

Using Samba, 3rd Edition

By Robert Eckstein, Paul Andrew Watters, Jay Ts, Gerald Carter

...

Publisher: O'Reilly

Pub Date: January 01, 2007

ISBN-10: 0-596-00769-8

ISBN-13: 978-0-596-00769-0

Pages: 600

Table of Contents | Index

This book is the comprehensive guide to Samba administration, officially adopted by the Samba
Team. Wondering how to integrate Samba's authentication with that of a Windows domain? How to
get Samba to serve Microsoft Dfs shares? How to share files on Mac OS X? These and a dozen other
issues of interest to system administrators are covered. A whole chapter is dedicated to
troubleshooting!

The range of this book knows few bounds. Using Samba takes you from basic installation and
configuration -- on both the client and server side, for a wide range of systems -- to subtle details
of security, cross-platform compatibility, and resource discovery that make the difference between
whether users see the folder they expect or a cryptic error message.

The current edition covers such advanced 3.x features as:

Integration with Active Directory and OpenLDAP

Migrating from Windows NT 4.0 domains to Samba

Delegating administrative tasks to non-root users

Central printer management

Advanced file serving features, such as making use of Virtual File System (VFS) plugins.

Samba is a cross-platform triumph: robust, flexible and fast, it turns a Unix or Linux system into a
file and print server for Microsoft Windows network clients. This book will help you make your file
and print sharing as powerful and efficient as possible. The authors delve into the internals of the
Windows activities and protocols to an unprecedented degree, explaining the strengths and
weaknesses of each feature in Windows domains and in Samba itself.

Using Samba, 3rd Edition

By Robert Eckstein, Paul Andrew Watters, Jay Ts, Gerald Carter

...

Publisher: O'Reilly

Pub Date: January 01, 2007

ISBN-10: 0-596-00769-8

ISBN-13: 978-0-596-00769-0

Pages: 600

Table of Contents | Index

This book is the comprehensive guide to Samba administration, officially adopted by the Samba
Team. Wondering how to integrate Samba's authentication with that of a Windows domain? How to
get Samba to serve Microsoft Dfs shares? How to share files on Mac OS X? These and a dozen other
issues of interest to system administrators are covered. A whole chapter is dedicated to
troubleshooting!

The range of this book knows few bounds. Using Samba takes you from basic installation and
configuration -- on both the client and server side, for a wide range of systems -- to subtle details
of security, cross-platform compatibility, and resource discovery that make the difference between
whether users see the folder they expect or a cryptic error message.

The current edition covers such advanced 3.x features as:

Integration with Active Directory and OpenLDAP

Migrating from Windows NT 4.0 domains to Samba

Delegating administrative tasks to non-root users

Central printer management

Advanced file serving features, such as making use of Virtual File System (VFS) plugins.

Samba is a cross-platform triumph: robust, flexible and fast, it turns a Unix or Linux system into a
file and print server for Microsoft Windows network clients. This book will help you make your file
and print sharing as powerful and efficient as possible. The authors delve into the internals of the
Windows activities and protocols to an unprecedented degree, explaining the strengths and
weaknesses of each feature in Windows domains and in Samba itself.

Using Samba, 3rd Edition

By Robert Eckstein, Paul Andrew Watters, Jay Ts, Gerald Carter

...

Publisher: O'Reilly

Pub Date: January 01, 2007

ISBN-10: 0-596-00769-8

ISBN-13: 978-0-596-00769-0

Pages: 600

Table of Contents | Index

 Copyright

 Preface

 Chapter 1. An Introduction to Samba

 Section 1.1. What Is Samba?

 Section 1.2. What Can Samba Do for Me?

 Section 1.3. The Common Internet File System

 Section 1.4. Connecting to a CIFS File Share

 Section 1.5. Browsing

 Section 1.6. Authentication: Peer-to-Peer Versus Domains

 Section 1.7. What's in Samba 3.0?

 Section 1.8. Future Research in Samba 4.0

 Section 1.9. What Can Samba Do?

 Section 1.10. An Overview of the Samba Distribution

 Section 1.11. How Can I Get Samba?

 Chapter 2. Installing Samba on a Unix System

 Section 2.1. Binary Packages

 Section 2.2. Compiling from Source

 Section 2.3. Compiling and Installing Samba

 Section 2.4. Enabling the Samba Web Administration Tool (SWAT)

 Section 2.5. A Basic Samba Configuration File

 Section 2.6. Firewall Configuration

 Section 2.7. Starting the Samba Daemons

 Chapter 3. Configuring Windows Clients

 Section 3.1. Windows Networking Concepts

 Section 3.2. Windows Setup

 Chapter 4. The Samba Configuration File

 Section 4.1. Basic Syntax and Rules

 Section 4.2. Special Sections

 Section 4.3. Configuration File Options

 Section 4.4. Basic Server Configuration

 Section 4.5. Disk Share Configuration

 Section 4.6. Networking Options with Samba

 Section 4.7. Virtual Servers

 Section 4.8. Logging Configuration Options

 Chapter 5. Accounts, Authentication, and Authorization

 Section 5.1. Security Modes

 Section 5.2. User Management

 Section 5.3. Group Mapping

 Section 5.4. User Privilege Management

 Section 5.5. Controlling Authorization for File Shares

 Chapter 6. Advanced Disk Shares

 Section 6.1. Special Share Names

 Section 6.2. Filesystem Differences

 Section 6.3. Access Control Lists

 Section 6.4. Microsoft Distributed File Systems

 Section 6.5. Virtual File Systems

 Section 6.6. Executing Server Scripts

 Chapter 7. Printing

 Section 7.1. Print Shares

 Section 7.2. A Usable Print Share

 Section 7.3. Samba and CUPS

 Section 7.4. The [printers] Service

 Section 7.5. Enabling SMB Printer Sharing in OS X

 Section 7.6. Creating a PDF Printer

 Section 7.7. Managing Windows Print Drivers

 Section 7.8. Printers and Security

 Section 7.9. Disabling Point and Print

 Section 7.10. Printing, Queue Lists, and tdb Files

 Section 7.11. Printing to Windows Printers

 Section 7.12. Printing Parameters

 Chapter 8. Name Resolution and Network Browsing

 Section 8.1. Name Resolution

 Section 8.2. Network Browsing

 Chapter 9. Domain Controllers

 Section 9.1. Samba Domains: NT 4.0 or Active Directory?

 Section 9.2. Configuring a Samba PDC

 Section 9.3. Configuring a Samba BDC

 Section 9.4. passdb Recommendations

 Section 9.5. Migrating an NT 4.0 Domain to Samba

 Section 9.6. Domain Trusts

 Section 9.7. Remote Server Management

 Chapter 10. Domain Member Servers

 Section 10.1. Joining a Domain

 Section 10.2. Domain and ADS Security Modes

 Section 10.3. Matching Domain Users to Local Accounts

 Section 10.4. Winbind

 Section 10.5. Additional Winbind Features

 Chapter 11. Unix Clients

 Section 11.1. The Linux CIFS Filesystem

 Section 11.2. FreeBSD's smbfs

 Section 11.3. Mac OS X

 Section 11.4. smbclient

 Section 11.5. Remote Administration with net

 Chapter 12. Troubleshooting Samba

 Section 12.1. The Tool Box

 Section 12.2. Samba Logs

 Section 12.3. Unix Utilities

 Section 12.4. The Fault Tree

 Section 12.5. Troubleshooting Browsing

 Section 12.6. Troubleshooting Name Services

 Section 12.7. Troubleshooting Network Addresses

 Section 12.8. Troubleshooting NetBIOS Names

 Section 12.9. Extra Resources

 Appendix A. Summary of Samba Daemons and Commands

 Section A.1. SMB URI Syntax

 Section A.2. Samba Daemons

 Section A.3. Samba Client Programs

 Appendix B. Downloading Samba with Subversion

 Appendix C. Configure Options

 Section C.1. Install Directory and Library Options

 Section C.2. Developer Options

 Section C.3. Authentication Options

 Section C.4. File Serving Features

 Section C.5. Printing Options

 Section C.6. Clients and Libraries

 About the Authors

 Colophon

 Index

Using Samba, Third Edition

by Gerald Carter, Jay Ts, and Robert Eckstein

Copyright © 2007, 2003, 2000 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram

Executive Editor: Mary T. O'Brien

Production Editor: Lydia Onofrei

Copyeditor: Nancy Kotary

Proofreader: Nancy Reinhardt

Indexer: Julie Hawks

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrators: Robert Romano and Jessamyn Read

Printing History:

January 2000: First Edition.

February 2003: Second Edition.

January 2007: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Using Samba, the image of an African ground hornbill, and related trade dress
are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors

assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

 This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-00769-8

ISBN-13: 978-0-596-00769-0

[M]

You are reading a book about Samba, a software suite that connects Windows, Unix, and other
operating systems using Windows' native networking protocols. Samba allows Unix servers to offer
Windows networking services by matching the filesystem and networking models of Unix to those of
Windows. Samba acts as a bridge between the two systems, connecting the corresponding parts of
their architectures and providing a translation wherever necessary.

Bridging the gap between systems as dissimilar as Windows and Unix is a complex taskone that
Samba handles surprisingly well. To be a good Samba administrator, your abilities must parallel
Samba's. For starters, you need to know basic Unix system and network administration and have a
good understanding of Windows filesystems and networking fundamentals. In addition, you need to
learn how Samba fills in the "gray area" between Unix and Windows; for instance, how a Unix user
relates to a corresponding Windows account. Once you know how everything fits together, you'll find
it easy to configure a Samba server to provide your network with reliable and high-performance
resources.

Our job is to make all of that easier for you. We do this by starting out with a quick but
comprehensive tour of Windows networking in Chapter 1, followed by task-oriented Chapters 2 and
3, which tell you how to set up a minimal Samba server and configure Windows clients to work with
it. Most likely, you will be surprised how quickly you can complete the required tasks.

We believe that a hands-on approach is the most effective, and you can use the clients and servers
you build in Chapters 2 and 3 to test examples that we describe throughout the book. You can jump
around from chapter to chapter if you like, but if you continue sequentially from Chapter 4 onward,
by the time you finish the book you will have a well-configured production Samba server ready for
use. All you have to do is add the appropriate support for your intended purpose as we explain how
to use each feature.

Audience for This Book

This book is primarily intended for Unix administrators who need to support Windows clients on their
network, as well as anyone who needs to access the resources of a Windows network environment
from a Unix client. Although we assume that you are familiar with basic Unix system administration,
we do not assume that you are a networking expert. We do our best along the way to help out with
unusual definitions and terms.

Furthermore, we don't assume that you are an expert in Microsoft Windows. We carefully explain all
the essential concepts related to Windows networking, and we go through the Windows side of the
installation task in considerable detail, focusing on the current Microsoft operating system offerings.
For the Unix side, we give examples that work with common Unix operating systems, such as Linux,
Solaris, FreeBSD, and Mac OS X.

We concentrate on Samba 3.0. However, because Samba releases include a high degree of backward
compatibility with older releases, we believe you will find this book largely applicable to other versions
as well.

How This Book Is Organized

Here is a quick description of each chapter:

Chapter 1, An Introduction to Samba

Provides an overview of Samba and its capabilities, and then describes the most important
concepts of NetBIOS and SMB/CIFS networking. Finally, we give you a quick overview of the
daemons and utilities that are included in the Samba distribution.

Chapter 2, Installing Samba on a Unix System

Covers both building Samba from source and using vendor-provided packages. We discuss the
pitfalls surrounding upgrading Samba from one release to the next, as well as some basic
configuration settings.

Chapter 3, Configuring Windows Clients

Explains how to configure Microsoft Windows 2000 and later clients to participate in an
SMB/CIFS network.

Chapter 4, The Samba Configuration File

Gets you up to speed on the structure of the Samba configuration file and shows you how to
take control of basic file-sharing services.

Chapter 5, Accounts, Authentication, and Authorization

Gives you all the details about creating and managing users and groups in both local files and
LDAP directory services. We'll also explain how to manage user privilege assignments as well
security options for protecting shares.

Chapter 6, Advanced Disk Shares

Continues the discussion of file-sharing options, and covers more advanced functions such as
permissions, access control lists, opportunistic locks, setting up a distributed filesystem tree,
and Virtual File Systems plug-ins.

Chapter 7, Printing

Discusses how to share Unix printers on SMB/CIFS networks, including how to centrally
manage the printer settings and drivers used by Windows clients. We also show you how to
access SMB/CIFS printers from Unix clients.

Chapter 8, Name Resolution and Network Browsing

Introduces name resolution, which is used to convert NetBIOS computer names into IP
addresses, and browsing, the method used in SMB networking to find what resources are being
shared on the network.

Chapter 9, Domain Controllers

Dives into the world of Samba's domain control features, including domain trusts, support for
remote management tools, and migrating from a Windows NT 4.0 domain to Samba.

Chapter 10, Domain Member Servers

Answers any questions you have about configuring Samba as a member of either a Samba or
Windows domain, including integration with Active Directory. We also explain how Winbind can
help ease account management on member servers and provide unified authentication for Unix
services such as SSH.

Chapter 11, Unix Clients

Supplies you with the information necessary to configure native SMB/CIFS filesystems on
Linux, FreeBSD, and OS X to access Samba and Windows server alike. Additionally, we show
you how to use smbclient to develop portable backup strategies, and how the net tool can help
you remotely manage SMB/CIFS servers.

Chapter 12, Troubleshooting Samba

Explains in detail what to do if you have problems installing Samba. This comparatively large
chapter is packed with troubleshooting hints and strategies for identifying what is going wrong.

Appendix A, Summary of Samba Daemons and Commands

Is a quick reference that covers each server daemon and tool that make up the Samba suite.

Appendix B, Downloading Samba with Subversion

Explains how to download the latest development version of the Samba source code using SVN.

Appendix C, Configure Options

Documents each option that can be used with the configure command before compiling the
Samba source code.

Conventions Used in This Book

The following font conventions are followed throughout this book:

Italic

Filenames, file extensions, commands, URLs, domain names, new terms, user and group
names, and emphasis.

Constant width

Samba configuration options, hostnames, command options, other code that appears in the
text, and command-line information that should be typed verbatim on the screen.

Constant width bold

Commands that are entered by the user and new configuration options that we wish to bring to
the attention of the reader.

Constant width italic

Replaceable content in code and command-line information.

This format designates a note, which is an important aside to the nearby text.

This format designates a warning related to the nearby text.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Using Samba, Third Edition, by Gerald Carter, Jay Ts, and Robert
Eckstein. Copyright 2007 O'Reilly Media, Inc., 978-0-596-00769-0."

If you feel your use of code examples falls outside fair use of the permission given above, feel free to
contact us at permissions@oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web page for this book. You can access this information at:

http://www.oreilly.com/catalog/9780596007690

You can also contact Gerald Carter, the lead author of this edition, at:

jerry@samba.org

Safari® Enabled

 When you see a Safari® Enabled icon on the cover of your favorite technology book, that
means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments

We would like to thank our technical reviewers on the third edition, David Collier-Brown, Deryck
Hodge, Jim McDonough, Judith Myerson, and Bruno Gomes Pessanha. Their comments, corrections,
and advice were invaluable in putting this book together. David Brickner acted as the original editor
and helped guide the initial chapters. But the real captain of this ship was Andy Oram, who helped to
bring the book to completion (once again).

http://www.oreilly.com/catalog/9780596007690
http://safari.oreilly.com

Gerald Carter

I once described writing a book as an interruption in life. Andy (citing legendary editor Frank Willison)
describes them as a kitten that one day grows up into an adult cat and requires constant day-to-day
care (perhaps with less of the cuteness factor than the original kitten). I think both analogies point to
the immense amount of time required from all parties involved that it takes to bring a book from the
initial drafts to the copy you have in your possession now.

I am always amazed to be granted the grace to finish a writing project such as this. I hope that I
have fulfilled this statement: "Whatever you do, do it all for the glory of God" (1 Corinthians 10:31).

To my wife, Kristi, who is always my guide back from the land of over-caffeination and sleep
deprivation: I can say only thank you once again for your love, support, and understanding. You
make me a better person.

To Andy: you have confirmed to me once again why I love writing for O'Reilly.

To the Samba developers I work with on a daily basis: thanks for letting me be a part of something
great and for giving me something to write about.

Jay Ts

This book would have been extremely difficult to write if it hadn't been for the copy of VMware
Workstation graciously provided by VMware, Inc. I want to thank Rik Farrow for his clarifying
comments on security topics related to Samba and Windows, and thank both him and Rose Moon for
their supportive friendship. Thanks also go to Mark Watson for his encouragement and advice on the
topic of authoring technical books. Additionally, I'd like to express my appreciation to Andy Oram at
O'Reilly for being a supportive, friendly, and easygoing editor, and for offering me terms that I could
say yes tosomething that a few other publishers didn't even approach. SUSE, Inc., generously
provided a copy of SUSE Linux 8.1 Professional.

Robert Eckstein

I'd first like to recognize Dave Collier-Brown and Peter Kelly for all their help in the creation of this
book. I'd also like to thank each technical reviewer who helped polish this book into shape on such
short notice: Matthew Temple, Jeremy Allison, and of course Andrew Tridgell. Andrew and Jeremy
deserve special recognition, not only for creating such a wonderful product, but also for providing a
tireless amount of support in the final phase of this bookhats off to you, guys! A warm hug goes out
to my wife Michelle, who once again put up with a husband loaded down with too much caffeine and a
tight schedule. Thanks to Dave Sifry and the people at LinuxCare, San Francisco, for hosting me on
such short notice for Andrew Tridgell's visit. And finally, a huge amount of thanks to our editor, Andy
Oram, who (very) patiently helped guide this book through its many stages until we got it right.

All

We would especially like to give thanks to Perry Donham and Peter Kelly for helping mold the first

draft of this book. Although Perry was unable to contribute to subsequent drafts, his material was
essential to getting this book off on the right foot. In addition, some of the browsing material came
from text originally written by Dan Shearer for O'Reilly.

Chapter 1. An Introduction to Samba
Samba has been the subject of many cute descriptions in the past, some of which might have
included a dancing penguin carrying a Microsoft Windows logo. We have been guilty of these things
ourselves at one time or another. Although these pictures and descriptions can make great opening
lines for magazine articles, they don't have the substance to sell IT shops on the elegance with which
this piece of software can solve the very complex interopability problems faced by environments
composed of Macintosh, Microsoft, and Unix (or Unix-like) systems. If we had to come up with a one-
line executive summary to justify the existence of Samba, we would say, "Samba is a software suite
that allows a Unix-based system to appear and function as a Microsoft Windows server when viewed
by other systems on a network."

There are many components to Samba. Each of the pieces operate together to implement both the
client and server portion of the Common Internet File System (CIFS) protocol. CIFS is the network
protocol used by Microsoft operating systems for remote administration and to access shared
resources such as files and printers. Despite the name, CIFS is neither a filesystem nor suitable for
the Internet. It is, however, the protocol of choice in Windows networks.

There are several reasons to use Samba instead of Windows Server. As many experienced network
administrators can testify, Samba provides day-in and day-out reliability, scalability, and flexibility. In
addition, Samba offers freedom in both choice and cost. Samba is freely available from
http://www.samba.org under the terms of the GNU General Public License
(http://www.fsf.org/licensing/licenses/gpl.html). And because of Samba's portability, you are free to
choose which server platform to use, such as FreeBSD, Linux, Solaris, or OS X.

One of the fascinating things about open source software such as Samba is that it creates a
community of people surrounding the project, composed of more than just developers. The
community of Samba users varies from IT professionals to teachers, consultants, and dentists. Also,
many large companies, such as HP, IBM, Sun, Apple, RedHat, and Novell, distribute and commercially
support Samba. If a time arises that you need outside support for your Samba servers, you are free
to choose any of these providers for your support.

The remainder of this book is dedicated to helping you use Samba to meet the requirements of your
network.

http://www.samba.org
http://www.fsf.org/licensing/licenses/gpl.html

1.1. What Is Samba?

Samba is the brainchild of Andrew Tridgell, who started the project in 1991, while working with a
Digital Equipment Corporation (DEC) software suite called Pathworks, created for connecting DEC
VAX computers to computers made by other companies. Without knowing the significance of what he
was doing, Andrew created a fileserver program for an odd protocol that was part of Pathworks. That
protocol later turned out to be the Server Message Block (SMB), the predecessor to CIFS. A few
years later, he expanded upon his custom-made SMB server and began distributing it as a free
product on the Internet under the name "SMB Server." However, Andrew couldn't keep that nameit
already belonged to another company's productso he tried the following Unix renaming approach:

$ grep -i '^s.*m.*b.*' /usr/dict/words

And the response was:

salmonberry
samba
sawtimber
scramble

Thus, the name "Samba" was born. Today Samba is actively developed by a team of programmers
distributed around the world.

One of the best ways to describe Samba is to explain some of the things that it can do. As previously
mentioned, Samba implements the CIFS network protocol. By supporting this protocol, Samba
enables computers running Unix-based operating systems to communicate with Microsoft Windows
and other CIFS-enabled clients and servers. Some examples of common services offered by Samba
are:

Share one or more directory trees

Provide a Distributed Filesystem (MS-DFS) namespace

Centrally manage printers, print settings, and their associated drivers for access from Windows
clients

Assist clients with network browsing

Authenticate clients logging onto a Windows domain

Provide or assist with Windows Internet Name Service (WINS) name-server resolution

The Samba suite also includes client tools that allow users on a Unix system to access folders and
printers that Windows systems and Samba servers offer on the network.

Samba's current stable release, version 3.0, revolves around three Unix daemons:

smbd

This daemon handles file and printer sharing and provides authentication and authorization for
SMB clients.

nmbd

This daemon handles Samba's NetBIOS name registration, implements a Microsoft-compatible
NetBIOS Name Server (NBNS) service, also referred to a WINS server, and partcipates in
browsing elections.

winbindd

This daemon communicates with domain controllers for providing information such as the
groups to which a user belongs. It also provides an interface to Windows' LanManager
authentication schemes, commonly referred to as NTLM authentication, for Unix services other
than Samba.

1.2. What Can Samba Do for Me?

As explained earlier, Samba can help Windows and Unix computers coexist in the same network.[*]

However, there are some specific reasons why you might want to set up a Samba server on your
network:

[*] The name Unix will be used throughout this book to mean Unix and Unix-like variants such as BSD, Linux, SysV, and Mac OS

X.

You do not needor wish to pay fora full-fledged Windows server, yet you need the file and print
functionality that one provides.

You want to provide a common area for data or user directories to transition from a Windows
server to a Unix one, or vice versa.

You want to share printers among Windows and Unix workstations.

You are supporting a group of computer users who have a mixture of Windows and Unix
computers.

You want to integrate Unix and Windows authentication, maintaining a single database of user
accounts that works with both systems.

You want to network Unix, Windows, Macintosh (OS X), and other systems using a single
protocol.

Let's take a quick tour of Samba in action. Imagine the following basic network configuration: a
Samba-enabled Unix system, to which we will assign the name RAIN, and a pair of Windows clients, to
which we will assign the names LETTUCE and TOMATO, all connected via a local area network (LAN). The
server RAIN has a local inkjet printer connected to it, inkprint, and a disk share named
documentsboth of which it can offer to the other two computers. A graphic of this network is shown in
Figure 1-1.

Figure 1-1. A simple network set up with a Samba server

In this network, each computer listed shares the same workgroup. A workgroup is a group name tag
that identifies an arbitrary collection of computers and their resources on an SMB/CIFS network.
Several workgroups can be on the network at any time, but for our basic network example, we'll
have only one: the GARDEN workgroup.

1.2.1. Sharing Files

If everything is properly configured, we should be able to see the Samba server, RAIN, through the
My Network Places directory on the Windows desktop, as shown in Figure 1-2. In fact, you should
also be able to see each host that belongs to the GARDEN workgroup. Note the Microsoft Windows
Network icon in the lefthand toolbar. As we just mentioned, more than one workgroup can exist on a
network at any given time. A user who clicks this icon will see a list of all the workgroups that
currently exist on the network.

Figure 1-2. Viewing the members of a workgroup using My Network
Places on a Windows client

We can take a closer look at the RAIN server by double-clicking its icon. This action causes the client
to contact the server and request a list of its sharesthe file and printer resourcesthat the computer
provides. In this case, a printer named inkprint and a disk share named documents are on the
server, as shown in Figure 1-3. Thanks to Samba, Windows sees the Unix server as a valid CIFS
server and clients are able to access the documents folder as if it were just another directory on a
local disk. Note that Windows displays the names of machines in mixed case (Rain). Case is
irrelevant in NetBIOS and DNS names, so you might see rain, Rain, and RAIN in various displays or
command output, but they all refer to a single system.

Figure 1-3. Shares available on the Samba host \\RAIN

One popular Windows feature is the capability to map a drive letter (such as H:) to a remote shared
directory. To create a path that points to a remote directory or printer, combine the server (\\RAIN)
and share name (documents) to form a Universal Naming Convention (UNC) path
(\\RAIN\documents). There are several methods of creating such a connection. One that works
across almost all Windows operating systems versions is the net.exe command. The following
command connects the P: driver letter to the documents share on RAIN:

C:\> net use p: \\rain\documents

Once this drive mapping is established, applications can access the files in the documents folder
across the network as if it were an additional local hard disk mounted at P:\. You can store data on it,
install and run programs from it, and even restrict access to prevent unwanted visitors. If you have
any applications that support multiuser functionality on a network, you can install those programs on
the network drive.[*] Figure 1-4 shows the resulting network drive as it would appear with other
storage devices in the Windows XP client. Note the pipeline attachment in the icon for the P: drive;
this indicates that it is a network drive rather than a fixed drive.

[*] Be warned that many end-user license agreements forbid installing a program on a network so that multiple clients can access

it. Check the legal agreements that accompany the product to be absolutely sure.

Figure 1-4. Displaying local and network drives in My Computer

1.2.2. Sharing a Printer

You probably noticed that the printer inkprint appeared under the available shares for RAIN in Figure
1-3, indicating that the Unix server has a printer that can be accessed by various clients. Data sent to
the printer from any of the clients will be spooled on the Unix server and printed in the order in which
it is received.

Connecting to a Samba printer from a Windows client is even easier than creating a mapping to a
disk share. Windows systems support a system called Point and Print by which clients can
automatically download the correct driver for a shared printer, and this system works with Samba
shared printers just as easily as with Windows Server shared printers. Merely by double-clicking on
the printer, the client downloads the necessary files from the server and creates a usable printer
connection. An application can then access the print share using the same mechanisms as it would
for a local printer. Figure 1-5 display a printer connection to \\RAIN\inkprint along with a local printer
named HP LaserJet. Again, note the pipeline attachment below the printer, which identifies it as
being on a network. More information on configuring Samba's printer and driver management
features is provided in Chapter 7.

Figure 1-5. A client connection to the printer Q1 on the server RAIN

1.2.3. Seeing Things from the Unix Side

As mentioned earlier, Samba appears in Unix as a set of daemon programs. You can view them with
the Unix ps command, you can read any messages they generate through custom debug files or the
Unix syslog service (depending on how Samba is set up), and you can configure them from a single
Samba configuration file: smb.conf. Additionally, if you want to get an idea of what the daemons are
doing, Samba has a program called smbstatus, which displays the current state of the server's open
client connections and file locks. Here's an example that shows that the user lizard has a connection
to the documents share from the machine lettuce.

$ smbstatus

Samba version 3.0.22
PID Username Group Machine

19889 lizard users lettuce (192.168.1.143)

Service pid machine Connected at

documents 19889 lettuce Fri Jun 3 01:34:46 2006

No locked files

1.3. The Common Internet File System

Modern Microsoft operating systems rely upon a resource-sharing protocol known as CIFS. CIFS
provides APIs for manipulating files and for implementing remote administration functionality such as
user password changes and printing services.

Microsoft would have you think that this is a new protocol unrelated to its predecessor, the SMB
protocol, but CIFS is really just the latest variant in a long line of SMB protocol dialects. It could be
argued that it is even just a new name for the latest revision of SMB. Frequently, you will see the
terms SMB and CIFS used interchangably or perhaps as a combination (e.g., SMB/CIFS). In other
contexts, people use CIFS to refer to the NetBIOS-less incarnation of SMB over TCP/445
implemented by Windows 2000 and later operating systems and SMB to refer to Windows 9x/ME and
NT systems. The line is never really clear from the perspective of a developer or a network
administrator. For simplicity, this book uses CIFS to refer to the combination of SMB and CIFS
operations.

Microsoft has introduced a new variant of the CIFS protocol, called SMB2, in
Windows Vista. The details of this new protocol are still emerging. As always,
Samba developers continue working to ensure compatibility with the most
recent OS releases from Redmond.

CIFS is a connection-oriented, stateful protocol that relies upon three supporting network services:

A name service

A means of sending datagrams to a single or group of hosts

A means of establishing a long-term connection between a client and server

Both Samba 3.0 and Windows 2000/XP/2003 support using standard IP services to meet these
requirements. For example, the Domain Name Service (DNS) translates names to addresses, UDP
packets provide the datagram service, and the TCP protocol provides the support needed for CIFS
sessions. More on TCP/IP and DNS can be found in TCP/IP Network Administration, by Craig Hunt,
and DNS and BIND, by Paul Albitz and Cricket Liu, both published by O'Reilly.

Prior to Windows 2000, Microsoft clients relied upon a layer called NetBIOS to provide this supporting
infrastructure. Although modern CIFS clients and servers, including Samba, can function without
utilizing NetBIOS services, most usually provide a legacy mode of operation for communicating with
older CIFS implementations. Figure 1-6 illustrates the relationship between CIFS, hosts on a network,
and core network services. The NetBIOS protocol is generally unfamiliar to Unix sysadmins and
therefore deserves a little more attention.

Figure 1-6. CIFS and its required support services

1.3.1. Understanding NetBIOS

To begin, let's step back in time. In 1984, IBM authored a simple application programming interface
(API) for networking its computers, called the Network Basic Input/Output System (NetBIOS). The
NetBIOS API provided a rudimentary design for an application to connect and share data with other
computers.

It's helpful to think of the NetBIOS API as networking extensions to the standard BIOS API calls. The
BIOS contains low-level code for performing filesystem operations on the local computer. NetBIOS
originally had to exchange instructions with computers across IBM PC or Token Ring networks. It
therefore required a low-level transport protocol to carry its requests from one computer to the next.

In late 1985, IBM released one such protocol, which it merged with the NetBIOS API to become the
NetBIOS Extended User Interface (NetBEUI). NetBEUI was designed for small LANs, and let each
computer claim a name (up to 15 characters in length) that wasn't already in use on the network. By
"small LANs," we mean those with fewer than 255 nodes on the networkwhich was considered a
generous number in 1985!

The NetBEUI protocol was very popular with networking applications, including those running under
Windows for Workgroups. Later, implementations of NetBIOS over Novell's IPX networking protocols
also emerged and competed with NetBEUI. However, the network stack of choice for the burgeoning
Internet community was TCP/IP, and implementing the NetBIOS APIs over this protocol suite soon
became a necessity.

Recall that TCP/IP uses numbers to represent computer addresses (192.168.220.100, for instance),
and that NetBIOS uses only names. This difference was a point of contention when trying to integrate
the two protocols together. In 1987, the IETF published standardization documents, titled RFC 1001
and 1002, that outlined how NetBIOS would work over a TCP/IP network. This set of documents still
governs each implementation that exists today, including those provided by Microsoft with its
Windows operating systems, as well as the Samba suite.

Since then, the standard that this document governs has become known as NetBIOS over TCP/IP, or
NBT for short.

The NetBIOS name service solves the name-to-address problem mentioned earlier by allowing each
computer to declare a specific name on the network that can be translated to a machine-readable IP

address. With the current pervasiveness of TCP/IP networks and DNS, which performs a function
identical to the three NetBIOS services, it is understandable why Microsoft choose to migrate away
from NetBIOS in newer OS releases.

1.3.2. Getting a Name

In the NetBIOS world, when each computer comes online, it attempts to claim a name for itself; this
process is called name registration. However, no two computers in the same namespace should be
able to claim the same name; this state would cause endless confusion for any computer that wanted
to communicate with either of them. There are two different approaches to ensure that this doesn't
happen:

Allow each computer on the network to defend its name in the event that another computer
attempts to use it. Names are claimed through broadcast packets on local network segments.

Use a WINS server to keep track of which hosts have registered a NetBIOS name. This
approach is required when the hosts exist on different network segments that are not reachable
via standard broadcast means.

Figure 1-7 illustrates a (failed) name registration, with and without WINS.

Figure 1-7. Broadcast versus WINS name registration

As mentioned earlier, there must be a way to resolve a NetBIOS name to a specific IP address; this
process is known as name resolution . There are two different approaches with NBT here as well:

Have each computer report back its IP address when it "hears" a broadcast request for its
NetBIOS name.

Use WINS to help resolve NetBIOS names to IP addresses.

Figure 1-8 illustrates the two types of name resolution.

Figure 1-8. Broadcast versus WINS name resolution

As you might expect, having a WINS server on your network can help out tremendously. To see
exactly why, let's look at the broadcast method.

When a client computer boots, it broadcasts a message declaring that it wishes to register a specified
NetBIOS name as its own. If nobody objects to the use of the name, it keeps the name. On the other
hand, if another computer on the local subnet is currently using the requested name, it sends a
message back to the requesting client that the name is already taken. This is known as defending the
name. This type of system comes in handy when one client has unexpectedly dropped off the
networkanother can take its name unchallengedbut it does incur an inordinate amount of traffic on
the network for something as simple as name registration.

With WINS, the same thing occurs, except that the communication is confined to the requesting
computer, the defending host, and the WINS server. No broadcasting occurs when the computer
wishes to register the name; the registration message is simply sent directly from the client to the
WINS server, which asks the defending host whether it wishes to continue to use the name. The
WINS server reply to the name registration request is determined by the defending host's reply. This
system is known as point-to-point communication , and it is often beneficial on networks with more
than one subnet, because routers are generally configured to block incoming packets that are
broadcast to all computers in the subnet.

The same principles apply to name resolution. Without WINS, NetBIOS name resolution would also be
done with a broadcast mechanism. All request packets would be sent to each computer in the
network, with the hope that one computer that might be affected will respond directly back to the
computer that asked. Using WINS and point-to-point communication for this purpose is far less
taxing on the network than flooding the network with broadcasts for every name-resolution request.

It can be argued that broadcast packets do not cause significant problems in modern, high-bandwidth
networks of hosts with fast CPUs, if only a small number of hosts are on the network, or if the
demand for bandwidth is low. There are certainly cases where this argument is correct; however, the
assumption does not hold in environments that support more than one broadcast segment connected
together by routers. Therefore, the advice throughout this book is to avoid relying on broadcasts as
much as possible. This rule is good for large, busy networks, and if you follow this advice when
configuring a small network, your network will be able to grow without encountering problems later
on that might be difficult to diagnose.

1.3.3. Node Types

Each computer on an NBT network earns one of the following designations, depending on how it
handles name registration and resolution: b-node, p-node, m-node, and h-node. The behaviors of
each type of node are summarized in Table 1-1.

Table 1-1. NetBIOS node types

Role Value

b-node Uses broadcast registration and resolution only.

p-node Uses point-to-point registration and resolution only.

m-node
(mixed)

Uses broadcast for registration. If successful, it notifies the NBNS of the result. Uses
broadcast for resolution; uses the NBNS if broadcast is unsuccessful.

h-node
(hybrid)

Uses the NBNS for registration and resolution; uses broadcast if the NBNS is
unresponsive or inoperative.

Windows clients are usually h-nodes. The first three node types appear in RFC 1001/1002. H-nodes
were invented later by Microsoft, as a more fault-tolerant method.

You can find the node type of a Windows 95/98/Me computer by running the winipcfg.exe command
from the Start Run dialog box (or from an MS-DOS prompt) and clicking the More Info button.
On operating systems based on Windows NT, such as Windows 2000, Windows XP, and Windows
2003, you can use the ipconfig /all command in a command-prompt window, as shown in the next
example. In either case, search for the line that says Node Type.

C:\> ipconfig /all
Windows IP Configuration

 Host Name : lettuce
 Primary Dns Suffix :
 Node Type : Hybrid
 IP Routing Enabled. : No
 WINS Proxy Enabled. : No

 DNS Suffix Search List. : localdomain

Ethernet adapter Local Area Connection 2:

 Connection-specific DNS Suffix . : localdomain
 Description : AMD PCNET Family PCI Ethernet Adapter #2
 Physical Address. : 00-0C-29-82-92-98
 Dhcp Enabled. : Yes
 Autoconfiguration Enabled : Yes
 IP Address. : 192.168.56.129
 Subnet Mask : 255.255.255.0
 Default Gateway :
 DHCP Server : 192.168.56.254
 DNS Servers : 192.168.56.1
 Lease Obtained. : Tuesday, June 07, 2005 10:36:24 AM
 Lease Expires : Tuesday, June 07, 2005 11:06:24 AM

1.3.4. What's in a Name?

The names that NetBIOS uses are quite different from the DNS hostnames with which you might be
familiar. First, NetBIOS names exist in a flat namespace. In other words, there are no hierarchical
levels, such as in oreilly.com (two levels) or ftp.samba.org (three levels). NetBIOS names consist of a
single unique string such as RAIN or SLEET within each WINS server or broadcast segment. Second,
NetBIOS names may be no longer than 15 characters in length and can consist only of standard
alphanumeric characters (az, AZ, 09) plus the following:

! @ # $ % ^ & () - ' { } . ~

Any name with fewer than 15 characters is padded with spaces at the end to reach the 15-character
length.

Although you are allowed to use a period (.) in a NetBIOS name, it is a very bad idea. A NetBIOS
name containing a period is very hard to distinguish from a valid DNS name. Even worse is
something like the valid NetBIOS name 192.168.1.100.

It's not a coincidence that all valid hostnames are also valid NetBIOS names. In fact, the hostname
for a Samba server is often reused as its NetBIOS name. For example, if you had a system with a
fully qualified DNS name of sleet.plainjoe.org, its NetBIOS name would default to SLEET (followed
by 9 spaces).

1.3.4.1. Resource names and types

With NetBIOS, a computer not only advertises its presence, but also tells others what types of
services it offers. For example, SLEET can indicate that it's not just a workstation, but that it's also a

file server and can receive Windows Messenger messages. This is done by adding a sixteenth byte to
the end of the machine name, called the resource type (or resource byte), and registering the name
multiple times, once for each service that it offers. See Figure 1-9.

Figure 1-9. The structure of a NetBIOS name

The one-byte resource type indicates a unique service that the named computer provides. In this
book, you will often see the resource type shown in angle brackets (<>) after the NetBIOS name,
such as SLEET<0x00> or SLEET<00>. Note that Samba documentation and tools often use the hash
mark in place of angle brackets (SLEET#00).

It is possible to see which names are registered for a particular NBT computer using the Windows
command-line nbtstat utility. Because these services are unique (i.e., there cannot be more than one
registered), you will see them listed as type UNIQUE in the output. For example, the following partial
output describes the SLEET server:

C:\> nbtstat -a sleet

 NetBIOS Remote Machine Name Table
 Name Type Status

SLEET <00> UNIQUE Registered
SLEET <03> UNIQUE Registered
SLEET <20> UNIQUE Registered
...

This output indicates that the server has registered the NetBIOS name SLEET as a machine
(computer) name, as a recipient of messages from the Windows Messenger service, and as a file
server. Some of the attributes a name can have are listed in Table 1-2.

Table 1-2. NetBIOS unique resource types

Named resource
Hexadecimal byte
value

Standard Workstation Service 00

Messenger Service 03

RAS Server Service 06

Domain Master Browser Service (associated with primary domain
controller)

1B

Master Browser name 1D

NetDDE Service 1F

Fileserver (including printer server) 20

RAS Client Service 21

Network Monitor Agent BE

Network Monitor Utility BF

1.3.4.2. Group names and types

NetBIOS also uses the concept of groups with which computers can register themselves. Earlier, we
mentioned that the computers in our example belonged to a workgroup, which is a partition of
computers on the same network. For example, a business might very easily have an ACCOUNTING and
a SALES workgroup, each with different servers and printers. In the Windows world, a workgroup and
a NetBIOS group are the same thing.

Continuing our nbtstat example, the SLEET Samba server is also a member of the GARDEN workgroup
(the GROUP attribute hex 00) and will participate in elections for the browse master (GROUP attribute
1E). Here is the remainder of the nbtstat output:

 NetBIOS Remote Machine Name Table
 Name Type Status

GARDEN <00> GROUP Registered
GARDEN <1E> GROUP Registered
.._ _MSBROWSE_ _.<01> GROUP Registered

The possible group attributes a computer can have are listed in Table 1-3. An excellent reference to
the internals of NetBIOS names and services can be found in Chris Hertel's book, Implementing
CIFS: The Common Internet File System (Prentice Hall), available online at
http://www.ubiqx.org/cifs.

Table 1-3. NetBIOS group resource types

http://www.ubiqx.org/cifs

Named resource Hexadecimal byte value

Standard Workstation group 00

Logon server 1C

Master Browser name 1D

Normal Group name (used in browser elections) 1E

Internet Group name (administrative) 20

<01><02>_ _MSBROWSE_ _<02> 01

The final entry, _ _MSBROWSE_ _, is used to announce a group to other master browsers. The
nonprinting characters in the name show up as dots in an nbtstat printout. Don't worry if you don't
understand all of the resource or group types. Some of them you will not need with Samba, and
others you will pick up as you move through the rest of the chapter. The important thing to
remember here is the logistics of the naming mechanism.

Scope ID

In the dark ages of SMB networking, before NetBIOS groups were introduced, you could
use a very primitive method to isolate groups of computers from the rest of the network.
Each SMB packet contains a field called the scope ID, based on the idea that systems on
the network could be configured to accept only packets with a scope ID matching that of
their configuration. This feature was hardly ever used and unfortunately lingers in
modern implementations. Some of the utilities included in the Samba distribution allow
the scope ID to be set. Setting the scope ID in a network is likely to cause problems, and
we are mentioning scope ID only so that you are not confused by it when you later
encounter it in various places.

1.3.5. Datagrams and Sessions

NBT offers two transport services: the session service and the datagram service. Understanding how
these two services work is not essential to using Samba, but it does give you an idea of how NBT
works and how to troubleshoot Samba when it doesn't work.

The datagram service has no stable connection between computers. Packets of data are simply sent
or broadcast from one computer to another, without regard to the order in which they arrive at the
destination, or even if they arrive at all. The use of datagrams requires less processing overhead than
sessions, although the reliability of the connection can suffer. Datagrams, therefore, are used for
quickly sending nonvital blocks of data to one or more computers. The datagram service
communicates using the simple primitives shown in Table 1-4.

Table 1-4. Datagram primitives

Primitive Description

Send datagram Send datagram packet to computer or groups of computers.

Send Broadcast datagram Broadcast datagram to any computer waiting with a Receive Broadcast
datagram.

Receive datagram Receive a datagram from a computer.

Receive Broadcast
datagram

Wait for a Broadcast datagram.

The session service is more complex. Sessions are a communication method that can, in theory,
detect problematic or inoperable connections between two NetBIOS applications. It helps to think of
an NBT session as being similar to a telephone call. Once a connection is made on a session, it
remains open throughout the duration of the conversation; each side knows who the caller and the
called computer are; and each can communicate using the simple primitives shown in Table 1-5.

Table 1-5. Session primitives

Primitive Description

Call Initiate a session with a computer listening under a specified name.

Listen Wait for a call from a known caller or any caller.

Hang-up Exit a call.

Send Send data to the other computer.

Receive Receive data from the other computer.

Session status Get information on requested sessions.

Sessions are the backbone of resource sharing on an NBT network. They are typically used for
establishing stable connections from client computers to disk or printer shares on a server. The client
"calls" the server and starts trading information such as which files it wishes to open, which data it
wishes to exchange, and so on. These calls can last a long timehours, even daysand all of this occurs
within the context of a single connection. If there is an error, the session software (TCP) retransmits
until the data is received properly, unlike the "punt-and-pray" approach of the datagram service
(UDP).

In truth, although sessions are supposed to handle problematic communications, they sometimes
don't. If the connection is interrupted, session information that is open between the two computers
becomes invalid. If this happens, the only way to regain the session information is for the same two
computers to call each other again and start over.

If you want more information on each service, the best place to look is RFC 1001/1002. Just make
sure to keep these two points in mind:

Sessions are always point-to-point, taking place between two NetBIOS computers. If a session
service is interrupted, the client is supposed to store sufficient state information for it to
reestablish the connection.

Datagrams can be sent to individual computers or broadcast to multiple computers, but they
are unreliable. In other words, there is no way for the source to know that the datagrams it
sent have indeed arrived at their destinations.

1.4. Connecting to a CIFS File Share

So, what happens when a user types net use p: \\rain\documents? To simplify the answer, let's
assume the presence of a name service, a datagram service, and a session service, and ignore the
details of whether the underlying network uses the NetBIOS interface or TCP/IP. In Chapter 5, we
discuss how a CIFS server such as Samba handles operations such as authentication and
authorization when connecting to file and printer shares; for now, let's just assume that these things
are working.

Figure 1-10 shows the basic steps that a client will go through in order to access a remote share such
as \\RAIN\documents. The diagram assumes that the client, named CATHY, has already resolved the
server's name, SAM, to an IP address using either DNS or the NetBIOS mechanisms discussed earlier.
Be aware that the steps to connect to a file or printer share are not always the same, because CIFS
supports multiple authentication types and models. For now however, just focus on the scenario of an
individual connecting to a share using a login name and password for the session credentials. This is
by far the most common and intuitive case.

Figure 1-10. Examining what happens when a user types net use p:
\\server\share

The first step in establishing the CIFS connection is to negotiate the protocol dialect that the client
and server will use. The client transmits a list of dialects that it understands and the server selects
the one that it prefers (supposedly the one with the most supported features). Table 1-6 lists the
CIFS dialects supported by Samba 3.0.

Developers plan to enhance the POSIX 2 dialect in a future version of Samba so
that the client can take more advantage of the Unix CIFS Extensions for file
operations. More details on these extensions are covered in Chapter 11.

Table 1-6. CIFS protocol dialects

Protocol name smb.conf name Example clients

NT LANMAN 1.0

NT LM 0.12

POSIX 2

NT1 Windows 95, NT 4.0, and later

smbclient

Linux CIFS FS

LANMAN2.1

LM1.2X002

Samba

DOS LM1.2X002

LANMAN2

LANMAN1.0

MICROSOFT NETWORKS 3.0

LANMAN1 MS DOS network client

MICROSOFT NETWORKS 1.03 COREPLUS

PC NETWORK PROGRAM 1.0 CORE

There are other pieces of information in the server's Negotiate Protocol (negprot) reply, such as
whether the server supports encrypted passwords, what security level is used when connecting to its
shares, and whether the server supports Unicode for handling non-ASCII strings.

Once the client and server have agreed upon the dialect to use, the next step in Figure 1-10 is to
authenticate the user's credentials. During this session setup (sesssetup) operation, the login name
can be paired with different representations of the user's proof of identify, such as a clear-text
password, the response portion of a challenge/response algorithm, or a Kerberos ticket, depending
on the capability bits set in the server's negprot reply. If the user is successfully authenticated, the
server responds by sending the client a session virtual uid or vuid, a 16-bit token that proves the
user's prior authentication. It has no relation to a Unix uid or a Windows SID. If the session is ever
broken, the server will have to reauthenticate the user and issue a new vuid before any share
connections can be reestablished.

If the session setup step is successful, the client can include the vuid in the tree connection (tcon)
request, which is what actually makes the connection to the CIFS share. The server performs any
necessary authorization checks by looking up the user's information, such as group membership,
based on the vuid that was previously assigned. If the user has the necessary access rights to
connect to the share, the server replies with a tree connection ID (tid).

Now the client is able to open and save files on the share just as if it were a local disk. When issuing
the open file call in Figure 1-10, the client sends the previously issued tid to point to the root of the
directory tree and the vuid for use in the server's file authorization checks.

1.5. Browsing

Browsing is the process of finding the other computers and shared resources in the Windows
network. Note that this is unrelated to web browsing on the Internet, apart from the general idea of
"discovering what's there." On the other hand, browsing the Windows network is like the Web in one
way: what's out there can change without warning. Also be aware that browsing is not the same
thing as searching Active Directory (AD) for hosts or resources. Although the NetBIOS browse service
and AD are each a type of directory service, the implementation details are completely different. The
comments in this section apply to browsing NetBIOS networks, not AD.

Before browsing existed, users had to know the name of the computer they wanted to connect to on
the network and then manually enter a UNC such as \\rain\documents to an application or file
manager to access resources. Browsing is much more convenient, making it possible to examine the
contents of a network by using the point-and-click My Network Places GUI interface on a Windows
client.[*]

[*] This was originally called Network Neighborhood in Windows 95/98/NT. Microsoft has changed the name to My Network

Places in the more recent Windows Me/2000/XP.

You will encounter two types of browsing in an SMB network:

Browsing a list of computers and shared resources

Browsing the shared resource of a specific computer

Let's look at the first type. On each LAN (or subnet) with a workgroup or domain, one computer has
the responsibility of maintaining a list of the computers that are currently accessible through the
network. This computer is called the local master browser, and the list it maintains is called the
browse list. Computers on a subnet use the browse list to cut down on the amount of network traffic
generated while browsing. Instead of each computer dynamically polling to determine a list of the
currently available computers, the computer can simply query the local master browser to obtain a
complete, up-to-date list.

To browse the resources on a computer, a user must connect to the specific computer; this
information cannot be obtained from the browse list. Browsing the list of resources on a computer
can be done by double-clicking the computer's icon when it is presented in My Network Places. As you
saw at the opening of the chapter, the computer responds with a list of shared resources that can be
accessed after the user is successfully authenticated.

Each server in a Windows workgroup is required to announce its presence to the local master
browser after it has registered a NetBIOS name, and (theoretically) announce that it is leaving the
workgroup when it is shut down. It is the local master browser's responsibility to record what the
servers have announced.

The My Network Places application can behave oddly, until you select a
particular computer to browse. You might see a list of computers that is not
quite up-to-date, including hosts that are not longer on the network or new
ones that have not been been noticed yet. Put succinctly, once you've selected
a server and connected to it, you can be a lot more confident that the shares
and printers really exist on the network.

Unlike the roles you've seen earlier, almost any Windows system can act as a local master browser.
The local subnet can also have one or more backup browsers that will take over in the event that the
local master browser fails or becomes inaccessible. The local master browser creates one backup
browser for each group of 32 Windows NT based hosts on the subnet,[dagger] or each group of 16
Windows 95/98/ME hosts on the subnet (or a fraction of such a group). To ensure fluid operation, the
local backup browsers synchronize their browse list frequently with the local master browser. There is
currently no upper limit on the number of backup browsers that can be allocated by the local master
browser.

[dagger] Windows 2000 and later operating systems are all based on Windows NT technology.

1.5.1. Browsing Elections

Browsing is a critical aspect of any Windows workgroup. However, this can go wrong on any network.
For example, let's say that a computer running Windows on the desk of a small company's office
manager is the local master browserthat is, until she switches it off to plug in a fax machine. At this
point, the Windows XP Workstation in the spare parts department might agree to take over the job.
However, that computer is currently running a large, poorly written program that has brought its
processor to its knees. The moral: browsing has to be very tolerant of servers coming and going.
Because nearly every Windows system can serve as a browser, there has to be a way of deciding at
any time who will take on the job. This decision-making process is called an election.

An election algorithm is built into all Windows operating systems so that they can agree who is going
to be a local master browser and who will be local backup browsers. An election can be forced at any
time. For example, let's assume that the office manager has finished using the fax machine and
reboots her desktop PC. As the server comes online, it announces its presence, and an election takes
place to see whether the PC in the spare parts department should still be the master browser.

When an election is performed, each computer broadcasts information about itself via datagrams.
This information includes the following:

The version of the election protocol used

The operating system on the computer

The amount of time the client has been on the network

The name of the client

These values determine which operating system has seniority and will fulfill the role of the local
master browser. (Chapter 8 describes the election process in more detail.) The architecture

developed to achieve this is inelegant, and has no built-in security to prevent rogue machines from
taking over. Thus it is possible for any computer running a browser service to register itself as
participating in the browsing election and (after winning) being able to change the browse list.
Nevertheless, browsing is a key feature in many Windows networks, and backward-compatibility
requirements will ensure that it is in use for years to come.

1.6. Authentication: Peer-to-Peer Versus Domains

Peer-to-peer networks (not to be confused with P2P file sharing) were originally designed to allow
users to share resources from their desktop computer with other users across a network. Network
browsing was also originally designed to support this type of ad hoc networking in which no central
management of disks or printers was needed. Users could turn their PCs on or off at will without fear
of disrupting other users or network services (except those people who were accessing files or
printers on the now-offline host).

When a request to access a file share or printer was received, the local computer was responsible for
handling the authentication request as part of the connection process. Thus, any user account
information or passwords had to be stored on the CIFS "server." If a user required access to shares
on six remote machines, the user had to either remember six passwords or keep her account
information synchronized across all six servers. Both solutions faced a scalability issue.

The peer-to-peer networking model of local authentication functions fairly well, as long as the number
of computers on the network is small and there is a close-knit community of users. However, in
larger networks, the simplicity of workgroups becomes a limiting factor. To support the needs of
larger networks, such as those found in departmental computing environments, Microsoft introduced
domains with Windows NT 3.51. A Windows NT domain is essentially a browsing group of CIFS-
enabled computers with one addition: a server acting as a domain controller (see Figure 1-11).

Figure 1-11. A simple Windows domain

A domain controller in a Windows domain performs a role similar to a Network Information Service
(NIS) server or LDAP directory service in a Unix network, maintaining a domain-wide database of
user and group information, as well as performing related services. The responsibilities of a domain
controller are mainly related to security, including verifying user credentials (authentication) and
granting or denying a user access to the resources of the domain (authorization). These tasks are

typically done through the use of a username and password. The service that maintains the database
on the domain controllers is called the Security Account Manager (SAM).

The Windows security model revolves around security identifiers (SIDs) and access control lists
(ACLs). Security identifiers are used to represent objects in the domain, which include (but are not
limited to) users, groups, and computers. SIDs are commonly written in ASCII form as hyphen-
separated fields, like this:

S-1-5-21-1638239387-7675610646-9254035128-1000

The part of the SID starting with the "S" and leading up to the rightmost hyphen identifies a domain.
The number after the rightmost hyphen is called a relative identifier (RID) and is a unique number
within the domain that identifies the user, group, computer, or other object. The RID is the analog of
a user ID (uid) or group ID (gid) on a Unix system or within an NIS domain.

Because domains centralize the management of account information, users are now able to use just
one login name/password combination. However, the downside of this setup is that if the domain
controller is unavailable, servers can no longer authenticate user requests. Therefore, Microsoft
developed the concept of multiple domain controllers that maintain duplicate copies of the domain's
SAM. For example, Windows NT domains utilize a primary domain controller (PDC) and one or more
backup domain controllers (BDCs). A server in a Windows domain can use the SAM of any PDC or
BDC to authenticate a user who attempts to access its resources and log on to the domain. If the
PDC fails or becomes inaccessible, its duties can be taken over by one of the BDCs. BDCs frequently
synchronize their SAM data with the PDC so that if the need arises, any one of them can immediately
begin performing domain-controller services without affecting the clients.

However, note that Windows NT BDCs have read-only copies of the SAM database; they can update
their data only by synchronizing with a PDC. In AD domains, all domain controllers (DCs) are
considered equal. In order to support legacy clients such as Windows NT, one AD DC is designated as
the PDC, but all DCs maintain a modifiable copy of the domain's authentication database. Changes on
one domain controller are propagated to other DCs via a multimaster replication protocol.

Domain trust relationships allow clients within one domain to access the resources within another
without having to possess a separate account in the second domain. The user's credentials are
passed from the client system in the first domain to the server in the second domain, which consults
a domain controller in its own domain. This DC then contacts a DC in the first (trusted) domain to
check whether the user is valid before instructing the server to grant access to the resource.

Samba 3.0 can perform the role of a Windows NT domain controller. It is possible to have a Samba
PDC and Samba BDCs in the same domain. Samba can even particpate in trust relationships with
other domains. However, at the current time of writing, you cannot mix Windows DCs and Samba
DCs in the same domain. This rule may change in a future release. Make sure to check the Samba
web site for the latest release and updates.

Samba can also function as a domain member server in either a Windows or Samba controlled
domain, meaning that it has a computer account in the DC's account database and is therefore
recognized as being part of the domain. A domain member server does not authenticate users
logging on to the domain, but still handles security functions (such as file permissions) for domain
users accessing its resources.

1.7. What's in Samba 3.0?

Samba 3.0 includes many features designed at better integration with Active Directory domains.
Additionally, Samba's implementation of a Windows NT domain controller has become richer,
although it is still missing a few features. Samba developers have also continued to improve
functionality introduced in earlier releases, such as printing support for Windows 2000/XP clients,
filesystem ACLs, and Winbind.

1.7.1. Windows NT Domain Controller Support

Samba 3.0 includes support for several newer security additions to the CIFS protocol, such as packet
integrity checks known as SMB signing, secure channel communication, and the NTLMv2
authentication algorithm. Thus, it is possible to have a Samba server support domain logons for a
network of Windows clients, including the most recent releases from Microsoft. This setup can result
in a very stable, high-performance, and more secure network; it also provides the benefit of not
having to purchase per-seat Windows Client Acccess Licenses (CALs) from Microsoft. The current
release also supports migration of user and group information from a Windows NT 4.0 domain to a
Samba domain, so that you are able to continue to upgrade your network without the costs of
purchasing Windows 2000 Server or newer in order to use Active Directory.

1.7.2. Active Directory Domain Member Servers

In addition to the NT4 domain mode security provided by Samba 2.x, 3.0 introduces a new ADS
domain mode security that allows a Samba host to join an Active Directory domain and authenticate
individual connection requests from clients using Kerberos tickets. The winbindd daemon also
supports obtaining user and group information via more effecient LDAP searches instead of Remote
Procedure Calls (RPC).

1.7.3. Local Nested Groups

Windows has always supported the concept of adding groups as members of other groups. Current
Samba releases also support this capability, by using Winbind to define a group that is local to the
server and can contain Windows domain groups. Upon receiving a request for the list of users in the
local group, Winbind expands the membership of any nested domain groups that it contains. This
feature can be useful, such as when you want to set the group ownership of a file that must be
accessible by multiple domain groups. You define on the Samba host a local group that contains all of
the appropriate domain groups. Of course, it is possible to perform an equivalent function if the
filesystem supports access control lists. However, local groups have the advantage of requiring you
to deal with only one group instead of many. More on Winbind's support for local groups is in Chapter
10.

1.7.4. Unicode and Internationalization

Unicode is the pervasive means of representing non-English character sets on Windows NT-based
computers. The older DOS codepage methods used by Windows 9x and Samba prior to 3.0 could
support extended character sets, but not in multiple combinations. You could support English and
Spanish clients, but not English, Spanish, and French. The UCS2 encoding represents each character
using 16 bits, providing more than enough combinations to handle more languages that any of us
have to manage on our network. Building Samba to include Unicode support is covered in Chapter 2.

1.7.5. User and Group Account Storage Plug-in Modules

Libraries knows as passdb modules allow an administrator to choose the persistent storage backend
for user and group information. Prior versions of Samba supported this feature in a limited fashion
and required the storage interfacefor example, a flat text file (smbpasswd) or an LDAP directory
serviceto be defined at compile time. Samba 3.0 supports multiple passdb backends, which can be
defined in its configuration file at runtime. This approach allows for easy migration from one storage
format to another and to have one Samba package that supports the needs of multiple installations.
Users and groups and how they are stored are discussed in Chapter 5.

1.7.6. Stackable Virtual File System (VFS) Modules

Samba's VFS layer allows programmers to write a plug-in that handles all of the disk I/O operations
for a particular share. Good examples of current VFS modules are the network recycle bin, virus
scanners, and filesystem snapshot tools. Samba 2.2 only allowed one plugin to be used on given file
share at any given time. Samba 3.0 allows multiple VFS modules to be chained together in series so
that, for example, you could log when a user deleted a file and move it to a trash can rather than
actually removing it. Chapter 6 will explore Samba's VFS.

1.7.7. User Privileges

Recent releases of Samba introduced the ability to grant certain rights, such as the ability to join
Windows clients to a Samba domain, to a nonroot user. Prior versions of Samba required the use of a
user account with a uid of 0 (that is, the superuser). Being able to delegate such security-sensitive
operations goes a long way when managing Samba domains with multiple administrators. Privileges
are discussed in the context of users and groups in Chapter 5.

1.7.8. Windows Automatic Driver Downloads

Samba 2.2 began support for the Windows Point and Print model. Samba 3.0 extends this support,
with the latest releases able to back up and restore print queues and drivers in bulk as well as
migrate printers from a Windows server to a Samba host using Microsoft's Print Migrator application.
Samba's printing support and the details of Point and Print are explained in Chapter 7.

1.7.9. But Wait, There's More

And of course, Samba developers have include numerous bug fixes, performance improvements, and
added support for newer CIFS protocol operations. There's really no reason to be running an older
version of Samba.

1.8. Future Research in Samba 4.0

Samba 4.0 is an ambitous research project, taken up by Samba developers around the time that
Samba 3.0.0 was released (in late 2003), to address a desire for newer features that were believed
to be extremely hard to achieve in the Samba 3.0 code base. Examples of these projects of these
items include:

Support for non-POSIX filesystems

Full NTFS semantics

Active Directory domain control support

At the time of writing, a proof-of-concept AD implementation has been completed, with the exception
of the directory replication protocol.

There has been a great deal of confusion about the relationship between Samba 3.0 and Samba 4.
Both source code repositories are part of the Samba project. Samba 3.0 is the current production
branch, and Samba 4 is the research branch, which is focused on new functionality that will be
integrated into production releases once it has matured.

The current question system administrators ask most often is "When will Samba 4 be released?" In
our opinion, it is helpful to view Samba 4 as a blueprint of what project leaders want Samba to be. Of
course, blueprints often require a prototype, so developers will release technical previews of the
Samba 4 branch from time to time as a way to expose designs to a wider audience. Some prototypes
succeed; others are thrown away. At some point, the production releases of Samba will look like the
working prototypes. Whether this occurs gradually or all at once is yet to be seen.

Pieces of Samba 4 have already been released as production quality services. For example, the
samba4wins project (http://enterprisesamba.org) provides a WINS server that supports the Microsoft
WINS replication protocol. Other pieces, such as Samba 4's memory management library, are
shipping in Samba 3.0 today. It's likely that Samba 4 in whole or in part will continue to coexist with
Samba 3.0 for several years to come. No one can accurately predict which release will contain the
combined features of Samba 3.0 and technology of Samba 4.

For the latest in development and release news, check the Samba news site
(http://news.samba.org), available mailing lists hosted at https://lists.samba.org, and community
topics at http://wiki.samba.org.

http://enterprisesamba.org
http://news.samba.org
http://wiki.samba.org

1.9. What Can Samba Do?

We'll wrap up by showing how Samba can currently help out and how it is limited. Table 1-7
summarizes the roles that Samba can and cannot play in a Windows NT or Active Directory domain
or a Windows workgroup. The Windows domain protocols are proprietary and have not been
documented by Microsoft, and therefore must be analyzed by developers before Samba can support
them.

Table 1-7. Samba roles (as of version 3.0.22)

Role Can perform?

File server Yes

Printer server Yes

Microsoft DFS server Yes

Windows NT 4 domain controller Yes

Interact with Windows DCs in the same domain No

Active Directory DC No

Windows 95/98/Me authentication Yes

Windows NT/2000/XP/2003 authentication Yes

Local master browser Yes

Domain master browser Yes

Primary WINS server Yes

Secondary WINS server No

1.10. An Overview of the Samba Distribution

As mentioned earlier, Samba actually contains several programs that serve different but related
purposes. Here we introduce each of them briefly and describe how they work together. These
programs are documented fully in Appendix A.

The majority of the programs that come with Samba center on its three major daemons and one
management service application. Let's take a high-level look at the responsibilities of each:

nmbd

The nmbd daemon is a simple name server that supplies WINS functionality. This daemon
listens for name-server requests and provides the appropriate IP addresses when called upon.
It also provides browse lists for the My Network Places application and participates in browsing
elections.

smbd

The smbd daemon manages the shared resources between the Samba server and its clients. It
provides file and print services to SMB/CIFS clients across one or more networks and handles
all notifications between the Samba server and the network clients. In addition, it is responsible
for user authentication, resource locking, and data sharing through the SMB/CIFS protocol.

swat

The Samba Web Administration Tool (SWAT) is a HTTP-based application for managing Samba.
In essence, SWAT offers a graphical interface to functions performed by the included
command-line tools.

winbindd

This daemon is used along with the name service switch to get information on users and
groups from a Windows domain controller, and allows Samba to authenticate users from a
Windows domain.

The Samba distribution also comes with a small set of Unix command-line tools:

findsmb

A program that searches the local network for computers that respond to SMB protocol and

prints information on them. It is written in Perl and is a good example of how scripts can utilize
Samba command-line tools to extend functionality.

net

This new program distributed with Samba 3.0 can be used to perform remote administration of
servers. It also includes some local Samba administration functions.

nmblookup

This program provides NBT name lookups to translate NetBIOS names to network addresses,
and vice versa.

ntlm_auth

This tool provides a command-line interface to Winbind's NTLM authentication interface. This
tool allows third-party applications such as pppd and the squid web proxy server to support
NTLM authentication by leveraging Samba's existing functionality.

pdbedit

This tool is the replacement program for many of the functions performed by the smbpasswd
utility in previous releases. It is the command-line management tool for user account
information stored in a passdb backend.

rpcclient

This program can be used to run MS-RPC functions on Windows clients. Although it can be
useful, it is primarily a developer testing tool, and so has a tendency to change frequently. The
net command is promoted as the stable, administrative tool for performing similar functions.

smbcacls

This program is used to set or show ACLs on Windows NT filesystems.

smbcquotas

This program is used to set or show filesystem quotas on Windows servers.

smbclient

This ftp-like Unix client connects to SMB shares and operates on them.

smbcontrol

This simple administrative utility sends messages to nmbd or smbd.

smbmnt, smbmount, smbumount, mount.cifs, umount.cifs

These helper utilities for the Linux smbfs and cifs filesystems allow Linux systems to access
shares offered over SMB/CIFS.

smbpasswd

This program allows an administrator to change the passwords used by Samba. It also provides
a means for a user to remotely change his password on a SMB/CIFS server.

smbspool

This print-spooling program is used by the Common Unix Printing System (CUPS) to send files
to remote printers that are shared on the SMB network.

smbstatus

This program reports the current network connections to the shares on a Samba server.

smbtar

This program, similar to the Unix tar command, backs up data in SMB shares. This is another
example of a script written around an existing Samba command-line utility.

smbtree

This program is similar to the findsmb Perl script, but was written using the libsmbclient
library.

smbget

This utility is the SMB equivalent of the GNU wget utility for retreiving files.

tdbbackup, tdbdump, tdbtool

These tools manipulate Samba's trivial database (tdb) files.

testparm

This simple program checks the Samba configuration file.

wbinfo

This utility queries the winbindd daemon.

Each major release of Samba goes through an exposure test before it's announced and is
quickly updated afterward if problems or unwanted side effects are found. The latest stable
distribution as of this writing is Samba 3.0.22, and this book focuses mainly on the functionality
supported in this release, as opposed to older versions of Samba.

1.11. How Can I Get Samba?

Source and binary distributions of Samba are available from mirror sites across the Internet. The
primary web site for Samba is located at http://www.samba.org. From there, you can select a mirror
site that is geographically near you. Most Linux and many Unix vendors provide binary packages.
These can be more convenient to install and maintain than the Samba team's source or binary
packages, due to the vendor's efforts to supply a package that matches its specific products. The
next chapter focuses on all the details necessary to get Samba up and running on your server.

http://www.samba.org

Chapter 2. Installing Samba on a Unix
System
It would be unwise to purchase a car or a house on appearance alone or from a description in a
brochure. It is similarly unwise to talk about a piece of software without hands-on experience.
Systems administration is a hands-on job. In this chapter, we are dedicated to helping you test drive
your own server so that you can see for yourself how Samba behaves. Because open source projects
(and software packages in general) evolve over time, the remainder of this book is based on the
current production Samba release at the time of writing, version 3.0.22. We start with the necessary
steps to install Samba both from the source release available on the official Samba web site and from
vendor or community packages. By the end of the chapter, you will have a working server with a
simple disk share.

2.1. Binary Packages

Samba is so popular with Unix/Linux administrators that many vendors include prepackaged versions
in their operating system distributions. There are advantages to using software packages, one of
which is that you do not have to bother with the details of compiling the software itself. The main
drawback is that you are dependent on the options the vendor chose when building Samba. It is also
likely that the server will be slightly behind the current production Samba release, because vendors
tend to upgrade packages only when there is a strong reason, such as a widely experienced bug or
security issue. On the other hand, you can be fairly sure that a bundled version has been installed
properly, and perhaps it will take only a few simple modifications to your smb.conf file for you to be
up and running. Samba is mature enough that you probably don't need the latest release to meet
your basic needs, so you might be perfectly happy running a bundled version.

If you choose this option, be aware that your Samba files, including the very important smb.conf, will
likely be stored somewhere other than the default locations used by Samba when it has been built
from source. For example, with most Linux distributions, smb.conf and some other Samba-related
files are in the /etc/samba directory. The default location when building from source is
/usr/local/samba/lib.

If Samba is already installed on your system, you can check which version you have by using the
command:

$ smbd -V
Version 3.0.12

If you receive a message back similar to "command not found," either Samba is not installed or smbd
is not in your shell's search path. In the latter case, use the find command to locate the smbd
executable.

$ find / -name smbd -print
/opt/samba/sbin/smbd

You might also be able to use a system-specific tool to query a software-package maintenance utility
for the location of the Samba programs. On RPM-based systems such as Red Hat Enterprise Linux
and Novell's SUSE Linux, you can use the rpm command to query the installed packages for Samba.
In this example, Samba has been split between multiple packages.

$ rpm -qa | grep samba
samba-3.0.12-5

samba-client-3.0.12-5
samba-common-3.0.12-5

Other platforms will most likely have similar toolsets for querying installed software packages. For
example, Solaris includes the pkginfo application and Debian Linux provides dpkg . If you are unsure
which tools are available, check your server's operating system documentation.

It is possible to determine certain information about Samba's build using the -b option. This option
instructs smbd to print its list of compile-time values for items such as directory search paths. The -b
option can produce several screens of data. So unless you can read extremely fast, it is best to pipe
the output to a file, page through it with a pager utility such as less or more, or simply grep the
information you need. The following example shows that smbd expects its configuration file to be
found in the /etc/samba directory.

$ smbd -b | grep CONFIGFILE
 CONFIGFILE: /etc/samba/smb.conf

Even if a vendor does not include Samba with the operating system, precompiled binary packages
are available for a large number of platforms. These packages are often maintained by members of
the Samba community for the purpose of saving you a fair amount of time and trouble. The best
place to begin when looking for installable Samba packages is
http://www.samba.org/samba/ftp/Binary_Packages. Here you will find either the packages
themselves or links to sites that do provide them.

When using a package from a third party, it is vital to ensure that the correct libraries required by the
executables are also installed. If your system does not already have the required version of a library,
you might have to install a new version.

Package managers such as RPM provide dependencies checks to ensure that all of the necessary
libraries for a piece of software are available before the software can be installed. If your software
packaging system does not support this feature, many systems with shared libraries do come with a
tool called ldd. This tool tells you which libraries a specific binary requires and which libraries on the
system satisfy that requirement. For example, checking the smbd program on our test machine gave
us:

$ ldd /usr/local/samba/sbin/smbd
 linux-gate.so.1 => (0xffffe000)
 libldap-2.2.so.7 => /usr/lib/libldap-2.2.so.7 (0x40019000)
 liblber-2.2.so.7 => /usr/lib/liblber-2.2.so.7 (0x4004b000)
 libgssapi_krb5.so.2 => /usr/lib/libgssapi_krb5.so.2 (0x40058000)
 libkrb5.so.3 => /usr/lib/libkrb5.so.3 (0x4006f000)
 libk5crypto.so.3 => /usr/lib/libk5crypto.so.3 (0x400e2000)
 libcom_err.so.2 => /lib/libcom_err.so.2 (0x40120000)
 libcups.so.2 => /usr/lib/libcups.so.2 (0x40124000)
 libssl.so.0.9.7 => /usr/lib/libssl.so.0.9.7 (0x40141000)
 libcrypto.so.0.9.7 => /usr/lib/libcrypto.so.0.9.7 (0x40171000)

http://www.samba.org/samba/ftp/Binary_Packages

 libnsl.so.1 => /lib/libnsl.so.1 (0x40264000)
 libcrypt.so.1 => /lib/libcrypt.so.1 (0x40279000)
 libpam.so.0 => /lib/libpam.so.0 (0x402ab000)
 libresolv.so.2 => /lib/libresolv.so.2 (0x402b4000)
 libdl.so.2 => /lib/libdl.so.2 (0x402c7000)
libpopt.so.0 => not found
 libc.so.6 => /lib/tls/libc.so.6 (0x402d3000)
 libsasl2.so.2 => /usr/lib/libsasl2.so.2 (0x403ec000)
 libkrb5support.so.0 => /usr/lib/libkrb5support.so.0 (0x40401000)
 /lib/ld-linux.so.2 (0x40000000)

If there are any incompatible (or missing) libraries at this stage, the distribution-specific
documentation should highlight them. In this example, the popt library cannot be found. This type of
problem usually occurs for one of two reasons: either the library is not present on the system or the
library is present but is stored in a location outside the runtime library search path. The solution to
the first problem is simple: install the missing library. The solution to the second issue is platform-
dependent. For example, on Linux, you can edit /etc/ld.so.conf to add directories to the search path
for the run time linker, and on Solaris, you can use the crle tool to perform a similar function.

2.2. Compiling from Source

A typical Samba installation takes about an hour to complete, including downloading the source files
and compiling them, setting up the configuration files, and testing the server. Conventionally
installing from source is called the ./configure && make && make install process. Here is a complete
list of the individual steps:

Download the source or binary files.1.

Read the installation documentation.2.

Run the autoconf script that generates the Makefile appropriate for your system.3.

Compile the server and utility programs.4.

Install the server files.5.

Create a Samba configuration file.6.

Test the configuration file.7.

Start the Samba daemons.8.

Test the Samba daemons.9.

2.2.1. Downloading the Source Distribution

If you would like to download the latest version of the Samba software, the primary web site is
http://www.samba.org . Once you connect to this page, you should see a drop-down list of world-
wide mirrors. Choose a site that is closest to your own geographic location. The link to the download
area is located on the lefthand tool bar that appears on every page on the Samba web site.

The Samba site includes online documentation, links to mailing list archives, and the latest Samba
news,[*] as well as source and binary distributions of Samba. Unless you specifically want an older
version of the Samba server or are going to install a binary distribution, download the latest source
distribution from the closest mirror site. This distribution is always named samba-latest.tar.gz , which
for the 3.0.22 release is a 16 MB file.

[*] A recent addition to the Samba web site is a news portal (http://news.samba.org). This site is a collection of all things Samba,

from release announcements to advocacy stories and new developer announcements.

It is also a good idea to verify the digital signature on the uncompressed tarball to ensure that the
version you are downloading is one actually released by the Samba Team. To do this you will need
either GnuPG (http://www.gnupg.org) or some other pgp- compatible utility installed on a system.
You can verify the tarball's signature on any machine. It does not have to be done on the server used

http://www.samba.org

for compiling Samba.

First, download the current Samba public GPG key. Look for a file named samba-pubkey.asc residing
in the same directory as the Samba source release tarball. This key should be imported into your pgp
keyring by executing:

$ gpg --import samba-pubkey.asc
gpg: key F17F9772: public key "Samba Distribution Verification Key
<samba-bugs@samba.org>" imported
gpg: Total number processed: 1
gpg: imported: 1
...

The key ID (F17F9772) will change from year to year as the old key expires and a new one is issued
by the Samba developers. The latest key will always be available at
http://www.samba.org/samba/ftp/samba-pubkey.asc .

Now you can verify the integrity of the source tarball by uncompressing it and asking gpg to verify
the signature file (samba-latest.tar.asc).

$ gunzip samba-latest.tar.gz
$ gpg --verify samba-latest.tar.asc
gpg: Signature made Thu 14 Apr 2005 01:23:58 AM CDT using DSA key ID F17F9772
gpg: Good signature from "Samba Distribution Verification Key <samba-bugs@samba.org>"

Now you are ready to extract the files from the tar archive. While the following tar command runs, it
prints out a list of the files it installs:

$ tar xvf samba-latest.tar

The archive creates a single directory named samba- VERSION (where VERSION is the current release

number, such as 3.0.22). This directory contains all of the source files, documentation, packaging
files, and examples included in the distribution.

2.2.2. Read the Documentation

http://www.samba.org/samba/ftp/samba-pubkey.asc

In the top-level directory that you just created, a file named WHATSNEW.txt contains the latest news
about the release. If you are upgrading, you can find important information in this file about bug fixes
or configuration parameters that have been added or are no longer supported.

With both source and binary packages, you'll find a large number of documents in the docs directory,
in a variety of formats. Samba documentation has improved substancially over the years. There are
currently three full-length books, one of which is the one you are currently reading, included in this
directory. You'll have plenty of time to browse this collection while Samba is compiling.

2.2.3. Configuring Samba

The source distribution of Samba 3.0 doesn't initially have a makefile. Instead, one is generated
through a GNU Autoconf script, which is located in the samba-3.0.x/source/ directory. The configure
script takes care of the machine-specific issues of building Samba, such as which libraries are
needed, what's the maximum value that can be stored in a integer, and how to automatically
determine the available network interfaces on a system. The configure script also allows you to
enable or disable specific features in Samba (more on this task shortly).

When configure runs, it prints messages telling what it is doing, and error messages might be mixed
in. To make sure that you see those very important error messages, it is helpful to run configure with
its standard output passed through some filter to capture the output and keep it from scrolling out of
sight. For example:

$./configure | more

Although executing configure with no options generates a working set of binaries, you might want to
add support for extra features by passing options on the command line. Each option enables or
disables various features. You typically enable a feature by specifying the --with- feature option,
which causes the feature to be compiled and installed. Likewise, if you specify a --without- feature

option, the feature will be disabled. Note that options to the configure script start with two hyphens.

The following command instructs configure to test for Pluggable Authentication Module (PAM) support
on the build host:

$./configure --with-pam

We'll discuss Samba PAM integration when we examine users and passwords in Chapter 5 .

If you would like a complete list of options, type the following:

$./configure --help

The full list of configuration options is reproduced in Appendix C . Here is a brief list of some of the

most popular features, which are covered later in this book:

--with-acl-support

Include support for integrating with filesystem POSIX ACLs. Samba acts as a thin layer of glue
for many features by mapping what a Windows client requests to what a Unix/Linux server can
provide. Samba does not implement filesystem ACLs internally, but instead provides an
interface to the ACL implementation provided by the host's filesystem. ACLs will be discussed in
more detail in Chapter 6 .

--with-ads

Include support for integration with Active Directory services using the Kerberos 5 and LDAP
protocols. This is one of the major advances in Samba 3.0, but it also introduces dependencies
on third-party software components. Compiling Samba to include ADS support is covered in
more detail later in this chapter, while the steps for configuring Samba as a domain member
server will be presented in Chapter 10 .

--enable-cups

Require that Samba enable its support for the CUPS. If the necessary CUPS development files
are not found, the configure script will fail. See Chapter 7 for more information on integrating
Samba and CUPS.

--with-syslog

Integrate Samba's debug logs with the system logs via the syslogd service. Logging and syslog
are covered in Chapter 4 .

--with-smbmount

Include the userspace tools for managing the smbfs filesystem on Linux clients. Be aware that
smbfs is different from the newer CIFS filesystem included in the Linux 2.6 kernel. Both Linux
filesystem modules are discussed in Chapter 11 .

--enable-debug

Instruct the compiler to enable debug symbols in the resulting binaries for use by a symbolic
debugger such as gdb . Troubleshooting and debugging Samba are covered in Chapter 12 .

Each option is set to a default that is appropriate for most systems, and none of the features are
essential to basic Samba installations. However, you may want to include them in your configuration
(as we will in our example) at least to be able to try out the options in later chapters.

In addition, Table 2-1 shows some other parameters that you can give the configure script if you wish
to store parts of the Samba distribution in different places, perhaps to make use of multiple disks or
partitions. Note that the defaults sometimes refer to a prefix specified earlier in the table. In other

words, if you set the --prefix option to /opt/samba , the default bindir becomes /opt/samb/bin .

--prefix=directory

Install architecture-independent files at the base directory specified.

/usr/local/samba

--bindir=directory

Install user executables in the directory specified.

${prefix}/bin

--sbindir= directory

Install administrator executables in the directory specified.

${prefix}/sbin

--datadir= directory

Install read-only architecture-independent data in the directory specified.

${prefix}/share

--libdir= directory

Install program libraries in the directory specified.

${prefix}/lib

--localstatedir=directory

Runtime state information.

${prefix}/var

--mandir= directory

Install manual pages in the directory specified.

${prefix}/man

--with-privatedir=directory

Directory to use for Samba's private files, such as smbpasswd and secrets.tdb

${prefix}/private

--with-piddir=directory

Directory that Samba daemons will use for storing the main parent pid files.

${localstatedir}/var/locks

--with-configdir=directory

Directory that Samba daemons will use for locating configuration files.

${libdir}

--with-lockdir=directory

Directory that Samba will use for storing database and runtime state files.

${localstatedir}/var/locks

--with-logfilebase=directory

Directory that Samba daemons will use for storing logfiles.

${localstatedir}

--with-fhs

Use a directory structure below ${prefix} that adheres to the Linux Filesystem Hierarchy Standard.

Table 2-1. Additional configure options

Option Meaning Default

Here is one example of a possible directory layout when building Samba from scratch:

$./configure --prefix=/opt/samba \
 --localstatedir=/var/lib/samba \
 --with-piddir=/var/run \
 --with-logfilebase=/var/log/samba \
 --with-privatedir=/etc/samba/private \
 --with-configdir=/etc/samba \
 --with-lockdir=/var/lib/samba

This layout results in the following set of directories after installing the binaries and files created from
the compilation process:

/opt/samba

The base installation directory for Samba client and server binaries, manpages and other
documentation, libraries and header files

/etc/samba

Samba configuration files

/etc/samba/private

User accounts and other security-sensitive data

/var/log/samba

Logfiles created by Samba daemons

/var/lib/samba

Samba's repository of Trivial Database (tdb) files used to maintain configuration and state
information, such as open file locks held by clients and printer attributes

/var/run

Pid files created by smbd , nmbd , and winbindd

This type of installation makes it easy to share a build via NFS while storing the local configuration
information on a local filesystem. Feel free to add on any additional feature flags (e.g., --with-acl-
support) that you think would be useful.

Samba tdb files must always reside on a filesystem that provides locking and a coherent mmap()
implementation. For most systems, this rule implies that you must use a local native filesystem.

Here is a sample execution of the configure script, which creates a Samba 3.0.22 makefile for the
Linux platform:

$ cd samba-3.0.22/source/
$./configure --prefix=/usr/samba --with-smbmount \
 --with-syslog 2>&1 | more
SAMBA VERSION: 3.0.22
checking for gcc... gcc
checking for C compiler default output file name... a.out
checking whether the C compiler works... yes
checking whether we are cross compiling... no
checking for suffix of executables...
checking for suffix of object files... o

checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
...(content omitted)...
Using libraries:
 LIBS = -lcrypt -lresolv -lnsl -ldl
 KRB5_LIBS = -lgssapi_krb5 -lkrb5 -lk5crypto -lcom_err
 LDAP_LIBS = -lldap -llber
 AUTH_LIBS = -lcrypt

In general, any message from configure that doesn't begin with the words checking or creating is an
error. If there was an error during configuration, more detailed information about it can be found in
the config.log file, which is written to the local directory by the configure script. If the configuration
works, you'll see a checking configure summary message in the output on the screen followed by a
yes message and four or five file-creation messages:

checking configure summary... yes
configure: creating ./config.status
config.status: creating include/stamp-h
config.status: creating Makefile
config.status: creating script/findsmb
config.status: creating smbadduser
config.status: creating script/gen-8bit-gap.sh
config.status: creating include/config.h

So far, so good.

2.2.4. Kerberos and LDAP

In order to integrate with Active Directory using the Kerberos and LDAP protocols, Samba relies upon
third-party libraries such as those provided by MIT, Heimdal, and OpenLDAP. However, the
introduction of these build dependencies can complicate the previous simple ./configure && make &&
make install steps.

Microsoft introduced a new Kerberos encryption type when initially creating Active Directory. The
reason for this new algorithm (RC4-HMAC-MD5) was to enable smooth upgrades from Windows NT
4.0 domains by using existing account passwords as the basis for generating the new long-term
secrets keys in the AD Kerberos realm. However, earlier versions of both the MIT and Heimdal
Kerberos libraries did not support this new encryption type (type 23) and were forced to rely on DES
keys.

Things have since improved, and both the major open source Kerberos players have RC4-HMAC
(sometimes called ARCFOUR-HMAC) support now. Samba's configure script will attempt to locate a
working set of Kerberos client libraries. Be aware that just because Kerberos is included with the
operating system (e.g., Solaris) does not necessarily mean it is a usable installation. The script will
ignore any unusable Kerberos libraries. Thus, unless you are paying attention, it is quite possible to
end up with a set of binaries that don't allow you to run the Samba's newer ADS security mode.

To decide whether you have to install a Kerberos client distribution, consider the following to be the
bare minimum for interoperating with Active Directory:

MIT Kerberos 1.3 (http://web.mit.edu/kerberos/www)

Heimdal Kerberos 0.6.1 (http://www.pdc.kth.se/heimdal)

It is possible to use releases older than these, but things get slightly more complicated when it comes
time to configure Samba (as you will see in Chapter 10). A good source of information (compilation,
installation, and management) covering both Kerberos distributions as well as Active Directory is
Kerberos: The Definitive Guide , by Jason Garman (O'Reilly).

Once the Kerberos piece is set, we have to deal with the LDAP dependency as well. Currently, Samba
supports only the OpenLDAP distribution for AD integration. Any OpenLDAP 2.x release should work,
but experience has shown that the latest stable release is generally best. Note that Samba requires
only the client libraries, so there is no need to compile or install the OpenLDAP server or server
related tools. More information on OpenLDAP can be found at http://www.openldap.org or in LDAP
System Administration , by Gerald Carter (O'Reilly).

One final note is that when using third-party libraries such as the Kerberos or LDAP ones mentioned
here, you should also ensure that once installed, the libraries can be located by dependent
applications such as Samba. There are two primary means of achieving this.

One method is to add the directory (e.g., /opt/openldap/lib) to the global library search path. On
some platforms, this can be done at run time by appending the new directory to the LD_LIBRARY_PATH
search list.

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/openldap/lib

Other, more permanent solutions, differ from platform to platform. For example, Linux's
/etc/ld.so.conf file and Solaris' crle tool have already been mentioned.

