dissectors to have registered fields.The
proto_tree_add_text function was kept for compatibility reasons, but never went away, and is still
used by several dissectors.

348 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 348

Swiss Army Knife

Using proto_tree_add_text for Debugging
On UNIX it’s easy and useful to add printf statements to your dissector to assist you
in debugging while you are developing the dissector. Even though Ethereal is a GUI
program, if you start it from a command line and leave the terminal window open,
the printf statements will print their messages to the terminal window. Life is not as
easy for Windows programmers; printf statements don’t print as nicely from a GUI
program. So, another way to see what’s happening is to make liberal use of
proto_tree_add_text statements. They let you add any information to the protocol
tree, which you will be able to read from the Ethereal GUI.

Calling the Next Protocol
We’ve already discussed how protocol dissectors are called.The same information applies for how
your dissector will call the next dissector. If your dissector is the last in the packet then you have
nothing to think about; simply return from your function without doing anything special. But if
another protocol comes after yours, then as we stated before, there are three ways to call the next
dissector.

1. A dissector can call another dissector directly.

2. A dissector can set up a look up table that other dissectors register themselves to.

3. Dissectors can ask to look at the data of packets that don’t match any other protocol.

Regardless of how you call the next dissector, one thing is important.You must create a new
tvbuff for the next dissector. Remember that the tvbuff that your dissector received contains only
the data that your dissector is allowed to look at. It contains no data from the previous protocols
in the packet. Similarly, when it is time to call the next dissector, you need to create a tvbuff that
contains a subset of the data in your tvbuff, and pass that smaller tvbuff to the next dissector.To do
so is easy.The function that will do it is tvb_new_subset.

tvbuff_t*

tvb_new_subset(tvbuff_t* orig_tvbuf,

gint offset, gint length, gint reported_length);

It’s easy to understand the first three parameters.You need the original tvbuff, an offset, and a
length to create a subset of the data, but reported_length is trickier to understand.To understand
length versus reported_length, you must remember that some packets in a capture file may have
fewer bytes than what the protocol indicates. For example, the IP header may indicate that there
are 500 bytes of data, but it turns out that only 100 were captured.This can happen due to cap-
ture errors in the OS (operating system) or capture library, or it can happen as a feature.The
pcap library can capture a snapshot of an entire packet if requested to, in case you are interested
in looking at the beginning of a packet and wish to save space or increase processing time.

Protocol Dissectors • Chapter 12 349

332_NSE_12.qxd 7/14/05 10:46 AM Page 349

The tvbuffs maintain this set of lengths. One is the real length, or how many bytes really
exist.And the other is the reported length, or how many bytes should exist, according to the
data in the packet headers.The reason the tvbuffs keep track of this information is so that the
proper error message can be shown if an attempt is made to read beyond a certain boundary.

Think of the case where the real length is smaller than the reported length because we used
a low snapshot value while capturing packets with libpcap. What happens if a dissector reads
beyond the real length, but within the bounds of the data that should have been there? Then
Ethereal needs to report a short frame, such as missing data. But what happens if a dissector tries
to read beyond the reported length? It doesn’t matter if the packet is short or not. If the IP
header says there are 500 bytes and the IP dissector tries to read from offset 1000, then Ethereal
must report a more serious error. It reports a malformed packet, because it presumes that some
other field in the packet made the dissector want to read at offset 1000 when it shouldn’t have.

Given that, the most common way of calling tvb_new_subset is to have length and
reported_length have the same values. Furthermore, it is very common for those values to be -1,
which indicates to the end of the tvbuff.

It should be noted that you do not need to worry about freeing the tvbuff that you create.A
reference to it is added to the parent tvbuff. When the protocol dissection is no longer needed,
the top-level tvbuff is freed, and all the subset tvbuffs are automatically freed too.

Master Craftsman

Non-subset tvbuffs
In extremely rare cases, the tvbuff that you want to pass to the next dissector will
not be a subset of your own tvbuff. If your protocol contains a compressed payload,
for example, your dissector might have to uncompress the payload in memory and
pass it to the next dissector. In that case, you use tvbuff_new_real_data to create a
tvbuff that houses the uncompressed data. Then you use the
tvb_set_child_real_data_tvbuff function to link this new tvbuff to the overall tvbuff
chain, so that when the top-level tvbuff is freed, this new tvbuff will also be freed,
as the subset tvbuffs are likewise freed.

Advanced Dissector Concepts
To write more advanced dissectors, you will need to understand how exceptions work in
Ethereal. Knowing this will let you dissect as much of a packet as possible, even if the packet is
corrupt or missing data. Dissectors can also have user preferences that modify their behavior.

Exceptions
As you learned in the discussion about tvbuffs, exceptions are present in Ethereal.They can be
thrown and caught by the program. But Ethereal is written in ANSI C, which does not contain

350 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 350

native exceptions like C++, Java, or even Python.A module from the Kazlib library, an open
source library of useful ANSI C routines, was added to Ethereal. Kazlib can be found at
http://users.footprints.net/~kaz/kazlib.html. It provides a cross-platform exception module that
works on any platform where ANSI C works, including Windows.The Kazlib source files in the
Ethereal distribution are epan/except.c and epan/except.h.

To make working with exceptions even easier, a set of macros was developed.They are in
epan/exceptions.h.This is the interface that the Ethereal code uses. In that file, the possible excep-
tions are defined with integers.As of Ethereal 0.10.11, there are only four possible exceptions.

#define BoundsError 1

#define ReportedBoundsError 2

#define TypeError 3

#define DissectorError 4

The first two are the most common.A BoundsError is thrown by the tvbuff routines if a data
access request is beyond the bounds of physical data, but within the reported length of the data.
Similarly, a ReportedBoundsError is thrown if the data request is beyond the reported length of the
data.The TypeError is used internally within the display filter engine code where exception-style
programming was deemed useful. Finally, a DissectorError is thrown in those places where an assert
would seem useful, but we don’t want to crash Ethereal simply because a dissector proved faulty.

Occasionally, it is useful to catch exceptions in your dissector, as the TCP dissector does.
Since ANSI C has no built-in try or catch keywords, those are also defined in macros, in
epan/exceptions.h.The available macros are TRY, CATCH, FINALLY, RETHROW, and
ENDTRY.The TRY and CATCH keywords use curly braces to delimit their blocks of code, as
seen in this fragment from the TCP dissector. ENDTRY is simply a keyword that denotes the
end of the TRY/CATCH sequences. It’s a necessary wart because ANSI C doesn’t have these
keywords built in. RETHROW is a macro that allows the caught exception to be re-thrown.

TRY {

(*dissect_pdu)(next_tvb, pinfo, tree);

}

CATCH(BoundsError) {

RETHROW;

}

CATCH(ReportedBoundsError) {

show_reported_bounds_error(tvb, pinfo, tree);

}

ENDTRY;

In addition to CATCH, CATCH2 and CATCH_ALL also exist. CATCH2 lets you catch 2
different exceptions with the same statement. If you need a CATCH3, then just add it to excep-
tions.h. CATCH_ALL catches any exception.

What all these macros do is create C code that uses the Kazlib exception routines.The TRY
begins a new scope sets up some state, while the ENDTRY releases the state and ends the scope
that the TRY created.As a result, you can never use goto or return inside the TRY/ENDTRY block,
because the ENDTRY code does need to run to release the state.The following is taken from
epan/exceptions.h to show the scope blocks and code that the TRY and ENDTRY macros create.

Protocol Dissectors • Chapter 12 351

332_NSE_12.qxd 7/14/05 10:46 AM Page 351

#define TRY \

{\

except_t *exc; \

static const except_id_t catch_spec[] = { \

{ XCEPT_GROUP_ETHEREAL, XCEPT_CODE_ANY } }; \

except_try_push(catch_spec, 1, &exc); \

if (exc == 0) { \

/* user's code goes here */

#define ENDTRY \

} \

except_try_pop();\

}

What if your dissector has the possibility of allocating memory but raising an exception
before freeing the memory? Such memory must be marked with special CLEANUP macros.
The CLEANUP_PUSH macro starts a block of code that sets up a method to free the memory
in case an exception is not caught within that block. One of two CLEANUP_POP macros ends
that block of code.The CLEANUP_POP macro simply ends the block of code, while
CLEANUP_CALL_AND_POP calls the memory-freeing function and ends the block of code.
This example comes from the X11 dissector.

/*

* In case we throw an exception, clean up whatever stuff we've

* allocated (if any).

*/

CLEANUP_PUSH(g_free, s);

while(length--) {

unsigned l = VALUE8(tvb, *offsetp);

if (allocated < (l + 1)) {

/* g_realloc doesn't work ??? */

g_free(s);

s = g_malloc(l + 1);

allocated = l + 1;

}

stringCopy(s, tvb_get_ptr(tvb, *offsetp + 1, l), l); /* Nothing better for now. We

need a better string handling API. */

proto_tree_add_string_format(tt, hf_item, tvb, *offsetp, l + 1, s, "\"%s\"", s);

*offsetp += l + 1;

}

/*

* Call the cleanup handler to free the string and pop the handler.

*/

CLEANUP_CALL_AND_POP;

User Preferences
Sometimes your dissector can process a packet differently based on user choice.A choice might be
as simple as which TCP port to register on. Or the choice could fundamentally alter the dissection

352 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 352

algorithm. For example, if your protocol has multiple versions, maybe because the specification for
the protocol is still being worked on, and you cannot distinguish the version from the packet data,
then the user needs to tell the dissector which version to use.

Ethereal provides a mechanism for users to set preferences for each dissector.The dissector
must register the preferences with Ethereal, and Ethereal takes care of creating the GUI to let
the user set the values. Even the line-mode client, tethereal, lets users set the preferences, with
the -o command-line flag.

The dissector registers the fact that it wants preferences with prefs_register_protocol.

module_t*

prefs_register_protocol(proto_id, void (*apply_cb)(void))

The proto_id is the integer identification of the protocol; this was assigned when the protocol
registers itself in the proto_register_PROTOABBREV function.The apply_cb parameter is a pointer
to a callback function. It can be NULL, but if it points to a function, then that function is called
whenever a dissector’s preference is modified. Not all dissectors need immediate feedback when
a preference changes.

What you have registered at this point is the fact that your dissector can have preferences.
The module_t pointer returned by prefs_register_protocol is the handle you use to register the indi-
vidual preferences. Each preference can have one typed value.The types are:

■ unsigned int

■ boolean

■ one item from a list

■ string

■ numeric range

The five functions used to register preferences of those types are:

■ prefs_register_uint_preference

■ prefs_register_bool_preference

■ prefs_register_enum_preference

■ prefs_register_string_preference

■ prefs_register_range_preference

When you register the preference, you link it to a global variable in your dissector’s C file.
When the preference is updated by the user, that global variable’s value changes.Your dissector
will read the value to determine the setting of the preference.

For example, the token-ring dissector asks a yes/no question of the user:“Do you want the
dissector to try to figure out the mangling of the token-ring header that Linux creates?” So it
registers a boolean preference, shown here.

/*

* Register a preference with an Boolean value.

Protocol Dissectors • Chapter 12 353

332_NSE_12.qxd 7/14/05 10:46 AM Page 353

*/

extern void

prefs_register_bool_preference(module_t *module, const char *name,

const char *title, const char *description, gboolean *var);

/* Global variable */

static gboolean fix_linux_botches = FALSE;

/* inside proto_register_tr() */

/* Register configuration options */

tr_module = prefs_register_protocol(proto_tr, NULL);

prefs_register_bool_preference(tr_module, "fix_linux_botches",

"Attempt to compensate for Linux mangling of the link-layer header",

"Whether Linux mangling of the link-layer header should be checked "

"for and worked around",

&fix_linux_botches);

The parameters to prefs_register_bool_preference are similar to rest of the prefs_register_*_prefer-
ence functions.They are as follows.

■ module_t* The dissector’s preference handle

■ name A short name for the preference

■ title A long name for the preference

■ description A long description for the preference

■ pointer A pointer to the variable that holds the value of this preference

The short name is used to uniquely identify the preference.This short name is used on the
ethereal configuration file, where the user’s setting can be saved. Ethereal concatenates the short
name of the protocol (which it got from the module_t registration) with the short name of the
preference, joining them with a period, to uniquely name the preference.The long name is used
in the GUI because it is more descriptive. Finally, the description is used in the GUI as a tooltip,
and in the configuration file as a comment.The configuration file entry for the fix_linux_botches
token-ring preference is shown here.

Whether Linux mangling of the link-layer header should be checked

for and worked around

TRUE or FALSE (case-insensitive).

tr.fix_linux_botches: FALSE

In the GUI, the preference looks like Figure 12.2.

Figure 12.2 Token-Ring Preference in GUI

354 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 354

The prefs_register_uint_preference function is similar to its boolean counterpart, but it accepts a
parameter that indicates which base to display the integer in.The legal values are 8 (octal), 10
(decimal), at 16 (hexadecimal).

/*

* Register a preference with an unsigned integral value.

*/

extern void

prefs_register_uint_preference(module_t *module, const char *name,

const char *title, const char *description, guint base,

guint *var);

The prefs_register_enum_preference function accepts an array of labels, or enums as the prefer-
ence API calls them.The labels are defined by the enum_val_t structure, defined in epan/prefs.h.
The last member of the array needs to have NULL entries, to let Ethereal know that the list of
enum_val_t items is finished.

/*

* Register a preference with an enumerated value.

*/

typedef struct {

char *name;

char *description;

gint value;

} enum_val_t;

extern void

prefs_register_enum_preference(module_t *module, const char *name,

const char *title, const char *description, gint *var,

const enum_val_t *enumvals, gboolean radio_buttons);

The Border Gateway Protocol (BGP) dissector uses an enum preference. Shown here is how
it sets up the enum_val_t array and registers it.The radio_buttons parameter tells Ethereal whether
to draw this preference in the GUI as a set of radio buttons (TRUE) or as an option menu
(FALSE).

static enum_val_t asn_len[] = {

{"auto-detect", "Auto-detect", 0},

{"2", "2 octet", 2},

{"4", "4 octet", 4},

{NULL, NULL, -1}

};

bgp_module = prefs_register_protocol(proto_bgp, NULL);

prefs_register_enum_preference(bgp_module, "asn_len",

"Length of the AS number",

"BGP dissector detect the length of the AS number in "

"AS_PATH attributes automatically or manually (NOTE: "

"Automatic detection is not 100% accurate)",

&bgp_asn_len, asn_len, FALSE);

Protocol Dissectors • Chapter 12 355

332_NSE_12.qxd 7/14/05 10:46 AM Page 355

The prefs_register_string_preference function is as straightforward as the boolean preference reg-
istration function.

/*

* Register a preference with a character-string value.

*/

extern void

prefs_register_string_preference(module_t *module, const char *name,

const char *title, const char *description, char **var);

Finally, the prefs_register_range_preference function is a little more complex because the variable
that Ethereal uses to store the preference setting is a complicated type; it’s a range_t structure,
defined in epan/range.h.

/*

* Register a preference with a ranged value.

*/

extern void

prefs_register_range_preference(module_t *module, const char *name,

const char *title, const char *description, range_t **var,

guint32 max_value);

The range_t value allows the user to specify complex ranges and concatenations, like:

500-1024,2000,2300,3000-50000

Luckily, the value_is_in_range function lets you see if an integer is included in a range so that
you don’t have to deal with the range_t structure yourself.The Tabular Data Stream (TDS) dis-
sector makes uses of a range preference. It stores the preference value in tds_tcp_ports.

/* TCP port preferences for TDS decode */

static range_t *tds_tcp_ports = NULL;

And when it needs to use that preference, it uses value_is_in_range.

/*

* See if either tcp.destport or tcp.srcport is specified

* in the preferences as being a TDS port.

*/

else if (!value_is_in_range(tds_tcp_ports, pinfo->srcport) &&

!value_is_in_range(tds_tcp_ports, pinfo->destport)) {

return FALSE;

}

Final Touches
One of the reasons Ethereal has maintained a C-based dissector approach is that each protocol is
different. Some protocols will need to save state between packets, others will need to gather bits
across multiple bytes and combine together into a single field.There are many strange things that
protocols do. By understanding the basics of Ethereal protocol dissection, including the low-level
routines and the advanced routines, you will be able to handle any of the peculiarities a protocol
may offer.

356 Chapter 12 • Protocol Dissectors

332_NSE_12.qxd 7/14/05 10:46 AM Page 356

Reporting
from Ethereal

Scripts and samples in this chapter:

■ Writing Line-Mode Tap Modules

■ Writing GUI Tap Modules

■ Processing Tethereal’s Output

■ XML/PDML

Chapter 13

357

332_NSE_13.qxd 7/14/05 11:03 AM Page 357

In This Toolbox
Ethereal is an interactive sniffer with an easy-to-use GUI (graphical user interface). Its counter-
part, tethereal, is a text-oriented, line-mode sniffer.These two interfaces, graphical and textual,
are the normal ways of accessing the expansive library of dissectors Ethereal. Nevertheless, in this
chapter you will learn other ways of taking advantage of Ethereal’s that open source program-
mers have created for collection of dissectors.Tap modules, both line-mode and GUI, let you
create custom reports directly in Ethereal.Another approach to report writing is for programs to
read tethereal’s textual output.And to make it easier for other programs, tethereal can convert its
protocol dissection into XML (Extensible Markup Language). We’ll examine all these techniques
for producing reports.

Writing Line-Mode Tap Modules
Taps in Ethereal are ways to tap into protocol dissections while each packet is being processed.
Information from the dissector is passed to a tap module, which keeps track of the information.
When the entire capture file is dissected, the tap module is then directed to finish its reporting.
Most tap modules display some information for the user, but a tap module could be pro-
grammed to do anything. In other words, a tap module is a report mechanism that has Ethereal’s
dissection data as input and can produce any type of output that you can program.

Adding a Tap to a Dissector
The key to making tap modules work is the information interchange between the protocol dis-
sector and the tap module.The protocol dissector’s job is to dissect a packet and store relevant
field information in a C struct, in C variables, so the tap module can use the data directly in its
processing. It is not the tap module’s job to parse the protocol tree data structures. Instead, it’s
handling C structs that hold just the data pertinent to the protocol in question.

A dissector can provide more than one tap interface.The tap interface is the struct of data
that it is passing to an interested tap module.As such, different structs could contain different
types of data from the same protocol.The tap modules that need the relevant data could attach
themselves to the right tap interface. Be aware, however, that tap modules can be registered to
only one tap interface.

The first step in adding a tap to a protocol dissector is to register the tap during the initial-
ization phase, in the proto_register_PROTOABBREV function in your C file. Like the protocol
and field registrations, taps are assigned integer identification numbers.At the top of the dissector
source file, you can define the integer ID, like this example from packet-http.c.

#include "tap.h"

static int http_tap = -1;

Then you call register_tap with the name that you wish to give your tap.You can use any
name you want.This example is taken from the end of proto_register_http, in packet-http.c.

358 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 358

/*

* Register for tapping

*/

http_tap = register_tap("http");

Finally, you add the actual tap by using the tap_queue_packet function.This tells Ethereal to
queue the tap transmission.A packet may send data through multiple taps.The tap transmissions
are queued and are not actually sent until after the packet is completely dissected. Be sure to call
tap_queue_packet after all subdissectors called by your dissector have returned.This is how the
HTTP (Hypertext Transfer Protocol) dissector queues its tap transmission.

tap_queue_packet(http_tap, pinfo, stat_info);

The first parameter, http_tap, is the tap identification number.The pinfo parameter is the
same packet_info struct that is passed to each dissector.The third parameter is the data that is
sent to the tap module, the receiver of the tap transmission.The tap_queue_packet function does
nothing with this data except pass it to the tap module that is listening to the tap.The tap
module that reports on the dissector data is solely responsible for understanding the format of
the data.

Since the trap transmissions occur after the packet has been fully dissected and the protocol
dissector functions have returned, the data structure passed to the tap module must not be
defined in an automatic variable. Normally you will use static storage to keep these data struc-
tures in memory, although it is possible to allocate the structures on the heap, too. If the tap will
only send one transmission per packet, static storage is fine. But if a tap could send more than
one transmission per packet, then you can either pre-allocate that storage as static variables, or
you can dynamically allocate that storage on the heap, like the HTTP dissector’s tap does.

In the case of HTTP, a struct type named http_info_value_t is used to pass data from the
HTTP dissector to the tap module. Its definition, shown here, is in packet-http.h, a header file
that can be included by both the dissector and any tap module that has to receive HTTP tap
transmissions.

typedef struct _http_info_value_t

{

guint32 framenum;

gchar *request_method;

guint response_code;

gchar *http_host;

gchar *request_uri;

} http_info_value_t;

The interesting thing about the HTTP dissector is that a single packet can send multiple tap
transmissions because multiple HTTP requests or responses can occur in the same packet.The
http_info_value_t structs for each transmission are stored in the heap, having been allocated by
g_malloc, the glib function that replaces malloc. Each tap transmission is queued individually
with tap_queue_packet.This works because the structs remain in the heap after the packet has
been dissected. Of course, the next time Ethereal runs the HTTP dissector for a new packet,
those old http_info_value_t structs must be freed; otherwise, memory would be leaked.

Reporting from Ethereal • Chapter 13 359

332_NSE_13.qxd 7/14/05 11:03 AM Page 359

As a comparison, the IPX dissector sends the following struct to its tap listeners.This shows
that any type of data can be sent to the tap listeners, strings, integers, or other types.

typedef struct _ipxhdr_t

{

guint16 ipx_ssocket;

guint16 ipx_dsocket;

guint16 ipx_length;

guint8 ipx_type;

address ipx_src;

address ipx_dst;

} ipxhdr_t;

If a protocol dissector you are interested in already has a tap, but does not send the informa-
tion that your tap module needs, it should be safe to extend the struct that is sent to include the
new information.You should check, but in most cases the current tap modules that use that
struct won’t break if you add new fields to the struct.

There is no documentation about the taps that are available in Ethereal. With some investi-
gation of the source code, however, you can find them.As of Ethereal version 0.10.11, these are
the taps that are available:

■ ansi_a ANSI A Interface (IS-634/IOS)

■ ansi_map ANSI 41 Mobile Application Part (IS41 MAP)

■ bootp Just the DHCP (Dynamic Host Control Protocol) message type

■ dcerpc DCE RPC

■ eth Ethernet fields

■ fc Frame Control fields

■ fddi FDDI (Fiber Distributed Data Interface) fields

■ frame Sends no info; this is useful for counting packets.

■ gsm_a GSM A Interface

■ gsm_map GSM Mobile Application Part

■ h225 H225 information

■ h245 H245 information, when sent over TCP (Transmission Control Protocol)

■ h245dg H245 information, when sent over UDP (User Datagram Protocol)

■ http HTTP information

■ ip IP (Internet Protocol) fields

■ ipx IPX (Internetwork Packet Exchange) fields

■ isup ISDN (Integrated Services Digital Network) User Part information

■ ldap LDAP (Lightweight Directory Access Protocol) call response information

■ mtp3 Message Transfer Part Level 3 fields

360 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 360

■ q931 Q.931 call information

■ rpc Remote Procedure call information

■ rtp Lots of data about Real-Time Transport Protocol (RTP)

■ rtpevent Information about RTP events

■ sctp Lots of information about Stream Control Transmission Protocol (SCTP)

■ sdp The Session Description Protocol summary string for VoIP calls graph analysis

■ sip Information about Session Initiation Protocol

■ smb Information about SMB packets.The smb_info_t structure is defined in smb.h in
the top-level Ethereal directory.

■ tcp The entire TCP header

■ teredo Teredo IPv6 over UDP tunneling information.The e_teredohdr struct is defined
in packet-teredo.c, so your tap module needs its own private copy. Better yet, the
source code should be fixed to move the struct definition to a header file.

■ tr Token-ring fields

■ udp The entire UDP header

■ wlan 802.11 wireless LAN fields

■ wsp Information about Wireless Session Protocol

Adding a Tap Module
A tap module is the piece of code that listens to a tap from a dissector, collates the tap data, and
reports the information in some form. Unfortunately, separate tap modules have to be written
for the two Ethereal interfaces, the line-mode tethereal program, and the GUI Ethereal program.
If you want to make your tap module available in both tethereal and Ethereal, you can certainly
organize your code so the common collating and summarizing part is in a C file that is shared
between tethereal and Ethereal, while the interface and output functions are in files that are spe-
cific to tethereal and Ethereal.