The other solution is to encode the library search path in the binary itself during the compilation
process, usually done by instructing the compiler to pass additional flags onto the linker. The
following script shows how this would be done if Heimdal Kerberos were installed in /opt/heimdal and
OpenLDAP were installed in /opt/openldap :

#!/bin/sh

CC="gcc"
CFLAGS=""
CPPFLAGS=""
LDFLAGS=""

DIRPATH="/opt/heimdal /opt/openldap"
for dir in $DIRPATH ; do
 CPPFLAGS="$CPPFLAGS -I$dir/include"
 CFLAGS="$CFLAGS -Wl,-rpath,$dir/lib"

 LDFLAGS="$LDFLAGS -L$dir/lib"
done

export CPPFLAGS CFLAGS LDFLAGS CC

The resulting $CPPFLAGS variable (used by the C preprocessor) would be:

-I/opt/heimdal/include -I/opt/openldap/include

The $CFLAGS variable (used by the compiler) would appear as:

-Wl,-rpath,/opt/heimdal/lib -Wl,-rpath,/opt/openldap/lib

and the linker flags ($LDFLAGS) would be:

-L/opt/heimdal/lib -L/opt/openldap/lib

Other compilers and linkers besides gcc (e.g., the Sun C compiler), may use the -R dir flag for
encoding library search paths rather than -Wl,-rpath, dir . Check the compiler documention to be

sure.

Once these variables are set, we can run configure followed by make and we should end up with an
AD-enabled version of Samba. If you want to verify that the resulting smbd binary does in fact
include AD support, use the -b flag again and this time grep for WITH_ADS :

$ smbd -b | grep ADS
 WITH_ADS

2.2.5. Unicode and the iconv Library

Internally, Samba uses Unicode when communicating with Unicode-aware clients such as Windows
NT and later clients. There are times when these Unicode strings must be converted to a locale
encoding (a non-Unicode collection of language, country, and cultural information), such as when
writing a filename to disk or displaying a username. When possible, Samba utilizes the GNU iconv
library, available from http://www.gnu.org/software/libiconv , to handle these translations.

Some Unix variants, such as FreeBSD and Linux, come with a suitable iconv library installed. But

some variantsSolaris being the most notabledo not have sufficient support in the included iconv
implementation for Samba's purposes. There are two codepages that can be handled independently
of iconv : the European CP850 and CP437 character sets. Therefore, these character sets work on
systems that lack the necessary iconv .

However, if your server will be supporting characters outside the standard English ASCII character
set, it is best to verify that your server has a working iconv installation.

2.3. Compiling and Installing Samba

At this point you should be ready to build the Samba executables. Compiling is even easier than
configuration: in the source directory, type make on the command line. The make utility will produce
a stream of explanatory and success messages, beginning with:

Using FLAGS = -O -Iinclude ...

This build includes all the mentioned Samba client and server binaries. If you encounter a problem
when compiling, first check the Samba documentation to see whether it is easily fixable. Another
possibility is to search or post to the Samba mailing lists, links to which are given at the end of
Chapter 12 and on the Samba home page. Most compilation issues are system-specific and almost
always easy to overcome.

Now that the files have been compiled, you can install them in the directories you identified. Make
sure to change to the root user before running the following command:

$ make install

If you configured Samba to use the default locations for files, the new files will be installed in the
directories listed in Table 2-2.

Table 2-2. Samba installation directories

Directory Description

/usr/local/samba Main tree

/usr/local/samba/bin Client binaries and administartive tools

/usr/local/samba/sbin Server binaries

/usr/local/samba/lib smb.conf, lmhosts, configuration files, and so on

/usr/local/samba/man Samba documentation

/usr/local/samba/private Samba-encrypted password file

/usr/local/samba/swat SWAT files

/usr/local/samba/var Samba logfiles, lock files, tdb files, browse list info, shared memory files,
process ID files

The remainder of the book assumes a default install location of /usr/local/samba. Beware that this
can vary from system to system. Many vendors install Samba either to /opt or to /usr by default. If
you are using a prepackaged version of Samba or have inherited a Samba server from a past
administrator, be sure that you find out where the various tools, daemons, and configuration data
were installed.

If you happen to be upgrading into the same directory tree as a previous Samba installation, the
preexisting client tools and server binaries are saved with the extension .old, and you can go back to
that previous version with the command make revert. After issuing make install, you should copy
the .old files (if they exist) to a new location or name. Otherwise, the next time you install Samba (or
even run make install a second time), the original .old will be overwritten without warning and you
could lose your earlier version.

Congratulations! You now have Samba on your system!

2.3.1. Upgrading Your Installation

Eventually a new version of Samba will be released, and you will want to upgrade. Just repeat the
same steps you used to install your current version. Download the source distribution from the
Samba web site, unpack it, and then run the ./configure, make, and make install commands as
before. If you've forgotten which options you used with the configure script, either take a look at the
source/config.status file in your previous version's source distribution or examine the output of smbd
-b to determine which features and directories were used. The config.status file is similar to a cache
file. Its first few lines will show the options used the last time configure was run.

When upgrading, it is a good idea to back up a few important files in case something goes wrong.
Samba developers support upgrades of Samba databases from one version to the next. However,
downgrading is not supported. So keep a copy of the files listed in Table 2-3.[*]

[*] The list of tdb files might change in future releases, so be sure to check the WHATSNEW.txt file for updates.

Table 2-3. Important Samba configuration files

Filename Description

${configdir}/smb.conf Main configuration file.

${privatedir}/* This directory contains sensitive data about such things as user
passwords and important state information, such as the local
machine security identifier (SID).

${lockdir}/nt*tdb These database files contain information about printers, queues,
and installed print drivers on the system.

${lockdir}/share_info.tdb Contains the security descriptors assigned to file shares.

${lockdir}/group_mapping.tdb Contains the table of Windows groups SID to Unix group IDs.

Filename Description

${lockdir}/account_policy.tdb Local account policy data, such as password expiration time and
account lockout settings.

${lockdir}/winbindd_idmap.tdb Maintains the mappings between Windows users and groups and
the allocated Unix uids and gids. Important only if you are running
the winbindd daemon.

Table 2-4 gives a brief description of the remaining tdb files. These files either maintain runtime state
information, and are therefore recreated by the Samba daemons on startup, or store cache
information that can be rebuilt as necessary.

Table 2-4. Samba's volatile tdb and datafiles

Filename Description

${lockdir}/brlock.tdb Maintains information about open byte range file locks.

${lockdir}/locking.tdb Contains data about open files, granted oplocks, and share
mode entries on files.

${lockdir}/deferred_open.tdb Maintains data necessary to implement Samba deferred file
open semantics in conjunction with file locks.

${lockdir}/sessionid.tdb Stores the list of active CIFS session UIDs.

${lockdir}/connections.tdb Information regarding open share connections.

${lockdir}/printing/*tdb Caches the queue listing of each available printer in smb.conf.

${lockdir}/permon/*tdb Performance counters (if configured) to be returned to clients
querying the HKPD registry hive.

${lockdir}/eventlog/*tdb Eventlogs (if configured).

${lockdir}/gencache.tdb Generic caching database used for such things as failed name
resolution.

${lockdir}/login_cache.tdb Cache of the failed login attempts used to enforce the password
lockout policy setting.

${lockdir}/netsamlogon_cache.tdb Cache of user and group information obtained in replies from
domain controllers when authenticating via NTLM.

${lockdir}/registry.tdb Implementation of the Windows registry for Samba servers.
Currently, the file is rebuilt at startup and contains no sensitive
or critical data.

${lockdir}/unexpected.tdb List of unhandled packets returned from Windows clients on
port 137 or 138.

${lockdir}/winbindd_cache.tdb Cache file used by the winbindd daemon to improve
performance when handling requests such as enumerating
domain users and groups and mapping names to Windows sids.

${lockdir}/account_policy.tdb Local account policy data, such as password expiration time and
account lockout settings.

${lockdir}/winbindd_idmap.tdb Maintains the mappings between Windows users and groups and
the allocated Unix uids and gids. Important only if you are running
the winbindd daemon.

Table 2-4 gives a brief description of the remaining tdb files. These files either maintain runtime state
information, and are therefore recreated by the Samba daemons on startup, or store cache
information that can be rebuilt as necessary.

Table 2-4. Samba's volatile tdb and datafiles

Filename Description

${lockdir}/brlock.tdb Maintains information about open byte range file locks.

${lockdir}/locking.tdb Contains data about open files, granted oplocks, and share
mode entries on files.

${lockdir}/deferred_open.tdb Maintains data necessary to implement Samba deferred file
open semantics in conjunction with file locks.

${lockdir}/sessionid.tdb Stores the list of active CIFS session UIDs.

${lockdir}/connections.tdb Information regarding open share connections.

${lockdir}/printing/*tdb Caches the queue listing of each available printer in smb.conf.

${lockdir}/permon/*tdb Performance counters (if configured) to be returned to clients
querying the HKPD registry hive.

${lockdir}/eventlog/*tdb Eventlogs (if configured).

${lockdir}/gencache.tdb Generic caching database used for such things as failed name
resolution.

${lockdir}/login_cache.tdb Cache of the failed login attempts used to enforce the password
lockout policy setting.

${lockdir}/netsamlogon_cache.tdb Cache of user and group information obtained in replies from
domain controllers when authenticating via NTLM.

${lockdir}/registry.tdb Implementation of the Windows registry for Samba servers.
Currently, the file is rebuilt at startup and contains no sensitive
or critical data.

${lockdir}/unexpected.tdb List of unhandled packets returned from Windows clients on
port 137 or 138.

Filename Description

${lockdir}/winbindd_cache.tdb Cache file used by the winbindd daemon to improve
performance when handling requests such as enumerating
domain users and groups and mapping names to Windows sids.

${lockdir}/browse.dat State information maintained by nmbd in relation to network
browsing elections.

${lockdir}/wins.dat

${lockdir}/wins.tdb

Contains the most recent dump of nmbd's internal WINS
database. This file is applicable only when the wins support
parameter has been enabled in smb.conf.

2.3.2. Reconfiguring Samba

If you have already compiled Samba and wish to recompile the same source code with different
configure options, run the following command in the source directory before rerunning the configure
script:

$ make distclean

This ensures that you are starting with a clean slate and that your previous configure command does
not leave any files laying around that can affect your new build. From here, you can rerun ./configure
and then make and make install.

2.3.3. Setting Search Paths

You will probably want to run commands included in the Samba distribution without having to specify
their full directory paths. For that to work, the directory in which the Samba executables are located,
/usr/local/samba/{bin,sbin} by default, must be added to your shell's PATH environment variable.
This environment variable is usually set in one or more of the shell's startup files, which in the case of
bash are /etc/profile (systemwide) and the .profile, .bash_profile, and .bashrc files in each user's
home directory.

To be able to read the Samba manual pages using the man command, the directory where Samba's
manual pages reside, /usr/local/samba/man by default, must be in your MANPATH environment
variable. On SUSE Linux, this can be accomplished by adding the following two lines to
/etc/manpath.config:

MANPATH /usr/local/samba/man
MANPATH_MAP /usr/local/samba/bin /usr/local/samba/man

Other systems might just require a line such as the following in your shell's initialization file:

${lockdir}/winbindd_cache.tdb Cache file used by the winbindd daemon to improve
performance when handling requests such as enumerating
domain users and groups and mapping names to Windows sids.

${lockdir}/browse.dat State information maintained by nmbd in relation to network
browsing elections.

${lockdir}/wins.dat

${lockdir}/wins.tdb

Contains the most recent dump of nmbd's internal WINS
database. This file is applicable only when the wins support
parameter has been enabled in smb.conf.

2.3.2. Reconfiguring Samba

If you have already compiled Samba and wish to recompile the same source code with different
configure options, run the following command in the source directory before rerunning the configure
script:

$ make distclean

This ensures that you are starting with a clean slate and that your previous configure command does
not leave any files laying around that can affect your new build. From here, you can rerun ./configure
and then make and make install.

2.3.3. Setting Search Paths

You will probably want to run commands included in the Samba distribution without having to specify
their full directory paths. For that to work, the directory in which the Samba executables are located,
/usr/local/samba/{bin,sbin} by default, must be added to your shell's PATH environment variable.
This environment variable is usually set in one or more of the shell's startup files, which in the case of
bash are /etc/profile (systemwide) and the .profile, .bash_profile, and .bashrc files in each user's
home directory.

To be able to read the Samba manual pages using the man command, the directory where Samba's
manual pages reside, /usr/local/samba/man by default, must be in your MANPATH environment
variable. On SUSE Linux, this can be accomplished by adding the following two lines to
/etc/manpath.config:

MANPATH /usr/local/samba/man
MANPATH_MAP /usr/local/samba/bin /usr/local/samba/man

Other systems might just require a line such as the following in your shell's initialization file:

export MANPATH=$MANPATH:/usr/local/samba/man

2.4. Enabling the Samba Web Administration Tool (SWAT)

The Samba Web Administration Tool (SWAT) provides a forms-based editor in your web browser for
creating and modifying Samba's configuration file. It runs as a daemon under inetd or xinetd. For
SWAT to work, entries must be added for it in the /etc/services and /etc/inetd.conf (or
/etc/xinetd.d/swat) configuration files. To add the entries, follow these three steps:

Check your /etc/services file, and add the following line to the end if a line like it does not
already appear.

swat 901/tcp

1.

If an entry exists and has assigned port 901 to a service other than SWAT, you can select any
unused port. However, you will need to adapt any references to port 901 in our examples to
your local configuration.

2.

Make sure that an inetd-style daemon is running. inetd and xinetd are "Internet super
daemons" that handle starting daemons on demand, instead of letting them sit around in
memory consuming system resources. Most Unix systems use inetd, but some utilize the more
secure xinetd service. Most Linux distribution now use xinetd by default. You can use the ps
command to see which of the two your system is running.

3.

For inetd, add a line to the /etc/inetd.conf file. (Check your inetd.conf manual page to see the exact
format of the inetd.conf file whether it differs from the following example.) Don't forget to change the
path to the SWAT binary if you installed it in a different location from the default /usr/local/samba:

swat stream tcp nowait root /usr/local/samba/sbin/swat swat

Then force inetd to reread its configuration file by sending it a SIGHUP (hangup) signal:

$ kill -HUP -a inetd

Notice that we are using a version of the kill command that supports the -a option, so as to allow us
to specify the process by name. On FreeBSD and Linux (but not Solaris), you can use the killall
command as follows:

$ killall -HUP inetd

On Solaris up to and including Solaris 9, use the pkill command.

$ pkill -HUP inetd

On Solaris 10 and later, inetd is not used, but there is an automatic conversion program. Enter the
configureation details into inetd.conf and then run the following command.

$ inetconv

If you are not running one of the previously mentioned operating systems and your version of kill
doesn't have the -a option, you will need to use the ps command to find the process ID and then
supply that to kill:

$ ps ax | grep inetd
 780 ? S 0:00 inetd
 1981 pts/4 S 0:00 grep inetd
$ kill -HUP 780

If your system is using xinetd , add a file named swat in your /etc/xinetd.d directory and make sure
it is readable by the account used to run the xinetd metadaemon (usually root). The file should
contain the following:

description: swat is the Samba Web Administration Tool, which
allows an administrator to configure Samba using a web
browser interface, with the URL http://localhost:901
service swat
{
 socket_type = stream
 wait = no
 protocol = tcp
 only_from = localhost
 user = root
 log_on_failure += USERID
 server = /usr/local/samba/sbin/swat
 port = 901
 disable = no
}

Then xinetd needs to be sent a signal[*] to make it reread its configuration files:

[*] Depending on the version of xinetd you have and how it was compiled, you might need to send a USR1 or some other signal

rather than the HUP signal. Check the manual page for xinetd_ (8) on your system for details.

$ kill -HUP -a xinetd

SWAT has its advantages and its disadvantages. On the plus side:

SWAT prevents typos in parameter names by writing smb.conf based on your input.

SWAT makes it easy to determine the default value for parameters.

Samba's Online documentation is linked from SWAT's front page.

Online help for each parameter is linked beside each input field.

On the minus side:

To utilize SWAT's full functionality, you must log in as the root user. This is the reason why
SWAT is usually restricted by administrators to run over the loopback interface rather than
remotely across a network.

SWAT supports only HTTP (no HTTPS), allowing snoopers to see what you are doing. It is
possible to use a tool such as Stunnel (http://www.stunnel.org) to add secure communication
outside of SWAT.

SWAT strips out all comments and rewrites smb.conf upon committing changes to disk. This is a
problem only if you swap back and forth between editing the file in an external editor and
editing smb.conf in SWAT.

That's pretty much it for the installation. Before starting Samba, however, you need to create a
configuration file for it.

http://www.stunnel.org

2.5. A Basic Samba Configuration File

The key to configuring Samba is its configuration file, smb.conf. This configuration file can be very
simple or extremely complex, and the rest of this book is devoted to helping you get deeply personal
with this file. For now, however, we'll show you how to set up a single file service, which will allow
you to fire up the Samba daemons and see that everything is running as it should be. In later
chapters, you will see how to configure Samba for more complicated and interesting tasks.

The installation process does not automatically create an smb.conf configuration file, although several
example files are included in the Samba distribution in the samba-3.0.x/examples/ directory. To test
the server software, we'll use the following file, which you can create in a text editor of your
choosing. It should be named smb.conf and placed in the /usr/local/samba/lib directory:[*]

[*] If you did not compile Samba, but instead downloaded a binary, check with the documentation for the package to find out

where it expects the smb.conf file to be. Or, check the output from smbd -b and locate the value of the CONFIGFILE variable. If

Samba came preinstalled with your Unix system, an smb.conf file is probably already somewhere on your system.

[global]
 workgroup = GARDEN
[test]
 comment = For testing only, please
 path = /export/tmp
 read only = no

This brief configuration file tells the Samba server to offer the /export/tmp directory on the server as
an SMB share called test. Parameters in smb.conf are case-insensitivepath is the same option as
PATH. They are also whitespace-insensitive so that read only and ReadOnly are interpreted as the
same parameter. Values, however, may or may not be case-insensitive, depending on their use. For
example, a username or a directory path should be considered to be case-sensitive, yet Samba
interprets Boolean value such as yes or no as case-insensitive strings.

Our server will operate as part of the GARDEN workgroup, of which each client should also be a part. If
you have already chosen a name for your own workgroup, use the existing name instead of GARDEN in
the previous example. In case you are connecting your server to an existing network and need to
know the workgroup name, ask another system administrator or go to a Windows system in the
workgroup and follow these instructions for Windows 2000/XP/2003:

Right click on My Computer icon and select Properties.

The workgroup or domain name should be listed in the windows after selecting the Network
Identification (or Computer Name) tab.

We'll use the [test] share in the next chapter to set up the Windows clients. For now, you can

complete the setup by performing the following commands as root on your Unix server:

mkdir -p /export/tmp
chmod 1777 /export/tmp

If the version of mkdir included on your system doesn't support creating a full directory path (-p),
just create each directory one by one. You might also want to put a file or two in the /export/tmp
directory, so that after the Windows clients are initially configured, it will be easier to verify that that
everything works.

2.5.1. Encrypted Passwords

Password encryption is one of those areas where interoperability between Windows and Unix/Linux
systems gets extremely messy. Both sides of the fence use a different nonreversible encryption
algorithm, which means that you cannot generically convert Unix passwords to the LanMan or NT
password hashes or vice versa.

There is even widespread misunderstanding about Windows support for password encryption and the
associated NTLM challenge/response authentication protocol. The myth is that Microsoft added
support for encrypted passwords only with the release of the Windows 95 network redirector update
and Windows NT 4 Service Pack 3. The truth is that all Microsoft operating systems (including the
DOS LanMan client) support NTLM authentication and therefore support at least one of these
password encryption algorithms, either the LanManager or the NT password hashes. The
misunderstanding stems from the fact that prior to these operating system updates, Windows clients
would downgrade to sending the clear text of a password if the remote SMB/CIFS server did not
support password encryption. Of course, there are ways to exploit this behavior and gain access to
users' passwords. Therefore, Microsoft decided that it was a good idea to disable the capability to
automatically fall back to clear text authentication. It can still be done, even on Windows 2003, but
requires a registry setting change and a client reboot.

Samba 3.0 follows this same path to interoperability. Because Windows clients no longer send clear
text passwords without explicit configuration changes, Samba defaults to requiring that you, as the
administrator, create LanMan and NT password hashes for all the users who will be accessing your
server. But as there is no way to convert the existing /etc/passwd entries to Samba's password
format, you have to start from scratch.

Samba does support authenticating users against the system's /etc/passwd file, NIS passwd map,
and PAM stack, but you must ensure that all clients have clear text authentication for CIFS
connections enabled. As previously noted, this is not the default behavior in modern Microsoft clients.
Additional mechanisms for authenticating users are presented in Chapter 5.

By default, Samba 3.0 enables the encrypt passwords option. For the sake of clarity, and because
you may not be familiar with all of Samba's default settings, we add the following line to our smb.conf
in the [global] section.

encrypt passwords = yes

The smbpasswd program (typically located in the directory /usr/local/samba/bin/) can be used to
enter the username/password combinations of the Samba users into Samba's encrypted password
database. For example, to allow Unix user lizard to access shares from a client system, use this
command:

smbpasswd -a lizard
New SMB password: <enter password for lizard>
Retype new SMB password: <re-enter password for lizard>
Added user lizard.

Samba requires that all users accessing the system be mapped to a valid Unix
uid. This includes guest users, who are mapped to the specified guest acount.

When the first user is added, the program may output a message saying that the encrypted
password database does not exist. Don't worry: it will then create the database for you. Make sure
that the username/password combinations you add to the encrypted database match the usernames
and passwords that you intend to use on the Windows client side. You must run smbpasswd for each
client user that will authenticated access to the server. There are simpler ways to configure a server
to allow guest access, which we explore in Chapter 5.

2.5.2. Using SWAT to Create an smb.conf File

Creating a configuration file with SWAT is even easier than writing a configuration file by hand. To
invoke SWAT, use your web browser to connect to http://localhost:901/, and log on as root with the
root password, as shown in Figure 2-1.

Figure 2-1. SWAT login

http://localhost:901/

After logging in, click the GLOBALS icon at the top of the screen. You should see the Global
Parameters page shown in Figure 2-2.

Figure 2-2. SWAT Global Parameters page

In this example, notice that SWAT retrieved the workgroup name from the smb.conf file that you
created. (If it didn't, go back and perform that step correctly.) Make sure that the security field is
set to USER (the default).

The only other option you need to change from the menu is one determining which system on the
LAN resolves NetBIOS addresses; this system is called the WINS server. At the very bottom of the
page, set the wins support field to Yes, unless you already have a WINS server on your network. If
you do, put the WINS server's IP address in the wins server field instead. Then return to the top of
the screen, and press the Commit Changes button to write the changes out to the smb.conf file. If
your Samba server and clients are all on a single broadcast subnet (i.e., if they all have the same
broadcast address), you can ignore the WINS settings for now.

Next, click the SHARES icon. Select test (to the right of the Choose Share button), and click the
Choose Share button. You will see the Share Parameters screen, as shown in Figure 2-3, with the
comment and path fields filled in from your smb.conf file.

Figure 2-3. SWAT Share Parameters screen

If you specified that you want to use encrypted passwords on the GLOBALS page, click the
PASSWORD icon. Near the top of the screen is the Server Password Management section. Enter your
Unix username and password in the spaces, and click the Add New User button. This step functions
the same as the smbpasswd utility and creates an entry in the /usr/local/samba/private/smbpasswd

file to allow you to authenticate from a Windows client.

Now click the VIEW icon at the top; SWAT then shows you the following smb.conf file:

Samba config file created using SWAT
from localhost (127.0.0.1)
Date: 2005/06/27 09:56:43

Global parameters
[global]
 workgroup = GARDEN

[test]
 comment = For testing only!
 path = /export/tmp
 read only = No

Notice that the encrypt passwords option is not listed, because SWAT does not write parameters with
default settings to the configuration file. Once this configuration file is completed, you can skip the
"Testing the Configuration File" step, because the output of SWAT is guaranteed to be syntactically
correct.

2.5.3. Testing the Configuration File

If you didn't use SWAT to create your configuration file, you should probably test it to ensure that it
does not contain any syntax errors. It might seem silly to run a test program against a six-line
configuration file, but it's good practice for the longer, more complex ones that we'll be writing later
on.

The parser, testparm, examines an smb.conf file for syntax errors and reports any it finds along with
a list of the services enabled on your machine. An example follows; you'll notice that in our haste to
get the server running, we mistyped workgroup as workgrp (the output can be lengthy, so again it is
best to use some type of filter or pager):

$ testparm -s /usr/local/samba/lib/smb.conf | more
Load smb config files from /usr/local/samba/lib/smb.conf
Unknown parameter encountered: "workgrp"
Ignoring unknown parameter "workgrp"
Processing section "[test]"
Loaded services file OK.

Global parameters
[global]

[test]
 comment = For testing

 only!
 path = /usr/local/samba/tmp
 read only = No

Samba 3.0 displays a brief listing of the configuration file. In fact, this is identical to how SWAT will
strip the file and display it.

The testparm tool has a verbose output mode (-v) that dumps the default
values for all unset variables. Beginning with the 3.0.20 release, it is also
possible to query for a specific parameter (--parameter-name=STRING) or a
particular share (--section-name=SHARE).

2.6. Firewall Configuration

As with any services that run on TCP/IP, the SMB networking services offered by Samba can be
accessed from across the Internet unless your organization's firewall is configured to prevent it.

The following ports are used by Samba for SMB networking and SWAT:

137/udp

Used for NetBIOS network browsing (nmbd).

138/udp

Used for NetBIOS name service (nmbd).

139/tcp

Used for file and printer sharing and other operations (smbd).

445/tcp

The so called NetBIOS-less CIFS port, which is used by Windows 2000 and later clients (smbd).

901/tcp

Used by SWAT. Unless you have configured complementary stunnel support, it is best to limit
access to this port to the loopback interface only.

As stated in Chapter 1, SMB/CIFS is really not Internet-ready. There have been many security
improvements in CIFS recently, including the use of Kerberos for authentication, packet integrity
check (SMB signing), and Secure Channel communication. However, other than passwords, most
data in CIFS networks travels in the clear. If your users require external access to Samba or
Windows file servers, it is best to use some type of a Virtual Private Network to secure data in transit.
See the O'Reilly book Virtual Private Networks, by Charlie Scott et al., for more information on this
subject.

Outside of a VPN solution, it is strongly advised that you block the appropriate ports from access by
clients external to your network. In addition, you might wish to configure a firewall on the Samba
host system to keep SMB packets from traveling further than necessary within your organization's
network. For example, port 901 can be shut down for remote accesses so that SWAT can be run only
on the Samba host system. If you are using Samba to serve only a fraction of the client systems
within your organization, consider allowing SMB packets (i.e., packets on ports 137139 and 445) to

go to or come from only those clients. For more information on configuring firewalls, see Building
Internet Firewalls, by Elizabeth D. Zwicky et al. (O'Reilly).

2.7. Starting the Samba Daemons

Two Samba processes, smbd and nmbd, need to be running for Samba to work correctly.[*] There
are three ways to start them:

[*] You will see in Chapter 10 that nmbd is not always needed, but for now just consider it to be a required daemon.

Manually

Automatically, during system boot

From inetd or xinetd

2.7.1. Starting the Daemons Manually

If you're in a hurry, you can start the Samba daemons by hand. As root, enter the following
commands:

$ /usr/local/samba/sbin/smbd -D
$ /usr/local/samba/sbin/nmbd -D

Samba will now be running on your system and is ready to accept connections. However, keep in
mind that if either of the daemons exit for any reason (including system reboots), they must be
restarted manually.

2.7.2. Automatic Startup

To have the Samba daemons started automatically when the system boots, add the commands listed
in the previous section to your standard Unix startup scripts. The exact method varies depending on
the flavor of Unix you're using.

2.7.2.1. BSD Unix

With a BSD-style Unix variant, append the following code to the rc.local file, which is typically found
in the /etc or /etc/rc.d directories:

if [-x /usr/local/samba/bin/smbd]; then
 echo "Starting smbd..."
 /usr/local/samba/bin/smbd -D
 echo "Starting nmbd..."
 /usr/local/samba/bin/nmbd -D
fi

This code is very simple: it checks to see whether the smbd file exists and has execute permissions,
and if so, starts up both of the Samba daemons.

2.7.2.2. System V Unix and most Linux distributions

With System V, things can get a little more complex. Depending on your Unix version, you might be
able to get away with making a simple change to an rc.local file as with BSD Unix, but System V
typically uses directories containing links to scripts that control daemons on the system. Hence, you
need to instruct the system how to start and stop the Samba daemons. The first step to implement
this is to modify the contents of the /etc/rc.d/init.d directory by adding an init script. The samba-
3.0.x/packaging/sysv directory contains an example init script that should work on most System V
based hosts. It is at least a place to begin making any local tweaks necessary for your system.

Assuming that we have installed this script using the name smb and set the execute permissions on
it, we can now start and stop smbd and nmbd like this:

/etc/rc.d/init.d/smb start
Starting SMB services:
Starting NMB services:
ps ax | grep mbd
 1268 ? S 0:00 smbd -D
 1269 ? S 0:00 smbd -D
 1270 ? S 0:00 nmbd -D
 1465 pts/2 S 0:00 grep mbd
/etc/rc.d/init.d/smb stop
Shutting down SMB services:
Shutting down NMB services:

If you are having trouble modifying the existing SysV init script or are unable to write your own,
check to see whether there is a packaged release of Samba (available from your Unix vendor or the
Samba FTP site). If so, you might be able to extract a startup script from it to use as a starting point.
Typically, this script doesn't change much (if at all) from release to release, so using a script from an
older Samba version should not be a problem.

Finally, we need to add symbolic links to the smb script in the /etc/rc.d/rcn.d directories:

for i in 3 5; do
> ln -s /etc/rc.d/init.d/smb /etc/rc.d/rc$i.d/S35smb

> done

for i in 0 1 2 4 6; do
> ln -s /etc/rc.d/init.d/smb /etc/rc.d/rc$i.d/K35smb
> done

The first for loop, with a link name starting with an S (S35smb), causes Samba to be started when
entering runlevels 3 or 5, which are the runlevels in which network file sharing (NFS) is normally
enabled. The next for loop, with a link name starting with a K, causes Samba to be shut down when
entering any of the other runlevels (0, 1, 2, 4, or 6).

The links starting with S are used to start the daemons, and the links starting with K are used for
killing them. When the runlevel is changed, the links starting with K in the corresponding directory
(e.g., the rc3.d directory for runlevel 3) are executed, followed by the links starting with S. If we
wanted, we could have Samba restarted when switching between runlevels 3 and 5 by adding a
K35smb link to each rc3.d and rc5.d directory.

The number after the K or S in the link names is used to set the order in which all the daemons with
links in the directory are started or killed off. Get a long listing of the rc3.d or rc5.d directories to see
how this is set up on your system. We use 35 to match the behavior of Red Hat's Samba RPM
package. The important thing is to make sure that when starting Samba, all services that it requires
are started before it. When shutting down, it is a good idea to shut down Samba before services it
requires, to avoid excess error messages in the logfiles, but the shut down order is not as crucial.

2.7.2.3. Mac OS X

An installation of Samba is bundled with Mac OS X.[*] In true Apple style, all of the startup and
shutdown details have been hidden beneath the System Preferences Sharing applet. Selecting
the Services sheet displays a list of network services that are installed (although all may not be
currently running). See Figure 2-4 for a screenshot of this window. Under the Services tab, turn on
Windows File Sharing. In technical terms, enabling Windows File Sharing launches nmbd as a daemon
and enables smbd to be run via the xinetd meta-server. The OS X included smb.conf file is located in
the /etc directory.

[*] The coverage in this book pertains to OS X version 10.3.

Figure 2-4. Mac OS X sharing preferences

If you decide to install Samba yourself on Mac OS X, it's best not to stomp on the installation
provided with the operating system. Use the procedures detailed earlier in this chapter to install the
software into /usr/local/samba or some other area unaffected by operating system upgrades. You
can then rename the original smbd and nmbd binaries and create soft links from /usr/sbin/smbd and
/usr/sbin/nmbd to your newly installed ones.

If you install Samba yourself and you're using encrypted passwords, remember to set up users with
smbpasswd, as described earlier in this chapter. This step is handled automatically if you're using the
built-in server on Mac OS X.

2.7.2.4. Testing automatic startup

If you can afford a few minutes of downtime, reboot your system and again use the ps command to
confirm that the smbd and nmbd daemons are running. And if you are managing a 24/7 server, we
highly recommend that you find some downtime in which to reboot and perform this check.
Otherwise, your next unscheduled downtime might surprise you with a mysterious absence of SMB
networking services when the system comes up again!

2.7.3. Starting from inetd/xinetd

These days, memory and disk space tend to be very cheap. This is probably one of the reasons why
running the Samba daemons from the inetd meta-server has fallen into disuse. The other is that
nmbd needs to maintain state when participating in network browsing elections. The inetd server is
not really geared towards this type of long-term service. The best advice is to simply run smbd and
nmbd as daemons using the methods previously discussed.

However, if you wish to start from inetd, first open /etc/services in your text editor. Add the following
two lines if you don't already have them defined:

netbios-ns 137/udp
netbios-ssn 139/tcp

Next, edit /etc/inetd.conf. Look for the following two lines and add them if they don't exist. If you
already have smbd and nmbd lines in the file, edit them to point at the new smbd and nmbd you've
installed. Your brand of Unix might use a slightly different syntax in this file; use the existing entries
and the inetd.conf manual page as a guide:

netbios-ssn stream tcp nowait root /usr/local/samba/sbin/smbd smbd
netbios-ns dgram udp wait root /usr/local/samba/sbin/nmbd nmbd

Finally, kill any smbd or nmbd processes and send the inetd process a hangup (HUP) signal to tell it to
reread its configuration file:

$ kill -TERM -a smbd
$ kill -TERM -a nmbd
$ kill -HUP -a inetd

After that, inetd should be listening on the two NetBIOS ports and will spawn the appropriate Samba
daemon when it receives a packet destined for either port.

As we've pointed out before, modern Linux distributions and perhaps other Unix vendors supply
xinetd rather than inetd. If you need to use xinetd, you must supply configuration files in the
/etc/xinetd.d directory for both smbd and nmbd, as shown here:

configuration file for smbd
save as /etc/xinetd.d/netbios-ssn
service netbios-ssn
{
 disable = no
 socket_type = stream

 protocol = tcp
 wait = no
 user = root
 server = /usr/local/samba/sbin/smbd
}

configuration file for nmbd
save as /etc/xinetd.d/netbios-ns
service netbios-ns
{
 disable = no
 socket_type = dgram
 protocol = udp
 wait = yes
 user = root
 server = /usr/local/samba/sbin/nmbd
}

2.7.4. Testing the Samba Daemons

We're nearly done with the Samba server setup. All that's left to do is to make sure that everything is
working as we think it should. A convenient way to do this is to use the smbclient program to
examine what the server is offering to the network. If everything is set up properly, you should be
able to do the following:

$ smbclient -L localhost -N

Anonymous login successful
Domain=[GARDEN] OS=[Unix] Server=[Samba 3.0.22]

 Sharename Type Comment
 --------- ---- -------
 test Disk For testing

 only, please
 IPC$ IPC IPC Service (Samba 3.0.22)
 ADMIN$ Disk IPC Service (Samba 3.0.22)

 Server Comment
 --------- -------
 RAIN Samba 3.0.22

 Workgroup Master
 --------- -------
 GARDEN RAIN

This example used an anonymous connection. But because we've already added a Samba account for
lizard, we can also connect to and browse a specific share. Being greeted by the smb: \> is an
indication of success.

$ smbclient //localhost/test -U lizard
Password: <enter password>
Domain=[GARDEN] OS=[Unix] Server=[Samba 3.0.22]
smb: \>

If there is a problem, don't panic! Try to start the daemons manually, and check the system output
or the debug files at /usr/local/samba/var/log.smbd to see if you can determine what happened. If
you think it might be a more serious problem, skip to Chapter 12 for help on troubleshooting the
Samba daemons.

If it worked, congratulations! You now have successfully set up the Samba server with a disk share.
It's a simple one, but we can use it to set up and test the Windows clients in the next chapter. Then
we will start making it more interesting by adding services such as home directories, printers, and
security, and by seeing how to integrate the server into a larger Windows domain.

Chapter 3. Configuring Windows Clients
Samba's main philosophy is that it is better to teach the server to speak the client's language than
the other way around. Past experiences with client software such as PC-NFS have led many network
administrators to share this belief. SMB/CIFS is the protocol of choice for resource sharing in
Windows networks. The advantage of using the Windows' native CIFS support is that it is no longer
your responsibility to verify that third-party client networking software is compatible with the latest
hotfix or service pack from Microsoft. The CIFS client software updates are included with the OS
upgrades.

The dominance of CIFS in Microsoft networks means that the components necessary for connecting
to a Samba host are usually present in default Windows installations. There was a time many
Windows releases ago (such as with Windows for Workgroups) when TCP/IP network stacks were
hard to find and install. Such instances still exist, but are thankfully rare.

This chapter is devoted to helping you understand the pieces necessary for the latest Microsoft
operating systems to communicate with Samba servers. Its intent is not to act as a Windows
troubleshooting guide or to provide an in-depth look at Windows networking. By the end of our
discussion, however, you will be comfortable verifying that the necessary networking protocols and
services are installed and functioning properly. If you are already comfortable with configuring
Windows clients to access Microsoft servers, it is safe to skim this chapter and move on to the next.

The dialog boxes and screenshots that you will see throughout this chapter are taken from a
Windows XP client. All of the concepts and terminology, however, apply to Windows 2000, Windows
XP, and Windows Server 2003 hosts. Microsoft has come a long way in consolidating the user
interface between releases. but each one does possess a few nuances, which are highlighted as we
continue our discussion.

3.1. Windows Networking Concepts

Windows is different from Unix in many ways, including how it supports networking. Before we get
into the hands-on task of clicking our way through the configuration dialog boxes, it is best to
establish a common foundation of networking technologies and concepts that apply to the entire
family of Windows operating systems.

These are the main client issues with which we will be dealing:

Ensuring that the required networking components are installed and bound to a working
network adapter

Configuring TCP/IP networking with a valid IP address, netmask, and gateway, and with any
appropriate WINS and DNS name servers

Assigning workgroup and computer names

Creating user accounts

One can spend a lifetime understanding the ways in which Unix is different from Windows (in fact,
Samba developers do just this), or the ways in which members of the Windows family are different
from each other in underlying technology, behavior, or appearance. For now let's just focus on their
similarities and determine any common ground.

3.1.1. Networking Components

Unix systems historically have been monolithic in nature, requiring recompilation or relinking to
create a kernel with a customized feature set. Modern versions, however, have the ability to load or
unload device drivers or various other operating-system features as modules while the system is
running, without requiring a reboot. Windows allows for such configuration by installing or uninstalling
components. Networking components can be one of three things:[*]

[*] Device drivers are explicitly omitted from this list, because they are hardware-specific and therefore difficult to address in a

generic sense. Our discussion assumes that you have received installation directions from the card's manufacturer if you have

installed your own network card.

Protocols

Clients

Services

Figure 3-1 illustrates how these components work in conjunction with each other. The client and
server components are distinct pieces that communicate with each other in the same fashion whether

both exist on the same machine or reside on different machines in a network. Practically, the
distinction is not so clean-cut, but in the abstract, this model still holds.

Figure 3-1. An overview of the Microsoft networking puzzle

Chapter 1 described how SMB/CIFS rests on top of a set of network services and explained that these
services have been historically provided by a variety of protocols, such as NetBEUI, IPX/SPX, and
NBT. Samba, however, supports only TCP/IP services, even through it does implement a NetBIOS
layer internally. Field experience has proven that Windows clients accessing SMB/CIFS servers
perform better when only one network protocol is installed.

Older Windows releases such as Windows 95 and Windows NT 4.0 did not install TCP/IP by default,
but rather included support for the NetBEUI protocol. Having NetBEUI running at the same time as
NetBIOS over TCP/IP caused the system to look for services under two different protocols, only one
of which was likely to be in use. Delays of up to 30 seconds resulted as Windows tried to
communicate with the unused protocol. Eventually, the client timed out and attempted to use the
next protocol in the list. This process continued until the desired service was located. This fruitless
searching resulted in terrible performance. The moral of this story is to remove any unnecessary
protocols and use only TCP/IP, if at all possible.

The other two items in the list, client and service components, are pretty much what their names
imply. Client components perform tasks related to connecting with network servers, and service
components make the local system into a server of resources on the network. Microsoft has
traditionally depended upon the presence of a working server service on Windows NT-based clients to
perform management tasks such as remotely adding shares or creating users and groups. Even the
MS-RPC-based printing implementation expects to be able to connect back to the client in order to
report asynchronous change notification events, such as when a job has finished being printed.
Therefore, it is extremely common for both the client and server component to be installed by
default.

The names for these items has evolved in various Windows releases. Windows NT 4.0 referred to the
client component as the Workstation service and creatively named the server component the Server
service. Windows 9x and Windows 2000 have standardized on the name Client for Microsoft Networks
for the client piece and File and Printer Sharing for Microsoft Networks for the server piece.

Once a networking component is installed, it must be bound to a hardware interface, or adapter, to

be used on the network. At first this might seem like an odd complication; however, it is a conceptual
model that allows the associations between hardware and software to be clearly displayed and easily
modified through a graphical interface. Make sure that your Windows client has both TCP/IP and the
client component for SMB networking installed, and that it is bound to the network adapter that
connects to our Samba network, which in most cases is an Ethernet adapter.

Firewalls are beginning to change the Windows landscape. With the default installation of a firewall in
Windows XP Service Pack 2, it can no longer be assumed that all remote management tools work as
you would expect them to work. For example, after installing SP2, it is probable that you will not
even be able to ping the Windows XP host, although from the client's point of view, networking
functions are operating correctly. You can view and modify the client's firewall settings by running
control firewall.cpl from cmd.exe or the Run . . . option of the Start menu.

Windows XP SP2 changed quite a few things. Its initial release broke the print
change notification mechanism previously described. There are various theories
as to whether this was intentional. At the time of writing, no hotfix has been
released by Microsoft to address this problem.

3.1.2. IP Address

Just like any Unix system (or any other system that is using TCP/IP), your Windows systems needs
an IP address. If you have a DHCP server on your network, you can configure Windows to obtain its
IP address automatically. Otherwise, you must assign a static IP address manually, along with a
netmask. Make sure to use the same netmask as all other systems on the network. You can
determine the netmask in use by checking with Unix or Windows systems that have already been
configured.

If you are on a private network where you have the authority to assign your own IP addresses, you
can select from addresses in one of three ranges:

10.0.0.1 through 10.255.255.254

172.16.0.1 through 172.31.255.254

192.168.0.1 through 192.168.255.254

These address ranges are reserved for private networks that are not directly connected to the
Internet. Keep in mind that IP addresses ending in .0 are reserved for network addresses and that
ones ending in .255 are for broadcast addresses. These should never be assigned to any system on
the network. For more information on using these private network addresses, see RFC 1918.

If you're not maintaining your own separate network, see your system administrator for some
available addresses on your network, as well as for the proper netmask to use.

You should also be prepared to enter the IP address of the default gateway for the network. In some
networks, the default gateway is the system or router that connects the LAN to the Internet. In other
cases, the default gateway connects a subnet into a larger departmental or enterprise network.

In the absence of a DHCP server and manual configuration, many clients support the so-called

"dynamic" configuration addresses outlined by RFC 3927. These addresses exist within the
169.254.0.0/255.255.0.0 space and can be used only to communicate with other clients in the same
broadcast space (also known as link local space). Dynamic configuration addresses are similar to the
private addresses of RFC 1918, except that 169.254.0.0/16 addresses should not be routed at all,
even within a private network.

Unless a Windows client requires a static IP address, such as for doubling as a database or web
server, the simplest solution is to install and configure a DHCP server for your network. The two most
popular choices for this service are currently the Internet Systems Consortium's implementation
(http://www.isc.org) or the DHCP server that ships with Windows 2000 and Windows Server 2003.
Either solution is fine, as both support the basic TCP/IP network parameters and the additional data,
such as WINS server addresses, required by Windows clients.

3.1.3. Name Resolution

Name resolution is the function of translating human-friendly hostnames, such as lettuce, or fully
qualified domain names (FQDNs), such as lettuce.garden.plainjoe.org, into IP addresses, such as
192.168.1.154 or 192.168.1.10.

Unix systems perform name resolution using an /etc/hosts file at the minimum, and more commonly
rely upon the DNS to perform this function.[*] The name resolution interface on Unix hosts is
managed by the Name Service Switch (NSS) layer, which is often implemented as as part of the
standard C library. The NSS configuration file, /etc/nsswitch.conf, controls the order in which services
(DNS, /etc/hosts, and so on) are queried to resolve a name to an address.

[*] Although DNS is the dominant name resolution service on TCP/IP networks, you may also encounter other directory services,

such as NIS domains or LDAP directories, performing a similar role.

Although the specific implementation is different, name resolution in Windows is also performed by
querying a number of resources. For example, when you attempt to ping a host using its name,
Windows uses all possible mechanisms at its disposal to resolve the name. Some of these resolution
functions are similar (or even identical) to their Unix counterparts, and others are very foreign to
Unix systems.

In the past, DNS was considered unimportant for functioning Windows networks. Of course, it was
still necessary for locating services on the Internet, but DNS was a nonissue in regard to finding and
accessing file, print, and authentication services within the internal network. Things changed with the
introduction of Windows 2000 and Active Directory. Now most services on a Windows network can be
located by querying DNS server resource (SRV) records. (More about AD and DNS is provided in the
context of Samba's domain membership capabilities in Chapter 10.) Chances are good that you need
DNS for other services besides Windows and Samba and that it is already available on your network.
If you don't know the IP addresses of the local DNS servers, check with another administrator or look
them up in the /etc/resolv.conf file on one of your Unix servers.

For those of us who still have NetBIOS services on our networks, WINS is usually a requirement. The
basic operation of WINS was covered in Chapter 1. If you require a WINS server for your network,
Samba can happily perform that function if you specify the following line in the [global] section of
the server's smb.conf:

http://www.isc.org

wins support = yes

One caveat about using Samba as a WINS server is that Samba (up to vbooleanersion 3.0.22, at
least) cannot synchronize with other WINS servers. So if you specify a Samba server as your
Windows system's WINS server, you must be careful not to specify any additional (i.e., secondary)
WINS servers. If you do, you are likely to run into problems, because the servers will not be able to
synchronize their databases with each other. In Samba's defense, if you are using a Samba WINS
server (running on a typically reliable Unix host), you probably have little need for a secondary WINS
server anyway. The scarcity of requests for WINS replication could be considerd a testimony to
Samba's stability.[*]

[*] A WINS Replication service, under the name samba4wins, has been developed using the Samba 4 research tree.

If a Windows workstation has NetBIOS support enabled and has no WINS server address defined, it
defaults to using the broadcast method of name resolution, as described in Chapter 1, probably
resulting in a very busy network. This effect in itself makes Samba's WINS support more attractive.
Beyond this however, it is impractical (if not impossible) to configure a working NetBIOS network
with client and servers on different subnets without a working WINS infrastructure.

3.1.3.1. Windows' LMHOSTS and HOSTS

Flat text files that contain name-to-address mappings are a relic of days gone by, when networks
were small and central name services were unnecessary. Today, DNS and WINS services are more
common than web or email servers. However, text files such as /etc/hosts are still in use to bootstrap
a system before the networking service has been successfully started or as a backup means of
locating vital services when name servers are unavailable.

All Windows versions support using a pair of local files for name resolution. The two files, HOSTS and
LMHOSTS, are stored in %Systemroot%\System32\drivers\etc.[*] As a general rule, it is better to avoid

these files, due to the dynamic nature of Windows networks. But creative administrators can always
come up with interesting scenarios that require bending the rules a bit.

[*] The %Systemroot% environment variable expands to the operating system's installation directory (e.g., C:\Winnt or

C:\Windows).

The Windows HOSTS file is identical in syntax and function to its /etc/hosts cousin. At first glance, the
LMHOSTS file appears to be identical as well. However, the scope of the LMHOSTS file is limited to
handling NetBIOS name resolution queries from the local machine, and the file's syntax has been
extended to handle certain NetBIOS features that were originally outside the scope of DNS, such as
defining addresses for domain controllers.

In its most basic form, each line in the LMHOSTS file is a single IP address and case-insensitive
name:

192.168.1.154 LETTUCE

More advanced Windows LMHOSTS files can be written using the following extensions:

#PRE

Preload the name in the NetBIOS name cache upon startup.

#DOM :domain

Specify a host as a domain controller for domain.

#INCLUDE filename

Read and parse the IP addresses and names from filename.

#BEGIN_ALTERNATE, #END_ALTERNATE

Beginning and ending tags for grouping sets of #INCLUDE lines together into one logical group.
Only one included file is required to succeed from the block, allowing a file to be copied to
multiple network locations in case one server is unreachable.

\0x nn

Define nonprintable characters, such as specific NetBIOS resource bytes for a given name.

For example, we could define the DC for the VALE domain by specifying:

192.168.1.154 LETTUCE #PRE #DOMAIN:VALE

We could also use a centralized LMHOSTS file by making use of the #INCLUDE directive and a guest
accessible file share name config:

192.168.1.11 MEL #PRE
#INCLUDE \\MEL\config\lmhosts

But even given this advanced functionality, it is really hard to come up with a good technical reason
to use LMHOSTS files when a stable WINS server is easily within your grasp.

3.2. Windows Setup

Before a Windows client can connect to a Samba server or other any CIFS server, a few network
components must be configured. Despite a few cosmetic differences, the Windows networking
management interface is much more consistent these days than in times past. The terms and
information in the remainder of this chapter apply to Windows 2000 and later. However, the
screenshots are taken from a Windows XP client.

Before beginning to configure the Windows system, ensure that you are logged onto the client using
an account that has the level of privilege necessary to make any networking changes. The built-in
Administrator account will work fine, but any member of the Administrators group should have
sufficient authority to update the client's configuration.

3.2.1. Networking Components

First locate the Control Panel. Depending on what version of Windows or what desktop theme is
currently selected, this item may or may not be found in the Start menu (or Settings submenu). If
you cannot find an icon for the Control Panel, you can start the application by running control.exe
from a shell window or from the Run subcommand in the Start menu. Launching the Control Panel
displays a window similar to the one shown Figure 3-2. If you see a headline in the screen that asks
you to "Pick a category," select the Classic View option from the lefthand side of the window to
convert to the layout shown here.

Figure 3-2. The Windows XP Control Panel application in Classic View

Next, find and click the Network Connections icon. Windows 2000 refers to this as "Network and Dial-
Up Connections." The resulting dialog box lists all of the available network interfaces (LAN cards,
modems, and so on). Figure 3-3 illustrates a client with a single Ethernet adapter installed. By right-
clicking the icon for the appropriate network connection and selecting the Properties context menu
option, you can view the list of installed networking components, as shown in Figure 3-4.

Figure 3-3. The Network Connections window

Figure 3-4. List of installed network components for the local area
connection

If you ever get tired of navigating the Windows Start Menu looking for the
Control Panel and networking applet, run control ncpa.cpl from a command
shell or the Run . . . option on the Start Menu.

This is a quick method of launching the networking configuration screen. In
fact, any of the control panel applets (%Systemroot%\system32*.cpl) can be

started in this fashion.

Older clients maintained the notion of binding protocols and services to a specific network card, and
therefore presented a complicated configuration dialog for specifying which interface would use which
component. Windows 2000 and later updated this setup step with the concept of connections. When
viewing a connection, you will see a specific hardware device such as the Ethernet card (Figure 3-4).
Each entry in the list of installed components has a check box beside it to enable it (that is, bind it)
for this connection.

At a minimum, we need the following two software components:

The TCP/IP network protocol stack

The Client for Microsoft Networks component

We assume a working network interface, although it is probably a good idea to check for the message
"This device is working properly" when clicking the Configure button beside the network card icon.
There is no way to navigate back to the previous window, so you must reopen the network
connection property window once you exit the network adapter configuration dialog.

Add the TCP/IP protocol if it is not present. When you click Install . . ., you will be prompted to select
a service from the three categories. After selecting the Protocol category, and continuing by clicking
Add . . ., you will be presented with a list of available network stacks. TCP/IP will appear in the list of
available choices (unless it has already been installed). If the client has any additional network
protocols installed, such as NetBEUI, NWLink, or IPX/SPX, remove them now unless they are
necessary for accessing other resources on your network. If you are unsure whether the extra
protocol stacks are required, check with another network administrator. To remove a component,
select the component in the list, click Uninstall, and then choose Yes in the dialog box that pops up.
In some cases, the change might not take effect until Windows has been rebooted.

You can follow similar steps for installing the "Client for Microsoft Networks." Select the Client
category from the Install window instead of the Protocol category, as we did previously.

3.2.2. Configuring TCP/IP

Now click Internet Protocol (TCP/IP), and then Properties to open the Internet Protocol (TCP/IP)
Properties dialog box, shown in Figure 3-5.

Figure 3-5. The Internet Protocol (TCP/IP) Properties dialog box

3.2.2.1. IP address and DNS servers

If you are using DHCP on your network to assign IP addresses dynamically, choose "Obtain IP
address automatically" (the default setting). Otherwise, select "Use the following address" and fill in
the computer's IP address and netmask in the spaces provided. It is easiest, when you first start, to
use a client and server on the same subnet (the same network address and netmask), but this is not
required. For example, if the server's address is 192.168.1.2 and its network mask is 255.255.255.0,
you might use the address 192.168.1.100 (if it is available), along with the same netmask. You can
also fill in the IP address of the default gateway.

If the client is not using DHCP to obtain an address, you probably must fill in the DNS information
manually. In the lower part of the dialog box, select "Use the following DNS server addresses," and
fill in the IP address of your DNS server. If you are using a DHCP network for assigning this
information, leave the default "Obtain DNS Server Address Automatically" radio button selected.

3.2.2.2. WINS server

Click the Advanced . . . button to bring up the Advanced TCP/IP Settings dialog box, then click the
WINS tab to display the dialog box shown in Figure 3-6. Similar to our DNS configuration, if your
client is using a DHCP server, the addresses for any available WINS servers were probably assigned

automatically when the client received its IP address, even though none are shown on this screen.

Figure 3-6. The WINS tab of the Advanced TCP/IP Settings dialog box

If you need to manually specify a WINS server, enter its address in the space labeled "WINS
addresses, in order of use." If your Samba server is providing WINS service (in other words, you
have the line wins support = yes in the smb.conf file of your Samba server), specify the Samba
server's IP address here. Otherwise, provide the address of another WINS server on your network.

We'll ignore the "Enable LMHOST lookup" check box, because as a general rule such static files should
be avoided. If at some point in the future you choose to maintain an LMHOSTS file on clients, check
this box.

The final section of this dialog box, located near the bottom, allows you to define whether NetBIOS
support should be enabled. We have briefly discussed how Microsoft implemented CIFS directly over
TCP/IP without the NetBIOS abstraction layer beginning in Windows 2000. We haven't yet discussed
this in the context of Samba's complete set of features, however. In the following situations, you
absolutely must have NetBIOS support enabled on the client:

You plan to access pre-Windows 2000 computers, such as Windows NT file or print servers or
Windows 9x clients.

You plan to use Samba as a domain controller.

You require support for network browsing.

If you are using a workgroup environment, network browsing can be useful. It is not a required
feature, however, so the choice is up to you. When in doubt, it is best to leave the setting enabled. At
worst, it causes a few extra log messages on Samba servers or a few extra packets on your network.

When you are satisfied with your settings for IP Address, WINS Address, and DNS server, click OK in
each open dialog box and close the Local Area Connection Properties dialog box to complete the
configuration. The client may need to load some files from the Windows distribution CD-ROM, and
you might need to reboot for your changes to take effect.

3.2.3. Computer and Workgroup Names

From the Control Panel, double-click the System icon to open the System Properties dialog box (or
run control.exe sysdm.cpl). Click the Computer Name tab, and the resulting System Properties dialog
box will look similar to Figure 3-7. (Here, Windows 2000 diverges slightly. The Computer Name is
called the Network Identification tab, and instead of Change, you will see a Properties button. After
clicking this button, things should start to look like they are shown in this chapter again.) To assign a
computer name and workgroup name, click Change to access the dialog box shown in Figure 3-8.

Figure 3-7. The System Properties dialog box, showing the Computer
Name tab

Figure 3-8. The Computer Name Changes dialog box

Choosing a name for machines is probably one of the most fun but geekiest things we do as
administrators. Select a name. We'll stick with the vegetable theme and choose lettuce. Now define
the workgroup name to match the workgroup parameter value in smb.conf (we used GARDEN in our
example in Chapter 2). Case is irrelevant when defining either of these two configuration values on
the client. Click OK and, when requested, and reboot to put your configuration changes into effect.
Once again, log in using an administrative account for the next activity.

3.2.4. Connecting to the Samba Server

Assume that we have a Unix user account named rose and that we have previously created a Samba
account for this user by running:

root# smbpasswd -a rose
New SMB password: fiddle
Retype new SMB password: fiddle
Added user rose.

We should now be able to map to the [test] share that we created on the server rain during the last
chapter. Open a command shell window (cmd.exe) on your Windows client and run:

C:\> net use t: \\rain\test /user:rose fiddle

You should be greeted with the following line:

The command completed successfully.

If instead you see an error stating that the "network path was not found," try connecting using the IP
address of the Samba server instead. If this fails also and you know from the tests in the previous
chapter that the server is running, there is most likely a problem with network connectivity. Go
directly to the section "The Fault Tree" in Chapter 12 for instructions on troubleshooting.

3.2.5. Creating Local Users on Window Clients

Extra steps, such as specifying a username and password when connecting to a server, can be error-
prone. If you try to connect without any credentials, Windows automatically attempts to use the
username and password that you used to initially log on and prompts you if the connection attempt
fails with a logon error. So far, you have logged into your Windows XP system as a user in the
Administrators group. To access resources on the Samba server transparently, it is best to have your
account credentials on the Samba server synchronized with your username and password on the
local client.

All of this direction assumes that the client and server are participating in a
workgroup. If your client is part of a domain, it is best to enter your domain
account information at the Windows logon dialog box. Windows then
automatically tries to use these credentials when connecting to other servers.
Chapters 9 and 10 provide more information on Samba's role in controlling a
domain and acting as a member of a domain.

You've already seen how to create Samba accounts on the server. Here is a quick tour of creating
local accounts on the Windows client. The fastest way to bring up the user management console is to
run the lusrmgr.msc application. This application is a plug-in for the Microsoft Management Console
(MMC). After you launch the Local Users and Groups utility, either from the Run option of the Start
menu or from a command shell window, a screen similar to the one shown in Figure 3-9 is displayed.

Figure 3-9. The Local Users and Group MMC plug-in

Windows XP Home is Microsoft's variant designed for home and personal use,
much like the earlier Windows 95/98/Me variants, and Windows XP Professional
is advertised as the upgrade for Windows 2000 installations. In most
circumstances, the Home and Professional version operate similarly. There are
two notable limitations in the Home edition that apply to our discussion. The
first is that XP Home is unable to join a Windows domain; this limitation is
applicable to our discussion in Chapter 9. The second, which is of immediate
interest, is that local user accounts can be created only from the User Accounts
applet in the Control Panel (which you can also bring up through the command
control.exe nusrmgr.cpl).

Selecting the Users folder in the lefthand panel enables the New User . . . option in the Action menu.
Figure 3-10 shows the process of creating a local user account for our existing Unix/Samba account
named rose. Make sure to enter the same password used when creating the Samba account. After
creating the account, you can add the user to any local group by selecting the group folder from the
left side, highlighting a group, and modifying its properties. Group membership on the local client
does not affect the Unix user's group membership on the server.

Figure 3-10. Creating a user account for rose

You can now log out of the client and back on again as the user rose. Usually this means selecting
Log Off from the Start Menu and entering the new username and password in the resulting dialog
box. Now you can connect to the Samba host without specifying any extra information:

C:\> net use t: \\rain\test
The command completed successfully.

Default installations of Windows NT-based hosts will remember any file or
printer connections that you have as part of your user profile and attempt to
automatically reestablish those connections for you the next time you log onto
the client.

3.2.6. Browsing the Samba Server

We've connected to the server, so we can be sure that authentication is working correctly. Now for
the big momentseeing Samba in the My Network Places window. As with so many things in Windows
and in the Perl programming language, there is more than one way to do it. The most consistent way
to browse the network across all recent Microsoft operating system releases is to use the Windows
Explorer application. Go to Start Run and enter explorer.exe. The window that results (Figure 3-

11) should display the My Network Places link in the lefthand side.

Figure 3-11. Viewing My Network Places through the Windows Explorer

The next thing to do is drill down through the entire network to your workgroup and expand the list
of servers. You should see the server named Rain. You will also see the client (Lettuce) appear, if the
"File and Printer Sharing for Microsoft Networks" component is installed locally.

Now select Rain from the list of servers and view the available shares. Figure 3-12 shows that we
currently have only one file share, which is named test. There is also an empty Printers and Faxes
folder. If we had any shared printers on the server, they would show up in the share list beside the
test file share and inside of Printers and Faxes. Printing is covered in Chapter 7.

Figure 3-12. Viewing the list of shares on the server \\RAIN

Congratulations! You have a working Windows client from which you can test the Samba
configurations that are explored in the upcoming chapters.

Chapter 4. The Samba Configuration File
In the beginning, Samba servers were managed solely by a text configuration file named smb.conf.
Today settings are mixed between the smb.conf file and local database files in
/usr/local/samba/var/locks (or the location specified by the lock directory setting in smb.conf). The
database (tdb) files are normally managed through command-line tools such as pdbedit or net and
Windows management tools such as User Manager or MMC plug-ins. There are several editing tools
for smb.conf, such as SWAT, but most administrators still prefer to fire up their favorite text editor.

In previous chapters, we introduced some of the basic smb.conf settings, yet we have so far barely
scratched the surface. At last count, there are more than 360 configuration options defined in the
Samba source code. Though this sounds intimidating, approximately 90 percent of installations
require less than one-quarter of the available options (or parameters; we use these terms
interchangeably). Consider how much functionality we were able to obtain with fewer than a dozen in
Chapter 2. For this reason, we do not discuss every option. Rather, our approach is present the
common and necessary parameters in the context of a working server. If you require a full reference,
the smb.conf manpage, available both in the documentation and on the Samba web site, contains an
alphabetical index of all the configuration options and their meanings.

In this chapter, we introduce the structure of the Samba configuration file and show you how to use
options to create and modify disk shares. In subsequent chapters, we discuss browsing, how to
configure users, security, printing, and other topics related to implementing Samba on your network.

4.1. Basic Syntax and Rules

The Samba configuration file, called smb.conf by default, uses the same format as the Windows ini
files. If you have ever worked with such a file on a Microsoft client, you will find smb.conf easy to
create and modify. And even if you haven't, you will find the format to be simple and easy to learn.
Here is an example of a Samba configuration file:

[global]
 ## core networking options
 netbios name = RAIN
 workgroup = GARDEN
 encrypt passwords = yes

 ## netbios name service settings
 wins support = yes

 ## logging
 log level = 1
 max log size = 1000

 ## default service options
 read only = no

[homes]
 browseable = no

[test]
 comment = For testing only, please
 path = /export/tmp

This configuration file, based on the one we created in Chapter 2, sets up a workgroup in which
Samba authenticates users using encrypted passwords and the default user-level security method.
WINS server support is enabled and to be provided by the nmbd daemon. We've configured very
basic event logging to use a logfile not to exceed 1 MB in size and added the [homes] share to allow
Samba to export the home directory of each user who has a Unix account on the server.

4.1.1. Configuration File Structure

Let's take another look at this configuration file, this time from a higher level:

[global]
 ...
[homes]
 ...
[test]
 ...

The names inside the square brackets delineate unique sections of the smb.conf file; the section
name corresponds to the name of each share (or service) as viewed by CIFS clients. For example,
the [test] and [homes] sections are unique disk shares; they contain options that map to specific
directories on the Samba server. All the sections defined in the smb.conf file, with the exception of
the [global] section, are available as a file or printer share to clients connecting to the Samba
server.

These sections help to group settings together by defining the scope of a parameter. There are two
types of parameter scope:

Global

Global options must appear in the [global] section and nowhere else. These options apply to
the behavior of the Samba server itself and not to any of its shares.

Share or service

Share options can appear in share definitions, the [global] section, or both. If they appear in
the [global] section, they define a default behavior for all services, unless a specific share
overrides the option with a value of its own.

The remaining lines of our smb.conf example are individual configuration options for each section. An
option's specific scope continues until a new section is encountered or until the end of the file is
reached. Because parameters are parsed in a top-down fashion, if you set the same option more
than once in the same section, the last value specified is the only one that will be applied. Each
configuration option follows a simple format:

option = value

Options in the smb.conf file are set by assigning a value to them. Some of the option names are self-
explanatory. Others might require consulting the smb.conf manpage. For example, read only is self-
explanatory and is typical of many recent Samba options. In many cases, the common settings are
easily understood.

Parameter values in smb.conf fall into five categories:

Boolean

Yes/No, True/False, 1/0.

Integer

The maximum value of the integer depends on the use of the parameter. Note that some
options accept a range of valid integers such as a minimum and maximum uid. Certain values,
such as 0, may have special meaningsin this case, to not apply the option at all.

Character string or list

Aside from boolean, this is the most common parameter type. Strings are often free-form, such
as comment fields, lists of users and groups, or directory paths.

Enumerated types

Some parameters accept a value from discrete list of possibilities. The most common option of
this type is the security parameter, which accepts values of share, user, server, domain, or
ads. Anything other than the values in this list are reported as syntax errors and the parameter
reverts to its default value.

Plug-ins

These are predominately new to Samba 3.0. Several smb.conf settings accept the name of an
internal or external module. For example, user account information can be stored in an
smbpasswd file or in an LDAP directory. The storage location is controlled by the plug-in value
for the passdb backend parameter.

The testparm utility verifies only the syntax of parameter names and Boolean
parameter values. It is not smart enough to know whether values such as an
arbitrary string or a director path are valid.

4.1.1.1. Whitespace, delimiters, and capitalization

Parameter names are case- and whitespace-insensitive. For example, READONLY is the same as Read
Only or read only. For consistency, option names in this book are usually lowercase and usually
follow the spacing conventions as they appear in the smb.conf manpage.

The rules are a little less clear when dealing with parameter values. Generally, the whitespace and
capitalization rules are defined by the use of the value. For example, case does not matter for
Boolean values: YES is the same as Yes. But string or list values might be case-sensitive, and at a
minimum should be assumed to be case-preserving.

Consider the case of a directory path on disk. Common Unix filesystems honor case in file and
directory names. This means that /EXPORT is not the same path as /export. However, what if Samba

were sharing a FAT filesystem in which case does not matter? What about user or group names?
Should they be considered case-sensitive in smb.conf? Normally Unix does treat account names as
case-sensitive strings. The bottom line is that string values are case-sensitive when the underlying
system that makes use of them is case-sensitve.

When a string is used by Samba itself or as a value transmitted to Windows clients, it can generally
be considered as case-preserving but case-insensitive. The comment option for a share is a good
example here. The [test] in our smb.conf specifies:

comment = For testing only, please

Samba strips away the spaces up to the first F in For. The remainder of the string is seen as it is by
Windows clients. The character case here is only cosmetic.

If an option accepts multiple strings such as a list of usernames or groups, there are two issues of
which you must be aware. The first is knowing which characters Samba will interpret as entry
delimiters.

The standard delimiting characters in smb.conf are:

Whitespace

Comma (,)

Semicolon (;)

New line (\n)

Carriage return (\r)

You haven't been introduced to a parameter that accepts a list of values yet, but imagine a list of
users. All of the following lists of three items are semantically the same:

rose, smitty, foo
rose smitty, foo
rose; smitty foo

So this brings us to to the second question: how can we define a list entry that contains one of these
delimiting characters? The most common example is a username that contains a space. The answer
is that we explicitly group the tokens in an entry together by surrounding the string with double
quotes.

"Alex Rose", smitty, foo

However, never use quotation marks around an option name; Samba will treat this as an error.

smb.conf section names are case-insensitive, but the whitespace does matter when a client attempts
to access the share. For this reason, many admins find it easier to avoid share names with
whitespace in them.

Some older Windows clients, such as Windows 9x, cannot access shares with
names longer than 12 characters.

4.1.1.2. Line continuation

You can continue a line in the Samba configuration file using the backslash, like this:

comment = The first share that has the primary copies \
 of the new Teamworks software product.

Because of the backslash, these two lines will be treated as one line by Samba. The second line
begins at the first nonwhitespace character that Samba encounters; in this case, the o in of.

4.1.1.3. Comments

You can insert single-line comments in the smb.conf configuration file (not to be confused with the
comment parameter) by starting a line with either a hash (#) or a semicolon (;). For example, the first
three lines in the following example would be considered comments:

Export the home directory for a each user
; Pulls the home directory path via the getpwnam() call
; (e.g. a lookup in /etc/passwd)

[homes]
 browseable = no

Samba ignores all comment lines in its configuration file; there are no limitations to what can be
placed on a comment line after the initial hash mark or semicolon. Note that the line continuation
character (\) is not honored on a commented line. Like the rest of the line, it is ignored.

Samba does not allow mixing of comment lines and parameters. Be careful not
to put comments on the same line as anything else, such as:

path = /data # server's data partition

Errors such as this, where the parameter value is defined with a string, can be
tricky to notice. The testparm program won't complain. The only clues you'll
receive from testparm are that it reports the value of the path parameter as
/data # server's data partition. Failures result when clients attempt to
access the share.

4.1.2. Updating a Live System

You can modify the smb.conf configuration file and any of its options at any time while the Samba
daemons are running. The question when they will take effect on the server (and be seen by clients)
requires a detailed response.

When changing core NetBIOS or networking settings, such as modifying the name of the server or
joining a domain, it is best to assume that a restart of all Samba daemons is necessary. For other
global parameters and most changes to shares, apply these rules:

When a new connection is received, the main smbd process spawns a child process to handle
the incoming request. The new child rereads smb.conf upon startup, and therefore sees the
change.

Once started, Samba daemons check every three minutes to determine whether any
configuration files have been modified, and if so, reload and act on the parameters.

An administrator can force an immediate reload of smb.conf by sending the smbd process the
Hangup (HUP) signal or by sending a reload-config message via the smbcontrol utility.

Scanning for new printers in the underlying printing system (e.g., CUPS or /etc/printcap) is
controlled by the printcap cache time parameter, which specifies the monitoring interval in
seconds.

Be wary of editing smb.conf on a live system. This is an easy way to introduce
syntax errors in smb.conf that are unintentionally propagated to client
connections. A good practice is to update a copy of the server's smb.conf and
then move it to the existing configuration only after you have verified that it
has no syntax errors or unintended changes. It is also a good idea to apply
some type of version control to server configuration files such as smb.conf.

The next question that should be asked is what happens to active client connections when you restart

Samba. The daemon that directly handles client connections is smbd. smbd's architecture uses a
fork-on-connect model of handling incoming TCP connections. If you kill the main smbd process, all
child processes continue until the client disconnects, and each smbd exits normally. However, until
the parent is restarted, the host machine does not allow additional incoming CIFS connections.

If an smbd child that is handling an active connection is killed, all files and shares that the client had
open become invalid. Windows clients will automatically reconnect to the server as soon as the user
attempts to access one of these previously valid resources. In many instances, the user will never
know that the connection was dropped and reestablished. There are a few exceptions:

If the server does not support encrypted passwords, current releases of Windows cannot
reauthenticate the user, because they cache only the hash of the user's password and not the
clear text.

Many applications, when stored on a remote system and run from a network drive, crash when
the connection is dropped. However, local applications simply accessing datafiles or documents
on a network drive frequently experience no problems during the reconnection.

4.1.3. Variables

Because a new copy of the smbd daemon is created for each connecting client, each client can have
its own customized configuration file. Samba allows a limited yet useful form of variable substitution
in the configuration file to allow information about the Samba server and the client to be included in
the configuration at the time the client connects. A variable in the configuration file consists of a
percent sign (%), followed by a single upper- or lowercase letter. Variables can be used only on the
right side of a configuration option (i.e., after the equal sign). An example is:

[pub]
 path = /home/ftp/pub/%a

The %a stands for the client system's architecture and is replaced according to Table 4-1.

Table 4-1. %a substitution

Client operating system ("architecture") Replacement string

Windows for Workgroups WfWg

Windows 95, 98 and Millenium Win95

Windows NT WinNT

Windows 2000 Win2K

Windows XP WinXP

Client operating system ("architecture") Replacement string

Windows Server 2003 Win2K3

OS/2 OS2

Samba Samba

Linux CIFS filesystem client CIFSFS

All other clients UNKNOWN

In this example, Samba assigns a unique path for the [pub] share to client systems based on what
operating system they are running. The path that each client would see as its share differ according
to the client's architecture:

/home/ftp/pub/WinNT
/home/ftp/pub/Win2K
/home/ftp/pub/Samba
...
/home/ftp/pub/UNKNOWN

Using variables in this manner comes in handy if you wish to have different users run custom
configurations based on their own unique characteristics or conditions. Samba has more than 20
variables, shown in Table 4-2.

Table 4-2. Samba variables

Variable Definition

Client variables

%a Client's architecture (see Table 4-1)

%i IP address of the interface on the server to which the client connected

%I Client's IP address (e.g., 172.16.1.2)

%m Client's NetBIOS name

%M Client's DNS name (defaults to the value of %I if hostname lookups = no)

User variables

%u Current Unix username (requires a connection to a share)

%U Username transmitted by the client in the initial authentication request

%D User's domain (e.g., the string DOM-A in DOM-A\user)

%H Home directory of %u

%g Primary group of %u

Windows Server 2003 Win2K3

OS/2 OS2

Samba Samba

Linux CIFS filesystem client CIFSFS

All other clients UNKNOWN

In this example, Samba assigns a unique path for the [pub] share to client systems based on what
operating system they are running. The path that each client would see as its share differ according
to the client's architecture:

/home/ftp/pub/WinNT
/home/ftp/pub/Win2K
/home/ftp/pub/Samba
...
/home/ftp/pub/UNKNOWN

Using variables in this manner comes in handy if you wish to have different users run custom
configurations based on their own unique characteristics or conditions. Samba has more than 20
variables, shown in Table 4-2.

Table 4-2. Samba variables

Variable Definition

Client variables

%a Client's architecture (see Table 4-1)

%i IP address of the interface on the server to which the client connected

%I Client's IP address (e.g., 172.16.1.2)

%m Client's NetBIOS name

%M Client's DNS name (defaults to the value of %I if hostname lookups = no)

User variables

%u Current Unix username (requires a connection to a share)

%U Username transmitted by the client in the initial authentication request

%D User's domain (e.g., the string DOM-A in DOM-A\user)

%H Home directory of %u

Variable Definition

%g Primary group of %u

%G Primary group of %U

Share variables

%S Current share's name

%P Current share's root directory

%p Automounter's path to the share's root directory, if different from %P

Server variables

%d Current server process ID

%h Samba server's DNS hostname

%L Samba server's NetBIOS name sent by the client in the NetBIOS session request

%N Home directory server, from the automount map

%v Samba version

Miscellaneous variables

%R The SMB protocol level that was negotiated

%T The current date and time

%$(var) The value of environment variable var

Here's another example of using variables: suppose that you do not want to share the user's Unix
home directory, but prefer instead to keep a separate set of home directories specifically for
SMB/CIFS clients. You can do this by defining a path in the [homes] service that includes the %U
variable.

[homes]
 path = /export/smb/home/%U
 ...

People often wonder what the difference is between %U and %u. The value of %U
is derived from the username sent during the CIFS session setup request
covered in Chapter 1. This occurs before a connection to any share. The %u
variable is expanded from the uid assigned to a user in the context of a file
share. This can change depending on the share. More about this issue is
explained in Chapter 6, when we discuss the force user option.

When user rose connects to the UNC path \\RAIN\homes, the path statement expands to
/export/smb/home/rose. Samba does not automatically create this directory if it does not already
exist. One way to solve this this problem is to instruct Samba to run an external program or script

%g Primary group of %u

%G Primary group of %U

Share variables

%S Current share's name

%P Current share's root directory

%p Automounter's path to the share's root directory, if different from %P

Server variables

%d Current server process ID

%h Samba server's DNS hostname

%L Samba server's NetBIOS name sent by the client in the NetBIOS session request

%N Home directory server, from the automount map

%v Samba version

Miscellaneous variables

%R The SMB protocol level that was negotiated

%T The current date and time

%$(var) The value of environment variable var

Here's another example of using variables: suppose that you do not want to share the user's Unix
home directory, but prefer instead to keep a separate set of home directories specifically for
SMB/CIFS clients. You can do this by defining a path in the [homes] service that includes the %U
variable.

[homes]
 path = /export/smb/home/%U
 ...

People often wonder what the difference is between %U and %u. The value of %U
is derived from the username sent during the CIFS session setup request
covered in Chapter 1. This occurs before a connection to any share. The %u
variable is expanded from the uid assigned to a user in the context of a file
share. This can change depending on the share. More about this issue is
explained in Chapter 6, when we discuss the force user option.

When user rose connects to the UNC path \\RAIN\homes, the path statement expands to
/export/smb/home/rose. Samba does not automatically create this directory if it does not already
exist. One way to solve this this problem is to instruct Samba to run an external program or script

when a user connects to a specific share. More about this technique is discussed in Chapter 6.

4.2. Special Sections

Now that you've gotten your feet wet with variables, we will talk about a few special sections of the
Samba configuration file. Again, don't worry if you don't understand every configuration option listed
here; we go over each of them in the upcoming chapters.[*]

[*] The [IPC$] share is another specialized service used by CIFS clients for interprocess communication. Samba provides this

built-in share regardless of the services listed in smb.conf.

4.2.1. The [global] Section

The [global] section appears in virtually every Samba configuration file, even though it is not
mandatory. If the section is not present, Samba uses the default values for all global settings. Any
option that appears before the first marked section is assumed to be a global option. This means that
the [global] section heading is not absolutely required; however, following the rule that it is better to
explicitly state what you mean, include it for clarity and to protect your server against changes in
default behavior in any future Samba releases.

There are two purposes for the [global] section. Server-wide settings are defined here, and any
options that apply to shares will be used as a default in all share definitions, unless overridden within
the share definition.

To illustrate this, let's again look at the example at the beginning of the chapter:

[global]
 ## core networking options
 netbios name = RAIN
 workgroup = GARDEN
 encrypt passwords = yes

 ## netbios name service settings
 wins support = yes

 ## logging
 log level = 1
 max log size = 1000

 ## default service options
 read only = no

[homes]
 browseable = no

[test]
 comment = For testing only, please

 path = /export/tmp

When Samba reads its config file, it creates a special internal service that contains the default values
of all parameters. Any service parameters that you define in the [global] section are assigned to this
list. When a client connects to the [test] share, Samba first consults the explicit parameter list for
that share. Then it looks in the default settings for implicit option assignments. Explicit settings take
precedence over any compile-time or [global] defaults. In other words, if the [test] service
contained a line that said read only = yes, the share would be marked as read-only regardless of the
default or global value the parameter had been assigned.

4.2.2. The [homes] Section

If a client attempts to connect to a share that doesn't appear in the smb.conf file, Samba searches
for a [homes] share in the configuration file. If a [homes] share exists, smbd begins a search to
validate the share name as a Unix username. If that username appears in the password database
(e.g., /etc/passwd) on the server, Samba creates a temporary share bearing the specified username
and all the attributes of the [homes] share.

For example, assume that a client system is connecting to the Samba server RAIN for the first time
and tries to connect to a share named [alice]. After verifying the user's credentials, smbd searches
smb.conf for a share named [alice], but fails to locate one. There is however, a [homes] share, so
Samba then attempts to validate the username alice in the server's /etc/passwd (or other account
database). If the validation is successful, Samba then creates a share called [alice] for use during
the client's session. From this point on, the share [alice] is treated as a normal file share. Any
variables are expanded according to the standard rules.

4.2.3. The [printers] Section

We will delay a detailed explanation of Samba's printing features until we get to Chapter 7. For the
sake of completeness, however, we will introduce a third built-in section. This section, named
[printers], performs a service for system printers analagous to what the [homes] share does for
user home directories. If a client attempts to connect to a share that isn't in the smb.conf file and the
[homes] check fails (or [homes] is not defined), Samba will check to see whether it is a printer share
(assuming that the [printers] has been included). Samba does this by querying the operating
system's printing system database to see whether the share name appears there. If it does, Samba
creates a share named after the printer.

This behavior means that as with [homes], you don't have to maintain a share for each printer
available on the system in your smb.conf file. Instead, Samba honors the Unix printer registry if you
ask it to, and provides these printers to the client systems. However, there is a potential difficulty: if
you have an account named fred and a printer named fred, Samba will always find the user account
first and ignore the existence of the printer, even if the client really needed to connect to the printer,
assuming that both [homes] and [printers] sections are defined. We revisit the [printers] section
again in Chapter 7.

4.3. Configuration File Options

When one of the Samba daemons is launched, it looks first at any configuration file specified with the
-s option or in the default compile-time-defined location (e.g., /usr/local/samba/lib/smb.conf). There
are two smb.conf options that allow you either to replace or to extend the current configuration at
runtime. These two options, along with the copy directive, which allows you to clone one share in
smb.conf into another, are described in Table 4-3.

Table 4-3. Configuration file options

Parameter Value Description Default Scope

config

file
string Sets the location of a configuration file to use instead of the

current one.
None Global

include string Specifies an absolute path to a file that should be read and
parsed into the current configuration file.

None Global

copy string Allows you to clone the configuration options of another share
in the current share.

None Share

4.3.1. config file

The global config file option specifies a replacement configuration file that will be loaded when the
option is encountered. If the target file exists, the remainder of the current configuration file, as well
as the options encountered so far, will be discarded, and Samba configures itself entirely with the
options in the new file. Variables can be used with the config file option, which is useful in the
event that you want to use a special configuration file based on the NetBIOS machine name or user
of the client that is connecting.

For example, the following line instructs Samba to use a configuration file specified by the NetBIOS
name of the client connecting, if such a file exists. If it does, options specified in the original
configuration file are ignored:

[global]
 config file = /etc/samba/smb.conf.%m

If the configuration file specified does not exist, the option is ignored, and Samba continues to
configure itself based on the current file. This behavior allows a default configuration file to serve
most clients, while providing for exceptions with customized configuration files.

4.3.2. include

The fundamental difference between the config file option and the include parameter is that the
former completely replaces all existing configuration settings, yet the latter does just as its name
implies: it inserts settings from an additional file in the current configuration. Figure 4-1 illustrates
how all three options override their previous values. This option also can be used with variables for
such purposes as including additional settings that differ for each client machine.

[global]
 include = /usr/local/samba/lib/smb.conf.%m

If the configuration file specified does not exist, the option is ignored. Options in the include file
override any option specified previously, but not options that are specified later. Because the included
file is inserted into the main file, beware of including global options into the section for a file or printer
share as this will generate an error in the Samba logfiles.

Figure 4-1. The include option in a Samba configuration file

The majority of parameters can be overridden in an included file, but a few cannot. The workgroup
and the server string directives are two examples of parameters that cannot be redefined.

4.3.3. copy

The copy configuration option allows you to clone the configuration options of the share name that
you specify in the current share. The template share must appear earlier in the configuration file than
the share that is performing the copy. For example:

[basic]
 read only = no
 browseable = yes
 available = no

[data]
 copy = basic
 available = yes
 path = /data

Note that any options in the [data] share defined prior to the copy directive are overridden by those
from the [basic] share. However, the top-down parsing of smb.conf allows us to reset these copied
values by specifying more options after the copy parameter.

4.4. Basic Server Configuration

We now start from scratch and build a configuration file for a new Samba server. Our goal is to
create a working server and to examine the options that are important for basic functionality. The
server will export a single share named [data].

First, we'll introduce three configuration options that should appear in the [global] section of our
smb.conf file:

[global]
 # Server configuration parameters
 netbios name = PIGEON

 workgroup = GARDEN
 server string = Engr Dept Server (Samba %v)
 encrypt passwords = yes
 security = user

This configuration file is pretty simple; it advertises the Samba server under the NetBIOS name
PIGEON. In addition, it places the system in the GARDEN workgroup and displays a description to clients
that includes the Samba version number. The last two parameters explicitly relate to how Samba is
to validate user credentials in connect requests. You've already been briefly introduced to encrypted
password support in Chapter 2. The security parameter value of user was not been explicitly
mentioned. However, we relied upon it as Samba's default authentication model in Chapter 2 when
creating user accounts with smbpasswd and connecting to the server using smbclient. Both
parameters are covered in depth in Chapter 5 in the context of users and groups. Until then, the
information you previously learned is sufficient for your current needs.

Because this is a perfectly valid configuration file, it is possible to test it out. Create a file named
smb.conf under the /usr/local/samba/lib directory and enter the displayed parameters and values. It
might also be a good idea to test the new configuration using the same steps that you followed in
Chapter 2. Be sure that your Windows clients are in the GARDEN workgroup as well. After double-
clicking the My Network Places icon on a Windows client, you should see a window similar to that in
Figure 4-2.

Figure 4-2. Browsing the GARDEN workgroup and viewing the Samba
server PIGEON

You can verify the server string by either viewing the properties of the Samba host (right-clicking
the server icon to launch the context menu and selecting the Properties option), or enabling the
details listing of hosts in the workgroup from the View menu. PIGEON's properties are displayed in
Figure 4-3.

Figure 4-3. Viewing the properties of a CIFS server

If you were to click the PIGEON icon, a window would appear that shows the services that it provides.
In this case, with the exception of the built-in Printers and Faxes icon, the window would be
completely empty, because there are no shares defined on the server yet.

4.4.1. Server Configuration Options

Table 4-4 summarizes the server configuration options previously used. All three of these options are
global in scope, so they must appear in the [global] section of the configuration file.

Table 4-4. General server options

Parameter Value Description Default Scope

netbios name string NetBIOS name of the Samba server. Server's unqualified
hostname

Global

workgroup string NetBIOS group to which the server
belongs.

WORKGROUP Global

Parameter Value Description Default Scope

server
string

string Descriptive string for the Samba server. Samba %v Global

4.4.1.1. netbios name

The netbios name option allows you to set the NetBIOS name of the server. For example:

netbios name = YORKVM1

The default value for this configuration option is the server's hostnamethat is, the first part of its fully
qualified domain name. For example, a system with the DNS name public.example.com would be
given the NetBIOS name PUBLIC by default. Although you can use this option to restate the system's
NetBIOS name in the configuration file (as we did previously), it is more commonly used to assign
the Samba server a NetBIOS name other than its current DNS name. Remember that the name
given must follow the rules for valid NetBIOS machine names as outlined in Chapter 1.

Changing the NetBIOS name of the server is not recommended without a good reason. One such
reason might be if the hostname of the system is not unique because the LAN is divided over two or
more DNS domains. For example, YORKVM1 is a good NetBIOS candidate for vm1.york.example.com to
differentiate it from vm1.falkirk.example.com, which has the same hostname but resides in a
different DNS domain.

Another use of this option is to relocate SMB services from a dead or retired system. For example, if
SALES is the SMB server for the department and it suddenly dies, you could immediately reset
netbios name = SALES on a backup Samba server that's taking over for it. Users won't have to
change their drive mappings to a different server; new connections to SALES will simply go to the new
server.

4.4.1.2. workgroup

The workgroup parameter sets the current workgroup (or domain, as you will see in Chapter 9 and
Chapter 10) in which the Samba server will advertise itself. Clients that wish to access shares on the
Samba server should be in the same NetBIOS group. Remember that workgroups are really just
NetBIOS group names and must follow the standard NetBIOS naming conventions outlined in
Chapter 1.

The default option for this parameter is set at compile time to WORKGROUP. Because this is the default
workgroup name of every unconfigured Samba system, we recommend that you always set your
workgroup name in the smb.conf file. When choosing your workgroup name, make sure to avoid
duplicating a name of an existing server or user.[*]

[*] The tools presented in Chapter 8 can help you to scan the network to determine whether a particular NetBIOS name is

currently in use.

server
string

string Descriptive string for the Samba server. Samba %v Global

4.4.1.1. netbios name

The netbios name option allows you to set the NetBIOS name of the server. For example:

netbios name = YORKVM1

The default value for this configuration option is the server's hostnamethat is, the first part of its fully
qualified domain name. For example, a system with the DNS name public.example.com would be
given the NetBIOS name PUBLIC by default. Although you can use this option to restate the system's
NetBIOS name in the configuration file (as we did previously), it is more commonly used to assign
the Samba server a NetBIOS name other than its current DNS name. Remember that the name
given must follow the rules for valid NetBIOS machine names as outlined in Chapter 1.

Changing the NetBIOS name of the server is not recommended without a good reason. One such
reason might be if the hostname of the system is not unique because the LAN is divided over two or
more DNS domains. For example, YORKVM1 is a good NetBIOS candidate for vm1.york.example.com to
differentiate it from vm1.falkirk.example.com, which has the same hostname but resides in a
different DNS domain.

Another use of this option is to relocate SMB services from a dead or retired system. For example, if
SALES is the SMB server for the department and it suddenly dies, you could immediately reset
netbios name = SALES on a backup Samba server that's taking over for it. Users won't have to
change their drive mappings to a different server; new connections to SALES will simply go to the new
server.

4.4.1.2. workgroup

The workgroup parameter sets the current workgroup (or domain, as you will see in Chapter 9 and
Chapter 10) in which the Samba server will advertise itself. Clients that wish to access shares on the
Samba server should be in the same NetBIOS group. Remember that workgroups are really just
NetBIOS group names and must follow the standard NetBIOS naming conventions outlined in
Chapter 1.

The default option for this parameter is set at compile time to WORKGROUP. Because this is the default
workgroup name of every unconfigured Samba system, we recommend that you always set your
workgroup name in the smb.conf file. When choosing your workgroup name, make sure to avoid
duplicating a name of an existing server or user.[*]

[*] The tools presented in Chapter 8 can help you to scan the network to determine whether a particular NetBIOS name is

currently in use.

4.4.1.3. server string

The server string parameter defines a descriptive comment string that will be associated with the
server. You can use variables to provide information in the description. For example, our previous
example entry was:

[global]
 server string = Engr Dept Server (Samba %v)

The default for this option simply presents the current version of Samba and is equivalent to:

server string = Samba %v

4.5. Disk Share Configuration

So far we have not defined the [data] share on our server. So the next step is to create the directory
tree on disk that will be exported, as well as the share section in smb.conf to make it accessible to
clients.

Samba requires that the directory path being shared actually exist in order for clients to connect it.
Otherwise the client will receive an error message about a "bad network path." So if this is a new
share with no preexisting files, we must create the path first. The second of the following commands
sets the permissions to allow anyone to create files and directories, but the sticky bit prevents a user
from deleting another user's files.

root# mkdir -p /export/smb/data
root# chmod 1777 /export/smb/data

The service details in smb.conf resemble the [test] share we created in Chapter 2:

[data]
 path = /export/smb/data
 comment = Data Drive
 read only = no

The [data] share is typical for a Samba disk share. The share maps to the directory
/export/smb/data on the Samba server. We've also provided a comment that describes the share as
a Data Drive.

Samba's default is to create a read-only share. As a result, the read only option must be explicitly
disabled for each disk share that is intended to be writable. Of course, we could define read only =
no in the [global] section as the runtime default.

Now, if we connect to the PIGEON server again by double-clicking its icon in the Windows Network
Neighborhood, we will see a single file share entitled data, as shown in Figure 4-4. This share has
read/write access, so files can be copied to or from it.

Figure 4-4. The initial data share on PIGEON

4.5.1. Disk Share Configuration Options

Table 4-5 lists the basic Samba configuration options previously introduced for disk shares.

Table 4-5. Basic share configuration options

Parameter Value Description Default Scope

path (directory) string Specifies the Unix directory that will be provided for
a disk share or used for spooling by a printer share.

/tmp Share

comment string Sets the comment that appears with the share. None Share

volume string Sets the MS-DOS volume name for the share. None Share

read only boolean Controls whether clients should be allowed to write
the share.

yes Share

writable (write ok,
writeable)

boolean Inverse of read only. That is, read only = no is the
same as writable = yes.

no Share

4.5.1.1. path

This option, which has the synonym directory, indicates the absolute pathname for the root of the
shared directory or printer. You can choose any directory on the Samba server. If the connected user
is unable to change to the directory due to a lack of appropriate permissions or because it does not
exist, Samba refuses the user's connection request.

4.5.1.2. comment

The comment option allows you to enter a free-form string that is transmitted to the client when it
attempts to browse the share. A user can see the comment by using the Details view on the share
folder or with the net view command at a Windows command prompt. For example, here is how you
might insert a comment for a share:

[network]
 comment = Software installation drive (I:)
 path = /export/smb/software

Be sure not to confuse the comment option, which documents a Samba server's shares, with the global
server string option, which documents the server itself.

4.5.1.3. volume

This option allows you to specify the volume name of the share, which would otherwise default to the
name of the share given in the smb.conf file.

Some software installation programs check the volume name of the distribution CD-ROM to make
sure that the correct CD-ROM is in the drive before attempting to install from it. If you copy the
contents of the CD-ROM into a network share and wish to install from there, you can use this option
to make sure the installation program sees the correct volume name:

[software]
 comment = Software installation drive (I:)
 path = /export/smb/software
 volume = ASVP-102-RTYUIKA

4.5.1.4. read only, writable

The options read only and writable (also called writeable or write ok) are inverse Boolean options.
Both default to enforcing read-only behavior on a file share but in a logically opposite fashion. If you
want to be able to write data to a share, you must explicitly specify one of the following options in
the configuration file for each share:

read only = no
writable = yes

Samba treats both parameters as the same feature. If you specify more than one occurrence of

either or both options, Samba adheres to the last value it encounters for the share.

4.6. Networking Options with Samba

By default, both smbd and nmbd bind to all available broadcast-capable network interfaces on a
system. There are times when you may wish to restrict this behavior, such as on a multihomed host
that acts as a gateway from the internal network to the Internet, or perhaps on a laptop that has
both a local network connection and a dial-up VPN connection.

Here's a simple example. Assume that our Samba server can access two subnets. The device eth0 is
is bound to the 192.168.1.0/24 network and 192.168.2.0/24 is available on etH1. If Samba is not
supposed to advertise itself on the 192.168.1.0/24 network, we must instruct it to use a subset of
available network interfaces and bind only to those listed:

[global]
 interfaces = eth1
 bind interfaces only = yes

These two parameters, which are always used together, work in combination to restrict smbd and
nmbd to the specified networks. The interfaces parameter can accept a device name (eth1), an IP
address or hostname, a network/netmask pair (192.168.2.0/24), or a broadcast/netmask
(192.168.2.255/255.255.255.0). The bind interfaces only option limits the behavior of smbd and
nmbd to the subnets represented by the interfaces list. nmbd does not accept any broadcast
messages that originate outside these subnets and smbd binds to only the specified interfaces.

It is important to realize, however, that if packets can be routed between the two networks in our
example, a client on the 192.168.1.0/24 network can still access the Samba server using its
192.168.2.0/24 address.

A second alternative to restricting traffic is the hosts allow and hosts deny options. Unlike the
previous two global parameters, these new options can be used on a per-service basis. If these
options sound familiar, you're probably thinking of the hosts.allow and hosts.deny files found in the
/etc directories of many Unix systems. The purpose of these options is identical to those files; they
provide security by allowing or denying the connections of other hosts based on their IP addresses.
However, Samba includes its own internal implementation of the TCP Wrappers functionality, so there
is no need for additional external libraries or configuration files.

Here's a simple example that allows a portion of the hosts on the 192.168.1.0/24 network to connect
to our server. Notice that we have removed the interfaces and bind interfaces only lines to
ensure that smbd and nmbd bind to both eth0 and eth1 :

[global]
 hosts allow = 192.168.2. 192.168.1.100
 hosts deny = 192.168.1.

With the hosts allow option, we've specified a 192.168.2. IP address, which is equivalent to saying:
"All hosts on the 192.168.2.0/24 subnet." The trailing period is very important. Without this ending
puncutation, Samba does not correctly interpret the address as a network. We have also added a
single host from the 192.168.1.0/24 network to the access list. However, we've explicitly specified in
a hosts deny line that hosts on the 192.168.1.0/24 network cannot connect.

It is important to understand how Samba sorts out the rules specified by hosts allow and hosts deny
:

If no allow or deny options are defined anywhere in smb.conf, Samba allows connections from
any system.

1.

If hosts allow or hosts deny options are defined in the [global] section of smb.conf, they
determine general access to the server, even if either option is defined in one or more of the
shares.

2.

If only a hosts allow option is defined for a share, only the hosts listed are allowed to use the
share. All others are denied.

3.

If only a hosts deny option is defined for a share, any client that is not on the list can use the
share.

4.

If both a hosts allow option and a hosts deny option are defined, the allow list takes
precendence. But if a host does not match the allow list or the deny list, it is granted implicit
access.

5.

Take care that you don't explicitly allow a host to access a share, but then deny
access to the entire subnet of which the host is part.

Let's look at another example of that final item. Consider the following options:

hosts allow = 111.222.
hosts deny = 111.222.333.

In this case, hosts that belong to the subnet 111.222.*.* will be allowed access to the Samba shares.
The deny list in the case is completely disregarded because it is a subset of the allow list. To allow all
hosts in the 111.222.0.0/16 network except those on the 111.222.333.0/24 network, we can specify
the following hosts allow shorthand notation:

hosts allow = 111.222. EXCEPT 111.222.333.

4.6.1. Networking Options

The networking options introduced earlier are summarized in Table 4-6.

Table 4-6. Networking configuration options

Parameter Value Description Default Scope

hosts allow

(allow hosts)
string Client systems that can connect to

Samba.
none Share

hosts deny (deny
hosts)

string Client systems that cannot connect to
Samba.

none Share

interfaces string Network interfaces Samba will respond
to. Allows changes to defaults.

All available interfaces
capable of broadcasts

Global

bind interfaces
only

boolean When enabled, Samba will bind only to
those interfaces specified by the
interfaces option.

no Global

4.6.1.1. hosts allow

The hosts allow option (sometimes written as allow hosts) specifies the clients that have permission
to access shares on the Samba server, written as a comma- or space-separated list of hostnames of
systems or their IP addresses. You can gain quite a bit of security simply by placing your LAN's
subnet address in this option.

You can specify any of the following formats for the option:

Hostnames, such as ftp.example.com.

IP addresses, such as 130.63.9.252.

Domain names, which can be differentiated from individual hostnames because they start with a
dot. For example, .ora.com represents all systems within the ora.com domain.

Netgroups, which start with an at sign (@), such as @printerhosts. Netgroups are usually
available only on systems running NIS or NIS+. If netgroups are supported on your system,
there should be a netgroups manual page that describes them in more detail.

Subnets, which end with a dot. For example, 130.63.9. means all the systems whose IP
addresses begin with 130.63.9.

Network/netmask pairs such as 192.168.1.0/24 or 192.168.2.0/255.255.255.0.

The keyword ALL, which allows any client access.

The keyword EXCEPT followed by one or more names, IP addresses, domain names, netgroups,

or subnets. For example, you could specify that Samba allow all hosts except those on the
192.168.110.0/24 subnet with hosts allow = ALL EXCEPT 192.168.110. (remember to include
the trailing dot).

The hostname localhost, for the loopback address 127.0.0.1, is included in the hosts allow list by
default and does not need to be listed explicitly unless you have specified it in the hosts deny list
(probably as part of a subnet). This address is required for Samba to work properly.

Other than that, there is no default value for the hosts allow configuration option. The default course
of action, in the event that neither the hosts allow or hosts deny option is specified in smb.conf, is to
allow access from all sources.

If you specify hosts allow or hosts deny in the [global] section, that definition
applies to all connections to the server. In a sense, this definition overrides any
hosts allow lines in the share definitions, which is the opposite of the usual
behavior. In actuality, the service level definition applies to the tree connection
requests described in Chapter 1 and the [global] defaults apply to all packets
prior to that request (i.e., protocol negotiation and authentication).

4.6.1.2. hosts deny

The hosts deny option (synonymous with deny hosts) specifies client systems that do not have
permission to access a share, written as a comma- or space-separated list of hostnames or their IP
addresses. Use the same format for specifying clients as the hosts allow option earlier. For example,
to restrict access to the server from everywhere but the subnet example.com, you could write:

hosts deny = ALL EXCEPT .example.com

There is no default value for the hosts deny configuration option, although the default course of
action in the event that neither option is specified is to allow access from all sources.

Never include the loopback address (localhost at IP address 127.0.0.1) in the
hosts deny list. The smbpasswd program needs to connect through the
loopback address to the Samba server as a client to change a user's encrypted
password. If the loopback address is disabled, the locally generated packets
requesting the change of the encrypted password are discarded by Samba.

In addition, both local browsing propagation and some functions of SWAT
require access to the Samba server through the loopback address and do not
work correctly if this address is disabled.

4.6.1.3. interfaces

The interfaces option specifies the networks that you want the Samba server to recognize and
respond to. This option is handy if you have a computer that resides on more than one network
subnet and want to restrict the networks that Samba will serve. If this option is not set, Samba
searches out and utilizes all broadcast-capable network interfaces on the server, including loopback
devices. The loopback interface (lo) is automatically added to this list.

The value of this option is specified as one or more sets of IP address/netmask pairs, device names,
or broadcast/netmask pairs, as in the following example:

interfaces = eth0 192.168.2.30

You can optionally specify a numeric bitmask, like this:

interfaces = 192.168.220.100/24 192.168.210.30/24

Make sure to specify the device name in the interfaces list if your Samba host is configured to use
DHCP, because the server's IP address and netmask may change.

4.6.1.4. bind interfaces only

The bind interfaces only option can be used to force the smbd and nmbd processes to respond only
to those addresses specified by the interfaces option and to loopback network devices. To prevent
Samba from processing any packets (including broadcast packets) whose source address does not
correspond to any of the network interfaces specified by the interfaces option, define the following
line in addition to a list of interfaces:

bind interfaces only = yes

4.7. Virtual Servers

Virtualization has become a hot topic in recent years. Unix administrators have a longer history
managing virtual services. Samba's capability to provide multiple virtual servers comes with a twist.
Originally Samba relied upon the name sent by the client in the NetBIOS session setup request to fill
in the %L variable (Table 4-2).[*] An administrator could then include alternative configuration files
based on the destination name that the client used in the connection. However, with the introduction
of NetBIOS-less CIFS in Windows 2000 and later clients, this name is no longer available. In fact,
nothing but the standard TCP and IP headers are available in the initial connection request packet.

[*] NetBIOS session services were covered in Chapter 1.

There are two solutions to this problem. One is to force the client to use the NetBIOS session
transport layer. By default, smbd binds to TCP ports 139 and 445. Clients running Windows 2000 or a
later Microsoft OS prefer to conect to port 445 and thus bypass the overhead of NetBIOS. However,
the smb ports option allows administrators to restrict smbd solely to TCP port 139 and thus force the
clients to use NetBIOS services for locating and accessing a Samba host.

Once you have restricted clients to using NetBIOS sessions, you can again use the name passed by
the client to fill in the %L configuration variable and therefore conditionally include various
configuration files. The only piece of information yet presented is the option for defining additional
NetBIOS names to which the server will respond.[]

[] Samba really doesn't care what name is used in the NetBIOS session request. The netbios aliases parameter relates

more to name registration.

Now to put all the pieces together. This example builds a server named PIGEON, which registers the
additional names of SEAGULL and PELICAN. smbd binds solely to port 139 and uses the destination
name used by the client in the connection request to include the configuration files for the various
virtual hosts:

[global]
 netbios name = PIGEON
 netbios aliases = SEAGULL PELICAN
 server string = Engr Dept Server (Samba %v)
 workgroup = GARDEN
 smb ports = 139
 include = /usr/local/samba/lib/%L.conf

Figure 4-5 illlustrates how the virtual servers would appear when browsing the network. Notice that
all three hosts, PIGEON, SEAGULL, and PELICAN, have the same comment string when a user views the
server details.

Figure 4-5. Using NetBIOS aliases for a Samba server

To support virtual configurations over port 445, the server must possess multiple network interfaces,
although they do not necessarily have to be real interfaces; virtual interfaces work also. In this case,
the destination IP address transmitted in the connection request determines what role the Samba
server should play. When a client contacts Samba, smbd fills in the %i variable with the IP address to
which the client connected. In this case, the configuration can drop the netbios aliases option and
add the new names to the domain name service.

If the server has three IP addresses, 192.168.1.10 (pigeon), 192.168.1.11 (seagull), and
192.168.1.12 (pelican), we can update the configuration file to appear as follows:

[global]
 netbios name = PIGEON
 workgroup = GARDEN
 include = /usr/local/samba/lib/%i.conf

Notice that we have removed the smb ports line, so the parameter reverts to the default of both 139
and 445. Having removed the netbios aliases option, we enter the hostnames into our DNS server:

; Bind 9 address entries
pigeon IN A 192.168.1.10
seagull IN A 192.168.1.11
pelican IN A 192.168.1.12

Any legacy clients such as Windows NT or Windows 9x/Me will continue to be able to access the
server. But Windows 9x/Me clients are unable to use DNS names or IP addresses of CIFS/SMB
connections and therefore are unable to access any virtual server other than PIGEON. None of the
Windows NT-based operating systems are subject to this limitation.

4.7.1. Virtual Server Configuration Options

Table 4-7 summaries the new parameters necessary for configuring virtual Samba hosts.

Table 4-7. Virtual server configuration options

Parameter Value Function Default Scope

netbios

aliases
string Additional NetBIOS names to respond to, for use

with multiple virtual Samba servers.
None Global

smb ports integer
list

List of port numbers to which smbd should listen
for incoming CIFS requests.

139,
445

Global

4.7.1.1. netbios aliases

The netbios aliases option can give the Samba server more than one NetBIOS name. Each NetBIOS
name listed as a value is displayed in the My Network Places of Windows clients. When a connection
is requested to any of the servers, it connects to the same Samba server.

[global]
 netbios name = BOSS
 netbios aliases = SALES ACCOUNTING ADMIN

nmbd registers each additional NetBIOS name with the list of addresses provided by configured
network interfaces. But only the server's primary name (the value of netbios name) is used for
network browsing (Chapter 8), domain control (Chapter 9), and domain membership (Chapter 10).

4.7.1.2. smb ports

The smb ports parameter controls the TCP ports on which smbd listens. The default list, ports 139
and 445, matches Windows 2000 and later servers. It is possible to bind smbd to a nonstandard
CIFS/SMB port, but only non-Microsoft clients that are flexible enough to connect to alternative ports
will be able to access the server. A more common use is to restrict smbd to only one of the default
ports, such as forcing clients to use NetBIOS transport services:

[global]
 smb ports = 139

4.8. Logging Configuration Options

Occasionally, you'll need to find out what Samba is up to, such as when Samba is performing an
unexpected action or is not performing at all. To find out why Samba did what it did, check the
logfiles.

Samba logfiles can be as brief or verbose as you like. Here is an example of what a Samba logfile at
level 3 looks like:

[2005/07/21 13:23:25, 3] smbd/service.c:close_cnum(514)
 cabbage (192.168.1.100) closed connection to service IPC$
[2005/07/21 13:23:25, 3] smbd/connection.c:yield_connection(40)
 Yielding connection to IPC$
[2005/07/21 13:23:25, 3] smbd/process.c:process_smb(615)
 Transaction 923 of length 49
[2005/07/21 13:23:25, 3] smbd/process.c:switch_message 4-8)
 switch message SMBread (pid 467)
[2005/07/21 13:23:25, 3] lib/doscalls.c:dos_ChDir(336)
 dos_ChDir to /home/samba
[2005/07/21 13:23:25, 3] smbd/reply.c:reply_read(2199)
 read fnum=4207 num=2820 nread=2820
[2005/07/21 13:23:25, 3] smbd/process.c:process_smb(615)
 Transaction 924 of length 55

Much of this information is of use only to Samba programmers. However, we go over the meaning of
some of these entries in more detail in Chapter 12 .

Samba includes several options that allow administrators to define the granularity, verbosity, and
location of logfiles. Each of these are global options and cannot appear inside a share definition. Here
are some of the more common logging options that you might use on a production server:

[global]
 log level = 1
 log file = /var/log/samba/log.%m
 max log size = 50

Here, we've added a custom logfile that reports information up to debug level 1. This is a relatively
light debugging level. The logging level ranges from 0 to 10; level 0 provides only critical error
messages and level 10 provides a plethora of low-level information.[*] A log level of 1 provides some
information about connections, and levels 2 or 3 can provide useful debugging information without

wasting disk space on the server. In practice, avoid using log levels greater than 3 unless you are
working on the Samba source code or temporaily debugging a specific problem.

[*] The log levels used in the Samba source code are at the discretion of individual developers. For example, level 100 can be

used to debug password changes. Generally, 10 is the highest debug level used when debugging (even by developers).

The logging file is in the /var/log/samba directory, thanks to the log file configuration option. You
can use variable substitution to create logfiles specifically for individual users or clients, as with the %m
variable. Isolating the log messages can be invaluable in tracking down a network error if you know
the problem is coming from a specific client system or user.

A common question is why two logfiles are created for each client machine when the logfile is defined
as log.%m . The reason is the use of port 445 by newer Windows operating systems. When a new
connection is received on port 445, the %m can be expanded only to the client's IP address. After the
client transmits its name as part of the authentication process (SMBsessetup&X), Samba can
resubstitute the %m variable with the real machine name and reopen the expected log filename.

We've added a precaution to the logfiles: no one logfile can exceed 50 KB in size, as specified by the
max log size option. If a logfile exceeds this size, the contents are moved to a file with the same
name but with the suffix .old appended. If the .old file already exists, it is overwritten and its
contents are lost. The original file is cleared, waiting to receive new logging information. This
precaution prevents the hard drive from being overwhelmed with Samba logfiles during the life of the
Samba daemons.

4.8.1. Using syslog

It is possible to use the system logger (syslog , implemented by the syslogd daemon) in addition to
or in place of the standard Samba logging file. However, in order to use syslog, you must first make
sure that Samba was built with the --with-syslog configure option. See Chapter 2 for more
information on configuring and compiling Samba. See the smb.conf manpage for more information
about the --with-syslog option.

Next, configure your /etc/syslog.conf file to accept logging information from Samba. If there is not
already a daemon.* entry in the /etc/syslog. conf file, add the following:[*]

[*] Many syslogd implementations require that you send a HUP signal to force it to reread its configuration file. Others may require

that any new logfiles exist prior to writing to log entries.

daemon.* /var/log/daemon.log

This line specifies that any logging information from system daemons is stored in the
/var/log/daemon.log file, where the Samba information will be stored as well. From there, you can
set a value for the syslog parameter in your Samba configuration file to specify which logging

messages are to be sent to syslog. Only messages that have debug levels lower than the value of the
syslog parameter are sent to syslog. This parameter only defines the threshold below which
messages are sent to syslogd . The log level parameter still controls which messages are logged in
the first place. For example, setting the following:

syslog = 3

specifies that any logging messages with a level of 2 or below is to be sent to both syslog and the
Samba logging files. (The mappings to syslog priorities are described in the upcoming section "syslog
.") To continue the example, let's assume that we have set the log level option to 4. Logging
messages with levels of 0 through 2 are sent to both syslog and the Samba logging files, and
messages with a level of 3 or 4 are sent to the Samba logging files, but not to syslog.

If you want to specify that messages be sent only to syslogand not to the standard Samba logging
filesyou can enable the syslog only option.

syslog only = yes

If this is set, any logging information at or above the number specified in the syslog option is
discarded.

4.8.2. Logging Configuration Options

Table 4-8 lists each logging configuration option that Samba can use.

log file

string

Name of the logfile that Samba is to use.

Specified in Samba makefile

Global

log level (debug level)

integer

Number of messages that are sent to the logfile.

0

Global

max log size

integer

Maximum size of a logfile, in kilobytes.

5000

Global

debug timestamp (timestamp logs)

boolean

Controls whether Samba includes timestamped headers for log entries.

yes

Global

debug pid

boolean

Specifies whether Samba should include the process ID in the log header.

no

Global

debug uid

boolean

Specifies whether Samba should include the real and effective uid in the log header.

no

Global

syslog

integer

The threshold below which messages are sent to syslogd .

1

Global

syslog only

boolean

If yes , uses syslogd entirely and sends no output to the Samba logfiles.

no

Global

Table 4-8. Logging configuration options

Parameter Value Description Default Scope

4.8.2.1. log file

By default, Samba writes log information to text files in the ${prefix}/var directory defined at compile
time (for example, /usr/local/samba/var). The log file option can be used to set the name of the
logfile to another location. For example, to put the Samba log information in /var/log/samba.log , you
could use the following:

[global]
 log file = /var/log/samba.log

Variable substitution allows you to create logfiles specifically for individual users or clients.

You can override the default logfile location using the -l command-line switch when either daemon is
started. However, this switch does not override the log file option. If you do specify this parameter,
initial logging information is sent to the file specified after -l (or the default specified in the Samba
makefile) until the daemons have processed the smb.conf file and know to redirect it to a new logfile.

4.8.2.2. log level

The log level option sets the amount of data to be logged. Normally this option is set to 0 (the
default, which logs only critical messages) or 1. However, if you have a specific problem, you might
want to set it to 2 or 3, either of which provides the most useful debugging information you would
need to track down a problem. Levels above 5 provide information primarily for the developers to use
for chasing internal bugs, and slow down the server considerably. For normal day-to-day operation,
the recommended setting is 0, unless you are tracking specific information.

4.8.2.3. max log size

The max log size option sets the maximum size, in kilobytes, of the debugging logfile that Samba
keeps. When the logfile exceeds this size, the current logfile is renamed to add a .old extension
(erasing any previous file with that name) and a new debugging logfile is started with the original
name. For example:

[global]
 log file = /var/log/samba.log
 max log size = 1000

Here, if the size of any logfile exceeds 1 MB, Samba renames the logfile samba.log.old , and a new
logfile is generated. If there is already a file with the .old extension, Samba deletes it. Using this
option protects unwary administrators from suddenly discovering that most of the space on a disk or
partition has been swallowed up by a single Samba logfile.

It is generally a good idea to use some type of log rotation strategy, either by leveraging internal
functionality or by using external tools such as logrotate .

4.8.2.4. debug timestamp

By default, Samba includes a timestamp header with each log entry. This can be very useful when
running at level 0 or 1, due to the infrequency at which messages are logged. If you happen to be
debugging a network problem and you find that the timestamp information within the Samba log
lines gets in the way, you can turn it off by disabling the debug timestamp (also known as timestamp
logs). For example, a normal Samba logfile presents its output in the following form:

[2005/10/04 13:55:12, 1] smbd/service.c:make_connection_snum(666)
 rain (127.0.0.1) connect to service lizard initially as user lizard
(uid=780, gid=100) (pid 28317)

With a no value for this option, the output would appear without the timestamp, giving no indication
of when the event occurred.

4.8.2.5. debug pid, debug uid

These two options provide a means of separating log messages for different users that are
interwoven into a single logfile. When enabled, the debug pid parameter includes a pid= PROCESSID

field in the header information. The debug uid option fills in the real and effective uid and group
values in the header. The following is an example of a message written by an smbd with a pid of
28554, a uid of 780, and a gid of 100:

[2005/10/04 14:05:38, 1, pid=28554, effective(780, 100), real(780, 0)] smbd/service.
c:make_connection_snum(605)

Both options require that the debug timestamp parameter be enabled to have any effect.

4.8.2.6. syslog

The syslog option causes Samba log messages to be sent to the Unix system logger and is available
only when Samba has been compiled to include --with-syslog when running the configure script at
build time. The presence of the string WITH_SYSLOG in the output of smbd -b confirms that compile-
time support for syslog has been enabled. The amount of log information to be sent is specified as a

numeric value; syslog can accept any valid log level . Logging information with a level lower than
the number specified is sent to the system logger. Debug logs greater than or equal to the syslog
level, but less than the log level, are still sent to the standard Samba logfiles. For example:

[global]
 log level = 3
 syslog = 2

In this instance, all logging information with a level of 0 and 1 is sent to the standard Samba logs and
the system logger, and information at levels 2 and 3 is sent only to the standard Samba logs. Levels
above 3 are not logged at all. All messages sent to the system logger are mapped to a priority level
that the syslogd daemon understands, as shown in Table 4-9 . The default level is 1.

0

LOG_ERR

1

LOG_WARNING

2

LOG_NOTICE

3

LOG_INFO

4 and above

LOG_DEBUG

Table 4-9. syslog priority conversion

Log level syslog priority

4.8.2.7. syslog only

The syslog only option instructs Samba not to use its own logging files at all and to use only the
system logger. To enable this behavior, specify the option in the global section of the Samba
configuration file, as in the following example:

[global]
 log level = 2

 syslog = 3
 syslog only = yes

This option has no effect if Samba has not been compiled to include the --with-syslog feature.

Chapter 5. Accounts, Authentication, and
Authorization
Authentication is proving that you are who you say you are. You do this every day, during such
activities as printing a document or saving a file to a network drive. When things are working
correctly, the steps taken by a server to authenticate a request are often taken for granted. You
enter a password, and it is used whenever the client machine needs to access a network resource on
your behalf. Authentication is a prerequiste to authorization. Authorization is what the server does to
verify that the authenticated user should (or should not) gain access to the requested resource (such
as the printer or file share).

Chapter 1 described the basic steps necessary to connect to a share. The second step, after
negotiating the protocol dialect, is the session setup, a packet exchange in which the client sends
some proof of identify. This proof must be validated somehow. In this chapter, you will see how
Samba can be configured to verify this request using a set of local user accounts. More advanced
authentication environments involving domain controllers are covered in Chapters 9 and 10.

5.1. Security Modes

The SMB/CIFS protocol has two security levels: user and share. Samba implements these levels
across five security modes defined by the global security parameter in smb.conf.[*] Only three of
these values are relevant to modern Samba servers, all of which are variations of SMB/CIFS user-
level authentication. In this chapter, we cover the details of security = user and local accounts.
Chapter 10 presents the domain member server modes security = domain and security = ads.
Table 5-1 lists the valid security modes as well as their current level of support from Samba
developers.

[*] The term security level refers to the capabilities of the SMB/CIFS protocol and the term security mode describes Samba's

various implementations of the SMB/CIFS security levels.

Table 5-1. Samba's security modes

Parameter Value Description Default Scope

security user (Chapter 5)

ads (Chapter 10)

domain (Chapter
10)

share

(deprecated)

server

(deprecated)

Authentication model used to validate incoming
requests.

user Global

What About the Other Two Security Modes?

The remaining two security modes, security = share and security = server, are
historical artifacts from past releases. Both of these implementations are remnants of
authentication models primarily used by Windows 9x and earlier hosts. Neither security
mode offers functionality beyond that provided by the three recommended security
values covered in this chapter. Furthermore, in many instances, the deprecated modes
suffer from severe protocol limitations. For this and other reasons, there is a high chance
that both will be removed from Samba at some future time. It is strongly suggested that
you avoid these two values when building new servers.

5.1.1. Guest Access with security = user

We already talked about user-level security in Chapter 1, so we won't repeat the protocol background
here. Rather, we are currently interested in how the server determines whether to respond to a
session setup request with success or failure. Let's consider a very simple case in which a server
must provide open access to users without requiring creation of individual accounts. This example
might seem a little counterintuitive, given the previous discussion of authentication, but it has its
purpose and its uses.

Assume for a minute that Samba receives an authentication request in the form of a session setup
packet and that the user cannot be authenticated. This might happen in a small office network where
all clients and servers are operating in standalone configurations. This type of setup was described in
Chapter 1 as peer-to-peer networking. If there is a user named susan logged into her local Windows
workstation trying to access the share public on the Samba server named OAK (\\OAK\public), smbd
will be responsible for looking in its own list of accounts (e.g., a smbpasswd file) to validate susan's
credentials. But what should Samba do when susan has no account on the server? The default
behavior is to reject the connection attempt and indicate a logon failure.

The response to a failed logon is controlled by the map to guest parameter. To implement open
sharing in this example, the parameter should be set to the value bad user. When susan cannot be
authenticated (because she has no account), smbd evaluates the reason for the failure. A bad user is
one whose name cannot be found in the the password storage system denoted by the passdb
backend option. The concept of a backend is explored more in the upcoming section "Account
Storage"; the default backend is an smbpasswd file. When the reason for the authentication is
determined to be a bad username, smbd then honors susan's request, but requires all authorization
requests to be done using the guest account defined in smb.conf. The guest account value is a
normal Unix account that smbd can use for this one purpose. The smb.conf for our guest server
appears as follows:

[global]
 netbios name = OAK
 workgroup = GARDEN
 server string = Public access file server
 security = user
 map to guest = bad user
 guest account = smbguest

[public]
 path = /export/public
 guest ok = yes
 read only = no

Here is one file share named [public], which makes the /data/public directory available for users.
The permissions on this directory should allow anyone to create files (i.e., permission set to 1777).
The guest ok option is needed to tell smbd that users mapped to the guest account should be
allowed access to the share, assuming that the guest user, smbguest in this example, is allowed
access by the filesystem permissions. The read only parameter operates as it has in past examples.

One disadvantage of a public server such as this one is that when a connection is mapped to the
guest user, you lose all ability to audit any changes made by that connection. Any files created by
this user are owned by the guest user. Other tasks, such as printer page accounting, also become
impossible, as all knowledge of the original user is essentially lost.

Table 5-2 lists the various guest-related smb.conf parameters, and Table 5-3 lists the complete set of
map to guest values.

Table 5-2. Guest-related parameters

Parameter Value Description Default Scope

guest

account
username The Unix account smbd uses this parameter when a

connection is allowed guest access.

nobody Global

guest ok boolean Specifies whether a user mapped to the guest account is
allowed access to this share.

no Share

guest only boolean Automatically maps the user to the guest account for
access to this share.

no Share

map to

guest
never,

bad

password,

bad user,

bad uid

Determine whether a failed authentication request should
be treated as the guest user and allowed access. The
complete list of values and their description is in Table 5-
3.

never Global

Table 5-3. Values for the map to guest parameter

Value Description

never Reply with a logon failure error. This is the default behavior.

bad
password

Use the guest account if the username exists in Samba's list of accounts but the client
transmitted the wrong password. This value is not recommended in most circumstances,
due to the confusion that it may cause when a user is allowed access but does not have
the expected access.

bad uid Valid only when used on member servers (security = ads or security = domain). Use
the guest account if the domain mode authentication succeeded but a local uid for the
username cannot be found.

bad user Use the guest account if the username is unknown to Samba's list of accounts.

The only real word of caution when you configure guest servers is to remember that the map to
guest parameter is a global setting. A client may wish to access multiple file or printer shares on the

same server. However, when providing user-level security, there is only one authenticated session
per user for all share connections. It is not possible for a client to access the server as a guest for
one share and then to provide a valid set of credentials to access another share. One way around this
limitation is to use the virtual server technique described in Chapter 4. One server identity would be
dedicated to providing guest access and another would be used for nonguest access. The map to
guest option can have different values in each virtual server configuration.

5.1.2. Passwords and Authentication

The proof of identity in the session setup request can take several forms. We group the mechanisms
supported by Samba into three categories:

Clear-text passwords

NTLM and related challenge/response exchanges

Kerberos tickets

The first two areas are covered here. Kerberos authentication will be covered in the context of Active
Directory domain membership in Chapter 10.

Dispelling the Myth of Windows and Encrypted Password

Support

Much of Samba is surrounded by urban legends and common misunderstandings. One
such myth is that older versions of Windows did not support password encryption or the
NTLM challenge/response authentication mechanism. The confusion arises from the
behavior of pre-Windows NT 4.0 SP3 clients and the original versions of Windows 95.
These clients would happily transmit the password's clear text to a server if the negprot
response indicated that password encryption was not supported. Such behavior is open
to abuse, as you can imagine.

The result was that Microsoft decided that Windows clients must refuse to downgrade to
sending clear-text passwords to servers that report lack of support for NTLM. This move
was valid, as all Microsoft servers have long supported NTLM. Samba has also supported
NTLM for many years, but it was not the default password setting until the 3.0.0 release.

All recent Microsoft clients, including the MS-DOS LanMan client, Windows for
Workgroups, and the original Windows 95 releases, prefer to use encrypted passwords if
supported by the server. Therefore, if you change a Samba host from encrypt passwords
= no to yes, Windows clients automatically begin to use the NTLM authentication
algorithm. You might want to configure the clients to never downgrade to clear-text
authentication at this point, just to prevent clever attackers masquerading as SMB/CIFS
servers. But no client-side changes are required to have the new server functionality
utilized.

5.1.2.1. Clear-text passwords

Using clear-text passwords has many disadvantages in modern networks. The lack of security is the
most serious of these; plus, no current CIFS clients support this in their default configurations. But
clear-text authentication has one alluring feature that still entices some systems administrators even
today: having smbd authenticate users against an NIS map or local /etc/passwd file.

Samba's domain controller functionality cannot be used with encrypt passwords
= no.

If you choose this route, the first requirement is to configure the Windows clients to send the clear-
text password, which can be done by importing the appropriate file from the docs/registry/ directory
of the Samba source distribution into the client's local registry. The operating system name is part of
the filename. So for a Windows XP client, use the file called WinXP_PlainPassword.reg. After you
import the correct file, a reboot of the client is required to make the change effective.

The second step is to set encrypt passwords = no in the [global] section of smb.conf. This setting
instructs Samba to ignore any smb.conf passdb backend directives when authenticating users, and
instead to validate each user by hashing the transmitted password and comparing it against the entry
returned from the system account list.

There are a few subtleties of which you should be aware. Although Windows NT-based clients send
the clear text password as it was typed by the user, Windows 9x/Me hosts do not. These clients
transmit the clear-text password in all uppercase. You must inform Samba as to how many
permutations of that password it should attempt to validate before giving up and reporting failure.
The password level option accepts a positive numeric value that represents the maximum number of
uppercase letters in password test cases. For example, if the client transmitted a password of "cow,"
a password level of 1 would result in the follow variations being tested: COW, cow, Cow, cOw, and
coW. The first two combinations shown are tried irrespective of the password level. Samba always
tries the password as transmitted first, followed by an all-lowercase version and an all-uppercase
version of the string (assuming the originally transmitted password had mixed case). The password
level option defaults to 0, because as the number of combinations to be tested increases, a
proportional amount of CPU and time is needed for the authentication process.

If your server's operating system uses DES password hashes, setting a
password level of 8 characters effectively makes the passwords case-
insensitive, because DES limits the password to 8 characters.

Here is a basic smb.conf that allows users to authenticate against /etc/passwd, as long as passwords
contain at most four uppercase characters. If there are no users with Windows 9x/Me clients that will
require access to the server, the password level option can be removed altogether.

[global]

 encrypt passwords = no
 password level = 4

In some extreme cases, it may be necessary to have Samba perform the same type of case
permutations to a user's login name, because Windows 9x/Me clients also convert the login name to
uppercase before sending to the server. Unix platforms have historically presented usernames as
case-sensitive. This is yet another point of contention between Windows and Unix hosts. Internally,
Samba first looks for the name in all lowercase, as this is the most common case on Unix hosts,
followed by string as transmitted from the client, and finally in all uppercase. If no user by any of the
names can be found, Samba then attempts a round of upper- and lowercase combinations controlled
by the value of username level. Only when a user's name is stored in mixed case in the server's list
of accounts should you even consider changing the username level from its default of 0.

The username and password level options are summarized in Table 5-4.

Table 5-4. Username- and password-level parameters

Parameter Value Description Default Scope

password

level
integer Number of case permutations to test when validating a

clear text password.
0 Global

username
level

integer Number of case permutations to test when searching for
the login name sent in a connection request.

0 Global

5.1.2.2. Pluggable Authentication Modules (PAM)

Pluggable Authentication Modules (PAM) are shared libraries that can be used in combination to allow
an administrator to enforce a specific authentication security policy. For a complete discussion of
PAM, first try searching your server's operating system documentation. Another good source of
information is the Linux PAM web site at http://www.kernel.org/pub/linux/libs/pam.

Each PAM module implements one or more of the following functions:

auth

User authentication requests

account

User account handling, such as password expiration and denying locked accounts

http://www.kernel.org/pub/linux/libs/pam

session

User management related to this specific session, such as logging user activity to the system's
utmp file

password

User password change requests

Samba is able to use PAM to authenticate users and enforce certain authorization controls based on
the the configuration of the samba PAM service. On some platforms, such as Solaris, all services are
configured in a single configuration file named /etc/pam.conf. On Linux hosts, these settings will be
stored in /etc/pam.d/samba. The following configuration instructs the PAM library to verify that the
server is not rejecting logins (i.e., the /etc/nologin file does not exist) and then validate the user
against /etc/passwd:

/etc/pam.d/samba
auth requisite pam_nologin.so
auth require pam_unix.so

Our focus is not on PAM configuration specifics, but rather on how Samba, and smbd in particular,
interacts with PAM. First it is necessary to verify that Samba was compiled to include the --with-pam
configure option. The build output from smbd -b should include the WITH_PAM string if this is the case.

$ smbd -b | grep WITH_PAM
 WITH_PAM

If this check fails, return to Chapter 2 and rebuild Samba to include PAM support. You may also need
to install additional software to get the PAM development files (e.g., the pam-devel package).

Once you have a PAM-aware version of smbd, it will require a properly configured /etc/pam.d/samba
file. Samba makes use of the auth settings in its PAM configuration file only if clients use clear-text
passwords. If the encrypt passwords parameter has been enabled, the auth PAM module lines are
ignored completely. However, it is possible to still make use of the remaining three PAM functions.
The account and session settings are respected if the obey pam restrictions options is enabled in
smb.conf. Any user password change requests that must be synchronized between Samba's and the
operating system's list of users will pass through the PAM stack if pam password change = yes.
Password synchronization is covered later in this chapter, so we will delay the complete discussion
until then. Table 5-5 summarizes these two options and their default settings.

Table 5-5. PAM-related parameters

Parameter Value Description Default Scope

obey pam
restrictions

boolean Controls whether smbd respects the account and
session PAM configuration settings.

no Global

pam password

change
boolean If enabled, smbd will, upon receiving a password

change request, use PAM for synchronizing a user's
Unix credentials.

no Global

5.1.2.3. NTLMv1

NTLM is the challenge/response authentication algorithm developed by Microsoft and utilized by
Windows and other CIFS clients and servers. In the original implementations of NTLM, the client uses
a hashed version of the user's password to generate a 24-byte response to a challenge returned by
the server in the negotiate protocol reply. The actual details of the algorithm are not important from
the point of view of a systems administrator.[*] The key facts to remember are:

[*] Details of NTLM and other authentication protocols used by CIFS can be found at Chris Hertel's site http://ubiqx.org/cifs.

The hashed password is never sent over the wire.

The user's password hash is a shared secret used to calculate the response. If the client's and
the server's calculated response match, it proves that both knew the same initial password
hash.

Both the LanManager and NT password hashing algorithms do not use any salt. Therefore a
string always produces the same LanMan and NT hashes.

The last point is important to remember, because it implies that the password hash is a plain-text
equivalent. If an attacker were to uncover a user's password hash, he could impersonate that user
without deriving the original clear-text string. Even so, many users reuse a single password for
multiple services (email, banking accounts, and so on). Given that the LanMan password is limited to
14 uppercase characters and possesses a very weak hashing algorithm, protecting Samba's account
database becomes extremely important.

Enabling NTLMv1 authentication in Samba is as simple as setting encrypt passwords = yes in the
[global] section of smb.conf and then creating user accounts using either smbpasswd or the pdbedit
utility, introduced in Chapter 2. When adding a new user, if the password is less than or equal to 14
characters in length, Samba stores two password hashes. Following is an entry from an smbpasswd
file for a user named lizard with a password of test. The first string of hexadecimal digits is the
LanMan hash followed by the NT password hash. Each field is separated by a colon. The line has been
wrapped due to space limitations and appears as one line in your smbpasswd file.

lizard:1004:01FC5A6BE7BC6929AAD3B435B51404EE:
 0CB6948805F797BF2A82807973B89537:[U]:LCT-44528BD2:

If the user's password is longer than 14 characters, the LanMan hash is disabled so that the security

http://ubiqx.org/cifs

value of the password is not degraded by storing a truncated version. A disabled password is
represented by a string of Xs. This is what lizard's smbpasswd entry would look like with a password
of somepasswordstringlongerthanfourteen:

lizard:1009:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX:
 0FF1DFDA18B63EC50E1FD9ECFCDFDE05:[U]:LCT-44528C6B:

It is possible to disable a Samba server's use of LanManager passwords altogether by setting the
lanman auth option to no in the [global] service.

Table 5-6 summarizes the smb.conf parameters related to NTLMv1 authentication.

Table 5-6. NTLMv1-related parameters

Parameter Value Description Default Scope

encrypt
passwords

boolean Controls whether Samba advertises support for NTLM
authentication.

yes Global

lanman auth boolean Determines whether smbd should attempt to validate
NTLM responses using the LanManager password hash.

yes Global

5.1.2.4. NTLMv2

NTLMv2 is a variant of the original NTLM authentication scheme, and was introduced in Windows NT
4.0 SP4. However, it has seemed to gain any semblance of widespread adoption only in conjunction
with Active Directory deployments. Its main advantage over NTLMv1 is protection against man-in-
the-middle and replay attacks. As with NTLMv1, the actual protocol details are unimportant for day-
to-day system administration duties.

Supporting NTLMv2 on Samba servers is a process of disabling support for the older authentication
protocols. The following [global] section snippet illustrates the use of the lanman auth and ntlm auth
parameters:

[global]
 ## Enable support for only NTLMv2 on the server
 encrypt passwords = yes
 lanman auth = no
 ntlm auth = no

Unlike many other client and server capabilities, support for NLTMv2 cannot be negotiated. If a client
sends an NTLMv2 response, Samba always uses that. However, unless the older, less secure

authentication schemes are disabled on the clients as well, NTLMv2 does very little to help improve
the overall security of a system, primarily because both the NTLMv1 and NTLMv2 client responses are
created using the NT password hash. The situation is comparable to restricting 9 out of your 10 hosts
to SSH access but allowing Telnet access to the remaining tenth host. Security is only as strong as its
weakest link.

Table 5-7 summarizes the parameters needed to restrict access to using NTLMv2 authentication only.

Table 5-7. NTLMv2-related parameters

Parameter Value Description Default Scope

ntlm auth boolean Controls whether Samba should validating using the NTLMv1
24-byte response. This parameter should be disabled, along
with the lanman auth option, to enforce use of NTLMv2.

yes Global

5.2. User Management

Any discussion about authentication is fruitless without including the topic of users. After all, the
users are the ones being authenticated. As early as Chapter 2 we have seen some basic utilities that
can be used to create a user account (i.e., the smbpasswd tool). However, we have not really talked
about what the smbpasswd and similar utilities actually do. Here we break the discussion into two
parts. We cover the various ways that user account information can be stored, followed by a
explanation of the user management tools provided by Samba. First, we expand upon the discussion
of Windows SIDs that we started in Chapter 1 .

5.2.1. Security Identifiers

A Windows security identifier (SID) is a collection of numbers combined into a binary blob that
uniquely identifies an object such as a user, group, or computer. The common string representations
of a SID is written as:

S-1-5-21-3489264249-1556752242-1837584028-1003

It is impossible to determine what type of object the SID represents by its value alone. It could be a
user or a group or something else. Windows (and Samba) provide calls to convert this SID to a name
and to obtain its type.

The structure of a SID can be broken down into four parts:

The revision (S-1)

The number of authorities and subauthorities (5)

The top-level authority (21)

One or more subauthorities (3489264249-1556752242-1837584028-1003)

The last 32-bit number in the list of subauthorities is referred to as a relative identifier (RID). To be
completely accurate, each 32-bit number of the subauthority list is a RID, but generally people use
the term only to refer to the last number in the list. In this example, the RID is 1003.

Removing the RID from the original SID leaves us with an identifier that represents the SID's security
domain. A security domain is not necessarily the same thing as an authentication domain (as
discussed in Chapter 1), although there is a relationship between the two. In our example, the
security domain would be S-1-5-21-3489264249-1556752242-1837584028. Each Windows host has
a machine SID that defines its local domain. On domain controllers, the domain SID is identical to the
local machine SID.

You can view Samba's local machine SID by logging on as root and running the net command from a
shell prompt.

root# net getlocalsid
SID for domain RAIN is: S-1-5-21-3489264249-1556752242-1837584028

The concepts of local and foreign security domains do not neatly match up to Unix hosts, which have
one authentication domain, based on an entry in /etc/passwd . Even when a network of hosts is
configured to be part of an NIS domain (which should not be confused with a Microsoft domain),
there is no distinction between users within the NIS map and those existing in the local /etc/passwd
file.

From the Windows GUI, the distinction between local and remote domains can be seen from the
initial logon box. Figure 5-1 shows the drop-down list of domains available when logging onto a
Windows XP client. The local Administrator account is distinguished from the Administrator account in
a foreign domain by prefacing the username with either the local machine's name
(LETTUCE\Administrator) or the name of the foreign domain (AD\Administrator). These are two
different user accounts with different SIDs, even though they share the same login name of
Administrator.

Figure 5-1. Selecting the domain when logging onto a Windows XP client

In addition to the local machine security domain, all Windows and Samba hosts are expected to
support the S-1-5-32 domain, which is called BUILTIN . Groups existing within this domain have
predefined RIDs. For example, the BUILTIN\Administrators group has a SID of S-1-5-32-544 and the
BUILTIN\Users group's SID is S-1-5-32-545.

More information on SIDs and authentication domains is presented in Chapters 9 and 10 .

5.2.2. Account Storage

Samba exposes Unix objectsfiles, printers, users and groupsin a way that Windows clients
understand. It is necessary, however, for Samba to store some additional attributes for users beyond
the information in /etc/passwd . These attributes, such as the LanMan and NT password hashes, the
user's SID, and a home directory UNC path, are maintained in what is referred to as a passdb
backend . This storage facility can currently take one of three forms:

A flat text file

A trivial database (tdb) file

An LDAP directory service

The passdb backend parameter is a global option whose value is in the form name : argument [,
argument] . The Samba code for passdb is written such that new storage modules can be written by

the community. However, in this chapter, we concern ourselves with only three, which are distributed
as part of the core Samba source code: smbpasswd , tdbsam , and ldapsam . Because each passdb
module has its own list of supported options, we discuss possible argument values later, after we
have covered each backend in depth. Frequently, arguments can be omitted in order to rely on the
passdb module's default behavior. If no backend is specified in smb.conf , Samba defaults to using an
smbpasswd file.

5.2.2.1. passdb backend = smbpasswd

We have seen the structure of an entry from an smbpasswd file earlier in this chapter. Although the
file's format changed between Samba 1.9 and 2.0, smbpasswd is the original account storage
mechanism used by Samba and still the recommended solution for most standalone servers.
Additional storage facilities were not officially supported until Samba 3.0.[*] The structure of an
smbpasswd entry is:

[*] Samba 2.2 did support both the LDAP and TDB storage backends. But it was only with the Samba 3.0 releases that developers

considered these to be first-class citizens when managing user accounts.

username:uid:lanman_hash:nt_hash:flags:pw_lct

The fields are defined as follows:

username

The user's login name.

uid

The Unix numeric uid of the user. This field is currently ignored by Samba, because the value is
obtained by querying the operating system instead.

lanman_hash

nt_hash

The user's password hashes, represented as 32-character hexadecimal strings. A string of 32
Xs indicates an invalid password. A value of the string "NO PASSWORD" followed by 21 Xs in
the lanman_hash indicates that no password has been associated with this account. Accounts

with no passwords are allowed access only if the null passwords option (Table 5-8) is enabled
in the [global] section of smb.conf .

flags

Various single-character flags representing the type and state of the user's account. The
complete list of account flags is in Table 5-9 .

pw_lct

The Unix timestamp of the user's last successful password change, encoded as a hexadecimal
string.

null passwords

boolean

Determines whether Samba allows connections using accounts with no associated password hash and
possessing the N account flag.

no

Global

Table 5-8. Null passwords option

Parameter Value Description Default Scope

D

Account is disabled.

I

Interdomain trust account.

L

The account has been autolocked due to bad login attempts.

N

No password is required by this account. This flag is honored only if the null passwords global
parameter is enabled.

S

Backup domain controller trust account.

U

User account.

W

Workstation trust account.

X

The associated password will not expire, regardless of the server's password policy settings.

Table 5-9. User account flags supported by Samba

Flags Description

The following example configures Samba to use an smbpasswd text file for account storage:

[global]
 security = user
 encrypt passwords = yes
 passdb

 backend = smbpasswd

The file's default location is set at compile time and can be determined by entering smbd -b | grep
SMB_PASSWD_FILE . If you wish to assign a different location, append a colon and the desired absolute
path to the smbpasswd module name:

 passdb backend = smbpasswd:/etc/smbpasswd

5.2.2.2. passdb backend = tdbsam

The TDB passdb backend, named tdbsam , expands upon the list of user attributes supported by the
smbpasswd backend. TDbsam is the recommended method for storing accounts for a single Samba
primary domain controller that does not share its users and groups with any Samba backup domain
controllers. The full discussion of Samba domains is provided in Chapter 9 . For now, it is sufficient to
understand that a TDbsam is a database variant of smbpasswd with support for a richer set of
attributes.

The default tdbsam database filename is passdb.tdb and is located in the /usr/local/samba/private
directory. For custom Samba installations, you can determine this location by running smbd -b | grep
PRIVATE_DIR . If you wish to change that location at runtime, TDbsam accepts, as its only argument,
the absolute path to a tdb file:

passdb backend = tdbsam:/etc/passdb.tdb

5.2.2.3. passdb backend = ldapsam

The third officially supported passdb module is the ldapsam backend. A complete discussion of LDAP is
beyond the scope of this book. If you are interested in LDAP and directory services, a recommended
resource is LDAP System Administration , by Gerald Carter (O'Reilly). The remainder of this section
assumes a basic level of comfort with LDAP directories and the OpenLDAP software in particular. If
you are using a directory server from a different vendor, the examples should prove easy to adapt.

When you consider the ldapsam backend, the first thing to do is to become familiar with the schema.
There are two auxiliary classes and one structural object class that will be encountered in relation to
users and groups:

sambaDomain

This structural object class is used to store information that is intended to be shared between
Samba domain controllers in the same domain. We examine this more in Chapter 9 .

sambaSamAccount

This auxiliary object class represents normal user and computer accounts and is commonly
used to extend a user's posixAccount entry in the directory. If a user (or computer) does not
have a preexisting entry in the directory service, Samba attempts to use the account object as
the structural class to instantiate a user. We haven't discussed how machine and domain trust
accounts are implemented yet, but we return to this subject in Chapter 9 .

sambaGroupMapping

This auxiliary object class contains the attributes necessary for Samba's group mapping
functionality and is designed to use the posixGroup class as its structural basis.[*] Group

mapping is covered later in this chapter.

[*] This is the posixGroup from the original RFC2307 schema and not the auxiliary version defined in the

RFC2307bis extensions.

All the necessary attributes and object classes are defined in an OpenLDAP 2.x compatible schema
file named samba.schema located in the examples/LDAP directory of the Samba source distribution.
In this same location are schema files for other directory services as well, although these may not be
up to date. Make sure that you include or import the appropriate schema file into your LDAP server's
configuration. Be aware that Samba's OpenLDAP schema file requires you include the nis.schema ,
inetorgperson.schema , and cosine.schema files first.

Remember that the LanMan (sambaLMPassword) and NT (sambaNTPassword) password hashes stored
in the sambaSamAccount object are plain-text equivalents and should never be made readable to users.
Access control rules should restrict these attributes to administrative users only, such as Samba's
ldap admin dn distinguished name (discussed a few paragraphs ahead). The following ACLs in
OpenLDAP's slapd.conf file protect the passwords from normal users but allow them to be read and
modified by Samba:

protect the samba password hashes
access to attr=sambaNTPassword,sambaLMPassword
 by cn=smbadmin,ou=people,dc=example,dc=com write
 by * none

For performance reasons, the directory service should support fast equality searches on the uid , cn ,
sambaSID , gidNumber , uidNumber , and displayName attributes. Newer Samba releases (beginning
with 3.0.23) also use a substring matching rule on the sambaSID attribute. To effect this performance
enhancement, add the following indexes (or their equivalents) to the server's database section, if any
are missing.

Samba's index settings for OpenLDAP's slapd.conf
index uid,cn,displayName,memberUid eq
index uidNumber,gidNumber eq
index sambaSID eq,sub

Finally, it may be necessary to restart your directory server and/or rerun indexing tools to get it to
recognize the changes.

Begin configuring smb.conf by setting up the connection parameters, starting with the LDAP server's
URI in the passdb backend value.

[global]
 passdb backend = ldapsam:ldap://localhost/

By default, all LDAP requests are sent to the directory in an unencrypted form. Unless the master
LDAP server and Samba are running on the same machine, it is highly recommended that you take
steps to secure the LDAP traffic from eavesdropping. Even when an LDAP replica is running locally on
the Samba host, any referrals going back to the master LDAP server must still be encrypted.

Use the ldaps:// URI in the passdb backend option if you wish to connect using LDAP over SSL.
However, using StartTLS is the recommended method for configuring data privacy when
communicating with an LDAP directory. In this case, the ldap:// URI suffices. To enable StartTLS
support, add the following setting to the [global] section:

 ldap ssl = start_tls

It is possible to include multiple LDAP URIs in a single-quoted string for purposes of fault tolerance or
load balancing. If there are two servers, ldap1 and ldap2 , which are replicas of the directory, we can
configure Samba to use one in case the other is unavailable. The list of servers is passed on to the
underlying LDAP client libraries, which handle the actual network connection details and any failover
behavior. The ldap ssl parameter is included here to reiterate the need to secure all communication
with the directory service; its value, however, specifies the use of StartTLS instead of SSL:

 passdb backend = ldapsam:"ldap://ldap1/ ldap://ldap2/"
 ldap_ssl = start_tls

Samba treats LDAP as another storage facility for users and groups. Thus all of the user's attributes
are retrieved from the directory when a SMB/CIFS connection request must be authenticated. When
configuring the directory service access control settings, we restricted the password hashes to be
readable only by Samba itself when using its ldap admin dn distinguished name to bind to the server:

 ldap admin dn = cn=smbadmin,ou=people,dc=example,dc=com

The password associated with this privileged DN is stored in clear text separately in secrets.tdb . The
smbpasswd command can store these credentials interactively (-W option) or on a command line (-w
option). Here we have chosen to enter it interactively so that the password will not be displayed in
the output of ps :

root# smbpasswd -W
Setting stored password for "cn=smbadmin,ou=people,dc=example,dc=com" in secrets.tdb
New SMB password: <enter password>
Retype new SMB password: <re-enter password>

The final bit of information that Samba requires for ldapsam is the set of base suffixes used to query

and store users and groups. The top-level suffix is specified by the ldap suffix option. This DN
should be the parent of the other smb.conf search suffixes, which are specified by the following
options:

ldap user suffix

The search base for locating and storing user accounts

ldap machine suffix

The search base for locating and storing computer and domain trust accounts

ldap group suffix

The search base for locating and storing group mapping entries

ldap idmap suffix

The search base for mapping winbindd 's SIDs to the Samba host's uid/gid entries; additional
information on winbindd is provided in Chapter 10

The ldap suffix should be specified first in smb.conf and should be a full DN. The remaining search
suffixes should be defined relative to the ldap suffix value. In order to support a directory name
space such as the directory information tree (DIT) shown in Figure 5-2 , we would add the following
parameters to Samba's configuration:

Figure 5-2. Samba's DIT

[global]
 ldap suffix = dc=example,dc=com
 ldap user suffix = ou=people
 ldap machine suffix = ou=people
 ldap group suffix = ou=group
 ldap idmap suffix = ou=idmap

It is possible to define different machine and user suffixes. If you do so, the server's LDAP NSS
module must search both bases when querying for a posixAccount . As one of the Samba developers
has said, "Machines are people too." The nss_ldap library from PADL software (http://www.padl.com
) supports this by enabling the library's RFC2307bis extensions (pass the --enable-rfc2307bis option
to the nss_ldap configure script when compiling) and then defining multiple nss_base_passwd
directives in its configuration file (usually /etc/ldap.conf). The complete details of PADL's nss_ldap
configuration is beyond the scope of this discussion. For more information, please refer to PADL's web
site and the documentation included with its software.

To finish off the section, Table 5-10 lists the LDAP-related parameters supported in smb.conf . Samba
and LDAP integration are revisited in Chapters 9 and 10 .

ldap admin dn

DN

The user DN entry with administrative access to read and modify all Samba attributes and entries in
the directory.

""

Global

ldap replication sleep

integer (in milliseconds)

The period to delay queries to an LDAP replica after updating the master directory server.

1000

Global

ldap ssl

off start_tls

Transport layer encryption settings when not using LDAPS in the ldapsam server URI.

off

Global

ldap suffix

DN

The parent search suffix that establishes the base suffix for LDAP queries.

""

Global

ldap group suffix

DN

The suffix relative to the ldap suffix that stores group mapping information.

""

Global

ldap idmap suffix

DN

The suffix relative to the ldap suffix that stores winbindd 's identity mapping information.

""

Global

ldap machine suffix

DN

The suffix relative to the ldap suffix that stores computer and domain trust account information.

""

Global

ldap user suffix

DN

The suffix relative to the ldap suffix that stores user account information.

""

Global

ldap timeout

integer (in seconds)

The maximum time in seconds to wait for a response to an LDAP query.

15

Global

Table 5-10. LDAP-related parameters

Parameter Value Description Default Scope

5.2.3. Username Maps

A username map is a mechanism for translating a login name sent by a client in the session setup
request to a local Unix username. It's independent of any passdb backend. The most common use is
to handle usernames that differ between Windows and Unix. Usernames on Windows systems can
violate the limits placed by Unix systems on length and characters used, so sometimes the user
account must be stored on the Unix or Linux system, and recognized by Samba as a different name
from the one sent by a Windows system to authenticate the user.

This mapping feature comes in two forms: username map uses a file lookup, whereas username map
script relies upon an external command to perform the search. Both smb.conf parameters are
summarized in Table 5-11 .

username map

string

Absolute path of the username map file.

""

Global

username map script

string

Absolute path to a script or tool that accepts the requested username as a parameter and prints the
mapped username (if any) to standard output. This script is mutually exclusive with, and takes
precedence over, the username map parameter.

""

Global

Table 5-11. Username mapping

Parameter Value Description Default Scope

The username map option requires the absolute path to a map file on the server. Frequently this file is
named smbusers and is stored in the same location as smb.conf . No default mapping file is
distributed with Samba, although some vendors may choose to do so. The username map option must
be explicitly set as shown here:

[global]
 username map = /usr/local/samba/lib/smbusers

This map file contains entries in the form of:

map_to = map_from

The map_to value is a single Unix username. The map_from value may be a list of values that include:

A single username. Login names containing whitespace must be surrounded by double quotes
(e.g., "Lee Zard").

A Unix or NIS netgroup name prefaced by a & , @ , or + . This same syntax is reused for other
smb.conf parameters and so is discussed in the final section of this chapter, where it is most
applicable.

A single wildcard character, *, that matches everything.

Processing of the username map file continues until either the complete map has been parsed or until
an entry prefixed by an exclamation point (!) matches successfully. Any lines beginning with a hash
(#) or semicolon (;) character are ignored as comments. If no match is found at all, the original
username is unchanged.

As an example, to map a Windows user of Lee.Zard to a Unix login name of lizard , we could use a
single entry such as:

!lizard = Lee.Zard

The righthand values are compared in a case-insensitive fashion, so this example would succeed
regardless of whether the user logs on with Lee.Zard or LEE.ZARD . The beginning ! prevents smbd
from continuing to look for additional matches for lizard after this entry is parsed.

The username map script allows an administrator to define an external command that will be invoked,
rather than reading a map file directly. It provides the flexibility to store the maps in directory
services such as LDAP. The mapping command must accept a username as its sole parameter
(provided by smbd) and must return a single login name to standard output if any mapping is
necessary. Without getting into too many details, the following example uses the OpenLDAP
ldapsearch tool to query a directory service based on the common name (cn) attribute and maps the
user to the login name provided by the uid attribute.

#!/bin/sh
ldapsearch -x -LLL -h ldapsrv1 -b "dc=example,dc=com" \
 -s sub "(&(cn=$1)(objectclass=posixAccount))" \|
 grep uid: | cut -d: -f 2 | sed 's/^\s*//'

Assuming that this script is named ldapmapuser.sh , we can instruct smbd to make use of it by
adding the following line to smb.conf :

[global]
 username map script = /usr/local/bin/ldapmapuser.sh

In this way, it is possible to integrate the username map functionality with the ldapsam passdb
backend.

The point at which the mapping occurs is dependent on the value of the security parameter. In the
context of our current discussion around security = user , the map is queried before the user is
authenticated. To illustrate the consequence, assume that we have the following entry in a username
map file:

root = administrator

If a user attempts to connect to our standalone server with a login name of Administrator , the
password supplied must match the one for root in Samba's configured passdb backend.

When Samba is configured as a domain member server (security = domain or security = ads), the
map is applied after a user has been authenticated by a domain controller. The means that when a
user connects as DOMAIN\administrator , she must provide the actual password for that account
even though the account may be eventually mapped to the local superuser account. The process
becomes even more complicated with the presence of winbindd . Therefore the remainder of the
discussion of username maps and member servers is saved until Chapter 10 .

5.2.4. Account Utilities

Samba provides a set of tools for manipulating user accounts stored in its passdb . The Samba
developers have designed these tools to work in the same manner, regardless of which passdb
module is used. For this reason, our discussion can focus on the tool without worrying about where or
how the information is stored.

Many administrators, particularly LDAP administrators, have a tendency to manage the user
attributes (e.g., password hashes or SIDs) manually. It is possible in many instances to do this.
However, it is not recommended for most installations. If you understand how to manipulate these
attributes directly without breaking your server, it is probably okay. But consider this the sticker that
voids your warranty if removed. If you can get away with it, congratulations. Such tactics are not
covered here.

The two main user management tools are smbpasswd and pdbedit . The former is the original tool for
setting user passwords in an smbpasswd file. During the Samba 3.0 development cycle, it was
thought that this tool would be superseded by pdbedit . However, this has not yet happened, and
pdbedit is considered by some as the example of how not to build a command-line interface. In
Chapter 9 , we explore how to use MS-RPC tools such as the Windows NT 4.0 User Manager for
Domains and MMC plug-ins to manage users and group from Windows clients. At the moment, these
two command-line utilities are what we have to work with.

The smbpasswd tool has two basic categories of functions:

When run as root , the command can be used to manipulate Samba's local user accounts.

Normal users can use the tool to perform password changes against remote Samba and
Windows servers.

Local user management breaks down further into:

Adding or deleting a user from Samba's list of accounts

Setting user passwords

Enabling or disabling user accounts

In previous chapters, you've seen examples of adding a new user by passing a login name to the -a
argument. It is also possible to feed the new password to the tool on standard input using the -s
option, which can be very useful for shell scripts. Here is an example that adds a user named smitty
and assigns a password of "cat." The reason for the complicated syntax is to answer both prompts
output by the smbpasswd command to request the password. Remember that the Unix user smitty
must already exist.

root# (echo "cat"; echo "cat") | smbpasswd -s -a smitty
Added user smitty.

To later manually change this user's password, run the smbpasswd command again, but this time
without the -a option. In this example, we enter the new password interactively rather than using the
-s option again:

root# smbpasswd smitty

New SMB password: <enter new password>

Retype new SMB password: <re-enter new password>

The password is verified by comparing both input strings. If both match, the new password is set.
Otherwise you will see an error message stating, Mismatch - password unchanged .

An account can be disabled to prevent the user from logging on. Disabling a user's account sets the D
flag in the account control flags. (Refer to Table 5-9 in the earlier section on the smbpasswd file
format for an overview of these flags.) The following lines disable smitty 's account (-d option) and
then reenable it (-e option):

root# smbpasswd -d smitty
Disabled user smitty.
root# smbpasswd -e smitty
Enabled user smitty.

When the account is no longer necessary, we can delete this user from our passdb using the -x option
and passing it the account name. This command has no effect on the user's Unix account in
/etc/passwd .

root# smbpasswd -x smitty
Deleted user smitty.

Table 5-12 summarizes the command-line options available to root when running smbpasswd .

-a name

Add a user account.

-c smb.conf

Specify an alternative configuration file.

-d name

Disable a user account.

-e name

Enable a user account.

-h

Print the command usage.

-n name

Set a null password for a user.

-x name

Delete a user account.

Table 5-12. Command-line options for smbpasswd when run as root

Argument Description

If smbpasswd is a tool for day-to-day administrative tasks, pdbedit is more akin to a low-level
database editor. Overall, its syntax can be cryptic at times, but it does provide three major functions
not supported by the smbpasswd command:

Editing of account policy settings, such as maximum password age and bad login attempts
before locking an account.

Editing the full set of supported user attributes, such as the login script, the user's SID, and
roaming user profile location.

Converting from one passdb backend to another.

The first two features are more related to Samba domain controller functionality, and so are
discussed in full detail in Chapter 9 . The last is covered here, because without the translation support
between passdb storage formats, tasks such as converting from an smbpasswd file to tdbsam would
be time-consuming and extremely error-prone.

pdbedit 's option naming is a bit confusing at first. The import option (-i) reads in from one backend,
whereas the export option (-e) writes to another. Each command-line switch accepts a passdb
backend value as its argument. So to convert from smbpasswd to a TDbsam backend, you would run the
following command as root :

root# pdbedit -ismbpasswd:/tmp/smbpasswd -etdbsam:/tmp/passdb.tdb
Importing account for root...ok
Importing account for kong...ok
<remaining output deleted>

It is a good idea to copy your current passdb file or database to a temporary location, rather than
working on the live version.

5.2.5. Synchronizing Passwords

The complaint with Samba in regard to user accounts is that its user passwords must be maintained
separately from the from the Unix or Linux system passwords. To help alleviate the pain of managing
multiple passwords for each user, Samba provides a mechanism to synchronize the user's Unix
password entry when a CIFS client requests that the LanMan and NT password hashes be changed.

Of course, this solution does not help when the user changes the password by means other than the
SMB/CIFS protocol, such as using the passwd command or writing to the passdb storage directly
using pdbedit .

The only prerequisite of using this feature is for the root user to able to reset a user's password
without knowing the old password. The reason for this requirement is that the client encrypts the new
password with the old password hash as the key. The clear text of the old password is never sent.
Password hashes are one-way, so there is no way to derive the clear text of the password from the
old password hash.

It is extremely difficult to make generalities about Windows clients because there are so many
different versions. In fact, Windows 9x/Me clients do send the clear text of the old password, in
uppercase of course, when the the net.exe command is used to change a password. But this
approach is hardly useful, because it is impossible to determine the case of the new password.

The smbd daemon currently supports three mechanisms for changing a user's Unix password:

Communicating with an external password program

Utilizing the PAM password change API

Requesting that the LDAP Directory service do the work on its behalf

The simplest option of the three, the ldap password sync option (sometimes called ldap passwd sync
), instructs smbd to send a ModifyPassword extended request to the directory service, which then
updates the userPassword attribute on behalf of the user. This option currently works only when
Samba is using the ldapsam passdb module and when the LDAP directory service is running a recent
version of OpenLDAP. To enable password synchronization, with all these prerequisites in place, add
ldap password sync = yes to the [global] section of smb.conf .

If you can't make use of this optimal solution, the next option is to enable the unix password sync
option and then choose which of the first two mutually exclusive password change mechanisms you
wish to use. Relying on an external program is the older method. In this case, you must define a
value for the passwd program parameter and then specify a passwd chat conversation string.[*]

[*] In any discussion of Unix utilities, it is admittedly hard to remember which password-related options and files are called

"password" and which are called "passwd."

The chat value is a special string generally called an "expect string" or "chat string"; it lists pairs of
strings in which the first of each pair is the text that you expect the external program to output, and
the second is the text that the external program expects the user to enter. With an expect string, an
automated system can interact with a program that was designed for a human user. In this case,
Samba is pretending to be the root user and is interacting with a password change program. The
Samba expect string is case-insensitive and can contain wildcards (*) to eat a variable number of
characters when evaluating the output from the program in the passwd program parameter.
Remember that the passwd program executable is run as root , so be sure to pass the Unix user name

(%u) as a command-line argument, or else you will be stuck just changing root 's credentials.

The following example works on most recent versions of Linux from Novell or Red Hat:

[global]
 encrypt passwords = yes
 unix password sync = yes
 passwd program = /usr/bin/passwd %u
 passwd chat

 = *New*password* %n\n\
 *Reenter*new*password* %n\n\
 *Passwd*changed*

Deriving passwd chat values is not extremely difficult. This one was developed by examining the
output from running /usr/bin/passwd from a shell prompt, as shown here:

root# passwd lizard
Changing password for lizard.
New Password:
Reenter New Password:
Password changed.

Notice that the expect string collapses the first line of output to a single * character.

The pam password change Boolean parameter replaces the invocation of an external command with a
series of calls to the system's PAM library. The passwd chat parameters plays the same role as
before, providing a means by which smbd is able to interact with the PAM password change interface.
This requires that the Samba PAM service has been correctly configured in either /etc/pam.conf or
/etc/pam.d/samba . The following is a basic PAM password change stack that performs strengths
checks on the new password, and finally hands it off to the pam_unix.so library to actually update the
user's credentials:

password required pam_pwcheck.so nullok
password required pam_unix2.so nullok use_first_pass use_authtok

Next, we can update the previous example to make use of the new PAM configuration file:

[global]
 encrypt passwords = yes
 unix password sync = yes
 pam password change = yes

 passwd chat = *New*password* %n\n\
 *Reenter*new*password* %n\n\
 *Passwd*changed*

If desired, password strength checking can be performed using an external utility specified by the
check password script parameter. This directive should point to a tool or script that accepts the new
password as its single argument and returns 0 for valid passwords and a nonzero value if the
strength check fails.

Table 5-13 summarizes all of the password synchronization options we have discussed in this section.

check password script

string

Defines an external script that is used to verify the strength of a new password. The script must
return 0 to indicate a valid password.

""

Global

ldap password sync

boolean

If enabled, smbd sends a Modify Password extended operation (currently supported only by
OpenLDAP servers) to request that the user's directory service password attribute be updated.

no

Global

pam password change

boolean

Controls whether smbd uses PAM to change a user's Unix password.

no

Global

passwd program

string

External program to change a user's Unix credentials.

""

Global

passwd chat

string

An expect string that smbd uses to interact and evaluate the password change conversation.

*new*password* %n\n *new*password* %n\n *changed*

Global

passwd chat debug

boolean

Samba dumps the passwd chat conversation to its logfiles when this option is enabled, the
DEBUG_PASSWORD macro was enabled at compile time, and the debug level is set to 100 or greater.

no

Global

passwd chat timeout

integer

The maximum number of seconds that smbd should wait for a passwd chat to complete.

2

Global

unix password sync

boolean

Defines whether Samba should attempt to synchronize a user's Unix password upon receiving a
password change request from a CIFS client.

no

Global

Table 5-13. Password synchronization parameters

Parameter Value Description Default Scope

5.3. Group Mapping

Remember that Samba exports Unix objects in a means that is palatable to Windows clients. In
keeping with this philosophy, Unix groups are handled in a very similar fashion to Unix users. The
underlying Unix group must already exist. Samba then associates a SID and name with that group
and displays it to Windows. This operation is referred to as group mapping . The additional attributes
can be manipulated using the net groupmap command.

The group mapping functionality is provided as part of Samba's passdb API and therefore shares the
same storage mechanisms as user accounts. Both the smbpasswd and TDbsam passdb modules use the
group_mapping.tdb file (stored in /usr/local/samba/var/locks by default). The ldapsam backend
stores mapping entries by adding the sambaGroupMapping auxiliary object class to an existing
posixGroup enTRy in the directory service. For all three backends, the actual table entries can be
managed using the same Samba command-line tools (as was the case with user accounts).

The group mapping interfaces and internal design have been given a new look starting with the
3.0.23 release. However, the basic concept is the same as in previous releases. Only the tools have
changed. The new interface is a command set named net sam , which provides an interface to users,
groups, and password policies. At the time of writing, the toolset is not yet complete.

A group mapping entry is primarily an association from a SID to a Unix gid. A current entry can be
viewed using the net groupmap list command. Be aware that all of the net groupmap commands
must be run as root , because they operate on the passdb storage service directly.

root# net groupmap list verbose ntgroup="Printer Admins"

Printer Admins
 SID : S-1-5-21-391507597-2097566357-2340928898-3091
 Unix group: prtadmin
 Group type: Domain Group
 Comment : Domain Unix group

Printer Admins is the name that will be displayed to Windows clients. The membership of this group
is handled by managing the prtadmin Unix group membership. Only those Unix groups that posses a
valid group mapping entry are displayed, as illustrated by Figure 5-3 . The same is true for users:

only those users who have an account in the current passdb backend are displayed in the Windows
object picker UI.

Figure 5-3. Displaying users and groups in the Windows object picker

You can view a complete list of current group mappings by omitting the group name when entering
net groupmap list . But groups mapped to a value of -1 are placeholder entries created by smbd and
are ignored.

root# net groupmap list
Printer Admins (S-1-5-21-391507597-2097566357-2340928898-3091) -> prtadmin
Administrators (S-1-5-32-544) -> -1
Domain Admins (S-1-5-21-391507597-2097566357-2340928898-512) -> -1
Users (S-1-5-32-545) -> -1

Domain Guests (S-1-5-21-391507597-2097566357-2340928898-514) -> -1
Domain Users (S-1-5-21-391507597-2097566357-2340928898-513) -> -1

 remaining output deleted

The placeholder entries are not present when using an ldapsam passdb backend. Future versions of
Samba will remove them from the remaining backends for the sake of consistency.

New maps can be added by executing net groupmap add and including the Unix group name and
either a SID or simply a Windows group map. It is better to define the ntgroup name value and allow
Samba to allocate a SID unless you have a specific group (e.g., Domain Admins) that you require.

root# net groupmap add ntgroup="System Managers" unixgroup=sysadmin
No rid or sid specified, choosing algorithmic mapping
Successfully added group Systems Managers to the mapping db

The associated Unix group and group description can be changed with the modify subcommand:

root# net groupmap modify ntgroup="System Managers" unixgroup=sysops comment="Server
administrators group"
Updated mapping entry for System Managers

The Unix gid is not stored in the map entry and is therefore unaffected by renaming a group in
/etc/group . In this example, the sysops and sysadmins groups are entirely different groups on the
Unix server.

Finally, you can remove entries using net groupmap delete :

root# net groupmap delete ntgroup="Systems Managers"
Successfully removed Systems Managers from the mapping db

Table 5-14 gives a brief overview of the net groupmap command-line arguments.

There are more esoteric things that can be done with the net groupmap tool. Most of these are prone
to error and are not recommend for normal use. The options covered in this section are the most
common and the least likely to change in a future Samba release.

add

{ntgroup= name ,sid= sid_string }

unixgroup= name

[comment= string]

Add a new group mapping between a Unix group and a Windows group name or SID.

delete

{ntgroup= name ,sid= sid_string }

Remove an existing group mapping entry.

list

[verbose]

[ntgroup= name ,sid= sid_string]

List all or a specific group mapping record. The verbose option includes all map attributes.

modify

{ntgroup= name ,sid= sid_string }

[unixgroup= name]

[comment= string]

Update an existing group mapping record.

Table 5-14. net groupmap command-line options

Command Arguments Description

5.4. User Privilege Management

The user privilege model was introduced in Samba 3.0.11 to alleviate the need to log on as root to
perform certain administrative duties, such as joining client machines to a Samba domain or
managing printer properties. A user privilege, sometimes called a user right, is the inherent capability
to perform certain actions regardless of the access control settings. For example, a printer
administrator should be able to manage printer settings irrespective of whether the printer's security
descriptor allows his user account administrative access. Currently Samba supports eight different
privileges, which are described in Table 5-15, along with references to the chapter that fully covers
each one.

Table 5-15. Samba user privileges

Privilege Description

SeAddUsersPrivilege Add, modify, and delete users, as well as group membership (Chapter
9).

SeBackupPrivilege Not currently used.

SeDiskOperatorPrivilege Create, modify, and remove file shares, as well as modify share ACLs
(Chapter 9).

SePrintOperatorPrivilege Create, modify, and remove printers, print drivers, and forms (Chapter
7).

SeMachineAccountPrivilege Add and remove client machines from a Samba domain (Chapter 9).

SeRemoteShutdownPrivilege Issues requests to initiate and abort a shutdown of the Samba server
(Chapter 9).

SeRestorePrivilege Set the ownership of a file or directory to an arbitrary user (Chapter 6).

SeTakeOwnershipPrivilege Take possession of a file or directory (Chapter 6).

The first thing that must be done to take advantage of this administration delegation model is to
enable the feature in smb.conf:

[global]
 enable privileges = yes

Table 5-16 provides a short description of the enable privileges parameter, as well as its current
default value.

Table 5-16. User-privilege-related parameters

Parameter Value Description Default Scope

enable

privileges
boolean Controls whether smbd supports the assignment and

honoring of user rights assignments.

no[a] Global

[a]

[a] Future versions of Samba will enable this feature by default. Be sure to check the current smb.conf(5) manpage for your

version.

Once this feature is enabled, the primary means of managing privilege assignments on a Samba
server is the rpc rights subcommand of the net utility.

It is possible to manipulate user rights assignments with the Windows NT 4.0
User Manager for Domains utility, but only when run from a Windows NT 4.0
client. This specific functionality in usrmgr.exe does not work correctly when
run from a Windows 2000 or later client, due to a bug in the application.

5.4.1. The net Tool

The net tool began as a variation of the net.exe command on Windows. The motivation was to be
able to perform simple remote administration tasks, such as adding a user or enumerating the open
files on a server. To that end, the tool initially supported three main subcommands: RAP, RPC, and
ADS. Each of these network commands has a myriad of additional subcommands. This list has grown
to include nonnetwork related activities, as is the case with the groupmap subcommand. Chapter 11
expands on the net command, as we examine some simple scripts that make use of Samba tools. All
three of these remote administration protocols share a set of common command-line arguments
specifying the server and connection credentials.

When using the commands, first ensure that Samba is running, because the net rpc commands make
use of the network to communicate rather than directly accessing any local configuration files.

You can anonymously enumerate the available user privileges on a server by running:

$ net -S localhost -U% rpc rights list
SeMachineAccountPrivilege Add machines to domain
 SeTakeOwnershipPrivilege Take ownership of files or other objects
<remaining output deleted>

The -S option specifies the server to query and the -U option specifies the username to use when
making the connection. Like most Samba tools, these tools let you specify the full connection

credentials in the -U option: a username followed by a % character and then the password. In this
example, both the username and password are left empty.

It may be necessary in some circumstances, such as connecting to a server belonging to Active
Directory, to define the domain for a username as well. This can be accomplished using the -W
command-line flag. The following example connects to a server as the user AD\Administrator. If no %
character is found in the username, net and other Samba client tools prompt for a password.

$ net -S localhost -U Administrator -W AD rpc rights list

Password: <enter password>

Once you are able to successfully enumerate available privileges, it is time to grant specific privileges
to users. The capability to manage user rights assignments is implicitly granted to the root user. It is
also implicitly granted to members of the Domain Admins group if the server is participating in a
domain either as a domain controller or a member server. For now, this example relies on the
presence of a root account that can connect to the server.

In this example, assume that there is a Unix user named lizard and that the server's name is RAIN.
We can grant this user the SeDiskOperatorPrivilege by running:

$ net -S localhost -U root -W RAIN rpc rights \
 grant 'RAIN\lizard' SeDiskOperatorPrivilege

Password: <enter password for root>
Successfully granted rights.

If you receive an error indicating that the named privilege does not exist,
ensure that you have spelled the privilege name correctly and that enable
privileges = yes is correctly specified in smb.conf.

Privileges can be assigned to any name that can be resolved to a SID. This means that the account
being granted a right need not be a local user or group. In fact, a common configuration is grant
domain groups certain rights on the Samba host in order to leverage the existing domain
infrastructure rather than duplicating it locally. (Future chapters expand on this idea.)

It is possible to view specific privilege assignments by using a variant of the net rpc rights list that
was discussed earlier. The following command enumerates all accounts stored in Samba's privilege
database (account_policy.tdb) and any rights associated with that user or group:

$ net -S localhost -U% rpc rights list accounts
BUILTIN\Print Operators
No privileges assigned
....
RAIN\lizard

SeDiskOperatorPrivilege

This command lists all users and groups stored in Samba's privilege database. If you prefer to list
only the rights assigned to a specific name, you can alternatively run this command:

$ net -S localhost -U% rpc rights list accounts 'RAIN\lizard'
SeDiskOperatorPrivilege

Or, if you wish to find all owners of a particular privilege, run:

$ net -S localhost -U% rpc rights list privileges SeDiskOperatorPrivilege
SeDiskOperatorPrivilege:
 RAIN\lizard

At times it is necessary to remove a privilege assignment from a user or group. The net rpc rights
revoke command performs the inverse function to the grant subcommand. Here the
SeDiskOperatorPrivilege previously assigned to lizard is removed:

$ net -S localhost -U root -W RAIN rpc rights revoke 'RAIN\lizard' \
SeDiskOperatorPrivilege
Password: <enter password for root>
Successfully revoked rights.

In all of these examples, it is possible to list multiple privilege names when listing, granting, or
revoking rights. Table 5-17 collects the various options to the net rpc rights command covered in this
section.

Table 5-17. net rpc rights commands

Command Description

list [{accounts,privileges} [name]] Enumerate supported privileges or assigned rights.

grant name right [right] Assign a list of user privileges to a user or group.

revoke name right [right] Remove a list of assigned privileges from a user or group.

5.5. Controlling Authorization for File Shares

We began this chapter discussing authentication, and we now end it with a discussion about
authorization. Authorization under Unix relies upon the user's uid and a list of group gids. Samba can
use this same information to perform preliminary access checks to to control whether the user or
group should be allowed to modify any files within a share. For example, perhaps you would like to
export a set of files as read-only to students but allow modification by teachers. There are several
ways to accomplish this goal. The final access granted to a file or directory for a user is the most
restrictive permission set allowed after passing the user credentials through the share's:

Security descriptor

Access controls in the share's definition in smb.conf

Filesystem permissions

The initial access check is performed by comparing against the share's security descriptor. These
share permissions are maintained separately from the server's configuration file and are stored by
default in /usr/local/samba/var/locks/share_info.tdb. All shares initially have a neutral ACL that
grants Everyone full control of the share.

Figure 5-4 shows the share permissions for [public] viewed from the Computer Management MMC
plug-in connected to a Samba host. Expand the Systems Tools Share Folders Share
hierarchy to list the available file shares. Finally, select an individual share and right-click to navigate
to the Properties menu option. The security tab in the dialog box that appears provides access to the
share ACL settings. Note that you will not be able to modify the security descriptor unless you are
connected as root or possess the SeDiskOperatorPrivilege.