Line-mode interfaces are easier to program than graphical user interfaces. Even if you don’t
use tethereal much, if your desire is to have your report running as soon and as painlessly as pos-
sible, you should code your tap module for tethereal because the programming burden is smaller.

As an example, we will add a tap module that reports any HTTP GET requests. Such
requests represent Web pages and files downloaded from Web servers.Tethereal already has a tap
module that summarizes the HTTP requests and responses (the http,stat report), but it doesn’t
show the URLs (Uniform Resource Locators) requested in a GET request. So we’ll write one.

The first thing to do is to add our new file to the build system. In the Ethereal source, the
UNIX and Windows build systems are separate. However, the files named Makefile.common in
the various source directories are common to both build systems. We’ll name our file tap-
httpget.c, so we add that to the TETHEREAL_TAP_SRC variable in Makefile.common in the
top-level directory of the Ethereal source code.

Reporting from Ethereal • Chapter 13 361

332_NSE_13.qxd 7/14/05 11:03 AM Page 361

Then we create our tap-httpget.c file. Just as protocol dissectors are registered with the core
routines of Ethereal, tap modules have to provide a registration function that tethereal will call at
start-up time. During the build of tethereal a shell script scans the tap module source files and
finds any function whose name begins with register_tap_listener.The name of the function has
to start at the beginning of the line for the shell script to find it. Each registration function needs
a unique name because the function is a public function. We’ll name our registration after our
tap module, httpget. Here is our registration function:

#define TAP_NAME "http,get"

/* This function is found dynamically during the build process.

* It tells Ethereal how to find our tap module. */

void

register_tap_listener_httpget(void)

{

register_tap_listener_cmd_arg(TAP_NAME, httpget_init);

}

The registration function assigns the name to our tap module and tells tethereal which func-
tion to call to initialize a tap session.The strange name, with an embedded comma, follows the
naming scheme of the other tap modules in tethereal.Tap modules are selected with the -z tethe-
real command-line option.To see the list of all tap modules, use -z --help, as shown here.

$./tethereal -z --help

tethereal: invalid -z argument.

-z argument must be one of :

wsp,stat,

smb,rtt

smb,sids

sip,stat

sctp,stat

rpc,programs

rpc,rtt,

io,phs

proto,colinfo,

conv,

io,stat,

http,stat,

h225,srt

h225,counter

gsm_a,

dcerpc,rtt,

bootp,stat,

ansi_a,

The name of each tap module starts with the name of the protocol that it analyzes.The
report names can be further differentiated with a name separated from the protocol name by a
comma.This is not a requirement; it’s just the standard that Ethereal developers have chosen.The
reason some of the tap names end in a comma is due to an error.Tap modules can accept
parameters from the command line.These are given by appending them to the name of the tap

362 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 362

module. Parameters can be separated from the name by any delimiter, but the practice has been
to use commas. For example, the io,stat, tap module accepts two parameters, an interval and a
display filter:

$./tethereal -z io,stat,

tethereal: invalid "-z io,stat,<interval>[,<filter>]" argument

The io,stat, tap module requires the interval parameter. Its name ends with a comma to
remind the user that the interval parameter is necessary. Other tap modules whose names end in
commas accept optional parameters. For example, the http,stat, module accepts a display filter,
but doesn’t require one. We can’t tell this from the command line, but by looking at the code,
we can.

if (!strncmp (optarg, "http,stat,", 10)){

filter=optarg+10;

} else {

filter=NULL;

}

It can be argued that the name of the http,stat, tap module should not have a comma at the
end, to show that a display filter is optional, but not necessary. Our tap module will accept an
optional display filter, so to follow our own advice we’ll name it without a trailing comma. We
put the name in a macro, shown here.

#define TAP_NAME "http,get"

When a user requests our tap module, Ethereal calls the function that was registered via the
register_tap_listener_cmd_arg function. It is possible for the user to have tethereal run multiple
instances of your tap module.This could be useful if the user wanted separate reports for dif-
ferent display filters. For example, these two invocations of our tap module do similar things, but
the first produces a single report, while the second produces two reports.

./tethereal -z 'http,get,tcp.port==81 or tcp.port == 82' \

-r capture.cap

versus:

./tethereal -z http,get,tcp.port==81 \

-z http,get,tcp.port==82 -r capture.cap

Our tap instance initialization function, httpget_init, has two responsibilities.The first is to
parse any command-line options that come after the name of the tap module in the -z com-
mand-line option.The second is to initialize the state for the tap instance and attach it to the tap
in the protocol dissector.

Shown here is the first half of httpget_init. It allocates space for one instance of an httpget_t
struct.This struct holds the state for one tap module instance.After that, it checks to see if a dis-
play filter was passed in. We save it in the httpget_t struct so that we can print the display filter
in the report; our tap module doesn’t need to actually filter anything because tethereal takes care
of the filtering.

#define TAP_NAME_WITH_COMMA "http,get,"

#define TAP_NAME_WITH_COMMA_LEN 9

static void

Reporting from Ethereal • Chapter 13 363

332_NSE_13.qxd 7/14/05 11:03 AM Page 363

httpget_init(char *optarg)

{

httpget_t *tap_instance;

char *filter;

GString *error_string;

/* Construct our unique instance. */

tap_instance = g_malloc(sizeof(httpget_t));

tap_instance->gets = NULL;

/* Set the display filter for the tap */

if (!strncmp (optarg, TAP_NAME_WITH_COMMA,

TAP_NAME_WITH_COMMA_LEN)){

filter = optarg + TAP_NAME_WITH_COMMA_LEN;

tap_instance->filter = g_strdup(filter);

}

else {

filter = NULL;

tap_instance->filter = NULL;

}

At this point it will be helpful to see what state we actually store in the httpget_t struct for
our tap module instance. Here is the structure definition, defined in the same file, tap-httpget.c.

/* used to keep track of the HTTP GET reqeusts */

typedef struct {

char *filter;

GList *gets;

} httpget_t;

Our HTTP GET tap session only needs two pieces of data.The filter field is a copy of the
display filter that we can print in the report.The gets list holds the URLs that we come across in
HTTP GET requests.As in protocol dissectors, the tap modules can make use of the data types
provided by glib.The API (application program interface) reference for glib can be found online
at http://developer.gnome.org/doc/API/2.0/glib/index.html.

Swiss Army Knife

Other glib Data Types
The GList doubly linked list type is not the only storage type that we could have used
for this tap module. The GSList is a singly linked list. We don’t traverse the list back-
wards, so a singly linked list would have served perfectly for this program. It uses less
memory than a doubly linked list because it doesn’t have to maintain a pointer to
the previous node, but the difference in memory is so negligible that it’s not worth
worrying about. An even more interesting change would be to use a GHashTable so

364 Chapter 13 • Reporting from Ethereal

Continued

332_NSE_13.qxd 7/14/05 11:03 AM Page 364

that URLs are reported only once. However, a hash table loses the order of the orig-
inal data. Probably the nicest-looking tap module would use a GSList and a
GHashTable; the former to maintain order and the latter to keep duplicates out of
the list.

Finally, the httpget_init function registers this instance of our tap module with a tap data
source.The register_tap_listener function is called. It takes five parameters:

extern GString *register_tap_listener(char *tapname,

void *tapdata,

char *fstring,

tap_reset_cb tap_reset,

tap_packet_cb tap_packet,

tap_draw_cb tap_draw);

The tapname is the name of the tap that a protocol provides. In this case we’ll be connecting
to the http tap that the HTTP protocol dissector provides.Tap names are arbitrary and do not
have to be named the same as their protocols. In this case, however, the name of the tap happens
to be the same as the name of the protocol.

The tapdata is a pointer to the struct that we allocated to hold the state for this instance of
our tap module.There must be a unique tapdata instance for each tap module instance.The filter
string is the display filter string that the user passed to the tap module on the command line. It
can be NULL, indicating that there is no display filter.

Finally, three callback functions are passed to register_tap_listener.The first, tap_reset, is called if
the tap module instance is supposed to clear its state and ready itself for a new tap session.The
second, tap_packet, is called every time a packet’s data is sent via a tap by the protocol dissector. It
is in the tap_packet callback that the tap module records information into its private data struc-
ture.The third callback, tap_draw, is called when it is time for the tap module to produce its
report.The name tap_draw is a misnomer; your tap module can print a report, send an e-mail, or
do whatever you decide.

Shown here is the second half of our httpget_init function. It registers the tap module
instance via register_tap_listener as described. It then checks the return value of the registration
process. If an error occurred, it frees the memory it allocated and prints an error message.

/* Register */

error_string = register_tap_listener(

"http",

tap_instance,

filter,

httpget_reset,

httpget_packet,

httpget_draw);

if (error_string){

/* Free the data we have just allocated */

if (tap_instance->filter) {

g_free(tap_instance->filter);

}

g_free(tap_instance);

Reporting from Ethereal • Chapter 13 365

332_NSE_13.qxd 7/14/05 11:03 AM Page 365

/* Report the error and clean up */

fprintf (stderr,

"tethereal: Couldn't register http,get, tap: %s\n",

error_string->str);

g_string_free(error_string, TRUE);

exit(1);

}

}

tap_reset
Our tap module instance data structure, httpget_t, will store a copy of the display filter string and
a doubly linked list of URL strings.To reset the state it has to free the URL data, but not the
display filter. If tethereal was to restart our tap module instance, it would be for the same display
filter, so there’s no need to free it.

Freeing the GList is a two-step process; first the strings that the list stores must be freed, then
the list structure itself must be freed.As you see in the following code, the tap_reset callback, as
with the tap_packet and tap_draw callbacks, is passed a void pointer that you must cast to the
pointer type appropriate for your tap module instance data. We cast it to an httpget_t pointer.

/* reset gets, the list of url strings. */

static void

httpget_reset(void *tinst)

{

httpget_t *tap_instance = tinst;

g_list_foreach(tap_instance->gets, gets_free, NULL);

g_list_free(tap_instance->gets);

tap_instance->gets = NULL;

}

The g_list_foreach function, part of the glib API, iterates over every item in the GList, the
doubly linked list, and calls a function for each item. In this way we can walk across the list and
free each URL string.The third parameter to g_list_foreach is a pointer that we can pass to the
callback function. Since we don’t need one, we pass NULL. We define the gets_free function as
shown here. It frees the data, which is the URL string copy, and does nothing with the second
parameter.That’s why we name the second parameter junk.

/* called to free all gets data */

static void

gets_free(gpointer data, gpointer junk)

{

g_free(data);

}

366 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 366

tap_packet
The tap_packet callback is the function that stores data sent by the protocol dissector via the tap.
Our callback is named httpget_packet. Like any tap_packet function, it accepts four parameters,
explained in Table 13.1.

Table 13.1 tap_packet Parameters

Parameter Meaning

void* tinst The pointer to the data structure for this tap module
instance.

packet_info *pinfo A pointer to the packet_info structure for this packet. The
packet_info structure is defined in epan/packet_info.h.

epan_dissect_t *edt A pointer to the data structure that holds high-level infor-
mation for the dissection of the packet. Its definition is in
epan/epan_dissect.h.

const void *tapdata A pointer to the structure passed by the tap in the protocol
dissector. It is a pointer to void because each tap defines its
own data structure. Your tap module must know the defini-
tion of the structure sent by the tap in the protocol dis-
sector.

The first thing our callback does is to cast the void pointers to useful data types.As in
httpget_reset, httpget_packet casts the tap module instance pointer to a httpget_t pointer.The tap
data pointer is cast to an http_info_value_t pointer. Remember that the http tap in packet-http.c
stores data in an http_info_value_t struct, defined in packet-http.h.

/* Look for URLs and save them to our list */

static int

httpget_packet(void *tinst, packet_info *pinfo, epan_dissect_t *edt,

const void *tdata)

{

httpget_t *tap_instance = tinst;

const http_info_value_t *tapdata = tdata;

/* the function continues here ... */

}

For review, the http_info_value_t structure is defined as shown here.

typedef struct _http_info_value_t

{

guint32 framenum;

gchar *request_method;

guint response_code;

gchar *http_host;

gchar *request_uri;

} http_info_value_t;

Unfortunately, there is not any good documentation on what data each tap provides.You
can study the packet-http.c source to see which information is put into each field of

Reporting from Ethereal • Chapter 13 367

332_NSE_13.qxd 7/14/05 11:03 AM Page 367

http_info_value_t. Or you can add a simple printf statement to your httpget_packet to see what the
fields are. For example, this simplistic httpget_packet function will show you the field values for
each packet.

static int

httpget_packet(void *tinst, packet_info *pinfo, epan_dissect_t *edt,

const void *tdata)

{

httpget_t *tap_instance = tinst;

const http_info_value_t *tapdata = tdata;

printf("HTTPGET: %u %s %u %s %s\n",

tapdata->framenum,

tapdata->request_method ?

tapdata->request_method : "(null)",

tapdata->response_code,

tapdata->http_host ?

tapdata->http_host : "(null)",

tapdata->request_uri ?

tapdata->request_uri : "(null)");

/* Return 1 if the packet was used, 0 if it wasn't.

For this simple httpget_packet, it doesn't matter which

value we return. */

return 1;

}

If you were to build a tap-httget.c file with this function in it, you could see the data with
this command:

./tethereal -zhttp,get -r file.cap | grep HTTPGET

The data from a capture loading the www.syngress.com Web page looks like this:

HTTPGET: 10 GET 0 www.syngress.com /

HTTPGET: 12 (null) 200 (null) (null)

HTTPGET: 14 (null) 0 (null) (null)

HTTPGET: 16 (null) 0 (null) (null)

HTTPGET: 19 (null) 0 (null) (null)

HTTPGET: 21 (null) 0 (null) (null)

HTTPGET: 23 (null) 0 (null) (null)

HTTPGET: 25 (null) 0 (null) (null)

HTTPGET: 27 (null) 0 (null) (null)

HTTPGET: 31 GET 0 www.syngress.com /syngress.css

For our purpose, we need three fields from http_info_value_t. First we must check the
request_method field to see if there is a request method, and if there is, to make sure it is GET.
Then we need the http_host, which is a string representation of the hostname. Finally, we need
request_uri, the URI (Uniform Resource Identifier) of the file that was requested from the Web
server.The URL can be constructed from the host name and the URI:

"http://" + hostname + URI

368 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 368

But what if the user has instructed tethereal to dissect the HTTP protocol on a nonstandard
port? If that’s the case we need to add the port number to the URL, like this:

"http://" + hostname + ":" port + URI

The TCP port number is not available in the http_info_value_t struct, but it is available in the
packet_info struct.The packet_info struct, defined in epan/packet_info.h, is very large and compli-
cated. It maintains some interesting information about the packet being dissected, including
source and destination addresses, IP protocol number, ports, and segmentation information. It’s
best to peruse epan/packet_info.h to see what the struct contains. We’ll be using destport, the
destination port of the packet.

Our strategy for httpget_packet is to check the request_method field to see if the HTTP packet
is a GET request. If it is, we allocate enough space to hold a copy of the URL.The length of the
string buffer is the sum of the length of the hostname and the request URI, along with space for
the extra decorations in the URL, as shown in the following example:

char *url;

if (tapdata->request_method &&

strcmp(tapdata->request_method, "GET") == 0) {

/* Make a buffer big enough to hold the URL */

/* 'http://' + possible ':#####' + \0 + extra*/

url = g_malloc(strlen(tapdata->http_host) +

strlen(tapdata->request_uri) +

7 + /* http:// */

6 + /* :##### */

1); /* terminating \0 */

Then the URL string is constructed. If the destination TCP port is 80, the default HTTP
port, then we write the URL one way. We write it another way if the port is not 80.Then the
string is saved in our doubly linked list.

/* If it's on port 80, then we can use the simple URL */

if (pinfo->destport == 80) {

sprintf(url, "http://%s%s",

tapdata->http_host,

tapdata->request_uri);

}

/* If it's not on port 80, we have to show the port */

else {

sprintf(url, "http://%s:%u%s",

tapdata->http_host,

pinfo->destport,

tapdata->request_uri);

}

/* Save the URL in our list */

tap_instance->gets = g_list_append(tap_instance->gets, url);

Reporting from Ethereal • Chapter 13 369

332_NSE_13.qxd 7/14/05 11:03 AM Page 369

Finally, we return 1 if we created the URL. If we did not create a URL because the packet
was not a GET request, then we return 0.The return value 1 tells Ethereal that the packet was
used in the tap module.A return value of 0 tells Ethereal that the packet was not used.This is
important for a user interface that wants to update the information drawn on the screen or that
provides a progress report to the user. Neither is the case for tethereal.

tap_draw
The report callback, httpget_draw, is a very simple function.All the work of constructing URLs
has taken place in httpget_packet.The reporting function simply has to print the URLs to stdout.
The report will show the display filter if one was used, then once again use g_list_foreach to
iterate over each item in the doubly linked list. However, instead of calling gets_free to free the
URL strings, a new function, gets_print, will be called to print the URL string. Here is the
httpget_draw function:

static void

httpget_draw(void *tinst)

{

httpget_t *tap_instance = tinst;

printf("\n");

printf("===\n");

if (!tap_instance->filter) {

printf("HTTP GET Requests\n\n");

}

else {

printf("HTTP GET Requests with filter %s\n\n",

tap_instance->filter);

}

g_list_foreach(tap_instance->gets, gets_print, NULL);

printf("===\n");

}

The gets_print function accepts two parameters, the second of which is the user data passed
as the last parameter to g_list_foreach. We don’t need that extra data, so we ignore it.

/* called to print all gets data */

static void

gets_print(gpointer data, gpointer junk)

{

char *url = data;

printf("%s\n", url);

}

The httpget tap module is finished.You can build tethereal as you normally do, and run it:

$./tethereal -zhttp,get -r file.cap

On a packet trace showing a visit to the www.syngress.com website we see the packet sum-
mary that tethereal normally prints, followed by the output of our tap module, shown here:

370 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 370

===

HTTP GET Requests

http://www.syngress.com/

http://www.syngress.com/syngress.css

http://www.syngress.com/syngress.css

http://www.syngress.com/images/syng_logo.gif

http://www.syngress.com/images/top_banner.gif

http://www.syngress.com/images/one_logo.gif

http://www.syngress.com/images/left_one_words.gif

http://www.syngress.com/images/small/328_web_tbm.jpg

http://www.syngress.com/images/small/317_web_tbm.jpg

http://www.syngress.com/images/small/319_web_tbm.jpg

http://www.syngress.com/images/small/324_web_tbm.jpg

http://www.syngress.com/images/small/306_web_tbm.jpg

http://www.syngress.com/images/s_c_e.gif

http://www.syngress.com/images/TechnoSec.gif

http://www.syngress.com/images/jbeal_sm.jpg

http://www.syngress.com/images/customer2.jpg

http://www.syngress.com/images/plus.gif

http://www.syngress.com/images/plus.gif

http://www.syngress.com/favicon.ico

===

Writing GUI Tap Modules
The basics of a GUI tap module in Ethereal are the same as those for a line-mode tap module in
tethereal. However, in Ethereal, if you wish to produce output in the GUI, you must learn how
to program the GTK+ library, the GUI library that Ethereal uses.This GUI library is used by
Ethereal on all the platforms it supports—UNIX, Mac OS, and Windows.

To add a new tap module to Ethereal you create a new C file in the gtk directory of the
Ethereal source code.All Ethereal source files that are specific to the GTK+ library are in this
directory.This segregates the files from tethereal, the line-mode version of Ethereal. Put the
name of your new tap module’s C source file in Makefile.common, in the
ETHEREAL_TAP_SRC variable definition. Once it is there, both the UNIX build (including
MacOS) and the Windows build will build your tap module.

The tap module must provide a registration function that hooks the tap module into
Ethereal’s command-line interface (CLI) and Ethereal’s GUI menu.The registration function’s
name should start with register_tap_listener and be defined so that the name of the function is at
the beginning of the line.The Ethereal build uses a script, make-tapreg-dotc, in the top-level
Ethereal directory to find all tap module registration functions.That’s why the name of your reg-
istration function must conform to these two constraints.

Use the register_tap_listener_cmd_arg function to register your tap module with the com-
mand-line interface.Then use the register_tap_menu_item function to register the tap module with
the GUI menu. Shown here is the registration function for our new tap module.

Reporting from Ethereal • Chapter 13 371

332_NSE_13.qxd 7/14/05 11:03 AM Page 371

#define TAP_NAME "http,get"

void

register_tap_listener_gtkhttpget(void)

{

register_tap_listener_cmd_arg(TAP_NAME, gtkhttpget_init);

register_tap_menu_item("HTTP/GET URLs", REGISTER_TAP_GROUP_NONE,

gtk_tap_dfilter_dlg_cb, NULL, NULL, &(gtkhttpget_dlg));

}

Like tethereal, Ethereal allows users to invoke taps directly from the command line with the
-z command-line option. For example, by registering our tap module with the name http,get, the
following Ethereal command line would invoke our tap module immediately on a packet cap-
ture file:

$ ethereal -z http,get file.cap

The register_tap_menu_item function accepts six parameters, defined in Table 13.2.

Table 13.2 register_tap_menu_item Parameters

Parameter Meaning

name The menu name. Slashes indicate sub-menus.
group The menu item under which this item should be placed.
callback The function to run when the menu item is selected.
selected_packet_enabled The function to call if the availability of the tap module is

dependent upon the packet that is currently selected. It can
enable and disable the tap module’s menu item.

selected_tree_row_enabled The function to call if the availability of the tap module is
dependent upon the row that is selected in the protocol
tree. It can enable and disable the tap module’s menu item.

callback_data The private data to send to pass to the callback function.

Our tap module is registered with the menu item HTTP/GET URLs. By using a slash we
create a menu item and a menu sub-item.The item HTTP will be placed where all the tap
module menu items are placed—under the Statistics menu. Under the HTTP item will be a
GET URLs item that will select our tap module, as shown in Figure 13.1, a screenshot taken on
Linux.This arrangement plays well with the other HTTP-related tap module, http_stat.c. If we
were to add many HTTP-related tap modules, we would consider defining a group for them.

The menu item groups are defined in gtk/tap_menu.h.The groups offer a convenient way
of placing related tap modules into sub-menus without each tap module having to know the
exact name of the menu item where they live. By stating that the module belongs to the REG-
ISTER_TAP_GROUP_RESPONSE_TIME group, for example, it will be placed in the Service
Response Time submenu of the Statistics menu. Our tap module doesn’t need any special
grouping, so we register it under the REGISTER_TAP_GROUP_NONE group.

372 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 372

Figure 13.1 The HTTP GETs Menu Item

Some tap modules may need a particular packet or field selected in the GUI to function. In
those cases the two callbacks, selected_packet_enabled and selected_tree_row_enabled, allow the tap
module to check the selected packet or protocol tree row and enable or disable its own menu
item. Finally, the callback_data item is a way to pass data to the callback function when a tap
module is instantiated.

Tap modules have instances because more than one instance of the tap module can be run-
ning at the same time.The user can differentiate most tap modules by display filter, so that one
instance of our httpget tap module could examine URLs in packets destined for
www.syngress.com, while another instance of our httpget module could examine packets destined
for a local intranet Web server.

Ethereal provides a handy function for instantiating tap modules that do accept display fil-
ters.The gtk_tap_dfilter_dlg_cb function presents a small window to the user where a display filter
can be typed. Once a correct display filter is entered, the tap module’s instantiation function is
called, and the real work can begin. We used this function in our registration process. It expects a
pointer to a static tap_dfilter_dlg struct, which is defined in tap_dfilter_dlg.h (for some reason this
header file is in the top-level directory of the Ethereal source tree instead of in the gtk direc-
tory).There are four members of the tap_dfilter_dlg struct, shown in Table 13.3.