Figure 5-4. Share permissions for \\RAIN\public

Next, we focus on the category of smb.conf authorization options that make use of a list of names.
Consider the admin users option as a first example. This option accepts a list of users or group
members that should be mapped to the root account when they access resources on a given share.
Assume that we want to allow the users rose and lily to be able to manipulate files regardless of the
filesystem permissions. A basic way to achieve this is to add the admin users list to the share
definition in smb.conf:

[documents]
 path = /data/docs
 read only = no
 admin users = rose, lily

When a user connects, Samba determines whether that user is a contained within the list rose, lily.
Evaluating user names is straightforward. A single string comparison returns success or failure
depending on whether the login names match.

Authorization lists such as admin users can accept group names as well. The next example expands
the [documents] share to add the Unix group named staff as a member of the admin users list:

[documents]
 path = /data/docs
 read only = no
 admin users = rose, lily, +staff

When a name is prefixed by the plus sign (+), Samba resolves that name as a Unix group by querying
the operating system for its membership. Once the list of user names is expanded, the login name
comparison continues until a match is found or until all the members in the list have been checked.

Any files or directories created by a user contained in the admin users list will
be owned by root, not the actual user.

In most cases, the + character is all that is needed. There are two other available characters to
inform Samba of the properties of a name:

@

Attempt to resolve the name as an NIS netgroup, and fall back to evaluating it as a Unix group
in case of failure.

&

Attempt to resolve the name as an NIS netgroup, with no fallback mechanism in the case of
failure.

It is very likely that Samba's support for NIS will be deprecated at some point, so don't rely upon the
@ and & characters unless you actually use netgroups. Doing so prevents you from having to update
your smb.conf, should support for descriptive characters other than + be removed.

Other parameters that make use of the user and group list syntax are frequently found in pairs. For
example, the valid users and invalid users options allow and restrict specific users or groups from
accessing a specific share. Although these parameters are not mutually exclusive, the configuration is
much easier to understand when only one is present. If one parameter is definedfor example, valid
users = +staffeveryone who does not belong to that list is considered to be invalid and is not
allowed access to that share. This is a simple method to either disallow everyone and specify a few
exceptions (valid users), or to authorize all users and then reject a few particular ones (invalid
users). If both parameters are defined, a user must not appear in the invalid users list, but must
match the valid users list.

Similarly, the read list and write list options provide a means of deviating from the read only
setting for a user or group. A share may be marked as read only with the exception of a few users or
groups. The following [administration] share is read only for those who do not belong to the
pcadmins Unix group:

[administration]

 path = /data/administration
 read only = yes
 write list = +pcadmins

In a complementary fashion, a share named [documents] is defined here to be modifiable by all users
except those in the guest group:

[documents]
 path = /data/documents
 read only = no
 read list = +guest

Finally, a share can be restricted to a maximum number of simultaneous connections across all user
sessions by specifying a nonzero max connections parameter. This approach provides a crude
mechanism for metering network software installations. For instance, if you have only 10 licenses for
an application, you can install it in a dedicated Samba file share and have the clients run the software
from there. To help illustrate the use of the option, the following example configures a share named
[cad] that allows only 10 connections at any given time:

[cad]
 comment = CAD software for Engineering Department
 path = /data/applications/cad
 read only = yes
 max connections = 10

Note that this example restricts only the number of connections to the share. It does not track how
many users are currently running an application. A user who has the share open in a Windows
Explorer window is consuming one of the connections, even without accessing any files contained in
the share.

Table 5-18 concludes this chapter with an overview of the authorization parameters discussed in this
section. In the next chapter, we examine many more configuration options and advanced capabilities
of Samba's file serving functionality.

Table 5-18. File share authorization-related parameters

Parameter Value Description Default Scope

admin users user/group
list

List of users or members of a group who are mapped
to the root user for all access to this share.

"" Share

Parameter Value Description Default Scope

invalid
users

user/group
list

List of users or members of a group who are denied
access this share.

"" Share

max

connections
integer Defines the maximum number of concurrent

connections to this share across all user sessions. A
value of 0 indicates that access should not be
restricted.

0 Share

read list user/group
list

List of users or members of a group who are restricted
to read only access to this share.

"" Share

valid users user/group
list

List of users or members of a group who are granted
access to this share, if permitted by the other
authorization checks as well.

"" Share

write list user/group
list

List of users or members of a group who are granted
write access to this share, if permitted by the other
access checks on the share and filesystem permissions
as well.

"" Share

invalid
users

user/group
list

List of users or members of a group who are denied
access this share.

"" Share

max

connections
integer Defines the maximum number of concurrent

connections to this share across all user sessions. A
value of 0 indicates that access should not be
restricted.

0 Share

read list user/group
list

List of users or members of a group who are restricted
to read only access to this share.

"" Share

valid users user/group
list

List of users or members of a group who are granted
access to this share, if permitted by the other
authorization checks as well.

"" Share

write list user/group
list

List of users or members of a group who are granted
write access to this share, if permitted by the other
access checks on the share and filesystem permissions
as well.

"" Share

Chapter 6. Advanced Disk Shares
So far, the configurations we've discussed have been rudimentary and useful primarily for testing an
initial server installation. In this chapter, you will see exactly why so many network administrators
have chosen Samba as their interoperable file serving solution. Adding features such as Virtual File
System (VFS) plug-ins and support for Microsoft Distributed File Systems (MS-DFS) to Samba's
already flexible and powerful file serving capabilities builds a solid foundation that is able to compete
with and outperform many commercial CIFS implementations. By the end of this chapter, you will be
well-versed in navigating tasks such as bridging the differences between Unix filesystems and
Windows clients, configuring group shares, and managing ACLs on file and directories.

6.1. Special Share Names

In Chapter 4, we introduced three special section names: [global], [homes], and [printers]. These
built-in section names have special meaning to Samba. There is a fourth special service that we have
mentioned when listing shares using smbclient. This share, [IPC$], is provided by all CIFS servers,
not just Samba, and is used for certain network operations such as listing file and printer shares.
Other service names can have special meanings to clients. Consider this list of shares on a Windows
Server 2003 host:

$ smbclient -L trinity -U Administrator%test
Domain=[COLOR] OS=[Windows Server 2003 3790 Service Pack 1] Server=[Windows
Server 2003 5.2]

 Sharename Type Comment
 --------- ---- -------
 print$ Disk Printer Drivers
 C$ Disk Default share
 IPC$ IPC Remote IPC
 ADMIN$ Disk Remote Admin
 public Disk
 SYSVOL Disk Logon server share
 NETLOGON Disk Logon server share

Now examine the same server's list of shares displayed by a Windows XP client using the net.exe
command:

C:\> net view \\trinity /user:COLOR\Administrator test
Shared resources at \\trinity

Share name Type Used as Comment
--
NETLOGON Disk Logon server share
public Disk
SYSVOL Disk Logon server share
The command completed successfully.

Notice that the XP client does not list the four shares whose names end in a $ character, a trait
specific to Microsoft clients. There is nothing special about the file shares C$, PRINT$, or ADMIN$, other
than the last character of their name. Windows recognizes any share whose name ends with a $ as a
hidden share, because such shares are primarily used for remote administration within Microsoft

networks. Because these names are filtered from the share listing by the client and not the server,
any file share defined smb.conf as ending in a $ is hidden from users by the Windows Explorer
interface. The following list shows the purpose of each standard hidden share:

C$

This share represents the full contents of the server's C: drive. There will be one such share for
each hard disk mounted on the server using the traditional alphabetic naming scheme (C:, D:,
etc.). Only administrators are able to connect to this share.

ADMIN$

This share exports the Windows OS directory, pointed to by the %SYSTEMROOT% environment
variable. Only administrators are able to connect to this share.

PRINT$

This share provides access to the server's repository of print drivers needed to support point-
and-print functionality. This share is covered in more detail in the next chapter, when we
explore Samba's own printing support. All authenticated users are able to copy files from this
share, but only administrator accounts may add or modify files.

These three shares point to overlapping portions of the same directory tree, as shown in Figure 6-1.
For example, the root of the \\SERVER|PRINT$ share is the same directory as
\\SERVER\ADMIN$\System32\spool\drivers.

Figure 6-1. The directory hierarchy shared by the C$, ADMIN$, and
PRINT$ file shares

Samba 3.0 includes a built-in [ADMIN$] share as a synonym for the the [IPC$] share. This share was
originally implemented (including some other special cases in the Samba server code) for
interoperability with the now defunct Advanced Server for Unix product. Until the 3.0.20 release,
there was no way to disable this feature, which meant that you could not define your own [ADMIN$]
file share short of modifying the Samba source code. However, it can be important to define an
[ADMIN$] share, because some Windows tools rely upon its existence (as well as the other standard
administrative shares) and even make assumptions about the directory tree that are found at the
[ADMIN$] share.

For this reason, newer Samba releases include the global enable asu support Boolean parameter, so
you can disable the internal [ADMIN$] IPC share and define your own file share in smb.conf. In this
section, we assume that you have version 3.0.20 or later, and show you how to create the standard
administrative shares. In order to create all three of the file shares, we will mirror a portion of the
Windows operating system directory hierarchy.

The following command creates the full path from /data to the drivers subdirectory. If your mkdir
command doesn't support the -p option to create the full path all at once, create each subdirectory
one at a time.

$ mkdir -p /data/windows/system32/spool/drivers

Next, define each share in smb.conf, taking care to ensure that the directory paths mirror the
common directory trees shown in Figure 6-1. Remember to disable the enable asu support option so
that you can create an [ADMIN$] in the first place.

[global]
 enable asu support = no

[C$]
 path = /data
 read only = no
 valid users = +admins

[ADMIN$]
 path = /data/windows
 read only = no
 valid users = +admins

[PRINT$]
 path = /data/windows/system32/spool/drivers
 read only = yes
 write list = +admins

You have already seen that these administrative shares are hidden only by the Windows user
interfaces such as cmd.exe and explorer.exe. However, smbclient happily enumerates all of a server's
shares, regardless of the names. If you prefer to have smbd not advertise a share at all, disable the

browseable parameter in the share's definition. Be aware that hiding a share has no effect on the
security of the share. A user who knows the UNC path to the share can still attempt to connect to it.

A frequent trick is to mark the [homes] share as unbrowsable in order to prevent both a share named
homes and one matching the currently connected user's login name from appearing in the list of
available shares. Many administrators also restrict the set of valid users in [homes] to the %S variable.
Remember from Chapter 4 that [homes] is copied in memory and renamed to match the user's login
name, and that %S is expanded to the name of the current share. Therefore, %S expands in this case
to the user's name, preventing users from connecting to home directories other than their own.
Here's a short example:

[homes]
 comment = Home directory for %U
 read only = no
 browseable = no
 valid users = %S

If the name zulu is a valid user on the system, Samba internally allocates the following share when
that user connects to her home directory:

[zulu]
 comment = Home directory for zulu
 read only = no
 browseable = yes
 valid users = zulu

6.2. Filesystem Differences

The list of differences between Windows filesystems such as FAT and NTFS and those hosted by Unix
servers (too numerous themselves to mention) generally fall into the following five categories:

Valid filename characters

Windows restricts such characters as colons (:) and trailing whitespace; Unix is happy to create
files and directories with names such as "Where I was: or at least thought." The other major
point of contention is the path separation character. Windows breaks directories paths into
individual components using the backslash (\), and Unix employs the forward slash (/).

Filename length

Originally DOS and Windows clients only supported filenames that are at most eight characters
in length plus a file extension of at most three characters. Today, long filenames are widely
supported on Unix and Windows hosts. There are times, however, when a long filename may
need to be mangled into a shorter one, as you will see when we discuss valid filename
characters.

Case sensitivity

Windows preserves case in the names that users create for folders and files, but allows them to
be requested in a case-insensitive manner. That is, you can refer to My Documents as MY
DOCUMENTS. Unix filesystems are traditionally case-sensitive.

File locking and caching

In modern networks, the byte range-locking semantics expected by Windows clients are those
provided by the Windows kernel. Thankfully, as an administrator, you don't have much to
worry about here. Samba does the heavy lifting to ensure that Windows clients are kept happy.
It may be necessary, however, to configure how Samba responds to caching requests by
Windows clients.

Permissions and attributes

In Windows, support for permissions and attributes ranges from the FAT filesystem, which
possesses no permissions, to NTFS and its elaborate ACLs. In contrast, nine simple bits
(read/write/execute for user/group/other) are historically supported by Unix.

This is not a complete list of differences, but does cover about 90 percent of the issues. Examining a

few common scenarios faced by administrators will help to illustrate how Samba is able to bridge this
gap.

6.2.1. Name Mangling and Filename Lengths

Name mangling is the term given to the process of translating the name of a file (or directory) as it is
stored on the server to a form acceptable by the client. There are many reasons why a filename
acceptable to the server would be unacceptable to the client. Older SMB clients, such as DOS and
some 16-bit applications running on Windows 9x/Me, can make use of only 8.3 filenames, also
referred to as short filenames. The name "8.3" is derived from the maximum length of the filename
(eight characters), which is followed by a period and up to a three-character extension (such as
NOTES.TXT). The 8.3 filename convention is used for many applications, even though current
operating system requirements are much more flexible. (This is why HTML files are often represented
with .htm extensions, JPEG files with .jpg extensions, and executable files with .exe extensions). True
8.3 filenames are uppercase (WINWORD.EXE), as they would be appear on an MS-DOS system.

A simple way to view the mapping from long filenames to short ones is to use the Windows XP
cmd.exe shell and the dir command. The default method for displaying files shows the long filename
on the lefthand side of the output. To display the short filename as well, specify the /x argument. The
following listing shows the contents of a Samba share named [public] mounted on the client at P:.
Notice that filename Samba Notes.html has been mapped to the valid 8.3 filename SM0EEH~V.

P:\> dir /x
 Volume in drive P is public
 Volume Serial Number is 0200-0882

 Directory of P:\

05/23/2006 05:58 PM <DIR> .
05/23/2006 05:57 PM <DIR> ..
05/23/2006 05:57 PM 0 SM0EEH~V Samba Notes.html
 1 File(s) 0 bytes
 2 Dir(s) 2,502,819,840 bytes free

The algorithm used to determine the derived 8.3 filename is controlled by Samba's mangling method
global parameter. This parameter currently accepts either of two values: hash or hash2. The hash
method was used in Samba 2.2, and hash2 is the default for Samba 3.0 servers. It is recommended
that you do not alter the parameter from its default value unless you explicitly require backward
compatibility with the Samba 2.2 installations. This would be the case if you had applications that
relied upon the generated 8.3 names (a bad idea to begin with).

Any filename containing an character that is invalid on Windows, such as *, \,
or :, is automatically mangled, even if the client supports long filenames.

One question that often appears on Samba-related mailing lists is how to make the server generate
short files names in the same manner as Windows, for example having Program Files appear as
PROGRA~1. It is not possible to configure Samba to do this, because neither the hash nor hash2
method store the generated the short filename for long term use. Unlike FAT32 and NTFS, Unix
filesystems do not care about 8.3 filenames and therefore do not allocate any room in the file's
metadata record for remembering the shorter variation. Therefore, Samba has to regenerate short
filenames every time the server starts up.

Table 6-1 gives a short overview of the mangling method parameter and its possible values.

Table 1-1. The mangling method parameter

Parameter Value Description Default Scope

mangling
method

hash or
hash2

Determines the internal hashing function used for
generating an 8.3 filename in place of its long filename
counterpart. It is recommended to leave this option set to
its default value.

hash2 Global

6.2.2. Case Sensitivity and Preservation

Windows filesystems are case-preserving and case-insensitive. Native Unix filesystems are almost
always case-preserving and case-sensitive. Case preservation is no problem. Samba simply creates
the file or directory using the name specified by the client. But what should the server do if the client
creates a file named Foo.txt and later tries to open foo.txt? Both names should map to the same file.

The way Samba solves this problem is very similar to how it attempts to solve the problems
concerning login names and clear-text passwords presented by Windows 9x/Me clients (discussed in
the previous chapter). When receiving a request containing a filename (open, remove, rename, etc.),
smbd first attempts to locate the file using the name transmitted by the client. If this lookup fails, the
daemon then continues to try various case permutations of the file name until a match is located or
until all string variations fail. A successful lookup is stored in smbd's internal cache. Sometimes it
may be necessary to limit the size of this stat cache to prevent smbd from allocating large amounts
of memory. On a busy server, small amounts of extra memory allocated by many Samba processes
can add up quickly.

The max stat cache size accepts an integer value that restricts the amount of memory in kilobytes
that the stat cache can consume in an smbd process. The default is to allow as much memory as
needed. In most cases this behavior is acceptable, because clients activity tends to be pretty localized
to a portion of the server's filesystem. Exceptions to this rule might occur when a client's virus
software is scanning a large directory tree on the server for infected files. In a worst case scenario,
the stat cache parameter can be disabled altogether, although at a high cost in performance. When
in doubt, it is best to make use of the default stat cache-related settings (summarized in Table 6-2).

Table 6-2. Stat-cache-related parameters

Parameter Value Description Default Scope

max stat cache

size
integer Restricts the maximum amount of memory in kilobytes

that will be allocated to stat cache in each smbd process.
0 Global

stat cache boolean If yes, smbd caches successful case-insensitive filename
lookups.

yes Global

By default, smbd honors the case-preserving semantics expected by Windows clients. However, at
times, this functionality must be sacrificed; Samba should adopt a single convention for representing
case in file and directory names to provide better service. Historically, Unix filesystems have suffered
badly when serving thousands of files from a single directory. Combine this with multiple case-
insensitive lookups in Samba and you have a recipe for unhappy users impatiently waiting for their
spreadsheet to open.

Beginning with Samba 3.0.12, Samba developers introduced a mechanism by which a Unix filesystem
could provide case insensitivity through smbd. The trick is to convert all file and directory names into
a common case format and then instruct Samba to perform a case-sensitive lookup after converting
the name requested by the client to the same default case used by the share. The only downside is
that you lose case preservation when creating new files.

Let's look at an example that takes an existing share named [drawings] and converts it to use case-
sensitive filename lookups. The initial share definition defines a path and allows write access to its
contents:

[drawings]
 path = /data/drawings
 read only = no

First, the example converts all files and directories in the share to a default case, either upper- or
lowercase. This example uses lowercase. Make sure to block out client connections to the share
during the conversion, either by taking Samba offline or by setting available = no in the share
definition.

The NormalizePath bash function listed in the following shell script accepts a path name as its single
argument and renames the last component of the path to its lower case variant. The path Foo/Bar
would be renamed to Foo/bar.

#!/bin/bash
normalize.sh - Shell script to convert a directory
tree beginning at the current working directory to
lower case file and directory names

Normalize the last component of a path to lower case
function NormalizePath {
 PARENT='dirname $1'
 BASE='basename $1'

 NEWBASE='echo ${BASE} | tr [:upper:] [:lower:]'
 if ["${BASE}" != "${NEWBASE}"]; then
 echo ${PARENT}/${NEWBASE}
 (cd ${PARENT} && /bin/mv ${BASE} ${NEWBASE})
 fi
}

Next, call NormalizePath for each file in the directory tree. The reverse sort (sort -r) ensures that
work progresses from the bottom of the tree and towards the current directory, walking the directory
tree in one pass. Processing the tree in the order returned by find or from the shortest paths first (a
normal sort order) invalidates some paths, as parent directories are renamed before their subfolders
and files have been processed.

traverse the entire directory tree
for file in 'find . -print | sort -r '; do
 NormalizePath $file
done

Invoking normalize.sh products output similar to the following:

$./normalize.sh
./xml/xmlhosed.xsl
./xml/xmlaffected.xsl
./xml/xmlaffecteduninstall.xsl
./xml/spssdk_info.xml

 ...remaining output deleted...

Now, reconfigure the [drawings] share to take advantage of the normalized directory tree. The
preserve case and short preserve case parameters instruct smbd as to whether it should maintain
the case of new file and directory names for long and short names, respectively. These per-share
Boolean options default to the case-preserving semantics to which Windows clients are accustomed.
Disable them both and define the share's default case to match the directory tree. Finally, configure
Samba to perform a case-sensitive lookup on the normalized name. If the file or directory exists, the
name must match. There is no need to retry different case combinations, and therefore the
performance appears to increase from the end user's perspective. The modified [drawings] share
appears as follows:

[drawings]
 path = /data/drawings
 read only = no

 ## Speed up filename lookups after normalizing the
 ## share contents

 case-sensitive = yes
 default case = lower
 preserve case = no
 short preserve case = no

Table 6-3 lists the case-related smb.conf parameters covered in this section. Each can be used by
itself in a share, but we recommend not enabling case sensitivity without first normalizing the share's
contents.

Table 6-3. Case sensitivity and preservation parameters

Parameter Value Description Default Scope

case-sensitive boolean Should Samba assume that the client sent the file or
directory name in the correct case?

no Share

default case upper or
lower

The alphabetic case used when not preserving the
file's original name.

lower Share

preserve case boolean Should Samba create the long filename as
transmitted by the client?

yes Share

short preserve

case
boolean Should Samba maintain the original format of an 8.3

filename?

yes Share

6.2.3. Symbolic Links

Symbolic links (symlinks) on the servers appear as normal files or directories by Windows clients. But
as the administrator, you should ask:

Should the Samba server support following symbolic links at all?

Should Samba follow links outside of the share?

By default, Samba follows all symlinks, as long as the user has appropriate permission to the link
target. However, under some circumstances, you may wish to restrict this behavior. If users are able
to access shares only from Windows clients, the entire discussion is moot, because Windows cannot
create symlinks on remote CIFS shares.[*]

[*] The Linux CIFS FS client and the Unix Extensions to the CIFS protocol covered in Chapter 11 do support the creation of

symlinks on remote servers.

However, users with shell accounts on the Samba server can present a problem. The most common
case is when home directories are accessible both by NFS and by Samba. A user could log on to a
Unix workstation that mounts his home directory via NFS and create a symbolic link to /etc/passwd.
When accessing that symbolic link from a Windows client, Samba returns the link target, which is

/etc/passwd on the server. Whether this is a security hole is debatable. At the very least, it can be
surprising.

To remedy this unintended access, disable wide links. This step causes Samba to refuse to follow
links outside the share.

[homes]
 comment = home directory for %U
 read only = no
 wide links = no

Or if you prefer, disable support for symbolic links altogether by setting follow symlinks = no. Note
that there will be a small negative impact on performance when you disable symlinks, as smbd must
then perform extra checks on every attempt to open a file on a client's behalf. Table 6-4 lists the
link-related options supported by Samba.

Table 6-4. Symbolic link options

Parameter Value Description Default Scope

follow
symlinks

boolean Should Samba follow any symbolic links? yes Share

wide links boolean Should Samba follow a symbolic link if it leads outside of
the root of the current share?

yes Share

6.2.4. Hiding Files

Sharing disks between Unix and Windows frequently exposes files that are needed on only one
operating system or the other. A prime example is the shell initialization files that exist in a user's
Unix home directory (frequently referred to by Windows users as "those pesky dot files"). Preceding a
filename with a period is the standard mechanism on Unix for hiding the file from normal directory
listing tools. Windows uses the hidden DOS attribute bit (described in more detail later in the section
"DOS Attributes) for the same purpose. By default, Samba sets the hidden bit for all dot files when
returning the files DOS attributes to a client, but this behavior can be disabled by setting hide dot
files = no.

The hide files option provides additional flexibility to allow you to specify a set of patterns that, if
matched, cause a file or directory to be marked as hidden. The filename patterns use the Windows
globbing syntax, which is a simple subset of Unix shell metacharacters: a * character matches one
more more characters, and a ? character consumes a single character. Multiple patterns can be
concatenated using the forward slash (/) character as the delimiter. The following example hides *.ini
files and *.log files:

[homes]
 read only = no
 hide files = /*.ini/*.log/

There are other Boolean parameters for hiding certain types of files. For the following options, it's
important to understand that hiding does not mean merely setting the Windows filesystem's hidden
attribute on a file, but goes much further. It means Samba does not list the file or directory at all.[*]

Files matched by the following options are not accessible to a user on a client system, even if she
specifies the file by name on the command line or sets her folder to display hidden files. It is as
though the file did not exist.

[*] This ambiguity of parameter names is a personal gripe of these authors and one that will hopefully improve in future releases.

hide unreadable and hide unwriteable

Excludes files that can not be read or written by the user, respectively.

hide special files

Prevent a user from seeing any objects except regular files, directories, and symbolic links.
Thus, it excludes named pipes and other unusual objects in Unix filesystems.

veto files

This option allows the same flexible syntax option as the hide files parameter, with the more
restrictive sort of hiding.

Under some circumstances, dropping files into a virtual black hole can be useful. One Samba
administrator devised the following pattern to prevent the Nimba worm from using Samba hosts to
propagate itself. Placing this in the [global] section insured that the veto files setting was inherited
by all file shares, and that no user could download files matching the forbidden names.

[global]
 veto files = /*.eml/*.nws/riched20.dll/

Vetoing files can lead to a problem. Directories can be removed only after all files they contain have
been deleted. If a user drops a file that matches the veto files patterns into a Samba folder, he will
never be able to access that file again through Samba. You can understand the confusion when a
user tries to remove a directory and it fails because the folder claims to not be empty, and yet no
files can be seen. To work around this issue, Samba provides the delete veto files Boolean
parameter, which instructs Samba to remove all vetoed files contained by a directory that a user is
deleting (assuming there are no visible files there).

Table 6-5 finishes up this section with a short summary of the parameters covered in relation to

hiding and excluding files from clients.

Table 6-5. Options for hiding and excluding files

Parameter Value Description Default Scope

delete veto
files

boolean Can Samba remove vetoed files when removing a
directory, if there are no nonvetoed files
remaining?

no Share

hide dot files boolean When enabled, Samba sets the hidden attribute on
files that begin with a period.

yes Share

hide files filename
pattern

Specifies a set of filename patterns defining files
that should have the DOS hidden attribute
enabled.

None Share

hide special
files

boolean Should Samba exclude from directory listings files
such as sockets, named pipes, and device files?

no Share

hide unreadable
files

boolean Should Samba exclude from directory listings files
that cannot be read by the user?

no Share

hide
unwriteable

files

boolean Should Samba exclude from directory listings files
that cannot be modified by the user?

no Share

veto files filename
pattern

Specifies a set of filename patterns defining files
that should be excluded from directory listings.

None Share

6.2.5. Locks and Leases

File and byte range locking is one of those topics that is often better left alone. Generally, the only
people that understand how things are supposed to work are the developers themselves. For this
reason, it is recommended that you do not modify the majority of locking-related parameter values in
smb.conf. Samba programmers work extremely hard to ensure that smbd's locking implementation
provides exactly what CIFS clients require. In fact, think of the majority of smb.conf parameters like
values in the Windows registry, with the standard disclaimer: Tweaking too many things could render
your Samba server inefficient or even cause it to fail.

With that in mind, there is one parameter that may be of use if you are exporting read-only
filesystems, such as CD-ROMs. In this case, there is a possibility of gaining some performance benefit
by faking byte range lock support. Disabling the locking parameter allows Samba to grants locks
without worrying about keeping track of who has what. Because the share is marked as read-only, all
clients can freely believe that they have locked whatever region of the file they desired without fear
that someone else will change it out from underneath them. Before you disable the locking option,
make sure that no clients can modify the contents of the share via another protocol (e.g., NFS) or
the local filesystem.

Samba's byte range-locking options are designed to work well using the default settings. Sometimes,

you need to tweak the oplock settings on a share. Oplock is short for opportunistic locking. The name
is unfortunate, because this feature has little to do with file locking. Oplocks are an aggressive
caching mechanism used by Windows clients to boost performance when accessing remote files.
When an oplock is granted, the client is able to cache the entire file locally. If the oplock type allows
the client to modify the file locally, these changes are flushed back to the server when the file is
closed or the client receives a request from the server to break the oplock.

The major hurdle with oplocks is that on most platforms running Samba, the feature is implemented
only internally, by smbd. A few operating system kernels, such as IRIX and Linux 2.4 and later,
support file leases, which are the Unix equivalent of oplocks. By using the kernel to coordinate with
other Unix process on these systems, Samba is able process oplock break messages when a file is
accessed via another means such as NFS. Otherwise, the non-Samba process may not have a
consistent view of the data as it is seen by Windows clients. If users are accessing files concurrently
via Samba and another file-sharing protocol, it is probably best to disable oplocks to avoid the risk of
corrupting file contents.

The Samba build procedure automatically determines at compile time whether the host operating
system supports file leases. If it does, smbd is built with support for kernel oplocks, a feature that
can be controlled at runtime using the kernel oplocks global parameter. Both the compile-time
support and the runtime configuration file parameter are necessary for the kernel oplock feature.

There are three types of oplocks:

Exclusive

Allows the client to have sole access to the file and to perform local modifications that are
flushed back to the server when the oplock is revoked or the client closes the file.

Batch

Identical to exclusive oplocks, but allows an application to open and close a file repeatedly
without relinquishing the lease. Batch file processing tends to follow this multiple open-and-
close pattern; hence the name.

Level 2

Allows a client to perform read caching on a file, which is particularly useful for executables run
from a network file share. Only Windows NT-based clients support level 2 oplocks.

Certain application files have historically had problems with oplocks. PC database files, such as
FoxPro and Microsoft Access, are among the most fragile. With such files, it is better to disable
oplocks on the share or to exclude the relevant set of files from being granted an oplock. The veto
oplock files parameter accepts a list of filename patterns using the same syntax as the hide files
and veto files parameters covered in the previous section. The following example shows two file
shares: [nooplocks] disables oplocks for all files in a share, and [access-db] oplock support only for
MS Access (*.mdb) files:

[nooplocks]

 path = /data/share1
 read only = yes
 oplocks = no

[access-db]
 path = /data/share2
 read only = no
 veto oplock files = /*.mdb/

The oplocks option applies to both exclusive and batch oplocks and is a prerequisite to enabling level
2 oplocks. Very rarely does a case warrant disabling level 2 oplocks while leaving exclusive and batch
oplocks enabled.

Similar to the locking parameter for byte range locks, Samba also provides fake oplocks. As
mentioned earlier for the locking parameter, consider using fake oplocks only for read-only
directory trees. When enabled, all requests for any oplock type will succeed and performance may
increase.

Table 6-6 concludes this section by listing the byte range locking and oplock related parameters.

Table 6-6. Locking and leasing options

Parameter Value Description Default Scope

fake oplocks boolean If enabled, Samba honors all oplock requests. This
option should be considered only for a read-only
filesystem.

no Share

kernel

oplocks
boolean If enabled, and if the operating system's kernel

provides support for file leases, Samba coordinates all
oplock requests via the kernel lease mechanism.

yes Share

level 2

oplocks
boolean Should Samba honor requests for level 2 oplocks if

possible?

yes Share

locking boolean If disabled, Samba honors all byte range lock requests
without enforcement. This option should be considered
only for a read-only filesystem.

yes Share

oplocks boolean Should Samba honor requests for exclusive and batch
oplocks if possible?

yes Share

veto oplock
files

filename
pattern

Defines a list of filename patterns that should be
prevented from being granted exclusive or batch
oplocks.

None Share

6.2.6. DOS Attributes

All Microsoft clients make use of four DOS attributes: archive, hidden, system, and read-only. Newer
releases of Windows support additional attributes, such as whether the file is compressed. Currently,
Samba provides only support for the original four attributes, so we'll start with a simple explanation
of what each one means:

Archive

Automatically set by the Windows filesystem when a file is modified. This attribute is useful
primarily to back up applications, which rely upon it to determine which files have changed
since the last run. Unfortunately, Unix filesystems do not set this on Samba's behalf, and
Samba does not update it on its own.

Hidden

Hides files or directories from application interfaces such as the Windows Explorer. A user may
choose to view these objects by enabling the appropriate folder settings in Windows.

System

Indicate items used for operating system purposes, such as a memory swap files.

ReadOnly

Similar to the immutable bit supported by Unix. The read-only setting is separate from any ACL
that may deny read access to a specific user.

DOS attributes still have an impact on servers today. For example, a Windows XP client refuses
to load a registry hive from a file marked as ReadOnly. This includes user profiles (ntuser.dat)
and NT4 system policies (ntconfig.pol). Samba provides two mutually exclusive mechanisms for
storing DOS attributes, one based on file permissions and the other utilizing the filesystem's
extended attributes (EAs).

6.2.6.1. DOS attributes and Unix permissions bits

Because Unix provided only the standard nine bits of read/write/execute permission, Samba originally
kept track of the attributes by mapping each one onto a bit in the Unix permission set as follows:

ReadOnly

The inverse of the owner write bit

Archive

The user execute bit

System

The group execute bit

Hidden

The world execute bit

The main limitation with this approach is that due to the semantics of the execute bits regarding
directories, developers decided to apply the mapping only to files. There is no way to represent DOS
attributes on folders using this permission mapping method, which is a major deficiency.

The attribute/permission mapping model is controlled by three Boolean parameters and one
semiboolean option that can be enabled or disabled on each share: map archive, map hidden, map
readonly, and map system. The archive, hidden, and system mapping options accept a yes or no
value, which specifies whether smbd should examine the execute bits when calculating the attribute
set for a file.

The map readonly parameter accepts yes, no, or permissions. The permissions value indicates that
smbd should analyze the file ACL to determine whether the connected user has write permission and
therefore whether to report the ReadOnly attribute. This behavior is different from specifying the
option's value as yes, which examines only the owner's write bit to determine the ReadOnly attribute
for all users. The map readonly parameter was added in Samba 3.0.21. Prior releases always
examined the owner write bit when calculating the ReadOnly property. ACLs are covered in the next
section.

The ReadOnly DOS attribute is independent of the read only share parameter.

Let's look at particular file share and permission set to see how the DOS attributes are displayed.
Start with a definition of [data] from smb.conf:

[data]
 path = /data
 read only = no
 map readonly = yes
 map archive = yes
 map hidden = yes
 map system = yes

Now imagine a file named notes.txt with the following Unix permissions:

-rwxr--r-x 1 lizard users 0 2006-05-24 13:47 notes.txt

View its DOS attributes using smbclient:

$ smbclient //rain/data -U lizard%test -c 'dir notes.txt'
Domain=[GARDEN] OS=[Unix] Server=[Samba 3.0.22]
 notes.txt AH 0 Wed May 24 13:47:08 2006

 56578 blocks of size 65536. 38189 blocks available

The Archive (A) and Hidden (H) attributes are displayed due to the owner execute and world execute
permissions. Removing the owner write bit (chmod u-w notes.txt) displays the ReadOnly (R) bit as
well:

$ smbclient //rain/data -U lizard -c 'dir notes.txt'
Domain=[GARDEN] OS=[Unix] Server=[Samba 3.0.22]
 notes.txt AHR 0 Wed May 24 13:47:08 2006

 56578 blocks of size 65536. 38189 blocks available

6.2.6.2. DOS attributes and Unix extended attributes

Samba 3.0.3 introduced a means of storing DOS attributes separately from the Unix permissions, if
the Unix filesystem supports extended attributes. Currently, Samba's support for filesystem EAs is
limited primarily to Linux and IRIX, but efforts are underway to support other platforms, such as
FreeBSD. There are a few ways to determine whether your Linux filesystem includes support for EAs.
The simplest is to check whether the filesystem was mounted with the user_xattr option:

$ mount
/dev/hda2 on / type ext3 (rw,acl,user_xattr)
...

More details about configuring Linux and the Linux kernel can be found in Linux Kernel in a Nutshell,
by Greg Kroah-Hartman (O'Reilly).

It is also necessary to verify that Samba detected support for a sufficient EA interface at compile
time, which can be done by searching for the string XATTR in the output from smbd -b. The following
output illustrates an smbd daemon with support for EAs:

$ smbd -b | grep XATTR
 HAVE_SYS_XATTR_H
 HAVE_ATTR_XATTR_H
 HAVE_FGETXATTR
 HAVE_FLISTXATTR
 HAVE_FREMOVEXATTR
 HAVE_FSETXATTR
 HAVE_GETXATTR
 HAVE_LGETXATTR
 HAVE_LISTXATTR
 HAVE_LLISTXATTR
 HAVE_LREMOVEXATTR
 HAVE_LSETXATTR
 HAVE_REMOVEXATTR
 HAVE_SETXATTR

If you find that Samba did not detect the appropriate EA support libraries at compile time, make sure
that the ACL and EA development packages (normally named libacl-devel and libattr-devel) are
installed correctly. If they are not, it is necessary to fix the problem and recompile Samba. Unlike
Samba's ACL support, which must be manually enabled using the --with-acl-support option, the
configure script detects EA support automatically. There is no need to pass additional options in most
cases.

Once support for extended attributes has been verified, you can make use of the store dos
attributes share parameter to store attribute sets for both files and directories. To illustrate how this
parameter works, let's begin with a share named [documents] :

[documents]
 path = /data/documents
 read only = no
 store dos attributes = yes

Next create a directory named logs (assume that the share's UNC path is \\RAIN\documents) from
the cmd.exe shell on a Windows XP client:

C:\> mkdir \\RAIN\documents\logs
C:\> attrib +h \\RAIN\documents\logs

You can then verify that the hidden attribute is set using the directory's properties dialog box from
the Windows Explorer (shown in Figure 6-2). Make sure that you also enable viewing of hidden files
through the Tools Options . . . menu in the Explorer windows.

Figure 6-2. Viewing the hidden attribute on a directory

When enabled, the store dos attributes option takes precedence over the attribute mapping
parameters shown earlier. However, the DOS attribute policy can be set on a per-share basis, in case
you are exporting multiple filesystem types with and without EA support.

Table 6-7 includes a list of the options related to DOS attributes.

Table 6-7. DOS attribute options

Parameter Value Description Default Scope

delete

readonly
boolean Should Samba allow a user to delete a file marked

as ReadOnly if allowed by the filesystem's
permission?

no Share

map archive boolean Maps the DOS Archive bit to the Unix owner
execute permission.

yes Share

Parameter Value Description Default Scope

map hidden boolean Maps the DOS Archive bit to the Unix world execute
permission.

no Share

map readonly yes, no, or
permissions

Maps the DOS Archive bit to the inverse of the Unix
owner write permission or to evaluation of the file's
ACL.

yes Share

map system boolean Maps the DOS Archive bit to the Unix group execute
permission.

no Share

store dos
attributes

boolean If enabled, Samba stores the DOS attributes in the
file or directory's extended attributes. This option is
mutually exclusive with and takes precedence over
the attribute mapping options.

no Share

6.2.7. Permissions

There are two large-scale issues surrounding Unix permissions and Samba. The first, covered in this
section, explores how Samba and its configuration file can take advantage of the Unix permission
model. For example, how can Samba configure a group-accessible share or determine the initial
permissions assigned to newly created files and directories? The second issue, covered in the
upcoming section "Access Control Lists," concerns how Unix permissions and ACLs can be displayed in
a format familiar to Windows users.

Let's begin with a common requirement: define a file share that can be used by members of a group
in common for distributing files. In this example, users must be members of the Unix group named
staff. Any new file or directory created within the share must be available to members of this group,
so we need to ensure that new files and directories get created with the appropriate permissions.

Let's start with a basic share named [staff-docs]. We'll define a path and mark the folder writable:

[staff-docs]
 path = /data/staff-docs
 read only = no

Next we'll restrict access to the share to the staff group. The best security model involves multiple
layers that reinforce the same policy. For example, if we choose to restrict access using the valid
users option presented in the previous chapter, we should also make sure that the policy is effective
if someone accesses the /data/staff-docs directory through a means other than Samba. This means
that the filesystem permissions should be set to allow group access for staff but deny access for
others outside of that group. The following series of commands (executed as root) grant ownership of
the directory to root and allow access only to the group staff. Setting the setgid bit ensures that all
files and subdirectories created in the share have the correct group ownership.

$ chown root /data/staff-docs

map hidden boolean Maps the DOS Archive bit to the Unix world execute
permission.

no Share

map readonly yes, no, or
permissions

Maps the DOS Archive bit to the inverse of the Unix
owner write permission or to evaluation of the file's
ACL.

yes Share

map system boolean Maps the DOS Archive bit to the Unix group execute
permission.

no Share

store dos
attributes

boolean If enabled, Samba stores the DOS attributes in the
file or directory's extended attributes. This option is
mutually exclusive with and takes precedence over
the attribute mapping options.

no Share

6.2.7. Permissions

There are two large-scale issues surrounding Unix permissions and Samba. The first, covered in this
section, explores how Samba and its configuration file can take advantage of the Unix permission
model. For example, how can Samba configure a group-accessible share or determine the initial
permissions assigned to newly created files and directories? The second issue, covered in the
upcoming section "Access Control Lists," concerns how Unix permissions and ACLs can be displayed in
a format familiar to Windows users.

Let's begin with a common requirement: define a file share that can be used by members of a group
in common for distributing files. In this example, users must be members of the Unix group named
staff. Any new file or directory created within the share must be available to members of this group,
so we need to ensure that new files and directories get created with the appropriate permissions.

Let's start with a basic share named [staff-docs]. We'll define a path and mark the folder writable:

[staff-docs]
 path = /data/staff-docs
 read only = no

Next we'll restrict access to the share to the staff group. The best security model involves multiple
layers that reinforce the same policy. For example, if we choose to restrict access using the valid
users option presented in the previous chapter, we should also make sure that the policy is effective
if someone accesses the /data/staff-docs directory through a means other than Samba. This means
that the filesystem permissions should be set to allow group access for staff but deny access for
others outside of that group. The following series of commands (executed as root) grant ownership of
the directory to root and allow access only to the group staff. Setting the setgid bit ensures that all
files and subdirectories created in the share have the correct group ownership.

$ chown root /data/staff-docs

$ chgrp staff /data/staff-docs
$ chmod g+rwxs,o-rwx /data/staff-docs

The permissions should now appear as:

$ ls -ld staff-docs
drwxrws--- 2 root staff 4096 2006-05-24 16:38 /data/staff-docs/

Now we can update the [staff-docs] share definition to restrict access via Samba as well:

[staff-docs]
 path = /data/staff-docs
 read only = no
 valid users = +staff

Adding the valid users option is not entirely necessary, because access to the share is ultimately
determined by the filesystem permissions, but it does two things:

It documents the intent of the share, in case there is ever any question as to what the
permissions should be.

It protects the share somewhat if the file permissions on /data/staff-docs are accidentally
changed to something less restrictive.

The next requirement to address is that all files and directories created within the share must be
modifiable by members of the Unix staff group. When you create a file or directory from a Unix shell,
the umask setting frequently determines the default permission set. Samba ignores the environment
umask setting and instead provides its own equivalent parameters. The create mask and create
directory mask options consist of octal permission sets for files and folders, respectively, that
combine with the permissions requested by the user using a logical AND. Any bit not set in the mask
will be removed from the final permission set. The force create mode and force directory mode
options also specify octal permission sets, but are combined with the permission set using a logical
OR (after applying any creation masks). Therefore, any permission bit that is set in the force mode is
included in the final permissions.

The complete list of permission filters used to derive the final set is given here in the order used by
Samba:

Apply any DOS attribute mapping options.1.

Apply the create mask settings.2.

3.

1.

2.

Apply the force create mode settings.3.

The implication here is that the map hidden option, which acts through the world execute bit (see the
earlier section "DOS Attributes"), does not work for new files if the create mask does not include this
bit in its permission set.

For the sake of simplicity, assume use of the store dos attribute parameter in order to avoid any
confusion with the user or group permissions. All permissions must be removed from the world set,
the read and write bits must be set for files, and the read, write, and execute bits must be set for
directories. The modified share definition appears as:

[staff-docs]
 path = /data/staff-docs
 read only = no
 valid users = +staff
 store dos attributes

 = yes

 # permissions masks and modes
 create mask = 0770
 force create mode = 0060
 create directory mask = 0770
 force directory mode = 0070

Notice that we are not concerned with the owner permissions. This example lets the user do anything
with their own files. All we care about is ensuring group access. This is a clean-cut example where all
relevant users belong to the same group. How can this share be extended to include users that do
not share a common group?

When a user connects to a share on a Samba host, the uid, primary gid, and list of supplementary
gids comprises the user's token. This token is then examined by Samba or the operating system
kernel to determine whether the user is authorized to access a resource such as a share or file. You
can instruct smbd to add an additional group to the user's existing list of memberships. Thus, the
force user and force group options may be used to set the uid or primary gid for a user's token
when working within the content of a specific share.

Some operating systems limit the total number of groups to which a user may
belong to 16 or 32. Check your operating system's documentation to determine
the exact limit.

Thus, in order to allow members of the Unix helpdesk group to the [staff-docs] share, we must add
that group to the valid users setting and then force a change to the primary group for every
connected user to staff:

[staff-docs]
 path = /data/staff-docs

 read only = no
 valid users = +staff +helpdesk
 store dos attributes = yes
 force group = staff

 # permissions masks and modes
 create mask = 0770
 force create mode = 0060
 create directory mask = 0770
 force directory mode = 0070

Now members of both staff and helpdesk can successfully share files with each other.

This group share has one major drawback. Because the force group, create mask, and force create
mode parameters define behavior for all files and within a share, we have to create a new share for
every individual group. This can easily become an administrative nightmare, not to mention confusing
for users who have to remember which share belongs to which group and at which drive letter the
share is mounted. What is needed is a way to delegate access rights to portions of the share's
directory tree.

The inherit owner and inherit permissions parameters provide the flexibility to propagate
properties based on the parent of the new file or subdirectory. Using this new permission option, we
can create a single file share that includes a subdirectory immediately below it for every group
required. Let's look at an example using three groups: staff, helpdesk, and devel.

First, create the top-level directory of the share and one subdirectory for each of the three groups:

$ mkdir /data/groups
$ cd /data/groups
$ mkdir staff helpdesk devel

Next, restrict access (drwxrws---) in each of the three subfolders to the associated Unix group:

$ chgrp staff staff
$ chgrp helpdesk helpdesk
$ chgrp devel devel
$ chmod 2770 staff helpdesk devel

The final permissions appear as follows:

$ ls -l
total 12
drwxrws--- 2 root devel 4096 2006-05-24 21:26 devel/

drwxrws--- 2 root helpdesk 4096 2006-05-24 21:26 helpdesk/
drwxrws--- 2 root staff 4096 2006-05-24 21:26 staff/

Finally, define the [groups] share in smb.conf like so:

[groups]
 path = /data/groups
 read only = no
 store dos attributes = yes
 inherit permissions = yes

The result is a single share that a user may mount at G: to access all folders for groups to which he
belongs. This configuration is easier for both users and administrators.

However, very few things in life are free. If this new share solved all possible needs, it is unlikely that
the force group and mask and mode family of options would still exist. In fact, the new [groups] share
does not allow the sharing of files between users that have no groups in common. So you will be
forced to choose between the two configurations shown in this section, should such conflicting
requirements arise. One possible workaround is to make use of the [groups] share but also create
[staff] using the /data/groups/staff directory in combination with the force group parameter:

[staff-docs]
 path = /data/groups/staff
 read only = no
 valid users = +staff +helpdesk
 force group = staff
 store dos attributes = yes
 inherit permissions = yes

Table 6-8 lists short descriptions of the inheritance parameters covered here, as well as the mask
and mode parameters discussed earlier in the section.

Table 6-8. File permissions and inherit options

Parameter Value Description Default Scope

create mask octal
permission
set

Bits permitted in permissions when files are created
in this share.

0744 Share

Parameter Value Description Default Scope

create
directory

mask

octal
permission
set

Bits permitted in permissions when directories are
created in this share.

0755 Share

force create
mode

octal
permission
set

Bits always set when a file is created in this share. 0000 Share

force

directory
mode

octal
permission
set

Bits always set when a directory is created in this
share.

0000 Share

force group Unix group Primary group for a user connecting to the share. None Share

force user Unix
username

Primary user account for a user connecting to the
share.

None Share

inherit owner boolean Instructs Samba to set the owner of new files and
directories based on the ownership of the immediate
parent.

no Share

inherit

permissions
boolean Instructs Samba to set the permissions of new files

and directories based on the ownership of the
immediate parent. Files do not inherit execute bits
and the setuid bit is never inherited by files or
directories.

no Share

create
directory

mask

octal
permission
set

Bits permitted in permissions when directories are
created in this share.

0755 Share

force create
mode

octal
permission
set

Bits always set when a file is created in this share. 0000 Share

force

directory
mode

octal
permission
set

Bits always set when a directory is created in this
share.

0000 Share

force group Unix group Primary group for a user connecting to the share. None Share

force user Unix
username

Primary user account for a user connecting to the
share.

None Share

inherit owner boolean Instructs Samba to set the owner of new files and
directories based on the ownership of the immediate
parent.

no Share

inherit

permissions
boolean Instructs Samba to set the permissions of new files

and directories based on the ownership of the
immediate parent. Files do not inherit execute bits
and the setuid bit is never inherited by files or
directories.

no Share

6.3. Access Control Lists

Windows filesystems' ACLs, sometimes referred to generically as security descriptors, support a wide
variety of permissions masks. The Windows access masks are in fact much richer than the standard
read/write/execute permissions provide by Unix systems. Therefore, Samba 3.0 supports a lossy
mapping between Unix filesystem permissions and Windows ACLs. For example, when a Windows file
specifying that the user rose has Full Control is copied to a Samba server, the Full Control access
mask is mapped onto the permissions set rwx. All of the other bits in the Windows access mask,
representing things such as delete and take ownership permissions, are simply thrown away. To
ensure this behavior is symmetric, when translating an ACL in the reverse direction, from Unix to
Windows, the rwx permissions on the Unix host are reported as Full Control to the Windows client.

You can prevent smbd from reporting rwx as Full Control by disabling the map
acl full control Boolean parameter in the share's definition.

The belief among Samba developers is that by supporting Read, Write, and Full Control permissions,
the majority of Samba and Windows users are satisfied. The remainder of this section is dedicated to
how Windows access masks are converted to Unix permission sets and vice versa, which applies
whether the Samba host supports ACLs or only the standard Unix permission model. Let's begin our
discussion with ACLs.

Samba supports various Unix filesystem ACL implementations. To enable Samba's compile checks for
ACL support, pass the --with-acl-support option to the configure script. Currently Samba can
support only one ACL implementation at a time. For example, if filesystem type A had one ACL
interface and filesystem type B utilized a different one, Samba could interact with the ACLs on only
one of those filesystems at a time. So far, this limitation has not been an issue, because most
filesystems on a given operating system support a common API.

More information about a server's ACL implementation can often be found by
running man acl.

You can determine whether your Samba installation has been built to include ACL support by
examining the output from smbd -b. A Linux host should report HAVE_POSIX_ACLS, and another
operating system such as Solaris should define HAVE_SOLARIS_ACLS. The following example shows that
the Samba installation on our Linux server does in fact include ACL support:

$ smbd -b | grep HAVE.*ACL
HAVE_POSIX_ACLS

If this check fails, make sure that the ACL libraries and development files are installed. On Linux
hosts, these can generally be found in a package named libacl-devel. You should also verify that the
server's filesystem included the acl option when it was mounted:

$ mount
/dev/hda2 on / type ext3 (rw,acl,user_xattr)
...

If you experience any problems with the filesystem, please refer to your operating system's
documentation for possible remedies.

Before we discuss the configuration of support for Windows ACLs in smb.conf, we will briefly explain
the POSIX ACL model. Figure 6-3 illustrates how Samba uses a POSIX ACL as the intermediate form
between the Windows security descriptor and the real filesystem ACL representation.

Figure 6-3. Mapping from Windows security descriptors to Unix
filesystem ACLs

6.3.1. What's in a POSIX ACL?

The POSIX ACL standard was never finished. However, many operating systems, including Linux 2.6,
implement the 1003.1e draft of the specification. A POSIX access control list is basically a Unix
permission set plus four things:

Additional named users

Additional named groups

A group mask

Default ACLs for directories

Named users and groups are simply additional user and group permission sets. A POSIX ACL still has
the concept of an owner (user::) and a group owner (group::). A named user or group is specified
by a single character (a u for a user or a g for a group) followed by a colon and the account name,

followed by another colon and the permission set. The following directory (logs) as shown below has
an owner names lizard, a group owner of webdev, and a named user of rose:

$ getfacl logs
file: logs
owner: lizard
group: webdev
user::rwx
group::rwx
mask::rwx
u:rose:r--
other::r-x

When evaluating the permissions granted to a particular user, the process is as follows:

Search for a user: entry matching the account name. This step includes comparing against the
owner of the object. If a match is found, use the associated permissions set.

1.

Create a permissions set by combining the access masks from all the listed groups to which the
user belongs and perform a logical AND with the ACL group mask. Continue to the next check
only if the user did not belong to any of the listed groups.

2.

Use the world permission set.3.

The final addition by POSIX ACLs are the default access control entries (ACE) that may be associated
with directories. These default ACLs apply to any newly created files or folders contained by the
directory. This feature is similar to Samba's inherit permissions parameter. A default ACE follows
the same rules as normal access entries. It may have user and group owner entries, named users
and groups, a mask, and world permissions. Here is a short example of what the remainder of the
logs directory ACL looks like:

default:user::rwx
default:group::rwx
default:u:rose:r-x
default:mask::rwx
default:other::r-x

We discuss default access control entries in more detail when we examine POSIX ACLs from the
Windows Explorer security tab.

6.3.2. The nt acl support Parameter

Now that we have verified Samba compile support for Unix ACLs and have a solid understanding of
POSIX ACLs, it is time to create an ACL-aware share in smb.conf. When creating a file share
supporting either ACLs or the simpler Unix permission bit model, the nt acl support parameter must
be enabled. Here is a share named [public] that we will use for discussion:

[public]
 path = /data/public
 read only = no
 nt acl support = yes

Windows 2000 and later Microsoft operating systems support a semidynamic model of ACL
inheritance. The filesystem maintains a history of where an ACL assigned to a file or folder came
from. For example, was it manually set for just this object? Or has it been inherited from its parent?
The reason we refer to this as "semidynamic" is that when changing an ACE on a parent folder, the
client host walks the directory tree and applies the new changes to any files or subdirectories that
have inherited the setting. Samba is able to support this same semidynamic model by storing ACL
inheritance information in an object's extended attributes. Refer to the previous section on DOS
attributes if you need to verify support for extended attributes on your server.

In order to enable Windows ACL inheritance, you must add the map acl inherit Boolean parameter
to [public] :

[public]
 path = /data/public
 read only = no
 store dos attributes = yes
 nt acl support = yes
 map acl inherit = yes

Finally, to ensure that the default ACLs on directories are propagated correctly, add the inherit acls
Boolean option:

 inherit acls = yes

It is still possible to use inherit permissions in combination with ACLs, but the
option will be honored only if the parent directory has no default access entries.

Before we continue on to a discussion of how these permission sets and access lists are viewed by
users, Table 6-9 summarizes the ACL parameters we have covered so far.

Table 6-9. ACL options

Parameter Value Description Default Scope

acl map full

control
boolean Should Samba report the Unix permission set rwx as Full

Control to Windows clients?

yes Share

inherit acls boolean If enabled, ensures that default ACLs on directories are
propagated to new files and folders. The default behavior
is to use the mode requested by the client.

no Share

nt acl
support

boolean Determines whether smbd reports support for ACLs when
queried for information about the share.

yes Share

map acl
inherit

boolean Should Samba remember an ACL's inherited properties
and whether the ACL should be propagated to subfolders
and files?

no Share

6.3.3. Understanding the Explorer Security Tab

Understanding how the security tab displayed on a Windows client relates to the underlying
filesystem permissions is the final key to making effective use of Samba's ACL support. If the file
memo.doc has the Unix permission shown here, Figure 6-4 displays how a Windows user would view
the same access rights.

Figure 6-4. Displaying Unix permission for memo.doc using the Security
dialog box

$ ls -l memo.doc
-rw-r---- 1 lizard staff 32455 2006-05-25 09:40 memo.doc

Adding named users and groups to the file access list does not change the permissions display model.
The end user sees more account entries, but the mapping between a Unix permissions set and
Windows access mask works the same.

The display model becomes slightly more complicated once we introduce folders. Consider the ACL for
the archives directory given here:

$ getfacl archives
file: archives
owner: lizard
group: staff
user::rwx

group::rwx
group:helpdesk:r-x
mask::rwx
other::r-x
default:user::rwx
default:user:lizard:rwx
default:group::---
default:group:staff:rwx
default:group:helpdesk:r-x
default:mask::rwx
default:other::---

The basic permissions in this ACL are displayed by Windows as shown in Figure 6-5, and the
advanced options are displayed as shown in Figure 6-6.

Figure 6-5. Displaying the Unix ACL for the archives folder using the
Windows Security dialog box

Figure 6-6. Displaying the Unix ACL for the archives folder using the
Advanced Security dialog box

Several complexities involved in viewing ACLs from Windows can render them confusing. A
permission is displayed in the general security tab (Figure 6-5) only if the permission applies to "This
folder, subfolder, and files" (Figure 6-6). Samba interprets the access entries (e.g.,
group:helpdesk:r-x) to apply to "This folder." The default access entries (e.g.,
default:group:helpdesk:r-x) apply to "Subfolders and files." Therefore, to display the permissions in
the initial security dialog box, a user or group must have both an access entry and a default entry.
Users and groups do not have to have default access entries in order to function properly, but it is
important to understand why an account's permissions may not be displayed on the initial security
tab view. The complete security permissions are always available by navigating to the Permissions
tab of the Advanced Security dialog box shown in Figure 6-6.

Next is the question of the CREATOR OWNER and CREATOR GROUP entries. Samba maps these Windows
accounts to the default owner and group ACEs. In order for the owner's permissions to apply to "This
folder, subfolder, and files," she must also have a named default entry. Here's an abbreviated version
of the original POSIX ACL that highlights the entries needed to list both a CREATOR OWNER entry and to
display lizard's permissions in the initial security dialog box:

owner: lizard
user::rwx
default:user::rwx
default:user:lizard:rwx

Viewing ACLs from Windows is of minimal use if you are unable to modify them. Samba converts ACL
modifications sent by the client to its own filesystem representation using the inverse of the display
rules just discussed. There are a few differences between Windows and Unix that you must
remember:

Unix allows only root or the owner to change the permissions on a file or directory.

Only root or a user possessing the SeTakeOwnership privilege can assume ownership of a file or
directory.

Only root or a user possessing the SeRestorePrivilege privilege can set ownership to an arbitrary
user.

If you wish to enforce semantics similar to those on Windows, where any user with write permissions
can modify the ACL or take ownership, set dos filemode = yes in the share definition. This control
option and a related one are summarized in Table 6-10.

Table 6-10. DOS compatibility options

Parameter Value Description Default Scope

dos filemode boolean Should users with write access be able to assume
ownership and modify the object's ACL?

no Share

dos

filetimes
boolean Should users with write access be able to modify the file's

timestamp?

no Share

6.4. Microsoft Distributed File Systems

Microsoft's Distributed File System (MS-DFS), not to be confused with the Distributed Computing
Environment's DFS, is the Windows equivalent of the Unix automounter. All modern Microsoft clients
(Windows 98, NT 4.0, and later) natively support MS-DFS. An add-on component for Windows 95 is
available from Microsoft. Figure 6-7 illustrates how MS-DFS is implemented. MS-DFS links appear as
folders when viewed by the client. When the user attempts to access the directory, he receives a
referral to a UNC path (\\CARROT\data), which is automatically followed on his behalf by the
Windows client. The user is never aware that the contents of the directory reside on another server.
Because MS-DFS assumes that the credentials used to connect to the first server are also valid for
connecting to the target of the referral, it is useful only within the context of an authentication
domain.

Figure 6-7. Redirection by MS-DFS

Configuring Samba to support MS-DFS root shares involves one global parameter, host msdfs, and
one per share parameter, msdfs root. The following configuration defines a share named [common]
that acts as a MS-DFS root share. It combines group shares managed by various departments within
the network and provides an alternative to the [groups] share covered earlier in this chapter.
Because we use the share to store only MS-DFS links, there is no need to provide write access to the
share.

[global]
 host msdfs = yes

[common]
 path = /data/dfs

 read only = yes
 msdfs root = yes

The MS-DFS referrals are stored on the server's filesystem as symbolic links. The link name is the
name of the directory displayed by clients. The target of the link represents the destination UNC path
for the MS-DFS referral. The link target name follows this format:

msdfs:server\share[,server\share,...]

The msdfs keyword is used by Samba to identify the link as a MS-DFS referral. The server\share

component is the path to the server and share returned to the client. Multiple paths can be defined;
all will be returned the client, which then selects one based on internal heuristics.

The following ln command creates a referral from staff to \\sleet\staff:

$ ln -s 'msdfs:sleet\staff' staff
$ ls -l staff
lrwxrwxrwx 1 root root 17 2006-05-25 11:36 staff -> msdfs:sleet\staff

After reconfiguring a server or share to support MS-DFS, you will likely have to reboot the Windows
client in order for it to recognize the new functionality. Once this is done, you will be able to test the
MS-DFS share by browsing to the staff directory and viewing its contents. If you experience any
problems at this point, verify the following:

smb.conf contains no syntax errors and Samba as been restarted or has reread the file since
the changes were made.

The Windows client has been fully rebooted since last connecting to the Samba server.

The target (e.g., \\sleet\staff) of the MS-DFS referral is accessible by the client and the user
credentials are also valid on that server.

If you verify these items and are still having difficulties, turn to the Samba logfiles and the steps
outlined in Chapter 12 for troubleshooting help.

In addition to supporting MS-DFS referrals for directories, it is possible to define a share that solely
refers to another share by specifying a path in the msdfs proxy parameter, which can be helpful when
migrating services from one server to another. For example, suppose that we have moved
\\RAIN\templates to \\SNOW\templates but some clients are still trying to access it in the original
location. The following share redirects users to the correct share without any client modifications:

[global]
 netbios name = RAIN

[templates]
 msdfs proxy = \\snow\templates

Table 6-11 lists the various MS-DFS related options that can be defined in smb.conf.

Table 6-11. MS-DFS options

Parameter Value Description Default Scope

host msdfs boolean If enabled, Samba reports support for MS-DFS in its
global set of capabilities.

no Global

msdfs

proxy
\server\share Defines the MS-DFS referral path returned when a

client attempts sends a connection request.
None Share

msdfs root boolean If enabled, Samba informs clients that a particular
share supports MS-DFS referrals.

no Share

6.5. Virtual File Systems

The smbd daemon interacts with files and directories on disk through a Virtual File System (VFS)
module. The default VFS plug-in implements the Samba's standard file serving functionality. Other
plug-ins distributed with the official Samba distribution and stored in /usr/local/samba/lib/vfs for
default installations include:

A trash bin for saving deleted files.

A logging module for recoding a user's access to files.

A module to improve integration when sharing files via the Netatalk protocol.

There are also some third-party plug-ins available, such as the samba-vscan virus scanning plug-in
(http://www.openantivirus.org/projects.php).

Each plug-in supports its own set of configuration settings that can be integrated into smb.conf using
parametric options of the form module_name:option. In this section, we use the recycle.so VFS

module as an example of the basic configuration steps. The complete set of VFS modules and
associated documentation is included in the Samba distribution.

The purpose of the recycle.so library is to intercept any delete requests and move the target to a
trash bin rather than removing it from disk. This is a nice safety net for users and prevents
administrators from having to restore files from backup media when a user accidentally deletes an
important document. Our example extends the [homes] share to provide users with a personal
recycle directory.

The first step in configuring any VFS module is to define the vfs object value for the share. This
parameter requires only the name of the VFS module (or modules). The smbd process automatically
adds the necessary extension and attempts to load the plug-in from the vfs folder in Samba's library
directory, which can be determined by running smbd -b | grep LIBDIR. Here is how the share
definition should appear:

[homes]
 read only = no
 vfs object = recycle

The recycle module supports a variety of options for customizing how deleted files and directories
should be backed up. The most common options are the directory where the deleted files are stored
(repository), whether to maintain the file's original directory structure (keeptree), and which files
should deleted rather than backed up (exclude). The modified share with the new VFS option syntax
is:

http://www.openantivirus.org/projects.php

[homes]
 read only = no
 vfs object = recycle
 recycle:repository = .trash
 recycle:keeptree = yes
 recycle:exclude = *.tmp, *~, *.bak

New VFS modules added to a share picked up in the same fashion as new configuration parameters.
There is no need to restart Samba. Each new client connection is able to take advantage of the new
settings. With the recycle plug-in in place, a user can safely delete files from her home directory and
immediately retrieve them from the top-level .trash directory.

Table 6-12 lists the complete set of recycle plug-in parameters and a brief description of each. For
information on other VFS modules, check the Samba documentation.

Table 6-12. VFS recycle parameters

Parameter Value Description Default Scope

directory_mode octal
permission
set

The Unix permissions assigned to directories
created due to the keeptree option.

0700 Share

exclude filename
pattern

List of filename patterns that should be
excluded from the recycle repository. The
pattern follows the Microsoft globbing syntax.

"" Share

exclude_dir filename
pattern

List of directory name patterns that should be
excluded from the recycle repository. The
pattern follows the Microsoft globbing syntax.

"" Share

keeptree boolean Should the original directory hierarchy be
maintained when moving files to the
repository?

no Share

maxsize integer The maximum file size in bytes that should be
backed up. Files larger than this size are
deleted.

-1(back up
files of any
size)

Share

repository string The absolute or relative path to the directory
used to store deleted files.

.recycle Share

touch boolean Should the access time be updated when the
file is moved to the repository?

no Share

touch_mtime boolean Should the modification time be updated when
the file is moved to the repository?

no Share

As of the 3.0.22 release, developers still have not provided individual manpages
for the various VFS plug-ins, a deficiency they have promised to correct "real
soon now."

6.6. Executing Server Scripts

This chapter concludes with a discussion of a small but widely useful set of parameters. The preexec
and postexec options allow you to define a command to be executed on the server whenever a user
connects or disconnects from a share. The preexec and postexec commands are executed in the
user's own context, and the root preexec and root postexec variants are executed under the
context of the root account.

Scripts can be specified with arguments to pass, which are the standard Samba % variables. You are
limited only by your own imagination. Some clients might connect and disconnect to shares more
often that you think, so it is best not to assume that a user will connect to a share only once per
session.

For an example, we'll create a share for the server's anonymous FTP directory. This step allows a
user to publish files via FTP without having to resort to using an FTP client. The root preexec
command creates an individual folder for the user to upload files. The share definition appears as:

[ftp]
 path = /var/ftp/pub
 read only = no
 force create mode = 0004
 force directory mode = 0005
 root preexec = /etc/samba/scripts/mkftpdir.sh %u

The contents of the mkftpdir.sh script are:

#!/bin/bash
if ["x$1" == "x"]; then
 exit 1
fi
if [! -d /var/ftp/pub/$1]; then
 mkdir /var/ftp/pub/$1
 chmod 755 /var/ftp/pub/$1
 chown $1 /var/ftp/pub/$1
fi

If desired, Samba can choose to honor or reject connections based on the return code from the
preexec and root preexec commands. The preexec close (and root preexec close) can instruct
smbd to evaluate the return code from the respective preexec command and reject the connection if
the result is non-zero.

The pair of postexec commands are invoked when a user disconnects from a share. For example,
when a user disconnects from a share containing removable media (such as a CD-ROM), the
filesystem should be unmounted so that it can be removed. postexec commands are prime
candidates for solving this category of problems.

Execution options are summarized in Table 6-13.

Table 6-13. Execution options

Parameter Value Description Default Scope

preexec string Specifies a command to be run under the context of the
current user when connecting to the share.

"" Share

preexec close boolean Should smbd reject the share connection if the preexec
command exits with a nonzero return code?

no Share

postexec string Specifies a command to be run under the context of the
current user when disconnecting from the share.

"" Share

root preexec string Specifies a command to be run under the context of the
root user when connecting to the share.

"" Share

root preexec
close

boolean Should smbd reject the share connection if the root
preexec command exits with a non-zero return code?

no Share

root postexec string Specifies a command to be run under the context of the
root user when disconnecting from the share.

"" Share

Chapter 7. Printing
File serving is considered by most to be Samba's bread and butter. However, pulling up a close
second in justifications for deploying Samba is its capability to centrally manage printers and to make
them available across a network to Windows clients. The chapter focuses on the steps necessary to
add print services to Samba's configuration as well as the details for sending print jobs from Unix and
Linux clients to remote SMB/CIFS printers via smbclient.

Because Samba relies on a functioning, underlying print system, we will concentrate on sharing
printers that have previously been configured on the server. If you need to refresh yourself on Unix
printing details, three good references are Network Printing, by Matthew Gast and Todd
Radermacher, Essential System Administration, by Æleen Frisch, and Running Linux, by Matt Welsh
et al., all published by O'Reilly.

7.1. Print Shares

Samba at heart is not a printing system, but rather a spooling system. Its mantra is, "If Unix can
print to it, so can I." To implement this philosophy, it must define a mechanisman external
commands or software libraryto use when performing operations such as printing spooled jobs,
retrieving a list of jobs in a queue, or pausing a printer.

Figure 7-1 illustrates the process of sending a print job to a Samba printer. The client opens the spool
file on the server, writes the file in its entirety, and then closes the file, indicating that the job is
ready to be printed.

Figure 7-1. Sending a job to a Samba printer

This series of events has some important implications:

The smbd daemon can hand the spooled job over to the server's printing system only after the
entire file has been transmitted.

The spooled job must be in a format that can be sent directly to the Unix print queue. Generally,
this means no special Windows meta formats.

Now it is time to define a share for a printer in the configuration file. A printer in smb.conf is a service
section in which the mandatory print ok option has been enabled. The following is a perfectly valid,
although largely useless, printer share:

[print-q]
 print ok = yes

The resulting share appears with a printer icon when viewed from a Windows client, as shown in
Figure 7-2.

Figure 7-2. Viewing the print-q printer share from a Windows client

At this point, clients can connect to \\server\print-q and transmit print jobs. However, Samba reverts
to default settings for all print-related functions. These defaults may or may not work for you. You
can remove this uncertainty by explicitly defining the parameters necessary to handle print jobs.

Recall from Figure 7-1 that the client writes the entire document to the server before Samba can
print it. So where is the spooled job written? The path parameter, when used in a print share, defines
the directory on disk that will be used to store print jobs while they are being updated. A user must
have write access to this directory in order to transmit a job to the Samba printer. Otherwise, the
user will receive an error message such as "Disk is Full" or "Access denied."

Your configuration must inform smbd how it is to interact with the server's printing system in order to
control what Samba does with a spooled job once the client has finished writing it. There are two
means of defining this relationship. The first is to specify a value for the printing parameter in the
printer's share definition, thus specifying a set of default commands that will be used to handle
various printing operations and control how smbd parses the output from the printing system's lpq
(or equivalent command). The printing option accepts a single string from the following list: SYSV,
AIX, HPUX, BSD, QNX, PLP, LPRNG, CUPS.

Each one of these case-insensitve values matches a type of printing. For example, SYSV should be
selected on systems such as Solaris and IRIX that use System V printing (i.e., lpadmin and lpstat).
The AIX, HPUX, and QNX values represent their respective operating systems. The remaining options
are matched with the printing system by the same name.

There are two other possible printing values: NT and OS2. These are useful only
when the printer in question is located on a remote Windows NT variant or an
OS/2 server running a BSD printing service. Because this setup is fairly
uncommon, it is possible that support for these lpd variants will be removed in
a future Samba release.

When building Samba, the configure script attempts to determine which printing system is currently
installed and set the appropriate defaults. The easiest method of determining which printing interface
is being used by default is to define at least one printer, such as the [print-q] share, in smb.conf
and parse this file using testparm:

$ testparm -v -s smb.conf 2>&1 | grep 'printing.*='
 printing = bsd

It is also possible to see the default printing commands used to communicate with the operating
system by explicitly setting the printing value in a print service and reviewing that share with
testparm. Let's assume an smb.conf with the printing option set to BSD:

[print-q]
 print ok = yes
 printing = bsd

Running testparm on this share reveals the defaults used for BSD Samba print servers:

$ testparm -s smb.conf

<output deleted....>
[print-q]
 path = /tmp
 printable = Yes
 printing = bsd
 print command = lpr -r -P'%p' %s
 lpq command = lpq -P'%p'
 lprm command = lprm -P'%p' %j

The print command is invoked when the client has successfully written the print job to the server.
Generally, this hook is used to print the file, but its flexibility allows you to do just about anything you
like. For example, you could send a document to a fax machine or convert the job to a new format,
such as PDF. In all cases, the print command should remove the original spooled job (%s) after it has
been processed. Otherwise, the spool directory (path) eventually runs out of space as jobs continue
to pile up. The lpq command and lprm command strings are used respectively to list entries in the print
queue and to remove individual jobs.

Many implementations of lpr or other print utilities create a copy of the original
job in its own spool directory (e.g., /var/spool/lpd). In these cases, the server
requires twice the amount space as the size of the original print job. If this
becomes a problem, consider placing the Samba spool directory on a different
disk partition from the print system's spool directory. You can also define the
min print space option in the Samba print share to require a specific amount
of free space (in kilobytes) before Samba will accept a document for a given
printer. If less than this amount is available, the client receives a "disk full"
error message.

The %p variable shown in the three printing commands expands to the value of the printer name
directive and is available only within a print service. Frequently, this parameter is omitted because its
default value is the name of share itself. So in the previous output from testparm, the %p variable
would be replaced at runtime with the string print-q. The complete list of variables available in print
shares is listed in Table 7-1.

Table 7-1. Printing variables

Variable Definition

%c The page count of the print job (available only when printing from clients running
Windows NT and later operating systems).

%f, %s The full pathname of the spool file on the Samba server.

%J The name of the print job as sent by the client.

%j The number of the print job (for use with lprm, lppause, and lpresume).

%p The name of the Unix printer.

%z The size in bytes of the spool file.

There are more print-related commands than the three shown in the testparm output for the [print-
q] service. Table 7-2 gives the list of all the printing hooks and Table 7-3 describes the default values
for each printing type.

Table 7-2. Printing commands

Parameter Value Description Scope

lppause command string Command to pause an individual print job in the queue. Share

lpq command string Command to retrieve a listing of jobs in the queue. Share

lpresume command string Command to resume a pause print job. Share

lprm command string Command to remove an individual print job from the queue. Share

Parameter Value Description Scope

print command string Command to send a spooled job to the printer. Share

queue pause command string Command to pause an entire queue. Share

queue resume command string Command to resume a paused queue. Share

Table 7-3. Default printing command values based on printing types

Printing type Defaults

BSD, AIX print command = lpr -r -P'%p' %s

lpq command = lpq -P'%p'

lprm command = lprm -P'%p' %j

LPNRG, PLP print command = lpr -r -P'%p' %s

lpq command = lpq -P'%p'

lprm command = lprm -P'%p' %j

queue pause command = lpc stop '%p'

queue resume command = lpc start '%p'

lppause command = lpc hold '%p' %j

lpresume command = lpc release '%p' %j

CUPS (when there is no library support) print command = lpr -P'%p' %s; rm %s

lpq command = lpq -P'%p'

lprm command = lprm -P'%p' %j

queue pause command = disable '%p'

queue resume command = enable '%p'

lppause command = lp -i '%p-%j' -H hold

lpresume command = lp -i '%p-%j' -H resume

SYSV print command = lp -c -d%p %s; rm %s

lpq command = lpstat -o%p

lprm command = cancel %p-%j

queue pause command = disable %p

queue resume command = enable %p

print command string Command to send a spooled job to the printer. Share

queue pause command string Command to pause an entire queue. Share

queue resume command string Command to resume a paused queue. Share

Table 7-3. Default printing command values based on printing types

Printing type Defaults

BSD, AIX print command = lpr -r -P'%p' %s

lpq command = lpq -P'%p'

lprm command = lprm -P'%p' %j

LPNRG, PLP print command = lpr -r -P'%p' %s

lpq command = lpq -P'%p'

lprm command = lprm -P'%p' %j

queue pause command = lpc stop '%p'

queue resume command = lpc start '%p'

lppause command = lpc hold '%p' %j

lpresume command = lpc release '%p' %j

CUPS (when there is no library support) print command = lpr -P'%p' %s; rm %s

lpq command = lpq -P'%p'

lprm command = lprm -P'%p' %j

queue pause command = disable '%p'

queue resume command = enable '%p'

lppause command = lp -i '%p-%j' -H hold

lpresume command = lp -i '%p-%j' -H resume

SYSV print command = lp -c -d%p %s; rm %s

lpq command = lpstat -o%p

lprm command = cancel %p-%j

queue pause command = disable %p

queue resume command = enable %p

Printing type Defaults queue resume command = enable %p

HPUX (same as SYSV with the following two additions)

lppause command = lp -i '%p-%j' -H hold

lpresume command = lp -i '%p-%j' -H resume

QNX print command = lp -r -P%p %s

lpq command = lpq -P%p

lprm command = lprm -P%p %j

This is probably a good time to mention how Samba interacts with the Common Unix Printing System
(http://www.cups.org).[*] CUPS is currently the only printing library supported by Samba. When the
CUPS library has been successfully detected at compile time and the printing option has been set to
the string CUPS, the printing commands are bypassed entirely. There is no need to call out to an
external program to process print requests; smbd can call the CUPS library functions directly. The
default printing values specified in Table 7-3 for printing = cups are used only when Samba has not
been compiled to include CUPS library support. We provide more information on Samba and CUPS
later in this chapter.

[*] Michael Sweet, the author of CUPS, has also written a book entitled CUPS: Common Unix Printing System (SAMS Publishing).

queue resume command = enable %p

HPUX (same as SYSV with the following two additions)

lppause command = lp -i '%p-%j' -H hold

lpresume command = lp -i '%p-%j' -H resume

QNX print command = lp -r -P%p %s

lpq command = lpq -P%p

lprm command = lprm -P%p %j

This is probably a good time to mention how Samba interacts with the Common Unix Printing System
(http://www.cups.org).[*] CUPS is currently the only printing library supported by Samba. When the
CUPS library has been successfully detected at compile time and the printing option has been set to
the string CUPS, the printing commands are bypassed entirely. There is no need to call out to an
external program to process print requests; smbd can call the CUPS library functions directly. The
default printing values specified in Table 7-3 for printing = cups are used only when Samba has not
been compiled to include CUPS library support. We provide more information on Samba and CUPS
later in this chapter.

[*] Michael Sweet, the author of CUPS, has also written a book entitled CUPS: Common Unix Printing System (SAMS Publishing).

http://www.cups.org
http://www.cups.org

7.2. A Usable Print Share

When planning a new print share, you must know a few pieces of information. The values in
parantheses are what we will use for this information in our example print share:

The name of the printer (hp2100)

The name of the print share (postscript)

The type of printing supported by the OS for this queue (BSD)

The directory that will be used to store jobs sent from clients (/var/spool/samba)

Using this information, we can create the following initial print share:

[postscript]
 print ok = yes
 printing = bsd
 path = /var/spool/samba
 print command = /usr/bin/lpr -Php2100 %s; /bin/rm %s
 lpq command = /usr/bin/lpq -Php2100
 lprm command = /usr/bin/lprm -Php2100 %j
 queue pause command = /usr/sbin/lpc stop hp2100
 queue resume command = /usr/sbin/lpc start hp2100

To ensure that all users can send jobs to the printer, the /var/spool/samba directory has been assign
world-writable permissions (chmod 1777 /var/spool/samba).

We could have defined printer name = hp2100 and replaced the string hp2100 with the %p variable. In
the absence of the printer name option, the %p variable defaults to the name of the share itself. So if
we rename the share to [hp2100], we can simplify the service definition to the following:

[hp2100]
 print ok = yes
 printing = bsd
 path = /var/spool/samba
 print command = /usr/bin/lpr -P%p %s; /bin/rm %s
 lpq command = /usr/bin/lpq -P%p
 lprm command = /usr/bin/lprm -P%p %j
 queue pause command = /usr/sbin/lpc stop %p
 queue resume command = /usr/sbin/lpc start %p

It would be nice if there were a way to define aliased names for shares. The closest possibility is the
copy parameter discussed in Chapter 4. However, creating a new share named [postscript] and
setting it as a copy of the [hp2100] service would break the %p variable, because the printer name
option would default to postscript rather than hp2100. A satisfactory solution entails creating a
postscript alias for the hp2100 in /etc/printcap, which would appear as:

hp2100|postscript:\
 <remaining printcap options:....>

One common problem that arises using any external commands in smb.conf occurs when Samba is
unable to locate the program or script in the current PATH setting. This is why absolute paths to the
BSD printing tools are used in these examples (and why we did not simply accept the default printing
values).

If all the printers on your server use the same printing hooks, you can move most of these
parameters to the [global] section. The path directive is still defined in the individual printer section,
however, since you would not want /var/spool/samba to become to the default path for all file shares
as well:

[global]
 ## set printing defaults for all queues
 printing = bsd
 print command = /usr/bin/lpr -P%p %s; /bin/rm %s
 lpq command = /usr/bin/lpq -P%p
 lprm command = /usr/bin/lprm -P%p %j
 queue pause command = /usr/sbin/lpc stop %p
 queue resume command = /usr/sbin/lpc start %p

[hp2100]
 print ok = yes
 path = /var/spool/samba

File shares and print shares are very similar in both smb.conf and the CIFS protocol, so you can often
reuse parameters discussed in the context of file shares for new printers. In our example, we can
assign a comment to the print share by adding the following line to the [hp2100] share. Users will
then be able to view the printer's description when browsing the share details:

 comment = Classroom laser printer in RM 114

Some of the parameters, such as store dos attributes, are specific to file shares and make no
sense for a printer, just as the print command is irrelevant for a file share. Such parameters are

ignored when they are inapplicable to a given smb.conf service.

We can use smbclient to test our new example [hp2100] print share. In order to do so, we must have
at least one valid user account on the Samba host. This example reuses the account named lizard
defined in Chapter 2 and assumes an associated password of test. For the test, we use smbclient to
print the local /etc/hosts file.

$ smbclient //localhost/hp2100 -U lizard%test
Domain=[VALE] OS=[Unix] Server=[Samba 3.0.22]
smb: \> lcd /etc
smb: \> print hosts
putting file hosts as hosts (8.9 kb/s) (average 8.9 kb/s)
smb: \> queue
1 1083 Remote Downlevel Document hosts

If this command does not succeed, there are several places to start looking. First check the Samba
logfiles for error messages returned by the print command option. Also ensure that the spool directory
specified by the path parameter is writable by the connected user. If Samba appears to be
functioning correctly but no paper appears at the printer, it is time to review Unix print system
debugging techniques.

7.3. Samba and CUPS

CUPS servers are becoming more and more common in today's networks. As previously mentioned,
Samba does not require external commands to be able to communicate with the CUPS printer
daemon (cupsd). Support for this feature must be detected at compile time, however. By default, the
configure script attempts to locate the CUPS header files and development libraries. If you wish to
force Samba to build with CUPS support and fail if it cannot, use the --enable-cups option when
running configure:

$./configure --enable-cups
....
checking for cups-config... /usr/bin/cups-config
....

Once support is detected, you can verify that the resulting smbd does in fact have support for CUPS
printers by looking for HAVE_CUPS in the build options output from smbd:

$ smbd -b | grep CUPS
 HAVE_CUPS

Configuring Samba to work with cupsd is by far the easiest of all the printing types. All of the printing
commands from Table 7-2 can be omitted and our example [hp2100] share can be reduced to:

[hp2100]
 printing = cups
 print ok = yes
 comment = Classroom laser printer in RM 114
 path = /var/spool/samba

This configuration assumes that Samba and the CUPS server are running on the same host. Samba
can use a cupsd process running on a different machine by defining the cups server parameter in the
[global] section of smb.conf. The default behavior is to use the server specified in the CUPS
client.conf configuration file or defined by the CUPS_SERVER environment variable. The value should be
either the DNS name or IP address of the remote server:

 cups server = cups.plainjoe.org

CUPS allows something that is hard to do on other printing systems: you can choose when a
document should be processed by the printer's filter and when the document should bypass the filter.
Thus, a single CUPS print queue can be used to process raw print jobs from Windows clients and
PostScript files from Unix clients. In order to do this, add the cups options parameter to the print
share definition. Any number of generic CUPS arguments can be set in this parameter using a list of
comma-separated options. In the following example, we just tell Samba to inform CUPS that this job
is ready to be sent directly to the printer:

[hp2100]
 printing = cups
 print ok = yes
 comment = Classroom laser printer in RM 114
 path = /var/spool/samba
 cups options = "raw"

An alternative way to let a printer serve a dual purpose is to create two queues per printer, one to be
used by Samba and the other to process jobs from Unix clients.

All of this ease of use is not without a price. The easier something is to configure, the more difficult it
is to troubleshoot when things do not function correctly. When debugging Samba/CUPS printers,
make sure to consult the cupsd logfiles as well as Samba's logs.

7.4. The [printers] Service

Defining individual print shares for each queue on a large print server can be tedious. To alleviate this
problem, Samba provides a mechanism to dynamically create printer shares for every queue known
by the host operating system. This special share named [printers] is very similar to the [homes]
share. Here's how it works.

When Samba receives a request to connect to a share, it performs the following series of checks to
locate the share definition.

Check for an explicitly defined share in smb.conf. If a match is found, authorize this request
against this share.

Check for the [homes] service. If this share exists, look up the requested share name in the local
system's list of accounts (e.g., /etc/passwd or users in an LDAP directory). If the search
succeeds, create a copy of the [homes] share named for the user found and use this new share
for the connection request.

If the [printers] share is defined, look up the requested share name in the printcap name. If a
match is found, create a copy of the [printers] share named for the printer found and use this
as the service in response to the client's request.

Fall back to the default service if one is defined.

As we mentioned earlier, you can't define a user and a printer with the same name; Samba will never
find the printer if both [homes] and [printers] exist in smb.conf. If you accidentally send print jobs
to a file share, you will see spooled jobs accumulate in the top-level directory of the share.

Configuring the [printers] share involves three steps:

Inform smbd as to where it can find the list of system printers by defining the printcap name
global parameter. This value varies depending on the default printing value.

1.

Define the [printers] service in smb.conf.2.

Specify whether smbd should create all of the dynamic print shares at startup (allowing them to
be browsed) or create them upon demand.

3.

The printcap name parameter is indirectly linked to the printing option. In its generic form, printcap
name refers to the text file that contains the list of system printers, such as /etc/printcap. When used
with certain printing systems, however, smbd can query the print service directly. Samba provides
defaults that work most of the time; see Table 7-4 for various printing systems and the associated
printcap name value assigned by default.

Table 7-4. Special printcap name values

Value of printing option Default printcap name

CUPS cups

SYSV, HPUX lpstat

QNX /qconfig

If the list of systems printers changes, you can make Samba reload all its configuration options (and
thereby discover the changes in printers) through the usual mechanism of sending the smbd process
a hangup signal (SIGHUP). But to save you the trouble of restarting smbd, the server can instead be
instructed to periodically reparses the contents of the printcap name based on the printcap cache
time global option. This parameter accepts an integer value specifying the number of seconds for
which the cached list of printer names should be considered valid. In Samba 3.0.20 or greater, the
printcap cache time default is 750 seconds.

In some cases, it is preferrable to export a subset of system printers when using a printing type other
than CUPS. This can be done by pointing Samba to a custom printcap file that contains the list of
printer you wish to share (e.g., printcap name = /etc/samba/printcap).

The [printers] share is defined just like a normal printer. The only real requirement is to use the
variables rather than hard-coded values for changeable values such as printer names.

Finally, if [global] contains load printers = yes (the default value), all of the printers defined in the
printcap name file are parsed and made available for browsing when Samba is launched. Otherwise,
clients may request a printer using its UNC path but may not browse for the printer.