Reporting from Ethereal • Chapter 13 373

332_NSE_13.qxd 7/14/05 11:03 AM Page 373

Table 13.3 The tap_dfilter_dlg Struct Members

Parameter Meaning

win_title The title of the window, shown at the top.
init_string The command-line interface name of the

tap module.
tap_init_cb The function to call to instantiate the tap

module.
Index Always set this to -1. The

gtk_tap_dfilter_dlg_cb function sets it to a
value for its own purposes.

The reason init_string is needed is because the tap module’s instantiation function is the
common point between the CLI method of invoking your tap module and the GUI method.
The CLI method directly calls your instantiation function, while tap_dfilter_dlg calls it after cre-
ating strings to make your instantiation function think it was called from the command line.
Because of that your instantiation function only needs to deal with one way of retrieving
optional data.

Our tap_dfilter_dlg definition is shown here:

static tap_dfilter_dlg gtkhttpget_dlg = {

"HTTP GET URLs",

TAP_NAME,

gtkhttpget_init,

-1

};

Initializer
Our instantiation function, gtkhttpget_init, like its tethereal counterpart, checks if a display filter
was given. It doesn’t use the display filter for filtering packets; Ethereal takes care of that.
However, it does use the text of the display filter to title the window, to help the user distinguish
different instances of the tap module.

The gtkhttpget_init function also keeps track of the data for this tap module instance in a
struct.This struct is gtkhttpget_t, defined in our tap module C file, shown here:

typedef struct {

GList *gets;

GtkTextBuffer *buffer;

} gtkhttpget_t;

It keeps track of two things.The first is the doubly linked list of URLs.The second is the
widget that displays URL in our GUI.

Here is the first part of gtkhttpget_init. It creates the gtkhttpget_t data and the top-level
GtkWidget for our tap module instance’s own window. We use window_new, a convenience func-
tion defined in Ethereal.There are many such window-related functions defined in gtk/ui_util.h
to make GTK programming easier.

374 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 374

#define TAP_NAME_WITH_COMMA "http,get,"

#define TAP_NAME_WITH_COMMA_LEN 9

static void

gtkhttpget_init(char *optarg)

{

gtkhttpget_t *tap_instance;

char *filter = NULL;

GString *error_string;

char *title = NULL;

GtkWidget *main_vb;

GtkWidget *scrolled_win;

GtkWidget *bt_close;

GtkWidget *bbox;

GtkWidget *win;

GtkWidget *view;

if (strncmp(optarg, TAP_NAME_WITH_COMMA,

TAP_NAME_WITH_COMMA_LEN) == 0){

filter = optarg + TAP_NAME_WITH_COMMA_LEN;

} else {

filter = NULL;

}

/* top level window */

tap_instance = g_malloc(sizeof(gtkhttpget_t));

tap_instance->gets = NULL;

win = window_new(GTK_WINDOW_TOPLEVEL, "httpget");

if (filter){

title = g_strdup_printf("HTTP GET URLs with filter: %s", filter);

}

else {

title = g_strdup("HTTP GET URLs");

}

gtk_window_set_title(GTK_WINDOW(win), title);

g_free(title);

The next part of gtkhttpget_init constructs most of the rest of the window for our tap
module instance.You can consult the GTK+ API reference on-line at
http://developer.gnome.org/doc/API/2.0/gtk/index.html to read details on any of the GTK+
functions you see here or in the rest of the Ethereal source code.

Most importantly, we choose to use a GtkTextView object, which contains a GtkTextBuffer
object.The GtkTextBuffer is an object for storing text and allows the user to edit text if that is the
behavior you want. In our case we don’t want the user to edit the text, but it is nice to allow the
user to select the text with the mouse and copy it with the windowing system’s native copy mech-
anism (2nd-button clock, Ctrl+C, etcetera).The GtkTextView object is simply the visible represen-
tation of the GtkTextBuffer object. By the way, we have to put the GtkTextView object inside a
GtkScrolledWindow object so that vertical and horizontal scrollbars are visible and usable.

Reporting from Ethereal • Chapter 13 375

332_NSE_13.qxd 7/14/05 11:03 AM Page 375

The GtkTextBuffer widget is the only widget we’re interested in storing in our gtkhttpget_t
struct because it is the only widget we need to update during the life of the tap module
instance. Shown here is the GUI construction portion of gtkhttpget_init. Notice how we make
the GtkTextView (and GtkTextBuffer) non-editable with the gtk_text_view_set_editable function.
Otherwise, the user would be able to modify the displayed data.

main_vb = gtk_vbox_new(FALSE, 12);

gtk_container_border_width(GTK_CONTAINER(main_vb), 12);

gtk_container_add(GTK_CONTAINER(win), main_vb);

/* Where we store text */

view = gtk_text_view_new();

gtk_text_view_set_editable(view, FALSE);

/* Add scrollbars to it */

scrolled_win = gtk_scrolled_window_new(NULL, NULL);

gtk_scrolled_window_add_with_viewport(scrolled_win, view);

gtk_container_add(GTK_CONTAINER(main_vb), scrolled_win);

/* Grab the GtkTextBuffer so we can add text to it. */

tap_instance->buffer = gtk_text_view_get_buffer(view);

Next our new tap module instance is attached to the tap that the HTTP protocol dissector
provides.The register_tap_listener function is the same as was described for adding taps to tethe-
real.You register three callbacks with this function: one to reset state, one to read tap information
for a single packet, and one to draw the report.

error_string = register_tap_listener(

"http",

tap_instance,

filter,

gtkhttpget_reset,

gtkhttpget_packet,

gtkhttpget_draw);

if (error_string) {

/* error, we failed to attach to the tap. clean up */

simple_dialog(ESD_TYPE_ERROR, ESD_BTN_OK, error_string->str);

gtk_widget_destroy(win);

g_free(tap_instance);

g_string_free(error_string, TRUE);

return ;

}

At the end of gtkhttpget_init we finalize the GUI and connect the GTK events, or signals as
they are called, to correctly destroy the window data.The destroy event uses a special callback,
win_destroy_cb, that ensures thread safety. Every tap module that uses GTK needs a win_destroy_cb
function to correctly destroy instance data. Finally, the window is displayed on screen with the
window_present function, and Ethereal is forced to analyze current packets for this tap module by
calling cf_retap_packets.

376 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 376

/* Button row. */

bbox = dlg_button_row_new(GTK_STOCK_CLOSE, NULL);

gtk_box_pack_start(GTK_BOX(main_vb), bbox, FALSE, FALSE, 0);

bt_close = OBJECT_GET_DATA(bbox, GTK_STOCK_CLOSE);

window_set_cancel_button(win, bt_close,

window_cancel_button_cb);

SIGNAL_CONNECT(win, "delete_event",

window_delete_event_cb, NULL);

SIGNAL_CONNECT(win, "destroy",

win_destroy_cb, tap_instance);

gtk_widget_show_all(win);

window_present(win);

cf_retap_packets(&cfile);

}

The Three Tap Callbacks
The callback that resets the state of our tap module instance is the same as it was for our tethe-
real tap module. It frees the items in the doubly linked list, then frees the doubly linked list itself.
It also clears the text in the GtkTextBuffer by finding the start and end offsets, then deleting the
text between those offsets.

/* Frees the data in each list node */

static void

gets_free(gpointer data, gpointer junk _U_)

{

g_free(data);

}

/* Resets the tap module instance state */

static void

gtkhttpget_reset(void *tinst)

{

gtkhttpget_t *tap_instance = tinst;

GtkTextIter start, end;

g_list_foreach(tap_instance->gets, gets_free, NULL);

g_list_free(tap_instance->gets);

tap_instance->gets = NULL;

gtk_text_buffer_get_iter_at_offset(tap_instance->buffer,

&start, 0);

gtk_text_buffer_get_iter_at_offset(tap_instance->buffer,

&end, -1);

gtk_text_buffer_delete(tap_instance->buffer, &start, &end);

}

As you can guess, analyzing the tap data in our gtkhttpget_packet callback is exactly the same
it was for our tethereal tap module. For reference, here is the function. It looks at the data passed

Reporting from Ethereal • Chapter 13 377

332_NSE_13.qxd 7/14/05 11:03 AM Page 377

from the tap via the http_info_value_t struct, as well as the TCP port in the packet_info struct, and
creates a URL from it. It stores this URL in the doubly linked list.

static int

gtkhttpget_packet(void *tinst, packet_info *pinfo, epan_dissect_t *edt,

const void *tdata)

{

gtkhttpget_t *tap_instance = tinst;

const http_info_value_t *tapdata = tdata;

char *url;

if (tapdata->request_method &&

strcmp(tapdata->request_method, "GET") == 0) {

/* Make a buffer big enough to hold the URL */

/* 'http://' + possible ':#####' + \0 + extra*/

url = g_malloc(strlen(tapdata->http_host) +

strlen(tapdata->request_uri) +

7 + /* http:// */

6 + /* :##### */

1); /* Terminating \0 */

/* If it's on port 80, then we can use the simple URL */

if (pinfo->destport == 80) {

sprintf(url, "http://%s%s",

tapdata->http_host,

tapdata->request_uri);

}

/* If it's not on port 80, we have to show the port */

else {

sprintf(url, "http://%s:%u%s",

tapdata->http_host,

pinfo->destport,

tapdata->request_uri);

}

/* Save the URL in our list */

tap_instance->gets = g_list_append(tap_instance->gets, url);

/* Tell Ethereal that we used the data */

return 1;

}

/* Tell Ethereal that we did not use the data */

return 0;

}

Displaying the URL in the GUI is very easy because the widgets provided by the GTK+
library have lots of functionality.The hard part of using GTK+ is setting up the widgets; once
they’re in place, modifying their data is easy. In this case, we iterate over the doubly linked list
and add each URL to the GtkTextBuffer using the gtk_text_buffer_insert_at_cursor function. We
also add a new-line so that each URL appears on a line by itself.

378 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 378

/* called to display the URL in a list node.*/

static void

gets_draw(gpointer data, gpointer p_buffer)

{

char *url = data;

GtkTextBuffer *buffer = p_buffer;

gtk_text_buffer_insert_at_cursor(buffer, url, strlen(url));

gtk_text_buffer_insert_at_cursor(buffer, "\n", 1);

}

static void

gtkhttpget_draw(void *tinst)

{

gtkhttpget_t *tap_instance = tinst;

g_list_foreach(tap_instance->gets, gets_draw,

tap_instance->buffer);

}

Finally, the special win_destroy_cb function is shown. It has to provide some locking so the
tap module can be safely decoupled from the tap.This is boilerplate code and can be copied
from any other tap module. Just be sure to change the code after the call to unprotect_thread_crit-
ical_region; it is the cleanup code that removes all the data used by your tap module instance.
Because our tap module uses such simple data structures, it turns out that our gtkhttpget_reset
function not only resets state, but clears our private memory, too. So we take advantage of that
and use gtkhttpget_reset to free the memory before freeing the gtkhttpget_t struct itself. We don’t
have to worry about freeing the GtkTextBuffer object that is pointed to by the gtkhttpget_t
struct; it will be freed as the GUI objects are freed by GTK+.

/* since the gtk2 implementation of tap is multithreaded we must

* protect remove_tap_listener() from modifying the list while

* draw_tap_listener() is running. The other protected block

* is in main.c

*

* there should not be any other critical regions in gtk2

*/

void protect_thread_critical_region(void);

void unprotect_thread_critical_region(void);

static void

win_destroy_cb(GtkWindow *win _U_, gpointer tinst)

{

gtkhttpget_t *tap_instance = tinst;

protect_thread_critical_region();

remove_tap_listener(tinst);

unprotect_thread_critical_region();

/* We can do this because our reset function frees our memory. */

gtkhttpget_reset(tap_instance);

g_free(tap_instance);

}

Reporting from Ethereal • Chapter 13 379

332_NSE_13.qxd 7/14/05 11:03 AM Page 379

That’s it.The tap module will be compiled and linked directly into the Ethereal executable.
When run on a capture file, the URLs will be displayed in a separate window, as shown in
Figure 13.2.

Figure 13.2 The HTTP GETs Report

Master Craftsman

Other GTK widgets
The GtkTextView widget is nice for displaying information, but other widgets provide
other functionality. A GtkTreeView widget is another way of displaying multiple lines
of information in a scrollable fashion. The GtkTreeView widget is what Ethereal uses
to display the GUI protocol tree, but it doesn’t have to display tree-like information;
it can display list-like information, which is what our tap module produces. The
GtkTreeView widget is interesting because it can tell the program when a user selects
an item in the list. A fancier tap module could detect the click on the URL and open
that URL in a browser!

Processing Tethereal’s Output
Another way to create a report from a dissection of a packet trace is to analyze the dissection as
produced by tethereal. In fact, for very simple reports, analyzing just the packet summary could
be useful.

380 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 380

The packet summary is the default output of tethereal. We can enhance the output by
telling tethereal to resolve host names with the -N option.The -N option takes one of three
arguments:

■ m resolve MAC (Media Access Control) address names (hardware addresses)

■ n resolve networks names (hosts)

■ t resolve transport names (port names)

The packet summary produced by tethereal looks like the packet summary shown in the
Ethereal GUI.The columns that you have defined to be displayed in Ethereal are also shown in
the tethereal output. Using grep and awk, two UNIX tools for processing lines of text, we can
approximate the output of our httpget tap module simply by running tethereal. We use grep to
filter the lines; we want only the lines that show the HTTP protocol and have GET in the Info
column.

The awk tool lets us print arbitrary text mixed with fields from each line. Awk finds the
fields by looking for text that is separated by whitespace. We know the format of the output of
tethereal, so we know that the destination host name is field 5 and the URI is field 8.

This command line will run tethereal on our capture file, showing host names for IP
addresses that are resolvable. For all HTTP GET packets, a URL will be printed.

$./tethereal -Nn -r file.cap | \

grep "HTTP" | grep "GET " | \

awk '{ print "http://"$5$8 }'

http://www.syngress.com/

http://www.syngress.com/syngress.css

http://www.syngress.com/syngress.css

http://www.syngress.com/images/syng_logo.gif

http://www.syngress.com/images/top_banner.gif

http://www.syngress.com/images/one_logo.gif

http://www.syngress.com/images/left_one_words.gif

http://www.syngress.com/images/small/328_web_tbm.jpg

http://www.syngress.com/images/small/317_web_tbm.jpg

http://www.syngress.com/images/small/319_web_tbm.jpg

http://www.syngress.com/images/small/324_web_tbm.jpg

http://www.syngress.com/images/small/306_web_tbm.jpg

http://www.syngress.com/images/s_c_e.gif

http://www.syngress.com/images/TechnoSec.gif

http://www.syngress.com/images/jbeal_sm.jpg

http://www.syngress.com/images/customer2.jpg

http://www.syngress.com/images/plus.gif

http://www.syngress.com/images/plus.gif

http://www.syngress.com/favicon.ico

This simplistic report suffers from two problems.The first is that nonstandard TCP ports are
not shown.The packet summary does not show us the TCP port.That can be fixed by adding
the destination port to the columns shown in Ethereal.You either have to load Ethereal and use
the Preferences GUI to make this modification, or know how to edit your Ethereal preferences

Reporting from Ethereal • Chapter 13 381

332_NSE_13.qxd 7/14/05 11:03 AM Page 381

file to make this happen. Secondly, the awk command deals with numbered fields. If there is any
change to the order of the columns, or if one of the fields unexpectedly has a white space in it,
then the awk command prints the wrong information.

For any report more complicated than our simple httpget report, more field information has
to be pulled from the protocol dissection. What we really want is to read the tethereal’s protocol
dissection.You could write a script to analyze the verbose output of tethereal, using tethereal’s -V
option.This output corresponds to the protocol tree in the Ethereal GUI. But verbose really
does mean verbose. Here’s the output for one packet:

$./tethereal -Nn -V -r file.cap

Frame 31 (841 bytes on wire, 841 bytes captured)

Arrival Time: May 12, 2005 23:35:59.397647000

Time delta from previous packet: 0.000125000 seconds

Time since reference or first frame: 0.549620000 seconds

Frame Number: 31

Packet Length: 841 bytes

Capture Length: 841 bytes

Protocols in frame: eth:ip:tcp:http

Ethernet II, Src: 00:e0:81:00:18:2d, Dst: 00:02:2d:88:45:d5

Destination: 00:02:2d:88:45:d5 (00:02:2d:88:45:d5)

Source: 00:e0:81:00:18:2d (00:e0:81:00:18:2d)

Type: IP (0x0800)

Internet Protocol, Src Addr: 192.168.253.100 (192.168.253.100), Dst Addr: www.syngress.com

(67.106.143.23)

Version: 4

Header length: 20 bytes

Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00)

0000 00.. = Differentiated Services Codepoint: Default (0x00)

.... ..0. = ECN-Capable Transport (ECT): 0

.... ...0 = ECN-CE: 0

Total Length: 827

Identification: 0xca10 (51728)

Flags: 0x04 (Don't Fragment)

0... = Reserved bit: Not set

.1.. = Don't fragment: Set

..0. = More fragments: Not set

Fragment offset: 0

Time to live: 64

Protocol: TCP (0x06)

Header checksum: 0xdd1d (correct)

Source: 192.168.253.100 (192.168.253.100)

Destination: www.syngress.com (67.106.143.23)

Transmission Control Protocol, Src Port: 36930 (36930), Dst Port: 80 (80), Seq: 1, Ack: 1,

Len: 775

Source port: 36930 (36930)

Destination port: 80 (80)

Sequence number: 1 (relative sequence number)

Next sequence number: 776 (relative sequence number)

Acknowledgement number: 1 (relative ack number)

Header length: 32 bytes

Flags: 0x0018 (PSH, ACK)

382 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 382

0... = Congestion Window Reduced (CWR): Not set

.0.. = ECN-Echo: Not set

..0. = Urgent: Not set

...1 = Acknowledgment: Set

.... 1... = Push: Set

.... .0.. = Reset: Not set

.... ..0. = Syn: Not set

.... ...0 = Fin: Not set

Window size: 5840 (scaled)

Checksum: 0x8675 (correct)

Options: (12 bytes)

NOP

NOP

Time stamp: tsval 428472304, tsecr 0

Hypertext Transfer Protocol

GET /syngress.css HTTP/1.1\r\n

Request Method: GET

Request URI: /syngress.css

Request Version: HTTP/1.1

Host: www.syngress.com\r\n

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7.6) Gecko/20050506

Firefox/1.0 (Ubuntu package 1.0.2)\r\n

Accept: text/css,*/*;q=0.1\r\n

Accept-Language: en-us,en;q=0.7,es;q=0.3\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\n

Keep-Alive: 300\r\n

Connection: keep-alive\r\n

Referer: http://www.syngress.com/\r\n

Cookie: CFTOKEN=24636895; CFID=618101;

CFCLIENT_SYNGRESS=sg%5Femail%3Dtest%40syngress%2Ecom%23serial%5Fkey%3D004%23sg%5Fdsorc%3Ds

yngress%23;

CFGLOBALS=urltoken%3DCFID%23%3D618101%26CFTOKEN%23%3D24636895%23lastvisit%3D%7Bts%20%27200

5%2D05%2

\r\n

All the data you need is there.The TCP destination port is listed:

Destination port: 80 (80)

And the HTTP request method and URI are listed:
Hypertext Transfer Protocol

GET /syngress.css HTTP/1.1\r\n

Request Method: GET

Request URI: /syngress.css

Request Version: HTTP/1.1

Host: www.syngress.com\r\n

To find the data in tethereal’s output you need to program a state machine.A state machine
is a program that performs certain actions under certain conditions, or states.The states can
change so that new actions are performed.There is always a logical and ordered progression of
states. In short, the state machine lets us organize the processing of the data properly.

In our case of processing the output of tethereal, we will look for the TCP protocol first,
and then the destination port inside the TCP protocol. We can’t simply look for the destination

Reporting from Ethereal • Chapter 13 383

332_NSE_13.qxd 7/14/05 11:03 AM Page 383

port without looking for TCP first because the string “Destination port:” matches both the TCP
field and the UDP field of that name. Similarly, we must find the HTTP protocol before finding
the three fields in the HTTP protocol that interest us (request method, URI, and host).

We will program this script in Python.The program starts by importing some system modules.

#!/usr/bin/env python

import os

import sys

import re

By convention, the bootstrapping portion of a Python script is at the end of the file.The
main function processes a single filename and prints the report.

def main():

filename = sys.argv[1]

capture = CaptureFile(filename)

capture.CreateReport()

if __name__ == '__main__':

main()

The CaptureFile class will analyze the tethereal output for one capture file. Its constructor
runs tethereal with the -V option to get the verbose output. It also defines an array, self.urls,
where the URL strings will be stored.

class CaptureFile:

def __init__(self, filename):

cmd = "./tethereal -V -r " + filename

pipe = os.popen(cmd, "r")

self.urls = []

self.Parse(pipe)

We can use regular expressions to match lines of text with the protocols and fields that they
represent. For those not familiar with Python, it uses the same regular expression syntax as Perl.
However, regular expressions are not built into the syntax of Python, so regular expression
objects must be created by byte-compiling a regular expression string.That is what this snippet
of code does. Our regular expression objects are referenced by variables whose names start with
re_, as a convention to remind us what the objects are.The r before the initial double quote of
each string tells the Python interpreter to treat these strings as raw strings; that is, to keep the
backslashes in the string instead of interpreting them according to Python rules.

re_frame = re.compile(r"^Frame \d+")

re_tcp = re.compile(r"^Transmission Control Protocol")

re_tcp_dst_port = re.compile(r"Destination port: (?P<port>\d+)")

re_http = re.compile(r"^Hypertext Transfer Protocol")

re_http_method = re.compile(r"Request Method: (?P<method>\w+)")

re_http_req_uri = re.compile(r"Request URI: (?P<uri>\S+)")

re_http_host = re.compile(r"Host: (?P<host>\S+)\\r\\n")

384 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 384

The (?P<name>pattern) syntax is different from Perl. It allows groups of patterns to be
named. Usually groups are numbered. But it’s easier to mention groups by name rather than
number in the program. Group names also make the program easier to read.

Swiss Army Knife

Additional Filtering via Display Filters
You can avoid checking for certain fields in your packet if you can be guaranteed that
all packets that your script sees conform to your expectations. For example, in the
httpget report we want only packets that have an HTTP request method of “GET.”
We can test for this in the Python script. By changing the way tethereal is run from
the script, we can be sure that the packets seen are “GET” packets. Just add –R
'http.request.method == GET' to the tethereal command line in the CaptureFile
constructor. Then re_http_method won’t be needed.

Our Parse method will keep track of the state in a variable named state.All possible states are
defined by variables whose names begin with STATE.Also, the values we wish to extract from
the packet, port, uri, and host, are initialized to None, or the empty value.

def Parse(self, fh):

STATE_NEED_TCP = 0

STATE_NEED_TCP_DST_PORT = 1

STATE_NEED_HTTP = 2

STATE_NEED_HTTP_METHOD = 3

STATE_NEED_HTTP_REQ_URI = 4

STATE_NEED_HTTP_HOST = 5

STATE_SKIP_TO_NEXT_FRAME = 6

state = STATE_NEED_TCP

port = None

uri = None

host = None

Then the Parse method loops across each line in the pipe from tethereal. If a new packet is
seen, then the state and values are reset. Otherwise, a particular regular expression is used to
examine the line in question depending on the current state of the program. Once all the states
have been traversed and all the necessary fields have been read, MakeURL is called to make the
URL string and store it in the array.

for line in fh:

New frame? Reset the state

if re_frame.search(line):

state = STATE_NEED_TCP

port = None

Reporting from Ethereal • Chapter 13 385

332_NSE_13.qxd 7/14/05 11:03 AM Page 385

uri = None

host = None

Look for TCP

elif state == STATE_NEED_TCP:

if re_tcp.search(line):

state = STATE_NEED_TCP_DST_PORT

Look for TCP destination port

elif state == STATE_NEED_TCP_DST_PORT:

m = re_tcp_dst_port.search(line)

if m:

port = m.group("port")

state = STATE_NEED_HTTP

Look for HTTP

elif state == STATE_NEED_HTTP:

if re_http.search(line):

state = STATE_NEED_HTTP_METHOD

Look for HTTP Request Method

elif state == STATE_NEED_HTTP_METHOD:

m = re_http_method.search(line)

if m:

if m.group("method") == "GET":

state = STATE_NEED_HTTP_REQ_URI

else:

state = STATE_SKIP_TO_NEXT_FRAME

Look for HTTP Request URI

elif state == STATE_NEED_HTTP_REQ_URI:

m = re_http_req_uri.search(line)

if m:

uri = m.group("uri")

state = STATE_NEED_HTTP_HOST

Look for HTTP Host

elif state == STATE_NEED_HTTP_HOST:

m = re_http_host.search(line)

if m:

host = m.group("host")

self.MakeURL(port, uri, host)

state = STATE_SKIP_TO_NEXT_FRAME

Just skip lines and let our first if test, the

one that looks for a new "Frame", get activated

elif state == STATE_SKIP_TO_NEXT_FRAME:

pass

Protect against a programming mistake by complaining

about any other value for 'state'

else:

sys.exit("Unexpected state value: %s" % (state))

386 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 386

TIP

Instead of using integers as the values of the STATE variables, it would be nicer to
set them to strings. During the debugging phase of your program you could add a
print state statement to the loop to more easily understand what state the state
machine is in.

Creating the URL string is easy. It’s just a concatenation of other strings.

def MakeURL(self, port, uri, host):

assert port

assert uri

assert host

if port == "80":

url = "http://" + host + uri

else:

url = "http://" + host + ":" + port + uri

self.urls.append(url)

Finally, the report is created. It, too, is straightforward, as it just has to print all the items in
the URL list.

def CreateReport(self):

print "=" * 40

print "httpget1 URL report"

print

for url in self.urls:

print url

print "=" * 40

Running this program gives us a very nice report.

$ python httpget1.py syngress.cap

==

httpget1 URL report

http://www.syngress.com/

http://www.syngress.com/syngress.css

http://www.syngress.com/syngress.css

http://www.syngress.com/images/syng_logo.gif

http://www.syngress.com/images/top_banner.gif

http://www.syngress.com/images/one_logo.gif

http://www.syngress.com/images/left_one_words.gif

http://www.syngress.com/images/small/328_web_tbm.jpg

http://www.syngress.com/images/small/317_web_tbm.jpg

http://www.syngress.com/images/small/319_web_tbm.jpg

http://www.syngress.com/images/small/324_web_tbm.jpg

http://www.syngress.com/images/small/306_web_tbm.jpg

http://www.syngress.com/images/s_c_e.gif

http://www.syngress.com/images/TechnoSec.gif

http://www.syngress.com/images/jbeal_sm.jpg

Reporting from Ethereal • Chapter 13 387

332_NSE_13.qxd 7/14/05 11:03 AM Page 387

http://www.syngress.com/images/customer2.jpg

http://www.syngress.com/images/plus.gif

http://www.syngress.com/images/plus.gif

http://www.syngress.com/favicon.ico

==

XML/PDML
If you need a small script to parse a few fields, it is not too problematic to find the data you’re
looking for in tethereal’s verbose output. However, any script that tries to retrieve lots of data
from tethereal’s protocol dissection will run into difficulties.The state machine gets longer and
longer, and perhaps more complicated. Moreover, if you have to write many such scripts, writing
and rewriting state machines when you’d rather concentrate on the real purpose of the script
will be tiring.

Fortunately, tethereal (and Ethereal) can produce an XML version of the protocol dissection.
XML can be difficult to read for humans, can be a verbose (and thus slow) means of transmitting
data, but it is very regular and very easy for programs to parse. It makes inter-program commu-
nication simple.

The particular XML format produced by Ethereal is the Packet Details Markup Language,
or PDML. PDML is defined by the network group at the Politecnico Di Torino, a university in
Italy.They produce Analyzer, another open source packet sniffer.The Analyzer program uses
XML throughout.The Ethereal and Analyzer teams work together closely to ensure that the
PDML format will work for both Ethereal and Analyzer. Unfortunately, the PDML output cur-
rently generated by Ethereal cannot be parsed 100 percent successfully by Analyzer, but the
intent is that PDML will be compatible between the two.

The PDML specification can be read on-line at http://analyzer.polito.it/30alpha/docs/dis-
sectors/PDMLSpec.htm.To get a flavor of what it looks like, you can produce PDML from
either tethereal or Ethereal.To create PDML with tethereal, use the -Tpdml option. In Ethereal
you access the File | Export | as XML - PDML option.

$./tethereal -Tpdml -r file.cap > file.pdml

NOTE

The File | Export menu has another option, as XML – PSML. This XML format is for
storing packet summary information. PSML is an XML representation of a list of
packets, like the columnar portion of the Ethereal GUI. PDML is an XML representa-
tion of the details of packet, like the protocol tree in the Ethereal GUI.

The PDML output is long, so only a small portion of a single packet is shown here.The
packet contains a geninfo section, which is metadata that is required by the PDML specification.
Following that is the frame section, which is the metadata that Ethereal reports for every packet.
Then you see the eth section showing the protocol dissection for the Ethernet header.The dis-
section of the remaining protocols in the packet has been elided from this example.

388 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 388

<pdml>

<packet>

<proto name="geninfo" pos="0"

showname="General information" size="841">

<field name="num" pos="0" show="31"

showname="Number" value="1f" size="841"/>

<field name="len" pos="0" show="841"

showname="Packet Length" value="349" size="841"/>

<field name="caplen" pos="0" show="841"

showname="Captured Length" value="349" size="841"/>

<field name="timestamp" pos="0"

show="May 12, 2005 23:35:59.397647000"

showname="Captured Time" value="1115958959.397647000"

size="841"/>

</proto>

<proto name="frame"

showname="Frame 31 (841 bytes on wire, 841 bytes captured)"

size="841" pos="0">

<field name="frame.marked"

showname="Frame is marked: False"

hide="yes" size="0" pos="0" show="0"/>

<field name="frame.time"

showname="Arrival Time: May 12, 2005 23:35:59.397647000"

size="0" pos="0" show="May 12, 2005 23:35:59.397647000"/>

<field name="frame.time_delta"

showname="Time delta from previous packet: 0.000125000 seconds"

size="0" pos="0" show="0.000125000"/>

<field name="frame.time_relative"

showname="Time since reference or first frame: 0.549620000 seconds"

size="0" pos="0" show="0.549620000"/>

<field name="frame.number"

showname="Frame Number: 31" size="0" pos="0" show="31"/>

<field name="frame.pkt_len"

showname="Packet Length: 841 bytes"

size="0" pos="0"show="841"/>

<field name="frame.cap_len"

showname="Capture Length: 841 bytes"

size="0" pos="0" show="841"/>

<field name="frame.protocols"

showname="Protocols in frame: eth:ip:tcp:http"

size="0" pos="0" show="eth:ip:tcp:http"/>

</proto>

<proto name="eth"

showname="Ethernet II, Src: 00:e0:81:00:18:2d, Dst: 00:02:2d:88:45:d5"

size="14" pos="0">

<field name="eth.dst"

showname="Destination: 00:02:2d:88:45:d5 (00:02:2d:88:45:d5)"

size="6" pos="0" show="00:02:2d:88:45:d5"

value="00022d8845d5"/>

<field name="eth.src"

showname="Source: 00:e0:81:00:18:2d (00:e0:81:00:18:2d)"

size="6" pos="6" show="00:e0:81:00:18:2d"

value="00e08100182d"/>

Reporting from Ethereal • Chapter 13 389

332_NSE_13.qxd 7/14/05 11:03 AM Page 389

<field name="eth.addr"

showname="Source or Destination Address: 00:02:2d:88:45:d5 (00:02:2d:88:45:d5)"

hide="yes" size="6" pos="0" show="00:02:2d:88:45:d5"

value="00022d8845d5"/>

<field name="eth.addr"

showname="Source or Destination Address: 00:e0:81:00:18:2d (00:e0:81:00:18:2d)"

hide="yes" size="6" pos="6" show="00:e0:81:00:18:2d"

value="00e08100182d"/>

<field name="eth.type" showname="Type: IP (0x0800)"

size="2" pos="12" show="0x0800" value="0800"/>

</proto>

....

</pdml>

Master Craftsman

Data Payload
The verbose output of tethereal, as well as the PDML output, contains the data pay-
load. The files that are being downloaded as a result of HTTP GET requests are in the
packet trace, chopped up into packets and represented as hex digits. An interesting
continuation of the HTTP URL report would be to reconstruct the files that are down-
loaded.

The PDML Format
The PDML format describes the simple hierarchy of data items in a protocol dissection.This
drawing sums up the hierarchy nicely.

<?xml version="1.0"?>

<pdml>

<packet>

<proto>

<field></field>

<field></field>

</proto>

<proto>

<field></field>

<field></field>

</proto>

</packet>

<packet>

<proto>

<field></field>

390 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 390

<field></field>

</proto>

<proto>

<field></field>

<field></field>

</proto>

</packet>

</pdml>

The first tag, the <?xml> tag, is a standard XML tag indicating that the file is XML.Then
the PDML data itself is delimited by <pdml> and </pdml> tags.A PDML document contains
packets, which are marked by the <packet> tags. Inside each packet are protocols, denoted with
<proto> tags.The protocols are listed in order as siblings, not as parents and children.This is the
same way the data is shown in normal tethereal output, or in the Ethereal GUI. Finally, each
protocol lists fields with the <field> tag.

Ethereal places two attributes in the <pdml> tag.

<pdml version="0" creator="ethereal/0.10.11">

The version is 0 to mean that this PDML is a pre-release of the final PDML specification.
The future version 1 of PDML will be the version that is compatible between Ethereal and
Analyzer.The creator tag shows that Ethereal produced the file.The text will always show “ethe-
real,” even if tethereal produced it.

The <packet> tag has no attributes to specify further information.The <packet> tag acts
merely as a container for <proto> attributes.

The <proto> tag, however, does have attributes.Table 13.4 explains what the attributes are.

Table 13.4 <proto> Attributes

Attribute Meaning

name A short name for the protocol. It is Ethereal’s display
filter name for that protocol.

showname The text shown in the protocol tree for this protocol. It is
usually a descriptive name of the protocol.

pos The offset within the packet data where the protocol
starts.

size The number of bytes that the protocol spans in the
packet.

The <field> tag also has attributes.Table 13.5 describes them.

Table 13.5 <field> Attributes

Attribute Meaning

name A short name for the field. It is Ethereal’s display filter
name for that field.

Reporting from Ethereal • Chapter 13 391

Continued

332_NSE_13.qxd 7/14/05 11:03 AM Page 391

Table 13.5 continued <field> Attributes

Attribute Meaning

showname The text shown in the protocol tree for this field. It is usu-
ally a descriptive name of the field. Ethereal operates differ-
ently than Analyzer here. The showname attribute should
just contain a description of the field, but Ethereal can’t
produce descriptions for all fields. Instead, it shows the text
used in the protocol tree for that field.

pos The offset within the packet data where the field starts.
size The number of bytes that the field spans in the packet.
value The bytes from the packet that make up this field. They are

shown as hex digits.
show The display filter representation of the field’s value. It is

usually a duplicate of a portion of showname.
hide Ethereal can have fields that are in the protocol tree and

are searchable with display filters, but are hidden from
normal viewing. If the field is hidden, then hide is “yes”;
otherwise the hide attribute is absent.

Returning to our httpget report, we can look at the relevant portion of the HTTP header in
the PDML output, shown here.Again, the example is cut short to show only the items of
interest.

<proto name="http"

showname="Hypertext Transfer Protocol" size="775" pos="66">

<field show="GET /syngress.css HTTP/1.1\r\n"

size="28" pos="66"

value="474554202f73796e67726573732e63737320485454502f312e310d0a">

<field name="http.request.method"

showname="Request Method: GET" size="3" pos="66" show="GET"

value="474554"/>

<field name="http.request.uri"

showname="Request URI: /syngress.css" size="13" pos="70"

show="/syngress.css" value="2f73796e67726573732e637373"/>

<field name="http.request.version"

showname="Request Version: HTTP/1.1" size="8" pos="84"

show="HTTP/1.1" value="485454502f312e31"/>

</field>

<field name="http.host"

showname="Host: www.syngress.com\r\n"

size="24" pos="94" show="www.syngress.com"

value="486f73743a207777772e73796e67726573732e636f6d0d0a"/>

....

</proto>

To write a program that will print all the URLs downloaded, we must parse the XML and
look for packets that have an http protocol with an http.request.method field whose show value is

392 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 392

“GET.”Then we read the http.request.uri and the http.host fields to create the URL. We can even
read the TCP portion of the packet to find the port, in case the Web server is not running on
the standard TCP port 80. Here is part of the TCP header. In this case the destination port,
tcp.dstport, is indeed 80.

<proto name="tcp"

showname="Transmission Control Protocol, Src Port: 36930 (36930), Dst Port: 80 (80),

Seq: 1, Ack: 1, Len: 775"

size="32" pos="34">

<field name="tcp.srcport"

showname="Source port: 36930 (36930)" size="2" pos="34"

show="36930" value="9042"/>

<field name="tcp.dstport"

showname="Destination port: 80 (80)" size="2" pos="36"

show="80" value="0050"/>

<field name="tcp.port"

showname="Source or Destination Port: 36930" hide="yes"

size="2" pos="34" show="36930" value="9042"/>

<field name="tcp.port"

showname="Source or Destination Port: 80" hide="yes"

size="2" pos="36" show="80" value="0050"/>

<field name="tcp.len"

showname="TCP Segment Len: 775" hide="yes"

size="4" pos="34" show="775" value="90420050"/>

<field name="tcp.seq"

showname="Sequence number: 1 (relative sequence number)"

size="4" pos="38" show="1" value="06923d79"/>

....

</proto>

NOTE

You can also see here how Ethereal adds a hidden field, tcp.port, twice. In one case it has the
value of tcp.dstport, or 80, and in the other case it has the value of tcp.srcport, or 36930.This is
how Ethereal’s display filter engine matches either the source or destination port in the tcp.port
== 80 filter. It works because tcp.port exists twice in the protocol, once with the source value
and once with the destination value.

Metadata Protocols
The PDML specification requires a fake protocol named geninfo to be present for each packet in
a PDML file. Ethereal does not use the geninfo structure, but does create one for PDML output
to be compliant with the specification.The geninfo header consists of only four fields, described
in Table 13.6.

Reporting from Ethereal • Chapter 13 393

332_NSE_13.qxd 7/14/05 11:03 AM Page 393

Table 13.6 geninfo Fields

Field Meaning

num The packet number.
len The size of the packet, in bytes.
caplen The number of bytes from the packet that were captured. This

will be <= len. Most protocol analyzers will capture the entire
packet, but the default behavior of tcpdump, a command-line
packet analyzer, is to capture the first 68 bytes.

timestamp The time at which the packet was captured. It has nanosecond
resolution.

Unlike geninfo, the frame protocol header is a metadata section that Ethereal does use. Both
Ethereal and tethereal will display a frame pseudo-protocol at the beginning of each packet.All
the fields in the frame pseudo-protocol are faithfully reproduced in the PDML output.The gen-
info data can also be found in the frame protocol, but with different field names.The list of fields
in the frame protocol can be found on at www.ethereal.com/docs/dfref/f/frame. Or see Table
13.7 for a more complete description.

Table 13.7 frame Fields

Field Meaning

frame.cap_len The number of bytes from the packet that were captured.
frame.file_off If Show File Offset is enabled in the preferences for the

Frame protocol (Edit | Preferences | Protocols | Frame),
then this field is present. It is the offset within the capture file
where this protocol starts. This is useful if you are debugging
wiretap.

frame.link_nr The MTP2 link number.
frame.marked Indicates whether the packet is marked in the Ethereal GUI.
frame.number The packet number.
frame.p2p_dir The direction (send/receive) for point-to-point protocols, like

SDLC, ISDN, MTP2, etcetera.
frame.pkt_len The length of the packet, in bytes.
frame.protocol A colon-delimited list of all the protocols in this packet.
frame.ref_time Indicates whether this is a packet that’s a reference for the

time_relative field.
frame.time The time at which the packet was captured. It has nanosecond

resolution.
frame.time_delta The number of seconds and nanoseconds since the previous

packet.
frame.time_relative The number of seconds and nanoseconds since the reference

packet, or the first packet.

394 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 394

EtherealXML.py
Excellent XML libraries exist for most popular programming languages these days. We should be
able to use any language to write our httpget report. However, the Ethereal source code distribu-
tion comes with a Python module that makes the task of reading PDML data slightly easier than
it would be if a generic XML library was used.The EtherealXML.py Python module, in the
tools directory of the Ethereal source code, gives the Python programmer two benefits:

■ It reads packets one at a time. It neither has to read the entire XML document into
memory at once, nor send each XML attribute to your application one by one. It
knows that the <packet> is the basic unit of processing.

■ Python classes exist for each attribute in the PDML specification.These classes let you
manipulate the items in the PDML file more naturally, letting you forget about the
XML nature of the data.

EtherealXML acts in a callback fashion. When you ask it to parse a PDML file, it will read
the PDML file and call a function of your choice for each packet in the file.To start the parse,
you call parse_fh on an open file handle. Here is small example that counts the number of
packets in a file.

import EtherealXML

import sys

num_packets = 0

def packet_cb(packet):

"Called once for each packet."

global num_packets

num_packets += 1

fh = open(sys.argv[1])

EtherealXML.parse_fh(fh, packet_cb)

print "Number of packets:", num_packets

When run, the output is straightforward.
$ python simple.py file.pdml

Number of packets: 402

The object passed to the callback function is an EtherealXML.Packet object.The Packet
class provides the methods listed in Table 13.8.

Table 13.8 Packet Methods

Method Use

get_items(name) Returns the list of contained objects (Protocol or Field)
with a name of name.

get_items_before(name, item) Returns the list of contained objects (Protocol or Field)
with a name of name and that precede item in the
packet. Present in Ethereal after version 0.10.11

Reporting from Ethereal • Chapter 13 395

Continued

332_NSE_13.qxd 7/14/05 11:03 AM Page 395

Table 13.8 continued Packet Methods

Method Use

item_exists(name) Returns 1 if a contained object (Protocol or Field) with a
name of name exists, or 0 if it does not exist.

dump(filehandle) Print an XML representation to the open filehandle;
useful for debugging.

It is worthwhile to mention get_items. It is the way to find any particular field or protocol
inside a packet. Why does it return a list? You’ve already seen in the PDML for the TCP protocol
that fields can exist multiple times within a single protocol. Ethereal puts the tcp.port field into the
TCP protocol twice, once for the destination port value and once for the source port value.

But even protocols can exist more than once within the same packet. ICMP is sent over IP,
but when reporting certain error conditions, like “destination unreachable” or “time exceeded,” it
can contain the IP headers of the packet it is reporting about. In that case the packet has two IP
headers; the one sending the ICMP message, and the one that the ICMP message is reporting.

This situation gets more complex for any tunneling protocols. IP over IP? TCP over
SOCKS over TCP? These, too, are cases in which the same protocol can exist more than once in
a packet.That means that the same field, like source IP address, can exist more than once in the
same packet.This is why get_items returns a list.The list does maintain the order of appearance, so
that the first source IP address in the protocol stack is first in the list, while the second, or tun-
neled source IP address, is second in the list.

The get_items_before method is useful for dealing with tunneled protocols. Imagine a scenario
where you had a protocol named my_vpn that ran over TCP, and tunneled TCP packets. In
my_vpn packets, then, you have two instances of the TCP protocol. Here is a skeletal representa-
tion of this imaginary packet layout in PDML:

<packet>

<proto name="geninfo"></proto>

<proto name="frame"></proto>

<proto name="eth"></proto>

<proto name="ip"></proto>

<proto name="tcp"></proto>

<proto name="my_vpn"></proto>

<proto name="tcp"></proto>

<proto name="http"></proto>

</packet>

If you were to retrieve the tcp Protocol objects from the packet with get_items, you would
have two of them. But if you have a reference to the my_vpn Protocol object, then you can
retrieve only the preceding tcp Protocol object with get_items_before.

The Protocol class provides the methods listed in Table 13.9.

396 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 396

Table 13.9 Protocol Methods

Method Use

get_name() Returns the name attribute.
get_showname() Returns the showname attribute.
get_pos() Returns the pos attribute, as a string.
get_size() Returns the size attribute, as a string.
get_items(name) Returns the list of Field with a name of name.
get_items_before Returns the list of Field objects with a name of name and that
(name, item) precede item in the packet. Present in Ethereal after version

0.10.11.
item_exists(name) Returns 1 if a Field object with a name of name exists, or 0 if

it does not exist.
dump(filehandle) Print an XML representation to the open filehandle; useful for

debugging.

The Field objects, returned by Protocol.get_items, are very similar to Protocol objects.The
Field class provides the methods listed in Table 13.10.

Table 13.10 Field Methods

Method Use

get_name() Returns the name attribute.
get_showname() Returns the showname attribute.
get_pos() Returns the pos attribute, as a string.
get_size() Returns the size attribute, as a string.
get_value() Returns the value attribute, as a string.
get_show() Returns the show attribute.
get_hide() Returns the hide attribute. Present in Ethereal after version

0.10.11.
get_items(name) Returns the list of Field with a name of name.
get_items_before Returns the list of Field objects with a name of name and that
(name, item) precede item in the packet. Present in Ethereal after version

0.10.11.
item_exists(name) Returns 1 if a Field object with a name of name exists, or 0 if

it does not exist.
dump(filehandle) Print an XML representation to the open filehandle; useful for

debugging.

Our XML-reading httpget report starts with the standard Python header, importing some
system modules, but also importing the EtherealXML module.

#!/usr/bin/env python

import os

Reporting from Ethereal • Chapter 13 397

332_NSE_13.qxd 7/14/05 11:03 AM Page 397

import sys

import EtherealXML

The main routine will take a PDML filename from the command line and create a
CaptureFile object for it.The CaptureFile class will hold all our logic for retrieving the fields of
interest and constructing URLs from them.

def main():

filename = sys.argv[1]

capture = CaptureFile(filename)

capture.CreateReport()

if __name__ == '__main__':

main()

The constructor for CaptureFile merely calls EtherealXML and starts the parse of the
PDML file. It sets aside an array, self.urls, which will hold all the URLs it finds.

class CaptureFile:

def __init__(self, filename):

self.urls = []

fh = open(filename)

EtherealXML.parse_fh(fh, self.CollectPackets)

The CollectPackets callback is the interesting function. In case there are more than one
HTTP protocols in the packet, it iterates over each one. It checks the http.request.method field,
ensuring the HTTP packet is a GET request. If it is, then the http.request.uri, http.host, and tcp.dst-
port fields are retrieved.The tcp.dstport is retrieved by using get_items_before, to make sure we
retrieve the right tcp.dstport in case the packet trace includes tunneled protocols. Once the
required fields are retrieved, the URL string is constructed and placed in the self.urls list.

def CollectPackets(self, packet):

"""Collect the packets passed back from EtherealXML.

Sort them by TCP/IP conversation, as there could be multiple

clients per machine."""

Loop over each http protocol in the packet.

for proto in packet.get_items("http"):

See if there is an http.request.method field.

if proto.item_exists("http.request.method"):

request_methods = proto.get_items("http.request.method")

request_method = request_methods[0].get_show()

Is it a GET request?

if request_method == "GET":

Get http.request.uri

uris = proto.get_items("http.request.uri")

uri = uris[0].get_show()

Get http.host

hosts = proto.get_items("http.host")

host = hosts[0].get_show()

398 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 398

Get the first tcp.dstport *before* the current

http protocol object.

ports = packet.get_items_before("tcp.dstport", proto)

port = ports[-1].get_show()

Construct the URL

if port == "80":

url = "http://" + host + uri

else:

url = "http://" + host + ":" + port + uri

self.urls.append(url)

Finally, the CreateReport method of the CaptureFile class is tiny. It simply prints each
member of the self.urls list to stdout.

def CreateReport(self):

print "=" * 40

print "httpget2 URL report"

print

for url in self.urls:

print url

print "=" * 40

Running the program gives us a very familiar report.