Our resulting smb.conf now looks like:

[global]
 printing = bsd
 printcap name = /etc/printcap
 printcap cache time = 1800

 print command = /usr/bin/lpr -P%p %s; /bin/rm %s
 lpq command = /usr/bin/lpq -P%p
 lprm command = /usr/bin/lprm -P%p %j
 queue pause command = /usr/sbin/lpc stop %p
 queue resume command = /usr/sbin/lpc start %p

[printers]
 print ok = yes
 path = /var/spool/samba

Before we can test the [printers] share, we need a working /etc/printcap file. Here are our example
printer configurations. If you need a refresher on the various fields in each printer entry, refer to the

printcap manpage.

hp2100:rm=rain:rp=hp2100:
slate:rm=rain:rp=slate:
quest:rm=rain:rp=quest:

Once Samba is started, we can browse the server and see all three printers:

$ bin/smbclient -L localhost -N
Anonymous login successful
Domain=[VALE] OS=[Unix] Server=[Samba 3.0.22]

 Sharename Type Comment
 ----- ---- -------
 IPC$ IPC IPC Service (Samba 3.0.22)
 hp2100 Printer hp2100
 slate Printer slate
 quest Printer quest
...

Clients will be able to connect to any one of these printers just as if it had been explicitly defined it in
smb.conf.

7.5. Enabling SMB Printer Sharing in OS X

Because Samba comes preinstalled with Mac OS X, sharing access to a printer among Windows
clients is easy. First, of course, you should set up local access using the Print Center application
(located in Finder's Applications Utilities folder). Under the Printers menu, select Add Printer . . .,
and make the appropriate selection from the pop-up menu. For example, if the printer is directly
attached, select USB; if the printer is powered on, it should appear in the list. Choose the printer, and
press the Add button.

Edit /etc/smb.conf, uncommenting the [printers] share and making any additional configuration
changes you feel are necessary. Finally, enable the Samba startup item as described in Chapter 2,
either by checking Windows File Sharing in Sharing Preferences or by manually editing
/etc/hostconfig. Now your printer can be used by remote Windows clients.

On Mac OS X and some other BSD-based systems, you can test your configuration using smbutil. The
following command sends the file named print_test_file to the printer named printshare on the
server violet:

$ smbutil print //violet/printshare print_test_file

More information on smbutil is in Chapter 11.

7.6. Creating a PDF Printer

The flexibility of Samba's printing hooks has inspired administrators to configure printer shares that
do more than just print. One of the more common examples is a printer that converts a document to
PDF and then mails the resulting file back to the user. This process is actually easier than it might
sound at first. It does, however, require an external tool, such as Ghostscript's ps2pdf command, to
convert the spooled job to PDF.

The first step in creating a PDF printer is to create the share in smb.conf. The caveat is that a printing
type other than CUPS must be specified. Remember that the printing commands are ignored when
Samba has CUPS printing support enabled. So for our example, we will use BSD printing, even
though our server may not be running an lpd daemon:

[pdfgen]
 print ok = yes
 printing = bsd
 comment = PDF Generator (requires postscript input)
 path = /var/spool/samba

Next we need a script that will handle the work of converting the PostScript file to PDF and mailing it
back to the user. Error checking and general paranoia has been removed from the script in order to
keep it short for example purposes:

#!/bin/sh
/etc/samba/pdfgen.sh <ps_file> <user> <document_name>

PSFILE=$1
USERNAME=$2
JOBNAME=$3
PDFFILE='echo $PSFILE | cut -d. -f1'.pdf

/usr/bin/ps2pdf $PSFILE $PDFFILE

/usr/bin/mail -s "$JOBNAME PDF conversion" \
 -a $PDFFILE $USERNAME < /dev/null

The next step is to set the print command to execute this script. Because we are not dealing with a
real printer, we set the lpq command to return an empty list, so as to prevent jobs from being
displayed on the client's queue listing window:

 print command = /etc/samba/pdfgen.sh %s %u '%J'
 lpq command = /bin/true

Assuming that the client sends a valid PostScript file, the user should receive a copy of the document
in PDF format. That is of course a large assumption, which brings us to a discussion of centrally
managing Windows print drivers.

7.7. Managing Windows Print Drivers

Current versions of Samba support the downloading of print drivers on demand when clients connect
to print shares. This feature is commonly referred to as point and print (p-n-p). The advantages of
this configuration are that you are guaranteed that clients are using the print driver that you expect
them to use and that you can deploy updated drivers and printer settings without touching the
clients. Before you begin to think that this is too good to be true, there are a few catches.

First, the drivers must be installed on the Samba server just as one would install them on a Windows
print server. However, unlike with a Windows host, you must initialize the printer registry settings on
the server. (More on this later.)

Second, not all print drivers are created equal. You will find that most drivers work correctly when
served from a Samba machine, but a few will be unusable due to bugs in the driver itself or a
decision by the driver developers to utilize features that can be supported only by a Windows server.
Luckily, for the majority of environments, Samba's level of support for p-n-p is more than adequate.

7.7.1. Point and Print Prerequisites

For now, assume that we have already created all of the print shares (possibly with a single
[printers] share) in smb.conf. It is possible to create new printers at runtime via the Windows Add
Printer Wizard (APW), but to keep things simple, let's just deal with the driver installation issues for
now. Later we discuss how to remotely add and delete printers on a Samba host.

Samba maintains print driver metadata and files in two locations. The Windows driver files
themselves are stored in a standard file share named [print$]. The service definition for this share is
nothing out of the ordinary. It is important to note that all users who will be downloading drivers
from the server must have read access to the data stored withing the share. However, only trusted
accounts should be given the ability to add new files or modify existing ones. Because these files are
downloaded automatically to clients, imagine what damage could be done if a malicious user were
able to copy a virus infected DLL as part of a print driver.

Don't confuse the Windows print drivers with any driver files (e.g., PPD files or
filters) specific to the underlying Unix print system.

The [print$] share defined here permits write access to members of the ntadmin Unix group only. All
other accounts can connect but cannot modify the share contents. We also enforce world accessible
permissions on files and directories.

[print$]
 comment = Windows print driver files

 # Make sure the permissions on the top level directory
 # are 2775 with group ownership belonging to ntadmin
 path = /export/smb/printers
 read only = yes
 write list = +ntadmin
 inherit permissions = yes

We must create two directories within the top level directory of this share. The WIN40 directory will
hold drivers for print drivers for Windows 95/98 and Millenium. The W32X86 directory is needed for
32-bit Windows NT variants running on Intel platforms.

$ cd /export/smb/printers
$ mkdir WIN40 W32X86
$ chgrp ntadmin W*
$ chmod 2775 W*

These two directories cover the majority of clients. However, there are different
directory names if you must also support Windows NT R4000 (W32MIPS),
Windows NT Alpha_AXP (W32ALPHA), and Windows NT PowerPC (W32PPC).
There are also two additional directories if you find yourself supporting newer
64-bit releases of Windows for the Itanium (IA64) and the AMD Opteron (x64).

In addition to the driver files, a print server must maintain metadata about how the driver files are
grouped together (ntdrivers.tdb); what paper sizes are supported by the server (ntforms.tdb); and
printer attributes such as duplex settings, page orientation, and the currently assigned driver
(ntprinters.tdb).[*] All three tdb files are stored in a Samba lock directory (/var/lib/samba or
/usr/local/samba/var/locks). The authorization to update driver files is strictly controlled by the
filesystem permissions and any access parameters associated with the file share. Updating
information stored in these printing tdbs requires possession of the SePrintOperatorPrivilege. Refer
to Chapter 5 if you need a refresher course on managing user rights in Samba.

[*] Although paper sizes (i.e., forms) are installed with a specific printer, the data is stored globally across all printers. Hence the

statement regarding paper sizes on the server (and not per printer).

Prior to 3.0.11, Samba relied on the printer admin option for authorizing users to update information
in the printing tdbs. This parameter has since been deprecated and will be removed in a future
release.

Now that we have moved past the prerequisite file shares and permissions, we can focus on installing
a print driver and binding it to a printer.

7.7.2. Installing Print Drivers

Windows 2000 and later clients provide an interface to upload print drivers without associating the

driver with any specific printer. The print driver management screen is integrated into the server
properties dialog box. You can reach the Server Properties for a Samba host by browsing to the
server's Printers folder from a client running Windows 2000 or later. Windows XP and Windows
Server 2003 have renamed this folder to Printers and Faxes. Once you have arrived at the folder,
select the File Server Properties for the dialog box shown in Figure 7-3.

Figure 7-3. Driver tab in the Server Properties dialog box

If you have connected using an account that posseses the SePrintOperatorPrivilege privilege, the
Add, Remove, and Replace buttons are available. If they are disabled, make sure that your user
account has the necessary privilege or that you are a member of a group that does. Also remember
that updates to privilege assignments are applied only for a new CIFS session. So if the right privilege
was assigned while the account was connected, you have to disconnect and relogin to the server. The
most effective means of ensuring that the session is torn down and reestablished is to log out and
back in again on the Windows client.

A new driver upload is begun by clicking Add. The Add Printer Driver Wizard (APDW) dialog box
shown in Figure 7-4 will appear.

Figure 7-4. Add Printer Driver Wizard dialog box

Click Next to get to the Driver Selection dialog box. At this point, you can either select the print
drivers distributed with Windows or select an alternative location in case you have downloaded newer
or additional drivers from the printer's manufacturer.

Once you have selected a driver to upload to the server, Windows prompts you to select the
architectures to support with the driver to install. For example, if you wish to install a driver with
support for Windows 2000 and NT clients as well as Windows 9x, it is possible to do so here. You can
always upload other architectures for a given driver by running the APDW again. Windows asks you
for driver files for any alternative architectures that have been selected once it begins copying the
files to the server.

Windows NT-only drivers are often referred to as version 2 drivers, because the driver files are stored
under \\server\print$\W32X86\2 directory. Windows 2000 and later drivers are referred to as version
3 and hence stored in \\server\print$\W32X86\3. The real difference between these two types of
drivers is how they interact with the Windows kernel. Version 2 drivers are kernel-mode drivers, and
version 3 drivers are executed in user-space.

The final dialog box allows you to begin the copying process and issue the commands to create the
printer driver object on the destination machine. If the process completes successfully, you will see
the newly installed driver listed in the Server Properties window. If the driver files fail to copy with an
"Access Denied" error message, verify that the account used to upload the drivers has write
permission to the [print$] share and its immediate subdirectories.

7.7.3. Assigning Print Drivers and Initializing DeviceModes

Once the driver has been installed on the server, it is time to associate it with a specific printer. A
printer created on a Windows server uses the driver libraries to fill in a data structure referred to as a
DeviceMode for options such as duplex printing features and landscape or portrait page orientiation.
This DeviceMode and associated registry data (PrinterDriverData) define the printer's settings. A
Windows print server executes the driver when it is assigned to a printer in order to generate the
required printer data. Samba is not able to natively execute Win32 code nor is it restricted to Intel
hardware. Therefore, a little bit of assistance is needed to generate and store the required settings
for a printer.

To bind a driver to a specific printer, first launch the printer properties dialog for that device by right-
clicking the printer's icon and selecting the Properties option. You will be immediately informed that
the server does not have an appropriate driver installed for the printer (because you have not
assigned one yet) and asked if you would like to install a local copy of the driver. Your first inclination
may be to reply Yes, because you are trying to assign a driver to the printer. However, doing so
installs a new print driver on the client machine only and creates a local print object that points back
to the server. You want to assign a driver to the printer object on the server, not the client. Selecting
No here causes the Properties dialog box to be launched instead, as shown in Figure 7-5.

Figure 7-5. Printer Properties dialog box for \\rain\hp2100

The driver selection list can be found under the Advanced tab. Selecting this drop-down list displays
the names of the Windows NT and 2000/XP drivers installed on the server. Drivers that have only a
Windows 9x version installed are not displayed. You can select any one of the drivers listed and then
click the OK button. If all of the options are disabled, this means that you have not connected to the
server as a user possessing the SePrintOperatorPrivilege. (In the next section, we show how you
can grant administrative rights for a single printer to a user or group.) If all goes well, the client will
make the change to the printer and the dialog box will silently go away.

Upon returning to the Printers and Faxes folder on the Samba server, you will likely notice that the
printer has been renamed to match the driver name just assigned. On a Windows print server, the
printer name and the share name are stored as two different attributes of the printer. To be fully
compatible and allow migrations from Windows print servers, Samba has to support renaming
requests from clients such as this one. Some people like it; others find it annoying. If you would
prefer to prevent clients from renaming the printer displayed in the "Printers and Faxes" window,
enable the force printername parameter in the print service definition.

This time, when the printer properties dialog box is launched, you should no longer be prompted to
install a driver on the client. In fact, if all has gone well, the client has already silently downloaded
and installed the driver in order to display all of the associated settings. There are two things that can
occur when the client attempts to launch the properties dialog box. The desired result is that window
displays without any errors. However, some drivers will crash the Windows Explorer. or perhaps even
the client's spooler service itself.

Print Management Extreme

When you begin print driver management in Samba, it is much easier to grasp the details
by creating the print shares in smb.conf beforehand and focusing on the driver
installation process. However, if you would like to take this one step further and create,
modify, and delete printers at runtime from a remote Windows client, read on.

Samba provides two hooks that administrators can use to plug into their own scripts for
adding and removing printers from the underlying printing system. These are referred to
as the add printer command and the delete printer command respectively.

The add printer command is called when the client asks to create a new printer or sends
a SetPrinter() request to change basic attributes. The script is highly site-dependent and
varies from one print server to another. An example script designed for CUPS servers,
named smbaddprinter.pl, can be found in the examples/scripts/perl directory of the
Samba source distribution

Samba feeds seven arguments to the script:

The printer name

The share name

The port name

The driver name

The location field

The comment field

The NetBIOS name of the remote client issuing the request

The script should parse these parameters and create or update the printer information
for the OS.

The delete printer command, whose role is to remove the printer from the server's
printing system, is given the share name as its sole argument. This tends to be a much
simpler operation than adding a new printer. An example script named smbdelprinter.pl
is in the same directory as the add printer example script.

Client crashes at this stage are caused by the lack of a printer DeviceMode. Some drivers appear to
be more sensitive (or more assuming) than others. One workaround is to have smbd create a generic
DeviceMode for the printer, by setting default devmode = yes in the print share's section of
smb.conf. Frequently, this step is enough to at least display the printer's Properties window.

Once the properties are displayed, navigate to the Advanced tab and select the Printing Defaults . . .

button. Windows 2000 introduced the concept of Printing Preferences, which are stored on a per-user
basis, and Printing Defaults, which are stored with the printer on the server. Note that Windows NT
4.0 supports only global printer settings for all users and Windows 9x supports only printer
preferences, and only on the local system. In fact, Windows 9x ignores attributes assigned to a
printer on the server and initializes the local printer object to the driver defaults.

When you set a value in the Printing Defaults window, the client executes the driver on your behalf
and stores the required printer data on the server. Setting any attribute stored in the DeviceMode
appears to have the same effect, but the attribute that has been most tested is the page orientation.
A change from portrait to landscape and back, clicking Apply between the changes, initializes the
printer on the server. Figure 7-6 displays the page orientation settings for an HP LaserJet printer.

Figure 7-6. Initializing printer data using the page orientation field

Finally, exit from the property dialog boxes by clicking OK until you are back to the Printer and Faxes
folder. The printer is now ready for use by Windows clients.

7.7.4. Testing Point and Print

If everything has been sucessfully completed up to this point, testing p-n-p from a client should go
smoothly. Select a Windows client that matches the driver architectures installed on the server for
your printer. There are many ways to establish a printer connection in Windows, and it can also vary
from one OS release to another. One method that is common to all Windows clients is to browse to
the server's Printers and Faxes folder and right-click on the printer. When you select Connect from
the menu, the client downloads the driver and creates a printer connection that can be seen from the
client's own Printers folder (Start Settings Printers and Faxes). Figure 7-7 shows a
connection to the printer hp2100 (HP LaserJet Series 2100 PS) served by the Samba host named
rain.

Figure 7-7. Printer connection to \\rain\hp2100 on a Windows XP client

Because they use an older printing protocol, Windows 95/98/Me never see the Printers and Faxes
folder on the Samba server. However, it is still possible to browse to the server, right-click a print
share, and select Install from the context menu. The client will download the driver and create a local
printer pointing back to the server. It will not, however, associate any of the printer settings on the
server, such as duplex or page size, with the local printer object. The user on these systems must
manually define these settings for each printer he connects to.

Failures when connecting to a printer can often be traced to authorization failures. In the next
section, we examine how to enforce security checks on on Samba print shares.

7.8. Printers and Security

The idea of controlling access to printers is a recent addition to Unix world. In order to provide a
consistent and Windows-compatible view of security, Samba internally performs access checks to
validate actions such as printing a document, removing a job, or changing a printer attribute. There
are two levels of authorization controls related to printer operations, both of which mirror security
checks done on file shares. However, a user possessing the SePrintOperatorPrivilege is granted
access regardless of the access control settings.

The first access check done when connecting to a printer, assuming that the client has authorization
to access the Samba server at all, is the Windows NT security descriptor assigned to that printer. This
is the same security model used by Windows print servers. Figure 7-8 shows the default security
descriptor assigned to a printer on standalone Samba server. The default access control entries
created on a domain member server or domain controller will be slightly different in order to grant
members of the Domain Admins group full control over printer attributes.

Figure 7-8. The Security tab in the printer properties dialog box of a
Samba print share

The second layer of authorization controls is the standard set of smb.conf parameters, such as valid
users and host allow. Note, however, that certain options such as force group are not currently
enforced when printing from a Windows NT client variant, due to the way printer operations are
carried out. For many sites, restricting access to printers via smb.conf setting is much easier.
However, other sites require pure Windows semantics and choose to rely on the printer ACLs stored
in ntprinters.tdb.

One final comment about Samba and print authorization: Samba currently provides no built-in means
of performing page accounting for printers. This has traditionally been considered a job for the
underlying printing system.

7.9. Disabling Point and Print

Under some circumstances, an administrator may wish to disable support for driver downloads and
instead require that Windows clients install a driver locally when connecting to the Samba print share.
This type of setup is not recommended, because it forces Samba to act in ways not normally
supported by a Windows print server and hence not normally tested by Windows clients.

The p-n-p architecture rests on two supporting layers. Windows NT-based clients require that the
print server support printing calls based on Microsoft Remote Procedure Call, or MS-RPC (often
referred to by the named pipe over which they are implemented, spoolss). To disable Samba's
support for the printing RPC operations without affecting the other RPC based features in Samba,
such as domain membership or domain controlling, set disable spoolss = yes in the [global]
section of smb.conf. This removes the Printers and Faxes icon from the clients' folders when they
browse the server. The default value for this parameter is no, which means that smbd should support
RPC-based printing.

Disabling spoolss support in Samba bas been known to cause Windows NT-based clients to
continually poll the server for printer status updates, which results in high CPU usage by the
associated smbd processes. Disabling spoolss support should be done only for very specific needs and
only if you are willing to deal with the consequences.

Windows 95/98/Me clients use an older printing protocol referred to as LanMan printing. Therefore,
disabling RPC-based printing has no affect on these clients.

Support for the spoolss set of RPC's is a global configuration option. Sometimes it is desirable to
support p-n-p for the majority of printers on a Samba host, but allow clients to install a driver locally
for a few specific print queues. This is a common need when the driver just doesn't work with a
Samba print server.

This is one of those cases where forcing a Windows client into an untested use pattern can cause
strange results. When a user connects to the driverless print queue, the client asks her to install a
driver locally, as we have already seen. After doing so, the client creates a local printer object rather
than a printer connection. Windows then frequently attempts to open the print queue on the server
with administrative access that matches what it would expect for access to the local printer object. Of
course, just because someone is a local administrator of their machine does not necessarily equate to
root on a Unix print server. Samba (correctly) denies the request for excessive rights to the printer
and the client will then display an error to the user that states, "Access denied; Unable to connect."

This is a very confusing error for the user, because she is still able to send documents to the printer
without difficulty. The service option use client driver is designed to work around this cosmetic
defect on the client. Enabling this parameter for a print share instructs Samba to map all requests for
administrative access to standard print access. The result is that the client's original request
succeeds. It never encounters the "Access denied" error from the server and hence never displays
the confusing error message to the user.

It is important to remember that neither of these options should be enabled if the print queue is
configured to support p-n-p for clients.

7.10. Printing, Queue Lists, and tdb Files

Samba has always played the role of masquerading Unix hosts as Windows servers. This role requires
that certain Unix attributes be extended to present the information expected by Windows clients.
Printing is no exception. Samba places a thin layer over Unix print jobs to store the additional
information, such as the CIFS print job's numeric ID, the name of the print job (rather than the spool
file name of smbprnXXXX), and the Windows security descriptor associated with the document in the
queue. This information is maintained in each printer's queue cache database, located in the printing
subdirectory of Samba's lock directory. These cache tdbs are used to enumerate job listings to
clients such as the print queue monitor shown in Figure 7-9.

Figure 7-9. Listing of jobs in a Samba print queue from a Windows client

It can be expensive to reparse the output from the lpq command every time a client asks for an
update on the status of a specific printer. The solution to this is to respond to the client request out of
cache. This means that there is a lag between the real state of the Unix print queue and what is
displayed to the Windows client. This lag is controlled by the integer value of the lpq cache time
parameter. This value represent the expiration time in seconds of the cache file tdb contents. Current
Samba releases default to a 30-second TTL.

Be very careful when tweaking this parameter. A smaller value may provide more accurate data to
clients, but on a busy server with a large number of printer, the cost in CPU time is significant.

Sometimes it is desirable to restrict the maximum number of jobs accepted for a given queue. This
can be done by defining the max print jobs option in the smb.conf print service. Setting the
parameter to 0 (the default value) indicates that there should be no limit on the number of print jobs
in the queue at any given time.

It is also possible to allow an unlimited number of jobs in the printer but restrict the number of jobs
reported to a client by setting the max reported print jobs option. This is another performance
tweaking option. It saves Samba from spending all its time composing a list of jobs to send back the

client, only to find that by the time it finishes the list, its cache has already become outdated. Again,
a value of 0 indicates that Samba should simply report the complete set of jobs without any
restrictions on the list size.

You can thank the test engineers who believed Samba should scale to support more than 10,000 jobs
in any given print queue at a time for these parameters. Of course, if you have that many jobs in a
print queue, you probably have other problems with the printer. But at least Samba will happily
report the situation and continue to do normal work.

7.11. Printing to Windows Printers

If you have printers connected to Windows systems, Samba can help you connect to these from Unix
clients. First, it is necessary to create a printer share on the Windows system. Then, set up the
printer on the Unix side by configuring a new printer and using a Samba printing program as the
printer's filter.

7.11.1. Sharing Windows Printers

Sharing printers on Windows is not unlike sharing files. In fact, it is a little simpler. Open the Control
Panel, then double-click the Printers icon to open the Printers window. Right-click the icon for the
printer you want to share, and select Sharing . . . to open the dialog box shown in Figure 7-10 for a
Windows Me system, or Figure 7-11 on a Windows Server 2003 system. (The dialog box appears
slightly different on other Windows versions, but functions almost identically.)

Figure 7-10. Sharing printers on Windows Me

Figure 7-11. Sharing printers on Windows 2003

Click the "Shared as" radio button, then click the OK button. The printer is now accessible by other
systems on the network.

7.11.2. Adding a Unix Printer

The Samba distribution comes with three programs that assist with printing on shared printers. The
smbprint program works with systems that use the BSD printing system, smbprint.sysv works with
systems that use System V printing, and smbspool works with systems that use CUPS. In the
following sections, we show you how to install printers for each system.

7.11.2.1. BSD printers

The BSD printing system is used by many Unix variants. Here is the entry we added to our
/etc/printcap file to support our HP DeskJet 932C printer, which is shared by maya, a Windows 2003
system:

lp|maya-hp932c:\
 :cm=HP 932C on maya:\
 :sd=/var/spool/lpd/maya:\
 :af=/var/spool/lpd/maya/acct:\
 :if=/usr/local/samba/bin/smbprint:\
 :mx=0:\
 :lp=/dev/null:

The first line creates names for the printer. We are calling it maya-hp932c, to describe its location on
the network and the type of printer, and lp, so that programs will use it as the default printer. The
rest of the lines specify keywords and values. The cm keyword allows us to assign a comment string
to the printer. The sd and af keywords assign the printer's spool directory and accounting files,
respectively. The if keyword assigns the print filter. We are using the smbprint command to send the
output to the shared SMB printer. The mx keyword is set to 0 to allow a file of any size to be printed,
and lp is set to /dev/null to discard error messages.

You can follow our model to create an entry for your own printer. If you want to go beyond the
capabilities we used, refer to your system's printcap(5) manpage for a complete listing of keywords.

Go to your Samba source distribution's root directory and install the smbprint program like this:

$ cp examples/printing/smbprint /usr/local/samba/bin

Next create the printer's spool directory (as the root user):

$ cd /var/spool/lpd
$ mkdir maya
$ chown lp:lp maya
$ chmod 700 maya

The smbprint program looks for a file named .config in the printer's spool directory, which contains
information on how to connect to the printer share. Therefore, create this file and fill in the required
information:

$ cd maya
$ touch .config
$ chown lp:lp .config
$ chmod 600 .config

Use your preferred text editor to edit the .config file, and add the following:

server=maya
service=hpcolor
username=unix-print
password=Pr1n@ter

This example is for our shared printer, which has a UNC of \\maya\hpcolor. Notice that we are using
a username of unix-print and a password of Pr1n@ter. It is important that these credentials do not
grant access to any network resources except this printer, in case someone can read the file's
contents. If possible, unix-print should be a special account on the Windows server used just for
allowing Unix clients to access this printer.

Finally, restart the printer daemon using the normal procedure on your server. The following
command works on a Linux system runing BSD printing.

$ /etc/init.d/lpd restart

You can now try printing something. Run the following command:

$ lpr textfile

If you have everything set up correctly, the file prints on the shared printer. If you get "stair
stepping" of text, caused by the printer not returning to the left margin at the beginning of every line,
modify the if keyword in your printcap entry to run smbprint with the -t option.

7.11.2.2. System V printers

Sending print jobs from a System V Unix system is a little easier than with the BSD system. Here,
you need to edit the smbprint.sysv script in the examples/printing directory of the Samba distribution
and do the following:

Change the server, service, and password parameters in the script to match the NetBIOS
computer name, its shared printer service, and its password, respectively. For example, the
following entries would be correct for the service in the previous example:

server = maya
service = hp
username = unix-print
password = Pr1n@ter

1.

2.

Run the following commands, which create a reference for the new printer (which we are
naming hp_printer) in the printer capabilities file:

$ lpadmin -p hp_printer -v /dev/null -i./smbprint.sysv
$ enable hp_printer
$ accept hp_printer

2.

After you've done that, restart the Samba daemons and try printing to hp_printer using any
standard Unix program.

7.11.2.3. CUPS printers

CUPS uses a set of modules, called backends, to send print jobs to various destinations, such as local
printers attached to parallel, serial, or USB ports, or over the network using Unix line printer daemon
(LPD) protocol, Internet Printing Protocol (IPP), AppleTalk Printer Access Protocol (PAP), and so on.
The software package does not come with a backend for SMB; the Samba suite includes the
smbspool utility for this purpose.

To enable printing to remote SMB printers using CUPS, create a symbolic link named smb in the CUPS
backend directory pointing to smbspool. Depending on installation options, these could be in a
number of places in the directory hierarchy, so be sure to check your system. Using a common
default installation, the command would look like this:

$ ln -s /usr/local/samba/bin/smbspool /usr/lib/cups/backend/smb

Issue a HUP signal to the CUPS daemon, cupsd, and check for the existence of SMB support with the
lpinfo -v command. Its output should now include a line that says network smb.

To add a printer, use the CUPS web interface, accessible on the local system at http://localhost:631/,
or use the lpadmin command:

$ lpadmin -p hp932c -E -v smb://maya/hp932c -D "HP 932C on maya"

This command creates and enables a new print spool called hp932c. The -v argument specifies the
printer device, which in this case is accessed over the network using an SMB URI. If the printer is not
guest-accessible, you'll need to provide a username and password in the URI. The full format is as
follows:

smb://[username[:password]@][workgroup/]server/printshare

http://localhost:631/

The lpadmin command makes changes to /etc/cups/printers.conf and sends a HUP signal to the
cupsd daemon, resulting in the creation of a local raw printer spool. In this example, print data is
passed in raw format to the Windows system, which has the necessary printer drivers and printer
description files to format the data appropriately. The -D gives the printer a comment string.

Once you have the printer set up, it's time to test it out. CUPS understands both BSD-style and
System V-style printing commands, so you can use whichever is more comfortable. Using the BSD lpr
command, try something like:

$ lpr -P hp932c textfile

You should now be set up to use the printer from any application on the Unix system.

7.12. Printing Parameters

Some people would claim that printing should take a back seat to file serving or authentication
services, but Samba proves that its support for the Windows printing model is not second-rate. We
have shown that Samba is able to export Unix printers to Windows clients and help enable Unix
clients to print to Windows print servers. And once Samba is configured for central driver
management and p-n-p, only a trained eye can detect the differences between a Samba print server
and a Windows one from a client's perspective.

Table 7-5 concludes this chapter with a reference of all the printing-related smb.conf parameters that
we have discussed.

Table 7-5. smb.conf printing-related options

Parameter Value Description Default Scope

add printer

command
string External script called by Samba upon receiving an

AddPrinter() or SetPrinter() request from a
client.

None Global

cups options string List of comma-separated options to be passed
onto the CUPS library when printing a document.

None Global

cups server string Name or IP address of the host running the cupsd
daemon.

See CUPS
client.conf

Global

default

devmode
boolean Instructs smbd to generate a generic DeviceMode

for the print share.

no Share

delete

printer

command

string External script called by Samba upon receiving a
request to remove a printer from the server.

None Global

disable

spoolss
boolean Determines whether Samba should support the

RPC printing protocol used by Windows NT-based
client.

no Global

force

printername
boolean Determines whether Samba should disallow

storing the printer name as a separate attributer
separate from the share name.

no Share

load printers boolean Determines whether smbd should create print
services for all entries in the printcap name file
when starting, assuming that a valid [printers]
share has been defined.

yes Global

Parameter Value Description Default Scope

lpq cache
time

integer Integer value representing the time in seconds
that a queue cache tdb should be considered
valid.

30 Share

max print
jobs

integer Places an upper limit on the number of jobs that
are allowed in a the print queue at any given
time.

0 Share

max reported

print jobs
integer Places an upper limit on the number of jobs in a

queue that are reported to clients at any given
time.

0 Share

min print

space
integer An integer value defining the amount of free

space in kilobytes that must be present in order
for Samba to accept a new print job for this
queue.

0 Share

path string When used in the context of a print share, this
parameter defines the directory used to store jobs
as they are being spooled from clients.

/tmp Share

print ok boolean Defines the service as being a print share. no Share

printcap

cache time
integer Integer value specifying the interval in seconds

used to poll the printcap name file for new or
deleted printer entries.

750 Global

printcap name string Defines the file or service used to obtain a list of
valid printers on the system.

Determined at
compile time

Global

printer name string The name used to derive the value for the %p
printing variable.

%S Share

printing enum Defines the type of printing used for a specific file
share. The available printing types are SYSV, AIX,
HPUX, BSD, QNX, PLP, LPRNG, CUPS.

Determined at
compile time

Share

use client

driver
boolean Determines whether Samba should map requests

for administrative access to a printer to a lesser
privilege value.

no Share

lpq cache
time

integer Integer value representing the time in seconds
that a queue cache tdb should be considered
valid.

30 Share

max print
jobs

integer Places an upper limit on the number of jobs that
are allowed in a the print queue at any given
time.

0 Share

max reported

print jobs
integer Places an upper limit on the number of jobs in a

queue that are reported to clients at any given
time.

0 Share

min print

space
integer An integer value defining the amount of free

space in kilobytes that must be present in order
for Samba to accept a new print job for this
queue.

0 Share

path string When used in the context of a print share, this
parameter defines the directory used to store jobs
as they are being spooled from clients.

/tmp Share

print ok boolean Defines the service as being a print share. no Share

printcap

cache time
integer Integer value specifying the interval in seconds

used to poll the printcap name file for new or
deleted printer entries.

750 Global

printcap name string Defines the file or service used to obtain a list of
valid printers on the system.

Determined at
compile time

Global

printer name string The name used to derive the value for the %p
printing variable.

%S Share

printing enum Defines the type of printing used for a specific file
share. The available printing types are SYSV, AIX,
HPUX, BSD, QNX, PLP, LPRNG, CUPS.

Determined at
compile time

Share

use client

driver
boolean Determines whether Samba should map requests

for administrative access to a printer to a lesser
privilege value.

no Share

Chapter 8. Name Resolution and Network
Browsing
Name resolution is critical to Samba's operation, because names are used to find the servers that
share files or printers. Network browsing takes the task of finding servers to a new level of
sophistication by allowing a user to delve down into a hierarchy of networks, domains, hosts, and
services offered by each server. Although there are many ways to locate services on a networksuch
as the Service Location Protocol (SLP), Universal Plug-and-Play (UPnP), or even use of LDAP queries
to search Active Directoryour focus is solely on Samba's role in browsing NetBIOS-based services.

Name resolution and browsing are not difficult to configure. However, some complexity is introduced
by the variety of available name-resolution systems. Historically, Unix and other TCP/IP users have
moved from a flat hosts file to the DNS, with the NIS or LDAP directory services as other popular
choices. Meanwhile, Microsoft moved from a broadcasting system to a simple, LAN-only name server
called WINS, and then to DNS.

All of these historical name resolution systems are still in use today. Finding a host is so crucial to
networking that sites want robust name-resolution systems with fallback mechanisms in case the
main system fails. Browsing is also complicated by the frequent need to show hosts in other subnets.
This chapter shows you how to configure your network to handle name resolution and browsing any
way you want.

Some of the differences between Unix and Microsoft networking implementations are the result of
fundamental design goals. Unix networking was originally designed largely to implement a relatively
formal group of systems that were assumed to be small in number, well-maintained, and highly
available; that have static IP addresses; and that wouldn't physically move from place to place.
Bringing a new server online was a labor-intensive task, but it did not have to be performed
frequently. In contrast, Windows networking was originally developed as a peer-to-peer collection of
small personal computers on a single subnet, having no centrally or hierarchically organized
structure.

SMB networking is dynamic. Computers are allowed to leave the network at any time, sometimes
without warning, and to join or rejoin the network at any time. Furthermore, any user in a Windows
network can theoretically add a new shared resource to the network or remove a resource that was
previously added. The change in the network's configuration is handled automatically by the rest of
the network, without requiring any action by a system administrator.

8.1. Name Resolution

TCP/IP networks identify systems by IP addresses, and use a name resolution scheme to associate
these addresses with more human-readable text names. In Microsoft's earliest networking
implementations (for MS-DOS and Windows for Workgroups), the translation of names to network
addresses was carried out in a manner similar to the Address Resolution Protocol (ARP) used on
Ethernet networks today. When a system on the network needed an IP address corresponding to a
name, it broadcasted the name to every other system on the network and waited for the system that
owned the name to respond with its IP address.

The main problem with performing name resolution using broadcast packets is poor performance of
the network as a whole, including CPU time consumed by each host on the network, which has to
accept every broadcast packet and decide whether to respond to it. Also, broadcast packets usually
aren't forwarded by routers, limiting name resolution to the local subnet. Microsoft's solution was to
add Windows Internet Name Service (WINS) support to Windows NT, so that the computers on the
network could perform a direct query of the WINS server instead of using broadcast packets.

Modern Windows clients use a variety of methods for translating hostnames into IP addresses. The
exact method varies depending on the version of Windows the client is running and how the client is
configured (i.e., whether a DNS server and/or WINS server is provided). In general, Windows uses
some combination of the following methods:

Looking up the name in its cache of recently resolved names

Querying DNS servers

Using a local hosts file

Querying WINS servers

Using a local LMHOSTS file

Performing broadcast name resolution

The first method is self-explanatory. A hostname is checked against a cache of hostnames that have
been recently resolved to IP addresses. This check helps to save time and network bandwidth for
resolving names that are used frequently.

It is possible, although uncommon, for a Windows system to consult a local hosts file, as described in
Chapter 3. DNS servers are very common in modern networks. When a Windows system is
configured with the IP address of at least one DNS server, it can use DNS to resolve fully qualified
domain names, such as those for sites on the Internet. The DNS servers can be either Windows or
Unix systems. You can learn more about DNS and DNS server configuration in the book DNS and
BIND, by Paul Albitz and Cricket Liu (O'Reilly).

8.1.1. WINS Clients and Server Interaction

There are two types of interaction between a WINS client and a server: the client keeps its own
NetBIOS name (or names) registered with the server and queries the server to get the IP address
corresponding to the NetBIOS name of another system.

When a WINS client joins the network, it registers its NetBIOS name with the WINS server, which
stores it along with the client's IP address in the WINS database. This entry is marked active. The
client is then expected to refresh the registration of its name periodically (typically, every four days)
to inform the server that it is still using the name. This period is called the time to live, or TTL. When
the client leaves the network by being shut down gracefully, it informs the server, and the server
marks the client's entry in its database as released.

When a client leaves the network without telling the WINS server to release its name, the server
waits until after it fails to receive the expected registration renewal from the client and then marks
the entry as released.

In either case, the released name is available for use by other clients joining the network. It might
persist in the released state in the WINS database, and if it is not reregistered, the entry is eventually
deleted.

More information on WINS can be found in the Microsoft white paper "Windows Internet Naming
Service (WINS) Architecture and Capacity Planning," which can be downloaded from the Microsoft
web site (http://www.microsoft.com).

8.1.2. Setting Up Samba As a WINS Server

You can set up Samba as a WINS server by enabling the wins support parameter in the [global]
section of the configuration file, like this:

[global]
 wins support = yes

The wins.dat file was mentioned in Chapter 2 while discussing Samba's database files. It is important
to remember that the file does not reflect the current state of nmbd's WINS database, but rather a
snapshot of the registered names at a previous point in time. The file is read when nmbd starts and
is synchronized with the in-memory tables periodically.

Samba 3.0 cannot currently replicate its database with any other WINS servers. If you are using
Samba as your WINS server, you must make sure not to allow any Windows systems or other Samba
servers on your network to be configured as WINS servers. If you do, their WINS databases will not
synchronize, resulting in potentially inconsistent name resolution.

http://www.microsoft.com

Development code in Samba 4 supports the Windows WINS replication protocol
and communicates with other WINS servers. Although this code is not part of
the current Samba production releases, it can be installed as a separate service
to handle your WINS infrastructure.

8.1.2.1. Proxying name resolution requests to DNS

Because Windows tries all possible mechanisms for translating a name to an IP address, a client
might ask a WINS server to resolve the name of a server that has no relation to a NetBIOS service.
For example, when a web browser tries to access an unqualified hostname, the name could be
checked against Samba's WINS service. Therefore, unless configured otherwise, a Samba WINS
server checks with the system's DNS server if a requested hostname (of type <00> or <20>) cannot be
found in its WINS database. The nmbd daemon spawns a child process to handle the DNS lookups, so
that the main process can continue to handle other incoming name requests. This method is similar
to Microsoft's WINS and DNS implementation, which can share records in a common database.

Typical Unix systems maintain the IP address of the DNS server in /etc/resolv.conf. The following
configuration file indicates that the host should append a domain of plainjoe.org to unqualified
hostnames when sending queries to the DNS server located at 192.168.1.56:

domain plainjoe.org
search plainjoe.org
nameserver 192.168.1.56

If you would prefer to restrict nmbd to search only its WINS database when answering name
resolution requests, disable the dns proxy option in smb.conf:

[global]
 wins support = yes
 dns proxy = no

This option has no effect if Samba's WINS server functionality has not been enabled.

8.1.2.2. Catching WINS database modifications

The wins hook global option allows you to run a script or other program whenever the WINS
database is modified. The script is passed four parameters that describe the modification:

The command that was executed: add, delete, or refresh

The name being modified

The resource byte in hex of the name being modified

The TTL of the request

When you define the WINS hook parameter in smb.conf, provide the absolute path to the external
utility, as shown here:

[global]
 wins support = yes
 wins hook = /usr/local/bin/dns_update

The original design goal of this parameter was to provide a mechanism by which nmbd could
synchronize a dynamic DNS server with a its WINS database. The dns_update script referred to in
the previous smb.conf example is included in the examples/scripts/wins_hook directory of the Samba
distribution.

8.1.3. Setting Up Samba to Use Another WINS Server

You can configure Samba to use one or more WINS servers somewhere else on the network by
providing it with their IP addresses as values to the wins server directive:

[global]
 wins server = 192.168.1.2 192.168.1.3

The two servers in this example implicitly belong to a single, logical WINS group. It is assumed that
the all servers within a group share a synchronized databases of registered names. Samba directs
WINS registration and resolution requests to the first server in the group, failing over to the next
host only when the first is unavailable.

The wins support and the wins server parameters are mutually exclusive; you cannot
simultaneously offer Samba as the WINS server and use another system as the server. Typically, one
Samba server is set up as the WINS server using wins support, and all other Samba servers are
configured with the wins server parameter pointing to the Samba WINS server.

8.1.3.1. Configuring a WINS proxy

If you have a Samba server on a subnet that contains clients but has no WINS server, and the
Samba server has been configured to use a WINS server on another subnet, you can tell the nmbd
server to forward any name-resolution requests with the wins proxy option:

[global]
 wins server = 192.168.1.2 192.168.1.3
 wins proxy = yes

Use this only in situations where the WINS server resides on another subnet. Otherwise, the
broadcast will reach the WINS server regardless of any proxying.

8.1.4. The lmhosts File

Chapter 3 explained how Windows systems can make use of an LMHOSTS file as an alternative to the
WINS server for name resolution. Although its use is discouraged, Samba also can use an lmhosts file
(default /usr/local/samba/lib/lmhosts). Samba's lmhosts follows a limited form of the syntax
provided by the Windows equivalent. A simple Samba lmhosts file might look like this:

192.168.1.1 TUMNUS
192.168.1.10 TURKISH

The names on the right side of the entries are NetBIOS names, so you can assign resource types to
them and add additional entries for computers:

192.168.1.1 NARNIA#1B

Here, we've made TUMNUS the primary domain controller of the NARNIA domain. This line starts with
TUMNUS's IP address, followed by the name NARNIA and the resource type <1B>.

If you wish to place an lmhosts file somewhere other than the default location, notify the nmbd
process upon startup by using the -H option, followed by the name of your lmhosts file. However,
because there is curently no way to instruct smbd to read an lmhosts from a location other than the
one defined when the binaries were compiled, it is best to simply use the path returned from smbd -b
| grep LMHOSTSFILE (or to avoid its use entirely).

A bug existed in all versions of Samba 3.0 up until 3.0.21b that resulted in a
failure to read any lmhosts filename specified using the -H option to nmbd. This
is perhaps a testimony to how little lmhosts files are used on Samba servers.

8.1.5. Configuring Name Resolution for the Samba Suite

Daemons and tools in the Samba suite need to perform name resolution for internal use. For
example, when smbd is required to contact a remote domain controller or smbclient connects to a

host, Samba must act as a name resolution client. You can define the order in which the programs
try each name-resolution method through the name resolve order parameter, like this:

[global]
 name resolve order = wins lmhosts hosts bcast

The parameter value list may be made up of up to four strings:

lmhosts

Uses the Samba server's local lmhosts file.

hosts

Uses the standard Unix name-resolution methods provided by the gethostbyname() C library
call. Depending on how the server's operating system is configured, this call may result in a
local hosts file lookup or a query to some name service such as DNS.

wins

Use the WINS server, which may be the local Samba system itself, defined in smb.conf.

bcast

Use a broadcast name resolve query.

The order in which the values are specified is the order in which name resolution is attempted. In our
example, Samba attempts to use its WINS server first for name resolution (if one has been
specified), followed by the lmhosts file on the local system (if it exists). Next, the hosts value tells it
to ask the operating system to resolve the name. This is possible only if the name is for a server (a
resource byte of <00> or <20>) or a domain controller.[*] Finally, if those three attempts fail, the
server performs a broadcast name resolution.

[*] Chapter 10 explains how Samba is able to use DNS when locating domain controllers for Active Directory domains.

8.1.6. Name-Resolution Configuration Options

A summary of Samba's name-resolution options discussed in this chapter is shown in Table 8-1.

Table 8-1. Name-resolution options

Parameter Value Description Default Scope

wins support boolean Controls whether nmbd will function as a
WINS server.

no Global

wins server string (IP
address or DNS
name)

Identifies one or more WINS servers to
use for name registration and resolution.

None Global

wins proxy boolean Allows Samba to act as a proxy to a WINS
server on another subnet.

no Global

wins hook string External command to run when the WINS
database changes.

None Global

dns proxy boolean If set to yes, allows a Samba WINS server
to search DNS if it cannot find a server
name in WINS.

yes Global

name resolve

order
string The order of methods used to resolve

NetBIOS names.

lmhosts wins

host bcast
Global

8.2. Network Browsing

Browsing was developed by Microsoft to help users find shared resources on the network. In a
networked computing environment where users can add or remove shares at any time, it is
important to have some automatic means of keeping track of the shared resources and allowing
users to "browse" through them to find the ones they wish to use.

Before browsing was added to SMB networking, when anyone added a new share, the people with
whom they wished to share the data or printer would have to be informed of the share's UNC, using
some relatively low-tech method such as speaking to them in person or over the phone. Already this
was very inconvenient in large organizations. To further complicate matters, the users working on
client computers had to type in the share's UNC to connect to it. The only way to get around typing in
the share's UNC every time it was used was to map a network drive to it, and with a large number of
shares on the network, this could easily get out of hand.

8.2.1. Browsing in a Windows Network

To keep things simple, we first describe network browsing in a network that contains only Windows
systems, and then show you how to add a Samba server.

The basic way browsing works is that one computer in the network takes on the role of the local
master browser (LMB) and keeps a list of all the computers on the local subnet that are acting as
CIFS servers. You might also see the LMB referred to as the browse master, the browse server, or
simply the master browser. The list of computers is called the browse list and includes Samba
servers, Windows NT-based systems, and any Windows 9x systems that have the File and Printer
Sharing for Microsoft Networks networking component installed. The browse list also contains the
names of all workgroups and domains. At this level, browsing is limited to the local subnet, because
the browsing protocol depends on broadcast packets, which are typically not forwarded to other
subnets by routers.

A user at any Windows system can view the browse list by opening up the My Network Places, as you
saw in Chapter 1. Alternatively, the net view command can be used from a Windows command
prompt to display the servers in our workgroup:

C:\> net view
Server Name Remark
--
\\RAIN Samba 3.0.22
\\LETTUCE Lee Zard's WinXP development box
\\XPOP Office Print Server
\\TRINITY Office File Server
The command completed successfully.

Then, net view can be used with a computer name as an argument to contact a server directly and
list the resources it is sharing:

C:\> net view \\RAIN
Shared resources at \\RAIN

Samba 3.0.22

Share name Type Used as Comment
--
data Disk Test share for ACLs
hp2100 Print HP LaserJet 2100 Series PCL 6
lizard Disk H: Home directory of lizard
netlogon Disk Net Logon service
pdfgen Print
public Disk P: Public Access
The command completed successfully.

The computers on the network involved in browsing are more than just the master browser and its
clients. There are also backup browsers, which maintain copies of the browse list and respond to
client requests for it. Backup browsers are therefore able to take over the role of master browser
seamlessly in case it fails. The master browser usually doesn't serve the browse list directly to clients.
Instead, its job is mainly to keep the master copy of the browse list up-to-date, and also periodically
update the backup browsers. Clients are expected to get their copies of the browse list from backup
browsers, selecting among them randomly to help to distribute the load on the backup browsers
more evenly. Ideally, the interaction between any client and the master browser is limited to the
client announcing when it joins or leaves the network (if it is a server) and requesting a list of backup
browsers.

There can be more than one backup browser. A workgroup will have a backup browser if two or more
computers on the subnet are running a Windows desktop operating system with file and print sharing
enabled. For every 32 additional computers, another backup browser is added.

In addition to acting as the local master browser, the Primary Domain Controller (PDC) acts as the
domain master browser (DMB), which ties subnets together and allows browse lists to be shared
between master and backup browsers on separate subnets. This is how browsing is extended to
function beyond the local subnet. Each subnet functions as a separate browsing entity, and the
domain master browser synchronizes the master browsers of each subnet. In a Windows-only
network, browsing cannot function across subnets unless a PDC exists on the network.[*]

[*] Because all domain controllers in an AD domain are technically considered to be equals, one must be designated as the PDC

emulator.

By default, each computer that participates in a browse election is considered a potential browser. It
can be ordered by the browse master to become a backup browser or can identify itself as a backup
browser and accept the role on its own.

8.2.2. Browser Elections

When no master browser is running on the subnet, potential browsers choose a new master browser
among themselves in a process called an election. An election is started by a computer in the subnet
when it discovers that no master browser is currently running. If a master browser is shut down
gracefully, it broadcasts an election request datagram, initiating an election by the remaining
computers. If the master browser fails, the election can be started by a client computer that requests
a list of backup browsers from the master browser or by a backup browser that requests to have its
browse list updated from the master browser. In each case, the system fails to receive a reply from
the master browser and initiates the election.

Browsing, Anonymous Sessions, and Security

Whether networks have become more hostile in recent years, or whether the hostility
was always there and we have just recently become less trusting, the end result is that
operating system vendors, Microsoft included, are reducing the amount of information
that can be anonymously obtained about a host system. Network browsing originally
relied upon being able to enumerate shares on a server without any user credentials,
because many networks lacked any type of central authentication service at all.

Today the landscape is much different. Vendors attempt to protect their software from
disclosing unnecessary information to unknown users. The simplicity of browsing on
SMB/CIFS networks has become a casualty in the war against computer crime. No longer
can you enumerate shares anonymously on modern Windows servers; however, if you
are joined to a Windows domain where authentication is handled centrally, you probably
haven't noticed.

However, if you are trying to follow the browsing examples in the chapter but receive
"Access Denied" messages, or are prompted to log on every time you connect to a
server, chances are that you need to either manually synchronize your password on the
target servers or work within the context of an authentication domain.

If you don't have an existing domain, feel free to jump ahead to Chapter 9 and
implement your own Samba-based domain.

Browser elections are decided in multiple rounds of self-elimination. During each round, potential
browsers broadcast election request datagrams containing their qualifications to notify other potential
browsers that an election is happening and that if the recipient is more qualified, it should also
broadcast a bid. When a potential browser receives an election request datagram from a more
qualified opponent, it drops out, disqualifying itself from becoming the master browser. Otherwise, it
responds with its own election request datagram. After a few rounds, only one potential browser is
left in the election. After an additional four rounds of sending out an election request datagram and
receiving no response, it becomes the master browser and sends a broadcast datagram announcing
itself as the local master browser for the subnet. It then assigns runners-up in the election as backup
browsers, as needed.

A potential browser's qualifications include the following:

Whether it has recently lost an election

The version of the election protocol it is running

Its election criteria

The amount of time the system has been up

The computer's NetBIOS name

If the potential browser has lost an election recently, it immediately disqualifies itself. The version of
the election protocol it is running is checked, but so far, all Windows systems (and Samba) use the
same election protocol, so the check is not very meaningful. The election criteria usually determine
which computer becomes the LMB. There are two parts to the election criteria, shown in Tables 8-2
and 8-3.

Table 8-2. Operating system values in an election

Operating system Value

Windows NT/2000/2003 domain controllers 32

Windows NT/2000/XP/2003 (domain member and standalone servers) 16

Windows 95/98/Me 1

Windows for Workgroups 1

Table 8-3. Computer role settings in an election

Role Value

Domain master browser 128

WINS client 32

Preferred master 8

Running master 4

Recent backup browser 2

Backup browser 1

The operating system type is compared first, and the system with the highest value wins. The values
have been chosen to cause the PDC, if there is one, to become the local master browser. Otherwise,
a Windows NT/2000/XP/2003 system wins over a Windows for Workgroups or Windows 95/98/Me
system.

When an operating system type comparison results in a tie, the role of the computer is compared. A
computer can have more than one of the values in Table 8-3, in which case the values are added
together.

A domain master browser has a role value of 128 to weigh the election so heavily in its favor that it
also becomes the local master browser on its own subnet. Although the PDC (which is always the
domain master browser) will win the election based solely on its operating system value, sometimes
there is no primary domain controller on the network, and the domain master browser would not
otherwise be distinguished from other potential browsers.

Systems that are using a WINS server for name resolution are weighted heavily over ones that use
broadcast name resolution with a role value of 32.

A preferred master is a computer that has been selected and configured manually by a system
administrator to be favored as the choice master browser. When a preferred master starts up, it
forces a browser election, even if an existing master browser is still active. A preferred master has a
role value of 8, and the existing master browser gets a value of 4.

A backup browser that has recently been a master browser and still has an up-to-date browse list is
given a role value of 2, and a potential browser that has been running as a backup browser gets a
value of 1.

If comparing the operating system type and role results in a tie, the computer that has been running
the longest wins. In the unlikely event that the two have been up for the same amount of time, the
computer that wins is the one with the NetBIOS name that sorts first alphabetically.

You can tell if a machine is a local master browser by using the Windows nbtstat command. Place the
NetBIOS name of the machine you wish to check after the -a option:

C:\> nbtstat -a rain

Local Area Connection:
Node IpAddress: [192.168.1.88] Scope Id: []

 NetBIOS Remote Machine Name Table

 Name Type Status

 RAIN <00> UNIQUE Registered
 RAIN <03> UNIQUE Registered
 RAIN <20> UNIQUE Registered
 .._ _ _MSBROWSE_ _.<01> GROUP Registered
 GARDEN <00> GROUP Registered
 GARDEN <1B> UNIQUE Registered
 GARDEN <1C> GROUP Registered
 GARDEN <1D> UNIQUE Registered
 GARDEN <1E> GROUP Registered

The resource entry that you're looking for is .._ _MSBROWSE_ _.<01>. This entry indicates that the

server is currently acting as the local master browser for the current subnet. The group entry with
the workgroup name and a resource byte of <1D> is also indicative of a host operating as the LMB. All
hosts that participate in browsing elections register the <1E> group name. The <1B> group name is
registered only by the domain master browser. As mentioned before, Windows clients do not
differentiate between the DMB and the primary domain controller function, so we also know that RAIN
is the PDC for the GARDEN domain. As you will see in Chapter 9, all domain controllers register the
<1C> group name.

Each instance of a workgroup on a given subnet has its own LMB, so the <1D> group name is never
registered with WINS. You must use a broadcast query to resolve the name and should receive only
one reply. The -M option to the nmblookup command can be used to locate the local master browser
for a workgroup. The following example locates the LMB for the GARDEN workgroup at address
192.168.1.88:

$ nmblookup -M garden
querying garden on 192.168.1.255
192.168.1.88 garden<1d>

If the machine is a Samba server, you can also check the Samba nmbd logfile for an entry such as
this:

nmbd/nmbd_become_lmb.c:become_local_master_stage2(406)

Samba name server RAIN is now a local master browser for
workgroup GARDEN on subnet 192.168.1.0

When nmbd receives a HUP signal, it dumps its current brows list of servers
and workgroups to its logfile.

It is possible to find all machines that are potential browse servers on a subnet by performing a
broadcast querying the <1E> group name:

$ nmblookup 'garden#1e'
querying garden on 192.168.1.255
192.168.1.88 garden<1e>
192.168.1.10 garden<1e>
192.168.1.132 garden<1e>

The domain master browser name is registered with the WINS server, because all LMB servers must
be able to locate it. You can query the WINS server for the DMB's address by sending a directed

name query to the WINS server at 192.168.1.74 (-U option) and setting the recursion bit in the
request packet (-R option):

$ nmblookup -U 192.168.1.74 -R 'garden#1b'
querying garden on 192.168.56.1
192.168.1.88 far scape<1b>

8.2.3. Server Announcements

Each server on the network announces itself to the network to allow the master and backup browsers
to build their browse lists. When first joining the network, a host sends server announcements every
minute, but the interval is gradually stretched out to every 12 minutes. When a server is shut down
gracefully, it sends an announcement that it is going offline to allow the master and backup browsers
to remove it from the browse list. However, when a server goes offline by crashing or by some other
failure, the master browser notices its disappearance only because it stops receiving server
announcements. The master browser waits for three of the server's announcement periods before
deciding that it is offline, which can take up to 36 minutes. Because backup browsers have their
browse lists updated from the master browser once every 15 minutes, it can take up to 51 minutes
for clients to be informed of a failed server.

For more detailed information on Microsoft's browsing protocols, consult the Microsoft documents
"Browsing and Windows 95 Networking" and "CIFS/E Browser Protocol." You can find these by
searching for the titles on the Microsoft web site: http://www.microsoft.com.

8.2.4. Configuring Samba for Browsing

Samba has full support for network browsing and can participate as a master browser, a backup
browser, a domain master browser, a potential browser, or just a server that doesn't participate in
browsing elections. By default, nmbd participates in elections. If you want to prevent this, simply
disable the local master parameter in smb.conf:

[global]
 local master = no

Usually, Samba should be available as a local master or at least a backup browser. In the simplest
case, you don't need to do anything, because Samba's default is to participate in browsing elections
with its operating system value set to 20, which beats any Windows system less than a domain
controller (see Table 8-2). The operating system value Samba reports for itself in browser elections
can be set using the os level parameter:

[global]
 os level = 33

http://www.microsoft.com

The preceding value allows Samba to beat even a Windows server acting as a primary domain
controller. As we show in the following section, though, forcing Samba to win this way is not
recommended.

If you want to allow a Windows XP system to be the master browser, you need to set Samba lower:

[global]
 os level = 8

The maximum value for os level is 255. Supposing we wanted to make absolutely sure that our
Samba server is the local master browser at all times, we might say:

[global]
 local master = yes
 os level = 255
 preferred master = yes

The addition of the preferred master parameter instructs nmbd to initiate a browser election as soon
as it starts up, and the os level of 255 allows it to beat any other system on the network. This
includes other Samba servers, assuming they are configured properly. If another server is using a
similar configuration file (with os level = 255 and preferred master = yes), the two will fight each
other for the master browser role, winning elections based on minor criteria, such as uptime or their
current role. To avoid this, other Samba servers should be set with a lower os level and not
configured to be the preferred master.

8.2.5. Samba As the Domain Master Browser

Previously, we mentioned that for a Windows workgroup or domain to extend into multiple subnets,
one system has to take the role of the domain master browser. The DMB propagates browse lists
across each subnet in the workgroup. This works because each local master browser periodically
synchronizes its browse list with the domain master browser. During this synchronization, the local
master browser passes on the name of any server that the domain master browser does not have in
its browse list, and vice versa. Each local master browser eventually holds the browse list for the
entire domain.

There is no election to determine which machine assumes the role of the domain master browser.
Instead, it has to be manually configured by an administrator. By Microsoft's design, however, the
domain master browser and the PDC both register a resource type of <1B>, so the rolesand the
machinesare inseparable. If you have a Windows server on the network acting as a PDC, do not
configure Samba to become the domain master browser. More about Samba's domain controlling
functions is covered in Chapter 9.

If there is no existing PDC, Samba can assume the role of a domain master browser for all subnets in
the workgroup with the following options:

[global]
 domain master = yes
 preferred master = yes
 local master = yes
 os level = 33

The final three parameters ensure that the server is also the local master browser, which is vital for it
to work properly as the domain master browser. You can verify that a Samba machine is in fact the
domain master browser by checking the nmbd logfile:

nmbd/nmbd_become_dmb.c:become_domain_master_stage2(118)

Samba name server RAIN is now a domain master browser for
workgroup GARDEN on subnet 192.168.1.0

You previously saw how to query a WINS server for the <1B> group name, but you can also use a
broadcast name query, as shown here:

$ nmblookup 'GARDEN#1b'
Sending queries to 192.168.1.255
192.168.1.88 GARDEN<1b>

8.2.6. Samba Browsing Enhancements

You must remember three rules when creating a workgroup/domain that spans more than one
subnet:

You must have either a Windows NT-based host or a Samba server acting as a local master
browser on each subnet in the workgroup/domain.

You must have a Windows PDC or a Samba server acting as a domain master browser
somewhere in the workgroup/domain.

A WINS server should be on the network, with each system on the network configured to use it
for name resolution.

If your entire browsing infrastructure is run by Samba, some additional features are available to work

around deviations from the standard LMB/DMB/WINS browsing architecture. Consider the subnets
shown in Figure 8-1.

Figure 8-1. Multiple subnets with Samba servers

Under normal circumstances, hosts on one subnet would learn of servers on another subnet by
browse list propagation through the workgroup's DMB. Samba, however, is not tied to the DMB
requirement and can use the remote announce configuration option to make sure that computers in
different subnets are sent broadcast announcements about itself, which has the effect of ensuring
that the Samba server appears in the browse lists of foreign subnets. To achieve this effect, the
directed broadcasts must reach the local master browser on the other subnet. Be aware that many
routers do not allow directed broadcasts by default; you might have to change this setting on the
router for the directed broadcasts to get through to its subnet.

With the remote announce option, list the broadcast or IP addresses that should receive the
announcement. For example, to ensure that machines in the 192.168.220 and 192.168.222 subnets
get broadcast information from your Samba server, specify the following:

[global]
 remote announce = 192.168.220.255 192.168.222.255

Instead of supplying the broadcast address of the remote subnet, you can specify the exact address
where broadcasts should be sent if the local master browser on the foreign subnet is guaranteed to
always have the same IP address, such as when a Samba host has been configured to always win the

browse election.

If you would like the Samba server to appear in more than one workgroup, you can append a
workgroup name to the address to each address using the forward slash character (/). The remote
announce setting allows you to send server announcements for arbitary workgroups, including
additional groups on your own subnet. The following example allows Samba to be seen in the PARK
and PICNIC workgroups in addition to our own on the 192.168.221 subnet:

remote announce = 192.168.221.255/PARK 192.168.221.255/PICNIC

Be aware that even though the Samba server will now appear in the workgroup list on the remote
subnet, clients must still be able to resolve the server's name to an IP address in order to access it.
This is why WINS is considered a requirement for any widespread use of browsing within a large
network.

Another means of implementing some level of cross subnet browsing without a domain master
browser is to have the Samba local master browser synchronize its browse list directly with one or
more Samba servers, each acting as a local master browser on a different subnet. For example, let's
assume that our Samba server is configured as a local master browser, and that Samba local master
browsers also exist at 192.168.220.100 and 192.168.222.120. We can use the remote browse sync
option to sync directly with the remote Samba servers, as follows:

[global]
 remote browse sync = 192.168.220.100 192.168.222.120

You can also use directed broadcasts with this option if you do not know specific IP addresses of local
master browsers. However, the remote browse sync functionality works only with other Samba
servers.

8.2.7. Browsing Options

Table 8-4 shows options that specify how Samba should handle browsing tasks.

Table 8-4. Browsing configuration options

Parameter Value Desscription Default Scope

local master boolean If yes, allows Samba to participate
in browsing elections.

yes Global

Parameter Value Desscription Default Scope

preferred
master

boolean If yes, allows Samba to use the
preferred master browser bit to
attempt to become the local master
browser.

yes (if both local
master and domain
master options are
enabled)

Global

domain

master
boolean If yes, allows Samba to become the

domain browser master for the
workgroup or domain.

no Global

os level numeric (0-255) Operating system level of Samba in
an election for local master
browser.

20 Global

remote

browse sync
string (list of IP
addresses)

Samba servers with which to
synchronize browse lists.

None Global

remote

announce
string (IP
address /
workgroup pairs)

Subnets and workgroups to send
directed broadcast packets to,
allowing Samba to appear in their
browse lists.

None Global

preferred
master

boolean If yes, allows Samba to use the
preferred master browser bit to
attempt to become the local master
browser.

yes (if both local
master and domain
master options are
enabled)

Global

domain

master
boolean If yes, allows Samba to become the

domain browser master for the
workgroup or domain.

no Global

os level numeric (0-255) Operating system level of Samba in
an election for local master
browser.

20 Global

remote

browse sync
string (list of IP
addresses)

Samba servers with which to
synchronize browse lists.

None Global

remote

announce
string (IP
address /
workgroup pairs)

Subnets and workgroups to send
directed broadcast packets to,
allowing Samba to appear in their
browse lists.

None Global

Chapter 9. Domain Controllers
Our discussion of Samba up to this point has focused on file and print servers that authenticate users
against a local set of accounts; these accounts had to previously be added to the system hosting
Samba using either pdbedit or smbpasswd . Standalone servers (also called workgroup servers) have
the advantages of being easy to set up and possessing no dependencies on external services.
However, managing user accounts on more than two or three of these servers quickly becomes
onerous.

Our systems administration mantra is, "Reduce redundancy through consolidation." Creating a
Samba domain removes duplicate users and groups from each standalone server by consolidating
these accounts onto a small set of domain controllers that can process authentication requests on
behalf of domain member servers. Coupled with Microsoft's networking facility that allows a user to
log in to her local workstation via a domain account, a Samba domain provides a means to centrally
manage all authentication, not just access to file and print services.

In this chapter, we show you how to configure Samba as a Primary Domain Controller (PDC) with one
or more Samba Backup Domain Controllers (BDC), and how to join Windows clients to this domain.
Domains by themselves have little relevance without users and groups, so we also explore the
mechanisms to manage and store user and group accounts. After you have a solid understanding of
how to configure Samba's domain controller functionality, we explain how to migrate a Windows NT
4.0 domain to a Samba domain and retain the complete list of accounts and user settings. We
conclude with a discussion of remotely monitoring and managing Samba hosts using tools such as the
Windows Event Viewer, the Service Control Manager, and the Performance Monitor.

9.1. Samba Domains: NT 4.0 or Active Directory?

Before we dive into the technical details of Samba's domain controller functionality, it is important
that you understand what a Samba domain offers, what it currently lacks, and where the project is
headed. As stated in Chapter 1, Samba 3.0 can act as a Windows NT 4.0 domain controller, with one
major exception. It does not implement the Windows System Account Manager (SAM) replication
protocol. This means that it cannot participate as a domain controller with Windows DCs in either an
NT 4.0 or mixed-mode Active Directory domain. However, this limitation is not usually a deterrent to
deploying a Samba domain. As you will see later in this chapter, it is possible to configure a domain
composed solely of Samba DCs. Samba 3.0 cannot at this time act as a domain controller for an
Active Directory domain.

9.2. Configuring a Samba PDC

To build a Samba Primary Domain Controller, it is best to begin with a working standalone file server.
We assume the following configuration:

[global]
 netbios name = STORK
 workgroup = ORA
 security = user
 encrypt passwords = yes

[public]
 path = /data/public
 read only = no

There are five minimum requirements that must be met by a Samba PDC:

User mode security (security = user)1.

Support for encrypted passwords (encrypt passwords = yes)2.

A properly configured [netlogon] file share3.

Configuration as a Domain Master Browser (domain master = yes)4.

Configuration as a logon server (domain logons = yes)5.

Our initial smb.conf meets the first two requisites. The next step is to add a [netlogon] file share
that emulates the NETLOGON service on Windows domain controllers. The share itself must be
readable by all domain users, so that they can access items such as policy files and login scripts
(covered later in this chapter), but should restrict write access solely to administrators. This example
specifies the share as read only, but includes the ntadmin group in the write list; ntadmin is our
primary group for systems administrators:

[netlogon]
 comment = Net Logon service
 path = /data/netlogon
 read only = yes
 write list = +ntadmin

Enabling the domain master parameter in the global section of smb.conf causes nmbd to register the
DOMAIN<0x1b> name (ORA<0x1b> in our example). This name is used by Windows clients to locate the

PDC for a domain. When searching for any domain controller, not necessarily just the PDC, a
Windows client attempts to resolve the DOMAIN<0x1c> name. You can instruct nmbd to register this

name (e.g., ORA<0x1c>) by setting the domain logons option in smb.conf. Our PDC's new global
configuration looks like this:

[global]
 netbios name = STORK
 workgroup = ORA
 security = user
 encrypt passwords = yes

 ## enable PDC functionality
 domain master = yes
 domain logons = yes

It is not required that the PDC act as the local master browser, but most are configured to operate in
this role as well. To achieve this, add the following browsing-related parameters to the global section.
Review the previous chapter if you need a reminder regarding any of these three parameters.

 os level = 33
 preferred master = yes
 local master = yes

After making these changes, it is best to restart both smbd and nmbd. Wait approximately one
minute for nmbd to complete its name registration process. Then use nmblookup to verify that both
the 0x1c and 0x1b names have been claimed. It is normal to see more than one IP address when
querying for the 0x1c name if you have one or more backup domain controllers configured on your
network. In our case, we have only the PDC so far:

$ nmblookup 'ORA#1b' 'ORA#1c'
querying ORA on 192.168.1.255
192.168.1.88 ORA<1b>
querying ORA on 192.168.1.255
192.168.1.88 ORA<1c>

You can also verify the name registration in nmbd's logfile. A successful logon server (0x1c)
registration generates a log entry like the following.

become_logon_server_success: Samba is now a logon server

 for workgroup ORA on subnet 192.168.1.88

When configured as the DMB, nmbd logs this message:

Samba server STORK is now a domain master browser for
 workgroup ORA on subnet 192.168.1.88

9.2.1. Setting Up Domain Joins

Now that you have a working Samba DC, the next step is to add Windows clients to the domain.
Before moving to that topic, however, let's go over some background on computer accounts.

When joining a domain, the client establishes a password known only to itself and the domain
controller. This password is called the machine trust account password and is used to prove the
identity of the computer each time it contacts the DC (normally upon booting). For security purposes,
hosts running Windows 2000 and later require that you provide credentials for an administrative
account that can potentially create the new machine account and assign it a random password.

Originally, Windows NT 4.0 allowed an administrator to create the client's machine trust account in
advance using the Server Manager application. This new account was then assigned a predefined
password based on the machine name. Therefore any user who knew the name could then join a
computer to the domain.

The goal, then, is to complete the following tasks:

Create the Domain Admins group for the purpose of managing user rights.

Provide a set of users with administrative rights to join hosts to the domain.

Implement the infrastructure necessary to manage these machine accounts.

9.2.1.1. Domain Admins

Domain Admins is a special group in Windows domains. The group's RID is always 512. When a
Windows client joins a domain, it adds this domain group to its local Administrators group. The result
is that members of Domain Admins automatically gain administrative privileges on all domain
members. Samba honors membership in the Domain Admins group as well, by granting all Domain
Admins the ability to manage the user rights assignments necessary to authorize users to join hosts
to the domain.[*]

[*] Remember to set enable privileges = yes in smb.conf.

Samba 3.0 does not currently support localized versions of the Domain Admins
group name, such as the German name Domänen-Administratoren.

In order to create a group mapping entry for this special domain RID, you must first look up the SID
of the ORA domain. You must be root for all the command examples in this section. Get the SID as
follows:

net getlocalsid ORA
SID for domain ORA is: S-1-5-21-3489264249-1556752242-1837584028

Now append the Domain Admins RID to the domain SID and create a group mapping entry for it:

net groupmap add sid=S-1-5-21-3489264249-1556752242-1837584028-512 \
 ntgroup="Domain Admins" unixgroup=ntadmin
Successfully added group Domain Admins to the mapping db

Now all members of the ntadmin Unix group will be seen as domain administrators by both Samba
and Windows clients.

Depending on your version of Samba and which passdb has been configured, it
may be necessary to use net groupmap's modify command instead of add. TRy
add first, and then try modify if add fails.

9.2.1.2. Required privileges

Samba uses the SeMachineAccountPrivilege right to authorize a user or group to join a computer to
the domain. Now is a good time to review the "User Privilege Management" section in Chapter 5 if
you need a refresher on the net rpc rights command. Remember that new privilege assignments, like
membership in a new group, are not applied to the user's token until the next session.

The best way to manage user rights is to assign a privilege to a group and then add the appropriate
users to that group. In order to grant and revoke privileges, you must connect either as root or a
member of the Domain Admins group. Our examples connect using the account cindy, who is a
member of Domain Admins.

When a client joins a Samba domain, it performs the network equivalent of running pdbedit -a
machinename. Normally, this type of request must be executed as root. But you can create a group

mapping entry and assign it the SeMachineAccountPrivilege privilege to make smbd perform the
account creation for members of this group as root.

Create the Server Admins Windows group based on the Unix group srvadmin and grant then the
powers to manage users. The following commands create the group mapping entry and then (using
the cindy account) assign the "Add machines to domain" right to the group:

net groupmap add unixgroup=srvadmin ntgroup="Server Admins"
Successfully added group Server Admins to the mapping db

net rpc rights grant 'ORA\Server Admins' SeMachineAccountPrivilege \
 -S stork -U cindy
Password: <enter cindy's password>
Successfully granted rights.

All Samba users must possess a matching Unix account. Therefore, Samba lets administrators create
a matching Unix account at the time a host is joined to the domain. The add machine script option
refers to an external utility that smbd invokes to generate the Unix account when it receives the
network request to create a machine account. If the matching Unix account already exists, the script
is ignored.

Because the process of creating users varies widely from one Unix platform to another, Samba does
not include a default setting for this option. Usually it is possible to use some variant of a tool
provided by the operating system.

The following example of a setting for add machine script comes from a Samba PDC running on
Linux. The script invokes the useradd command to create the account referenced by the %u variable,
assign its primary group membership to the hosts Unix group (which already exists), and set its login
shell to /bin/false. Thanks to the login shell setting, the user cannot log in and cause any mischief on
the Linux host; all she can do is access Samba files.

add machine script = /usr/sbin/useradd -g hosts -s /bin/false '%u'

The ldapsam passdb supports a distinct search suffix for machine accounts. The
ldap machine suffix works just like the ldap user suffix, but is intended for
storing machine accounts. There is no harm in omitting this parameter. If no
machine search suffix is defined, smbd falls back to the user search base.
However, if you plan to use a separate subtree for storing machine accounts
and are integrating the Samba attributes with the posixAccount object class,
make sure that the server's LDAP NSS library can find both users and
machines. This is commonly achieved by specifying multiple passwd search
bases in the library's configuration file.

Table 9-1 gives a summary of the new smb.conf option presented in this section. In the next section
we'll test the new configuration.

Table 9-1. The add machine script option

Parameter Value Description Default Scope

add machine

script
string Defines the external command to invoke when smbd must

create a Unix user for a machine trust account.

"" Global

9.2.1.3. Joining a Windows client

The best way to understand how domain joins and the add machine script work together is to
actually join a client to our domain. We'll use a Windows XP Professional client in the following
examples. Remember from Chapter 3 that Windows XP Home Edition has been crippled to remove its
domain join capabilities.

Begin by navigating to the System Properties dialog box. You can access this in several ways, but the
one that works most consistently is to run control.exe sysdm.cpl from a command prompt or from
the Run . . . option in the Start Menu. In the properties window, navigate to the Computer Name tab
(called Network Identification in Windows 2000) and select Change (Properties in Windows 2000).
The dialog boxes should appear similar to Figure 9-1. Here you can change the client's machine name
or domain membership.

Figure 9-1. Computer Name Changes dialog on Windows XP

After entering the domain name ORA and clicking OK, you will be presented with a dialog box
requesting credentials to join the domain (Figure 9-2). Continue to use the account details for cindy,
because she is also a member of the srvadmin Unix group, which was granted the rights necessary to
join hosts to the domain.

Figure 9-2. Entering credentials to join the domain

The Windows client then contacts the Samba PDC and uses these credentials to send the request to
create the machine account and sets its password. If all of this succeeds, you will be greeted with the
success message shown in Figure 9-3: "Welcome to the ORA domain."

Figure 9-3. Welcome message upon successful registration

There are a couple of places where this process can fail. The most common errors are:

Access Denied

The user account does not possess the sufficient privilege to join clients to the domain. Verify
the account's assigned rights using net rpc rights.

Logon Failure

Ensure that you entered the user's password correctly.

The username could not be found

The add machine script failed to create the Unix account. Make sure that the script is
functioning as expected. Clues to the root cause of the failure can be found in Samba's logfiles.
For example, a typo in the primary group name when calling useradd might result in a
message such as useradd: Unknown group hoss.

If you find an error not listed here, try increasing the Samba debug log levels to search for more
clues and consider some of the techniques described in Chapter 12.

After a successful join and client reboot, you are able to select the domain when logging into the
Windows console. Figure 9-4 displays the drop-down list of domains shown on our XP client. The local
machine name MINK is present in the list, as is the ORA domain. The BOOKS domain is an Active
Directory domain that is trusted by ORA. We examine domain trusts later in this chapter.

Figure 9-4. The Ctrl+Alt+Del logon dialog box showing a drop-down list
of domains

9.2.2. Managing Users and Groups

The main purpose of a domain is to centralize authentication services. With this in mind, we turn our
attention to users and groups. Traditionally, Windows administrators have used the User Manager for
Domains application (sometimes referred to simply as usrmgr.exe) to create, modify, and remove
accounts within NT 4.0 domains. Windows NT 4.0 server administration tools such as usrmgr.exe can
be found in the latest Windows NT 4.0 service pack from http://www.microsoft.com.

Neither the Windows 2000/XP local user tools such as lusrmgr.msc or the
Active Directory domain tools support managing users and groups in Windows
NT 4.0 equivalent domains.

Enabling remote account management support in Samba requires a few additional configuration
pieces. Samba divides responsibilities between the list of accounts in its own passdb and those
underlying Unix users and groups to which the passdb entries correspond. Samba continues to
manage its own account attributes, but smbd requires help to manage these Unix identities just as it
did for machine accounts. This is achieved through a collection of scripts defined in the global section
of smb.conf that allow Samba to perform the following actions:

Create a new user (add user script)

Remove an existing user (delete user script)

Change the login name associated with a user (rename user script)

Create a new group (add group script)

Remove an existing group (delete group script)

Set a user's primary group (set primary group script)

Assign a secondary group to a user (add user to group script)

Remove a group from a user's list of supplementary groups (delete user from group script)

You'll notice that there is no parameter for renaming groups. The name stored in the group mapping
table is handled by Samba independently of the Unix group name. When renaming a group, only the
group map entry is updated.

Similar to our earlier discussion regarding machine accounts, creating a user or group is very
platform-specific. Therefore, you must find a solution that works for your server. Following is one
example of how to set up these scripts on a Linux server. The following list of configuration
parameters makes use of the tools in the pwdutils package included with Novell's SuSe Linux.
However, such values should be portable across most Linux distributions. The %u and %g variables are
expanded to the user and group names sent in the client's request.

[global]
 add user script = /usr/sbin/useradd -m '%u'

http://www.microsoft.com

 delete user script = /usr/sbin/userdel '%u'
 rename user script = /usr/sbin/usermod -l '%unew' '%uold'
 add group script = /usr/sbin/groupadd '%g'
 delete group script = /usr/sbin/groupdel '%g'
 add user to group script = /usr/sbin/groupmod -A '%u' '%g'
 delete user from group script = /usr/sbin/groupmod -D '%u' '%g'
 set primary group script = /usr/sbin/usermod -g '%g' '%u'

These commands are fairly intuitive and do what you would expect. For example, useradd creates the
Unix user, and usermod can be used to rename an account. More information on the specifics of
useradd and other account management tools can be found in the server operating system's
manpages.

The smbldap-tools package included in the /examples/LDAP subdirectory of the
Samba source distribution is a set of user management scripts for hosts
configured to use the ldapsam passdb backend. They assume a certain
namespace and layout within the LDAP DIT. More information can be found at
http://samba.idealx.org.

Once this infrastructure is in place, any user possessing the SeAddUsersPrivilege on the server can
create and modify accounts directly from a Windows desktop. Don't be confused by the name. This
privilege that purports to "Add users and groups to the domain" can also modify existing accounts.
The following command allows members of Server Admins to manage users and groups:

net rpc rights grant 'ORA\Server Admins' SeAddUsersPrivilege \
 -S stork -U cindy
Password: <enter cindy's password>
Successfully granted rights.

When run on a Windows 2000/XP/2003 host, a bug in User Manager for
Domains prevents it from being able to manipulate user rights on a Samba (or
Windows NT 4.0) DC. For this reason, it is recommended that you always use
net rpc rights to manage privilege assignments on Samba hosts.

Commands that grant privileges are cumulative. You can review the list of privileges assigned to a
user or group using the net rpc rights list command. The following command anonymously (through
the -U% option) enumerates the rights possessed by the Server Admins group:

net rpc rights list accounts 'ORA\Server Admins' -U% -S stork
SeMachineAccountPrivilege
SeAddUsersPrivilege

http://samba.idealx.org

Now launch User Manager for Domains. You will be greeted with a list of users and groups and should
be able to match the output from pdbedit -L -w to the list of users and the output from net groupmap
list to the list of groups. Figure 9-5 shows the users and groups in the ORA domain. The following
commands confirm that the list of accounts matches what is reported from Samba's own tools. The
output has been trimmed to list solely the user and group names for easier reading. Also notice that
the machine accounts (ones ending with a dollar sign) are not listed by User Manager, which filters
them from the display.

pdbedit -L -w | cut -d: -f 1
KNOT$
DORN$
POLE$
MINK$
jerry
BOOKS$
lizard
STORK$
cindy

net groupmap list | cut -d \(-f 1
Printer Admins
staff
Domain Users
Server Admins
helpdesk
Administrators
Linux Users
Domain Admins
Users

Figure 9-5. Users and groups in the ORA domain

You can launch the New User dialog from the the User menu. Figure 9-6 shows the creation of a new
account named mark; Figure 9-7 illustrates how to manage mark's group membership.

Figure 9-6. Creating a new user named mark

Figure 9-7. Managing a user's group membership

After adding the new account, verify that it was created by examining /etc/passwd and Samba's
passdb. The new Unix account should be present in the system passwd file:

$ grep mark: /etc/passwd
mark:x:10026:1008::/home/mark:/bin/bash

The output from pdbedit also confirms the new Samba account:

pdbedit -L -w mark
mark:10026:01FC5A6BE7BC6929AAD3B435B51404EE:0CB6948805F797BF2A82807973B89537:
[U]:LCT-44D8C4C1:

If you observe any failures in usrmgr.exe , the troubleshooting tips for resolving domain join failures,
described in Chapter 10, apply to managing users. Verify that the connected user has been granted
the appropriate level of privileges and scan the Samba logfiles for more information regarding the
reason for the failure.

After remote account management has been enabled, you can also use the net
rpc user and net rpc group commands covered in Chapter 11 to manage your
Samba DC.

Table 9-2 provides a brief listing of the account management parameters introduced in this section.

Table 9-2. User and group management options

Parameter Value Description Default Scope

add group script string External command to invoke when smbd must create a
Unix group.

"" Global

add user script string External command to invoke when smbd must create a
Unix user.

"" Global

add user to

group script
string External command to invoke when smbd must add a

group to a user's list of secondary groups.

"" Global

delete group

script
string External command to invoke when smbd must remove

a Unix group.

"" Global

delete user

script
string External command to invoke when smbd must delete a

Unix user.

"" Global

delete user from

group script
string External command to invoke when smbd must remove

a group from a user's list of secondary groups.

"" Global

rename user
script

string External command to invoke when smbd must rename
a Unix user. The old name is expanded from %uold and
the new name is expanded from %unew.

"" Global

set primary

group script
string External command to invoke when smbd must change a

Unix user's primary group membership.

"" Global

9.2.3. User Profiles

User roaming profiles, sometimes called roving profiles, provide a way for a domain user to customize
elements of his environment such as the desktop wallpaper, application defaults, and desktop
shortcuts. Such profiles give users a more "at home" feeling when they move from machine to
machine. Figure 9-8 displays the User Environment Profile setting dialog box provided by usrmgr.exe.
With the exception of the Terminal Server settings, we'll discuss each one of these fields shortly.

Figure 9-8. The User Environment Profile dialog box in User Manager for
Domains

Our focus is on making a Samba DC support Windows user profiles, not on Windows-specific tasks
such as editing the registry or updating shortcuts. More information on these topics can be found in
the plethora of currently available Windows administration books and online articles. A definitive
guide to user profiles can be found in the white paper titled "Implementing Policies and Profiles for
Windows NT 4.0," available through a search at http://www.microsoft.com.

First it is important to understand exactly what composes a user profile. Roughly speaking, a profile
is a collection of application settings. Some of these settings may be stored in the user's registry hive
(NTUSER.DAT), and others may be stored as files on disk. The following is a list of the top-level files
and directories composing a Windows XP user profile:

$ ls -l
total 880
drwx-----T+ 5 cindy helpdesk 4096 Aug 8 13:33 Application Data
drwx-----T+ 2 cindy helpdesk 4096 May 21 20:52 Cookies
drwx-----T+ 2 cindy helpdesk 4096 May 21 15:26 Desktop
drwx-----T+ 3 cindy helpdesk 4096 Aug 6 16:32 Favorites
drwx-----T+ 4 cindy helpdesk 4096 Aug 6 16:32 My Documents
-rwx------ 1 cindy helpdesk 786432 Aug 8 14:20 NTUSER.DAT
drwx-----T+ 2 cindy helpdesk 4096 May 21 15:26 NetHood
drwx-----T+ 2 cindy helpdesk 4096 May 21 15:26 PrintHood
drwx-----T+ 2 cindy helpdesk 4096 Aug 8 12:07 Recent

http://www.microsoft.com

drwx-----T+ 2 cindy helpdesk 4096 Aug 6 16:31 SendTo
drwx-----T+ 3 cindy helpdesk 4096 May 21 15:26 Start Menu
drwx-----T+ 2 cindy helpdesk 4096 May 21 20:42 Templates
-rwx------ 1 cindy helpdesk 1024 Aug 8 14:20 ntuser.dat.LOG
-rwx------ 1 cindy helpdesk 328 Aug 8 14:22 ntuser.ini

Storing per-user settings on a central file server can provide several benefits to administrators. For
example, new machines can be deployed without worrying about having to transfer the user's
customized environment from one host to another. If all of the user's documents and files are stored
on a network file share as well, machines can practically be swapped out at will. Additionally, a profile
can be updated while the user is offline and have the changes appear at the next logon. Useful
examples of this are adding shortcuts to the Start Menu or editing application settings found in the
NTUSER.DAT registry hive.

One oddity surrounding Windows and the registry is that clients refuse to load a
binary registry file, for example NTUSER.DAT, if the DOS ReadOnly bit is set on
the file. The only clue as to the cause of the failure is that Windows reports that
the registry file is corrupt, when in fact it is perfectly fine. This applies both to
user profiles and system policy files (covered in the next section).

To support roaming profiles, your server needs to dedicate a file share to storing these per user
settings, and you must inform the Windows clients of this share so that the user profile can be
download at logon time. The following excerpt from smb.conf uses the logon path parameter to
specify the location of the user's roaming profile.

The %U variable is used to separate profiles based on username. The %a variable is used to separate
the profiles based on client OS. This is important, because a profile created by Windows 2000 may
not be 100% compatible with one created by Windows XP. The [profile$] share is a normal file
share. The trailing $ is included to prevent the share from being displayed by Windows client when
browsing the server. You could have disabled the browseable parameter to achieve the same effect.

[global]
 logon path = \\STORK\profile$\%U\%a

[profile$]
 comment = User roaming profiles
 path = /data/profiles
 read only = no
 inherit permissions = yes

Each user must be able to write to a subdirectory matching his login name in /data/profiles (i.e.,
/data/profiles/mark). One way to meet this requirement is to create the top-level directory before
the user first logs on. It is also a good idea to prevent other users from accessing a profile other than
their own. Run the following commands as root to create the necessary profile directory for the user
mark:

mkdir -p /data/profiles/mark
chown mark /data/profiles/mark
chmod 700 /data/profiles/mark

Windows itself will handle creating the directory based on the %a value. Here is the profile directory
for a user who has logged on to clients running various operating systems:

$ ls -l
total 16
drwx------ 14 cindy helpdesk 4096 Aug 6 21:18 Win2K
drwx------ 13 cindy helpdesk 4096 Jul 22 10:23 Win2K3
drwx------ 15 cindy helpdesk 4096 Aug 6 17:29 WinNT
drwx------ 13 cindy helpdesk 4096 Aug 8 12:02 WinXP

Roaming profiles can be disabled by setting the logon path to an empty string.

logon path = ""

In addition to a roaming environment, it is beneficial to provide users with a private network file
share in which to store data. Personal files, along with application settings, can then follow a user
from machine to machine. Windows connects to the user's home directory automatically if you define
the logon home parameter in smb.conf. The driver letter used by in the connection is controlled by the
logon drive option. The following example connects the home directory (\\STORK\username) to the

H: drive:

[global]
 logon home = \\STORK\%U
 logon drive = H:

[homes]
 comment = Home directory for %U
 read only = no
 valid users = %S

In spite of the default values, it is recommended that you never store users'
profiles in their home directories. It is too easy to lose data when the profile is
copied from the Windows client back to the network file share.