$ python httpget2.py file.pdml

==

httpget2 URL report

http://www.syngress.com/

http://www.syngress.com/syngress.css

http://www.syngress.com/syngress.css

http://www.syngress.com/images/syng_logo.gif

http://www.syngress.com/images/top_banner.gif

http://www.syngress.com/images/one_logo.gif

http://www.syngress.com/images/left_one_words.gif

http://www.syngress.com/images/small/328_web_tbm.jpg

http://www.syngress.com/images/small/317_web_tbm.jpg

http://www.syngress.com/images/small/319_web_tbm.jpg

http://www.syngress.com/images/small/324_web_tbm.jpg

http://www.syngress.com/images/small/306_web_tbm.jpg

http://www.syngress.com/images/s_c_e.gif

http://www.syngress.com/images/TechnoSec.gif

http://www.syngress.com/images/jbeal_sm.jpg

http://www.syngress.com/images/customer2.jpg

http://www.syngress.com/images/plus.gif

http://www.syngress.com/images/plus.gif

http://www.syngress.com/favicon.ico

==

Reporting from Ethereal • Chapter 13 399

332_NSE_13.qxd 7/14/05 11:03 AM Page 399

If you run this program you will notice that it is slow. We can time it with the time UNIX
command, processing a 402-packet PDML file.

$ time python httpget2.py file.pdml > out

real 0m3.015s

user 0m2.978s

sys 0m0.038s

It takes over three seconds (the “real” time) to process a 402-packet PDML file. We can
increase the speed by not parsing the PDML file directly, but by running tethereal to produce
PDML from the original capture file while filtering out what we don’t need.Tethereal’s display
filter mechanism works on the packet data itself, while our report’s CollectPackets function has
to filter based on the PDML. Processing XML is slow, so if we can avoid as much XML as pos-
sible, our program will be faster.Accordingly, we can change the CaptureFile constructor to the
following, which runs tethereal and passes the pipe file handle to EtherealXML.The parse_fh will
read the PDML directly from the pipe with no problem.

def __init__(self, filename):

self.urls = []

cmd = "./tethereal -Tpdml " + \

"-R 'http.request.method == GET' " + \

"-r " + filename

pipe = os.popen(cmd, "r")

EtherealXML.parse_fh(pipe, self.CollectPackets)

Notice the -R ‘http.request.method == GET’ option to tethereal.This is telling tethe-
real to apply a display filter to the capture file, showing us only the packets that are HTTP GET
packets.This change alone makes our report much faster. Here are the results, after modifying
the command line to read the original capture file instead of the PDML file.

$ time python httpget2.py file.cap > out

real 0m0.544s

user 0m0.514s

sys 0m0.074s

Now it’s much better! Just over half a second. XML is nice for exchanging information, but
because of its verbosity, it can be slow. Limit the amount of XML by making good use of display
filters in tethereal.

Final Touches
We have seen five different ways of producing the same report from the dissection that Ethereal
produces: a line-mode tap module, a GUI tap module, a series of grep and awk commands to
process a packet summary, a Python program to parse tethereal’s verbose output, and finally a
Python program to parse the PDML (XML) output of tethereal. Each method has particular
advantages over the others. But most importantly, you have learned how to pull the dissection
information from Ethereal so that Ethereal’s grand knowledge of protocols isn’t stuck inside
Ethereal itself.

400 Chapter 13 • Reporting from Ethereal

332_NSE_13.qxd 7/14/05 11:03 AM Page 400

Host Integrity
Monitoring Using
Osiris and Samhain

This special Appendix is excerpted from Brian
Wotring’s book, Host Integrity Monitoring Using Osiris
and Samhain (Syngress Publishing,
ISBN: 1-597490-18-0).

Appendix A

401

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 401

Introducing Host Integrity Monitoring
HIM is the recurring assessment of a host’s environment based on a known good state or policy.
A host can be a home user’s PC, a corporate e-mail or Web server, a production build system, or
a computer in an Internet café.A host can also be a router or a switch.

As shown in Figure A.1, a host’s environment can be broken down into three categories:
files, configurations, and runtime. Files are the most obvious and include the content and
attributes associated with individual files as well as the file systems themselves.The configurations
of an environment are higher-level elements such as users and groups, access control, configura-
tions for services, and basically anything that dictates the initial state of the system.The runtime
involves the dynamics of a running system such as the state of a network stack (e.g., open ports),
user login/logout activities, kernel state (e.g., extensions, services, drivers), system resources such
as memory, and the running process table.

Figure A.1 Functional Overview of HIM

The overall goal is to detect and report on changes in the environment. However, things get
tricky when we try to establish which of the detected changes are good, and which are not.
Enter the concept of integrity. It may be that a change seems perfectly reasonable on one host,
but suspect on another. For example, adding an entry to the /etc/passwd file might be a regular
occurrence on an Internet service provider’s dial-up server, but not on its corporate Web server.
Or it may be that an added entry is fine as long as the newly added UID is non-zero.

The main distinction between HIM and host intrusion detection is that the purpose of a
HIDS is to detect an attack or an intrusion, whereas HIM is concerned with any changes to the
environment that violate security policies.There are many disparate products that are referred to
as host-based intrusion detection systems; you may be able to pigeonhole some into reporting all

402 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

Kernel:
 drivers
 modules/extensions
 symbols

Network:
 ports
 stack

Events :
 login /logout

Runtime Files and File Systems Configuration

Users

Groups

Scan Agent

Host Environment

To Management Console

.

checksum
time stamps
size
owner
permissions
...

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 402

kinds of change, but in general this is not the case. However, intrusions are often the most con-
cerned with changes to a host environment, so HIM applications usually pay a lot of attention to
detecting changes related to an attack or intrusion.

HIM can also be used to ensure that the environment of a host or set of hosts has not been
compromised. Often, this is the only way a violation of corporate policy is detected. Now that
we know what a HIM system is, let’s take a closer look at some of its most important attributes.

How Do HIM Systems Work?
A HIM system comprises software agents and at least one management console.The details of
how these two components interact may vary, but in general, the agents gather information
about the host environment, and the console performs analysis and reporting on that data.
Because you are dealing exclusively with data that originates from the host environment, it is
necessary to install an agent onto each host that is being monitored.This is often referred to as
an agent-based deployment scenario.

Initially, each monitored host is scanned to create a baseline.The baseline is considered to be
the trusted data set.This trusted data set contains information about the host environment,
including file attributes, users, groups, kernel files, kernel modules and extensions, network ports,
and login/logout events—basically anything about a host that is worth monitoring.The baseline
is usually stored in some type of database.

Monitoring can be either inline or polling.An inline HIM system is resident in the kernel and is
able to monitor changes and events as they occur.A polling HIM system takes periodic snapshots
of the host environment. Most HIM systems are polling.The advantage of a polling HIM system is
that it can be easily ported to many systems, and does not necessarily involve running in the kernel.
The disadvantage is that changes that occur between polling may go undetected.The advantage of
an inline HIM system is that it is in a better position to monitor lower-level events such as binding
to a privileged network port, system calls, and other kernel-level events.The disadvantage is that
specialized development is necessary for each platform that the agent runs on.The two HIM sys-
tems discussed in this book, Osiris and Samhain, are polling HIM systems.

Polling a HIM system involves regularly scanning a host and comparing the results of the
scan against the baseline.The security officer is then notified (e.g., e-mail, logs, paging) of the
detected changes.As time goes on, the list of deltas between the current environment and the
baseline grows. Each HIM system has its own way of updating the baseline.

Now that you have a basic understanding of the function of HIM systems, let’s take a closer
look at some key characteristics, including the scanning process, management, and common feed-
back vectors.

Scanning the Environment
Scan agents are used to periodically gather specific information about the host environment. Like
a HIDS, they are passive; that is, they do not alter the environment. Scanning can be initiated by
the agents themselves or by the console, depending on the design of the product.Agents that ini-
tiate a scan then must initiate a network connection to the console (non-trusted to trusted), as

Host Integrity Monitoring Using Osiris and Samhain • Appendix A 403

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 403

opposed to the console connecting to the agent (trusted to non-trusted). Depending on your
network configuration and security policies, one of these scenarios may be preferable.

The polling frequency is determined by policy (why you are monitoring) and terrain (what
you are monitoring). Like any security product, a HIM system has a trade-off with usability.
Monitoring your executables every 10 seconds will most likely end up in a fight for resources and
not be well received.The two most common (and important) questions that I have encountered
when helping people deploy a HIM system are (1) What do I monitor? and (2) How often?

Scanning Files
Files make up a majority of a host’s environment.They are used to store important data, and exe-
cuted to operate on that data, which is why files and file systems are given so much attention.
Secret or important information eventually ends up in some kind of file.

A HIM system monitors the attributes and content of files.The attribute list varies from
system to system, and includes things such as the size, access permissions, and the last time the
file was changed.A HIM system monitors the content of files the same way a file integrity
checker does: with cryptographic checksums. Some HIM systems can monitor the actual content
of certain critical system configuration files, but for most files, only the signature is maintained.

Files can also have hidden attributes or hidden data such as streams or forks, and some suffer
from the efficiency of pre-binding or pre-linking.

Scanning Configurations
HIM systems break away from file integrity checkers when they begin to monitor other ele-
ments of the host environment.This involves having an understanding of certain system files or
stores, such as user and group databases. Sometimes this is in regular files (e.g., /etc/passwd), and
sometimes not, such as with NIS or NetInfo.Agents must know the specifics of how to acquire
this information so that it can be included as part of the data collected during the scanning pro-
cess. Other examples of agents scanning configurations include the kernel security level on
Berkeley Software Distribution (BSD) systems, the service pack level on Windows, the Windows
registry, and an Apache Web server configuration. Configuration scanning can be very helpful in
detecting vulnerabilities in a host’s configuration, whether intentional or not.

Scanning the Runtime
Scan agents that can collect information from the runtime environment provide a great deal of
insight into the state and activities taking place on a host. Having a way to pin down a time
window on certain changes can be very helpful in highlighting an attack vector, or filling in the
gaps on a suspicious set of activities. Examples of runtime scanning include monitoring the state
of the kernel and kernel extensions, user login and logout events, the content of system logs,
system calls, the system process list, the use of network ports, and system resources (e.g., memory
and disk usage).

Sometimes, monitoring the runtime is the first (or only) indication of a problem.The fol-
lowing is an example.

404 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 404

At a previous job, I came in one day to the following Osiris alert regarding one of our build
machines:

[223][darwin][missing][mod_kmods][kern:com.apple.driver.AppleUSBKeyboard]

At first I thought this was an odd alert, but then realized that the keyboard for that system
must be unplugged.As it turned out, someone had taken the keyboard from the system. In this
case, the intention was not malicious in nature; no files were altered, and no system configura-
tion changes were made.This could have been written off as a useless alert, but it was not.This
was a trusted build machine and it was now apparent that anyone in the building had physical
access to it. Runtime monitoring is extremely helpful.

Agent Security
Because scan agents operate in an environment that may be compromised, they often have
mechanisms to mitigate attempts at tampering and subversion.Agents may have keys built into
their executables and they may run self-checks as part of their normal initiation.Trusted com-
munication with the console may be further established by maintaining pre-shared keys in
memory so that start and stop events leave a mark. Or the agent process may be hidden from the
normal methods of viewing the system process table, with the intent being to hide the fact that
the host is being monitored.

Another useful feature is privilege separation.Agents almost always have to conduct privileged
operations. Reading root-owned files and monitoring the list of kernel modules are good exam-
ples. It is not wise for the entire function of the agent process to run with root or admin privi-
leges, especially when it is bound to a network port. Superuser privileges are only needed on
occasion. Privilege separation is good for many applications of this nature, and goes a long way
toward preventing an attacker from beating on the agent process itself, in an attempt to exploit a
potential software defect or compromise the monitoring process.

Agents are software, and software can be smashed, but that does not mean that anti-tam-
pering schemes like this are useless. I have been witness to more than one case where a HIM
system was clearly in place and yet the attacker did not bother to disable or subvert it.

Centralized Management
Scanning agents send all of the data gathered from their environment to a management host for
processing.This is important for two reasons: administration and data integrity.

Good for Administration
Having centralized management for monitored hosts is extremely valuable and may be necessary
if you are monitoring hundreds or thousands of environments. From an administrative stand-
point, centralized management saves time and helps prevent human error.

As an example, imagine that you are an administrator at a university, and required to mon-
itor the integrity of 500 desktop environments using the open source version of Tripwire.This
release of Tripwire is not centrally managed. Now, imagine you have to make changes to each
host’s local configuration file.As software is installed, many of these hosts will need baseline

Host Integrity Monitoring Using Osiris and Samhain • Appendix A 405

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 405

updates. Dealing with these tasks on a host-by-host basis is not only impractical, but also poor
security administration. It will lead to poor configuration, gaps in monitoring, and ignored alerts.

Another administrative task made easier under centralized management is backups. If all
configurations and scan data archives are stored in a single location, it is more likely that you will
implement a sound backup procedure.

Good for Data Integrity
Centralized management allows for scan data and agent configurations for each host to be stored
in a single secure location, and not on the less-trusted host environments.This goes a long way
toward protection against tampering or loss. Scan agents run in environments that are not always
trusted. In fact, the reason the agents exist in the first place is to detect a compromise of their
environment. If a host is compromised or suffers a hardware failure, all of the data associated
with that host could be lost or rendered unreliable. Backups can help with the loss problem, but
again, this becomes an unnecessary administrative burden.

A good HIM system will keep the amount of data stored on a host to a minimum. Usually,
this is not much more than an executable. Configuration files can be pushed to the host when
needed, and scan data can be sent directly to the console, never having to be written to disk.

Because the management console is the keeper of sensitive data such as configurations and
environment scans, it is absolutely critical that this host be locked down and protected at all
costs, including both network and physical security.Although centralized management is benefi-
cial, it can also be a single point of failure.

Feedback
One of the most important aspects of any HIM system is the ability to provide feedback on
detected changes. Logs are the most common way that feedback is given. Depending on the
product, there are a variety of methods for alerting a security officer, which often vary
depending on the urgency of the alert. Other alert vectors include e-mail, a pipe, an application,
or even a page.

More important than having the correct feedback mechanisms, is making sure that feedback
is being received. Logs are useless if they are not analyzed or monitored.To be truly effective, any
alerts generated by the HIM system must be audited in a timely fashion.

Introducing Osiris and Samhain
Osiris and Samhain are two of the most widely deployed open source host integrity monitoring
systems today. We will now examine how each of these systems work and their respective
strengths and weaknesses. Osiris and Samhain are very different; therefore, one of them will be
more suited to your requirements than the other.

406 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 406

Osiris
Preston Norvell and Bruce Potter released the first version of Osiris in the summer of 1999.This
release consisted of two small Perl scripts designed to provide file integrity checking for
Windows NT.The popularity of these scripts paved the way for the Osiris project, which
released its first version (written in C) in the fall of 1999.

At the time, open source options for file integrity monitoring were limited.Tripwire was
too cumbersome to use, and many administrators found it difficult, primarily because it was not
centrally managed.Thus, the Osiris project was borne out of the desire to produce a host
integrity monitoring application that would do the following:

■ Provide easy-to-use, centralized management

■ Monitor as much of the host environment as possible

At the time of this writing, Osiris Version 4.1 monitors files, network ports, users, groups,
kernel modules, and more. Information about Osiris, including the latest releases, anonymous
source access, support mailing lists, and documentation, can be found at http://osiris.shmoo.com.

How Osiris Works
Osiris consists of three distinct components: a command-line client, a management console, and
a scan agent.A scan agent is deployed onto every host that is to be monitored.A single manage-
ment console stores all of the scan data, scan agent configurations, and logs; manages scheduling;
and handles notifications—it is the brains of the system.The command-line client communicates
only with the management console, and only the management console communicates with scan
agents (see Figure A.2).

Figure A.2 Components That Make Up the Osiris Host Integrity Monitoring System

Host Integrity Monitoring Using Osiris and Samhain • Appendix A 407

Server
Command-Line Client

Host (Laptop)

Host (Workstation)

Host (Server)

Host (Server)
Host (Router)

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 407

The console regularly tells the agents to scan.The scan agents respond by collecting infor-
mation from their environment and sending it back to the console.The console stores this infor-
mation in a database file, compares it against data from a previous scan, and reports on the
differences.

The significance of the three components of the architecture that makes up Osiris is best
explained by learning how they are used in a typical deployment.The management console and
the scan agent software running on each monitored host constitute the majority of the functions
of Osiris.As an administrator, you generally do not use these two components; however, there
will be times when you must log in to the console using the command-line interface (CLI).The
CLI is commonly used to configure and add additional scan agents to the console, fine-tune scan
configurations, and take steps to reduce false positives. When an incident occurs, you may log in
to the console to obtain access to logs or data associated with previous scans (see Figure A.3).

Figure A.3 Interactions of Osiris Components When Obtaining Status Information
from Agent

Authentication of Components
All of the Osiris components communicate over a Secure Sockets Layer (SSL) tunnel.The scan
agent sends sensitive data to the console, which must be authenticated. Likewise, the console
must trust the scan agent. Osiris accomplishes this by using session keys and X509 certificates.

The management console maintains a certificate and a private key. Upon initial contact with
an agent, the console presents it with a session key. With every subsequent connection to that
agent, the scan agent is required to present that session key as a form of authentication.

408 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

Host (Scan Agent) Management Console

Status Response

Status Request

CLI

Login

Status Request

Status Response

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 408

The scan agent maintains the root certificate for the console. Upon contact, the scan agent
validates the certificate presented by the console using the root certificate.

The command-line client works similar to the scan agent in that it maintains the root cer-
tificate, but the pre-shared key is actually a password.The console maintains a password database
and requires the client to present a password to gain access.

Thus, scan agent and CLI authentication is a pre-shared key, whereas console authentication
is basic SSL certificate validation.The scan agent authenticating the console is similar to the way
a Web client validates the authenticity of a Web server. By default, Osiris generates a self-signed
certificate; however, you can generate one, signed by a trusted certificate authority (CA), as
shown in Figure A.4.

NOTE

The use of SSL by all Osiris components exists to protect the integrity and privacy of
all communications during transport. Keep in mind that all of the scan data and log
messages are not signed or encrypted when they are stored on the management
console.

Figure A.4 Osiris Uses SSL and Digital Certificates to Secure All Communication
between Components

Scan Data
When a scan agent scans the environment, it packs things into records and sends them to the
console.The scan agents never store their scan configuration or scan data on disk. In fact, the
only thing kept on monitored hosts is the root certificate and the scan agent executable.

Host Integrity Monitoring Using Osiris and Samhain • Appendix A 409

CLIHost (Scan Agent)

Management Console

Logs

Scan
Data

SSL
SSL

……
……
…...
...

Root Certificate

……
……
…...
...

Root Certificate

……
……
…...
...

Key and Server Certificate

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 409

When the console receives scan data, it stores it in a Berkeley database file.The structure of
this file is platform independent and can be moved offline for further examination or storage for
forensic and auditing purposes.This is true of the entire directory where the console stores logs,
configurations, and databases.The amount of scan data can vary significantly, but the average for
each scan is roughly 1MB.

There are three different ways to configure the management console to maintain scan data,
which can be configured on a per-host basis: the console can save every scan database, only the
databases that contain changes, or only the latest created scan database.The reason for this is that
some administrators may want to keep archives of every scan and every log for forensic purposes.
The problem with keeping archives, however, is that they consume disk space, and not everyone
wants to keep all of the data.Therefore, you have the option of storing only the databases that
indicate change.The console defaults to storing only the minimal information necessary to pro-
vide a report of what has changed since the last scan.

With every host integrity monitoring system (HIMS), there is a baseline concept, which is
considered the last known good scan of the environment. Osiris can be configured to automati-
cally set the trusted database to be created with this scan.This capability, combined with the
minimal storage of scan data, allows for a fairly low maintenance monitoring system that sends
reports on what is changing in the host environments.

Logging
The management console is responsible for all data analysis; therefore, all log data resides on the
console host.After every scan, the console performs a comparison between all of the data in the
newly created scan database and the trusted database for that host.Any differences result in a log
message.

Osiris has a few different logging vectors. Scan logs generated by the console can be saved to a
file, sent to the system log, or piped to an application. Just as with scan databases, logs associated
with a scan can be configured in three different ways ranging from minimal to one for each scan.

Each log message has an ID to facilitate parsing by log analysis tools (see Figure A.5).

Figure A.5 Osiris Log Format Structure

410 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

[211][foo][cmp][/etc][mtime][Thu, 17 Feb 2005 11:47:5][Tue, 22 Feb 2005 08:20:4]

Previous Value

Current Value

Attribute

Object

Log Type

Host

Log ID

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 410

Filtering Noise
To deal with noise, Osiris has a filter engine that can be used to exclude certain detected
changes from generating a log entry.This filter engine is essentially a list of regular expressions
that are applied to each log message. Filters do not prevent data from being saved; they serve to
prevent the creation of log messages. If necessary, you can always compare the two databases at a
later date to see the complete list of changes.

Notifications
In addition to using Osiris to send log messages to an application or to the system log, adminis-
trators can configure Osiris to send them detected change reports via e-mail.This is configurable
on a per-host basis.These e-mail notifications can be sent after every scan or only if changes are
detected. Some administrators want to receive notification after each scan as an assurance that
monitoring is taking place and that no changes were detected. In addition, Osiris can be config-
ured to send e-mail notifications in case a scan agent is unresponsive or has lost its resident ses-
sion key.This may happen if the scan agent process was restarted or if the host was rebooted.The
following is an example of a typical e-mail notification report generated by the Osiris console:

From brian@example.com Mon Feb 28 11:53:42 2005

To: brian@example.com

From: "Osiris Host Integrity System" <osirismd@example.com>

Date: Mon, 28 Feb 2005 11:53:43 -0700

Subject: [osiris log][host: powerbook][3 changes]

compare time: Mon Feb 28 11:53:43 2005

host: foo

scan config: stat (cbbd7002)

log file: no log file generated, see system log.

base database: 2

compare database: 3

[211][foo][cmp][/usr/local/bin][mtime][Mon, 28 Feb 2005 11:53:2][Mon, 28 Feb 2005 11:53:3]

[215][foo][cmp][/usr/local/bin][bytes][340][374]

[203][foo][new][/usr/local/bin/nmap]

Change Statistics:

checksums: 0

SUID files: 0

root-owned files: 1

file permissions: 0

new: 1

missing: 0

total differences: 3

Host Integrity Monitoring Using Osiris and Samhain • Appendix A 411

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 411

Strengths
The biggest accomplishment of the Osiris project is that it resulted in a host-based integrity-moni-
toring product that is easy to use. One of the risks with any security product is that it is too com-
plicated, and administrators end up either not using it or not configuring it correctly.A typical
./configure;make;make install routine can be used to build and install a working copy of Osiris on
any host.Also, administrators do not need to edit configuration files directly; this is accomplished
through a CLI to prevent misconfiguration. In addition, Osiris has intelligent defaults for host con-
figurations and default scanning configurations for common operating systems.

The Osiris architecture allows for centralized management. One of the biggest problems
with Tripwire and others like it is that they require you to either log in to each monitored host
or create your own custom shell scripts (Secure Shell [SSH]) as part of the regular usage model.
Centralized management not only eases the administrative burden associated with monitoring
more than a handful of hosts but also allows you to establish a central secure location for sensi-
tive data.

Osiris runs on all true 32-bit versions of Windows (Windows NT, Windows 2000, Windows
XP, and Windows 2003 Advanced Server). It also runs on most UNIX and UNIX-like systems,
including FreeBSD, NetBSD, OpenBSD, Mac OS X, Linux, IRIX,AIX, and Solaris.The man-
agement console can be established on any of these platforms. What is unique is that you can
monitor Windows and UNIX-like hosts from a single location.

The Osiris scan agent has a modular interface; therefore, if you are not satisfied with the
abilities of the scan agent, you can easily write and integrate your own modules to extend what
is gathered from the host environment.

Finally, excluding all arguments for and against open source, Osiris is free and released under
a Berkeley Software Distribution (BSD)-style license.