You may wish to do more when a user logs on than just connect her to a home directory. The logon
script parameter points to a Windows batch file that is run on the client when a user logs on. The
script value is the DOS path to the batch file relative to the root of the [netlogon] share. For
example, to run a script based on the user's primary group, set the following in smb.conf:

[global]
 logon script = %G.bat

For a user whose primary group is ntadmin, smbd will expand the %G before sending the UNC path
\\stork\netlogon\ntadmin.bat to the client. Frequently, the logon script is configured to point to a
master batch file that performs certain actions based on the user's group membership. The
ifmember.exe tool included in the Windows Server 2003 resource kit allows you to test for
membership in a group and perform a specific action if the test succeeds. Other more power-scripting
languages such as Perl or Python may be used as well, but these must be invoked from the original
batch file.

Batch files should be in DOS text. There are many methods and tools to do
this. The simplest is to find an editor that supports DOS text. Other methods of
converting Unix text files to a DOS format are covered in Chapter 11.

Table 9-3 summarizes the user profile parameters discussed in this section.

Table 9-3. User profile options

Parameter Value Description Default Scope

logon drive string The drive letter that a Windows client should use
when connecting to the user's home directory.

"" Global

login home string The UNC path to the user's home directory. \\%N\%U Global

login path string The UNC path to the user's roaming profile. \\%N\%U\profile Global

login

script
string The DOS path (relative to the root of the [netlogon]

share) to a batch file that will be executed on the
client when a user logs on.

"" Global

9.2.4. System Policies

A Windows NT 4.0 system policy file, usually named ntconfig.pol and stored in the [netlogon] share,
is a collection of registry settings used to enforce specific settings on client machines and users or

groups. NT 4.0 system policies are very different from AD Group Policy Objects. The latter is a
feature of Active Directory and not supported by Samba's current domain controlling capabilities.

Figure 9-9 displays the Windows NT 4.0 Policy Editor (included in the latest Windows NT 4.0 Service
Pack). The dialog box shows specific policy objects for the Server Admins group, the user mark, and
the computer mink. If a user or host does not match any of the specific policies, the default user or
default computer policy will be applied.

Figure 9-9. The User Environment Profile dialog box in User Manager for
Domains

System policies are retrieved by the client as part of the user logon process. By default, the client
searches the [netlogon] share for a file named ntconfig.pol and then attempts to merge this file with
either the HKEY_LOCAL_MACHINE or the HKEY_CURRENT_USER registry hive, depending on the type of
policy object.

You can accomplish a lot with system policies. Figure 9-10 illustrates a few user settings that can be
managed via policy settings. This example highlights settings such as restricting screen locks and
excluding certain directories from being synchronized as part of the user's roaming profile.

Figure 9-10. User system policy settings

The Microsoft white paper "Implementing Policies and Profiles for Windows NT 4.0," mentioned in the
context of roaming user profiles, is also an excellent source of information for system policies. It
might also be helpful to read MS Knowledge Base article 225087, "Writing Custom ADM Files for
System Policy Editor."

9.3. Configuring a Samba BDC

Configuring a Samba backup domain controller seems like it would be more difficult than it actually is.
To locate a PDC, Windows clients attempt to resolve the DOMAIN<0x1b> NetBIOS name. To locate all
available domain controllers, clients look for the DOMAIN<0x1c> name. So, by definition, a BDC must

register the <0x1c> name but not <0x1b>. This requirement translates into the following smb.conf
settings:

[global]
 domain master = no
 domain logons = yes

Everything else about the BDC's configuration is identical to that of the PDC.

This step takes care of making the domain controller appear as a BDC. In order to function as a BDC,
the Samba hosts must also synchronize the following information with the PDC:

The domain SID

User and group account information

The contents of the [netlogon] share, such as system polices and logon scripts

The first two requirements are easily met by using the ldapsam passdb. In fact, this is the primary
goal for Samba's LDAP integration. There are other possible solutions that don't require deploying an
LDAP directory. These all involve using rsync to periodically push the passdb storage media (files or
databases) periodically from the PDC to other domain controllers.

Synchronizing the contents of the [netlogon] share is fairly easy using any one of the available
replication tools. Our preferred method is to run rsync, using SSH keys for authentication, periodically
from a cron job. The following script ensures that the [netlogon] shares (i.e., /data/netlogon) on the
two BDCs, turtle and owl, are kept in sync with the PDC. Each BDC has the PDC's root SSH key in
~root/.ssh/authorized_keys.

#!/bin/sh
HOSTS="turtle.example.com owl.example.com"
NETLOGON=/data/netlogon
for h in ${HOSTS}; do
 rsync -a -e ssh -delete ${NETLOGON}/ ${h}:${NETLOGON}/
done

See SSH: The Secure Shell: The Definitive Guide, by Daniel J. Barrett and
Richard E. Silverman (O'Reilly), for more information on using public-key-based
authentication with SSH.

Not all information is synchronized between the PDC and BDCs. For example, because the UNC path
to home directories and roaming user profiles can be stored in the user's passdb enTRy, these file
shares must be maintained on a central server. There are several ways to prevent these shares from
being a single point of failure, such as maintaining two servers that run high availability software
such as Heartbeat (http://www.linux-ha.org) and a shared storage backend. This and other HA
solutions are beyond the scope of our discussion.

http://www.linux-ha.org

9.4. passdb Recommendations

Chapter 5 covered the technical details of the three passdb plug-ins distributed with Samba:
smbpasswd, tdbsam, and ldapsam. Our focus here is to address which one to use on a Samba
domain controller. This discussion is less technical and more philosophical. We will reiterate some of
the points made in earlier chapters that should also be considered in the context of Samba domains.
Each passdb has its pros and cons. The ultimate choice is up to you.

Samba's smbpasswd file has the advantage of being very simple. It's a text file with one record per
line and a small number of fields per record. Its main intended use is on standalone file and print
servers. Because such servers merely have to authenticate users, all they need to store in the
smbpasswd file are a username, a password, and possibly password expiration calculations. The
user's SID is generated at runtime based on an internal algorithm and the user's Unix account. This
means that if the uid ever changes, so will the user's SID: this situation can break roaming profiles.
The lack of persistent SID storage is the main reason why we recommend against using the
smbpasswd passdb on a domain controller.

The tdbsam passdb is targeted at both standalone servers and Samba domains with a single PDC. It
can store a more complete set of user attributes than smbpasswd. For example, the logon options
such as logon script can be set on a per-user basis rather than relying on a single default value
from smb.conf. The tdbsam passdb also stores the user's SID, a feature that is required to migrate a
Windows NT 4.0 domain to a Samba domain controller. However, the lack of replication makes
tdbsam unsuitable for domains with multiple Samba domain controllers.

The ldapsam backend has the completeness of tdbsam with the added overhead of an LDAP
directory. Very LDAP-savvy administrators may find it appealing (although it is not recommended) to
edit user or group attributes directly, something impossible to do with tdbsam.

The attraction of directory services is to consolidate information that was previously duplicated across
network services. Therefore, the ldapsam passdb module is intended as a means of sharing
information between multiple Samba domain controllers. Because ldapsam, like tdbsam, stores the
full SID in user and group entries, it is not a way to share this information between multiple
standalone servers. Each host would have a different machine SID and hence would recognize only
accounts matching its own SID. A user created by one workgroup server would be ignored by
another.

Table 9-4 provides some basic rules to consider when choosing an account storage plug-in for your
new Samba server. Remember that these are recommendations and not rules. You are the final
judge concerning which passdb to deploy. For example, ldapsam may be completely acceptable on a
standalone server if you have only one Samba host on the network and already have an LDAP
directory available for use. If you need advice or someone to bounce ideas off of, the Samba mailing
lists mentioned in Chapter 12 are good places to get peer review of your configurations.

Table 9-4. passdb recommendations

passdb
Standalone
server

Samba domain with a
single DC

Samba domain with a multiple
DCs

smbpasswd Yes No No

tdbsam Yes Yes No

ldapsam No No Yes

9.5. Migrating an NT 4.0 Domain to Samba

Earlier, we stated that Samba 3.0 does not support the Windows NT 4.0 SAM replication protocol.
This is true in the sense that you cannot configure Samba to receive incremental change sets from a
Windows PDC (or vice versa). However, developers have implemented enough of the protocol to
allow what is referred to as SAM synchronization. Windows servers do this when a BDC is first
brought online. It synchronizes its local SAM with the domain SAM by requesting the complete set of
users and groups from the PDC. By requesting this initial synchronization operation with a Windows
NT 4.0 PDC, Samba can obtain a complete list of users and groups along with passwords and account
details, thus providing a means of migrating from the Windows domain controller to a Samba-based
domain.

The basic steps for migrating an NT 4.0 domain from Windows to Samba are:

Ensure that all Samba daemons are stopped.1.

Configure the Samba host's smb.conf as a BDC for the domain, including the user management
family of scripts.

2.

Synchronize the Samba's machine SID stored in secrets.tdb with the domain SID.3.

Create a BDC account on the Windows PDC for the Samba server.4.

Join the domain.5.

Issue the SAM synchronization request.6.

Reconfigure Samba as a PDC.7.

Shut down the Windows PDC.8.

Start smbd and nmbd on the Samba server.9.

Most of effort necessary for migrating a domain is in generating a working set of user management
scripts. These are required so that Samba can generate the new Unix users and groups before
creating the user accounts or group mapping entries in its passdb. However, one major hurdle is that
many Unix account utilities restrict the format of a new user or group name. For example, the Linux
groupadd command fails if the group name contains whitespace:

groupadd "Domain Admins"
groupadd: Invalid group name 'Domain Admins'.

One workaround is to bypass the OS tools and manually create the Unix groups. On Linux at least,
the rejection of white space in group names is a tool issue, not a limitation of /etc/group or the
libnss_files.so.2 library. The following excerpt from /etc/group illustrates these group names:

Domain Admins:!:1000:
Domain Users:!:1001:
Domain Guests:!:1002:
Account Operators:!:1003:
Server Operators:!:1004:
Backup Operators:!:1005:
Print Operators:!:1006:

If you have a large number of groups, however, such manual creation may be too tedious. In this
case, customize the user management scripts called by Samba to accept valid Windows user and
group names.

The next question is which passdb backend to use. Our recommendation is to begin with tdbsam. The
reasons are simple. tdbsam is easier to configure than an LDAP backend and more robust than an
smbpasswd file. Additionally, it is easier to remove tdb files than to rebuild an LDAP DIT when
performing migration experiments. You can always convert Samba's users and groups from a tdb
backend to an LDAP directory service later using the following command:

pdbedit -i tdbsam -e ldapsam:ldap://ldap.example.com/

With these recommendations in mind, let's begin the example by defining the following smb.conf for
our soon-to-be Samba PDC. All the parameters should be familiar at this point. The Windows NT
domain that we are migrating is named DOA. Remember to disable the domain master option when
configuring a backup domain controller. The [netlogon] share is not required for the migration
process, but will be necessary once we swap the Samba server to a PDC. Finally, we have omitted
any support for roaming user profiles, because this feature is independent of transferring accounts.
We will, however, revisit some specific issues surrounding the user environment profile after
completing the migration.

[global]
 netbios name = CAT
 workgroup = DOA
 security = user
 encrypt passwords = yes
 passdb backend = tdbsam

 domain logons = yes
 domain master = no

 add user script = /usr/sbin/useradd -m '%u'
 delete user script = /usr/sbin/userdel '%u'

 rename user script = /usr/sbin/usermod -l '%unew' '%uold'
 add group script = /usr/sbin/groupadd '%g'
 delete group script = /usr/sbin/groupdel '%g'
 add user to group script = /usr/sbin/groupmod -A '%u' '%g'
 delete user from group script = /usr/sbin/groupmod -D '%u' '%g'
 set primary group script = /usr/sbin/usermod -g '%g' '%u'

[netlogon]
 path = /data/netlogon
 read only = yes
 write list = +"Domain Admins"

After the initial smb.conf has been created, the next step is to synchronize Samba's machine SID
with the domain SID. This is done by running the net rpc getsid command against the Windows PDC.
Because you are writing directly to secrets.tdb, these commands must be run as root. In the
example, medic is the name of the PDC for the DOA domain.

net rpc getsid -S medic
Storing SID S-1-5-21-406022937-1377575209-526660263 for Domain DOA in secrets.tdb

Samba's machine SID must be manually set to match this domain SID using net setlocalsid. If the
command succeeds, you are immediately returned to a shell prompt with no additional output.

net setlocalsid S-1-5-21-406022937-1377575209-526660263

The next two steps, creating the BDC account and joining the domain, should be executed in
immediate succession in order to prevent an attacker from hijacking the machine account. Ideally,
this should be done on a separate, secure network, but that is not always possible when migrating a
production domain. When experimenting, consider moving a Windows BDC to an isolated network
and promoting it to a PDC.

Figure 9-11 shows the Server Manager (srvmgr.exe) application and the Add Computer to Domain
dialog boxes. Use these to create a BDC account for the Samba host.

Figure 9-11. Using Server Manager to create a BDC account for the
Samba host CAT

Next, join the domain using net rpc join. We'll provide much more detail about joining Windows (and
Samba) domains in the next chapter. For now, this one command is enough to get the job done:

net rpc join
Joined domain DOA.

You are finally ready to migrate the users and groups from the DOA domain into Samba's passdb.
Assume that all group names containing whitespace have been previously created in /etc/group by
hand. Begin the migration process by running net rpc vampire. The -S option is used to define the
name of the Windows NT 4.0 PDC to contact. After the migration completes, it is a good idea to verify
the new users and groups both in the server's Unix accounts and in Samba's passdb.

net rpc vampire -S medic
Fetching DOMAIN database
Creating unix group: 'testgroup'
Creating unix group: 'testgroup2'
Creating account: Administrator
Creating account: Guest
Creating account: foo
Creating account: foo2
Creating account: foo3
Creating account: user1
Creating account: NURSE$
Creating account: CAT$
Group members of Domain Admins: Administrator,
Group members of Domain Users: Administrator(primary),foo2(primary),

 user1(primary),foo3(primary),NURSE$(primary),CAT$(primary),
Group members of Domain Guests: nobody,
Group members of testgroup: foo(primary),
Group members of testgroup2: foo,
Creating unix group: 'LocalTestGrp'
Fetching BUILTIN database
skipping SAM_DOMAIN_INFO delta for 'Builtin' (is not my domain)
Creating unix group: 'Administrators'
Creating unix group: 'Guests'
Creating unix group: 'Replicator'
Creating unix group: 'Users'

The final steps are to shut down the Windows PDC and launch the new Samba PDC. Before starting
smbd and nmbd, make sure to enable the domain master parameter so that Samba registers the
DOA<0x1b> name and the Windows client recognizes the new PDC.

Here are a few pieces of advice. Migrating a domain is tricky business. You should expect to run
through several test migrations before disabling the Windows PDC. Also consider any additional
services such as file and printer shares, web servers, or other applications offered by the Windows
PDC. These must be migrated individually. The good news is that you have to successfully complete
the migration process only once.

9.6. Domain Trusts

Samba 3.0 was the first version to support Windows NT 4.0 style one-way trusts, which can be used
to connect Samba domains to both NT and Active Directory domains. Initiating a trust relationship is
very similar to the process of joining a domain described earlier in this chapter. The trusted domain
creates a domain trust account that has a purpose analogous to a machine trust account. The
trusting domain then establishes the relationship by joining the trust. We'll next walk you through an
example of configuring a Samba domain to trust an AD domain.

First, you must have a fully configured Samba domain. Samba restricts the right to create domain
trusts to members of the Domain Admins group, so it is necessary to configure an appropriate group
mapping entry for this if you have not already done so. You also must either create the necessary
Unix user account for the domain trust using the name of the trusting domain followed by a $
character (e.g., books$), or configure a working add machine script in smb.conf.

Use the net rpc trustdom command to create the domain trust account on the Samba PDC. The add
subcommand accepts the name of the domain (BOOKS) followed by the new trust account password
(sambapw):

$ net rpc trustdom add BOOKS sambapw -S stork -U cindy
Password: <enter cindy's password>

If all goes well, you are returned immediately to a shell prompt. You can verify that the account was
created using pdbedit. The I account flag is used to mark this as a domain trust account. (Note that
the following output has been wrapped for better readability.)

pdbedit -L -w books$
BOOKS$:10018:A01531C54AE6F75CAAD3B435B51404EE:
 45F9E3989DD87751210C054A9B3A134E:[I]:LCT-44DA55A9:

Now establish the trust account from the Windows domain controller. Figure 9-12 shows the
books.plainjoe.org domain properties, as displayed by the Windows 2000 Active Directory Domains
and Trusts MMC plug-in. The top section of this dialog is used to connect to a trusted domain. There
are no existing domain trust relationships in the screenshot.

Figure 9-12. Trust relationships for the books.plainjoe.org AD domain

Now select Add from the top section and enter the name of the Samba domain (ORA) along with the
password specified in the net rpc trustdom add command. You should be greeted with a dialog box
similar to the one in Figure 9-13, indicating that the trust has been established and verified.

Figure 9-13. Confirming a successfully established trust between Samba
and AD

You can use smbclient to test the trust relationship by connecting to a share on any member server
in the BOOKS domain as a user from the ORA domain:

$ smbclient //windc/public -U cindy -W ORA
Password: <enter cindy's password>
Domain=[BOOKS] OS=[Windows 5.0] Server=[Windows 2000 LAN Manager]
smb: \>

Next, it is time to create the trust relationship in the other direction. This time, create the trust
account on the Windows DC using the lower half of the Trusts dialog box shown in Figure 9-12.

You will initially receive a message that Windows cannot verify the trust. This is because you have
not established the trust on the Samba DC yet. To do so, run the net rpc trustdom establish
command, giving the trusted domain name as the sole parameter. This must be done as root so that
the net tool can write the new password to secrets.tdb.

net rpc trustdom establish BOOKS
Password: <enter trust password here>
Trust to domain BOOKS established

You should now be able to return to the Windows DC and verify the trust.

You can view the list of current trusts using the net rpc trustdom list command. This command does
not display any information about the status of the trust, only that Samba has a trust account entry
or password for the listed domain.

net rpc trustdom list -U cindy
Password: <enter cindy's password>
Trusted domains list:
BOOKS S-1-5-21-4200961138-2496335650-1239021823
Trusting domains list:
BOOKS S-1-5-21-4200961138-2496335650-1239021823

In order to connect to the Samba server using an account from the BOOKS domain, the server requires
some method to deal with users and groups from the trusted domain. The best way to do this is with
Winbind. Conceptually, these trusted users and groups on a Samba PDC are no different from domain
users and groups on a Samba member server. To set up Winbind on a Samba DC, follow the same
steps you would for a Samba member server (described in Chapter 10) with the exception of
maintaining the security = user setting instead of one of the domain mode security settings. On a
DC, Winbind allocates uids and gids only for accounts outside of its own domain.

Table 9-5 completes our discussion of domain trusts with an overview of the net rpc trustdom
commands.

Table 9-5. net rpc trustdom commands

Command Options Description

add DOMAIN

password

Create a domain trust account for a trusting domain using the specified
password.

del DOMAIN Remove a domain trust account.

establish DOMAIN Establish a trust relationship with a trusted domain.

revoke DOMAIN Disconnect a trust relationship with a trusted domain.

list none List the currently configured domain trust relationships.

9.7. Remote Server Management

Windows provides a large number of remote management applications. You've already seen two
examples of these: Server Manager and User Manager for Domains. Other tools provide the
capability to manage file shares, stop and start services, search logfiles, and monitor system
resources. Supporting tools familiar to Windows administrators can help to distribute the burden of
server administration without requiring you to retrain your staff. In the following sections, we show
you to configure Samba to support these types of remote management applications.

9.7.1. File Shares

Figure 9-14 shows a listing of shares on our server using the Microsoft Management Console. Our
goal is to be able to manipulate new and existing shares using this application. To do so, we need to
meet two requirements:

Figure 9-14. Using the Computer Management MMC plug-in to view
available Samba shares

Authorize a user or group to manage file shares.

Configure smbd so that it is able to modify its own smb.conf dynamically.

Granting the SeDiskOperatorPrivilege right allows a user or group to manage Samba's file shares,
including changing a share's security ACL. The net rpc rights command should be very familiar by

now. We'll continue to use Server Admins as our primary administrative group and grant it the
necessary privilege with the following command:

$ net rpc rights grant 'ORA\Server Admins' SeDiskOperatorPrivilege \
 -S stork -U cindy
Password: <enter cindy's password>
Successfully granted rights.

Samba provides three parameters referring to external commands that modify smb.conf whenever a
file share is added, modified, or removed. The add share command is used to create a new file share to
smb.conf. When called by smbd, it is passed the following five parameters:

The absolute path to smb.conf

The name of the new share

The directory path to be shared

A comment string

The maximum number of simultaneous connections allowed

The change share command updates basic share properties and is invoked with the same set of
parameters as the add share command.

The delete share command removes a file share from smb.conf. The parameter list consists solely of:

The path to smb.conf

The name of the share to be removed

An example share management program is distributed with Samba in examples/scripts/shares/perl.
The modify_share_command.pl script is intended to be an example of how the various smb.conf
share commands work, but it can be used in production. However, because it strips comments and
reorders the configuration file (similar to SWAT), it may not be suitable for all servers.

The following excerpt from smb.conf shows how to integrate these new options into an existing
configuration. The script uses the number of defined parameters to determine whether it should
add/update a share or remove one, which allows us to use one program for all three commands.

[global]
 add share command = /etc/samba/scripts/modify_share_command.pl
 change share command = /etc/samba/scripts/modify_share_command.pl
 delete share command = /etc/samba/scripts/modify_share_command.pl

We can now use the MMC Shared Folders plug-in to create a new share named [graphics]. Figure 9-

15 shows the Create A Shared Folder Wizard, which can be launched from the Action New File
Share . . . menu option. The shared directory path must be entered as a DOS path, but is converted
to a Unix path by smbd before passing it off to the add or change share parameters.

Figure 9-15. Creating a new Samba share from Windows

The resulting share created by the add share command is shown here:

[graphics]
 max connections = 0
 comment = Graphic Art for Publishing Department
 path = /data/data/graphics

Creating shares using MMC or other RPC-based management tool does not give you access to the full
range of smb.conf parameters. The parameter most notably absent is valid users. However, you
can customize the share's security descriptor to achieve the same effect. Share permissions, stored
in share_info.tdb, are independent of the filesystem ACLs discussed in Chapter 6 and are thus
available even on systems without that feature. Figure 9-16 shows the share permissions for
[graphics]. Here the ORA\artists group has been given full access, while all other users are granted
only read access to the share.

Figure 9-16. Share permissions for graphics

9.7.2. Services

The Windows Service Control API can be used to manage Unix daemons via the System V init script
interface. Figure 9-17 lists configured services on a Samba host.

Figure 9-17. Listing services on the Samba host \\SLES9

The registry service is not linked to any configuration setting and therefore is always present. But a
few of these services are handled internally by smbd or nmbd because they are linked to specific
smb.conf parameters:

The Print Spooler (disable spoolss)

Net Logon (the [netlogon] file share)

WINS (wins support)

Remote Registry Service

Of these four internal services, only the Print Spooler will accept start or stop commands. Its main
purpose is to support the Microsoft Print Migrator tool (http://www.microsoft.com/printserver).

You can include additional services using the svcctl list parameter. The smb.conf setting
corresponding to the listing in Figure 9-17 is:

[global]
 svcctl list = syslog nfs sshd postfix cron autofs \
 centeris.com-agent apache2 cups centeris.com-evtlogd \
 centeris.com-perfd centeris.com-evtweblogd

http://www.microsoft.com/printserver

The svcctl list directive specifies the services that should be listed by the Windows Service Control
Manager. To actually stop and start a service, you must add a SysV init script using the name listed
in smb.conf to the svcctl folder of Samba's lib directory (e.g., /usr/local/samba/lib/svcctl). In most
cases, adding a symbolic link to the operating system's init script in /etc/init.d is sufficient. This file
listing shows symlinks for apache2, autofs, cron, nfs, postfix, sshd, and syslog:

$ ls -l
total 8
drwxr-xr-x 2 root root 4096 Aug 10 23:35 .
drwxr-xr-x 9 root root 4096 Aug 10 23:35 ..
lrwxrwxrwx 1 root root 19 Jul 14 15:49 apache2 -> /etc/init.d/apache2
lrwxrwxrwx 1 root root 18 Jul 14 15:49 autofs -> /etc/init.d/autofs
lrwxrwxrwx 1 root root 16 Jul 14 15:49 cron -> /etc/init.d/cron
lrwxrwxrwx 1 root root 15 Jul 14 15:49 nfs -> /etc/init.d/nfs
lrwxrwxrwx 1 root root 19 Jul 14 15:49 postfix -> /etc/init.d/postfix
lrwxrwxrwx 1 root root 16 Jul 14 15:49 sshd -> /etc/init.d/sshd
lrwxrwxrwx 1 root root 18 Jul 14 15:49 syslog -> /etc/init.d/syslog

<...remaining output deleted...>

Samba expects the init script to support three command line options: start, stop, and status. For all
three commands, smbd assumes that a nonzero return code indicates an error and that the service is
not running. If your OS does not provide initialization scripts for service startup and shutdown, or
does not obey Samba's assumptions, it will be necessary to write your own.

Each service has an assigned security descriptor, just like files or printers, which can be set to allow a
specific user or group the right to stop and restart a service. By default, only members of the local
Administrators group (S-1-5-32-544) are authorized to manage services. At least initially, it is
necessary to create a group mapping entry for this SID. You could, however, change a service's ACL
to allow members of the Web Admins group to restart Apache and restrict the Mail Admins group to
managing Postfix. Sadly, Microsoft does not provide a graphical interface to manage service access
lists. However, it is possible to use sc.exe utility shipped with Windows XP to set the ACL using its
Security Descriptor Definition Language (SDDL). For more information on sc.exe, access the tool's
help screen using the /? switch or search http://technet.microsoft.com.

Figure 9-18 shows service management in action as the Postfix Mail Server is launched by selecting
Start from the context menu provided by a right click on the service name.

Figure 9-18. Starting Postfix from MMC

http://technet.microsoft.com

Table 9-6 summarizes the svcctl list option present in this section.

Table 9-6. Listing services in smb.conf

Parameter Value Description Default Scope

svcctl
list

string Define a list of service names to enumerate when queried
using the Windows Service Control API.

"" Global

9.7.3. Eventlogs

The Windows Event Viewer is limited, compared to many logging tools. It is, however, familiar to
Windows admins and is distributed as part of the operating system. For this reason alone, it is worth
investigating, as it allows existing EventLog API-based monitoring tools to audit both Unix hosts and
their Windows counterparts.

The first step when enabling this feature is to configure the list of EventLogs that should be reported
to Windows clients by defining the eventlog list global parameter in smb.conf. The following setting
enumerates five logfiles: Application, System, Security, SyslogLinux, and WebServer:

eventlog list = Application, System, Security, SyslogLinux, Webserver

Samba does not parse system logfiles directly. Instead, it reads log records from an associated tdb
stored in the eventlog folder of its lock directory (e.g., /var/lib/samba/eventlog). These tdb files
are created by using an external tool to parse the system logfiles and then writing entries to the
database using the eventlogadm tool. An example Perl script which is able to parse syslog-generated
logfiles is included in the examples/scripts/eventlog directory of the Samba source distribution. To
generate the Security EventLog tdb, pipe /var/log/secure through the parselog.pl script and then feed
the output to the eventlogadm tool, giving the EventLog name as the single command-line argument:

tail -f /var/log/secure | parselog.pl | eventlogadm Security

This command continuously feeds log messages into security.tdb, which is accessed by smbd to
generate the log entries shown in Figure 9-19. Here you can see the successful SSH login by root
from host 192.168.56.1.

Figure 9-19. Viewing a Unix host's /var/log/secure file in the Windows
Event Viewer

To fully decode logfiles in Event Viewer, Windows requires a message file DLL
that can be downloaded from the server's [C$] share. More information on
Message Files and EventLogs can be found at http://msdn.microsoft.com.

Table 9-7 provides a short description of the eventlog list setting.

Table 9-7. Listing event logs in smb.conf

Parameter Value Description Default Scope

eventlog
list

string Define a list of logfile names to enumerate when queried
using the Windows EventLog API.

"" Global

9.7.4. Performance Monitor

http://msdn.microsoft.com

Our final management application falls more into the remote monitoring category. The Performance
Monitor (perfmon.exe) utilizes the Windows registry interface to periodically poll a server for
performance data such as CPU usage, disk utilization, and available memory. Similar to its
relationship with EventLogs, Samba acts as a interface to performance data that has been collected
by an external tool or daemon.

There are many ways to collect performance data. On Linux hosts, a great deal of information can be
collected by reading files stored in /proc. An implementation based on this method is distributed in
the examples/perfcounter directory of the Samba source tree. Build instructions and a simple
Makefile are included as well. Once the daemon has been compiled, it can be launched to generate an
example set of performance counters stored in the perfmon folder of Samba's lock directory
(/var/lib/samba/perfmon). To launch the program as a daemon, run the following command as root:

./perfcount -d

This command creates two tdb files: names.tdb and data.tdb. Samba uses these files to service any
requests to read from the HKEY_PERFORMANCE_DATA registry hive. Figure 9-20 displays a perfmon.exe
session that is monitoring the System and User CPU usage on a Unix host during a software compile.
It is interesting to compare the Performance Monitor data with the output from vmstat during the
same period. You will find that the graph closely matches vmstat's CPU usage report:

Figure 9-20. Viewing System versus User CPU usage in the Windows
perfmon.exe tool

$ vmstat 5

procs ----cpu----
 r b <...> us sy id wa
 1 0 <...> 2 4 93 2
 1 0 <...> 11 89 0 0
 1 0 <...> 10 89 0 0
 1 0 <...> 10 90 0 0
 1 0 <...> 11 89 0 0
 1 0 <...> 11 88 1 1
 0 1 <...> 12 87 0 1
 1 0 <...> 11 58 21 10
 0 1 <...> 3 16 80 1
 1 0 <...> 13 80 0 6
 1 0 <...> 14 86 0 0

Samba developers continue to support new remote management interfaces and improve existing
ones. For the latest information on features related these and other tools, review the WHATSNEW.txt
file included with the latest Samba release.

Chapter 10. Domain Member Servers
Windows domains are based on centralized authentication services provided by domain controllers. A
moderately sized domain has a limited number of DCs, but can possibly host hundreds of file and
print servers. The number of servers in a large domain can exceed this amount by a factor of 10 or
more.

In many networks, Samba is leveraging these domain authentication services and standing side by
side with Windows. First introduced in 1998, Samba's support for participating in Windows domains
as a member server has helped administrators integrate Unix servers with Windows clients. In 2003,
Samba 3.0 advanced this feature by adding support for Kerberos authentication and LDAP directory
services, yielding improved integration with Microsoft Active Directory domains.

Chapter 5 began by discussing the concepts of authentication and authorization. These tasks apply
not only to local users but also to domain member servers. For all but the smallest domain, manual
synchronization of user and group account information between Unix hosts and Windows domains
can consume a large portion of your time. Our focus in this chapter is on decreasing the amount of
effort necessary to deploy Samba member servers by leveraging both the authentication and
authorization data maintained by Windows domain controllers. We address the steps necessary for
Samba to join and participate in both Windows NT 4.0 and Active Directory domains, including how to
configure any required external software dependencies such as the Kerberos client libraries, time
synchronization, and the DNS client resolver. We also examine Winbind's account management
features and its benefits to member servers.

10.1. Joining a Domain

Adding a new machine to a domain is much like adding a new user. In the case of a human user, the
new account is first created on the domain controller. Then the user is informed of his login name and
credentials. The user remembers this password in order to access available network services such as
email or printing. When a computer joins a domain, it also establishes a random password that is
known only by the domain controllers and itself. The client stores this password locally, in the registry
or some other local database.

We described the process used to authenticate a connection request to a share on a standalone
server in Chapter 1. If necessary, now might be a good time to review the section "Connecting to a
CIFS File Share" as a refresher on session setup requests. Standalone servers provide an excellent
starting point for examining domain authentication, because the basics of the connection process are
identical for both standalone and member servers. The primary difference is how the server
ultimately validates the credentials sent by the client.

Samba 3.0 and Windows NT 4.0 domain controllers use a Remote Procedure Call (RPC) mechanism,
by which a member server can establish a secure means of communication and then request that the
DC authenticate a user session. This concept is illustrated in simplified diagram shown in Figure 10-1.
The client, named \\FOX, connects to the file server \\HOUND, who in turn asks the domain controller
\\RABBIT to authenticate a session request for the user rose. The NetRequestChallenge() and
NetAuth2() RPCs used the password stored as part of the domain join process to establish the
identity of \\HOUND. The third RPC, NetSamLogon() , is the authentication request on behalf of the
user. After receiving the NetSamLogon() reply from the domain controller, the file server either
responds successfully or returns the error code, such as Logon Failure or Password Expired, specified
by the DC.

Figure 10-1. Connecting to a domain file server using NTLM and RPC

When participating in an AD domain, Windows 2000 and later clients are capable of using Kerberos 5
(Krb5) authentication services.[*] We say "capable," because Active Directory domains still support
NTLM authentication and the RPC mechanisms just described. A full discussion of Kerberos is beyond
the scope of this book. Two excellent sources of information on the subject are Kerberos: The
Definitive Guide, by Jason Garman (O'Reilly), and Network Security: Private Communication in a
Public World, by Charlie Kaufman et al. (Prentice Hall). The former discusses implementation issues
for Kerberos administrators and the latter is an in-depth examination of Kerberos and other security
protocols.

[*] Active Directory domains do not support Kerberos v4.

Figure 10-2 illustrates what occurs when a user connects to a file server using Kerberos
authentication. Again, the client machine \\FOX connects to the server \\HOUND, except this time a
domain controller is not needed to authenticate the session request. The file server decrypts the
Kerberos ticket locally, therefore verifying that the user has been previously authenticated by the DC.

Figure 10-2. Connecting to a file server in an Active Directory domain

10.2. Domain and ADS Security Modes

Samba provides two modes of operating within a domain, security = domain and security = ads.
Both allow Samba to leverage the central authentication service provided by domain controllers. Both
modes support the NTLM and NTLMv2 authentication protocols. The ads mode, however, also
provides support for Kerberos authentication, but domain does not. A good rule of thumb is to select
the ads method if you are joined to an AD domain, regardless of whether the domain runs in mixed
or native mode.

If you plan to configure Samba for security = ads, remember to follow the instructions given in
Chapter 2 to verify that your Samba installation does in fact possess support for Kerberos, LDAP, and
Active Directory. There are no such external software dependencies for enabling domain security; this
mode is always provided.

10.2.1. security = domain

Joining a Samba host using security = domain involves two steps:

Define the domain and member server settings for your environment in smb.conf.1.

Establish the machine account credentials by joining the domain.2.

The first parameter to set is the security option. Start by defining domain mode security in the
[global] section of smb.conf:

[global]
 security = domain

Supporting password encryption is a requirement for member servers, so you should set it explicitly,
even though it is enabled by default:

 encrypt password = yes

Finally, specify the name of the domain to which your server will belong. Samba, like Windows,
reuses the workgroup parameter for this setting. Here, we are joining the GLASS Windows NT 4.0
domain:

 workgroup = GLASS

Once smb.conf has been configured, use the net command to establish the server's credentials in the
domain. You need a user account that is properly authorized to join your server to the domain.[*]

When in doubt, an account that is a member of the Domain Admins group will always work. Next, run
the net join command from a root shell to join the domain, using the -U option to define the
connecting user name:

[*] Domain Administrators can grant rights or privileges to users to join a specific host or a collection of hosts to the domain.

$ net join -U Administrator
Administrator's password: <enter password for Administrator>
<...intermediate output deleted...>
Joined domain GLASS.

If you are greeted by the "Joined domain ..." message, net was able to successfully establish the
machine account credentials and your server is now a part of the domain. If not, there are three
common reasons why this process may fail, described next.

First, if you receive the following message, make sure that you entered the correct user name and
password:

Could not connect to server XXX
The username or password was not correct.

Second, if you entered the correct credentials but the account does not possess the sufficient rights
to join the server to domain, you will receive this error message:

error setting trust account password: NT_STATUS_ACCESS_DENIED
Unable to join domain XXX.

The third common error is the inability to locate a DC for the domain specified in smb.conf. This error
is signaled by the following message:

Unable to find a suitable server

This situation is frequently caused by a mistyped name, so verify your smb.conf settings before

proceeding. If your configuration is correct, it could be that this error is caused by a name service
failure. We cover how Samba attempts to locate domain controllers shortly.

If you are joining a Samba domain, you may encounter the additional following error:

Creation of workstation account failed

This error is normally caused by some failure in the add machine script. Or possibly the script
succeeded, but smbd is unable to locate the Unix account it created, a situation frequently caused by
running the Name Service Cache Daemon (nscd) on the Samba DC. To resolve this problem, ensure
that the DC's /etc/nsswitch.conf file is set up correctly, that the add machine script did in fact create
the trust account, and that nscd is using up-to-date information.

You can verify your server's trust account at any time by running this command:

$ net rpc testjoin
Join to 'GLASS' is OK

10.2.2. security = ads

From the perspective of an end user, a server configured to use ads security behaves identical to one
using domain security. From our perspective as administrators, the additional Kerberos support
provided by the ads method is made apparent by the extra configuration steps necessary to join a
domain. Instead of the two steps described for security = domain, this time there are four to
complete:

Define the domain and member server settings for your environment in smb.conf.1.

Synchronize the server's clock with the domain controller.2.

Configure the Kerberos client library and DNS resolver settings.3.

Establish the machine account credentials by joining the domain.4.

10.2.2.1. Basic Samba settings

Once again, we start with configuring the server's smb.conf file. Our initial file defines ads security
and includes the required encrypted password support:

[global]
 security = ads

 encrypt passwords = yes

Next, include the realm of the AD domain. In Active Directory domains, the Kerberos realm is the
same as the uppercase version of the domain's DNS name.[*] So the AD domain blue.plainjoe.org is
defined as:

[*] In pure Kerberos 5 implementations, the realm and DNS domain are not required to match. However, Active Directory

consolidates the two into a single name when running dcpromo.exe.

realm = BLUE.PLAINJOE.ORG

The workgroup parameter specifies the short name of the domain, which is commonly the same as
the first portion of the realm name. However, this setup is not guaranteed. If you define the wrong
value, the net tool complains when it joins the domain and reminds you to set the correct value. In
our example, the short domain name is the first component of the realm name, so we specify the
workgroup as follows:

workgroup = BLUE

10.2.2.2. Time synchronization

Time synchronization is a prerequisite for Kerberos authentication. Therefore, Microsoft chooses to
make all AD domain controllers act as time servers. Non-Microsoft clients can synchronize their
system clocks with an AD DCs by using version 4 of the Simple Network Time Protocol (SNTP). The
ntpdate tool, included in the NTP distribution from http://www.ntp.org, can synchronize the server's
local clock with an AD DC. Most systems already have some form of the NTP tools included.

Kerberos Terminology 101

For the purposes of our discussion, understanding some basic terminology can be helpful
to map Kerberos concepts onto Active Directory functionality:

Principal

A user or computer in a Kerberos authentication database (e.g., a user or
computer object in AD).

http://www.ntp.org

Realm

A collection of Kerberos principals. In AD, this is the same as the DNS domain.

Ticket Granting Ticket (TGT)

An encrypted blob of data issued to a principal, which can be used to requests
tickets to other principals.

Service Ticket

An encrypted blob of data that can be used to access application services such as a
mail, web, or file server.

Key Distribution Center (KDC)

The Kerberos database server.

Authentication Server (AS)

The service responsible for issuing TGTs.

Ticket Granting Service (TGS)

The service responsible for issuing service tickets.

Secret Key

The hashed version of a principal's passphrase. This is also referred to as the long-
term key, because it does not expire or change based on an individual session.

Session Key

A short-term key valid only for the life of a specific application session or Kerberos
ticket. Windows 2000 and later systems use this key to encrypt certain
communications between clients and servers.

In most implementations, Microsoft and Unix alike, the KDC, AS, and TGS are all
implemented in the same service, although each has a logically separate function. An AD
domain controller fulfills all three of these roles. Frequently, the term KDC is used to
refer to the KDC+AS+TGS server.

To set your server's clock to match the time on the domain controller named
bluedc1.blue.plainjoe.org, run the following command as root:

$ ntpdate bludc1.blue.plainjoe.org
17 Jun 12:46:46 ntpdate[16773]: step time server 192.168.1.148 offset 8.734885 sec

If you receive the error message, "no server suitable for synchronization found," confirm that the
hostname used is valid and reachable. If the name is correct, an administrator of the DC (possibly
you) must verify the w32time.exe service. More information about Active Directory and time
synchronization can be found by searching http://support.microsoft.com for the keyword
"w32time.exe."

The ntpdate command can be run periodically as a cron job to prevent the Samba server's clock from
drifting. Another option is to run the ntpd daemon and have it synchronize the local clock on a
continuing basis. To use this method, specify the domain controllers using a server line in
/etc/ntp.conf and then have the daemon started as part of the system boot process. More on
configuring NTP clients can be found in the book Essential System Administration, by Æleen Frisch
(O'Reilly).

10.2.2.3. Encryption types

The next item on the list is to configure the server's Kerberos client libraries, which Samba will use to
validate user connections. Although this process can vary slightly depending the Krb5 distribution you
are using, either Heimdal or MIT, thankfully the configuration files used by the two implementations
are extremely compatible with each other. By default, both distributions use the file /etc/krb5.conf to
define client-side settings. The options of interest are what encryption types the client supports and
how it locates a KDC for a given realm.

Active Directory realms implement three Krb5 encryption types:

RC4-HMAC

DES-CBC-MD5

DES-CBC-CRC

AD domain controllers always prefer the strongest encryption algorithm for which a principal has
assigned keys. The most secure encryption type in our list is RC4-HMAC. Remember from Chapter 2
that this new encryption type is supported in open source Kerberos distributions beginning only with
MIT krb5 1.3 and with Heimdal 0.6.1. Krb5 authentication still works on systems with older Kerberos
libraries such as RedHat Enterprise Linux 3, but only DES keys will be available.

We limit the client libraries to use the same list of encryption types supported by Microsoft. This is
important, because by default, Unix Kerberos implementations prefer the Advanced Encryption
Standard (AES) or triple-DES (3DES) methods, which are not currently supported by Windows
domain controllers. There are several points during Krb5 communications where an encryption type
mismatch can cause failure. If the Samba server cannot decrypt a user's ticket, that user cannot be
authenticated. To be safe, we use a single list for obtaining TGTs, service tickets, and any session-
key-based encryption that may be performed by adding three options (default_tgs_enctypes,
default_tkt_enctypes, and preferred_enctypes) to the [libdefaults] section of krb5.conf.

http://support.microsoft.com

[libdefaults]
 default_tgs_enctypes = RC4-HMAC DES-CBC-MD5 DES-CBC-CRC
 default_tkt_enctypes = RC4-HMAC DES-CBC-MD5 DES-CBC-CRC
 preferred_enctypes = RC4-HMAC DES-CBC-MD5 DES-CBC-CRC

10.2.2.4. Realm/domain and KDC lookups

Next, we define the client library's default realm, just as we did in smb.conf. This realm is used
whenever the Krb5 libraries are given an unqualified principal name. For example, if asked to retrieve
a TGT for the user Administrator, Krb5 uses the principal Administrator@BLUE.PLAINJOE.ORG. The
default realm also goes in krb5.conf's [libdefaults] section:

 default_realm = BLUE.PLAINJOE.ORG

Finally, we have to make a choice concerning how the Krb5 libraries will locate a KDC for a realm.
The simplest means is to use the same DNS service as the AD domain. The reasoning behind this
recommendation is that there is no need to duplicate information that Active Directory already
maintains. If you find that KDC DNS lookups are not available on your platform or if you do not wish
to use them, you must manually configure the KDC addresses in krb5.conf. We'll show both methods
in the following sections.

10.2.2.4.1. Using DNS for KDCs lookups

The goal of this configuration is to enable the Kerberos client libraries to find a KDC by generating a
query to the DNS server. If you configure the use of DNS, a request to contact a KDC for a realm
results in DNS SRV lookups for _kerberos._udp.<domain> or _kerberos._tcp.<domain>. For example,

locating a KDC in the realm BLUE.PLAINJOE.ORG results in a DNS query for the SRV record
_kerberos._udp.blue.plainjoe.org. Lookups for the corresponding TCP record result when the Krb5
replies are too large for UDP and must be retried over TCP.

The Heimdal Kerberos client implementation has always supported locating KDC via DNS SRV
lookups. The MIT distribution has also possessed support for several releases, but did not enable the
feature by default until the 1.4 release. DNS queries for KDCs can be enabled in older version of MIT
Kerberos by defining the KRB5_DNS_LOOKUP and KRB5_DNS_LOOKUP_KDC preprocessor macros at compile
time.

To configure the Kerberos libraries for DNS lookups, first configure /etc/resolv.conf to point to the
DNS servers used by the AD clients and servers. Also be sure to set the DNS search suffix to the
name of the AD domain. For our example, the DNS servers for the blue.plainjoe.org domain are at
192.168.1.101 and 192.168.2.101, which gives us the following resolv.conf file:

search blue.plainjoe.org
nameserver 192.168.1.101
nameserver 192.168.2.101

The only other step is to instruct the Krb5 libs to query DNS for the name and address of KDCs by
enabling the dns_lookup_kdc option in the [libdefaults] section:

 dns_lookup_kdc = true

10.2.2.4.2. Manually configuring KDCs lookups

Although we recommend the use of AD for lookups whenever possible, as shown in the previous
section, you can instead configure KDC addresses manually in krb5.conf. To do so, add a section for
each realm that may be contacted in the [realms] section. Assuming that we have no trusted
domains, a single entry for BLUE.PLAINJOE.ORG will suffice.

In this example, we have one KDC named bluedc1.blue.plainjoe.org. Multiple KDCs may be specified
by including additional kdc lines in the realm's configuration.

[realms]
 BLUE.PLAINJOE.ORG = {
 kdc = bluedc1.blue.plainjoe.org
 }

10.2.2.5. Final steps

Before moving a client to the final stage of joining the AD domain, it is a good idea to verify that the
Kerberos client configuration is functioning properly. The easiest way to do this is to use kinit to
obtain a TGT for an existing domain user. Our example uses the built-in Administrator account:

$ kinit Administrator
Password for Administrator@BLUE.PLAINJOE.ORG: <password for Administrator>

The MIT variant of kinit does not provide any feedback unless the TGT request is unsuccessful.
Heimdal's kinit indicates success by providing the maximum lifetime of the obtained TGT. Regardless
of the Krb5 distribution used, it is possible to view the current ticket cache using the klist command:

$ klist
Default principal: Administrator@BLUE.PLAINJOE.ORG

Valid starting Expires Service principal

06/18/06 20:49:03 06/19/06 06:49:05 krbtgt/BLUE.PLAINJOE.ORG@BLUE.PLAINJOE.ORG
 renew until 06/19/06 20:49:03

The command output proves that we have obtained a TGT for Administrator by listing the ticket for
the principal krbtgt/BLUE.PLAINJOE.ORG@BLUE.PLAINJOE.ORG, the standard principal name given to
the Kerberos authentication server for our realm.

There are a few errors that can commonly occur at this stage. The most common errors and potential
solutions are:

Unable to locate a KDC for the requested realm

The client was unable to determine a KDC for the principal's realm. Verify that the
default_realm value in krb5.conf is spelled correctly. If so, verify that either the kdc parameter
is specified for the realm in the [realms] section or dns_lookup_dns is enabled in
[libdefaults]. When using DNS SRV queries to locate a KDC, use either nslookup or the host
utility to confirm that the SRV record for the _kerberos._udp hostname is resolvable in the
domain.

KDC has no support for encryption type while getting initial credentials

Verify that the list of supported encryption types in /etc/krb5.conf includes RC4-HMAC. If you are
using an older version of Kerberos libraries that do no support this encryption type, it is
recommended that you upgrade your Kerberos libraries if possible. However, you may be able
to work around the error by changing the Administrator's password once to generate the user's
necessary DES Krb5 keys.

Preauthentication failed

Confirm that you are entering the correct password for the user's account.

Clock skew too great

By default, all AD domain controllers require that the clocks on both clients and servers are
within five minutes of each other. Go back and resync the system's time to match that of the
DC.

Once you have confirmed a working Krb5 client installation, the existing ticket cache should be
cleared using the kdestroy command. This command prevents the net command from ignoring the
user credentials that are entered on the command line. Both the Heimdal and MIT implementation of
this tool return directly to a command prompt upon success with no additional messages.

With all the preliminary steps completed, it is now time to perform the net join. The command-line
arguments are identical to the ones used to join using security = domain; once again, this command
must be run as root:

$ net join -U Administrator
Administrator's password: <enter password for Administrator>
Using short domain name - BLUE
Joined 'OAK' to realm 'BLUE.PLAINJOE.ORG'

Any failures during the join process can usually be traced to Kerberos errors or net failures, both of
which have been previously discussed. If you have misspelled or omitted the workgroup in smb.conf,
the join process may succeed, but will inform you of an error. Make sure to correct this mistake in
smb.conf:

The workgroup in smb.conf does not match the short
domain name obtained from the server.
Using the name [BLUE] from the server.
You should set "workgroup = BLUE" in smb.conf.
Using short domain name - BLUE

We can verify our machine account at any time in AD by running the following command:

$ net ads testjoin
Join is OK

10.2.2.6. Integrating Kerberized Unix services

Even before its adoption by Microsoft, Kerberos always supported machine principals. For example,
an SSH server may use the principal name host/machine.example.com, and an LDAP directory server
may use ldap/machine.example.com. These are different principals even though they are hosted by
the same machine. The secret keys for these service principals are stored in a keytab file (usually
/etc/krb5.keytab). In AD domains, these secret keys are derived from the machine trust account
password.

Samba will manage a server's keytab file if the use kerberos keytab option is enabled in smb.conf:

[global]
 use kerberos keytab = yes

If this parameter is enabled when joining the domain, the net join command creates the keytab file
automatically. If you decide to make use of a keytab file after the member server has been
configured, you can create a keytab file by using the net ads keytab command. The create
subcommand generates initial entries for the host/machine principal. This command must be run as

root, because it requires access to Samba's secrets.tdb file and must be able to write the keytab
records to /etc/krb5.keytab:

$ net ads keytab create -P

It is possible to define a custom location for the keytab file by defining the
KRB5_KTNAME environment variable.

New service principals can be added to the machine's account in AD and to the keytab file using net
ads keytab add. All that is needed is the principal (service) name, not the full principal/instance

syntax. The -P option uses the machine account and prevents you from having to enter user
credentials. For example, to add a keytab entry for the HTTP/machine.example.com service principal
used by Apache kerberos modules, we would execute:

$ net ads keytab add HTTP -P
Processing principals to add...

This command adds a new servicePrincipalName to the server's account in AD and stores the new
key in the local keytab file. Tables 10-1 and 10-2 summarize the keytab-related parameters and tools
covered in this section.

Table 10-1. Keytab-related parameters

Parameter Value Description Default Scope

use kerberos keytab boolean Enables Samba's keytab management functionality. no Global

Table 10-2. net ads keytab management options

Command Description

add Adds a new service principal value for the server's machine account.

create Generates a keytab file based on the existing service principal values associated with
the server in AD.

flush Removes all entries from the keytab file.

10.2.3. Locating a Domain Controller

In default configurations, Samba attempts to automatically find domain controllers for any domain
that it must contact. These auto lookups rely heavily on network name services. Remember that the
order in which these services are queried is controlled by the name resolve order global option.

When configured for security = domain, NetBIOS name services are used to resolve the
DOMAIN<0x1b> name when searching for the PDC and the DOMAIN<0x1c> name when any DC will do.

Thus, unless the server will communicate only with domain controllers on its own subnet, Samba
must be configured to use the WINS server (or servers) for the domain.

In an Active Directory domain, Samba is able to use DNS, just as Windows 2000 and later clients do.
If the DNS lookup fails to return one or more domain controller names, Samba may fall back to
NetBIOS name queries, much as it did when using domain mode security, assuming that the disable
netbios parameter has not been enabled.

Prior to the 3.0.23 release, Samba queried for the SRV record
_ldap._tcp.<domain> when searching for an AD domain controller. Beginning

with 3.0.23, Samba searches for the _ldap._tcp.dc._msdcs.<domain> record,
just as Windows clients do.

You can exert a little more control over which domain controller is used by Samba for its own domain
by setting the global password server option. This parameter accepts a list of one or more domain
controllers using the standard smb.conf delimiters (whitespace or commas). Names of these
preferred DCs can be NetBIOS names, hostnames, or fully qualified DNS names, but they must be
resolvable to an address. For instance, to restrict Samba to using the domain controllers named dc1
and dc2, add the following line to the server's smb.conf file:

 password server = dc1 dc2

Samba attempts to contact the host at dc1 first and continues to contact dc2 only if the first server
cannot be contacted. As long as dc1 is available, dc2 is not used. Adding the wildcard character (*) to
the list instructs Samba to include any domain controllers found using its internal auto lookup
support. This means you can use a local DC, but still fall back to any DC, should the preferred DC
become unavailable.

NetBIOS: Rest in Peace

It is feasible to remove NetBIOS from your network, but only when operating in an AD
environment. Even then, many administrators find it very difficult to remove all
applications that have a dependency on some piece of this legacy protocol. However, if
you are feeling adventurous, Microsoft operating systems, starting with Windows 2000,
can be configured to drop all support for NetBIOS by relying on DNS for name services
and using TCP and UDP for the transport protocols. In order to configure Samba to
behave the same way, define the following group of parameters:

[global]
 smb ports = 445
 disable netbios = yes
 name resolve order = hosts

At this point, there is no reason to support network browsing, either, because it does not
function properly without the presence of NetBIOS name services. So there is no reason
to run the nmbd daemon at all, as it is responsible only for NetBIOS name registrations,
acting as a WINS server, and participating in browsing elections.

A word of caution before moving on. It is frequently better to allow Samba to find a domain controller
on its own. As with most parameter values, developers work extremely hard to make Samba robust
and efficient. In some cases, it is necessary to manually specify the DC that your server will use, but
it is recommended that you do this only as a last resort.

Table 10-3 concludes this section by giving a brief listing of the parameters recently covered.

Table 10-3. Domain controller location parameters

Parameter Value Description Default Scope

disable

netbios
boolean Controls Samba use of NetBIOS name services. no Global

password

server
list List of domain controllers Samba should prefer when

operating as a member server.

* Global

10.3. Matching Domain Users to Local Accounts

Remember from Chapter 5 that every user accessing the Samba server must be associated with a
Unix uid. smbd goes through several steps in its attempt to find a matching Unix account. This is true
for users who are authenticated locally as well as those validated by a remote domain controller.

The first step is to process the username map option, which may translate the current account name to
another string. For standalone servers, this is done before the authentication request is processed,
but for domain members, this transformation occurs after authentication. As a result, any domain
names in map entries must be fully qualified.[*]

[*] This requirement was introduced in the 3.0.8 release.

Qualified domain names take two forms. When the server is using security = ads and not running
Winbind, it is necessary to add an entry that qualifies the user by prefixing the complete realm in
order to deal with Kerberos logins. Without winbindd (the Winbind daemon), Samba has no way to
convert realm names to short names. NTLM login requests provide the short name of the domain, so
we must also include an entry of the form DOMAIN\user. The complete entry for the user leezard in
the AD domain eden.plainjoe.org (with a short name of EDEN) would appear as:

lizard = EDEN.PLAINJOE.ORG\leezard EDEN\leezard

Beginning with Samba 3.0.21, smbd can obtain the short name of the domain
from the Kerberos ticket, thus removing the need for the REALM\user username

map entries.

When winbindd is available to convert realm names into short names, or when only NTLM
authentication is supported (i.e., security = domain), the previous entry should be simplified to:

lizard = EDEN\leezard

But as you will soon see, when using winbindd, a username map may be entirely unnecessary.

Once any relevant mapping records have been processed, smbd queries the operating system for a
uid matching the login name. If the user name is still in the fully qualified format, Samba searches for
the qualified name first and falls back to look for the user name minus the domain if the qualified
search fails to yield a match. Once a uid is located, Samba creates a token for the user containing the
uid and all group memberships.

This search process implies that there is an implicit match between a local Unix user and a domain
user possessing the same name. This implication may cause confusion when a user from a trusted
domain accesses the server. Both EDEN\adam and FRUIT\adam map to the same Unix user, adam.
In order to prevent a user from a trusted domain gaining access to files owned by a user of the same
name in our domain, it is recommended that you disable domain trusts on the Samba host by
setting:

[global]
 allow trusted domains = no

Returning to our search, if no matching uid can be found, smbd has two options: reject the login or
map the user to the guest account. The map to guest parameter, first presented in Chapter 5, has a
special setting that is valid only on domain member servers. When set to the value bad uid, Samba
silently maps a domain user to the guest account if no corresponding Unix account can be found.
This behavior allows you to require domain users to be authenticated without being concerned with
creating any local accounts. The original 3.0 releases removed this functionality, which was the
default behavior in Samba 2.2. But it was later included again as part of the map to guest option in
version 3.0.20.

10.4. Winbind

So far, we have assumed that each domain account would be mapped to a preexisting Unix user or
group. You may wish to deploy a Samba server with no preexisting Unix account infrastructure. In
this cases, Winbind, the name given to the winbindd daemon and set of libraries that act as an
intermediary between Unix services and Windows domain controllers, offers a means to manage
domain users and groups without the overhead of local accounts.

In its most common configuration, Winbind maintains a database of domain accounts matched to
Unix uids and gids. These Unix identifiers are allocated to domain users and groups from a range
specified in smb.conf. Winbind then makes these SID-to-uid/gid mappings available to Unix
applications via the Name Service Switch (NSS) interface so that lookups for a user such as
EDEN\leezard returns an entry resembling a line from /etc/passwd:

EDEN\leezard:*:10000:10002:Lee Zard:/home/EDEN/leezard:/bin/false

Winbind is currently supported on the following platforms: AIX, FreeBSD 5.x, HP-UX 11.x, IRIX,
Linux, and Solaris. If you are using vendor-provided Samba packages for any of these platforms,
chances are good that winbindd and its associated pieces are already installed. If you compile Samba
yourself on a supported platform, the following files will be created:

winbindd

The long-running daemon that communicates with domain controllers on behalf of other Unix
processes, including smbd.

libnss_winbind.so

This library provides the support functions for the passwd and group NSS databases listed in
/etc/nsswitch.conf. The library extension, .so, may vary depending on the convention used by
your server's operating system.

pam_winbind.so

A PAM module utilizing winbindd to provide NTLM authentication and password change support.
This library is built only if you have enabled the --with-pam option when compiling Samba. Its
extension, .so, may vary depending on the convention used by your server's operating system.

ntlm_auth

A command-line interface providing features similar to the pam_winbind.so library. The tool is
commonly used to provide challenge/response authentication to Unix services such as dial-in
and web proxy servers.

wbinfo

A command line utility for interacting with winbindd. Although it can be used in shell scripts, its
main purpose is as an administrative testing tool to ensure that winbindd is functioning
properly.

You can force Winbind to be compiled by specifying the --with-winbind option
when running the configure script. This option can be useful when porting
Winbind to a new platform.

By default, Samba's make install process places winbindd in /usr/local/samba/sbin and the ntlm_auth
and wbinfo tools to /usr/local/samba/bin. However, due to paranoia about copying files to operating
system directories and the subtle differences between systems, neither the PAM nor NSS libraries are
installed by default. These must be manually copied.

The target directory for the pam_winbind library varies, depending on your platform. The most
common location is /lib/security/. However, 64-bit Linux servers use /lib64/security. Make sure to
check your operating system's documentation for specifics. The following set of commands, executed
as root on a 32-bit Linux host, installs the PAM module to the correct location and sets the
appropriate ownership and permissions. It is assumed that you have already navigated to the top
level of the Samba source tree.

$ cp source/bin/pam_winbind.so /lib/security/
$ chown root /lib/security/pam_winbind.so
$ chgrp root /lib/security/pam_winbind.so
$ chmod 755 /lib/security/pam_winbind.so

Next, install the NSS library. Once again, the target directory varies, depending on your server's
operating system. In most cases, it is the /lib directory. The library name is a bit less standard. On
modern Linux systems, the library is called libnss_winbind.so.2, and on Solaris hosts it should be
nss_winbind.so.1. Usually, you can just follow the convention of other NSS libraries on your system.
As an example, these commands install the library on a 32-bit Linux host. Executing ldconfig at the
end creates the symbolic link from libnss_winbind.so.2 to libnss_winbind.so:

$ cp source/nsswitch/libnss_winbind.so /lib/libnss_winbind.so
$ chown root /lib/libnss_winbind.so
$ chgrp root /lib/libnss_winbind.so
$ chmod 755 /lib/libnss_winbind.so
$ ldconfig

Early versions of Samba 3.0 did not correctly set the internal version for the
libnss_winbind.so library, and therefore require that you create the symbolic
link manually.

After installing the NSS library, add the winbind service to the passwd and group databases in
/etc/nsswitch.conf. This step enables the operating system to query winbindd when searching for
users and groups. Winbind will happily coexist in nsswitch.conf with other services such as NIS or
LDAP. This example instructs the operating system to query local files, an LDAP directory service, and
finally winbindd when searching for users and groups:

passwd: files ldap winbind
group: files ldap winbind

The last step before starting winbindd is to specify a range of uid and gid values in smb.conf that can
be allocated for domain users and groups. These allocations are then stored in the
winbindd_idmap.tdb file, where they can be found after the system reboots. Each range, one for
users and one for groups, must be continuous and must not overlap any existing accounts. On older
Unix implementations that supported only 16-bit uid/gid values, this could be a problem. On newer
platforms, the possibility of 4 billion uid values provided by 32-bit identifiers lessens the contention a
bit. Here's an example that allots uids from 200,000 to 300,000 for winbindd's use:

[global]
 idmap uid = 200000 - 300000

There is no absolute requirement that the idmap gid parameter use the same range as the uids, but
this is a common convention:

 idmap gid = 200000 - 300000

It may seem that 100,000 users or groups would be plenty. It frequently is. There is, however, a
potential mathematical problem. Each domain can potentially possess a total sum of users and
groups just under 232. Although this limit is rarely reached in a single domain, mapping accounts
from multiple trusted domains might reach the limit of the idmap ranges in smb.conf. We have never
actually seen this occur in practice, because uids are allocated only when a domain user accessed the
Samba server. It is rare for every user in a domain to access the same file server.

Once smb.conf has been modified, it is time to start winbindd. The daemon supports most of the
command-line options common to smbd and nmbd. It does not, however, support being started from
inetd. Normally winbindd is launched as part of the system boot process. To initially test your setup,
start the server from the command line:

$ /usr/local/samba/sbin/winbindd

The internals of winbindd have been rewritten several times; most recently, in the 3.0.20 Samba
release. In all of the 3.0 releases, you will see at least two winbindd processes. In Samba 3.0.20 and
later, you may see more, depending on the number of trusts supported by your domain.

winbindd does not respond to network requests as smbd and nmbd do. It listens on two Unix domain
sockets in /tmp/.winbindd and the directory specified in the lock directory configuration option
(normally /usr/local/samba/var/locks/winbindd_privileged). The former is accessible by any user for
queries such as enumerating users or groups and resolving names to and from SIDs. In contrast, the
winbindd_privileged pipe is available only for root. Certain operations, such as NTLM
challenge/response authentication and allocating a uid or gid, must be restricted from
nonadministrative users for security reasons.

You can test that winbindd is responding correctly by using wbinfo to send it a ping request:

$ wbinfo -p
Ping to winbindd succeeded on fd 4

If you receive the message "could not ping winbindd!", make sure that winbindd is in fact running. If
the server immediately exited, it may be helpful to start it interactively with a high debug level. The
following examples show winbindd failing to start because it does not believe that it has been
correctly joined to the domain:

$ winbindd -d 10 -i

 <...intermediate output deleted...>
Could not fetch our SID - did we join?
unable to initialize domain list

Once you know that winbindd is responding to requests, verify that it can properly communicate with
a domain controller. Running wbinfo -t validates Samba's machine trust account much in the same
way as when we ran net ... testjoin. The difference in this case is that you are asking winbindd to
validate the credentials rather than doing it yourself using the net command.

$ wbinfo -t
checking the trust secret via RPC calls succeeded

If you observe any failures at this point, recheck the trust account using net . . . testjoin and follow
the troubleshooting steps presented earlier in the chapter.

Next, verify winbindd's ability to authenticate users. Using the -a option to wbinfo, ask winbindd to
send a NetSamLogon() authentication request to the appropriate DC using a set of credentials
passed in on the command line. The backslash is the default separator between the domain and login
name and must be either quoted or escaped when specified in a shell environment. This delimiter can
be changed to an alternate character by specifying the winbind separator option in smb.conf. The %
character is used to separate the password from the username:

$ wbinfo -a "EDEN\leezard%test"
plaintext password authentication succeeded
challenge/response password authentication succeeded

If the previous tests have succeeded, this one should succeed as well. The plaintext authentication is
similar to what is provided by pam_winbind. However, the challenge/response authentication requires
access to winbindd's privileged pipe operations and therefore can succeed only if wbinfo -a is run as
well. If both of these fail, ensure that you have entered the correct credentials.

There are quite a few more options to wbinfo. In fact, every query supported by winbindd has an
analogous wbinfo command-line switch. Table 10-4 summarizes the remaining arguments supported
by the tool. Note that some options possessing a long description string have no single-character
equivalent.

Table 10-4. wbinfo options

Short
option Long option Argument Description

-a --authenticate username%password Attempt to authenticate a user using NTLM.

-D --domain-info domain List information regarding the domain.

 --getdcname domain Find a domain controller for a specific domain.

-g --domain-

groups
Enumerate domain groups.

-G --gid-to-sid gid Convert a gid to a SID.

-? --help Display the help listing.

-m --TRusted-
domains Display the list of trusted domains.

-n --name-to-sid name Convert a name into a SID.

-p --ping Ping the winbindd daemon.

-r --user-groups username List the gids for groups to which the user belongs.

 --separator Print the winbind separator character.

--sequence

Display the current sequence number for all
trusted domains, including our own.

Short
option Long option Argument Description

-s --sid-to-name SID Convert a SID to a user or group name.

-S --sid-to-uid SID Convert a SID to a uid.

-t --check-secret Verify the machine account credentials.

--user-

domgroups
SID Print the SIDs for the domain groups to which the

user belongs.

--user-sids SID Print the SIDs for the all groups to which the user

belongs.

-u --domain-users Enumerate domain users.

-U --uid-to-sid uid Convert a uid to a SID.

-Y --sid-to-gid SID Convert a SID to a gid.

Next, verify that the NSS library is properly installed by issuing a call to retrieve a user from
libnss_winbind. The resulting output also confirms winbindd's ability to allocate uids and gids for
users and groups. Many operating systems provide the getent tool for querying NSS databases. You
can issue a query for a specific user by executing the following command. Remember to either quote
the username or escape the backslash so that getent doesn't misinterpret the following l as a control
character. If the libnss_winbind library is not installed in the correct location or has improper
permissions, the test fails to locate the user.

$ getent passwd "EDEN\leezard"
EDEN\leezard:*:10000:10002:Lee Zard:/home/EDEN/leezard:/bin/false

If your operating system doesn't include a getent or equivalent command, the same test can be
performed using Perl's getpwnam() function:

$ perl -e '@pw = getpwnam("EDEN\\leezard"); print "@pw\n";'
EDEN\leezard * 10000 10002 Lee Zard /home/EDEN/leezard /bin/false

The home directory path and login shell values are filled in by the smb.conf parameters template
homedir and template shell. The home directory location defaults to the path /home/%D/%U. %D and %U
are smb.conf variables, documented in Chapter 4, for the user's domain and login name. The shell
defaults to /bin/false, although you will see later how to change this to a valid shell in order to allow
domain users access to non-Samba services using pam_winbind.

It is a good idea to rerun the getent test, but this time, search for a domain group:

$ getent group "EDEN\Domain Admins"

-s --sid-to-name SID Convert a SID to a user or group name.

-S --sid-to-uid SID Convert a SID to a uid.

-t --check-secret Verify the machine account credentials.

--user-

domgroups
SID Print the SIDs for the domain groups to which the

user belongs.

--user-sids SID Print the SIDs for the all groups to which the user

belongs.

-u --domain-users Enumerate domain users.

-U --uid-to-sid uid Convert a uid to a SID.

-Y --sid-to-gid SID Convert a SID to a gid.

Next, verify that the NSS library is properly installed by issuing a call to retrieve a user from
libnss_winbind. The resulting output also confirms winbindd's ability to allocate uids and gids for
users and groups. Many operating systems provide the getent tool for querying NSS databases. You
can issue a query for a specific user by executing the following command. Remember to either quote
the username or escape the backslash so that getent doesn't misinterpret the following l as a control
character. If the libnss_winbind library is not installed in the correct location or has improper
permissions, the test fails to locate the user.

$ getent passwd "EDEN\leezard"
EDEN\leezard:*:10000:10002:Lee Zard:/home/EDEN/leezard:/bin/false

If your operating system doesn't include a getent or equivalent command, the same test can be
performed using Perl's getpwnam() function:

$ perl -e '@pw = getpwnam("EDEN\\leezard"); print "@pw\n";'
EDEN\leezard * 10000 10002 Lee Zard /home/EDEN/leezard /bin/false

The home directory path and login shell values are filled in by the smb.conf parameters template
homedir and template shell. The home directory location defaults to the path /home/%D/%U. %D and %U
are smb.conf variables, documented in Chapter 4, for the user's domain and login name. The shell
defaults to /bin/false, although you will see later how to change this to a valid shell in order to allow
domain users access to non-Samba services using pam_winbind.

It is a good idea to rerun the getent test, but this time, search for a domain group:

$ getent group "EDEN\Domain Admins"

EDEN\domain admins:x:10003:EDEN\gcarter,EDEN\administrator

You are now ready to start both smbd and nmbd and connect as a domain user. The easiest way to
view winbindd in action is to connect to a share using smbclient and examine the output from
smbstatus. For the example here, assume that the server named ZERO is providing a file share named
[public]:

$ smbclient //zero/public -U leezard -W EDEN
Password: test
Domain=[EDEN] OS=[Unix] Server=[Samba 3.0.22]
smb: \>

Running smbstatus on the server while still connected with smbclient shows that the the user
EDEN\leezard has attached to the share public. The important bit of data is the username, which has
been provided Winbind's NSS library:

$ smbstatus

Samba version 3.0.22
PID Username Group Machine

13854 EDEN\leezard EDEN\domain users zero (127.0.0.1)

Service pid machine Connected at

public 13854 zero Tue Jul 4 21:12:29 2006

No locked files

When winbindd performs actions such as authenticating a user or querying the membership of a
group, it remembers certain information in an attempt to minimize network communication. In AD
domains, it is almost guaranteed that cached user and group information will be flushed from the
winbindd_cache.tdb file regularly at an interval specified in seconds by the winbind cache time
option. This parameter defines the number of seconds before winbindd queries a DC to determine
whether its local cache is still current. At most sites, the default of 5 minutes is sufficient, although
you may wish to experiment with longer periods, depending on the replication period between your
DCs. Rest assured that uids and gids allocated to users and groups are not part of this cache and
persist across restarts and server reboots.

One very expensive operation in both in time and bandwidth, regardless of any amount of caching, is
enumerating users and groups. This problem, coupled with the fact that current Windows service
packs and hot fixes make it increasingly difficult to retrieve this information with only the machine
account credentials, have led Samba developers to recommend that both the winbind enum users
and winbind enum groups parameters be disabled. These two parameters are used to enable or

disable Winbind NSS support for the getpwent() and getgrent() set of functions, which have
historically been used to iterate over available user accounts. Developers agree that these functions
are highly inefficient and that an application should use the getpwnam() or getgrnam() function
when looking for a specific user or group. Nevertheless, there are a still a few older applications that
may fail if you disable user and group enumeration. Our advice is to get a newer version of the
application. If you ever need to enumerate accounts, wbinfo's -u and -g options will continue to work,
as these are independent of the NSS library.

Table 10-5 concludes our initial setup of Winbind by summarizing the smb.conf parameters presented
in this section.

Table 10-5. Basic Winbind options

Parameter Value Description Default Scope

idmap uid idmap

gid
integer
range

Range of uid and gid values from which
winbindd can allocate for domain users
and groups.

None Global

template homedir string Home directory path used to fill in passwd
entries for domains users.

/home/%D/%U Global

template shell string The shell used to fill in passwd entries for
domain users.

/bin/false Global

winbind cache time integer The number of seconds for which
winbindd assumes that cached
information is valid.

300 Global

winbind enum users

winbind enum
groups

boolean If enabled, winbindd supports
enumerating users and groups via the
getpwent() and getgrent() NSS calls.

yes[a] Global

winbind separator character The character used to separate the
domain name from the user or group
name when displaying domain accounts.

\ Global

[a]

[a] These two parameters are disabled by default starting with release 3.0.23.

10.4.1. idmap Backends

In some scenarios, you may wish to have more control over how winbindd allocates uids and gids for
domain accounts, or want to share mappings between Winbind installations on multiple servers. The
idmap backend parameter allows you to specify an alternative SID-to-uid/gid database, which may
also provide alternative uid and gid allocation semantics. We have already mentioned one backend:
tdb. The default tdb idmap implementation stores uid and gid allocations in the local database file
winbindd_idmap.tdb.

Samba 3.0.22 currently ships with four supported idmap backend modules:

tdb

The default backend used for local uid and gid allocation. Its main advantage is that it requires
very little setup or maintenance. Its main disadvantage is that a user is allocated a different uid
on each Winbind server installation, thus making it incompatible with NFS.

ldap

Support for storing SID-to-uid/gid mappings in an LDAP directory service was added to address
the problems with NFS and the tdb backend. If your network already has an available LDAP
directory, this backend provides a simple means of ensuring consistent mapping tables among
multiple Winbind installations.

rid

The RID backend shared library provides a central mapping solution for single domain
installations. It is built only when the --with-shared-modules=idmap_rid option is passed to the
configure script. The RID backend guarantees consistent one-to-one mappings between domain
SIDs and Unix accounts by generating the Unix ID value based on the Windows Relative
Identifier. Because a user's or group's RID does not change for the lifetime of the account, you
are ensured that the uid or gid will be the same in every Winbind install. However, because
Windows domain allocates RIDs in a monotonic fashion beginning with 1,000, it does not
support trusted domains, as accounts in multiple domains may be mapped to the same local
Unix uid/gid.

ad

The AD backend utilizes POSIX information stored in Active Directory rather than allocating any
uid or gid local values, and currently supports only a domain with the Services for Unix (SFU)
schema extensions. To create this plug-in, you must specify the --with-shared-
modules=idmap_ad option when building Samba. Note that although this option gains you the
most flexibility for managing specific uid and gid values, it also requires that you manually
manage additional attributes for accounts in AD.

With the exception of TDb, let's look at the specific configuration details of each backend. The default
TDb configuration was covered in the previous section as part of our initial Winbind installation.

10.4.1.1. idmap backed = ldap

Winbind's LDAP backend shares much of its configuration settings with the ldapsam passdb backend
discussed in Chapter 5. If Samba has been compiled to include LDAP support, the ldap idmap feature
is included in winbindd. Based on the parameters presented in conjunction with the ldapsam module,
our initial smb.conf contains the following parameters:

[global]
 ldap admin dn = cn=smbadmin,ou=people,dc=example,dc=com
 ldap suffix = dc=example,dc=com

We also assume that smbpasswd -w has been run to store the admin DN's password in secrets.tdb
and that the LDAP directory service has already loaded Samba's distributed schema file.

The next step is to specify where the SID-to-uid/gid mappings will be stored in the directory using
the ldap idmap suffix parameter. All that is required is that this DN exists and may be modified by
the account specified in the ldap admin dn option. winbindd will handle the rest. The server in our
example uses an organizational unit directly below the directory root for storing idmap entries:

ldap idmap suffix = ou=idmap

idmap modules use a syntax similar to their passdb counterparts for defining configuration settings.
Parameters are appended to the module name using a colon followed by the option's value. The only
parameter that this module supports is the LDAP server's URI. The following setting in smb.conf's
[global] section informs winbindd to contact the LDAP server named ldap.example.com:

idmap backend = ldap:ldap://ldap.example.com

As with the user and group information in Chapter 5, the best solution is to allow winbindd to manage
its LDAP entries without any interference. It will keep track of the next available uid and gid values
and ensure that each is allocated atomically and store in the directory. Other instances of winbindd
then query the LDAP directory prior to allocating a new uid or gid. The use of the SID as the RDN
value prevents two servers from creating multiple records for a given user or group.

The LDIF entry shows the the next available uid (207250) and gid (204932) values maintained by
winbindd in the ldap idmap suffix:

dn: ou=idmap,dc=example,dc=com
objectClass: organizationalUnit
objectClass: sambaUnixIdPool
ou: idmap
uidNumber: 207250
gidNumber: 204932

When winbindd needs to allocate a new Unix user, it increments the uidNumber attribute by one and
store the SID and allocated uid in the directory. The following LDIF represents a mapping between
the SID S-1-5-21-406022937-1377575209-526660263-8188 and the uid 205342:

dn: sambaSID=S-1-5-21-406022937-1377575209-526660263-8188,
 ou=idmap,dc=example,dc=com
objectClass: sambaIdmapEntry
objectClass: sambaSidEntry
uidNumber: 205342
sambaSID: S-1-5-21-406022937-1377575209-526660263-8188

If you observe any failures in the winbindd logfiles when attempting to access the LDAP directory,
check whether you have specified the correct ldap suffix and ldap idmap suffix values and that
the directory service's access controls allow modification to those locations by the ldap admin dn
account.

10.4.1.2. idmap backed = rid

The idmap_rid plug-in, like the ldap idmap module, provides consistent uid and gid allocation across
servers. It is much easier to configure, mainly because it is able to make use of existing domain
account information rather than requiring an extra directory service other than the Windows domain
itself. However, it is less flexible in terms of support for trusted domains and administrative control
over uid and gid assignments. Still, its ease of use and compatibility with both Windows NT 4.0 and
Active Directory domains make it very attractive for many administrators.

To build the idmap_rid (or rid) shared library, you must specify --with-shared-modules=idmap_rid
when running the Samba's configure script.[*] Even if you are relying on Samba packages provided
by a vendor, you may find it necessary to compile the library yourself, as it is not always included.
Once built, the idmap_rid library should be installed in /usr/local/samba/lib/idmap as part of the
make install process.

[*] Operating system support for shared libraries is also a requirement.

Next, configure the idmap parameters in smb.conf. In this example, we'll set the idmap uid and idmap
gid options exactly as we did before, except that this module does require that both parameters
specify the same range. The idmap backend option need only refer to the rid plug-in by name:

[global]
 idmap uid = 200000 - 300000
 idmap gid = 200000 - 300000
 idmap backend = rid

Because the rid plug-in officially supports only a single domain, you must also disable support for
trusted domains in smb.conf:

allow trusted domains = no

To calculate the uid or gid assigned to a domain user or group, add the RID to the lower end of the
idmap range and verify that the resulting value is less than the upper boundary of the range. So a
user with the SID S-1-5-21-3493585492-4029240144-3226775320-1168 would be assigned the uid
of 201168 (1168 + 200000).

Although the rid idmap module does not officially support trusted domains, it can be built with
unofficial support by defining the IDMAP_RID_SUPPORT_TRUSTED_DOMAINS macro when running make.

$ make -DIDMAP_RID_SUPPORT_TRUSTED_DOMAINS bin/rid.so

The resulting library allows you to split up the idmap range between domains by defining the
subrange as an option to the idmap backed = rid directive. The following setting splits the range
(200000-300000) between the domains EDEN and PERSIA. Always use the short name of the
domains here, even when joined to an AD domain. The ranges cannot overlap, or exceed the original
idmap uid and gid ranges.

idmap backend = rid:EDEN=200000-26000,PERSIA=260001-300000

The main disadvantage in this configuration, and mostly likely why it is not officially supported by
Samba developers, is that if the first domain ever outgrows the allotted ids, there is no way to
expand the available range without changing all of the uids and gids allocated to the second domain.

10.4.1.3. idmap backed = ad

The final idmap module examined here is the idmap_ad library, which uses the Microsoft's SFU
schema extensions for managing Unix users and group attributes in AD. Like the rid plug-in, it also
requires that you include it in the list of shared modules (--with-shared-modules=idmap_ad) when
compiling Samba. The resulting library (named ad.so or idmap_ad.so, depending on your Samba
version and platform) is installed in /usr/local/samba/lib/idmap/ by default.

The ad library included in Samba 3.0.23 also works with the RFC2307 schema
support in Windows 2003 R2.

The setup is remarkably easy. All that is required is to enable the module using the idmap backend
parameter:

idmap backend = ad

Because the uid and gid information is maintained in Active Directory, there is no need to specify an
available range in smb.conf. This approach does, however, require some coordination between Unix
and AD administrators because winbindd does not check whether a uid from AD overlaps with any
local Unix users.

Normally the home directory path and login shell values for users in Winbind's NSS output would be
filled in from the template homedir and template shell options. However, the SFU schema also
supports storing these attributes in AD. The winbind nss info option allows us to specify whether we
want to retrieve the real attributes from AD (sfu) or to fill them in with template values (template).
To make use of the SFU attributes, add the following line to the global section of smb.conf:

winbind nss info = sfu

Figure 10-3 shows the SFU attributes for a user in a Windows 2003 domain named
ocean.plainjoe.org. And here is corresponding passwd record returned from libnss_winbind:

Figure 10-3. SFU attributes for a user in AD

$ getent passwd "OCEAN\phish"
OCEAN\phish:*:10007:10027:Peter Trout:/home/phish:/bin/bash

Table 10-6 provides a brief summary of the parameter introduced in this section.

Table 10-6. Winbind NSS sources

Parameter Value Description Default Scope

winbind nss

info
template,
sfu[a]

The data source used to fill in Unix attributes other
than the numeric uid or gid.

template Global

[a]

[a] Samba 3.0.23 will also support the additional value rfc2307 for Windows 2003 R2 domains.

10.5. Additional Winbind Features

Winbind is most known for its ability to create Unix accounts for Windows domain users and groups.
However, it possesses some lesser-known but equally useful functionality. These features can further
help you consolidate authentication, unify authorization controls, and provide accounts in Samba
domains for trusted domain users and groups.

10.5.1. PAM and Domains

Winbind's PAM interface provides Unix services other than Samba a means to authenticate domain
users. Consider the case of providing domain users access to an IMAP or POP mail server without
requiring a second password. Any Unix service using PAM authentication may be configured to
support domain credentials in this manner. We'll use an OpenSSH server as an example, due to its
pervasiveness in Unix networks.

It may seem obvious, but we must remind you to verify that the Unix service in question has been
compiled to include PAM support. Few things are more frustrating than spending a hour in attempt to
deduce why the server is not recognizing the PAM changes and finally realizing that the configuration
file is being completely ignored. Vendors usually provide documentation regarding the features that
were enabled when the software was built. In the absence of this, a quick check with ldd or the
strings utility will indicate whether a binary has been linked with libpam.so:

$ ldd /usr/sbin/sshd | grep pam
 libpam.so.0 => /lib/libpam.so.0 (0x4008f000)
$ strings /usr/sbin/sshd | grep pam
pam_get_item
pam_getenvlist
pam_end
pam_chauthtok
pam_authenticate

 <...remaining output deleted...>

If both of these checks fail to return any output, there's a high probability that the server does not
include PAM support. If that is the case, you may be able to find an updated package from your OS
vendor or, if all else fails, to recompile the server software yourself.

It is also a good idea to verify that any runtime PAM configuration settings are turned on as well. For
example, OpenSSH requires that the UsePAM option be enabled in its configuration file (usually
/etc/ssh/sshd_config):

UsePAM yes

If you make any changes to the sshd_config file, make sure to send a HUP signal to sshd so that it will
reload its configuration.

Once you know that the server is honoring its PAM configuration file, you can add the pam_winbind
library to the stack. For OpenSSH, this means editing either /etc/pam.conf or /etc/pam.d/ssh
(depending on your server's operating system) and adding a line to the list of auth modules. The
following snippet from /etc/pam.d/ssh on a SUSE Linux host specifies that sshd will attempt to
authenticate the user against local files first and fall back to Winbind if this fails:

auth sufficient pam_unix2.so
auth required pam_winbind.so use_first_pass

pam_winbind also supports the PAM account module type. This configuration from /etc/pam.d/ssh at
least verifies that your libnss_winbind is functioning properly:

account sufficient pam_unix2.so
account required pam_winbind.so

Now let's take another look at the getpwnam() reply returned by winbindd that was presented
earlier:

EDEN\leezard:*:10000:10002:Lee Zard:/home/EDEN/leezard:/bin/false

Winbind fills in the home directory location (here, /home/EDEN/leezard) from the template homedir
parameter (assuming that you use an idmap backend other than the ad plug-in). But Winbind does
not verify that the directory path exists or attempt to create it. These jobs are commonly handled by
another PAM module or some means outside of PAM. For ease of use, our example configuration
loads the pam_mkhomedir module as part of the session configuration to create the user's home
directory and populate it with basic shell initialization files:

session required pam_unix2.so
session required pam_mkhomedir.so skel=/etc/skel/ umask=0022

The pam_unix2 library performs auditing, such as writing session information to the system's utmp
logs.

The pam_winbind library is omitted from this section of /etc/pam.d/ssh, because it does not
implement PAM session support.

Before anyone attempts to log in, you must give users a valid shell. Set the template shell
parameter to whatever shell you prefer:

 template shell = /bin/bash

After restarting winbindd, verify that the parameter has taken effect:

$ getent passwd "EDEN\leezard"
EDEN\leezard:*:10000:10002:Lee Zard:/home/EDEN/leezard:/bin/bash

Now we can finally log in to the server zero using an SSH client:

$ ssh -l "eden\leezard" zero
Password: <password for leezard>
Creating directory '/home/EDEN/leezard'.
Creating directory '/home/EDEN/leezard/Documents'.
Creating directory '/home/EDEN/leezard/public_html'.
Have a lot of fun...

EDEN\leezard@zero:~> whoami
EDEN\lizard

EDEN\leezard@zero:~> id
uid=10004(EDEN\leezard) gid=10002(EDEN\domain users)
groups=10002(EDEN\domain users),10015(EDEN\linux admins)

If the login fails, enable additional debugging in sshd and examine its logfiles. You can also make
pam_winbind generate additional debugging information by passing it the debug parameter as part of
the PAM configuration. The discussion of tracing processes presented Chapter 12 may also be of use
in this case.