Weaknesses
The biggest downfall to Osiris is that, like any host-based security product, it requires software
agents to be installed on every monitored host, which creates an administrative overhead. Scan
agents have to be installed and maintained. In the case of security-related problems, updating all
of the agents is a big job. IT departments often deal with this problem with respect to deploying
software updates for other applications or with updates to the operating system itself.
Additionally, if your agents are all configured differently, the ongoing administrative operations
can be difficult.

Another weakness of Osiris is that managing thousands of hosts can be a challenge from a
Unique Identifier (UI) perspective.The CLI does not lend itself well to deployments of this size.
There is no concept of dealing with groups of hosts. Each host is treated independently.

Osiris log filtering is handled by regular expressions.Although this allows for great flexibility,
the reality is that many administrators may not know how to translate what they want in a filter
into a regular expression without some research. Or even worse, they could unintentionally pre-
vent critical log entries from triggering alerts because of a mistake in writing a filter rule.

412 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 412

The scan agents are modular, and the console is not.This presents a problem if you want to
alter how the console does some of its analysis of detected change.As you will see with
Samhain, both the scan agent and the server can be modularized.

Samhain
Rainer Wichmann released the first version of Samhain on October 31, 1999. It was released on
October 31, the date that the ancient Celts labeled as the end of summer.This initial release was
a simple file integrity checker and, like the first version of Osiris, was not centrally managed.

The goal of Samhain was to produce a centrally managed host integrity monitoring system
that would monitor many disparate aspects of the environment, not just the files.The idea was to
think beyond Tripwire and provide an open source product that would enable people to monitor
the integrity of their hosts. In December 1999, Samhain released Version 0.8, which imple-
mented true centralized management of logging, configuration, and scan data.Although Osiris
and Samhain shared very similar goals, they evolved independently of each other, as proved by
the distinct differences in their design.

At the time of this writing, Samhain is at Version 2.0.4 and has the ability to monitor files,
file system mount points, and login and logout events; to conduct Set User ID/Set Group ID
(SUID/SGID) audits; and to monitor the integrity surrounding the kernel.All information
about Samhain, including the latest releases, support mailing lists, and documentation, are on the
official Web site located at http://www.la-samhna.de/samhain.

How Samhain Works
Samhain consists of three components: a console, a server, and a scan agent (often called the
client).The agents are deployed onto every host that is to be monitored.A single server acts as a
central location for logs, scan configurations, and scan data.The console is a Web-based control
center written in Hypertext Preprocessor (PHP) that presents a UI that can be used to update
databases or edit scan configurations.An optional component is a relational database server (e.g.,
PostgreSQL or MySQL) that can be used for log storage (see Figure A.6).

Each scan agent has a configuration that determines when and what to scan on the host
environment.The agents compare the current environment against the trusted database estab-
lished from a previous scan.Any differences generate logs, which are then sent back to the server.
An agent’s scan configuration and the trusted database can be stored on the server and are
requested by the scan agent when needed. Optionally, logs can be stored in a relational database.

Host Integrity Monitoring Using Osiris and Samhain • Appendix A 413

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 413

Figure A.6 Components That Make Up the Samhain Host Integrity Monitoring
System

Notes from the Underground…

Push or Pull
Samhain follows a completely different model than Osiris with respect to the com-
munication between the scan agents and the console. Specifically, Samhain agents
initiate communication with the console, as opposed to Osiris where the console ini-
tiates connections to the scan agent. There are advantages and disadvantages to
each model. The main benefit with the Samhain method is that the monitored hosts
do not have to open a listening network port. The main benefit of Osiris is that
administration is much easier because the deployed agents do not have to maintain
the location of the management console. Furthermore, Samhain pulls the baseline
database from the server down to the monitored host for comparison, whereas
Osiris pushes the scan data to the console for analysis. The benefit of Samhain is that
the console only needs read privileges for the baseline database. The benefit of Osiris
is that the trusted data is never kept resident on the monitored host and thus is less
susceptible to tampering.

414 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

Relational Database
Server

Samhain Server

Host (Laptop)

Host (Workstation)

Host (Server)

Host (Server)

Beltane Web Console

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 414

Authentication of Components
The scan agent sends sensitive logging data back to the console, and the console provides the
scan agent with the scan configuration and trusted database to be used for comparison.Thus,
these components must authenticate each other.Additionally, all of this communication must be
encrypted.

The Samhain scan agent and server authenticate each other using the Secure Remote
Password (SRP) protocol. When the scan agent is compiled, a password is embedded into the
executable.Additionally, a verifier is stored in that agent’s configuration file. When the scan agent
and the server connect, they each compute a key based on an initial data exchange.The scan
agent and the server authenticate each other by verifying that they both computed the same key.

Samhain encrypts all traffic between the scan agent and the server using Advanced
Encryption Standard (AES) for encryption.As a result of the authentication process, the scan
agent and the server establish ephemeral keys.These keys are used to sign and encrypt communi-
cation between the two for the duration of that session.This is a very effective means of securing
scan agent and server communication because an attacker would have to take apart the running
Samhain scan agent process to get the current keys or take apart the executable to obtain the
password used to authenticate to the server.

Scan Data
Samhain can be run as a stand-alone process in a manner similar to Tripwire; however, most
deployments are centralized where the agents store their configuration and scan data on the server.

Upon start-up, a scan agent requests and downloads a signed copy of the trusted database.
After a scan is completed, logs are generated that contain all of the information that is different
between the current environment and the trusted database.These logs are sent back to the server
for verification and storage.

To update the contents in the trusted database, the administrator uses the console to inte-
grate data from the logs into the database file.Alternatively, the database file can be transferred to
the monitored host, and Samhain can perform the update by integrating the state of the current
environment into the database file.The database file then must be transferred back to the server.

Logging
There are many logging mechanisms available with Samhain. Logs can be sent to the server, a
remote Structured Query Language (SQL) database such as PostgreSQL or MySQL, and a local
log file redirected to an application, printed to standard output or the console, or sent to syslog.

Samhain agents have an embedded 64-bit key that is used to sign all log messages. Each log
message has an attached signature computed by using the embedded key and the actual contents
of the log message. Upon receipt of the log message, the server verifies the signature, signs it, and
stores the log data or directs it to the correct logging facility.

Samhain defines many different severities and classes for log messages.This process is useful
for analysis as well as throttling the amount of log data sent back to the server.The severity may
be low, such as debug, or it may indicate a more severe message, such as an error or critical
event.The log class is used to describe the payload of the log message, such as whether it is a

Host Integrity Monitoring Using Osiris and Samhain • Appendix A 415

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 415

rekey event, a keep-alive, or a policy violation.This is basically the same thing as the facilities and
priorities used by syslog.To filter out certain log messages, the server can be configured to set
thresholds for each facility. If an incoming log message does not meet that threshold, it is not
logged (see Figure A.7).

Figure A.7 Samhain Log Format Structure

Notifications
Aside from all of the logging vectors supported by Samhain, logs can also be OpenPGP signed
and e-mailed to an administrator.This can also be configured on a per-host basis. Samhain has
Simple Mail Transfer Protocol (SMTP) code built into it so that it is not dependent on a Mail
Transfer Agent (MTA). E-mail notifications can be sent to one or more recipients, and a limit
can be specified to prevent too many e-mail notifications from being sent within a specified
time window.The following is an example of a Samhain e-mail notification:

From: <daemon@example.com>

To: <brian@example.com>

Date: Tue, 01 Mar 2005 06:31:49 MST

Subject: [2005-03-01T06:31:48-0700] example.com

-----BEGIN MESSAGE-----

[2005-03-01T06:31:48-0700] example.com

CRIT : [2005-03-01T06:31:48-0700] msg=<POLICY [ReadOnly] ----H---TS>,

path=</usr/local/bin>, hardlinks_old=<10>, hardlinks_new=<11>, size_old=<340>,

size_new=<374>, ctime_old=<[2005-03-01T13:31:03]>, ctime_new=<[2005-03-01T13:31:43]>,

mtime_old=<[2005-03-01T13:31:03]>, mtime_new=<[2005-03-01T13:31:43]>,

CRIT : [2005-03-01T06:31:48-0700] msg=<POLICY ADDED>, path=</usr/local/bin/nmap>,

mode_new=<-rwxr-xr-x>, imode_new=<33261>, hardlinks_new=<1>, idevice_new=<0>,

inode_new=<952675>, owner_new=<root>, iowner_new=<0>, group_new=<wheel>, igroup_new=<0>,

size_old=<0>, size_new=<400340>, ctime_new=<[2005-03-01T13:31:43]>, atime_new=<[2005-03-

01T13:31:43]>, mtime_new=<[2005-03-01T13:31:43]>,

chksum_new=<75553746C7D7F779F7A02B8965648A7271CD026DC9A49B0F>

416 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

CRIT : [2005-03-01T06:31:08-0700] msg=<POLICY [ReadOnly] --------T->, path=</usr/
local/bin>, ctime_old=<[2005-03-01T13:28:26]>, ctime_new=<[2005-03-01T13:31:03]>

Log Severity

Time Stamp

Previous Value

Current Value

Log Type

Object

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 416

-----BEGIN SIGNATURE-----

CA4FD78E2209BEAA1595D5F29F5D4B1BA60F5652D6415FC6

000000 1109683908::example.com

-----END MESSAGE-----

Strengths
One of the biggest strengths of Samhain is its ability to monitor specific elements of a host envi-
ronment on different time schedules. For example, you may want to conduct an SUID check
once a day, but monitor the contents of /bin every hour.

Another strong feature of Samhain is the vast array of logging vectors, especially the ability
to log to a solid relational database such as PostgreSQL. Logging is critical; without logs, the
integrity monitoring system would be almost useless.The many logging outlets provided by
Samhain make integration into an existing log analysis infrastructure easier.

Samhain’s design allows for a very powerful modular interface that lets you extend which
elements of the environment are monitored.You not only add functionality to the scan agent but
also customize how that data is analyzed and compared with subsequent scans.The configuration
file syntax is also customizable so that you can pass any kind of parameters to custom modules.

Samhain has many strong antitampering features as part of its design. Executables have built-
in keys to prevent an attacker from dropping a Trojan scan agent onto a host.The scan agent
executable, log files, and database files can all be altered so that it is not obvious that they are
related to Samhain.The executable name can be renamed upon installation so that it is not
obvious that Samhain is installed. Furthermore, the Samhain process can be hidden from the pro-
cess listing so that an attacker cannot see the scan agent daemon running.The scan configuration
file can be steganographically hidden (i.e., attached to an image or postscript file) to avoid detec-
tion—an excellent feature.

Finally, Samhain has the ability to monitor the integrity of the kernel on Linux and
FreeBSD systems. When these kernel checks are enabled, Samhain checks for the presence of
rootkits by monitoring modifications to the system call table and the interrupt descriptor table.

Weaknesses
One of the biggest problems with Samhain is that it is not easy to configure and install.The
configuration file is complicated with respect to logging, modules, and file monitoring. Samhain
is very configurable, has a great deal of features, and has many antitampering defenses, but
deploying it can be a huge undertaking.

Samhain modules, though very powerful, are not easy to develop. Developing even the most
simple of modules requires modifying various parts of the code, including the build environment
itself.The functions used to store data in the database are very file oriented, making writing
modules to monitor other elements of the environment cumbersome.

The bulk of the kernel-monitoring facilities implemented by Samhain are only useful for
Linux and FreeBSD. Likewise, some of the stealth features, such as hiding the scan agent process,
are only supported for Linux systems.

Host Integrity Monitoring Using Osiris and Samhain • Appendix A 417

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 417

Samhain is very UNIX and Linux centric.Although you can compile and run Samhain
under the Cygwin environment, this is not supported, or even recommended, for security rea-
sons.The Samhain code was designed to monitor UNIX and Linux environments, so if you have
to monitor Windows environments, this may create an administrative burden.

Extending Osiris
and Samhain with Modules
Both Osiris and Samhain sport a modular interface that allows you to extend the functionality of
their scan agents.This interface is useful for a number of reasons. First, it allows for a number of
developers to contribute to improving the functionality of the software. Second, it keeps the
agent code small and manageable.As an administrator, you can add modules to your agents to
satisfy the various needs of your deployment; you only have to add the modules that make sense
for your environment.

The word “module” can be used to describe many things in software. With some applica-
tions (e.g.,Apache) you can write modules that can by dynamically linked into the application.
Both Osiris and Samhain only allow for static modules, which means that if you want to add or
remove the functionality of a module from the agent, you must recompile.This appendix exam-
ines ways to customize Osiris and Samhain to extend the monitoring capabilities of their agents.
Each section walks through the creation of a simple module and shows you how to test it.The
goal here is to teach you the basic procedures so that you can develop your own modules.

Both Osiris and Samhain and their modules are written in C; therefore, it is assumed that you
have some familiarity with C programming.You must have a system with a C compiler as well as
the latest Osiris and/or Samhain source. Do not attempt to follow these examples on a production
system. It is recommended that you establish a dedicated test environment just to be safe.

Osiris Modules
Osiris Interface Release 4.0 allows you to extend the functionality of the scan agent by writing
your own code for collecting information from the host environment.Aside from monitoring
files, all of the Osiris monitoring features (including the monitoring of users, groups, kernel
extensions, and open network ports) are implemented as modules.

With each scan, the Osiris agent runs through its list of enabled modules and passes execu-
tion to them by calling the module’s handler function. With most modules, the handler function
involves collecting pieces of information (called records) and sending them back to the console
to be stored in the scan database. Each record is a 1K buffer, and requires a unique identifier.
When the management console compares two scan databases, their unique IDs are used to
iterate through the list of records in each database.A string comparison is done on the text pay-
load of the two records, and if the payloads differ, an alert is generated.The console does not
know anything about the content of the modules; the details of what was monitored and the sig-
nificance of the collected data is contained in the agent code.

418 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 418

An Example Module: mod_hostname
The best way to understand how Osiris modules are implemented is to build one.This section
goes through the process of implementing a module to monitor hostnames. If the hostname for
the host is changed, an alert is generated.

The first step in making an Osiris module is creating a directory and setting up the build
environment. Since modules are just extensions to scan agent code, they are kept in a modules
directory under the osirisd directory of the Osiris source (/src/osirisd/modules). Each module is in
its own directory.All you need to do is create the directory, the Makefile, and a .c file; the Osiris
build environment does the rest. First, make the directory:

$ cd src/osirisd/modules

$ mkdir mod_hostname

Next, create a Makefile; do this by copying another module’s Makefile and modify it
accordingly:

$ cd mod_hostname

$ cp ../mod_users/Makefile .

Edit the Makefile and change the SRCS line so that it reads:

SRCS=mod_hostname.c

Next, create your source file:

$ touch mod_hostname.c

All that is left is to implement the module’s handler function. Since this module is very
simple, all of the work can be done in a single function. Before doing that, however, you need to
include the module’s header files and define the module’s name. Using your editor of choice, add
the following to the mod_hostname.c file:

#include "libosiris.h"

#include "libfileapi.h"

#include "rootpriv.h"

#include "common.h"

#include "version.h"

#include "scanner.h"

#include "logging.h"

Now define the module’s name:

static char *MODULE_NAME = "mod_hostname";

Next, define the handler function.The name of the handler function must match the name
of the module’s directory and the name set in the MODULE_NAME character in the preceding
example:

1 void mod_hostname(SCANNER *scanner)

2 {

3 char name[255];

4 SCAN_RECORD_TEXT_1 record;

5

Host Integrity Monitoring Using Osiris and Samhain • Appendix A 419

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 419

6 if (scanner == NULL)

7 {

8 return;

9 }

10

11 if (gethostname(name, sizeof(name)) < 0)

12 {

13 log_error("module: %s, error getting hostname.", MODULE_NAME);

14 return;

15 }

16

17 initialize_scan_record((SCAN_RECORD *)&record, SCAN_RECORD_TYPE_TEXT_1);

18

19 /* copy module name into record. */

20 osi_strlcpy(record.module_name, MODULE_NAME, sizeof(record.module_name));

21

22 /* copy a unique record name into the record's name field. */

23 osi_strlcpy(record.name, "hostname", sizeof(record.name));

24

25 /* copy value for this record. */

26 osi_strlcpy(record.data, name, sizeof(record.data));

27

28 /* send data. */

29 send_scan_data(scanner, (SCAN_RECORD *)&record);

30 }

The first thing to notice is line 11, where you acquire the hostname value into a buffer. Line
17 uses the initialize_scan_record function to set the record type and zero-out the payload.At the
time of this writing, the TEXT_1 record type is the only type supported by modules; therefore,
all modules use this function to initialize each record.

Line 20 copies the name of the module into the scan record. Not all scan records have a
name; however, module records do so that records for each module can be easily distinguished
from other records in the database.This is a simple string copy; however, note that function
osi_strlcpy() is used instead of strcpy() or strncpy(). Osiris defines a number of safe string-handling
functions in /src/libosiris/utilities.h. For security reasons, you should always use one of these func-
tions in place of the typical C string functions.

Line 23 copies a unique identifier for this record. Since you only have one record, this value
is arbitrary. For clarity, copy in the string hostname. In line 30, the value of the hostname
acquired from line 13 was copied into the record payload. Finally, the record is sent back to the
console in line 34 using the send_scan_data() function.

This module generates only one record. If you need to generate multiple records, the code is
not much different.The pseudo-code is something like the following:

For each record:

initialize_scan_record()

set record.module_name

set record.name

set record.data

send_scan_data()

420 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 420

There are no module initialization or shutdown routines.To generate a log message, you can
use three types of log messages including the log_error(), log_warning(), and log_info() functions.
These functions follow a printf() style format for arguments.

Now that you have implemented the mod_hostname, you must build and verify that it com-
piles.To build the scan agent, cd into the osirisd directory and type make.The Makefile should
automatically find all modules and link them into the scan agent executable.You should see
something like the following:

Making all in modules

./genmods.sh

======================================

Found Scan Agent Modules:

==> mod_groups

==> mod_hostname

==> mod_kmods

==> mod_ports

==> mod_users

======================================

This module is simple; therefore, barring any syntax errors, you should see the Osiris agent
build.This newly compiled agent executable has the capability to monitor the hostname for
changes.

Testing Your Module
Testing modules is very important; a misbehaving module can seriously impact the overall func-
tionality of a scan agent.To test the basic functionality of a module, verify that the records are
received and stored in the database, and verify that the changes are properly detected. In this
case, make sure that the database contains a single record containing the value of the hostname.
You will then change the hostname and verify that the change triggers an alert.

The best way to test modules is to install a console and a scan agent on a system dedicated
for testing. Do not test modules on a production system.After you have implemented and com-
piled your module and the new agent is running, log in to the management console and create a
test scan configuration using new-config:

osiris-4.1.3: new-config test

Add the following code to the test configuration file:

<Modules>

Include mod_hostname

</Modules>

In this case, you are going to run only the hostname module that you just created. Next,
push that configuration to the local agent.Assuming the agent is called local and the configura-
tion is called test:

osiris-4.1.3[local]: push-config test

>>> the configuration: (test) has been pushed to host: local

Host Integrity Monitoring Using Osiris and Samhain • Appendix A 421

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 421

Next, start the scan using the scan command; this should take less than a second. Once
complete, look at the database records to see if the hostname record is there:

osiris-4.1.3[local]: print-db 1

This may take a while...

100% [==>] 114688 bytes

h) show database header.

r) list file records.

d) list file record details.

m) list module records.

x) list errors.

q) quit

[local:database: 1]: m

[mod_hostname]

[hostname][myhost.example.com]

In this case, there is the single record sent by the mod_hostname module. Next, change the
hostname from myhost to myhost2 and run another scan.To view the result of the scan, print out
the latest log file.You should see something like the following:

osiris-4.1.3[local]: print-log log.temp

-------- begin log file --------

compare time: Mon Feb 21 15:37:17 2005

host: local

scan config: test (aba0a173)

log file: no log file generated, see system log.

base database: 1

compare database: 2

[223][local][cmp][mod_hostname][hostname][myhost.example.com][myhost2.example.com]

Change Statistics:

checksums: 0

SUID files: 0

root-owned files: 0

file permissions: 0

new: 0

missing: 0

total differences: 1

-------- end log file --------

422 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 422

In this case, the testing is simple. If your module is more complicated, you must perform
additional tests to make sure that your code is functioning properly. Modules are extensions of
the scan agent code, and thus, it is very important that your implementation be well tested.
Redistributing scan agents because of a minor bug in a module is not fun.Also, agents are dae-
mons, so problems such as memory leaks will eventually take their toll.

Packaging Your Module
If you are going to distribute your module for public use, make sure you include a README
file that explains the functionality of the module, any parameters, and the supported platforms.
All that is needed is to tar up the module directory. Make sure you clean the directory of object
files first:

$ cd src/osirisd/modules/mod_hostname

$ rm *.o

$ cd ..

$ tar cvfz mod_hostname.tar.gz mod_hostname

mod_hostname/

mod_hostname/Makefile

mod_hostname/mod_hostname.c

You can also submit Osiris modules to the Osiris developers list (osiris-devel@
lists.shmoo.com) to be included on the modules download page (http://
osiris.shmoo.com/modules.html).

General Considerations
There are some limitations with the Osiris module interface. First, the records are basically text
records of limited size; thus, any information that you gather from the environment has to be
translated into textual form. Second, only the agent functionality is capable of being extended,
not the management console. Since the console performs all of the analysis, you are left only
with string comparisons of the record data.

Another module issue to consider is that they do not have to generate records.The point of
producing records is to store them on the console so that previous states of the host environment
can be compared against the current state of the host environment. It may be that you want to
write a module to look at some element of the environment for signs of malicious behavior. If
nothing is detected, your module does nothing. If you detect something worth noting, however,
you can construct a record and make the payload an alert message with the details of what was
detected.This would trigger a new record alert, but would also still serve its purpose: to alert the
administrator.

Samhain Modules
Like Osiris, some of the functionality of Samhain is implemented as modules.The code is orga-
nized in such a way that you can copy an existing module and modify it to suit your purposes.
Some examples of this are the code for the kern, the Set User ID (SUID) check, and the UTMP
modules.

Host Integrity Monitoring Using Osiris and Samhain • Appendix A 423

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 423

Developing a module for Samhain is more complicated than developing one for Osiris, the
main reason being that writing a Samhain module involves altering many parts of the source
tree.The benefit over Osiris is that in addition to being able to extend what gets monitored, you
can also control how your module interprets the differences in the collected data. When you
develop a module for Samhain, you can also extend the syntax of the samhainrc file and add
whatever options you want to apply to your module. Writing a module involves four steps:

1. Defining and integrating a function pointer table.

2. Defining a header and implementation file.

3. Defining log message types.

4. Modifying the build system.

All modules are kept in the src directory.The log messages are defined in the include/sh_cat.h
and src/sh_cat.c files. Modifying the build system involves modifying Makefile.in. It is recom-
mended that you develop your Samhain modules on a test system using a local database file.This
makes it easier to verify the contents and discard the database file, if necessary. It is also faster to
test your module on a localized setup.

An Example Module: hostname
As with the previous section, you are going to develop a very simple module to monitor a host’s
hostname.You will use a single parameter, HostnameCheckInterval, which will specify the fre-
quency at which the Samhain agent checks the hostname value.

First, define and extend the list of function tables defined in src/sh_module.c. Every Samhain
module has a function table.The structure for this is sh_mtype and is defined in the
include/sh_module.h file.An array of sh_mtype structures is initialized in the src/sh_module.c file.
The easiest way to define your module’s function table is to copy and paste and modify an
existing entry in the modList array.Your module name is “hostname,” therefore, add the following
as an entry to modList in src/sh_module.c:

#ifdef SH_USE_HOSTNAME

{

N_("HOSTNAME"),

0,

sh_hostname_init,

sh_hostname_timer,

sh_hostname_check,

sh_hostname_end,

sh_hostname_null,

N_("[Hostname]"),

sh_hostname_table,

},

#endif

The first item is the name of the module.The next five items are the names of the functions
you are required to define in your module implementation file. Samhain will call these functions

424 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 424

as part of the scan cycle.The last two items in the structure are the name of the configuration
file heading, and a function table (defined later) for methods to handle any configuration direc-
tives you create for this module.

Next, you create a header and implementation file for your module:

$ touch src/sh_hostname.c include/sh_hostname.h

The header file contains prototypes and the declaration for the configuration table:

#ifndef SH_HOSTNAME_H

#define SH_HOSTNAME_H

#include "sh_modules.h"

int sh_hostname_init (void);

int sh_hostname_timer (time_t tcurrent);

int sh_hostname_check (void);

int sh_hostname_end (void);

int sh_hostname_null (void);

int sh_hostname_set_timer (char * c);

int sh_hostname_check_internal();

extern sh_rconf sh_hostname_table[];

#endif

The module implementation file is more involved.All of the functions specified in the
header file of the preceding example, and some helper functions for storing the hostname in the
database are defined. Samhain records are geared toward storing files, so you must be creative.
Use the filepath element of a record to store the string K_hostname as a unique identifier for your
hostname record.“K” is specified as the first character of the file path to signal to Samhain that it
is not actually a record about a file. Use the linkpath field of the record to store the value of the
hostname.

The main function here is sh_hostname_check_internal()\, which is called when the timer for
this module fires or whenever a check request is issued. Normally, the init and end functions are
used to initialize and free memory and other created resources; however, this module is so
simple, that these functions are basically empty.The two functions used to obtain and store infor-
mation into the database are sh_hash_get_it() and sh_hash_pushdata(). The final implementation of
sh_hostname.c is:

#include "config_xor.h"

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <errno.h>

#include <limits.h>

#include <sys/wait.h>

Host Integrity Monitoring Using Osiris and Samhain • Appendix A 425

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 425

#include <signal.h>

#undef FIL__

#define FIL__ _("sh_hostname.c")

#if defined (SH_WITH_CLIENT) || defined (SH_STANDALONE)

#if TIME_WITH_SYS_TIME

#include <sys/time.h>

#include <time.h>

#else

#if HAVE_SYS_TIME_H

#include <sys/time.h>

#else

#include <time.h>

#endif

#endif

#include "samhain.h"

#include "sh_utils.h"

#include "sh_error.h"

#include "sh_modules.h"

#include "sh_hostname.h"

#include "sh_ks_xor.h"

#include "sh_unix.h"

#include "sh_hash.h"

#include "sh_cat.h"

#define HOSTNAME_KEY "K_hostname_0000"

static unsigned char db_hostname[256] = "";

sh_rconf sh_hostname_table[] = {

{

N_("hostnamecheckinterval"),

sh_hostname_set_timer

},

{

NULL,

NULL

},

};

static time_t lastcheck;

static int ShHostnameActive = S_TRUE;

static int ShHostnameInterval = 300;

int sh_hostname_null()

{

return 0;

}

426 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 426

int sh_hostname_init ()

{

SL_ENTER(_("sh_hostname_init"));

if (ShHostnameActive == S_FALSE)

SL_RETURN((-1), _("sh_hostname_init"));

lastcheck = time (NULL);

sh_hostname_check_internal ();

SL_RETURN((0), _("sh_hostname_init"));

}

int sh_hostname_end ()

{

return (0);

}

int sh_hostname_timer (time_t tcurrent)

{

if ((int) (tcurrent - lastcheck) >= ShHostnameInterval)

{

lastcheck = tcurrent;

return (-1);

}

return 0;

}

int sh_hostname_check ()

{

sh_error_handle (-1, FIL__, __LINE__, 0, MSG_HN_CHECK, "checking hostname");

return (sh_hostname_check_internal ());

}

int sh_hostname_set_timer (char * c)

{

long val;

SL_ENTER(_("sh_hostname_set_timer"));

val = strtol (c, (char **)NULL, 10);

if (val <= 0)

sh_error_handle ((-1), FIL__, __LINE__, EINVAL, MSG_EINVALS,

_("hostname_timer"), c);

val = (val <= 0 ? 60 : val);

ShHostnameInterval = (time_t) val;

SL_RETURN(0, _("sh_hostnmae_set_timer"));

}

int get_hostname_from_db()

{

file_type tmpFile;

int result = 0;

Host Integrity Monitoring Using Osiris and Samhain • Appendix A 427

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 427

result = sh_hash_get_it(HOSTNAME_KEY, &tmpFile);

if (result == 0)

{

strcpy(db_hostname, tmpFile.linkpath);

}

else

{

db_hostname[0] = '\0';

}

return result;

}

void set_hostname_in_db(const char *hostname)

{

file_type tmpFile;

if (hostname == NULL)

{

return;

}

strcpy(tmpFile.fullpath, HOSTNAME_KEY);

strcpy(tmpFile.linkpath, hostname);

tmpFile.size = 0;

tmpFile.mtime = 0;

tmpFile.ctime = 0;

tmpFile.atime = 0;

tmpFile.mode = 0;

tmpFile.owner = 0;

tmpFile.group = 0;

sl_strlcpy(tmpFile.c_owner, _("root"), 5);

sl_strlcpy(tmpFile.c_group, _("root"), 5);

tmpFile.c_mode[0] = 'l';

tmpFile.c_mode[1] = 'r'; tmpFile.c_mode[2] = 'w';

tmpFile.c_mode[3] = 'x'; tmpFile.c_mode[4] = 'r';

tmpFile.c_mode[5] = 'w'; tmpFile.c_mode[6] = 'x';

tmpFile.c_mode[7] = 'r'; tmpFile.c_mode[8] = 'w';

tmpFile.c_mode[9] = 'x'; tmpFile.c_mode[10] = '\0';

sh_hash_pushdata(&tmpFile,

_("00"));

}

int sh_hostname_check_internal()

{

char name[255];

428 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 428

SL_ENTER(_("sh_hostname_check_internal"));

if (gethostname(name, sizeof(name)) < 0)

{

sh_error_handle (-1, FIL__, __LINE__, 0, MSG_E_SUBGEN,

_("unable to retrieve system hostname!!")," ");

return 0;

}

if (sh.flag.update == S_TRUE)

{

set_hostname_in_db(name);

return 0;

}

/* get the hostname in the database. */

if (get_hostname_from_db() != 0)

{

sh_error_handle (-1, FIL__, __LINE__, 0, MSG_E_SUBGEN,

_("unable to retrieve hostname from database")," ");

return 0;

}

/* compare here with current. */

if (strcmp(name, db_hostname) != 0)

{

sh_error_handle (-1, FIL__, __LINE__, 0, MSG_HN_DIFF, db_hostname, name);

}

SL_RETURN((0), _("sh_hostname_check_internal"));

}

#endif

Next, establish logging identifiers and format strings for your module. Because this is an
example, define only two: one for announcing the module execution and one for reporting on
detected changes. Most modules have more than two log message types; the log ID is defined in
include/sh_cat.h, and the actual formats are defined in src/sh_cat.c.Add the following to the large
enum structure in include/sh_cat.h:

#ifdef SH_USE_HOSTNAME

MSG_HN_CHECK,

MSG_HN_DIFF,

#endif

The src/sh_cat.c file contains the actual format strings for log messages.There are two large
enumerations in this file; one is Extensible Markup Language (XML) formatted, and the other is

Host Integrity Monitoring Using Osiris and Samhain • Appendix A 429

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 429

not.You should add your log messages to both of these enumerations. For the hostname module,
add the following to the XML enumeration:

#ifdef SH_USE_HOSTNAME

{ MSG_HN_CHECK, SH_ERR_INFO, RUN, N_("msg=<Checking hostname>")},

{ MSG_HN_DIFF, SH_ERR_WARN, EVENT, N_("msg=<Hostname>, prev=<%s>, now=<%s>")},

#endif

Then, to the non-XML enumeration, add the following:

#ifdef SH_USE_HOSTNAME

{ MSG_HN_CHECK, SH_ERR_INFO, RUN, N_("msg=\"Checking hostname\"")},

{ MSG_HN_DIFF, SH_ERR_WARN, EVENT, N_("msg=Hostname previously=\"%s\"

currently=\"%s\"")},

#endif

Finally, you have to adjust the build system so that your module is included and compiled
into the Samhain executable.To do that, you must (at minimum) edit the Makefile.in file and
follow these steps:

1. Add sh_hostname.h to the HEADERS directive.

2. Add $(srcsrc)/sh_hostname.c to the SOURCES directive.

3. Add sh_hostname.o to the OBJECTS directive.

4. Add $(srcinc)/sh_hostname.h to the dependency list for sh_modules.o.

5. Add the following target:

sh_hostname.o: $(srcsrc)/sh_hostname.c Makefile config_xor.h $(srcinc)/samhain.h

$(srcinc)/sh_utils.h $(srcinc)/sh_error.h $(srcinc)/sh_modules.h $(srcinc)/sh_hostname.h

sh_ks_xor.h $(srcinc)/sh_unix.h $(srcinc)/sh_hash.h $(srcinc)/sh_cat.h

Issuing a make from the top-level directory should recompile and build your module. It is
recommended that you turn off executable checksum verification on Samhain while developing
your module, as it can be cumbersome to deal with. Do that by running the configure script
again using the with-checksum configure option:

$./configure --with-checksum=no

Testing Your Module
Testing Samhain modules is a little easier than testing Osiris modules. It is very important that
you do as much testing as possible on your module, no matter what your distribution plans are.
Modules are compiled into the Samhain agents; therefore, fixing a development mistake has an
unavoidable administrative overhead.

Install and test on a single dedicated testing environment as much as possible (e.g., hostname
module).After building and installing the Samhain agent that supports the hostname checking,
modify the samhainrc configuration file and add the following:

[Hostname]

HostnameCheckInterval = 30

430 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 430

This will cause the agent to check the hostname every 30 seconds. First, set the hostname to
something you can recognize and then perform a database update:

hostname foobar

samhain -t update

This will update the database with the current hostname record.You can verify this by
looking at the local Samhain database file:

strings /var/lib/samhain/samhain_file | grep -A 3 "K_hostname"

K_hostname_0000

foobar

root

wheel

You can clearly see that the hostname has been saved in the database linkpath entry of the
file record. Next, run Samhain again to make sure that the check worked as intended.You should
see only the hostname module get initialized:

INFO : [2005-02-25T14:46:32-0700] msg=<Module initialized>, module=<HOSTNAME>

Next, change the hostname to smarg, and run another check.The hostname module will
detect this and print out an alert that looks something like:

WARN : [2005-02-25T14:47:47-0700] msg=<Hostname>, prev=<foobar>, now=<smarg>

Finally, to ensure that the agent properly conducts the hostname check at the interval speci-
fied, run it in daemon mode and watch for this same alert to appear a few times at 30-second
intervals:

NOTICE : [2005-02-25T14:48:56-0700] msg=<File check completed.>, time=<2>,

kBps=<21733.504000>

INFO : [2005-02-25T14:49:24-0700] msg=<Checking hostname>

WARN : [2005-02-25T14:49:24-0700] msg=<Hostname>, prev=<foobar>, now=<smarg>

INFO : [2005-02-25T14:49:54-0700] msg=<Checking hostname>

WARN : [2005-02-25T14:49:54-0700] msg=<Hostname>, prev=<foobar>, now=<smarg>

INFO : [2005-02-25T14:50:24-0700] msg=<Checking hostname>

WARN : [2005-02-25T14:50:24-0700] msg=<Hostname>, prev=<foobar>, now=<smarg>

Packaging Your Module
Modules for Samhain are not contained in a directory. Packaging the module means packaging
the entire modified source tree for custom agent building and distribution.You can modify the
source and hard-code your module into Samhain, or you can adjust the proper configure files so
that you can turn the module on and off.This adjustment is useful if you ever need to build the
agent without the module and do not want to hack source files.To add a configure option,
modify acconfig.h, aclocal.m4, and configure.ac.Add the following to configure.ac in the enable features
section:

AC_ARG_ENABLE(hostname-check,

[--enable-hostname-check check for hostname changes[[no]

]],

[

Host Integrity Monitoring Using Osiris and Samhain • Appendix A 431

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 431

if test "x${enable_hostname_check}" = xyes; then

AC_DEFINE(SH_USE_HOSTNAME)

fi

]

)

This allows you to specify —enable-hostname-check a value of either yes or no to enable or
disable the hostname module. For this to work, you must set up its macro that is used
throughout the source code.Add the following string to the SH_ENABLE_OPTS variable in
aclocal.m4:

hostname-check

Finally, add the following to acconfig.h:

#undef SH_USE_HOSTNAME

To rebuild the configure script, do:

$ autoheader

$ autoconf

If you run the new configure script with the —help option, you will see a line that looks
like:

--enable-hostname-check check for hostname changes[no]

The --enable-hostname-check option can now be used to toggle the module from being
included in the building of the Samhain agent. More information about Samhain modules can
be found online at http://la-samhna.de/samhain/HOWTO-write-modules.html.

432 Appendix A • Host Integrity Monitoring Using Osiris and Samhain

332_NSE_AppA.qxd 7/14/05 3:00 PM Page 432

433

Index
404 Not Found page, 109

A
Access Denied response, MySQL servers,

74
ack option (Snort), 193
activate rules (Snort), 211
Active Verification

concept described, 256–267
Snort-AV implementation, 257–269

addition, string, 13
AddOptFuncToList() function, 168, 226
AddrFunc(),AddRuleFuncToList()

functions, 166
Advanced Function Printing (AFP), length

encoded data in, 206
Advanced Package Tool (APT), 116
AirDefense, 269
aix_check_patch function, 52
AlertGTK() function, 251
AlertGTKInit() function, 249–251
AlertGTKSetup() function, 249
alerts

‘evil’ packets, 230
HIM systems, 406
Snort rule response, 194–195

algorithms, Windows PE header file
parsing, 83–85

anti stumbler preprocessor, 272
any keyword, 163
Apache Web server, creating plugin using

CGI module, 115–124
applications, Web plugin security issues,

96–98
Arboi, Michel, 16
arguments

byte_jump (table), 206–207
byte_test (table), 205–206
subtype_seek_read (table), 318

ASCII
converting strings to Unicode, 67
hex dumps, text2pcap, 289

atexit() function, 252
attack vectors

adding to increase detection abilities, 110
and NASL include files, 30
testing for multiple SQL injection,

103–104
attributes

description section, NASL script, 5–6
XML, 127

AUTH command, 114
auth flood preprocessor, 272
authenticated scripts, 36
authentication

and keep-alive detection mechanism, 28
MySQL, 71
NTLM, and Nessus’s HTTP

authentication mechanism, 58–69
Osiris, 408–409
Samhain system components, 415

Awstats, testing vulnerability in, 124

B
backdoors, and rogue processes, 39
banners

displaying FTP in Nessus report, 8
testing vulnerabilities with, 114
of Web server service, reading, 6

Baseline Security Analyzer tool, 50, 128
BBSID detection plugin, 274
Beyond Security Securiteam Web site,

SQL injections, 96
BGP dissector, 355
big endian, little endian, 306
Border Gateway Protocol (BGP) dissector,

355
bulletins, Microsoft, 128–135
byte offsets and message types, 59–61
byte_test, byte_jump detection options

(Snort), 205–209

C
C messages types and structures, 59–61
CachePut() function, 267
CallAlertsFuncs() function, 264
CallLogPlugins() function, 172

332_NSE_Index.qxd 7/18/05 12:11 PM Page 433

434 Index

calloc() function, 165, 226, 237
can_host_* functions, 107
CGI plugin module creating using,

115–126
CGIs (Common Gateway Interfaces)

described, 31, 115
scanner for vulnerabilities, 106

challenge-response protocols, NTLM
authentication, 59

characters
< character and cross-site scripting, 110
escape, C-style and PCRE-specific

(tables), 199
special, CGI and NASL, 119

CheckEvilBit() function, 228–229
CheckLogDir() function, 158
CIDR subnets, merging, 212–213
CIFS (Common Internet File System), 44
classtype option (Snort), 186–187
client-side, SQL injection vulnerabilities,

98
code

inclusion attacks, Web application
security, 96–98

testing for Web-based security
vulnerabilities, 34

testing validity NASL, 16–21
COFF File Headers, 81
command-line interface (CLI), Osiris

system, 408
command-line interpreter, debugging

NASLs with, 16
COMMAND variable, 42
commands

mysql, 70–71
show databases, 73, 76

Common Gateway Interface. See CGI
computers, removing spyware from, 46–47
ConfigFileSearch() function, 158
configuration file, Snort, 154, 158, 159–168
configurations, scanning with HIM, 404
configuring

Nessus daemon, 28
Osiris management console, 410–411

connectivity tests, 30–31
content detection plugin, 212
content option (Snort), 188
converting

hex dump formats, 292
passwords to Unicode, 67

cookies, including information in template,
114

crawlers, directory, 101
CreateAlertQueue() function, 263
create_windowSnort() function, 245
creating

Osiris module, 419–421
patches with diff, 258
plugins using CGI module, 115–126
plugins using XML parsing, 126–135
protocol dissector, 324
proto_tree data, 345–349
Snort interface, 244
TRUSTED tests, 37–42
Web application plugin templates,

99–115
cross-site scripting

attacks described, 98
and < character, 110
testing for vulnerability of, 31

CSPAN (Comprehensive Perl Archive
Network), 116, 213

ctags utility, 152
ctime command (C), 307
CVE ID (Common Vulnerabilities and

Exposures), 257

D
data packet, in hex dump, 298–300
data integrity, and HIM, 406
data link types, libpcap (table), 291
data transfer, keep-alive state, 24–27
data types, glib (table), 341
databases

Nessus knowledge base, 34–35
show databases command, 73, 76

DDI_Directory_Scanner.nasl plugin, 101
de-auth flood preprocessor, 272
deb_check function, 52
Debian DSA-727, 52
Debian’s Advanced Package Tool (APT),

116
debugging

NASLs using Nessus daemon, 28

332_NSE_Index.qxd 7/18/05 12:11 PM Page 434

Index 435

NASLs using runtime environment,
15–28

protocol dissector, 349
DebugMessage() function, 226
DEBUG_WRAP macro, 226
Decode() function, 172
DecodeEthPkt() function, 170, 172
decode.h, 270
decoders, possible (table), 168–169
decoding, Snort, 168–172
defining Snort rules, 183
depth option (Snort), 189
destroy() function, 251–252
Detect() function, 174
detect.c, 261–264
detecting

‘evil’ packets, 224–225
rogue processes, 39, 42
vulnerabilities with plugs, 100
Windows operating system patches, 146
XSS, 107–108, 110

detection
phase of Snort, 174–175
Snort options, 211–212

detection plugins, Snort-Wireless, 273–274
diff utility, 258
directional operator (Snort), 184
directory crawler Webmirror.nasl, 101
dissector. See protocol dissector
distance option (Snort), 189
DLLs (Dynamic Link Libraries), opening

during tests, 79–80
DoCallAlertsFuncs() function, 264, 265
documentation

GTK+ API reference, 375
GTK+ library, 340
NASL reference guide, 16
Perl’s CGI library, 115–116

documents (XML), 127
DOM (Document Object Model), XML

as data holder, 127
DOS MZ headers, 81
download sites

GNU netcat, 209
NASL reference guide, 16
Osiris host integrity monitoring system,

407
PsList tool, 37

Rsnake’s XSS Cheatsheet, 110
Snort-AV package, 256
WinPcap, 280

DropAction() function, 178
Dropbear SSH based Trojans, 37
dsa_do_sign functions, 37
DSA_do_verify function, 37
dsize option (Snort), 193
ds_list method, 227
dump() function, debugging processes, 74
Duration ID plugin, 274
dynamic rules (Snort), 211

E
e-mail notifications, Samhain, 416
elements (XML), 127
environment, detecting and reporting on

changes in host, 402
ereg(), egrep(), ereg_replace() functions,

11–13
errors, interpreter, 17–18
escape characters, C-style, PCRE-specific

(tables), 199
Ethereal

application binary interface (ABI), 324
creating protocol dissector, 324–330
extending wiretap library, 295–322
header field database, accessing, 339
libpcap tool, using, 280–289
report-writing approaches, 358
steps for reading captured files, 308
taps available, 360–361
tethereal output, processing, 380–382
text2pcap tool, using, 289–294
using to capture exploit packets, 214–216
writing GUI tap modules, 371–380
writing line-mode tap modules, 358–371

Ethereal Distcc Network Protocol
Dissection Buffer Overflow
vulnerability, 203

Ethereal sniffer, 26
Ethereal’s Follow TCP stream option, 24
EtherealXML.py Python module, 388–400
Ettercap parse overflow attempt rule, 200
event generation, verification, Snort-AV,

264–269
EvilBitInit() function, 226

332_NSE_Index.qxd 7/18/05 12:11 PM Page 435

436 Index

exceptions, protocol dissector’s handling of,
350–352

ExecuteNASL() function, 267
expressions

optimizing regular, in Snort rules,
213–217

PCRE (Perl-Compatible Regular
Expressions), 196–205

regular, in NASL, 11–13
extended patterns, PCRE (table), 202
extending

Osiris with modules, 418–423
Samhain with modules, 423–432

Extensible Markup Language. See XML

F
false negatives, MySQL Unpassworded test,

70
false positives, 256
FCS (frame check sequence) bytes, 320
feedback, and HIM systems, 406
feventq_init() function, 168
file formats, wiretap support, 295
file_error function, 311
files

include, 30–35
scanning with HIM, 404

FILE_T functions, 310–311, 318
filtering noise, Osiris HIM, 411
find_in_path function, 37
flags

provided by server response (table),
65–66

option (Snort), 190–191
TCP, fragbits (Snort), 191

flexible response, 194, 195
flow options (Snort), 209–211
flowbits option (Snort), 210
FlowBitsVerify() function, 168
ForceArray parameter (XML), 136
fork() function, 239
FORM tag (HTML), 97, 102
fpAddMatch() function, 175
fpEval() functions, 174
fpEvalHeaderSW() function, 175
fpEvalPacket() function, 174
Frag offset field, high-most bit, 223–225

fragbits option (Snort), 191
Fragnum detection plugin, 274
fragoffset option (Snort), 191
fragoffset plugin, 224
frame control plugin, 274
functions

See also specific functions
commonly used NASL, 9–13
content-matching, 175
preprocessor, 235
provided by smb_nt.inc file, 47–50
reporting, 8
TRUSTED, using, 35–39

G
generating index (tag) files, ctags utility,

152
GET method

HTTP GET requests, 120, 361–371, 373,
380, 390

and SQL injection, 102, 105
GetDestination() function, 266
GetFileVersion () function, 34, 80–83
get_http_port() function, 9, 10, 25
getopts() function, 259
GetOutputPlugin() function, 161
get_tmp_dir function, 37
GHashTable, 365
Gimp Tool Kit (GTK+), 243
Glade interface builder, 244–249
glib library, 340, 364
GList, 364
GNOME desktop environment, 340
GNU diff utility, 258
GNU General Public License, Ethereal,

324
GNU netcat, 209
grsecurity kernel patch (Linux), 242
GTK+ libraries, 243, 340, 375
gtkhttpget_init function, 374
gtk_main() function, 250
gtk_tap_dfilter_dlg_ch function, 373
GtkTextView widget, 380
gtk_widget_show() function, 250
GUI tap modules, writing, 371–380

332_NSE_Index.qxd 7/18/05 12:11 PM Page 436

Index 437

H
HaltAlertVerification() function, 260
HandlePacket() function, 179
headers

DOS MZ, 81
keep-alive, 26
packet, 284
Snort rule, 182–184

hex dumps, text2pcap, 289–294
hexstr() function, 64
HFNetChkPro patch management tool,

128
HIM (Host Integrity Monitoring)

centralized management, feedback,
405–406

Osiris system, 406–413
overview, 402–405
Samhain system, 406, 413–418

Hobbit’s netcat, 208–209
Host Integrity Monitoring. See HIM
hosts described, 402
hotfix_check_sp, hotfix_missing functions,

131
hotfixes, verifying presence of, 47–49
hping2 utility, 234
hpux_check function, 52, 53
hpux_patch_installed function, 53
HTTP (Hypertext Transfer Protocol)

authentication, integrating NTLM
authentication into, 58–69

and debugging transfer data, 24
requests, 63, 98–99, 102

HTTP-based vulnerability testing, 106
HTTP dissector and tap transmissions, 359
HTTP GET requests, 120, 361–371, 373,