Some users find typing the fully qualified DOMAIN\username login string to be annoying or just
confusing. Although there is no cure for this for users in trusted domains, it is possible to instruct
Winbind to assume its own domain if one is not specified when authenticating non-Samba services.
This is done by enabling the winbind use default domain global option, shown in Table 10-7, in
smb.conf:

 winbind use default domain = yes

Table 10-7. Winbind PAM option

Parameter Value Description Default Scope

winbind use

default domain
boolean If enabled, Winbind assumes that unqualified user and

group names are to be looked up in the domain to
which it has been joined.

no Global

The user EDEN\leezard can now log on to the server by simply executing ssh leezard@zero. Table
10-7 summarizes this configuration option.

Of course, you may not wish to allow all domain users to log in to your Unix server. The
require_membership_of option allows you to specify the SID of a group to which the user must belong
in order for the authentication to succeed. Remember that you can use wbinfo -n to resolve a domain
account name to a SID. For example, here we obtain the SID for the EDEN\Linux Admins group:

$ wbinfo -n "EDEN\linux admins"
S-1-5-21-4200961138-2496335650-1239021823-1209 Domain Group (2)

We can then add this SID to the auth line for pam_winbind to prevent anyone who is not a member
of EDEN's Linux Admins domain group from logging on via SSH. The pam_winbind configuration line
has been wrapped for readability:

auth sufficient pam_unix2.so
auth required pam_winbind.so use_first_pass
 require_membership_of=S-1-5-21-4200961138-2496335650-1239021823-1209

pam_winbind also supports changing of a user's domain password. We can let the
/etc/pam.d/passwd file set the credentials for either a local account or a domain account by
specifying the follow two lines:

password sufficient pam_unix2.so
password required pam_winbind.so

We'll conclude this section with Table 10-8, which gives a complete list of pam_winbind's
configuration parameters.

Table 10-8. pam_winbind options

Parameter Description

debug Enable additional log messages from pam_winbind.

require_membership_of=SID require-

membership-of=SID
Restrict authentication to users belonging to a specific
domain group.

try_first_pass Attempt to use the initial password entered by the user
before prompting for new credentials.

unknown_ok Ignore any failures for users who cannot be found via
getpwnam() calls. This option is relevant only in the account
module configuration.

use_authtok Use PAM's authentication token when changing passwords.

use_first_pass Use only the initial password entered by the user. Do not
prompt for new credentials if the initial one cannot be
validated.

10.5.2. Local Nested Groups

Windows offers several types of groups. We won't attempt to explain all of them, but it is important
to understand how local groups function in order to understand Samba's implementation of them.

Under Windows NT 4.0, a local group (sometimes referred to as an alias) was local to a machine or
group of domain controllers. The local group existed under the domain of the local machine's SID.
Microsoft extended this model in AD and made local groups defined on the domain controllers
available to all domain members. Samba implements the Windows NT 4.0 model of local groups.

The important feature that makes local groups attractive is that they can contain local users, domain
users, or domain groups. This is how all Domain Admins gain administrative access to machines
joined to a domain. The Windows client adds the Domain Admins group to the local Administrators
group upon joining the domain. Figure 10-4 shows the EDEN\Domain Admins group as a member of
the Administrators group on a Windows XP member server.

Figure 10-4. Local Administrators group on a Windows XP client
containing Domain Admins group

Winbind provides Samba's support for local group nesting by creating Unix groups in its idmap table
and unrolling the group membership before returning a list of users via NSS. In other words, Samba
returns a single flat list of users, even if some of those users were buried in various nested group
memberships.

You must begin with a working Winbind installation using the tdb or ldap idmap backend. This means
that the idmap uid and gid ranges have been defined in smb.conf, the libnss_winbind library has been
installed, /etc/nsswitch.conf has been updated for the Winbind services, and winbindd is successfully
answering requests.

Next, add the following line to Samba's configuration to turn on the local group feature and restart
winbindd:

[global]
 winbind nested groups = yes

Use the lusrmgr.msc tool from a Windows client to create a new group, as shown in Figure 10-5. You
can add domain groups as members, as well as users. In the figure, we have added the EDEN\Linux
Admins domain group and a local user named slug to the local ZERO\sysadmin groups.

Figure 10-5. Creating a local group on a Samba server with the Windows
XP MMC

When we expand the group using the getent tool, the Linux Admins group has been expanded to its
individual members: EDEN\leezard and EDEN\adam.

$ getent group 'zero\sysadmin'
ZERO\sysadmin:x:10011:slug,EDEN\lizard,EDEN\adam

The real advantage of doing this, from a Unix administrator's perspective, is that you can now use
the gid 10011 in filesystem ACLs or other Unix authorization policies and it will apply to members of
the Linux Admins domain group. With a little imagination, you can find many ways to take advantage
of group nesting on your servers. Table 10-9 finishes up our discussion regarding local groups with a
brief summary of the new parameter presented.

Table 10-9. Winbind group nesting options

Parameter Value Description Default Scope

winbind nested
groups

boolean Enables Winbind's support for providing and expanding
local group membership via NSS.

no Global

Chapter 11. Unix Clients
Samba's fame and popularity come from its ability to serve pervasive Microsoft Windows clients, but
SMB/CIFS clients are also available on a wide variety of platforms and operating systems from
desktops to handhelds, running your choice of Windows, Linux, Mac OS X, or any number of other
operating systems. By providing SMB/CIFS support on heterogeneous systems, you can standardize
your local area network, allowing everybody to use, for instance, the cross-platform OpenOffice.org
suite (http://www.openoffice.org). Users on Windows, Linux, and OS X systems will be able to access
both local and remote documents in the same fashion. Files can be shared by saving them to the
SMB/CIFS share just as if it were a local hard disk. This method can also be part of a migration
strategy for moving users from one operating system to another.

The most transparent means of accessing SMB/CIFS file shares is to provide a filesystem that
understands the protocol. In this chapter, we explore the native SMB/CIFS filesystem support
available on Linux, OS X, and FreeBSD systems.

In the absence of an SMB/CIFS filesystem, you can turn to tools provided by Samba, such as
smbclient . Although command-line utilities do not provide the seamless integration of a filesystem,
they are extremely portable. This portability means that you can develop your own administration
scripts utilizing smbclient and be assured that they will run on Linux, Solaris, HP-UX, or any other
Unix server on which Samba is available.

Finally, we examine some of Samba's tools that can help you to perform remote administration tasks
from Unix clients. One example is the net tool, which can perform common tasks such as managing
users and groups, restarting services, and rebooting servers.

http://www.openoffice.org

11.1. The Linux CIFS Filesystem

We'll begin by exploring the new CIFS filesystem included in the Linux 2.6 kernel. A patch for 2.4
kernels is available from the project's web site at http://linux-cifs.samba.org. Here you will also find
the latest released source code, which may not have been integrated into the mainline kernel tree
yet. We won't go into the details of compiling a Linux kernel. If you require details about how to do
this, Running Linux, by Matt Welsh et al., or Linux Kernel in a Nutshell, by Greg Kroah-Hartman
(O'Reilly) are good places to find out more.

Linux's original SMB/CIFS filesystem client, named smbfs , was written by Volker Lendecke, an active
Samba developer. The cifs kernel VFS module has since superseded smbfs. However, there is still
some confusion among Linux users and admins alike which one should be used. The smbfs kernel
module and user space tools (smbmount, smbumount, and smbmnt) will likely continue to be
included in Linux and Samba for some time, but none of these pieces has an active maintainer.
Therefore any reported bugs will very likely not be fixed. If you have Linux systems that are currently
set up to use smbfs, now is a good time to begin thinking about migrating them to use the cifs
module instead.

The primary difference between the cifs and smbfs kernel modules is that cifs was originally written
to work only against servers running Windows NT 4.0 or later (as well as Samba servers). In the
2.6.15 Linux kernel, however, cifs picked up support for connecting to shares on Windows 9x/Me
hosts, which makes it only a matter of time before the smbfs code is removed entirely.

11.1.1. Installation

The Linux CIFS filesystem is composed of two parts: the kernel code (referred to by the name of the
kernel module, cifs) and the user-space mount tools. The cifs kernel filesystem support is generally
built as a module and loaded when a user attempts to connect to an SMB/CIFS file server using the
mount command. The easiest way to tell whether your Linux host possesses cifs support is to
examine the contents of /proc/filesystems. Check this file and look for the term cifs listed in the
output:

$ cat /proc/filesystems | grep cifs
nodev cifs

If grep fails to match anything in the file, try manually loading the cifs kernel module with the help of
the modprobe command. You must run the following command as root:

$ modprobe cifs

http://linux-cifs.samba.org

If you are returned immediately to a shell prompt, the module loaded correctly. Examine
/proc/filesystems again; cifs should be listed this time. However, if the kernel was built without the
cifs feature enabled, you will see the following error:

FATAL: Module cifs not found.

Either rebuild the system's kernel and enable the cifs filesystem, or (if you obtained your system
through a license with a vendor) contact your vendor to receive a new kernel.

Next verify that the cifs mount and unmount utilities have been installed as /sbin/mount.cifs and
/sbin/umount.cifs, respectively. If the files do not exist, check that you have the appropriate
packages installed. Novell provides a separate cifs-mount RPM, and Red Hat includes the two binaries
in their samba-client package. Debian, ironically enough, includes the cifs mount tools in the smbfs
package.

Because the source files for mount.cifs and umount.cifs are included in the Samba source tree, you
can manually build both tools by running these commands:

$ gcc -o mount.cifs client/mount.cifs.c
$ gcc -o umount.cifs client/umount.cifs.c

Newer releases allow you to build these tools automatically by specifying the --
with-cifsmount option when running source/configure to build Samba.

You should then copy these files to the /sbin directory. Running the following commands as root
ensures that the utilities are installed with the correct ownership and permissions:

cp -p mount.cifs umount.cifs /sbin
chown root.root /sbin/mount.cifs /sbin/umount.cifs
chmod 755 /sbin/mount.cifs /sbin/umount.cifs

Manpages for both mount.cifs and umount.cifs are included with the Samba distribution files, and
additional information is available in the fs/cifs/README file included in the Linux kernel source tree.

11.1.2. Mounting a SMB/CIFS File Share

You now have the pieces in place to mount a SMB/CIFS share as part of your local filesystem.
Mounting filesystems is normally restricted to the root account. We'll show you how to allow users to
mount and unmount SMB/CIFS shares shortly. For the moment, make sure to run the mount and
umount commands as root. The general syntax for accessing a SMB/CIFS file share is:

$ mount -t cifs //server/share mount_point [-o options]

The -t option specifies the filesystem type (cifs) and enables mount to know what external helper in
the /sbin directory should be invoked (i.e., mount.cifs) to access the remote filesystem. The
//server/share format is identical to what we've shown when using smbclient in prior chapters. The
mount_point is the path to a local directory where the share will be mounted. Numerous options can

be specified with the -o flag. One common value is the login name of the account used to connect to
the remote server: user=name. If you do not specify this option, mount.cifs uses the value found in

the USER environment variable.

Here is an example of connecting the share public provided by the Windows XP host fox to the local
directory /cifs/public. Because mount.cifs does not use NetBIOS name services, it is assumed that
the hostname fox can be resolved to an IP address using a simple lookup in /etc/hosts or a DNS
query. If this is not the case, you may specify the remote server's IP address using the
ip=aaa.bbb.ccc.ddd option. The user zoe is a local account on the Windows system.

$ mount -t cifs //fox/public /cifs/public -o user=zoe
Password: <enter password for zoe>

The underlying mount.cifs helper prompts for a password if one is not provided in some other form.
There are three methods for handling noninteractive mount requests. The first is to specify the
password on the command line using the pass=password option. Using this option, our original mount

request would appear as follows:

$ mount -t cifs //fox/public /cifs/public -o user=zoe,pass=FY23d^g

At the time of writing, cifs does not support Kerberos authentication.

The second possibility is to store the password string in the environment variable PASSWD or to store it
in a file specified by either the PASSWD_FD or PASSWD_FILE variable. If you use this option, make sure
to export the variable to the environment so that it will be available to mount.cifs. This method can
be useful when issuing mount requests from a script, but be careful to not leave passwords lying
around in the environment where they can be read by other users.

The final possibility is to store the username and password in a file referenced by the cred parameter
and read by mount.cifs at startup. Each line in the credentials file consists of a parameter=value pair.

The three supported parameter values are:

username

password

domain

In order to convert the original mount request to use the cred option, first create a file named .cifsrc
in root's home directory containing the following lines:

username=zoe
password=FY23d^g

Notice that the domain was omitted in this listing. Any of the three parameters not specified in the
credentials file may be defined as a command-line argument if desired.

Protect the .cifsrc file with permissions that prevent others from reading the file, such as the octal
permissions 600. Now the mount command listing no longer includes the username or password on
the command line for other users to see:

$ mount -t cifs //fox/public /cifs/public -o cred=$HOME/.cifsrc

Running mount with no arguments lists all mounted filesystems, included the cifs share that was just
connected:

$ mount

 <...output deleted...>
//fox/public on /cifs/public type cifs (rw,mand)

Once the share has been mounted you can access files using normal tools:

$ cd /cifs/public
$ ls -l
total 4392
drwxrwxrwx 1 root root 0 Jul 23 2006 .
drwxr-xr-x 4 root root 4096 Jul 23 13:43 ..
-rwxrwSrwt 1 root root 2986038 Sep 1 2005 lastgold.bmp
-rwxrwSrwt 1 root root 239023 Jul 22 04:30 lookupsid.pcap

 <...remaining output deleted...>

$ echo "hello" > foo.txt
$ cat foo.txt
hello

When you mount shares from Windows servers, all files and directories will be reported as being
owned by the user that mounted the share, and the group ownership will reflect the user's primary
group. In our example, the user and group were root. When the cifs client connects to servers that
support the CIFS Extensions for Unix, such as Samba, it reports the correct ownership and file
permissions. (More on this in the next section.) Barring such support, you can control the reported
ownership using the uid and gid parameters when mounting the share. Each accepts either the
name or numeric id of a respective user or group on the local Linux host. To see how this works, first
unmount the share from /cifs/public:

$ umount /cifs/public

Next, mount the share again, but this time add the options uid=zoe and gid=users to report files as
being owned by zoe and the group users:

$ mount -t cifs //fox/public /cifs/public -o user=zoe,uid=zoe,gid=users
Password: <enter password for zoe>

Now, when listing the files, the ownership and group ownership is displayed as requested by the uid
and gid mount options:

$ ls -l /cifs/public
total 4392
drwxrwxrwx 1 zoe users 0 Jul 23 2006 .
drwxr-xr-x 4 root root 4096 Jul 23 13:43 ..
-rwxrwSrwt 1 zoe users 2986038 Sep 1 2005 lastgold.bmp
-rwxrwSrwt 1 zoe users 239023 Jul 22 04:30 lookupsid.pcap

 <...remaining output deleted...>

You probably also noticed the file permissions in the previous listing. Without help, cifs has no way of
mapping Windows file ACLs to POSIX permissions. The file_mode and dir_mode options allow you to
specify the permissions reported by the kernel for files and directories. By defining file_mode=0640
and dir_mode=0755 when mounting \\fox\public, you can restrict files from being accessed by
accounts outside of root, zoe, and the users group, while still allowing everyone to scan the
filesystem:

$ ls -l /cifs/public

drwxr-xr-x 2 zoe users 0 Jul 23 2006 docs
-rw-r----- 1 zoe users 2986038 Sep 1 2005 lastgold.bmp
-rw-r----- 1 zoe users 239023 Jul 22 04:30 lookupsid.pcap
<...remaining output deleted...>

The uid, gid, file_mode, and dir_mode options control the file attributes used by the Linux kernel
when performing authorization checks. In reality, there are two access checks for every file. The
server uses the file's security descriptor to verify that the connected user has the appropriate access
rights, and the Linux kernel determines whether the local user should be granted access based on the
calculated Unix permission set. So if the user who connected to the share is not authorized by the
server's permissions to access a file, no amount of tweaking permissions on the client will give him
access to it.

The cifs client has experimental support for multiuser mounts, which is disabled
by default. This feature is controlled by the value stored in
/proc/fs/cifs/MultiuserMount.

Table 11-1 completes this section by listing the common parameters to mount.cifs we've covered. Be
sure to consult the utilities' manpage for a current list of options.

Table 11-1. mount.cifs -o options

Key Value Function

user string Provides the username for authentication.

dom string Defines the user's authentication domain.

pass string Provides the share or domain password, if it hasn't been supplied by
another means.

cred filename Name of file containing the username, domain, and password values.

ip IP address Specifies the IP address of the remote SMB/CIFS server.

uid name or
numeric

User ID to apply to all files and directories of the mounted share.

gid name or
numeric

Group ID to apply to all files and directories of the mounted share.

file_mode octal Permissions to apply to files.

dir_mode octal Permissions to apply to directories.

11.1.3. Allowing Normal User CIFS Mounts

Windows clients allow normal users to map a UNC path to a drive letter such as H:. Linux users
frequently expect this same capability. In order to allow non-root users to mount SMB/CIFS file
shares using mount.cifs, you have two options. The most flexible solution for users is to add the
setuid bit for both mount.cifs and umount.cifs so the users are able to call mount.cifs directly instead
of mount -t cifs. The remaining command-line arguments needed to mount a SMB/CIFS share are the
same. To enable the setuid permission bit, run the following commands while logged in as root:

$ chmod u+s /sbin/mount.cifs /sbin/umount.cifs

Some administrators are uncomfortable with setuid binaries. To be fair, this is an extremely powerful
privilege to grant to a program. Any potential flaws in the utility could be leveraged by an attacker to
gain superuser privileges on the system.

The alternative method of allowing user mounts is to add a line to /etc/fstab referencing the remote
filesystem and target mount point, and specifying the user mount option. The user option in this
context is not the same as the mount.cifs user parameter. For example, the following line allows
normal users to mount /cifs/cdrom from the UNC path \\media.example.com\cd. The noauto directive
is used to prevent the filesystem from being mounted at boot time. Rather than placing it in
/etc/fstab, the username sent in the SMB/CIFS connection request is pulled from the USER
environment variable.

//media.example.com/cd /cifs/cdrom noauto,user 0 0

A non-root user can now simply invoke mount /cifs/cdrom to access the CD-ROM shared by the host
media.example.com. More details regarding defining user mounts in /etc/fstab can be found in the
mount and fstab manpages.

11.1.4. CIFS Extensions for Unix Clients

It is easy to view SMB/CIFS as a Windows protocol. Its history, however, extends before and beyond
Microsoft. Although CIFS is not an open standard, extensions to the protocol have been developed
and documented. These include the Mac extensions and the Unix extensions, both of which are
described in the CIFS Technical Reference from the Storage Network Industry Association
(http://www.snia.org).

The Unix extensions, as they are commonly called, were first developed in 1996 by Hewlett-Packard.
Since then, they have received attention and updates from various companies and individuals,
including Linux kernel engineers and Samba developers. The most notable features provided by these
extensions are filename case sensitivity, symbolic links, POSIX locking semantics, and proper
reporting of Unix ownership and permissions.

Both the cifs filesystem and Samba support the Unix extensions by default. Samba controls this
behavior using the unix extensions Boolean parameter in smb.conf. You can manipulate Linux cifs
client's support of the Unix extensions by flipping the value in /proc/fs/cifs/LinuxExtensionsEnabled
between 0 and 1. The following command enables Unix extension support in the Linux client:

http://www.snia.org

$ echo 1 > /proc/fs/cifs/LinuxExtensionsEnabled

The most visible enhancement to cifs provided by these extensions is the ability to report the correct
ownership of files and directories. For example, the following cifs mount from a Samba host shows
the real uid and gid ownership of files within the share:

drwxr-xr-x 4 rose users 0 Jun 3 10:09 iTunes
drwxr-xr-x 11 lizard guest 0 May 22 16:27 Documents
drwx------ 2 1217 hosts 0 Jun 15 11:05 vc6_sp5

The requirement for reporting correct ownership on cifs filesystems is the same as the one needed by
NFS mounts: namely, that the uid and gid are assigned to the same user and group on both the
client and server. In our example, both rose and lizard are the same on the client and server.
However, the client has not assigned the uid 1217 to a user. The easiest way to handle common
assignments for uids and gids is to make use of a directory service such as LDAP for distributing user
and group information.

If the users and groups on both the client and server are not synchronized, you
may wish to disable the local permission check and just rely on the server's
security by setting the noperm option when mounting the filesystem.

Table 11-2 provides a brief summary of the new smb.conf parameter.

Table 11-2. Samba's Unix extensions option

Parameter Value Description Default Scope

unix extensions boolean Enables support for the CIFS Extensions for Unix clients. yes Global

11.2. FreeBSD's smbfs

FreeBSD, Darwin, and Mac OS X all provide the smbutil and mount_smbfs programs for connecting to
SMB/CIFS shares. Neither of the programs is part of Samba; however, we include them to give you a
little additional support in case you have BSD-related Unix systems on your network.[*]

[*] The examples in this section are based on FreeBSD 6.1.

11.2.1. smbutil

The smbutil program provides functionality similar to some of the Samba suite's command-line
utilities. It can be used to list the shares available on an SMB server or perform NetBIOS name
lookups.

The first argument given to smbutil is one of a number of subcommands and is usually followed by
arguments specific to the subcommand. For example, to list the resources offered by a server, use
the view subcommand and enter your server password when prompted:

$ smbutil view //elm
Password: <enter password>
Share Type Comment

public disk
SS2500 printer Stylus Scan 2500
IPC$ pipe IPC Service (Samba 3.0.22)
lizard disk User Home Directories

4 shares listed from 4 available

If the smbfs.ko kernel module is not loaded, you will see this error message:

smbutil: smb_lib_init: can't find kernel module

You can load the module manually by running the following command as root:

$ kldload smbfs.ko
netsmb_dev: loaded

If you wish to connect to the server with a username that differs from the one you are currently
logged in as, you can specify it on the command line by preceding the name of the server with the
username and using an at-sign (@) as a separator:

$ smbutil view //lizard@elm

You can also include the password after the username, using a colon (:) as a separator, to avoid
being prompted for it:

$ smbutil view //lizard:secret@elm

Typing your password in the open like this is strongly discouraged. An alternative is to use smbutil to
generate a password hash using the crypt subcommand:

$ smbutil crypt secret
$$1625a5723293f0710e5faffcfc6

This hash can then be used in place of a clear-text password. However, the encryption is not
particularly strong and will foil only the most casual inspection. The only reasonably secure method of
providing a password is to be prompted for it.

While starting up, smbutil reads the file .nsmbrc in the user's home directory. A list of common
configuration parameters is summarized at the end of this section in Table 11-3.

Table 11-3. Common smbutil and mount_smbfs options

Command-
line option

Configuration file
parameter Description

-I hostname addr Avoid NetBIOS name resolution and connect to the server
using the specified DNS hostname or IP address.

-N None Do not prompt for a password.

-R count retry_count Number of times to retry connection before giving up.

-T seconds timeout Timeout, in seconds, per connection request.

-U username username Username to use for authentication. Defaults to Unix
username.

-W workgroup workgroup Name of workgroup of remote server.

-d mode None Permissions to apply to directories in the mounted share.
Defaults to the same as the file permissions, plus an execute
(search) bit whenever the read bit is set.

-f mode None Permissions to apply to files in the mounted share. Defaults
to the same as the permissions set on the directory used as
the mount point.

-g group None Name or numeric gid to apply to all files and directories in
the mounted share. Defaults to the group of the directory
used as the mount point.

-u username None Username or numeric UID to apply as the owner of all files
and directories in the mounted share. Defaults to the owner
of the directory used as the mount point.

For example, to keep your password in your ~/.nsmbrc file, you can create an entry in the file such
as the following:

[ELM:LIZARD]
 password=$$1625a5723293f0710e5faffcfc6

The section heading in brackets specifies the SMB server's NetBIOS name and the username to which
the subsequent parameter settings apply. (The hostname and username must be supplied in
uppercase characters.) Section headings can also consist of just a hostname or can contain a share
name as a third element for specifying parameters applicable to a single share. Finally, if a [default]
section is present, the settings in it apply to all connections.

The following example .nsmbrc shows some of the other parameters you might use:

[default]
 # NetBIOS name server

 nbns=192.168.1.74

[ELM]
 # server IP address
 addr=192.168.1.46
 workgroup=TEST

[ELM:LIZARD]
 password=$$1625a5723293f0710e5faffcfc6

Directives in per-user configurations can be overridden on a systemwide basis by storing directives in
the file /etc/nsmb.conf. This method provides you with a means to apply mandatory settings to all
users. Directives can be placed in this file using the section and parameter format similar to that of
the Samba configuration file.

smbutil is somewhat of a hybrid of Samba's smbclient and nmblookup tools. The lookup subcommand
returns the IP address associated with a given NetBIOS hostname. A NetBIOS name server can be
optionally specified with the -w argument:

$ smbutil lookup -w 192.168.1.74 ELM
Got response from 192.168.1.74
IP address of ELM: 192.168.1.46

11.2.2. mount_smbfs

The mount_smbfs program performs essentially the same function as mount.cifs on Linux. It mounts
an SMB/CIFS share on a directory in the local filesystem. The share can then be accessed just like
any other directory. The command synopsis for mount_smbfs is:

mount_smbfs [options] Share-UNC mount-point

where Share-UNC is of the form:

//[workgroup;][username[:password]@]server[/share]

For example:

$ mount_smbfs //TEST;lizard:$$1625a5723293f0710e5faffcfc6@elm/lizard\

 /smb/lizard

A list of common configuration parameters and command-line options is provided in Table 11-3.

The ownership and permissions of the mount point determine the default ownership and permissions
for files and directories in the mounted share. These can be modified with command-line arguments,
like this:

$ mount_smbfs -u lizard -g admin -f 0750 -d 0755 \
 //lizard@elm/lizard /smb/lizard

In this example, the files and directories in the mounted share are owned by the user lizard and the
group admin, with files and directories having permissions 750 and 755, respectively. As usual, the
permissions are specified in the octal format used by the Unix chmod command.

The mount_smbfs command also makes use of settings in /etc/nsmb.conf and ~/.nsmbrc, as
described earlier.

11.3. Mac OS X

In addition to smbutil and mount_smbfs, OS X includes a graphical interface to the functionality they
provide.[*] If you know the path to the share you desire, it is possible to map it directly using the
Connect to Server . . . option from the Go menu. Instead of using a UNC, specify the share in the
form of a Uniform Resource Identifier (URI) with a prefix of smb:// entered in the Address field.
Figure 11-1 shows how a connection to \\elm.plainjoe.org\public would appear. You can specify a
server, share, workgroup, username, and password (optionally encrypted with smbutil crypt) in the
URI, in the same format as the UNC argument to mount_smbfs. As usual for Mac OS X, shares are
mounted under /Volumes, but show up in the root of the Finder hierarchy.

[*] The examples in this section are based on OS X 10.3.

Figure 11-1. OS X Connect To Server dialog box

If you don't specify a share name in the URI, pressing Connect will present you with a window that
lets you choose from a list of shares available to mount. Figure 11-2 displays the shares provided by
the server smb://elm.plainjoe.org.

Figure 11-2. Selecting a share to mount

Only guest-accessible shares show up in the list until you've authenticated. After pressing the
Authenticate button, you'll be prompted for a workgroup, username, and password, as shown in
Figure 11-3. You'll also see this dialog box if you provide a share name in the URI, but not a
username and password.[dagger]

[dagger] If you've previously stored your authentication information in a keychain, you will instead be prompted for your keychain

password.

Figure 11-3. The user authentication dialog box

If you don't know the name of a server to which you wish to connect, you can browse for it in the
network section of the Finder window. If you have a WINS server on your network, you can provide
the server's IP address using the SMB service in Apple's Directory Access application, or by using the
wins server parameter in /etc/smb.conf. Figure 11-4 displays the Finder Network browser, which
appears very similar to My Network Places on Windows clients.

Figure 11-4. Browsing servers in Finder's Network

11.4. smbclient

smbclient is a basic part of the Samba suite and a very versatile tool. It can be used for browsing
shares on servers, testing configurations, debugging, accessing shared printers, backing up shared
data, and automating administrative tasks in shell scripts. And unlike the native filesystem support
we have previously discussed, smbclient is portable to all Unix variants that support Samba.

In Chapter 2 , we showed you how to use smbclient to test your Samba installations, and we've
already covered smbclient 's printing functionality in Chapter 7 . In this section, we focus mostly on
running smbclient as an interactive shell, using its ftp -like commands to access shared directories on
the network. A complete reference to the tool can be found in Appendix A .

11.4.1. Listing Shares and Workgroups

The -L option can be used with smbclient to list the resources on a single computer. Assuming that
the Samba server is configured to take the role of the master browser, we can also obtain a list of
the computers in the domain or workgroup. The following command attempts to anonymously (-N
option) enumerate the shares and browse list from the server maple.plainjoe.org :

$ smbclient -L maple.plainjoe.org -N
Anonymous login successful
Domain=[VALE] OS=[Unix] Server=[Samba 3.0.22]

 Sharename Type Comment
 --------- ---- -------
 netlogon Disk NETLOGON Service
 profile$ Disk User roaming profiles
 print$ Disk Print Drivers
 public Disk Public access file share
 software Disk Software Repository
 C$ Disk Administrative share
 IPC$ IPC IPC Service (Samba 3.0.22)
 hp2100 Printer HP LaserJet 2100 Series PCL 6
Anonymous login successful
Domain=[VALE] OS=[Unix] Server=[Samba 3.0.22]

 Server Comment
 --------- -------
 ELM Samba 3.0.22
 HAMMER XP Development box
 MAPLE Samba 3.0.22

 Workgroup Master
 --------- -------

 AD SPUD
 GLASS CRYSTAL
 VALE MAPLE

The first section of output contains the enumerated file and printer shares on maple . This list
includes only shares with a name that does not exceed 12 characters in length.[*] The three hosts
listed in the Server column of section 2 are the ones in maple 's browse list. Remember from Chapter
8 that each browse master maintains a list of servers in its workgroup. The workgroups and master
browsers known by maple are listed in the final section.

[*] This length limitation was removed in Samba 3.0.23.

Running the same command against the Windows XP host hammer generates an ACCESS_DENIED
error when enumerating the shares:

$ smbclient -L hammer -N
Anonymous login successful
Domain=[VALE] OS=[Windows 5.1] Server=[Windows 2000 LAN Manager]

 Sharename Type Comment
 --------- ---- -------
Error returning browse list: NT_STATUS_ACCESS_DENIED

Chapter 8 described anonymous browsing as a casualty of the security war. The solution is to provide
credentials when connecting to the server. The -U option allows you to specify a username other than
your Unix account name when connecting. Without the parameter (and unless you explicitly ask for
an anonymous login using the -N option), smbclient obtains the username from either the USER or
LOGNAME environment variables:

$ smbclient -L hammer -U lizard
Password: <enter password for lizard>
Domain=[VALE] OS=[Windows 5.1] Server=[Windows 2000 LAN Manager]

 Sharename Type Comment
 --------- ---- -------
 public Disk
 IPC$ IPC Remote IPC
 Users Disk
 ADMIN$ Disk Remote Admin
 C$ Disk Default share

smbclient makes use of the same mechanisms for retrieving passwords as the Linux mount.cifs tool.
For noninteractive sessions, you can specify a password using the PASSWD environment variable or

point to a file containing the password using the PASSWD_FD or PASSWD_FILE environment settings. You
can also specify a credentials file using the -A (or --authentication-file) command-line option.
Finally, you can also specify the password on the command line by appending it to the username with
the % character.

11.4.2. An Interactive smbclient Session

A common use for smbclient is to create an ftp -like shell to access SMB resources on the network.
To begin a session, smbclient must be provided with the UNC of a resource (which you can find using
the -L option) on the command line. Forward slashes are accepted by smbclient for the share's UNC,
which makes entering the UNC on the command line easier. Backslashes can also be used, but they
must be quoted or escaped, and it is somewhat more difficult to type '\\elm\public' or
\\\\elm\\public . You can optionally follow the UNC path with a password to avoid being prompted.

$ smbclient //elm/public
Domain=[VALE] OS=[Unix] Server=[Samba 3.0.22]
Password: <enter password>
smb: \>

After connecting to the share, smbclient displays the smb: \> prompt and waits for a command to be
entered. Commands are similar to those with which you might be familiar in ftp and are also
somewhat similar to Unix shell commands. To retreive a list of smbclient commands, use the help
command:

smb: \> help
? altname archive blocksize cancel
case_sensitive cd chmod chown del
dir du exit get getfacl
hardlink help history lcd link
lowercase ls mask md mget
mkdir more mput newer open
print prompt put pwd q
queue quit rd recurse reget
rename reput rm rmdir setmode
stat symlink tar tarmode translate
volume vuid logon listconnect showconnect
!

Some commands in the previous list are synonyms for other commands. For example, the ?
command is a synonym for help . You can give this command the name of another command as an
argument to get a concise reminder of what the command does and how to use it:

smb: \> help ls
HELP ls:

 <mask> list the contents of the current directory

The term <mask> refers to a file-matching pattern as commonly found in Unix shells and utilities. For
example, the following command lists all files ending in doc in the current directory on the remote
system. The columns show the filename followed by the file's MS-DOS attributes, size, and time of
last modification.

smb: \> ls *doc
 ms-ProfPol-wp.doc A 131 Tue Jun 18 09:12:34 2006
 smbclient.doc A 33969 Mon Jun 10 20:22:24 2006
 smbmount.doc A 7759 Mon Jun 10 20:20:00 2006

 48590 blocks of size 524288. 40443 blocks available

As with any other Unix utility, smbclient maintains a working directory on the local host, which can be
modified with the lcd command, and a working directory on the remote SMB share, which can be
changed using cd . For example, to change to the trans directory in the SMB/CIFS share, execute the
following command. The smb: \> prompt changes to reflect the remote working directory.

smb: \> cd trans
smb: \trans\>

To change your current directory on the local system, use the lcd command:

smb: \trans\> lcd /data/snd
the local directory is now /data/snd

Most of smbclient 's commands perform operations on remote files and directories. There is no
command for listing the contents of the local directory. However, smbclient does allows a shell
escape. Any command preceded by an exclamation point (!) is interpreted as a shell command and
is run in a subshell on the local system. Therefore, to display the contents of the current local
working directory, invoke the ! ls command.

smb: \trans\> !pwd && ls -l
/data/snd
total 16
drwxrwxr-x 2 lizard users 4096 Jan 10 14:46 data
-rw-rw-r-- 1 lizard users 131 Jan 10 02:22 releasenotes.html

The put and get commands transfer files to and from the remote server. For example, the following
command uploads the file releasenotes.html to \\elm\public\trans :

smb: \trans\> put releasenotes.html
putting file releasenotes.html as \trans\releasenotes.html
 (127.9 kb/s) (average 10.7 kb/s)

Unlike ftp , smbclient does not have ascii and binary commands to set the type of the file that is
being transferred. All files are transferred byte for byte with no modification of the original file. The
only place where this is an issue is when dealing with ASCII text files. Unix systems used the carriage
return (CR) character to delimit lines of text. while DOS and Windows systems use a combination of
carriage return and line feed (LF) for the same purpose.

Before transferring a text file from a Unix system to a Windows system, you might want to use the
GNU unix2dos command to reformat newlines in the file to match the carriage return/line feed
(CRLF) standard:

$ unix2dos text_file > text_file.txt

A complementary dos2unix command can handle the reverse conversion. In the long run, it is
probably easier to provide users with a text editor that is capable of handling both file formats.

The mget and mput commands transfer a list of files or a set of files matching a DOS-style wildcard
pattern. Thus, to copy all files from the remote subdirectory plain , using the wildcard pattern
plain/* , enter:

smb: \trans\> mget plain/*

By default, smbclient issues prompts to confirm the transfer of each file:

smb: \trans\> mget plain/*
Get file tomm.wav? y
Get file toml.wav? y
Get file tomh.wav? y
Get file snare.wav? n
Get file rim.wav? n

Get file handclap.wav? y
Get file bassdrum.wav? n

You can toggle this prompting behavior on and off by issuing the prompt command:

smb: \> prompt
prompting is now off

If you specify the name of a directory to the mget command, smbclient does not copy its contents by
default. To transfer the entire directory tree, set the recurse option:

smb: \> recurse
directory recursion is now on

After disabling prompting and enabling recursive get s, we can copy a directory tree with the mget
command. The original folder hierarchy will still be intact on the new system:

smb: \> mget winadmin
getting file \winadmin\bin\putty.exe of size 380928 as putty.exe (6200.0 kb/s)
(average 6200.0 kb/s)
getting file \winadmin\bin\dhcpadmn.cnt of size 1849 as dhcpadmn.cnt (180.6 kb/s)
(average 5340.1 kb/s)
getting file \winadmin\bin\dhcpadmn.exe of size 238352 as dhcpadmn.exe (8313.0 kb/s)
(average 6189.5 kb/s)
getting file \winadmin\bin\dhcpadmn.hlp of size 56486 as dhcpadmn.hlp (6895.2 kb/s)
(average 6242.8 kb/s)

 <...remaining output deleted...>

Directory recursion applies to all commands, so if an ls command is used while directory recursion is
on, all files in the directory tree are listed. To turn directory recursion off again, reenter the recurse
command. At the same time, you might also wish to toggle prompting back to its initial state:

smb: \trans\> recurse
directory recursion is now off

Samba 3.0.12 gave smbclient support for MS-DFS (covered in Chapter 6). This means that you can
follow MS-DFS referrals by changing directories. This next example connects to an MS-DFS root share
named dfs on the server primary :

$ smbclient //primary/dfs -U Administrator
Password:
Domain=[COLOR] OS=[Windows 5.0] Server=[Windows 2000 LAN Manager]
smb: \> dir
 . D 0 Mon May 9 15:06:14 2005
 .. D 0 Mon May 9 15:06:14 2005
 printmig.exe A 215632 Fri Feb 18 09:13:08 2005
 spud D 0 Fri Apr 1 10:00:00 2005

 63881 blocks of size 32768. 4851 blocks available

smb: \> cd spud
smb: \spud\> ls
 . D 0 Tue Feb 28 11:35:51 2006
 .. D 0 Tue Feb 28 11:35:51 2006
 ad.plainjoe.org.txt A 458 Tue Feb 28 11:35:51 2006
 dns.log A 116 Tue Feb 28 11:34:45 2006

 63881 blocks of size 32768. 4851 blocks available

The showconnect command displays the UNC path of the current working directory. For non-DFS
shares, this will always be the original path to which you connected. But for MS-DFS root shares, the
path displayed can vary depending on your working directory. In the following output you can see
that the directory spud is a referral to the UNC path \\spud\public:

smb: \spud\> showconnect
//spud/public

You can view the list of servers smbclient has connected to during its current session using the
listconnect command. In the following example, entry 0 is the DFS referral already discussed, line 1
refers to the original UNC path specified when launching smbclient , and line 2 is a connection
initiated by smbclient itself when checking for MS-DFS support.

smb: \spud\> listconnect
0: server=spud, share=public
1: server=primary, share=dfs
2: server=primary, share=IPC$

There are other smbclient commands that you might find useful. The mkdir command can be used to
create a directory, rmdir removes a directory, rm deletes a file, and rename changes a file's name.
These behave very similarly to their Unix shell counterparts.

To exit smbclient , use the exit or quit command:

smb: \trans\> quit

11.4.3. Backups with smbclient

Another popular use of smbclient is to create and restore backups of SMB/CIFS file shares. smbclient
supports the creation of backups using the standard tar format, making them easy to work with and
portable among different versions of Unix. Using smbclient on a Unix server to run network backups
can result in a more centralized and easily managed solution for providing data integrity, because
both SMB shares and NFS filesystems can be backed up on the same system.

You can perform backups in two ways. To back up an entire share, the simplest method is to use the
-Tc option on the command line. In this scenario, we are backing up \\hammer\public . The resulting
tar filename encodes the date in the form YYYY-MM-DD (e.g., hammer-2006-07-25.tar.gz).

$ smbclient //hammer/public -A ~/.smbpw -Tc |\
 gzip -9 > hammer-'date +%Y-%m-%d'.tar.gz

By using the -D option, it is possible to back up an individual directory in the share, rather than the
whole share. The following command causes smbclient to change its working directory to the
documents directory of the \\hammer\public share before starting the backup:

$ smbclient //hammer/public -A ~/.smbpw -D documents -Tc |\
 gzip -9 > hammer-'date +%Y-%m-%d'.tar.gz

It is also possible to use smbclient 's tar command in interactive mode, which can be useful when
developing noninteractive scripts, to ensure that they are doing the right thing. The tarmode
command is used to control the behavior of the tar command when copying files. The following
example instructs smbclient to tar all files, including those with the System and Hidden DOS
attributes set:

$ smbclient //hammer/public
Password: <enter password>
smb: \> cd documents
smb: \documents\> tarmode full hidden system quiet
smb: \documents\> tar c hammer-2006-07-25.tar

The previous command backs up only the \\hammer\public\documents subdirectory, using the
settings specified in the tarmode command. To have this type of backup run automatically from a

script, embed the commands in a -c option:

$ smbclient //hammer/public -A ~/.smbpw \
 -c "cd trans; tarmode full hidden system quiet; \
 tar c hammer-'date +%Y-%m-%d'.tar"

When runing the tar command (or the -T option), it is necessary to specify either the c option to
create a backup archive or the x option to extract (restore) one. Other options can be appended to
the option string and are explained in the section on smbclient in Appendix A . They allow you to
create incremental backups, specify which files to include or exclude from the backup, and specify a
few other miscellaneous settings.

An alternative to extracting the tar archive directly to the SMB share is to use the Unix system's tar
command to extract it to a directory on the Unix server, and then copy the desired files to a shared
directory. This allows a greater amount of control over the restoration process, as when correcting
for an accidental file deletion or reverting a set of files to a previous condition.

For example, suppose that we wish to create an incremental backup of a share and reset the archive
bit on the files to set things up for the next incremental backup. There are two ways to achieve this.
We could run the following interactive commands:

smb: \> tarmode inc reset quiet
smb: \> tar c backup.tar

Or we could specify the -Tcgaq option on the smbclient command line.

The best strategy for using smbclient for network backups depends on your local configuration. If you
have only a few Windows systems sharing a small amount of data, you might create a script
containing smbclient -Tc commands to back up each share to a separate tar file, placing the files in a
directory that is included with regular backups of the Unix system. If you have huge SMB/CIFS
shares on your network, you might prefer to write the backup directly to a tape drive. This can be
done with smbclient just as you would with a Unix tar command:

$ smbclient //homeserver/users -A ~/.smbpw -Tc > /dev/tape

11.4.4. Programming with smbclient

We'll finish our coverage of smbclient with some general comments about including the tool in your
own shell scripts. You've seen that smbclient allows a list of commands to be passed on the
command line using the -c option. For instance, we can noninteractively copy the file
\\elm\public\files\memo.txt to /data/files using the following single command:

$ smbclient //elm/public -A ~/. smbpw -c \
 "lcd /data/files; cd files; get memo.txt"

Everything that smbclient needs to know to perform the operation has been specified in the
command. There is no password prompting, so a command such as this can easily be placed inside a
shell script.

Readers interested in more details on shell scripts should refer to Classic Shell Scripting , by Arnold
Robbins and Nelson H. F. Beebe (O'Reilly).

By using smbclient in this manner, it is possible to create customized commands using shell
functions, scripts, or aliases. For example, suppose that we wanted a command to print a short listing
of files in a shared directory, showing just the names of the files. Using a bash function, we could
define a function smbls as follows:

~/.profile
function smbls
{
 share='echo $1 | cut -d '/' -f '1-4''
 dir='echo $1 | cut -d '/' -f '5-''
 smbclient $share -c "cd $dir; ls" -A ~/.smbpw | \
 grep "^ " | cut -d ' ' -f 3 - | sort
}

After defining this function and importing it into our shell, we can use smbls like this:

$ smbls //elm.plainjoe.org/public
CD-images
lectures
ms-ProfPol-wp.doc
profile-map
trans
$ smbls //elm.plainjoe.org/public/trans
.

..
lecture1.mp3
lecture2.mp3
lecture3.mp3
lecture4.mp3

smbclient subscribes to the Unix philosphy of chaining tools together to achieve one task. This is just
one simple example. If you develop a very clever or elaborate solution to a common administrative
problem, consider making it available to others in the Samba community using one of the mailing
lists covered in Chapter 12 !

11.5. Remote Administration with net

The net command was mentioned in Chapter 5, when we discussed Samba's group mapping and user
privileges features and again in Chapter 10 as the tool used to join Samba servers to a domain. Its
original design mimicked the net.exe command found on Windows hosts. Since the tool's introduction
in Samba 3.0.0, it has become the kitchen sink of Samba administration tools and a stable
alternative to the more developer oriented rpcclient utility.

There are two roles for net. One is the protocol administration tool used for such things as managing
users or groups to remote servers. The other is the local database administration role for
manipulating such things as group mapping entries. Our primary concern this section is the first side,
the protocol interface to remote administration functions.

net supports three administration protocols identified by the following case-insensitive keywords:

RAP

The CIFS Remote Administration Protocol (RAP), used primarily by Windows 9x/Me clients and
OS/2 hosts. RAP should be considered to be historical at this point in time and of interest only
to CIFS developers.[*]

[*] OS/2 administrators might disagree on this point.

RPC

Microsoft's Remote Protocol Call (RPC) implementation, loosely based on the Distributed
Computing Environment/Remote Procedure Call (DCE/RPC) specification. This is the primary
interface for managing Windows clients and servers.

ADS

Active Directory specific functions based upon Lightweight Directory Access Protocol (LDAP)
requests, with a small dash of RPC when necessary. This protocol can be used only when
communicating with AD domain controllers.

There is a great deal of overlap in subcommands between these three administration methods. For
example, all three interfaces return identical results, only differing in order, when enumerating users:

$ net rap user -S windc -U Administrator
Password: <enter Administrator's password>
Administrator
Guest

krbtgt
IWAM_WIN2K-KDC
IUSR_WIN2K-KDC
gcarter
TsInternetUser
lizard

$ net rpc

 user -S windc -U Administrator
Password: <enter Administrator's password>
Administrator
gcarter
Guest
IUSR_WIN2K-KDC
IWAM_WIN2K-KDC
krbtgt
lizard
TsInternetUser

$ net ads user -S windc -U Administrator
Password: <enter Administrator's password>
Administrator
Guest
IWAM_WIN2K-KDC
IUSR_WIN2K-KDC
krbtgt
gcarter
TsInternetUser
lizard

If we were to examine the traffic on the network, however, we would see very different search
queries.

This brings up the next question: which method is preferable? As a general rule, we recommend
using either RPC or ADS, depending on which provides the functionality you desire. As you will soon
see, some features are available only in one or the other.

11.5.1. net rpc

The first task discussed here is managing users and groups. net rpc provides two subcommands, user
and group, for viewing and manipulating accounts. You can find out more about each subcommand
using the help option. The following command demonstrates the available features of the user
subcommand. This help listing shows that the user subcommand is available for all three interfaces:
RAP, RPC, and ADS:

$ net rpc help user
net [<method>] user [misc. options] [targets]
 List users

 <...output deleted...>
Valid methods: (auto-detected if not specified)
 ads Active Directory (LDAP/Kerberos)
 rpc DCE-RPC
 rap RAP (older systems)

The miscellaneous options for user are composed of information such as the user credentials used in
the connection request (-U option) or the log level (--debuglevel option). A valid target is generally a
specific server (-S option), workgroup (-w option), or IP address (-I option). The order of command-
line arguments prefaced by an option flag does not matter. You can string these options and
parameters together to enumerate users on a CIFS server by running this command:

$ net rpc user -S windc -U lizard
Password: <enter password for lizard>
Administrator
gcarter
Guest
IUSR_WIN2K-KDC
IWAM_WIN2K-KDC
krbtgt
lizard
TsInternetUser

If you wish to find out the groups to which a particular user belongs, add the info argument to the
user subcommand.

$ net rpc user info lizard -S windc -U lizard
Password: <enter password for lizard>
Linux Users
Domain Admins
Printer Admins
Domain Users

You may add, delete, and rename users as well. For example, you can create a new user account for
jsmith and then rename the account to smitty. Although you do not have to run the net command as
root, you do have to specify an account with sufficient rights, such as Administrator, on the target
server to change user or group settings.

$ net rpc user add jsmith -S windc -U Administrator

Password: <enter password for Administrator>
Added user jsmith

$ net rpc user rename jsmith smitty -S windc -U Administrator
Password: <enter password for Administrator>
Renamed user from jsmith to smitty

One of the most tedious jobs that system administrators often have to perform is resetting forgotten
passwords for users. The net rpc password command allows you to do this for accounts on any
Windows or Samba server from your Unix desktop. As an example, the following command sets the
password for the account just created to be LeAv3:. If all goes well, you will be returned immediately
to a shell prompt.

$ net rpc password smitty LeAv3: -S windc -U Administrator
Password: <enter password for Administrator>

You can always check the return code from net to determine success or failure.
A simple echo $? at a shell prompt or test $? -eq 0 in a script will inform you
whether the command succeeded.

After creating a new user, you can add the account to specific groups using the group subcommand.
The following example adds the user smitty to the Domain Admins group on the host windc, which is
a domain controller in the BOOKS domain. Note that net rpc group addmem provides feedback only
when the operation fails, not when it is completed successfully.

$ net rpc group addmem "Domain Admins" smitty -S windc -U Administrator
Password: <enter password for Administrator>

$ net rpc group members "Domain Admins" -S windc -U Administrator
Password: <enter password for Administrator>
BOOKS\Administrator
BOOKS\gcarter
BOOKS\smitty

Table 11-4 gives a summary of the subcommands available to net rpc user and net rpc group.

Table 11-4. Parameters for the net rpc subcommands user and group

Command Subcommand Options Description

user Enumerate user accounts.

add username [password] Create a user account with an optional

password.

 delete username Remove a user account.

info username List the group membership for a user

account.

rename oldname newname Rename a user account from oldname to

newname.

group Enumerate groups.

list [global | local |

builtin]
Enumerate groups of a specific type.

 add name Create a new group.

 delete name Remove a group.

 members name List the members of a group.

 addmem group user Add user to group.

 delmem group user Remove user from group.

11.5.1.1. Shares

In addition, with net you can manage shared resources on a server just as you manage user and
group accounts. The share option to net rpc allows you to view existing shares, migrate data, and
add or remove resources.

We'll start by enumerating the shares on a particular server. net rpc share doesn't list as many
details as smbclient -L, but it does include shares with long names:

$ net rpc share -S windc -U Administrator
Password: <enter password for Administrator>
public
IPC$
print$
NETLOGON
CertEnroll
ADMIN$
SYSVOL
C$
files

You can create new SMB/CIFS shares for existing directories. Assume that the path C:\users has

been previously created on the host windc. You can create a file share named UserHome that points to
this directory by running this command. No response is displayed unless the command fails.

$ net rpc share add "UserHome=c:\\users" -S windc -U Administrator
Password: <enter password for Administrator>

If you enumerate the shares again, you will see the new UserHome share in the output. There is also a
complementary delete option to net rpc share. This command only stops the server from sharing the
directory. It does not remove any files on the server.

Table 11-5 describes the various net rpc share options.

Table 11-5. net rpc share commands

Parameter Options Description

None Enumerate shares on the server.

add sharename=path Create a new file share for the path on the server.

allowusers sharename Display or set a list of SIDs which are allowed to
access this share.

delete sharename Stop sharing the directory path on the server.

migrate <all|files|security|share>
[share]

Migrate share settings from the remote server to
the local server.

11.5.1.2. Services

Like Unix, Windows hosts possess numerous long-running processes that operate in the background
to perform specific tasks. You can enumerate the services using the net rpc service list command.
The lefthand column presents the service name and the righthand column gives its more friendly
display name:

$ net rpc service list -S windc -U Administrator
Password: <enter password for Administrator>
<...output deleted...>
UPS "Uninterruptible Power Supply"
UtilMan "Utility Manager"
VMTools "VMware Tools Service"
W32Time "Windows Time"
WinMgmt "Windows Management Instrumentation"
WINS "Windows Internet Name Service (WINS)"
Wmi "Windows Management Instrumentation Driver Extensions"

wuauserv "Automatic Updates"
WZCSVC "Wireless Configuration"

The status subcommand provides more detail about the current state of a service:

$ net rpc service status w32time -S windc -U Administrator
Password: <enter password for Administrator>
w32time service is running.
Configuration details:
 Controls Accepted = 0x1
 Service Type = 0x20
 Start Type = 0x2
 Error Control = 0x1
 Tag ID = 0x0
 Executable Path = C:\WINNT\System32\services.exe
 Load Order Group =
 Dependencies = /
 Start Name = LocalSystem
 Display Name = Windows Time

If the need arises, you can stop and start a specific service using its shorter service name. The
following commands stop and then restart the w32time service on a Windows host:

$ net rpc service stop w32time -S windc -U Administrator
Password: <enter password for Administrator>
..............................
w32time service is stop pending.

$ net rpc service start w32time -S windc -U Administrator
Password: <enter password for Administrator>
.
Successfully started service: w32time

Sometimes, however, restarting a single service is not enough to restore a host to a working state.
In these cases, a reboot is necessary. You can use the shutdown command to reboot a host. The -r
flag instructs the host to reboot after the shutdown and the -t option defines the number of seconds
to delay the reboot process. You may also specify an informational message using the -C option.
Following is an example that reboots a server in 120 seconds and informs any logged-on user of the
server maintenance. The client sees the reboot dialog box shown in Figure 11-5.

Figure 11-5. Reboot dialog box issued by net rpc shutdown

$ net rpc shutdown -r -t 120 \
 -C "Maintenance reboot required. Please log off"
 -S dorn -U Administrator
Password: <enter password for Administrator>
Shutdown of remote machine succeeded

If you change your mind, there is an abortshutdown command that can cancel your previous reboot
request.

Table 11-6 finishes this section with a short summary of the commands to manage services using net
rpc service.

Table 11-6. net rpc service commands

Parameter Options Description

list Enumerate installed services on the server.

pause servicename Pause the service. Not all services support this control, which is the
equivalent of using ^Z to stop a job in a Unix shell.

start servicename Start the service.

status servicename Display the service configuration and current status.

stop servicename Stop the service.

resume servicename Resume a paused service.

11.5.2. net ads

The ADS method of the net command shares some of the same functions as the RPC method. For
example, you can reset passwords and manage users and groups. The main advantage of net ads
over net rpc is the ability in ADS to use Kerberos tickets for authentication and to communicate with
Active Directory using LDAP. Using Kerberos removes the need to enter a password every time you
run the net command. To observe how this works, first initialize your Krb5 ticket cache using the kinit
command:

$ kinit Administrator
Password for Administrator@BOOKS.PLAINJOE.ORG: <enter password>

You can now list users in the AD domain by running net ads user:

$ net ads user
Administrator
Guest
IWAM_WIN2K-KDC
IUSR_WIN2K-KDC
krbtgt
gcarter
TsInternetUser
lizard
smitty

Upon examining your ticket cache, you will see that you now possess a service ticket for a DC in your
domain. In our example, the machine account windc$ is one of the domain controllers in the
books.plainjoe.org AD domain:

$ klist
Ticket cache: FILE:/tmp/krb5cc_0
Default principal: Administrator@BOOKS.PLAINJOE.ORG

Valid starting Expires Service principal
07/26/06 17:46:58 07/27/06 03:46:35 krbtgt/BOOKS.PLAINJOE.ORG@BOOKS.PLAINJOE.ORG
 renew until 07/27/06 17:46:58
07/26/06 17:47:21 07/27/06 03:46:35 windc$@BOOKS.PLAINJOE.ORG
 renew until 07/27/06 17:46:58

Because Active Directory can be searched using LDAP queries, the net ads command provides a
simple search interface as an alternative to tools such as ldapsearch. The search command accepts
an LDAP search filter, followed by an optional list of attribute names to return. The following example
looks up the SID assigned to the user smitty. The sAMAccountName attribute stores the value for user
and machine account names, so the LDAP filter matches against it.

$ net ads search "(sAMAccountName=smitty)" objectSID
Got 1 replies
objectSid: S-1-5-21-4200961138-2496335650-1239021823-1273

This next search returns a list of all machines in the domain, including their operating systems if
available, by matching the computer object class value:

net ads search "(objectclass=computer)" sAMAccountName
Got 6 replies

operatingSystem: Windows 2000 Professional
sAMAccountName: BLITZ$

operatingSystem: Windows XP Professional
sAMAccountName: LETTUCE$

operatingSystem: Windows XP Professional
sAMAccountName: DORN$

operatingSystem: Windows 2000 Professional
sAMAccountName: POLE$

sAMAccountName: zero$

operatingSystem: Windows 2000 Server
sAMAccountName: WINDC$

net ads search can be a valuable auditing and debugging tool and is much faster than firing up a
graphical LDAP search tool, especially if that approach involves logging onto a Windows client.

Chapter 12. Troubleshooting Samba
Samba is extremely robust. Once you have everything set up the way you want it, you'll probably
forget that it is running. When trouble occurs, it's typically during installation or when you're trying to
reconfigure the server. Fortunately, a wide variety of resources are available to diagnose these
troubles. Although we can't describe in detail the solution to every problem you might encounter, you
should be able to get a good start resolving the problem by following the advice given in this chapter.

The first section of this chapter lists what's in the tool bag, a collection of utilities available for
troubleshooting Samba; the second section is a detailed how-to; and the final section lists extra
resources you can use to track down particularly stubborn problems.

This chapter doesn't address problems specific to domain member servers. Due to the intimate
relationship of joining a new server to a domain and troubleshooting this process, the information has
been consolidated into a single chapter, Chapter 10. This chapter does provide the means to verify
that basic network services are in order, which is a prerequisite to joining a Samba host to a domain.

12.1. The Tool Box

Sometimes Unix seems to be made up of a grab bag of applications and tools. There are tools to
troubleshoot tools. And of course, there are several ways to accomplish the same task. When trying
to solve a problem related to Samba, a good plan of attack is to use the following:

Samba logs

Unix utilities

Fault tree

Documentation and FAQs

Samba newsgroups and mailing lists

We go over each of these in the following sections.

12.2. Samba Logs

Your first line of attack should always be to check the Samba logfiles. These can help diagnose the
vast majority of the problems faced by beginning- to intermediate-level Samba administrators.

Samba is quite flexible when it comes to logging. You can set up the server to log as little or as much
information as you desire. Variables in the Samba configuration file allow you to isolate individual logs
for each system, share, or combination thereof.

The quickest way to determine the default location of the logfiles on your Samba server is to look for
the LOGFILEBASE setting in the output from smbd -b. The following output is from a server that was
compiled using only default settings:

$ smbd -b | grep LOGFILEBASE
 LOGFILEBASE: /usr/local/samba/var

You can specify a log directory to use with vhe -l flag on the command line when starting the Samba
daemons. For example:

$ smbd -l /var/log/samba
$ nmbd -l /var/log/samba

Alternatively, you can override the location and name using the log file configuration option in
smb.conf. This option accepts variables, so you could easily have the server keep a separate log for
each connecting client system by specifying the following absolute path:

[global]
 log file = /var/log/samba/log.%m

Another useful trick is to have the server keep a log for each service (share) that is offered,
especially if you suspect a particular share is causing trouble. To do this, use the %S variable, like this:

[global]
 log file = /var/log/samba/log.%S

12.2.1. Log Level

The level of logging that Samba uses can be set in the smb.conf file using the global log level option
or its synonym debug level. The logging level is an integer that can range from 0 to 10.[*] At level 0,
only critical errors such as client disconnections or system-call-related failures are logged. Higher
values result in more voluminous logging.

[*] In reality, Samba's log level exceeds 100 in some code. However, levels 0 to 10 are the ones primarily used by both

administrators and developers.

For example, let's assume that we will use a Windows client to browse a directory on a Samba
server. For a small amount of log information, you can use log level = 1, which instructs Samba to
show only cursory information; in this case, only the connection itself:

[2006/02/20 19:13:19, 1] smbd/service.c:make_connection_snum(924)
 client (192.168.236.10) connect to service public
 initially as user lizard (uid=1004, gid=100) (pid 18450)

Higher debug levels produce more detailed information. Usually, you won't need more than level 3,
which is fully adequate for most Samba administrators. Levels above 3 are primarily used by
developers. These higher levels quickly consume disk space with megabytes of excruciating detail
concerning Samba's internal operations.

Here is an example of output at levels 2 and 3 for the same operation. Don't worry if you don't
understand the intricacies of an SMB connection; the point is what types of information are shown at
the different logging levels. Note that timestamps have been removed (debug timestamp = no) to
reduce the noise in the log excerpts.

/* Level 2 */
check_ntlm_password: authentication for user [lizard] ->
 [lizard] -> [lizard] succeeded
client (192.168.236.10) connect to service public
 initially as user lizard (uid=1004, gid=100) (pid 18491)
Serving public as a Dfs root

/* Level 3 */
Transaction 6 of length 82
switch message SMBtconX (pid 18535) conn 0x0
setting sec ctx (0, 0) - sec_ctx_stack_ndx = 0
Connect path is '/export/u1/public' for service [public]
se_access_check: user sid is S-1-5-21-3489264249-1556752242-1837584028-2560
se_access_check: also S-1-5-21-3489264249-1556752242-1837584028-1201
se_access_check: also S-1-1-0
se_access_check: also S-1-5-2
se_access_check: also S-1-5-11
se_access_check: also S-1-22-2-16
se_access_check: also S-1-22-2-33

se_access_check: also S-1-5-21-3489264249-1556752242-1837584028-512
se_access_check: also S-1-22-2-1003
se_access_check: also S-1-22-2-1004
se_access_check: also S-1-22-2-1006
se_access_check: also S-1-5-32-544
Initialising default vfs hooks
setting sec ctx (1004, 100) - sec_ctx_stack_ndx = 0
client (192.168.236.10) connect to service public
 initially as user lizard (uid=1004, gid=100) (pid 18535)
setting sec ctx (0, 0) - sec_ctx_stack_ndx = 0
Serving public as a Dfs root
tconX service=PUBLIC

[... deleted ...]

We cut off the log level 3 listing after the one packet. Log level 3 is extremely useful for following
exactly what the server is doing, and most of the time it is clear where an error occurs after glancing
through the logfile.

Using a high log level (5 or higher) seriously slows down the Samba server. Remember that every log
message generated causes a write to disk (an inherently slow operation) and log levels greater than
2 produce large amounts of data. Essentially, you should turn on logging level 3 or higher only when
you're actively tracking a problem in the Samba server.

You might find it necessary to generate a level 10 debug log for submitting a
bug report or when working with other administrators in the Samba community
to track down a problem. We recommend these smb.conf settings:

[global]
 log level = 10
 max log size = 0
 log file = /var/log/samba/log.%m

Then archive and compress the entire contents of /var/log/samba before
sending it to the relevant parties.

12.2.2. Activating and Deactivating Logging

To turn logging on and off, set the appropriate level in the [global] section of smb.conf. Then either
restart Samba or force the current daemon to reprocess the configuration file by sending it a hangup
(HUP) signal. You also can monitor and control the current log level for a particular smbd process
using the smbcontrol utility. The following example, run as the root user, determines that the current
log level for the smbd with process id of 18637 is 0 and then sets the overall log level to 5. The final

command verifies that the log level was in fact set to 5.

$ smbcontrol 18637 debuglevel
PID 18637: all:0 tdb:0 printdrivers:0 lanman:0 smb:0
 rpc_parse:0 rpc_srv:0 rpc_cli:0 passdb:0 sam:0 auth:0
 winbind:0 vfs:0 idmap:0 quota:0 acls:0 locking:0 msdfs:0
$ smbcontrol 18637 debug 5
$ smbcontrol 18637 debuglevel
PID 18637: all:5 tdb:5 printdrivers:5 lanman:5 smb:5
 rpc_parse:5 rpc_srv:5 rpc_cli:5 passdb:5 sam:5 auth:5
 winbind:5 vfs:5 idmap:5 quota:5 acls:5 locking:5 msdfs:5

12.2.3. Logging by Individual Client Systems or Users

An effective way to diagnose problems without hampering other users is to assign different log levels
for different systems in the [global] section of the smb.conf file. We can do this by building on the
strategy we presented earlier:

[global]
 log level = 0
 log file = /var/log/samba/log.%m
 include = /usr/local/samba/lib/smb.conf.%m

These options instruct Samba to use unique configuration and logfiles for each client that connects.
Now all you have to do is create an smb.conf file for a specific client system (e.g.,
/usr/local/samba/lib/smb.conf.lettuce) with a log level = 3 entry in it (the others will pick up the
default log level of 0), and then use that logfile to track down the problem.

Similarly, if only particular users are experiencing a problemand it travels from system to system
with themyou can isolate logging to a specific user by adding the following to the smb.conf file:

[global]
 log level = 0
 log file = /var/log/samba/log.%U
 include = /usr/local/samba/lib/smb.conf.%U

Then you can create a unique smb.conf file containing the configuration option log level = 3 for
each user you wish to monitor (e.g., /usr/local/samba/lib/smb.conf.rose) and only those users will
get more detailed logging.

12.3. Unix Utilities

Sometimes it's helpful to use a tool outside the Samba suite to examine what's happening inside the
server. Two diagnostic techniques that can be of particular help in debugging Samba troubles are to
monitor the system calls made by the server daemons and to monitor the network traffic between
the client and the server.

12.3.1. Tracing System Calls

The trace command masquerades under several different names, depending on the operating
system. On Linux it is strace; on Solaris and AIX you'll use truss; SGI has padc and par; and HP-UX
has trace or tusc. All have essentially the same function, which is to display each operating system
function call as it is executed. This display allows you to follow the execution of a program, such as
smbd, and often pinpoint the exact call that is causing the difficulty.

A sample strace output for the Linux operating system follows. This is a small section of a larger file
created during the opening of a directory on the Samba server. Each line lists a system call and
includes its parameters and the return value. If there was an error, the error value (e.g., ENOENT) and
its explanation are also shown. You can look up the parameter types and the errors that can occur in
the appropriate trace manual page for the operating system you are using.

chdir("/pcdisk/public") = 0
stat("mini/desktop.ini", 0xbffff7ec) = -1 ENOENT (No such file or directory)
stat("mini", {st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0
stat("mini/desktop.ini", 0xbffff7ec) = -1 ENOENT (No such file or directory)
open("mini", O_RDONLY) = 5
fcntl(5, F_SETFD, FD_CLOEXEC) = 0
fstat(5, {st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0
lseek(5, 0, SEEK_CUR) = 0
SYS_141(0x5, 0xbfffdbbc, 0xedc, 0xbfffdbbc, 0x80ba708) = 196
lseek(5, 0, SEEK_CUR) = 1024
SYS_141(0x5, 0xbfffdbbc, 0xedc, 0xbfffdbbc, 0x80ba708) = 0
close(5) = 0
stat("mini/desktop.ini", 0xbffff86c) = -1 ENOENT (No such file or directory)
write(3, "\0\0\0#\377SMB\10\1\0\2\0\200\1\0"..., 39) = 39
SYS_142(0xff, 0xbffffc3c, 0, 0, 0xbffffc08) = 1
read(3, "\0\0\0?", 4) = 4
read(3, "\377SMBu\0\0\0\0\0\0\0\0\0\0\0\0"..., 63) = 63
time(NULL) = 896143871

This example shows several stat() calls failing to find the files they were expecting. You don't have to

be an expert to see that the file desktop.ini is missing from that directory. However, be warned that
failures reported by the trace tool are not always server errors. In this example, it might be perfectly
normal that the desktop.ini file did not exist. With a little bit of detective work and deductive
reasoning, many difficult problems can be identified by looking for obvious, repeatable errors with
trace.

Tracing is also useful when diagnosing abnormally high CPU usage in Samba. An smbd process that
continually consumes the majority of available CPU cycles is sometimes a symptom of a corrupt tdb
file or possibly a source level bug. In this case, it is helpful to identify what operation the process is
spending its time executing. A continually repeated operation such as an fcntl() call is a good place
to look for clues. Perhaps the file descriptor associated with the fcntl() call can give some clue to as
to what the process is doing.[*] However, sometimes high CPU usage is caused by a very active
client. So don't jump to conclusions, and don't be too quick to rule out client or application bugs.

[*] There are various ways to determine the file on disk associated with an open file descriptor in a process. On Linux, the

contents of /proc/<pid>/fd contains a list of open files. A more operating-system-agnostic method is to use the lsof tool.

12.3.2. Network Packet Captures

There are a variety of programs for capturing network traffic (a.k.a. network sniffing) and saving it to
a file for later analysis. Almost all Unix/Linux operating systems include some type of tool for this
purpose. Solaris has the snoop utility, HP-UX has nettl, AIX has iptrace and ipreport, and Linux
provides tcpdump. Like most tools on Linux, tcpdump (http://www.tcpdump.org) is available for
various platforms. There's even a Windows port named WinDump
(http://www.winpcap.org/windump).

By far, the best freely available application for dissecting the SMB/CIFS protocol is Wireshark
(http://www.wireshark.org), formerly Ethereal. This network analyzer allows you to examine very
specific protocol minutia such as request flags or server support for specific protocol features, and is
able to read the file formats of most free and commercial network capture applications. Wireshark
packages are available for various Unix and Linux platforms as well as Windows and include a
command packet capture tool. You probably could rely on it for all of your network analysis needs.

To begin our network analysis discussion, we'll separate the process of capturing the packets and
analyzing them. This way, you can use whatever sniffer tool is provided by the operating system
vendor and still use Wireshark for analyzing the SMB/CIFS conversation. We use tcpdump in the
examples, primarily because it is available on a wide variety of platforms.

When capturing packets, the important points to consider are:

How much of each packet should you store? For the SMB/CIFS protocol and particularly MS-
RPC, it is best not to truncate the data at all.

Where should the data be stored?

What network interface should be monitored?

Which packets should be saved? Perhaps you are concerned only with a conversation with a
specific client or packets on a specific TCP or UDP port.

http://www.tcpdump.org
http://www.winpcap.org/windump
http://www.wireshark.org

Most capture programs have command-line parameters that allow you to control these aspects of
sniffing. The following example shows how to capture the conversation between our server
(192.168.236.86) and the client used for testing (192.168.236.10).

$ tcpdump -s 0 -w cifs.pcap -i eth0 \
 "host 192.168.236.86 and host 192.168.236.10 and (port 139 or port 445)"

The -s 0 options instructs tcpdump to save the full packet, the -w parameter is used to define the file
used for storing the data, the -i option refers to the network interface used for the capture (eth0 in
this instance), and the remaining string enclosed in double quotes describes the capture filter.[*] This
filter restricts tcpdump to saving packets on ports 139 or 445 between the two hosts at
192.168.236.10 and 192.168.236.86. The full filter syntax is covered in the tcpdump manpage. The
capture session can be terminated by typing CTRL-C.

[*] The tcpdump utility included with AIX 5 interprets a snap length of 0 to mean capture 0 bytes of each packet. In such cases,

use the size of an Ethernet frame (1,514 bytes).

Next, we can open the file cifs.pcap in Wireshark for further analysis.

12.3.2.1. Using Wireshark

Wireshark is a protocol analyzer, meaning that it can dissect a packet and label individual bits
according to a network protocol specification. This dissection can help to locate points where the
communication between two hosts takes an unexpected path. Wireshark can also provide some
network statistics summaries, such as I/O throughput and packet retransmission. More information
on using Wireshark can be found at http://www.ethereal.com and Angela Orebaugh's book Ethereal
Packet Sniffing (Syngress).

Figure 12-1 shows a client searching for a file that does not exist, as can be seen from the error
STATUS_NO_SUCH_FILE. Just as in the case of errors reported by trace, this missing file could be a
simple innocuous search caused by the client's PATH setting. Or it could be the reason for an
application failing to launch.

Figure 12-1. Using Wireshark to view a conversation between Samba and
Windows

http://www.ethereal.com

12.4. The Fault Tree

The fault tree presented in this section is for diagnosing and fixing problems that occur when you're
installing and reconfiguring Samba. Before you set out to troubleshoot any part of the Samba suite,
you should know the following information:

Your client IP address (we use 192.168.236.10)

Your server IP address (we use 192.168.236.86)

The netmask for your network (typically 255.255.255.0)

Whether the systems are all on the same subnet (our example systems are)

For clarity, we've renamed the server in the following examples to server.example.com, and the client
system to client.example.com.

12.4.1. How to Use the Fault Tree

Start the tests here, without skipping forward; it won't take long (about five minutes) and might
actually save you time backtracking. Whenever a test succeeds, you will be given a name of a section
to which you can safely skip.

12.4.2. Troubleshooting Low-Level IP

The first series of tests is that of the low-level services that Samba needs to run. The tests in this
section verify that:

The IP software works

The Ethernet hardware works

Basic name service is in place

Subsequent sections add the Samba daemons smbd and nmbd, host-based access control,
authentication and per-user access control, file services, and browsing. The tests are described in
considerable detail to make them understandable by both technically oriented end users and
experienced systems and network administrators.

Beware of firewalls! The Windows XP SP2 firewall will disable the host from
answering basic network requests such as ping. For these tests, consider
disabling any firewall settings on both the client and server if possible.

12.4.2.1. Testing the networking software with ping

The first command to enter on both the server and the client is ping 127.0.0.1. This tries to send
data to the loopback address and indicates whether any networking support is functioning. On both
Windows and Unix, you can run ping 127.0.0.1 from a command shell and usually interrupt it after a
few lines. Here is an example on a Linux server:

$ ping 127.0.0.1
PING localhost: 56 data bytes 64 bytes from localhost (127.0.0.1):
icmp-seq=0. time=1. ms 64 bytes from localhost (127.0.0.1):
icmp-seq=1. time=0. ms 64 bytes from localhost (127.0.0.1):
icmp-seq=2. time=1. ms ^C
----127.0.0.1 PING Statistics----
3 packets transmitted, 3 packets received, 0% packet loss round-trip (ms)
min/avg/max = 0/0/1

Some versions of ping let you set a limit on how many times it makes the round trip, so you don't
have manually interrupt the command. For instance, on Linux you could enter ping -c5 to stop
automatically after five transmissions.

If you get ping: no answer from _ ._ ._ ._ or 100% packet loss, you have no IP networking
installed on the system. The address 127.0.0.1 is the internal loopback address and doesn't depend
on the computer being physically connected to a network. If this test fails, you have a local problem.
TCP/IP isn't installed, it's misconfigured, or a firewall might be preventing ICMP packets. See your
operating system documentation if it's a Unix server. If it's a Windows client, follow the instructions in
Chapter 3 to install networking support.

If you're the network manager, some good references are TCP/IP Network
Administration, by Craig Hunt, and Windows Server 2003 Network
Administration, by Craig Hunt and Roberta Bragg, both published by O'Reilly.
An excellent resource for understanding the TCP/IP protocol suite is Richard
Stevens' TCP/IP Illustrated, Vol. 1 (Addison-Wesley).

12.4.2.2. Testing local name services with ping

Next, try to ping localhost from a shell on the Samba server. The name localhost is the
conventional hostname for the 127.0.0.1 loopback interface, and it should resolve to that address.
After typing ping localhost, you should see output similar to the following:

$ ping localhost
PING localhost: 56 data bytes 64 bytes from localhost (127.0.0.1):
icmp-seq=0. time=0. ms 64 bytes from localhost (127.0.0.1):
icmp-seq=1. time=0. ms 64 bytes from localhost (127.0.0.1):
icmp-seq=2. time=0. ms ^C

If this succeeds, try the same test on the client. Otherwise:

If you get unknown host: localhost, there is a problem resolving the hostname localhost to a
valid IP address. (This might be as simple as a missing entry in a local hosts file.) From here,
skip down to the section "Troubleshooting Name Services" later in this chapter.

If you get "ping: no answer," or "100% packet loss," but pinging 127.0.0.1 worked, name
services is resolving to an incorrect address. Check the file or database (typically /etc/hosts on
a Unix system) that the name service is using to resolve addresses to ensure that the entry is
correct.

12.4.2.3. Testing the networking hardware with ping

Next, ping the server's network IP address from itself. This should get you exactly the same results
as pinging 127.0.0.1:

$ ping 192.168.236.86
PING 192.168.236.86: 56 data bytes 64 bytes from 192.168.236.86 (192.168.236.86):
icmp-seq=0. time=1. ms 64 bytes from 192.168.236.86 (192.168.236.86):
icmp-seq=1. time=0. ms 64 bytes from 192.168.236.86 (192.168.236.86):
icmp-seq=2. time=1. ms ^C
----192.168.236.86 PING Statistics----
3 packets transmitted, 3 packets received, 0% packet loss round-trip (ms)
min/avg/max = 0/0/1

If this test works on the server, repeat it for the client. Otherwise:

If ping network_ip fails on either the server or client, but ping 127.0.0.1 works on that system,
you have a TCP/IP problem that is specific to the Ethernet network interface card on the
computer. Check with the documentation for the network card or host operating system to
determine how to configure it correctly. However, be aware that on some operating systems,
the ping command appears to work even if the network is disconnected, so this test doesn't
always diagnose all hardware problems.

12.4.2.4. Testing connections with ping

Now, ping the server by name (instead of its IP address)once from the server and once from the
client. This is the general test to determine whether your network is working:

$ ping server
PING server.example.com: 56 data bytes 64 bytes from server.example.com
(192.168.236. 86):
icmp-seq=0. time=1. ms 64 bytes from server.example.com (192.168.236.86):
icmp-seq=1. time=0. ms 64 bytes from server.example.com (192.168.236.86):
icmp-seq=2. time=1. ms ^C
----server.example.com PING Statistics----
3 packets transmitted, 3 packets received, 0% packet loss round-trip (ms)
min/avg/max = 0/0/1

If successful, this test tells you four things:

The hostname (e.g., server) is being found by your local name server.

The hostname has been expanded to the full name (e.g., server.example.com).

The host's address is being returned (192.168.236.86).

The client and server can successfully send and receive packets to each other.

If this test isn't successful, one of several things can be wrong with the network:

First, if you get ping: no answer, or 100% packet loss, you're not connecting to the network,
the other system isn't connecting or isn't responding, or one of the addresses is incorrect. Verify
that the server does not have an active firewall preventing it from receiving or replying to ICMP
packets. Also check the addresses that the ping command reports on each system, and ensure
that they match the ones you set up initially.

If the addresses do not match, try entering the command arp -an, and see whether there is an
entry for the other system. (The arp command stands for the Address Resolution Protocol. The
arp -an command lists all the addresses known on the local system.) Here are some things to
try:

If you receive a message like 192.168.236.86 at (incomplete), the Ethernet address of
192.168.236.86 is unknown. This message indicates a complete lack of connectivity, and
you're likely having a problem at the very bottom of the TCP/IP protocol stackthe Ethernet
interface layer.

If you receive a response similar to server (192.168.236.86) at 8:0:20:12:7c:94, the
server has been reached at some time, or another system is answering on its behalf.
However, this means that ping should have worked: because it hasn't, you may have an
intermittent networking or ARP problem.

If the IP address from ARP doesn't match the address you expected, investigate and
correct the addresses manually.

If each system can ping itself but not another, something is wrong on the network
between them.

If you get ping: network unreachable or ICMP Host Unreachable, you're not receiving an
answer, and more than one network is probably involved.

It is much simpler to deal with hosts on the same subnet. However, networking, like life, is not
always ideal. At this point, it is time to rely on your (or a good friend's) TCP/IP administration
skills. Check the default gateway settings on the host and verify that the router IP address is
correct. Then try to ping the gateway. If this fails, go through the troubleshooting steps for
failing to ping the server from the client or vice versa. This failure is at the network layer. If you
can ping the router, but not the host on the other side of it, use the gateway's documentation to
verify that packets are successfully being routed from one network to the other.

If possible though, try to test a server and client that are on the same network:

First, perform the tests for ping: no answer described earlier in this section. If these don't
help you identify the problem, the remaining possibilities are that an address is wrong,
your netmask is wrong, a network is down, or the packets have been stopped by a
firewall.

1.

Check both the address and the netmasks on source and destination systems to see
whether something is obviously wrong. Assuming that both systems really are on the
same network, they both should have the same netmasks, and ping should report the
correct addresses. If the addresses are wrong, you'll need to correct them. If they are
correct, the programs might be confused by an incorrect netmask. See the section
"Netmasks" later in this chapter.

2.

If the commands are still reporting that the network is unreachable and neither of the
previous two conditions are in error, one network really might be unreachable from the
other. This is a general networking issue; if you have a separate network manager at your
site, he or she may have to investigate. This, too, is an issue for the network manager.

3.

If you get ICMP Administratively Prohibited, you've struck a firewall of some sort or a
misconfigured router. Again, if you have a separate network manager at your site, that person
may have to investigate.

If you get ICMP Host redirect but ping reports that packets are getting through, this is
generally harmless: you're simply being rerouted over the network.

If you get a host redirect and no ping responses, you are being redirected, but no one is
responding. Treat this situation just like the Network unreachable response, and check your
addresses and netmasks.

If you get ICMP Host Unreachable from gateway hostname, ping packets are being routed to

another network, but the other system isn't responding and the router is reporting the problem
on its behalf. Again, treat this like a Network unreachable response, and start checking
addresses and netmasks.

If you get ping: unknown host hostname, your system's name is not known. This tends to

indicate a name service problem, which didn't affect localhost. Have a look at "Troubleshooting
Name Services," later in this chapter.

If you get partial successwith some pings failing but others succeedingyou have either an
intermittent problem between the systems or an overloaded network. Ping a bit longer, and see
whether more than about 3 percent of the packets fail. If so, take the necessary steps to reduce
the network problem or contact a network manager if that role is fulfilled by someone other
than you. However, if only a few fail, or if you happen to know some massive network program
is running, don't worry. The TCP/IP suite of protocols is able to compensate for the occasional
lost packets.

If you get a response such as smtsvr.antares.net is alive when you actually pinged
server.example.com, either you're using someone else's address or the system has multiple
names and addresses. If the address is wrong, the name service is clearly the culprit; you'll
need to change the address in the name service database to refer to the correct system. This is
discussed in "Troubleshooting Name Services," later in this chapter.

Servers are often multihomedi.e., connected to more than one network, with different names
on each net. If you are getting a response from an unexpected name on a multihomed server,
look at the address and see whether it's on your network (see the section "Netmasks" later in
this chapter). If so, you should use that address, rather than one on a different network, for
both performance and reliability reasons.

Servers can also have multiple names for a single Ethernet address, especially if they are web
servers. This is harmless, albeit startling. You should probably use the official (and permanent)
name, rather than an alias that might change.

If everything works but the IP address reported is 127.0.0.1, you have a name service error.
This error typically occurs when an operating system installation program generates an
/etc/hosts line similar to 127.0.0.1 localhost hostname.domainname. The localhost line should

say something similar to 127.0.0.1 localhost or 127.0.0.1 localhost.localdomain. Correct it,
lest it cause failures in the negotiations over who is the master browse list holder and who is the
master browser. It can also cause hard-to-diagnose errors in later tests.

If this command works from the server, repeat it from the client.

12.4.3. Troubleshooting Server Daemons

Once you've confirmed that basic networking is working properly, the next step is to make sure that
the daemons are running on the server. This determination takes three separate tests, because no
single one of the following tests can decisively prove that everything is functioning properly.

To be sure that the daemons are running, you need to find out whether they:

Have started1.

Are registered or bound to a TCP/IP port by the operating system2.

3.

1.

2.

Are actually listening for incoming connections3.

12.4.3.1. Tracking daemon startup

First, check the Samba logs. If you've started the daemons, the message smbd version release

started should appear. If it doesn't, you need to restart the Samba daemons.

If the daemon reports that it has indeed started, look out for bind failed on port XXX socket_addr=0

(Address already in use). This means another daemon has been started on port 139 or 445
(smbd). Also, nmbd will report a similar failure if it cannot bind to port 137 or 138. Either you've
started a daemon twice, or the inetd server has tried to provide a daemon for you.[*] If it's the latter,
we'll diagnose that in a moment.

[*] We use the name inetd for the TCP/IP metadaemon or superserver that runs on many Unix and Linux servers; the actual

command is usually either inetd or the newer xinetd.

Another useful trick for locating a startup failure is to start the failing service from the command line
and monitor its progress. All Samba daemons support the -i command-line option for just such a
purpose. Combined with a high debug level dumping to standard output, this option should help you
to locate the exact point of startup. The following example illustrates the message displayed when
you try to launch smbd when a previous instance was still running:

$ smbd -d 10 -i
....
ERROR: smbd is already running. File /var/run/smbd.pid exists
 and process id 31654 is running.
talloc report on 'null_context' (total 453 bytes in 73 blocks)
 lp_talloc contains 453 bytes in 72 blocks

From here, you can check the process listing to verify whether the existing process is in fact smbd. It
is possible that a previous instance of smbd has exited but not cleaned up its pid file, and that
another process exists with that same pid. Use the ps command on the server with the "long" option
for your system type (commonly ps ax or ps -ef), and see whether smbd and nmbd are already
running. This often looks like the following:

$ ps ax | grep mbd
31654 ? Ss 0:00 smbd -D -d3
31656 ? Ss 0:02 nmbd -D -d3
31657 ? S 0:00 smbd -D -d3

This example illustrates that smbd and nmbd have already started as standalone daemons (the -D
option) at log level 3 (-d3).

12.4.3.2. Looking for daemons bound to ports

Both smbd and nmbd have to register with the operating system so that they can get access to the
necessary TCP/IP ports. The netstat command will tell you if this has been done. Run the command
netstat -a on the server, and look for lines mentioning netbios-ns (137/udp), netbios-dgm
(138/udp), netbios-ssn (139/tcp), or microsoft-ds (445/tcp):

$ netstat -an | egrep ':(137|138|139|445)'
tcp 0 0 *:139 *:* LISTEN
tcp 0 0 *:445 *:* LISTEN
udp 0 0 *:137 *:*
udp 0 0 *:138 *:*

Although you may see additional lines listed, there should be at least two UDP lines, one for the
NetBIOS name service port (137) and one for the NetBIOS datagram service (138), indicating that
the nmbd server is registered and (we hope) is waiting to answer requests. There should also be at
least one TCP line for each of the values of the smb ports parameter in smb.conf. The default value
includes both ports 139 and 445, so frequently you will see a TCP line for each one. Additionally,
these ports should be in the LISTEN state. This means that smbd is up and waiting to accept
connections.

There might be other TCP lines indicating connections from smbd to clients, one for each client. These
are usually in the ESTABLISHED state. If there are smbd lines in the ESTABLISHED state, smbd is
definitely running. If there is only one line in the LISTEN state, you can't be sure yet. If both of the
lines are missing, a daemon has not succeeded in starting, so it's time to check the logs, and then go
back to Chapter 2.

If there is a line for each client, it might be coming either from a Samba daemon or from the meta-
daemon, inetd. It's quite possible that your inetd startup file contains lines that start Samba daemons
without your realizing it; for instance, although such behavior is becoming increasingly rare, the lines
might have been placed there if you installed Samba as part of a Linux distribution. The daemons
started by inetd prevent ours from running. This problem typically produces log messages such as
bind failed on port XXX socket addr=0 (Address already in use).

Check your /etc/inetd.conf file or /etc/xinetd.d/ directory; unless you're intentionally starting the
daemons from there, any servers bound to the netbios-* or microsoft-ds ports should be disabled.
Refer to Chapter 2 for details concerning Samba and inetd.

12.4.3.3. Checking smbd with telnet

The easiest way to test that the smbd server is actually working is to send it a meaningless message
and see if it is rejected. Try something such as the following:

$ echo "hello" | telnet localhost 139
Trying
Trying 192.168.236.86 ...
Connected to server. Escape character is '^]'.

Connection closed by foreign host.

This command sends an erroneous but harmless message to smbd. If you get a Connected message
followed by a Connection closed message, the test was a success. You have an smbd daemon
listening on the port and rejecting improper connection messages. On the other hand, if you get
telnet: connect: Connection refused, most likely no daemon is present. A less likely explanation is
that you have attempted to connect to the wrong port. Remember that the ports used by smbd are
controlled by the smb ports option. Make sure you use one of these ports. If all else fails, check the
logs and go back to Chapter 2.

Regrettably, there isn't an easy test for nmbd. If the telnet test and the netstat test both say that an
smbd is running, there is a good chance that netstat will also be correct about nmbd running. nmbd
is tested further later in this chapter when we troubleshoot network browsing problems.

12.4.3.4. Testing daemons with testparm

Once you know there's a daemon, you should always run testparm, in hopes of getting something
such as the following:

$ testparm
Load smb config files from /usr/local/samba/lib/smb.conf
Processing section "[homes]"
Processing section "[printers]" ...
Processing section "[tmp]"
Loaded services file OK. ...

The testparm program normally reports the processing of a series of sections and responds with
Loaded services file OK if it succeeds. If there is something wrong with the file, testparm reports
one or more of the following messages, which also appear in the logs as noted:

WARNING: You have some share names that are longer than 12 characters.

This error is for anyone using Windows Me and older clients. They fail to connect to shares with
long names.

WARNING: [name] service MUST be printable!

A printer share lacks a print ok = yes option.

WARNING: No path in service name - making it unavailable!

Current versions of Samba disable any service other than [homes] that does not have an
explicit path set.

NOTE: name is flagged unavailable

Just a reminder that you have used the available = no option in a share.

Can't find include file [name]

A configuration file referred to by an include option did not exist. If you were including the file
unconditionally, this is an error and probably a serious one: the share will not have the
configuration you intended. If you were including it based on one of the % variables, such as %a
(architecture), you must decide whether, for example, a missing Windows XP configuration file
is a problem. It often isn't.

Can't copy service name, unable to copy to itself.

You tried to copy an smb.conf section into itself.

Unable to copy servicesource not found: [name]

Indicates a missing or misspelled section in a copy = option.

Ignoring unknown parameter name.

Typically indicates an obsolete, misspelled, or unsupported option.

Global parameter name found in service section.

Indicates that a global-only parameter has been used in an individual share. Samba ignores the
parameter.

After the first testparm test, repeat it with (exactly) three parameters: the name of your smb.conf
file, the name of your client, and its IP address:

$ testparm /usr/local/samba/lib/smb.conf client 192.168.236.10

This command runs one more test that checks the hostname and address against hosts allow and
hosts deny options and might produce the Allow connection from hostname to service and/or Deny
connection from hostname to service messages for the client system. These messages indicate that
you have hosts allow and/or hosts deny options in your smb.conf, and they prohibit access from the
client system.

12.4.4. Troubleshooting SMB Connections

Now that you know the servers are up, you need to make that sure they're running properly. Start
by placing a simple smb.conf file in the /usr/local/samba/lib directory.

12.4.4.1. A minimal smb.conf file

In the following tests, we assume that you have a [temp] share suitable for testing, plus at least one
valid user account (we'll use one named rose). An smb.conf file that includes just these is as follows:

[global]
 workgroup = EXAMPLE
 security = user

[homes]
 read only = no

[temp]
 path = /data/tmp
 read only = no

12.4.4.2. Testing locally with smbclient

The first test ensures that the server can list its own services (shares). Run the command smbclient
-L localhost -N to anonymously connect to the server from itself. You should see the following:

$ smbclient -L localhost -N
Anonymous login successful
Domain=[EXAMPLE] OS=[Unix] Server=[Samba 3.0.22]]

 Sharename Type Comment
 --------- ----- ----------
 temp Disk
 homes Disk
 IPC$ IPC IPC Service (Samba 3.0.22)
...

If you received this output or something similar, move on to the next section, "Testing connections
with smbclient." On the other hand, if you receive an error, check the following:

If you get Connection to localhost failed, either you've spelled its name wrong or there

actually is a problem (which should have been seen back in "Testing local name services with
ping"). In the latter case, move on to the section "Troubleshooting Name Services," later in this
chapter.

If you get Error connecting to xxx.xxx.xx.xx (Connection refused), the server was found, but

it wasn't running an smbd daemon. Skip back to "Troubleshooting Server Daemons," earlier in
this chapter, and retest the daemons.

If you're using inetd (or xinetd) instead of standalone daemons, be sure to check your /etc/
inetd.conf (or xinetd configuration files) and /etc/services entries against their manpages for
errors as well.

If you get the message NT_STATUS_ACCESS_DENIED, you aren't permitted access to the server.
This could mean you have a hosts allow option that doesn't include the server or a hosts deny
option that does. Recheck with the command testparm smb.conf your_hostname
your_ip_address (see the section "Testing daemons with testparm"), and correct any

unintended prohibitions. The error could also be caused by a restrict anonymous setting in
smb.conf.

12.4.4.3. Testing connections with smbclient

Run the command smbclient //server/temp to connect to the server's [temp] share and to see if you

can connect to a file service. We assume that a valid account for the user named rose has already
been created. You should get the following response:

$ smbclient //server/temp -U rose
Password: <enter password>
Domain=[EXAMPLE] OS=[Unix] Server=[Samba 3.0.22]
smb: \> quit

If you get Get_Hostbyname: Unknown host name or Connect error: Connection refused, see the
previous section, "Testing locally with smbclient," for the possible diagnoses.

Now, at the Password: prompt, provide the password for the account given as the -U argument value.
If you then get an smb: \> prompt, the connection works. Enter quit and continue on to the next
section, "Testing connections with net use."

A response of NT_STATUS_LOGON_FAILURE indicates either that you are using an invalid account name
or that the password you used didn't match the credentials for the account. It is a good idea to verify
that the account exists by running pdbedit --verboserose.

An error message referring to NT_STATUS_BAD_NETWORK_NAME can be caused by any one of the
following:

A wrong share name: you might have spelled it wrong, it might be too long, it might be in
mixed case, or it might not be available. Check that it's what you expect with testparm (see the
earlier section, "Testing daemons with testparm").

An invalid users or valid users option in your smb.conf file that doesn't allow your account to
connect. Recheck using testparm smb.conf your_hostname your_ip_address (see the earlier

section, "Testing daemons with testparm").

A valid hosts option that doesn't include the server, or an invalid hosts option that does. Also
test this with testparm.

There is one more reason for this failure that has nothing at all to do with passwords: the path
parameter in your smb.conf file might point somewhere that doesn't exist. This will not be
diagnosed by testparm. You will have to check it manually.

Once you have connected to [temp] successfully, repeat the test, this time logging in to your home
directory (e.g., connect to the network path //server/rose). If you have to change anything to get
that to work, retest [temp] again afterward.

12.4.4.4. Testing connections with net use

Run the following command on the Windows client to see whether it can connect to the server:

C:\> net use * \\server\temp /user:rose

You should be prompted for a password whether or not the password for rose on the Samba server is
different than the one you used to logon to the Windows console. Once the correct password has
been transmitted, you should see the response:

The command was completed successfully.

If that worked, congratulations! You have completed all of these tests successfully, and your server
should be ready to accept connections from users. Otherwise:

If you get The specified shared directory cannot be found, or Cannot locate specified
share name, the directory name is either misspelled or not in the smb.conf file.

If you get The computer name specified in the network path cannot be located or Cannot
locate specified computer, the directory name has been misspelled, the name service has
failed, there is a networking problem, or the hosts deny option includes your host.

If it is not a spelling mistake, you need to double back at least to the section "Testing
connections with smbclient" to investigate why it doesn't connect.

If smbclient does work, there is a name service problem with the client name service, and
you need to proceed to the section "Testing the server with nmblookup" and see whether

you can look up both the client and server with nmblookup.

If you get The password is invalid for \\server\temp, verify that you are using the correct
credentials. If you provide your password again and it still fails, your password is not being
matched on the server, or possibly the configuration file has a valid users or invalid users list
denying you permission.

You might have the NetBEUI protocol bound to the Microsoft client. This often produces long
timeouts and erratic failures and is known to have caused failures to accept passwords in the
past. Unless you absolutely need the NetBEUI protocol, remove it.

12.5. Troubleshooting Browsing

Finally, we come to browsing. We've left this for last, not because it is the most difficult, but because
it's both optional and partially dependent on network topology. Browsing is simply a way to find the
servers on your network and the resources that they provide. But problems with browsing are hard
to diagnose if you don't already know that all the other NetBIOS and SMB/CIFS services are running
properly.

12.5.1. Testing the Server with nmblookup

This section tests the "advertising" system used for Windows name services and browsing.
Advertising works by broadcasting one's presence or willingness to provide services; it uses
broadcasts and UDP packets.

The nmblookup program can broadcast name queries for the hostname you provide and returns its IP
address and the name of the system, much as nslookup does with DNS. Here, the -B option is used
to define the broadcast address to use when sending the name query. If you do not list a specific
broadcast address, nmblookup defaults to sending a request using the broadcast address of each
available network interface (or the subset defined by the interfaces option).

First, check the server locally. Run nmblookup with a -B option specifying your server's name (to tell
it to send the query to the Samba server) and a parameter of _ _SAMBA_ _ (two underscores on each
side) as the symbolic name to look up:

$ nmblookup -B server _ _SAMBA_ _
querying _ _SAMBA_ _ on 192.168.236.86
192.168.236.86 _ _SAMBA_ _<00>

You should get the IP address of the server, followed by the name _ _SAMBA_ _, which means that
the server has successfully advertised that it has a service called _ _SAMBA_ _, and therefore that at
least part of NetBIOS name service works.

If you get name_query failed to find name _ _SAMBA_ _, chances are that you either have a problem

with name resolution, or nmbd is not running. Check to make sure you spelled the server's hostname
correctly, then try again with nmblookup -B ip_address. If that fails too, nmbd isn't running. Go back
briefly to the earlier section, "Troubleshooting Server Daemons."

12.5.2. Testing the Client with nmblookup

Next, check the IP address of the client from the server with nmblookup using the -B option for the

client's name and a parameter of '*' meaning "anything," as shown here:

$ nmblookup -B client '*'
querying * on 192.168.236.10
192.168.236.10 *<00>

You might get the following errors:

If you receive name_query failed to find name *, the client software on the PC isn't installed,
started, or bound to TCP/IP. Refer to Chapter 3 and ensure that you have a client installed that
is listening to the network. Windows XP clients (at least those with Service Pack 2) do not seem
to respond to the '*' name. These hosts will respond to queries for their own names, so retest
using the client machine name in place of *.

If nmblookup -B client_name fails but nmblookup -B client_IP_address succeeds, there is a

name service problem with the client's name; go to "Troubleshooting Name Services," later in
this chapter.

12.5.3. Testing the Network with nmblookup

Run the command nmblookup again with a parameter of '*', this time without a specific broadcast
address. Here we are testing the ability of programs (such as nmbd) to use broadcasts. It's
essentially a connectivity test, done via a broadcast to the default broadcast address.

The results lists the hosts on the network that respond. Samba might not catch all the responses in
the short time it listens, so you won't always see all the SMB/CIFS hosts on the network. However,
you should see most of them:

$ nmblookup '*'
192.168.236.191 *<00>
192.168.236.228 *<00>
192.168.236.86 *<00>
192.168.236.79 *<00>
192.168.236.206 *<00>
192.168.236.10 *<00>
192.168.236.217 *<00>
192.168.236.72 *<00>

In case of failure:

If this doesn't give at least the client address you previously tested, the default broadcast
address is wrong (or it is running Windows XP). Try nmblookup -B 255.255.255.255 '*', which
is a last-ditch variant. If this draws responses, the broadcast address you've been using before

is wrong. Troubleshooting these is discussed in the "Broadcast Addresses" section, later in this
chapter.

If the address 255.255.255.255 fails too, check your notes to see whether your PC and server
are on different subnets, as mentioned in the earlier section, "Testing connections with ping."
You should try to diagnose this step with a server and client on the same subnet, but if you
can't, you can try specifying the remote subnet's broadcast address with -B. Finding that
address is discussed in the section "Broadcast Addresses" later in this chapter. The -B option will
work if your router supports directed broadcasts; if it doesn't, you might be forced to test with a
client on the same network.

As usual, you can check the Samba logfiles for additional clues.

12.5.4. Testing Browsing with smbclient

From the server, try listing its own shares using smbclient with a -L option and your server's name.
We'll stick to port 139 (-p option) since NetBIOS sessions are a required component of network
browsing.[*] A server that is not configured to receive SMB/CIFS connections on port 139 will
frequently have problems with participating in browsing and elections. You should get something
resembling the following:

[*] Windows clients do not support separating NetBIOS name services (137/udp) from NetBIOS session services (139/tcp). The

client either supports NetBIOS in its entirety or does not support any of its services. We'll take the same approach when

configuring Samba.

$ smbclient -L server -N -p 139
Anonymous login successful
Domain=[EXAMPLE] OS=[Unix] Server=[Samba 3.0.22]

 Sharename Type Comment
 --------- ----- ----------
 temp Disk
 homes Disk
 IPC$ IPC IPC Service (Samba 3.0.22)

 Server Comment
 --------- -------
 SERVER Samba 3.0.22
 CLIENT

 Workgroup Master
 --------- -------
 EXAMPLE SERVER

Problems can be diagnosed as follows:

If you didn't get a Sharename list, the server is not allowing you to browse any shares. This
should not be the case if you've tested any of the shares with Windows Explorer or the net use
command. If you haven't done the smbclient -L localhost -N test yet (see the earlier section,
"Testing locally with smbclient"), do it now. Also check the smb.conf file to make sure that you
do not have the option browsable = no anywhere in it: we suggest using a minimal smb.conf file
(see the earlier section, "A minimal smb.conf file"). You need to have browsable enabled (which
is the default) to see the share.

Windows 2000 and later hosts do not allow you to browse for shares anonymously and return
NT_STATUS_ACCESS_DENIED. You will, however, still be able to enumerate any servers or
workgroups of which the host is aware.

If you didn't get a browse list of servers or workgroups, the host might not be providing
information about the systems on the network. At least one system on the net must support
browse lists. Make sure that your Samba host has local master = yes and browse list = yes
(both are enabled by default unless configured otherwise) in the smb.conf file if you want
Samba to be the local master browser.

If you didn't get a workgroup list with your workgroup name in it, it is possible that your
workgroup is set incorrectly in the smb.conf file.

If you get nothing, try once more with the additional options -I ip_address -d3. Remember that

the -d3 option sets the log/debugging level to 3. Then check the Samba logs for clues.

If you're still getting nothing, you shouldn't have gotten this far; double back to at least
"Troubleshooting Low-Level IP" and "Troubleshooting Server Daemons." On the other hand:

If you get NT_STATUS_ACCESS_DENIED, you aren't permitted access to the server. If this is a
Samba host, verify that the hosts allow option includes the server itself and the loopback
address. If this is a Windows 2000 or later host, you must use a valid user account to connect
(the -U option) instead of requesting an anonymous session (the -N option).

If you attempt to connect with user credentials (the -U option) and instead get
NT_STATUS_LOGON_FAILURE, verify that the account exists and you have the correct login name
and password. Sometimes it might also be necessary to specify the domain name (the -W
option) if you are connecting to a domain member server.

If you get Connection refused, the smbd server is not currently running. Check that it's up,
running, and listening to the network with netstat. See the earlier section, "Troubleshooting
Server Daemons."

If you get Connection to hostname failed, you've made a spelling error, there is a mismatch

between the Unix and NetBIOS hostname, or there is a name service problem. Start name
service debugging as discussed in the earlier section, "Testing connections with net use." If this
works, suspect a name mismatch, and go to the later section, "Troubleshooting NetBIOS
Names."

If you get Session request failed, the server refused the connection. This message usually
indicates an internal error, such as insufficient memory to fork a process or perhaps some
problem with inordinate name resolution delays.

12.5.5. Testing Client Browsing with net view

On the client, run the command net view \\server in an MS-DOS (command prompt) window to see
whether you can connect to the client and ask what shares it provides. You should get back a list of
available shares on the server.

As was discussed in Chapter 8, anonymous browsing of servers has been one of
the casualties in the effort to tighten network security. In some environments,
anonymous browsing may still work. If you receive any messages indicating
"Access denied," try retesting using a valid user account. The net.exe command
allows you to specify the account credentials with the /user:username

command-line option.

If this test works, you have no further problems. Otherwise:

If you get Network name not found for the name you just tested in the earlier section, "Testing
the Client with nmblookup," there is a problem with the client software itself. Double-check this
diagnosis by running nmblookup against the client; if it works and net view doesn't, the client is
at fault. If nmblookup fails, there is a NetBIOS name service problem, as discussed in the later
section, "Troubleshooting NetBIOS Names."

If you get You do not have the necessary access rights, or This server is not configured
to list shared resources, you probably have a hosts allow or hosts deny line that prohibits
connections from your system. These problems should have been detected by the smbclient
tests starting in the earlier section, "Testing browsing with smbclient."

If you get The specified computer is not receiving requests, you have misspelled the name,
the system is unreachable by broadcast (tested in the earlier section, "Testing the network with
nmblookup"), or the system is not running nmbd.

12.5.6. Browsing the Server from the Client

From My Network Places window, try to browse the server. You will probably first have to expand the
Entire Network link. Your Samba server should appear in the browse list of your local workgroup. You
should be able to double-click the name of the server to get a list of shares.

If you receive an Unable to browse the network error, one of the following has occurred:

You have looked too soon, before the broadcasts and updates have completed. Wait 30
seconds and try again.

There is a network problem you haven't yet diagnosed.

There is no browse master. Add the configuration option local master = yes to your

smb.conf file.

If you receive the message \\server is not accessible:

The system really isn't accessible.

The system doesn't support browsing.

If you've made it this far and the problem is not yet resolved, either the problem is one not yet
covered here, or it is a problem related to a topic already covered, and further analysis is required.
Name resolution is often related to difficulties with Samba, so we cover it in more detail in the next
sections. If you know that your problem is not related to name resolution, skip to the "Extra
Resources" section at the end of the chapter.

12.6. Troubleshooting Name Services

This section looks at simple troubleshooting techniques for all the name services that you'll
encounter, but only for the common problems that affect Samba.

There are several good additional references for troubleshooting particular name services: Paul Albitz
and Cricket Liu's DNS and Bind (O'Reilly) covers DNS, and the Windows Internet Name Service
(WINS) and LMHOSTS files are discussed in a wide variety of documentation available from
http://www.microsoft.com.

The problems addressed in this section are as follows:

You don't know which name services are in use.

A hostname can't be looked up.

The long (FQDN) form of a hostname works, but the short form doesn't.

The short form of the name works, but the long form doesn't.

A long delay occurs before the expected result.

12.6.1. Identifying What's in Use

First, determine whether both the server and the client are using DNS, WINS, or local files to resolve
names. Each operating system has a different preference:

Windows NT tries WINS, then broadcast, then the LMHOSTS file, and finally HOSTS and DNS.

Windows 2000 and later follow the same rules as Windows NT unless NetBIOS support has been
disabled in the network settings. In that case, the client relies solely on DNS and a local hosts
file.

Samba daemons use lmhosts, WINS, the Unix system's name resolver (i.e., the
gethostbyname() function), and then NetBIOS broadcasts (depending on the name resolve
order parameter in smb.conf).

Unix systems can be configured to use any combination of DNS, a local hosts files, or WINS and
generally in any order.

A good rule of thumb is to always configure clients and servers to prefer a centralized directory
service such as DNS or WINS over local files for resolving names to addresses. Local settings such as
/etc/hosts and lmhosts have a tendency to get out of sync over time when deployed on multiple
systems. By consolidating on a central name service, you have a single database to troubleshoot

http://www.microsoft.com

when clients are unable to resolve names: you know that either the name service is broken or the
client or server is misconfigured. We recommend that both the client systems use WINS and DNS,
and that Samba be configured to use WINS and the host operating system's name resolver. The Unix
server itself should be configured to use DNS and fall back to the /etc/hosts file only in case of
failure. You'll have to look at your notes and the actual systems to see which is in use.

On the clients, the name services are all set in the TCP/IP Properties panel of the Networking Control
Panel, as discussed in Chapter 3. You might need to check there to see what you've actually turned
on. On the server, see whether a /etc/resolv.conf file exists. If it does, you're using DNS. You might
be using the other name resolution options as well, though.

Check for a /etc/nsswitch.conf file on Unix operating systems. If you have one, look for a line that
begins with host: followed by files dns, or both. These are the name services to use, in order, with
optional extra material in square brackets. The files keyword is for using a local hosts files, while
dns (sometimes using the keyword bind for the Berkeley Internet Name Daemon) refers to using the
Domain Name System.

12.6.2. Cannot Look Up Hostnames

If you have isolated a problem to a name lookup and know from the previous section which service
your local system is using, try the following:

DNS

Use the nslookup or host command to resolve the machine name. If this fails, look for a
/etc/resolv.conf error, an inaccessible DNS server, or a short name/FQDN problem (see the
next section). Try the following solutions:

Confirm that your /etc/resolv.conf file contains one or more nameserver lines, each with
an IP address. These are the addresses of your DNS servers.

Ping each server address you find. If this fails for one system, check that connectivity and
DNS service on the system. If it fails for all, check your network.

Retry the lookup using the full domain name including the finalizing period (e.g.,
server.example.com.) if you tried the short name first, or the short name if you tried the
FQDN first. If results differ, skip to the next section.

Broadcast

The broadcast mechanism supports only short names such as server, and not the FQDN
variants, such as server.example.com. Run nmblookup -S server. This reports everything
broadcast has registered for the name. In our example, it looks like this:

$ nmblookup -S server
querying server on 192.168.236.255
192.168.236.86 SERVER<00>

Looking up status of 192.168.236.86
 SERVER <00> - M <ACTIVE>
 SERVER <20> - M <ACTIVE>
 EXAMPLE <00> - <GROUP> M <ACTIVE>
 EXAMPLE <1e> - <GROUP> M <ACTIVE>

The required entry is SERVER <00>, which identifies server as being this system's NetBIOS name. You
should also see your workgroup mentioned one or more times. If these lines are missing, NetBIOS
broadcasts cannot look up names and will need attention.

WINS

WINS is similar to the NetBIOS broadcast methods, and debugging WINS issues is very similar
to debugging broadcast name resolution problems. The only real difference is that nmblookup
must send the name query directly to the WINS server itself. This is accomplished by sending a
unicast packet to the WINS server IP address (the -U option) and setting the recursive flag (the
-R option) in the request. If nmblookup can resolve the name successfully, it will proceed to
issue a node status request to the target server as it did with the broadcast mechanism.
Assuming that we are using a WINS server at 192.168.1.74, the command and its output
would appear as:

$ nmblookup -U 192.168.1.74 -R -S server
querying server on 192.168.1.74
192.168.236.86 SERVER<00>
Looking up status of 192.168.236.86
 SERVER <00> - M <ACTIVE>
 SERVER <20> - M <ACTIVE>
 EXAMPLE <00> - <GROUP> M <ACTIVE>
 EXAMPLE <1e> - <GROUP> M <ACTIVE>

The server and workgroup entries should display the same information as described in the broadcast
tests. If there is an error, verify that the network and SMB/CIFS software are on the target machine.

hosts

Inspect the HOSTS file on the client (%SYSTEMROOT%\system32\drivers\etc\hosts). Each line
should have an IP number and one or more names, with the primary name first and then any
optional aliases. An example follows:

127.0.0.1 localhost
192.168.236.1 dns.svc.example.com
192.168.236.10 client.example.com client
192.168.236.11 backup.example.com loghost
192.168.236.86 server.example.com server
192.168.236.254 router.svc.example.com

On Unix, localhost should always be 127.0.0.1. On the client, check that there are no #XXX directives
at the ends of the lines; these are LAN Manager/NetBIOS directives and should appear only in
LMHOSTS files.

LMHOSTS

This file is a local source for LAN Manager (NetBIOS) names. It has a format similar to HOSTS
files, but it does not support long-form domain names (e.g., server.example.com) and can have
a number of optional #XXX directives following the NetBIOS names. There is usually an
lmhosts.sam (for sample) file located in %SYSTEMROOT%\system32\drivers\etc on Windows
clients, but it's not used unless it is renamed to lmhosts in the same directory.

12.6.3. Long and Short Hostnames

Where the FQDN form of a hostname works but the short name doesn't (for example,
client.example.com works but client doesn't), consider the following:

DNS

This usually indicates that there is no default domain in which to look up the short names. Look
for a default or domain line in /etc/resolv.conf on the Samba server containing your domain, or
look for a search line containing one or more domains. One or the other might need to be
present to make short names usable; which one is needed depends on the vendor and version
of the DNS resolver. Try adding domain your_domain to resolv.conf, and ask your network or

DNS administrator what should be in the file.

Broadcast/WINS

The broadcast and WINS NetBIOS name services do not support fully qualified domain names;
it won't suffer from this problem.

hosts

If the short name is not in /etc/hosts, consider adding it as an alias. If you can, avoid short
names as primary names (the first one on a line). Have them as aliases if your system permits.

LMHOSTS

LAN Manager doesn't support names other than the short versions, so it won't suffer from this
problem.

On the other hand, if the short form of the name works and the long form doesn't, consider the

following:

DNS

This is not a normal or expected error. Troubleshoot the DNS server configuration or contact
your DNS administrator if you do not manage that service.

Broadcast/WINS

This is normal; NetBIOS name services can't use an FQDN. Optionally, consider DNS for
locating specific servers wherever possible.

hosts

Add the long name as at least an alias, and preferably as the primary form. Also consider using
DNS if it's practical.

LMHOSTS

This is normal. LAN Manager can't use an FQDN; consider switching to DNS or hosts.

12.6.4. Unusual Delays

When there is a long delay before the expected result:

DNS

Test the same name with the nslookup or host command on the system that is slow (client or
server). If nslookup is also slow, you have a DNS problem. If the lookup is slower on a client,
you might have too many protocols bound to the Ethernet card. Eliminate NetBEUI, which is
infamously slow, assuming you don't need it. You can also use Wireshark to analyze the cause
of any DNS delays.

Broadcast/WINS

Test the client using nmblookup; if it's faster, you probably have the protocols problem
mentioned in the previous item.

hosts

The HOSTS file, if of reasonable size, is always fast. You probably have the protocols problem
mentioned previously under DNS.

LMHOSTS

This is not a name lookup problem; LMHOSTS files are as fast as hosts files.

12.6.5. Localhost issues

When a localhost isn't 127.0.0.1, try the following:

DNS

There is probably no record for localhost. A 127.0.0.1. Arrange to add one, as well as a
reverse entry, 1.0.0.127.IN-ADDR.ARPA PTR 127.0.0.1.

Broadcast/WINS

Not applicable.

hosts

Add a line that says 127.0.0.1 localhost.

LMHOSTS

Not applicable.

12.7. Troubleshooting Network Addresses

A number of common problems are caused by incorrect routing of Internet addresses or by the
incorrect assignment of addresses. This section helps you determine your addresses.

12.7.1. Netmasks

Using the netmask, it is possible to determine which addresses can be reached directly (i.e., which
are on the local network) and which addresses require forwarding packets through a router. If the
netmask is wrong, the systems will make one of two mistakes. One is to route local packets via a
router, which is an expensive waste of timeit might work reasonably fast, it might run slowly, or it
might fail utterly. The second mistake is to fail to send packets from a remote system to the router,
which will prevent them from being forwarded to the remote system.

The netmask is a number like an IP address, with one bits for the network part of an address and
zero bits for the host portion. It is used as a bitmask to mask off parts of the address inside the
TCP/IP code. If the mask is 255.255.0.0, the first two bytes are the network part and the last two are
the host part; this is sometimes known (somewhat anachronistically) as the netmask for a class B
network. More common is the class C netmask 255.255.255.0, in which the first three bytes are the
network part and the last one is the host part.

For example, let's say your IP address is 192.168.1.10 and the Samba server is 192.168.236.86. If
your netmask happens to be 255.255.255.0, the network part of the address is the first 3 bytes, and
the host part is the last byte. In this case, the network parts are different, and the systems are on
different networks:

Network part Host part

192 168 001 10

192 168 236 86

If your netmask happens to be 255.255.0.0, the network part is just the first 2 bytes. In this case,
the network parts match, and so the two systems are on the same network:

Network part Host part

192 168 001 10

192 168 236 86

Make sure that the netmask in use on each system matches the structure of your network. On every
subnet, the netmask should be identical on each system.

12.7.2. Broadcast Addresses

The broadcast address is a normal address, with the hosts part all one bits. It means "all hosts on
your network." You can compute it easily from your netmask and address: take the address and put
one-bits in it for all the bits that are zero at the end of the netmask (the host part). The following
table illustrates this:

 Network part Host part

IP address 192 168 236 86

Netmask 255 255 255 000

Broadcast 192 168 236 255

In this example, the broadcast address on the 192.168.236 network is 192.168.236.255. There is
also an old "universal" broadcast address, 255.255.255.255. Routers are prohibited from forwarding
these, but most systems on your local network will respond to broadcasts to this address.

12.7.3. Network Address Ranges

A number of address ranges have been reserved for testing and for nonconnected networks; we use
these for the examples in this book. If you don't have an address yet, feel free to use one of these to
start. They include one class A network, 10.*.*.*, a range of class B network addresses, 172.16.*.*
through 172.31.*.*, and 254 class C networks, 192.168.1.* through 192.168.254.*. The domain
example.com is also reserved for unconnected networks, explanatory examples, and books.

If you're actually connecting to the Internet, you'll need to get an appropriate IP address and a
domain name, probably through the same company that provides your connection.

12.7.4. Finding Your Network Address

If you haven't recorded your IP address, you can learn it through the ifconfig command on Unix or
the ipconfig.exe command on Windows. Check your manual pages for any options required by your
brand of Unix. For example, ifconfig -a works on both Linux and Solaris. You should see output
similar to the following:

$ ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:14:A4:82:36:E0
 inet addr:192.168.236.86 Bcast:192.168.236.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:54509 errors:2199 dropped:0 overruns:0 frame:2199
 TX packets:45497 errors:1 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:200

 RX bytes:19202254 (18.3 Mb) TX bytes:5060379 (4.8 Mb)
 Interrupt:11 Memory:f92e0000-f92f0000

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:291088 errors:0 dropped:0 overruns:0 frame:0
 TX packets:291088 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:75847323 (72.3 Mb) TX bytes:75847323 (72.3 Mb)

One of the interfaces will be loopback (in our examples, lo), and the other will be the regular IP
interface. The flags should show that the interface is running, and Ethernet interfaces will also say
they support broadcasts (PPP interfaces don't).

12.8. Troubleshooting NetBIOS Names

Historically, SMB protocols have depended on the NetBIOS name system, also called the LAN
Manager name system. This was a simple scheme where each system had a unique 15-character
name (plus one byte for the resource type) and broadcast it on the LAN for everyone to know. With
TCP/IP, we tend to use names such as client.example.com, stored in /etc/hosts files or DNS.

The usual mapping of DNS names such as server.example.com to NetBIOS names uses the server
part as the NetBIOS name and converts it to uppercase. Alas, this approach doesn't always work,
especially if you have a system with a 16-character name; not everyone uses the same NetBIOS and
DNS names. In this case, it would not be unusual to have a host with a NetBIOS name of corpvm1 and
a DNS name of vm1.corp.com.

A system with a different NetBIOS name and DNS name is confusing when you're troubleshooting;
we recommend that you try to avoid this wherever possible. NetBIOS names are discoverable with
smbclient:

If you can list shares on your Samba server with smbclient -L short_name, the short name is

the NetBIOS name.

If you get Get_Hostbyname: Unknown host name, there is probably a mismatch. Check in the

smb.conf file to see whether the NetBIOS name is explicitly set.

Try to list shares again, specifying -I and the IP address of the Samba server (e.g., smbclient -
L server -I 192.168.236.86). This command overrides the name lookup and forces the packets
to go to the IP address. If this attempt works, there was a mismatch.

Try with -I and the full domain name of the server (e.g., smbclient -L server -I
server.example.com). This tests the lookup of the domain name, using whatever scheme the
Samba server uses (e.g., DNS). If it fails, you have a name service problem. You should reread
the earlier section "Troubleshooting Name Services" after you finish troubleshooting the
NetBIOS names.

If nothing is working so far, repeat the tests specifying -U username and -W workgroup, with the

username and workgroup in uppercase, to make sure you're not being derailed by a user or
workgroup mismatch.

If still nothing works and you had evidence of a name service problem, troubleshoot the name
service (see the earlier section, "Troubleshooting Name Services") and then return to the
NetBIOS name service.

12.9. Extra Resources

At some point during your work with Samba, you'll want to turn go online for news, updates, and aid.

12.9.1. Documentation and FAQs

Samba ships with a large set of documentation files, and it is well worth the effort to at least browse
through them, either in the distribution directory on your computer under docs or online at the
Samba web site: http://www.samba.org. The most current FAQ list, bug information, and distribution
locations are located at the web site, with links to all the Samba manual pages and HOWTOs. There is
also a newly launched Wiki for the Samba community, hosted at http://wiki.samba.org.

12.9.2. Samba Mailing Lists, Newsgroups, and IRC

The following are mailing lists for support with Samba. See https://lists.samba.org for information on
subscribing and unsubscribing to these mailing lists:

samba@samba.org

This is the primary mailing list for the Samba user community and for general questions and
discussion regarding Samba.

samba-technical@samba.org

This mailing list focuses on the Samba development and is where Samba programmers
coordinate discussion of the Samba code.

samba-announce@samba.org

This low-noise list is for receiving news regarding Samba, such as announcements of new
releases.

samba-cvs@samba.org

By subscribing to this list, you automatically receive a message every time one of the Samba
developers updates the Samba source code in the subversion repository. You might want to do
this if you are waiting for a specific bug fix or feature to be applied. To avoid congesting your
email inbox, we suggest using the digest feature, which consolidates messages into a smaller

http://www.samba.org
http://wiki.samba.org

number of emails.

Searchable versions of the Samba mailing list archives can be found online at
http://marc.theaimsgroup.com.

When posting messages to the Samba mailing lists, keep in mind that you are sending your message
to a large audience. A well-formulated, concise question or comment with a precise and informative
subject line is more likely to be answered, and a poorly considered message is very likely to be
ignored. Once you post a request for help, keep poking at the problem yourself. Most of us have had
the experience of posting a message containing hundreds of lines of intricate detail, only to solve the
problem an hour later after the article has blazed its way across several continents. The rule of
thumb goes something like this: the more folks who have read your request, the more likely that at
least one person will be able to identify a solution.

The primary newsgroup for Samba is comp.protocols.smb. And although the main Samba discussion
is now on the project's mailing lists, this vast pool of Usenet knowledge has developed into something
that has made it into an invaluable resource: a memory. Archival and search sites such as the one at
Google (http://groups.google.com/advanced_group_search) have made sifting through years of
valuable solutions as simple as a few mouse clicks.

When searching a newsgroup, try to be as specific as possible, but not too wordy. Searching on
actual error messages is best. If you don't find an answer immediately in the newsgroup, resist the
temptation to post a request for help until you've done a bit more work on the problem. You might
find that the answer is in an FAQ or one of the many documentation files that ship with Samba, or a
solution might become evident when you run one of Samba's diagnostic tools.

If you prefer interactive discussion, both users and developers have formed a community at
irc.freenode.net on the #samba and #samba-technical channels. The former is for talking to other
Samba users and dealing with installation or configuration issues. You will find random technical
discussions between developers on the latter channel.

12.9.3. Filing a Bug Report

Sometimes no amount if troubleshooting can diagnose an error because you have found a legitimate
bug in Samba. Samba developers use Bugzilla for tracking defects. You can search the open bug
reports and file your own at https://bugzilla.samba.org. When filing a new bug, remember to include
these important pieces of information:

The version of Samba that exhibits the defect.

Details of the server's operating system, including patch level and kernel revision.

The CIFS client that exposes the problem. For Windows clients, include the operating system
and installed service pack.

The steps to be taken to reproduce the bug.

What behavior you expected from Samba.

Be prepared to supply any additional logs or network traces that might be requested by developers.

http://marc.theaimsgroup.com
http://groups.google.com/advanced_group_search

It is also a good idea to continue to try to reproduce the failure against the most current production
Samba release. If the defect has been fixed, make sure that you update the bug report and let the
developers know.

Appendix A. Summary of Samba Daemons
and Commands
This appendix is a reference listing of command-line options and other information to help you use
the programs that come with the Samba distribution.

A.1. SMB URI Syntax

Commands that make use of Samba's libsmbclient library frequently prefer (or require) the SMB URI
syntax instead of the UNC path when accessing SMB/CIFS servers. The SMB URI syntax is similar to
the URIs used to access resources on the Internet, such as ftp://ftp.samba.org/pub/samba/ or
http://www.samba.org/samba/docs/index.html.

The smb:// syntax can be used to enumerate browse lists of workgroups or shares on servers. The
following two URI examples enumerate the contents of a workgroup's browse list and a servers
collection of shares:

smb://workgroup/
smb://server/

These next two examples connect to a share on a specific server.

smb://server/share
smb://workgroup/server/share

These final two examples are used to connect to the same shares as in the previous listing, but
include user credentials in the URI string:

smb://username:password@server/share
smb://username:password@workgroup/server/share

More information on the SMB URI syntax can be found in the latest copy of the draft-crhertel-smb-uri
Internet draft at http://ubiqx.org/cifs.

http://www.samba.org/samba/docs/index.html
http://ubiqx.org/cifs

A.2. Samba Daemons

The following sections provide information about the command-line parameters for smbd, nmbd,
winbindd, and swat. Some options are shared by all four daemons:

-?|--help

Print usage information for the command.

--usage

Print a brief command usage description.

-d|--debuglevel debug_level

Set the debug (sometimes called logging) level. The level normally ranges from 0 to 10.
Specifying the value on the command line overrides the value specified in the smb.conf file.
Debug level 0 logs only the most important messages; level 1 is normal; levels 3 and above
are primarily for debugging and can slow the daemon considerably.

-l|--log-basename log_directory

Send the log messages to somewhere other than the location compiled into the executable or
specified in the smb.conf file. If the directory does not exist, Samba's compiled-in default will
be used.

-s|--configfile configuration_file

Specify the location of the Samba configuration file, overriding any compile time default
location.

-V|--version

Print the daemon's version information.

The following additional options are available only to smbd, nmbd, and winbindd:

-F|--foreground

Run smbd in the foreground (i.e., do not detach from the terminal). This option is primarily of
use when running Samba under the daemontools services (http://cr.yp.to/daemontools.html).

-i|--interactive

Run the binary interactively, rather than as a daemon. All debug messages are written to
standard output, which can be very useful for quick debugging sessions. You can terminate the
daemon by pressing CTRL+C.

-S|--log-stdout

Log all debug messages to standard output rather redirecting to a logfile. This option is
frequently used in conjunction with the --foreground option and the daemontools service
management tools.

The smbd program provides Samba's file, printer, and authentication services, using one
daemon per TCP/IP stream, which usually equates to one smbd process per connected client. It
is controlled by a configuration file named smb.conf, although certain settings can be
overridden by command-line options.

The configuration file is automatically re-evaluated every three minutes. If it has changed (or if
the list of included files has changed), most new options are immediately effective. You can
force Samba to reload the configuration file immediately by either sending a HUP signal to a
specific smbd process or by running smbcontrol smbd reload-config. Reloading the
configuration file does not normally affect any clients that are already connected (unless of
course the changes introduced a bad configuration).

Other signals

To shut down an smbd process, send it the termination signal SIGTERM (15), which allows it to
die gracefully, instead of a SIGKILL (9).

Command synopsis

smbd [options]

Additional options

-b|--build-options

Display options and configure test results used to build smbd.

http://cr.yp.to/daemontools.html

-D|--daemon

Run the smbd program as a daemon. This is the recommended way to use smbd. It is
also the default action when smbd is run from an interactive command line. In addition,
smbd can be run from inetd.

-p|--port port_number

Set the TCP/IP port number from which the server will accept requests. The default is to
service TCP ports 139 for traffic over the NetBIOS session layer and 445 for SMB/CIFS
traffic directly over TCP.

The nmbd program is Samba's NetBIOS name service and browsing daemon. It replies to
NetBIOS over TCP/IP (also called NetBT or NBT) name-service requests broadcast from SMB
clients, and optionally to Microsoft's Windows Internet Name Service (WINS) requests. Both
are versions of the name-to-address lookup required by NetBIOS clients. The broadcast version
uses UDP, broadcast on the local subnet only, while WINS uses TCP, which can be routed. If
running as a WINS server, nmbd keeps a current name and address database in the file
wins.dat stored in Samba's lock dircetory.

An active nmbd daemon also responds to browsing protocol requests used by the Windows My
Network Places. This protocol provides a dynamic directory of servers, as well as the disks and
printers that the servers are providing. If nmbd is acting as a local master browser, it stores
the browsing database in the file browse.dat also stored in in Samba's lock directory.

Signals

Like smbd, the nmbd program responds to several Unix signals. Sending nmbd a SIGHUP signal
causes it to dump the names it knows about to the namelist.debug file in its lock directory. To
shut down an nmbd process and allow it to die gracefully, send it a SIGTERM (15) signal, rather
than a SIGKILL (9).

Command synopsis

nmbd [options]

Additional options

-D|--daemon

Run the nmbd program as a daemon. This is the recommended way to use nmbd. It is
also the default action when nmbd is run from an interactive command line. In addition,
nmbd can be run from inetd.

-H|--hosts lmhosts_file

Specify the location of the lmhosts file for name resolution. This file is used only to
resolve names for the local server, not to answer queries from remote systems.

-p|--port port_number

Set the UDP port number from which the server accepts requests. The default is to
service the name service UDP port 137 and the NetBIOS datagran UDP port on 138.

The winbindd daemon is part of the Winbind service and is used to allow Unix systems to obtain
user and group information from a Windows or Samba domain. Winbind maps Windows relative
IDs (RIDs) to Unix uids and gids and allows domain accounts to be used for Unix
authentication. Its purpose is to ease integration of Microsoft and Unix networks when a
preexisting domain is set up to handle authentication and authorization responsibilities.

The daemon is accessed by users via the name service switch and PAM. Both services use
Samba provided libraries to send requests to winbindd over Unix domain sockets. winbindd
then communicates with domain controllers on behalf of the Unix programs.

Winbind is discussed extensively in Chapter 10.

Command synopsis

winbindd [options]

Additional options

-n|--no-caching

Disable caching of domain user and group information. Under normal circumstances,
account data is cached according the winbind cache time setting in smb.conf.

The Samba Web Administration Tool (SWAT) is used to configure a server's smb.conf file and to
provide some basic user management features. It can be run only from inetd, as described in
Chapter 2.

Options

-a|--disable-authentication

Disable authentication checks in SWAT. This flag should be used only when debugging
new installations.

-P|--password-menu-only

Restrict access to all pages in SWAT except the password change dialog box. This is
useful as a browser-based password change application for users rather than running the
smbpasswd command manually.

A.3. Samba Client Programs

This section lists the command-line options and subcommands provided by each nondaemon program
in the Samba distribution.

A.3.1. Common Options

Many Samba commands share groups of command-line parameters. The common options fall into
three categories:

A.3.1.1. General options

-?|--help

Print usage information for the command.

--usage

Print a brief command usage description.

-d|--debuglevel debug_level

Set the debug (sometimes called logging) level. The level normally ranges from 0 to 10.
Specifying the value on the command line overrides the value specified in the smb.conf file.
Debug level 0 logs only the most important messages; level 1 is normal; levels 3 and above
are primarily for debugging Samba and can slow the tool considerably.

-l|--log-basename log_directory

Send the log messages to somewhere other than the location compiled into the executable or
specified in the smb.conf file. If the directory does not exist, Samba's compiled-in default will
be used.

-s|--configfile configuration_file

The location of the Samba configuration file, overriding any compile time default location.

-V|--version

Print the program's version information.

A.3.1.2. Authentication options

-A|--authentication-file filename

Specify a file containing the user credentials to be used for the connection request rather than
passing the information as command-line parameters. Parameters in the file can be one of
three keywords: username, password, or domain. Each keyword is followed by an equal sign (=)
and the option's value. The format of the file is as follows:

username = value

password = value

domain = value

Parameters defined in the authentication file take precedence over their command-line counterparts.
The permissions on the file should be very restrictive (0600, for example) to prevent access by
unwanted users. You can find examples of authentication files in Chapter 11.

-k|--kerberos

Enable Kerberos 5 authentication when connecting to the remote server. This requires that you
have previously obtained a TGT using the kinit command. When you enable Kerberos
authentication, the -U and -A options will be ignored. More information about Kerberos can be
found in Chapter 10.

-N|--no-pass

Request an anonymous connection.

-P|--machine-pass

Use the machine's trust account when connecting to remote servers.

-S|--signing=[on,off,required]

Specify the SMB signing policy to use when connecting to a remote server. The keyword on
enables negotiation of SMB signing, and required makes the capability mandatory. To disable
client support entirely, even if SMB signing is supported by the server, set the parameter to
off.

-U|--user name

Specify the user name to use in the authentication request when connecting to a remote
server. You can append the user's password to the login name by specifying a percent sign (%)
and then the passphrase.

A.3.1.3. Connection options

-i|--scope netbios_scope

The NetBIOS scope value to be used when communicating with other NetBIOS hosts. You
should never use this option unless absolutely required by the remote server.

-n|--netbiosname name

The calling name to be used in the NetBIOS session request. This is not needed for most
network environments.

-O|--socket-options option_list

Define a list of socket options to be used in the client connection. The range of options will vary
from system to system and is described fully in the manpage for the setsockopt() function call.
This parameter is normally useful when testing performance and running benchmarks.

-W|--workgroup name

The list client's workgroup (or domain) name. This is useful when you need to specify a user's
domain as part of the authentication requests.

The eventlogadm command is used to manage Samba's EventLog tdb files and related settings.
Its primary use is to write new EventLog entries. Unlike other Samba command-line tools,
eventlogadm does not share any of the common options. Eventlogs are covered in Chapter 9.

Command synopsis

eventlogadm [options]

Options

-d

Enable the tool's debug output.

-h

Print command-line usage.

-o write EventLogName

Write a a log entry to the file EventLogName.tdb in Samba's lock directory. The logfile

name must be listed in the eventlog list parameter in smb.conf.

-o addsource EventLogName SourceName MessageFileDLL

The Windows message file DLL location that will be downloaded by Windows clients when
viewing Eventlog records.

This Perl script reports information about systems on the subnet that respond to SMB name-
query requests. The report includes the IP address, NetBIOS name, workgroup/domain, and
operating system of each system.

The output from findsmb looks like this:

$./findsmb
 *=DMB
 +=LMB
IP ADDR NAME WORKGROUP/OS/VERSION

192.168.1.46 FIR [VALE] [Unix] [Samba 3.0.20b]
192.168.1.47 OAK +[COLOR] [Unix] [Samba 3.0.14a]
192.168.1.74 MAPLE *[VALE] [Unix] [Samba 3.0.22]
192.168.1.101 SPUD *[AD] [Windows 5.0] [Windows 2000 LAN Manager]

The system with an asterisk (*) in front of its workgroup name is the domain master browser for the
workgroup/domain, and the system with a plus sign (+) preceding its workgroup name is the local
master browser.

Command synopsis

findsmb [options]

Options

-B

Specify the broadcast address when calling nmblookup to resolve master browsers and
server names. If no subnet broadcast address is supplied, findsmb will look on the local
subnet.

-d|-D

Enable debug messages in the findsmb code.

-r

Enable the root-only flag when calling nmblookup. This is useful when locating Windows
95 hosts on the network.

The net command is a program with a syntax similar to the MS-DOS/Windows command of the
same name. It is used for performing various administrative functions related to Windows
networking, which can be executed either locally or on a remote system.

This utility has the same general, authentication, and connection command-line options as
many Samba tools.

Command synopsis

net [method] function [target_options] [misc_options]

The function argument is made up of one or more space-separated words. In Windows terminology,

it is sometimes referred to as a function with options.

By default, the action is performed on the local system. The target_options argument can be used to

specify a remote system (either by hostname or IP address), a domain, or a workgroup.

Depending on the function, the method argument can be optional, required, or disallowed. It specifies

one of three methods for performing the operation specified by the rest of the command. It can be
ads (Active Directory), rpc (Microsoft's DCE/ RPC), or rap (Microsoft's original SMB remote procedure
call). To determine which methods (if any) can be used with a function, the net help ads, net help
rap, and net help rpc commands can be used to list the functions for each method.

Chapter 11 contains more information on the net command as well as examples.

Target options

-S|--server hostname

Specify the remote system using a hostname or NetBIOS name.

-I|--ipaddress ip_address

Specify the remote system using its IP address.

-w|--workgroup workgroup

Specify the name of the target domain or workgroup.

Miscellaneous options

-d|--debuglevel level

Define Samba's log for displaying information debug messages.

-l|--long

Long listing mode. This is provided for functions that print informational listings.

-n|--myname name

The NetBIOS name for the client.

-p|--port port

The port number to use when connecting to the server.

-P|--machine-pass

Use the machine's trust account when connecting to remote servers.

-s|--configfile configuration_file

The location of the Samba configuration file, overriding any compile time default location.

-U|--user name

The user name to use in the authentication request when connecting to a remote server.
You can append the user's password to the login name by specifying a percent sign (%)
and then the passphrase.

-V|--version

Print the Samba's version information.

-W|--workgroup name

The list client's workgroup (or domain) name. This is useful when you need to specify a
user's domain as part of the authentication requests.

RAP functions

domain

Enumerate the list of known browsing domains and browse masters.

file [user|close|info]

Enumerate all open files or ones opened by a specific user. You can also request the
server to close a given file.

group [add|delete]

The basic form of the group command allows you enumerate groups on the server as well
as create new ones or remove existing ones.

groupmember

Manage group membership.

password username old_password new_password

Send a user password change request for username.

printq [list|delete]

Enumerate jobs in a print queue or remove specific jobs.

server

Enumerate hosts in the server's workgroup.

session [close|info]

Enumerate open sessions on the server. You may also request additional information
regarding a specific session or request that the server close the active session.

share

Enumerate shares on the server similar to the smbclient -L command.

user [add|delete|rename|info]

Basic user management functions such as enumerating, creating, removing, and
renaming accounts.

validate username password

Authenticate a username/password pair against the server's list of accounts.

RPC functions

abortshutdown

Abort the shutdown of a remote server.

changetrustpw

Change the machine's trust account password.

file [user|close]

Enumerate all open files or ones opened by a specific user. You can also request the
server to close a given file.

getsid

Retrieve the domain SID from the remote server specified using the --server option and
store the result in secrets.tdb. This is often used as part of the net rpc vampire process.

group [add|delete|members|addmem|delmem]

The basic form of the group command allows you enumerate groups on the server as well
as create new ones or remove existing ones. The membership-related subcommands can
be used to list or modify the collection of users belonging to a group.

info

Print information about the remote server and its domain.

join

Join a Windows or Samba domain for use with security = domain configurations. If the -
U username%password option is included, the specified username and password will be
used as the administrative account required for authenticating with the PDC. If the -U
option is not included, this function can be used only to join the computer to the domain
after the computer account has been created using the Server Manager.

password username new_password

Set the password for a user account. You must specify an account with administrative
rights using the --user option in order to force the password change.

printer [list|driver|publish|migrate]

Enumerate printers or drivers installed on the server. If the remote host is joined to an
AD domain, you can also have the server publish the printer's information in the
directory service. The final option allows you to migrate printers, drivers, or settings from
the remote server to the local Samba host.

registry [enumerate|save|dump]

Simple interface for viewing remote registry files as well as saving them to a local file.
This is an experimental feature currently.

rights [list|grant|revoke]

Manage the user privilege assignments on a server. You can enumerate the available
rights and assignments. The grant and revoke subcommands allow you to add and
remove assignments respectively. Chapter 5 discusses user rights in detail.

service [list|stop|start|pause|resume|status]

Manage a server's collection of services. This includes listing installed services and their
current state as well as toggling the state of running, paused. or stopped services.
Chapter 9 covers the steps to setup service control on Samba hosts.

share [add|delete|allowedusers|migrate]

Manage file shares on the server. This includes listing active shares as well as creating
new ones and unsharing existing ones. You can also migrate shares and files from the
remote server to the local Samba host. Share management is discussed in Chapters 9
and 11.

shutdown

Shut down a server. This function accepts the -r, -f, -t, and -c miscellaneous options.
The -r option (which can also be specified as --reboot) requests that the system reboot
after shutting down. The -f option (which can also be specified as --force) forces a
shutdown. The -t timeout option (which can also be specified as --timeout=number)
specifies the number of seconds to wait before shutting down, and the -c comment option
(which can also be specified as --comment= string) can be used to specify a message to

the client user. On Windows, the comment appears in the Message area in the System
Shutdown dialog box.

testjoin

Validate the local host's machine trust account password in the domain.

trustdom [list|add|del|establish|revoke]

Manage domain trust relationships on a Samba domain controller. Chapter 9 discusses
the configuration details for establishing domain trusts.

user [add|delete|rename]

Basic user management functions such as enumerating, creating, removing, and
renaming accounts.

vampire

Migrate user, group, and computer accounts from a Windows NT Primary Domain
Controller onto a Samba PDC. Successfully running this command requires a large
amount of prior server configuration. Chapter 9 covers the complete steps for migrating
from a Windows domain to Samba.

ADS functions

changetrustpw

Change the machine's trust account password.

group [add|delete]

Enumerate groups on the server, as well as create new ones or remove existing ones.

info

Print information about the Active Directory server.

join

Join the local system to the Active Directory realm. This function must be used if your
server is configured to make use of security = ads and Kerberos authentication.

keytab [create|add|flush]

Manage a local Kerberos keytab file based on Samba's machine trust account password
and domain membership. This incldues creating an initial keytab file from the information
stored in secrets.tdb as well as adding new service principal names to the machine's
account in AD. Chapter 10 explains how to use keytab files with Samba member servers
in an AD environment.

leave

Remove the local system from the Active Directory realm. Newer versions of net will
disable the account rather than removing it.

lookup

Send a CLDAP request to an AD domain controller and display the query results.

password username@ REALM

Change the Active Directory password for the user specified by username@REALM. The
administrative account authentication information is specified with the -U option. The
Active Directory realm must be supplied in all uppercase.

printer [search|info|publish|remove]

Manage printer information stored in AD. This does not affect printers or print shares, but
only the information about the printer stored in the directory services.

search expr attrib

Perform a raw Active Directory search, using the standard LDAP search expression and
attributes specified by the expr and attrib arguments, respectively.

status

Print details about the Active Directory computer account of the system.

testjoin

Validate the local host machine's trust account password in the domain.

user [add|delete|rename]

Basic user management functions such as enumerating, creating, removing, and
renaming accounts.

Miscellaneous functions

cache [add|set|del|flush|get|search|list]

A simple database management tool for Samba's gencache.tdb. This can be helpful, for
example, when tracking down name resolution errors caused by incorrect cached
information.

getlocalsid [name]

Print the machine's local SID stored in secrets.tdb. You may supply an optional domain
name, in which case the SID for that name will be displayed instead.

groupmap [add|modify|delete]

Manage Samba's group mapping table. You can establish new mapping records and
update or remove existing ones. Samba's group mapping feature is discussed in Chapter
5.

help [command]

Print the help text for a specific command. Not all commands have help text available.

idmap [dump|restore]

Backup the idmap table to a text file or restore the table from a previous backup. The
dump subcommand prints the table contexts to standard output.

lookup [host|ldap|kdc|master]

Perform basic name resolution queries for determining the address of hostnames,
directory servers, Kerberos KDCs, and local master browsers.

time [set|system|zone]

Display the system timein Unix date command formaton the target system. You can use
the set and system subcommands to update the local host's clock.

setlocalsid

Define the SID to store for the local machine in secrets.tdb.

The nmblookup program is a client program that allows command-line access to NetBIOS name
service for resolving NetBIOS computer names into IP addresses. The program works by
broadcasting its queries on the local subnet until a machine with the specified name responds.
You can think of it as a Windows analog of nslookup or dig. This is useful for looking up regular
computer names, as well as special-purpose names, such as _ _MSBROWSE_ _. If you wish to
query for a particular type of NetBIOS name, add the NetBIOS type to the end of the name,
using the format netbios_name#dd, where dd is the hexidecimal representation of the resource

byte.

Command synopsis

nmblookup [options] netbios_name [netbios_name]

The nmblookup tool supports both the general and the connection option sets described in the
beginning of this section.

Options

-A|--lookup-by-ip

Interpret netbios_name as an IP address and does a node status query on it.

-B|--broadcast broadcast_address

Send the query to the given broadcast address. The default is to send broadcast queries
using all detected network interfaces.

-f|--flags

Print the NetBIOS flags in the packet headers.

-M|--master-browser

Search for a local master browser by looking up netbios_name<1d>. If netbios_name is

specified as a dash (-), a lookup is done on the special name _ _ MSBROWSE_ _.

-R|--recursion

Set the "recursion desired" bit in the packet. This causes the system that responds to try
a WINS lookup and return the address and any other information the WINS server has
saved.

-r|--root-port

Use the root port of 137. This option exists as a bug workaround for Windows 95. This
option might require the user to be superuser.

-S|--status

Perform a node status query once the name query has returned an IP address. This
returns all the resource types that the system knows about, including their numeric
attributes.

-T|--translate

Translate IP addresses into resolved names.

-U|--unicast unicast_address

Perform a unicast query to the specified address. Used with -R to query WINS servers.

The ntlm_auth tool similar to a command-line version of the pam_winbind library and is
provided for Unix daemons that require support for the NTLM challenge/response
authentication. The most popular use of a ntlm_auth is in combination with the Squid Web
Proxy server, although the tool has also been used in conjunction with PPP services, Apache
authentication modules, and RADIUS servers, to name a few examples.

Command synopsis

ntlm_auth [options]

The ntlm_auth commands supports the general option set used by many Samba client tools and
discussed earlier in this appendix.

Options

--challenge hex_string

The NTLMSSP challenge, as a hexadecimal-encoded string.

--diagnostics

Print additional information in order to help debug failures in the authentication process.

--domain name

The user's domain name to use during authentication.

--helper-protocol protocol_version

Use the standard input helper protocol_version. The list of currently valid protocol

names is:

gss-spnego
gss-spnego-client

ntlm-server-1
ntlmssp-client-1

squid-2.4-basic
squid-2.5-basic
squid-2.5-ntlmssp

--lm-response hex_string

The LanManager response string as a hexadecimal encoded string.

--nt-response hex_string

The NT response string, as a hexadecimal encoded string.

--password passphrase

The user's clear-text password to use in the authentication request.

--request-lm-key

Request that the LanManager session key be displayed on standard output.

--request-nt-key

Request that the NT session key be displayed on standard output.

--require-membership-of SID

Verify that the user is a member of the domain group specified by the SID.

--username name

The user's login name to use in the authentication request.

--workstation name

The user's workstation name to use in the authentication request.

This program can be used to manage accounts that are held in a passdb module. Because this
tool uses the passdb storage mechanisms directly and not MS-RPC, you must be the superuser
to operate this tool.

Command synopsis

pdbedit [options] username

The pdbedit utility supports the general option set common to many Samba client tools.

Options

-a|--create

Add the username to the SAM database. The command issues a prompt for the user's

password.

-b|--backend pwdb_name

Specifiy the passdb backend name to use for the current operation, in place of the value
define in smb.conf.

-C|--value integer

The value of an account policy. Refer to the --account-policy option for details on
available policy names.

-c|--account-control flags

Define the account control flags for a user. The flags value must be a collection of one or
more of the following types: N, D, H, L, or X. The account control flags must be enclosed
using square brackets ([]). Discussions regarding the meaning of flags can be found in
Chapter 5.

-D|--drive drive_letter

Set the Windows drive letter to which to map the user's home directory. The drive letter
should be specified as a letter followed by a colone.g., H:.

-e|--export pwdb_backend

Export the user account database to another passdb format, written to the specified
location. Used for migrating from one type of account database to another. The
pwdb_backend argument is specified in the format of a valid passdb backend name,

followed by a colon, then the location of the database. For example, to export the
existing account database to an smbpasswd database in the file /etc/samba/smbpw,
pwdb_backend would be specified as smbpasswd:/etc/samba/smbpw.

-f|--fullname full_name

Set the full name of the user specified with the -u option.

-h|--homedir unc

Set the home directory path (as a UNC) for the user specified with the -u option.

-I|--domain name

Set the user's domain.

-i|--import pwdb_backend

A password database backend from which to retrieve account information, overriding the
one specified by the passdb backend parameter in the Samba configuration file. This,
along with the --export option, is useful for migrating user accounts from one type of
account database to another. See the --export option regarding how to specify the
pwdb_backend argument.

-L|--list

List the user accounts in the database. See also the --verbose option.

-m|--machine

Indicate that the account is a computer account rather than a user account. Used only
with the -a option when creating the account.

-N|--account-desc string

Set the user's account description string.

-P|--account-policy policy_name

Define the policy to be modified by the --value parameter. Because the policy names

contain whitespace, be sure to enclose the string in quotes. Valid policy names are as
follows:

bad lockout attempt

disconnect time
lockout duration

maximum password age
min password length

minimum password age
password history

refuse machine password change
reset count minutes
user must logon to change password

-p|--profile UNC_path

Set the directory in which the user's profile is kept. The directory is specified as a UNC.

-r|--modify

Update an existing user rather than creating a new user.

-S|--script UNC_path

The UNC of the user's logon script.

-t|--password-from-stdin passphrase

Sets the user's password from standard input rather than prompting.

-U|--user-sid SID

Explicitly define the user's SID.

-u|--user username

The username of the account to add (with the -a option), delete (with the -x option), or
modify.

-v|--verbose

Use verbose mode when listing accounts with the --list option. The account fields will
be printed.

-w|--smbpasswd-style

Use the smbpasswd listing mode, for use with the --list option, which prints information
in the same format as it would appear in an smbpasswd file.

-x|--delete

Delete the user (specified with the -u option) from the account database.

-Z|--logon-hours-reset

Reset a user's login hours acccount restrictions.

-z|--bad-password-count-reset

Reset a user's bad password count to 0. Frequently, you will need to unlock the account
as well, unless the time specified by the "lockout duration" policy has elapsed.

The profiles program is a small utility for changing the SID in registry ACLs such as those found
in user roaming profiles (NTUSER.DAT). This is useful when migrating user profiles from one
domain to another.

Command synopsis

profiles [options] filename

The profiles command supports the general option set common to many Samba client tools.

Options

-c|--change-sid SID

The original SID that should be modified in access control entries.

-n|--new-sid SID

The new SID that should replace any occurrences of the --change-sid value.

This program provides a way of remotely modifying Windows ACLs on files and directories
stored on an SMB/CIFS share.

Command synopsis

smbcacls //server/share filename [options]

The smbcacls tool supports the standard general and authentication options described earlier in this
appendix.

Options

-a|--add ACLs

Add one or more ACLs to the file or directory. Any ACLs already existing for the file or
directory are unchanged.

-C|--chown username

Change the owner of the file or directory. This is a shortcut for -M OWNER:username. The
username argument can be given as a username or as the string format of a SID.

-D|--delete ACLS

Delete the specified ACLs.

-G groupname

Change the group of the file or directory. This is a shortcut for -M GROUP:groupname. The

groupname argument can be given as a group name or as the string format of a SID.

-M acls

Modify the mask of the ACLs specified. Refer to the following section, "Specifying ACLs"
for details.

--numeric

Don't resolve SIDs or access masks to their corresponding string representations.

-S|--set ACLS

Set the specified ACLs, deleting any ACLs previously set on the file or directory. The ACLs
must contain at least a revision, type, owner, and group.

-t|--test-args

Validate the command-line arguments, but do not actually perform the requested
modifications.

Specifying ACLs

In the previous options, the same format is always used when specifying ACLs. An ACL is made
up of one or more Access Control Entries (ACEs), separated by either commas or escaped
newlines. An ACE can be one of the following:

REVISION:revision_number

OWNER:username_or_SID

GROUP:group_name_or_SID

ACL:name_or_SID:type/flags/mask

The revision_number should always be 1. The OWNER and GROUP entries can be used to set the
owner and group for the file or directory. The names can be the textual ones or the string
representation of the SIDs.

The ACL entry specifies what access rights to apply to the file or directory. The name_or_SID
field specifies to which user or group the permissions apply and can be supplied either as a
textual name or a SID. An ACE can be used to either allow or deny access. The type field is set
to 1 to specify a permission to be allowed or 0 for specifying a permission to deny. The mask
field is the name of the permission and is one of the following:

R

Read access.

W

Write access.

X

Execute permission.

D

Permission to delete.

P

Change permissions on the object.

O

Take ownership.

The following combined permissions can also be specified:

READ

Equivalent to RX permissions

CHANGE

Equivalent to RWXD permissions

FULL

Equivalent to RWXDPO permissions

The flags field is for specifying how objects in directories are to inherit their default permissions
from their parent directory. For files, flags is normally set to 0. For directories, flags is usually
set to either 9 or 2.

The smbclient program is the "Swiss Army knife" of the Samba suite. Initially developed as a
testing tool, it has become a command shell capable of acting as a general-purpose Unix client,
with a command set very similar to that of ftp. It offers the following set of functions:

Interactive file transfer, similar to ftp

Interactive printing to shared SMB printers

Interactive tar format archiving

Sending messages on the SMB network

Batch mode tar format archiving

Enumerating shares and workgroup contents on remote servers

Debugging

Command synopsis

smbclient //server/share [password] [options]

It is possible to run smbclient noninteractively, for use in scripts, by specifying the -c option along
with a list of commands to execute. Otherwise, smbclient runs in interactive mode, prompting for
commands like this:

smb:\>

The backslash in the prompt is replaced by the current directory within the share as you change your
working directory with smbclient's cd command.

The smbclient command supports all three sets of command-line options (general, authentication,
and connection) common to other Samba client tools.

Options

-b|--send-buffer buffer_size

The size of the buffer used when transferring files. It defaults to 65,520 bytes and can be
changed as a tuning measure. Generally, it should be quite large or set to match the size
of the buffer on the remote system.

-c|--command command_string

Pass a command string to the smbclient command interpreter. The argument consists of
a semicolon-separated list of commands to be executed.

-D|--directory init_dir

Upon starting up, causes smbclient to change its working directory to init_dir on the
remote host.

-E|--stderr

Send output from commands to stderr instead of stdout.

-g|--grepable

When used in conjuction with the -L option, this parameter instructs smbclient to display
share, server, and workgroup lists in a format that is easily parseable in shell scripts.

-I|--ip-address IP_address

Set the IP address of the server to which the client connects.

-L|--list server

List services (shares) offered by the server. This can be used as a quick way to test an
SMB/CIFS server to see if it is working. If there is a name-service problem, use the -I
option to specify the server.

-M|--message NetBIOS_name

Allows you to send messages using the Windows messaging protocol. Once a connection
is established, you can type your message, pressing Ctrl-D to end. The -U and -I options
can be used to control the "From" and "To" parts of the message.

-m|--max-protocol level

The maximum SMB/CIFS protocol dialoect that smbclient will advertise when negotiating
a connection with a remote server. Valid protocol names are:

NT1
LANMAN2

LANMAN1

CORE
COREPLUS

-p|--port port_number

The port number used by smbclient to connect to the server.

-R|--name-resolve resolve_order

Set the resolve order of the name servers. This option is similar to the resolve order
configuration option and can take any of the four parameters lmhosts, host, wins, and
bcast, in any order. If more than one parameter is specified, the argument is specified as
a space-separated list. This option can be used to test name service by specifying only
the name service to be tested.

-T|--tar command_string tarfile

Run the tar archiver, which is gtar compatible. The tar file that is written to or read from
is specified by tarfile. The two main commands are c (create) and x (extract), which can
be followed by any of these options:

a

Reset the archive attribute on files after they have been saved. See also the g
option.

b size

The block size for writing the tar file, in 512-byte units.

g

Back up only files that have their archive bit set. See also the a option.

I filename

Includes files and directories. This is the default behavior, so specifying this is
redundant. To perform pattern matching, see also the r option.

N filename

Back up only those files newer than filename.

q

Suppress diagnostics.

r

Perform regular expression matching, which can be used along with the I or X
option to include or exclude files.

X filename

Exclude specified files and directories.

Commands

?|help [smbclient_command

With no command specified, print a list of available commands. If a command is specified
as an argument, a brief help message will be printed for it.

! shell_command

Shell escape. Run the specified command in a Unix shell.

altname filename

Cause smbclient to request from the server and then print the old-style, 8.3-format
filename for the specified file.

archive level

This controls the behavior in relation to the DOS archive bit when retrieving files. The
available levels are:

0

Ignore the archive bit entirely.

1

Retrieve only files whose archive bit is set.

2

Same as level 1 but resets the archive bit after the file copy.

3

Same as level 0 but resets the archive bit after the file copy.

blocksize

The blocksize to be used when writing tar files. The value must be between 0 and 65535.

cancel print_jobid [...]

Cause smbclient to request the server to cancel one or more print jobs, as specified by
the numeric job IDs provided as arguments. See also the queue command, which prints
job ids.

case_sensitive

Allows you to toggle case-sensitive and -insensitive filename lookups. The default is to
match Windows behavior and use case-insensitive lookups.

cd [directory]

With no argument, print the current working directory on the remote system. If a
directory name is supplied as an argument, change the working directory on the remote
system to that specified.

chmod filename octal_mode

Requests that the server change the Unix file permissions on filename to octal_mode,

specified in octal numeric format. Works only if the server supports CIFS Unix
extensions.

chown filename UID GID

Change the owner and group of the file specified by filename to those provided as

decimal numeric arguments uid and gid. Works only if the server supports CIFS Unix
extensions.

del filename

Delete one or more files, as specified by the argument, from the current working
directory. The argument can be a filename globbing pattern using the * and ? characters.

dir [filename]

With no arguments, print a list of files and directories in the working directory on the
server. If an argument is provided, only files and directories whose names match the
argument will be listed. The argument can be a filename globbing pattern using the *
and ? characters.

du

Calculate the disk usage and free space available for the share.

exit

Quit the smbclient program after terminating the SMB connection to the server. The q
and quit commands are aliases for exit.

get remote_file [local_file]

Copy the file specified by remote_file from the server to the local system. If no
local_file argument is specified, smbclient will name the local file the same as it is
named on the server. If local_file is specified, it will be used as the name of the local

copy. See also the lowercase command.

getfacl filename

Display the POSIX ACL for filename. This operation is supported only if the remote server

supports the CIFS Unix Extensions.

hardlink source destination

A Windows hardlink from destination to source. Refer to the link command for creating

Unix hard links.

history

Display a list of recently executed smbclient commands.

lcd [directory]

If no argument is provided, print the name of smbclient's working directory on the local
system. If a directory name is provided as an argument, changes smbclient's working
directory to the directory specified.

link link_name filename

Create a hard link to filename and name it link_name. This command works only if the

server supports CIFS Unix extensions.

listconnect

Display all current SMB/CIFS connections held by the current smbclient session. This is
really only of interest when connecting to MS-DFS root shares and following referrals.

lowercase

Toggle the Boolean lowercasing setting. When this setting is on, names of files copied
from the server with the get and mget commands will be changed to all lowercase. This

is mainly used for accessing servers that report filenames in all uppercase only.

mask [globbing_pattern]

Set the filename globbing pattern for use with the mget and mput commands when
recursion is turned on. (When recursion is off, the setting has no effect.) Both mget and
mput accept a globbing pattern as arguments; however, those patterns apply only to the
current directory. This command specifies the pattern used for all subdirectories that are
recursively traversed. The pattern stays in effect until it is changed with another mask
command. To return the setting to its original default, specify a globbing_pattern of an

asterisk (*), which matches all files. See also the mget, mput, and recurse commands.

mget pattern

When recursion is turned off, copy files matching the file-globbing pattern, as specified
by the argument, from the current working directory on the server to the local system.
When recursion is on, the pattern argument is used to match directories in the current
working directory, and the pattern specified by the mask command is used for matching
files within each directory and all subdirectories. See also the lowercase, mask, and
recurse commands.

mkdir

Create a directory on the remote share.

more

View a remote file using the local system's configured pager tool (e.g., the more
command).

mput pattern

When recursion is turned off, copy files matching the file-globbing pattern, as specified
by the argument, from the current working directory on local system to the remote
server. When recursion is on, the pattern argument is used to match directories in the

current working directory, and the pattern specified by the mask command is used for
matching files within each directory and all subdirectories. See also the lowercase, mask,
and recurse commands.

newer filename

Retrieve files with a timestamp newer than the one assigned to filename.

print filename

Print the specified file. This command requires that smbclient be connected to a print
share.

prompt

Toggle the prompting mode. When prompting is on (the default), the mget and mput
commands will interactively prompt the user for permission to transfer each file. The user
can answer either y (yes) or n (no), followed by a newline, to this prompt. When
prompting is off, all the files will be transferred with no prompts issued.

put local_file [remote_file]

Copy the file specified by local_file from the local to the remote system. If no
remote_file argument is specified, smbclient will name the remote file the same as it is
named on the local system. If remote_file is specified, it will be used as the name of the

remote copy. See also the lowercase command.

pwd

Print the current working directory on the server.

queue

Print information on the print queue on the server. This command requires that smbclient
is connected to a print share.

recurse

Toggle the recursion mode, which affects the mget and mput commands. When recursion
is off (the default), the mget and mput commands will copy only files from the current
working directory that match the file-globbing pattern specified as an argument to the
command, and the pattern set by the mask command is ignored. When recursion is
turned on, the mget and mput commands recursively traverse any directories that match
the pattern specified as the argument to the command, and the pattern set by the mask
command is used to match files in those directories.

rename source destination

Rename the source file (or directory) to destination.

reput filename [remote_filename]

Append a file from the local server to filename (or remote_filename if specified) on the

remote server.

rmdir directory

Requests that the server remove the specified directory.

setmode filename attributes

Assign the specified MS-DOS file attributes on the specified file. The attributes argument
has the format of a leading plus sign (+) or minus sign (-) either to set or to unset the
attribute(s), respectively, followed by one or more of the characters r (read), s
(system), h (hidden), or a (archive).

showconnect

Display the active connenction for the current working directory. This command allows
you to determine what server you are connected to after following a MS-DFS referral.

stat filename

Perform a Unix stat() call on the remote filename. This call requires that the server

support the CIFS Unix Extensions.

symlink link_name filename

Request that the server create a symbolic link named link_name to filename. This

command works only if the server supports Unix CIFS extensions. The server will not
create a link that refers to a file not in the share to which smbclient is connected.

tar cmd_str

Perform an archiving operation using the tar format. This is the interactive form of the -T
command-line operation, and the cmd_str argument is specified in the same manner. See

also the tarmode command.

blocksize size

The block size, in units of 512 bytes, for files written by the tar command.

tarmode mode ...

Specify how the tar command performs its archiving, including how it handles the archive
attribute on files. Multiple mode arguments can be provided:

full

All files will be included, regardless of whether their archive attribute is set. This is
the default behavior.

inc

Only files that have the archive attribute set will be included in the backup.

reset

The archive attribute will be unset by tar after the file is included in the archive.

noreset

The archive attribute will be left unchanged. This is the default.

hidden|nohidden

Controls whether files with the hidden attribute set will be included in the archive.
The default is to include files with the hidden bit set.

system|nosystem

Determines whether files with the system attribute set will be included in the
archive. The default is to include files with the system bit set.

verbose|noverbose

If verbose mode is enabled (the default), file names will be printed as each one is
included in the archive (when creating the archive) or is read from the archive
(when extracting it).

volume

Display the volume name of the share containing the current working directory. The
volume name is dependent on the current connect when following MS-DFS referrals. Also
refer to the showconnect command.

The smbcontrol command sends control messages to running smbd, nmbd, or winbindd
processes.

Command synopsis

smbcontrol [options]

process message-type [parameters]

smbcontrol supports the standard --version , --help, and the --configfile options described in the
previous General Options section.

Options

-t|--timeout seconds

The period before timing out while waiting for a response to a message.

Each smbcontrol command has up to three parts:

process

The process or group of processes to which to send the message. If process is smbd or
winbindd, all named processes will receive the message. If process is nmbd, only the
main nmbd process (identified by Samba's nmbd.pid file) receives the message. If
process is the numeric PID of a running process on the system, that process will receive
the message.

message-type

The type of message that is sent. For more information, see the section "smbcontrol
message types" that follows.

parameters

Additional parameters required by some messages.

smbcontrol message types

close-share share_name

Close the connection to a share or shares. If share_name is specified as an asterisk (*),
connections to all shares will be closed. To close a single connection, share_name is given

as the name of a share, as specified in the Samba configuration file, not including the
enclosing brackets. No message is printed if there is an error in specifying share_name.

debug num

The debugging level. The num parameter specifies the level, which can be from 0 to 10.

debuglevel

Print the current debugging level.

dmalloc-mark

Instruct a process to remember a memory watermark. This option is of use only when
the --enable-dmalloc option was included during the initial compilation.

dmalloc-log-changed

Display the memory allocation statistics since the last dmalloc-mark command. This
option is of use only when the --enable-dmalloc option was included during the initial
compilation.

drvupgrade driver_name

Send a notify message to smbd that driver_name has been changed so that the daemon

can rebind driver initialization data to associated printers.

force-election

Can be used only with nmbd, telling it to force a master browser election.

nodestatus

Ask the nmbd daemon to perform a NetBIOS node status request.

ping number

Sends number of pings and reports when they receive a reply or timeout. Used for

connectivity testing.

profile mode

This command controls profiling statistics collection. If mode is on, profile statistics will be
collected. If mode is off, collection of statistics is turned off. If mode is specified as count,
only counting statistics are collected (and not timing statistics). If mode is flush, the data

set is cleared (initialized).

profilelevel

Print the current profiling level.

pool-usage

Dump the statistics for all current talloc() memory allocation.

printer-notify printer_name

Send a notify message to smbd that printer_name has been changed so that the daemon

can send a notification to any cliented monitoring that printer.

reload-config

Instruct a daemon to reload its configuration information. This is an alternative to
sending a process the HUP signal.

shutdown

Ask a running process to gracefully terminate.

The smbcquotas program provides a simple interface to query and set filesystem quotas on
remote SMB/CIFS shares.

Command synopsis

smbcquotas //server/share [options]

The smbcquotas tool supports the standard general and authentication options described earlier in
this appendix.

Options

-F|--fs

Display filesystem quotas configured on the share.

-L|--list

Display all user quotas configured on the share.

-n|--numeric

Don't resolve SIDs or access masks to their corresponding string representations.

-S|--set quota_string

Set the quota_string value for the SMB/CIFS share. The format of quota_string is

covered in the Quota Settings section.

-t|--test-args

Validate the command-line arguments but do not actually perform the requested
modifications.

-u|--user username

Display the quota settings for username.

-v|--verbose

Increase the amount of information messages written to standard output.

Quota settings

Quota strings passed to the --set parameter can be in one of three forms. The first form is
used to set a user quota policy. The username refers to the user whose quota is being set or
modified. The softlimit and hardlimit values are given in bytes.

UQLIM:username/softlimit/hardlimit

The second type of quota string controls the filesystem quota setings. Once again the softlimit and
hardlimit values are given in bytes.

FSQLIM:softlimit/hardlimit

The final format of the quota string defines overall quota behavior.

FSQFLAGS:flags

The flags argument is one of more of the following values, using the forward slash character (/) to

delimit entries:

QUOTA_ENABLED
DENY_DISK

LOG_SOFTLIMIT

LOG_HARD_LIMIT

The smbpasswd program provides the general function of managing encrypted passwords. How
it works depends on whether it is run by the superuser or an ordinary user.

For the superuser, smbpasswd can be used to maintain Samba's passdb backend. It can add or
delete users, change their passwords, and modify other attributes pertaining to the users that
are held in (for example) an smbpasswd file, the tdbsam database, or an LDAP directory
service using ldapsam.

When run by ordinary users, smbpasswd can be used only to update their encrypted passwords
using the SMB/CIFS password change mechanisms. In this mode of operation, smbpasswd acts
as a client to the Samba or Windows server.

Command synopsis

When run by the superuser:

smbpasswd [options] username

In this case, the username of the user whose passdb entry is to be modified is provided as the
second argument.

Otherwise:

smbpasswd [options]

The smbpasswd command does not support any of the common Samba command-line parameters in
order to ensure better backwards compatibility with older Samba releases.

Superuser-only options

-a username

Add a user to the encrypted password file. The user must already exist in the system
password file (/etc/passwd). If the user already exists in the passdb backend, the -a
option changes the existing password.

-d username

Disable a user in Samba's list of accounts. The user's entry in the file will remain, but will
be marked with a flag disabling the user from authenticating.

-e username

Enable a disabled user in the encrypted password file. This option overrides the effect of
the -d option.

-m

This option indicates that the account is a computer account rather than a user account.
This older method of creating machine trust accounts in a Samba domain is strongly
discouraged. Alternative methods of joining clients to a Samba domain are covered in
Chapter 9.

-n

Set the user's password to a null password. For the user to authenticate, the parameter
null passwords = yes must exist in the [global] section of the Samba configuration file.

-R resolve_order_list

Set the resolve order of the name servers. This option is similar to the resolve order
configuration option and can take any of the four parameters lmhosts, host, wins, and
bcast, in any order. If more than one parameter is specified, the argument is specified as
a space-separated list.

-w password

The password that goes with the value of the ldap admin dn Samba configuration file
parameter.

-W

Same as -w, but prompts for the password rather than reading it in as a command-line
parameter.

-x username

Delete the user from Samba's list of user accounts. This is a one-way operation, and all
information associated with the entry is lost. To disable the account without deleting the
user's entry in the file, see the -d option.

Other options

-c filename

Specifies the Samba configuration file, overriding the compiled default.

-D debug_level

The debug (also called logging) level. The level can range from 0 to 10. Debug level 0
logs only the most important messages; level 1 is normal; levels 3 and above are
primarily for debugging and slow the program considerably.

-h

Print command-line usage information.

-r NetBIOS_name

Specify on which machine the password should change. If changing a Windows (or
Samba) domain password, the remote system specified by NetBIOS_name must be the

PDC for the domain. The user's username on the local system is used by default. See
also the -U option for use when the user's Samba username is different from the local
username.

-s

Cause smbpasswd not to prompt for passwords, but instead to read the old and new
passwords from the standard input. This is useful when calling smbpasswd from a script.

-U username

Change the password for username on the remote system. This is to handle instances in

which the remote username and local username are different. This option requires that -
r also be used.

The smbget command is an SMB/CIFS variant of the Unix wget command. The tool is similar to
smbclient's get (or mget) command but makes use of the SMB URI syntax instead of UNC
paths. Multiple file locations can be specified to be retrieved sequentially.

Command synopsis

smbget [options] SMB_URI [SMB_URI . . .]

Options

-a|--guest

Use an anonymous connection.

-b|--blocksize size

Define the blocksize to be size bytes for SMB/CIFS file transfers.

-D|--dots

Display progress dots during the file download.

-d|--debuglevel level

The verbosity of log messages to write to the console.

-f|--rcfile filename

Parse smbget options from the resource file filename.

-n|--nonprompt

Do not prompt for user interaction when downloading files or overwriting local files.

-O|--stdout

Write the retreived file to standard output.

-o|--outputfile filename

Write the retreived file to filename.

-P|--keep-permissions

Ensure that the local file has the same permission set as the original copy on the remote
server.

-p|--password passphrase

Specify the password to send in the authentication request.

-q|--quiet

Write only minimal information messages during file downloads.

-R|--recursive

When the SMB_URI specifies a directory, recursively download files from the directory
tree.

-r|--resume

Resume an incomplete file transfer.

-u|--username name

The login name to send in the authentication request.

-w|--workgroup name

The domain name to send in the authentication request.

-v|--verbose

Generate extra output to trace connection operations.

The smbspool program provides the SMB/CIFS backend interface to the Common Unix Printing
System. Although smbspool can be made to work with non-CUPS printing systems, it is
recommend that you use smbclient instead in these environments.

Command synopsis

smbspool [DEVICE_URI] job-id user title copies options [filename]

The arguments for smbspool, as shown here, are those used in the CUPS printing system. The printer
that the job is to be sent to is specified in the SMB URI format as the first argument or in the
DEVICE_URI environment variable.

The job argument refers to the job number. The user argument is the name of the user who
submitted the print job. The title argument is the name of the print job and must be supplied. It is

used as the name of the remote print file. The copies argument is the number of copies that will be
printed. This number is used only if the (optional) filename argument is supplied. Otherwise, only
one copy is printed. The options argument, for specifying printing options, is ignored. The filename

argument is used for specifying the name of the file to be printed. If it is not provided, the standard
input will be used.

This program lists the current connections on a Samba server.

Command synopsis

smbstatus [options]

The smbstatus tool supports the set of general command-line options previously described in this
appendix.

Options

-B|--byterange

Produce information about byte range locks only.

-b|--brief

Cause smbstatus to produce brief output. This includes the version of Samba and
auditing information about the users that are connected to the server.

-L|--locks

Print only the list of current file locks.

-n|--numeric

Do not convert Unix uids and gids to their associated names.

-p|--processes

Print only a list of smbd process IDs.

-S|--shares

Print only a list of shares and their connections.

-u|--user username

Limit the report to the activity of a single user.

-v|--verbose

Include additional information about current connections, locks, and processes.

The smbtar program is a shell-script wrapper around smbclient for doing tar-format archiving
operations. It is functionally very similar to the Unix tar program.

Command synopsis

smbtar [options] [include|exclude filenames]

Options

-a

Reset (clears) the archive attribute on files after they are backed up. The default is to
leave the archive attribute unchanged.

-b blocksize

The block size, in units of 512 bytes, for reading or writing the archive file. Defaults to
20, which results in a block size of 10,240 bytes.

-d directory

Changes the working directory on the remote system to directory before starting the

restore or backup operation.

-i

Specify incremental mode; files are backed up only if they have the DOS archive
attribute set. The archive attribute is reset (cleared) after each file is read. The default
behavior is to ignore the archive bit and perform a full backup

-l log_level

The logging level. This corresponds to the --debuglevel option of smbclient and other
Samba programs.

-N filename

Backs up only files newer than filename. For incremental backups.

-p password

The password to use to access a share. An alternative to using the username%password

format with the -u option.

-r

Restore files to the share from the tar file.

-s server

The SMB server. See also the -x option.

-t filename

The file or Unix device to use as the archiving medium. The default is tar.out or the value
of the TAPE environment variable, if it has been set.

-u username

The user account to use when connecting to the share. You can specify the password as
well, in the format username%password. The username defaults to the user's Unix

username.

-v

Operate in verbose mode, printing error messages and additional information that can be
used in debugging and monitoring. Backup and restore operations will list each file as it is
processed.

-x share

The name of the share on the server to which to connect. The default is backup. See also
the -s option.

-X file_list

Exclude the specified files from the backup or restore operation.

The smbtree program is similar to the findsmb Perl script, in that it enumerates workgroup
contents. However, smbtree groups servers by workgroup and can includes a list of available
shares on each server.

Command synopsis

smbtree [options]

The smbtree command supports the general and authentication option sets common to many Samba
client tools.

Options

-b|--broadcast

Broadcast requests for workgroup contents rather than attempting to query the master
browser.

-D|--domains

Only enumerate workgroups names.

-S|--servers

Do not enumerate shares on servers. List only the workgroup names and the servers
contained in each workgroup.

The tdbbackup program validates a tdb file and creates a backup copy of the original database.
This tool can be use to create backup copies while