380, 390
http_get() function, 10
http_get_draw, httpget_packet functions,

370
http_keepalive_enabled function, 26
http_keepalive.inc mechanism, 69
http_keepalive_send_recv() function, 10

I
IBM PC Network SMB protocol, 47–50
icmp_id option (Snort), 193

icmp_seq option (Snort), 194
icode option (Snort), 193
id option (Snort), 192
identifiers

test IDs, 14
URI (Universal Resource Identifier),

9–10
idle scanning, 233
IDS (intrusion detection system), 242, 256
include files, extending NASL using, 30–35
index (tag) files, ctags utility, 152
InitializeAlertVerification() function, 260,

261, 263
initializing Snort-AV, 258–264
initializing Snort engine, 154
InitInline() function, 177
InitPlugins() function, 229
InitPreprocessors() function, 241–242
inline blocking, Snort functionality (table),

182–183
inline monitoring, 403
inline_flag variable, 176
InlineMode() function, 176
inquiries, SQL, and SQL injections, 96
installing

Osiris host integrity monitoring system,
412

Perl’s CGI library, 115–116
integrity, and HIM, 402
interfaces

for packet capture, choosing, 280–284
for Snort, 244
tap, 358

InterfaceThread() function, 168
interpreter

handling of include files, 30
NASL, debugging, 16–21

Intrusion Detection Systems (IDSs), 242,
256

IP dissector, 332
IP-ID field, IP datagram header, 233–234
IP options (Snort), 192
ipass variable, 68
IpfwLoop() function, 178
IPIDInit(), IPIDParse() functions, 236–238
ipopts (Snort), 192
ip_proto option (Snort), 192
ipq_create_handle() function, 177

332_NSE_Index.qxd 7/18/05 12:11 PM Page 437

438 Index

ipq_set_mode() function, 177
ipq_set_verdict() function, 179
ipqueue iptables module, 176
ipreport pgoram, 297
iptables firewall, 176
ipunlink() unction, 239
IPX SAP dissector, 345
ISA (Internet Security and Acceleration),

testing service, 49
is_cgi_installed_ka function, 110
isdataat option (Snort), 190
itype option (Snort), 193

J
JPEG code vulnerability, 210
JSPs (Java Server Pages) and SQL

injection, 97

K
keep-alive

detection mechanism, 28
headers, 63
mechanism, Nessus’s use of, 58
state and data transfer, 24–27

keywords, Snort rule detection, 182
knowledge base, Nessus, 34–35

L
libpcap

capturing and saving packets with,
158–159, 284–289

selecting interface, 280–283
libraries

glib, 340
GTK+ (table), 243
packet capture (libpcap), 280
wiretap, 295

licensing, Ethereal protocol dissector, 324
line-mode tap modules, writing, 358–371
Linux

kernel-monitoring, 417
Samhain and, 418

listing, packages/products installed on OS,
54

little endian, big endian, 306
log files

Nessus daemon, 28
Osiris scan logs, 410

logons
and HIM, 402
and Samhain, 417

logto option (Snort), 195
lookup tables, and protocol dissectors, 332

M
MAC address spoofing attacks, 272
makesfiles, building protocol dissector

with, 330
manipulating strings in NASL, 12–13
matching functions

content-matching, 175
egeg() functions, 11–13

max_index function, 40
McLean, Grant, 135
MD4 responses, 67
md5sum program, 42
memcpy() function, 203
merging CIDR subnets, 212–213
message types, and NTLM authentication,

59–60
metadata, Snort rule options, 185–188
Microsoft

MSSecure.xml Hotfix testing sample, 50
NTLM authentication, 58–69
Section Headers, 81
SMB protocol, 44

Microsoft Baseline Security Analyzer tool,
50, 128

Microsoft Security Bulletins, creating
plugin for, 128–146

Microsoft Windows Update, 50
modifiers, Perl-compatible, 196–197
module_close function, 322
module_open function, 308–312
module_read function, 312–318
module_seek_read function, 318–322
monitoring hosts with HIM, 402–405
more_data detection plugin, 274
more_frags plugin, 275
MSBLAST worm, 132
mSearch() function, 175

332_NSE_Index.qxd 7/18/05 12:11 PM Page 438

Index 439

msg option (Snort), 185–186
mssecure.xml, 128–135
MySQL

query support, 76
Unpassworded test, improving, 70–79

N
nasl command-line interpreter, testing

NASL scripts, 7–9
NASL reference guide, 16
NASLs (Nessus Attack Scripting

Languages)
debugging using Nessus daemon

environment, 28
debugging using runtime environment,

15–28
described, structure, 4–7
expressions, regular, 11–13
extending using include files, 30–35
extending with wrapper functions, 14
functions, commonly used, 9–13
Nessus daemon requirements, 14

Nessus plugins. See plugins
Nessus Attack Scripting Languages. See

NASLs
Nessus daemon

environment, debugging NASLs in, 28
requirements to load NASLs, 14

Nessus engine, NASL scripts and, 4
Nessus HTTP authentication, integrating

NTLM authentication into, 58–69
Nessus knowledge base, extending test

capabilities used, 34–35
NetBIOS names, 45
netcat utility, 208–209
Net::Rawip module, 231
netstat command, 39
Nikto security tool, 106
nmap security scanner, 234
no404 plugin, 109
nocase option (Snort), 190
Norton Antivirus service, testing remote

host’s, 47
Norvell, Preston, 407
notifications

Osiris configuration, 411
Samhain’s e-mail, 416

NTLM authentication, and keep-alive
detection, 28

NTLM_Response function, 68
NULL byte, 13

O
offset option (Snort), 188–189
ONE_CHECK macro, 261
open source software

Osiris host integrity monitoring system,
406–413

Samhain host integrity monitoring
system, 413–418

Snort-AV package, 256
Snort-Wireless project, 269–276

OpenPcap() function, 158
open_sock_tcp() function, 7, 9
operating systems, testing UNIX-based, 54
operators

addition, subtraction, 13
directional (Snort), 184

optimizing Snort rules, 211–217
order plugin, 275
Osiris host integrity monitoring system

described, using, 406–413
extending with modules, 418–423

OutputKeyworkList data structure,
161–162

OutPutVerifiedAlerts() function, 265

P
packaging modules for public use, 423,

431–432
packet capture file formats

adding new, to wiretap library, 308–322
libpcap, using, 280–289
text2pcap, using, 289–294
TLV (type, length, value), 296

Packet Details Markup Language. See
PDML

packet dumps, improving MySQL test
utilizing, 70–79

packet metadata and hex dumps
(text2pcap), 290

packet sniffers, capturing outgoing, ingoing
traffic with, 21

332_NSE_Index.qxd 7/18/05 12:11 PM Page 439

440 Index

packet trace files, 296
packets

capturing in libpcap, saving, 158–159,
284–289

detecting ‘evil,’ 224–225
parentheses in Snort rules, 184
Parse method (tethereal), 385
ParseCmdLine() function, 152–153, 259
ParseEvilBit() function, 227–228
ParseOutputPlugin(), ParsePreprocessor()

functions, 161–162
ParseProcessor() function, 160
parser.c, 260–261
ParseRule(), ParseRuleFile() functions,

159, 162
ParseRuleOptions() function, 260
parsing function, 175
passwords, converting to Unicode, 67
patches

creating with GNU diff utility, 258
Snort-AV, 269
verifying presence of hotfixes, 47–49

pcap files, Ethereal’s use of, 295
pcap_dispatch function, 285–289
pcap_dumper_t functions, 287–289
pcap_lookupdev function, 280
pcap_loop function, 285–289
pcap_loop() function, 168
pcap_next function, 285
pcre keyword, 196–197
PCRE (Perl-Compatible Regular

Expressions)
Snort support, 196–205
test tool, 214
vs. content detection plugins, 212

pcretest tool, 201–202
PDML (Packet Details Markup Language)

Ethereal’s XML format, 388, 390–393
metadata protocols, 393–394

PE (Portable Executable) headers
shortening algorithm, 83
use of, 80–81

pem_to function, 37
peridoc Net::Rawip command, 231
Perl

CGI library, installing, 115–116
CSPAN (Comprehensive Perl Archive

Network), 116

Perl-Compatible Regular Expressions. See
PCRE

PHP-based scripts, 31, 33, 96
phpbb_detect.nasl, 108
ping, hping, 234
pkg_cmp function, 52
Plugin Factory CGI, 117
plugins

content detection, 212
creating for Microsoft security bulletins,

128–135, 135–146
creating Web application templates,

99–110
creating with XML parsing, 126–135
detecting vulnerabilities with, 100
detection, Snort-wireless, 273–274
detection, writing, 222–232
final Web application template, 111–114
increasing accuracy of, 107–110
output, writing, 242–254
protocol dissector, 324–330
server-side, client-side security issues,

96–98
testing for vulnerabilities, 8–9
writing custom, 96

plus sign (+) and XML element, 129
polling, inline monitoring, 403
port numbers, specifying in Snort rules

(table), 184
port scanning, 233
ports, testing, 25–26
PortToFunc() function, 166
POST command, 97, 102, 121
Potter, Bruce, 407
power management plugin, 275
pread function, 37, 38, 39
Predictable IP-ID preprocessor, 235–236
preprocessing, Snort, 172–174
preprocessors

Snort-wireless, 270–271
writing, 232–242

printf statements, and UNIX debugging,
349

priority option (Snort), 188
privileges

privilege separation with HIM, 405
and sensitive scripts, 35–36

prmFindRuleGroup() function, 174

332_NSE_Index.qxd 7/18/05 12:11 PM Page 440

Index 441

process launching, extended test capabilities
with, 35–42

processess
rogue, detecting, 39
testing running, 37

ProcessHeadNode() function, 165
ProcessIP() function, 163
ProcessPacket() function, 168, 172–174
protocol dissector

adding tap to, 358
advanced concepts, 350–356
calling, 331–332
creating built-in vs. plugin, 324–330
defining your protocol, 334–339
programming, 340–350

protocols
See also specific protocol
Snort supported, 183

proto_tree data, creating, 345–349
ps command and rogue processes, 39
PsList tool, 37
pthread functions, 264–265

Q
qpkg_check function, 54
queries, support for MySQL, 76
querying remote hosts, 9–10
QueueAlerts() function, 265

R
rawbytes option (Snort), 190
react option (Snort), 195
README files, Osiris modules, 423
RecordIPID() function, 238–241
recv_line() function, 7
Red Hat Package Manager, 51
reference option (Snort), 186
RegisterPlugin() function, 224
register_tap_listener_cmd_arg function,

371
register_tap_menu_item function, 371–372
registry, Windows

cleaning up spyware, 46–47
detecting installed patch, 146
key, stored in Nessus knowledge base, 49

Nessus knowledge base storage of, 35
smb_nt.inc, function affecting, 45

regular expressions in NASL, 11–13
RejectAction() function, 178
remote hosts

connecting to, 62
testing, 30–31, 49–50
UNIX, testing, 50–55

Remote Procedure Calls (RPCs)
length encoded data in, 206
and Nessus include files, 30

reports
displaying FTP banner in Nessus, 8
Ethereal, approaches to, 358
EtherealXML.py Python module,

395–400
HTTP GET requests, 380
tap module for HTTP GET requests,

361–371
tethereal output processing, 380–388
writing GUI tap modules, 371–380
XML version of protocol dissection,

388–395
resp option (Snort), 194
res_sign function, 37
results analysis, extended test capabilities

with, 35–42
Retry plugin, 275
rev option (Snort), 185
reverse engineering and Ethereal packet

capture, 295–308
RFC 3514 evil bit, 223–225, 232
Rogue-AP preprocessor, 273
rogue processes, detecting, 39, 42
rpc option (Snort), 194
rpm_check function, 51
RSA_sign functions, 37
Rsnake’s XSS Cheatsheet, 110
rules

Snort. See Snort rules
Snort-wireless, 276

ruletype keyword (Snort), 183, 254
runtime, scanning, 404–405

S
Salvatore’s idle scanning, 233–234
same_host function, 36

332_NSE_Index.qxd 7/18/05 12:11 PM Page 441

442 Index

sameip option (Snort), 194
Samhain host integrity monitoring system

described, using, 406, 413–418
extending with modules, 423–432

saving captured packets to files (libpcap),
287–289

scan agents
Osiris model, 403–404
Samhain system, 413–414

scanners, Web application, 106
scanner_status function, 40
scanning the host’s environment, 403–404
scanning ports, 233
script_dependencies, 109
script_get_preference function, 41
script_get_preference_file_content,

_location functions, 36
script_id() function, 14, 38
scripts

NASLs. See NASLs
server-side, and CGI, 31
and TRUSTED functions, 35–39
writing your first, 7–9

SCTP (Stream Control Transmission
Protocol), 291

SDropAction() function, 178
search and replacing strings, 13
Secure Remote Password (SRP) protocol,

415
Secure Sockets Layer (SSL) and Osiris

HIM, 408–409
security

agent, and host integrity monitoring, 405
bulletins, Microsoft, 128–135
finding source code vulnerabilities with

Flawfinder, 178
testing for Microsoft OSs, 49
Web application server-side, client-side

issues, 96–98
security_hole(), security_warning(),

security_note() functions, 8
Seg Number plugin, 275
semicolon (:) in Snort rules, 184
seq option (Snort), 193
Server Message Blocks (SMBs)

detecting, 44
and Nessus include files, 30
length encoded data in, 206

server-side scripts CGI (Common Gateway
Interface), 31

server-side SQL injection vulnerabilities,
96–97

servers
ISA, testing, 49
testing capabilities, 107

Service Pack 5, 49
Service Packs

checking for patches, 130–133
verifying presence of, 47, 49–50

services, testing if running on target host,
107

session option (Snort), 195–196
session_extract_uid() function, 45
SetEvent() function, 264
SetIPID() function, 236
SetupEvilBit() function, 225
SetupRTNFuncList() function, 166
shared_socket_acquire, _register, _release

functions, 36
Shavlik Technologies, LLC, HFNetChkPro

patch management tool, 128
show databases command, 73, 76
ShowUsage() function, 259
sid option (Snort), 185
signal() function, signal handlers (table),

154–155
signature.h, 261
signed tests, 36
SMBs. See Server Message Blocks
smb_hotfixes.inc, 35, 47–49, 431–432
smb_hotfixes.nasl, 35
smb_nt.inc include file, Windows testing

functionality provided by, 47–50
smb_setup() function, 45
SMTP (Simple Mail Transfer Protocol) and

Samhain, 416
sniffers

capturing outgoing, ingoing traffic with,
21, 26

Ethereal, 358
Snort

content-matching functions, 175
decoding, 168–172
detection phase, 174–175
detection plugins, writing, 222–232
inline functionality, 176–179
introduction to, 152–154

332_NSE_Index.qxd 7/18/05 12:11 PM Page 442

Index 443

parsing configuration file, 159–168
preprocessing, 172–174
preprocessors, writing, 232–242
rules. See Snort rules
starting up, 154–159
stream4 preprocessor, 176

Snort-AV (Active Verification), 256–269
Snort rules

active and dynamic, 211
default classifications (table), 187
fast pattern matching functionality, 194
netcat utility, 208–209
optimizing, 211–217
testing, 217–219
viewing rules created by others, 219
writing advanced, 196–211
writing basic, 182–196
writing detection plugs, 222–232

Snort-Wireless project, 269–276
snort.c, 259–260
snort.h, 258–259
SnortMain() function, 154–155, 168, 177,

260
sockets, shared, support for, 36
software agents, 405
solaris_check_patch function, 55
source code, finding vulnerabilities with

Flawfinder, 178
special characters, CGI and NASL, 119
spoofing attacks, 272
spyware, removing, 46–47
SQL (Structured Query Language)

injection vulnerabilities, 96–98
Web application security, 96

SRP (Secure Remote Password) protocol,
415

SSH (Secure Shell)
shared sockets support, 36
testing connections, 39–40

ssh_close_connection function, 40
ssh_login_or_reuse_connection function,

40
SSID plugin, 275
SSL and Osiris HIM, 408–409
startinterface() function, 249–250
Stream Control Transmission Protocol

(SCTP), 291
stream4 preprocessor, 176

string() function, 12–13
string manipulation

NASL string definition, 12–13
search and replace, 13–14

string matching function, 175
strlen() function, 13
strok() function, 237
Stype detection plugin, 275
subnets, merging CIDR, 212–213
substr function, 41
substraction, string, 13
subtype_read function, 312
Symantec AntiVirus, testing remote host’s,

47

T
tag option (Snort), 195
tap modules

writing GUI, 371–380
writing line-mode (Ethereal), 358–371

tap_draw, 370
tap_packet callback, 367–370
tap_reset, 366
taps in Ethereal, 358
target hosts, testing if service is running

on, 107
TCP flags (Snort), 190–191
TCP (Transmission Control Protocol)

Ethereal’s Follow TCP stream option, 24
protocol dissector and, 330–331,

333–334
and stream4 preprocessor, 176

templates
.conf files, 116
creating Web application plugin, 99–115
creating XML parsing plugin, 128–135
protocol dissector, 325

test IDs, 14
test section, NASL script, 6–7
testing

Awstats vulnerability, 124–126
detection plugins, 230–232
for generic XSS, 107–108
hotfix, service pack presence, 47–49
for HTTP-based vulnerabilities, 106
for installed Service Pack, 131
Norton Antivirus function, 47

332_NSE_Index.qxd 7/18/05 12:11 PM Page 443

444 Index

Osiris module, 421–423
PCRE (Perl-Compatible Regular

Expressions), 201
ports, 25–26
Samhain modules, 430–431
for server capabilities, 107
Snort rules, 217–219
for SQL injection, 97
UNIX remote hosts, 50–55
using Nessus include files, 30
validity of NASL code, 16–21

TestIPID() function, 241
tests

extending capabilities using process
launching, results analysis, 35–42

extending capability of with Nessus
knowledge base, 34–35

MySQL, improving, 70–79
for server-side scripts, 31

tethereal, processing output for reports,
380–388

text2pcap
described, hex dumps, 289–294
reverse engineering for, 300

three-way handshake, NTLM
authentication, 59

time stamps
bytes in captured packets, 306, 307
and packet capture, 284

TLV (type, length, value) format, 296
to_ds plugin, 276
Token Ring Media Access control (MAC)

protocol, 331
Token Ring protocol dissector, 331
top-level elements, XML, 127
tos option (Snort), 192
trace files, packet, 296
trace option, NASL interpreter, 7, 18–19
trigger strings, Web application plugin

templates, 100
Tripwire, 405, 407
Trojan horses

Dropbear SSH based, 37
rogue processes, 39

TRUSTED functions, using, 35–39
ttl option (Snort), 192

tvbuff functions, 341–342, 350
type plugin, 276

U
UDP (User Datagram Protocol), and

packet dissection, 330
Unicode, converting passwords to, 67
Unique Identifiers (UIs) and Osiris, 412
UNIX

adding printf statements to protocol
dissector, 349

Samhain and, 418
testing functionality with include files,

50–55
and TRUSTED tests, 37–42
Vi IMproved (vim) text editor, 152

URI (Universal Resource Identifier),
querying remote hosts and, 9–10

uricontent option (Snort), 190
Urlscan for the IIS, 110
User Datagram Protocol (UDP), and

packet dissection, 330

V
variables, ipass, 68
VCacheUpdate() function, 267
VerifyAlerts() function, 265, 266, 267
versions

getting file’s, 34
MySQL 3.23.58 and 4.xx.xx, 70

Vi IMproved (vim) text editor, 152
vulnerabilities

Awstats, 124–126
detecting with plugins, 100
Ethereal Distcc Network Protocol

Dissection Buffer Overflow, 203
file inclusion, 21
JPEG code, 210
scanning for with Active Verification,

256–257
testing for, 30–34
testing remote host’s, 49–50

332_NSE_Index.qxd 7/18/05 12:11 PM Page 444

Index 445

Web application server- and client-side,
96–98

writing test for Web-based, 10
vulnerability tests, validity of NASL code,

21–28

W
Web applications

plugin security issues, 96–98
plugin templates, creating, 99–115
scanners, 106

Web pages
retrieving NTLM-protected, 62
and SQL injection, 96

Web servers, reading banner of target, 6
Web sites

AirDefense, 269
Beyond Security Securiteam, 96
Flawfinder code auditing tool, 178
regular expressions, descriptions of, 11
SMB protocol, 44
Snort-AV download, 256
Snort rules created by others, 219

Webmirror.nasl, 101
WEP plugin, 276
WhichProto() function, 270
Whisker project, 106
Wichmann, Rainer, 413
Wifi Addr4 detection plugin, 274
win_destroy_ch function, 379
window option (Snort), 193
Windows-based security tests, and opening

executables, DLLs, 79–80
Windows operating systems, detecting

patches, 146
Windows PE header file parsing

algorithms, 83–85
Windows registry, Nessus knowledge base

storage of, 35
Windows testing functionality provided by

smb_ include files, 47–50

Windows Update, 50
WinPcap, 280
wireless Snort, 269–276
wiretap

adding new file format to library,
308–322

library, file formats supported, 295
reverse engineering, capture file formats,

295–308
within option (Snort), 189
wrapper functions, extending NASL using,

14
writing

custom plugins, 96
detection plugins, 222–232
first NASL script, 7–9
output plugins, 242–254
preprocessors, 232–242

X
X509 certificates, 408
XferHeader() function, 165
XML (Extensible Markup Language)

basics of, 126–127
parsing, generating plugins using,

128–135
protocol dissection version, 388–395
writing plugins using, 96, 116

XML::Simple, 135
XSS, testing for generic, 107–108
xxd tool, 214

Z
zero byte, 13
zombie machines, 233

332_NSE_Index.qxd 7/18/05 12:11 PM Page 445

Snort 2.1 Intrusion
Detection, Second
Edition
Called "the leader in the
Snort IDS book arms race"
by Richard Bejtlich, top
Amazon reviewer, this
brand-new edition of the
best-selling Snort book
covers all the latest features
of a major upgrade to the
product and includes a

bonus DVD with Snort 2.1 and other utilities.
ISBN: 1-931836-04-3

Price: $49.95 US $69.95 CAN

Syn•gress (sin-gres): noun, sing. Freedom
from risk or danger; safety. See security.

Syngress: The Definition of a
Serious Security Library

Ethereal Packet
Sniffing
Ethereal offers more
protocol decoding and
reassembly than any
free sniffer out there
and ranks well among
the commercial tools.
You’ve all used tools like
tcpdump or windump to
examine individual
packets, but Ethereal

makes it easier to make sense of a stream of
ongoing network communications. Ethereal not only
makes network troubleshooting work far easier, but
also aids greatly in network forensics, the art of
finding and examining an attack, by giving a better
“big picture” view.
ISBN: 1-932266-82-8

Price: $49.95 U.S. $77.95 CAN

Nessus Network
Auditing
Crackers constantly probe
machines looking for both
old and new vulnerabilities.
In order to avoid becoming
a casualty of a casual
cracker, savvy sys admins
audit their own machines
before they’re probed by
hostile outsiders (or even
hostile insiders). Nessus is

the premier Open Source vulnerability assessment tool,
and was recently voted the “most popular” open source
security tool of any kind. Nessus Network Auditing is
written by the world’s premier Nessus developers led by
the creator of Nessus, Renaud Deraison.
ISBN: 1-931836-08-6

Price: $49.95 U.S. $69.95 CAN

Host Integrity
Monitoring
Using Osiris and
Samhain
Host Integrity
Monitoring is the most
effective way to deter-
mine if some form of
malicious attack or
threat has compromised
your network security to
modify the filesystem,

system configuration, or runtime environment of
monitored hosts. By the end of the book, the reader
will not only understand the strengths and limita-
tions of host integrity tools, but also understand how
to effectively make use of them in order to integrate
them into a security policy.
ISBN: 1-59749-018-0

Price: $44.95 U.S. $62.95 CAN

332_NSE_Index.qxd 7/18/05 12:11 PM Page 446

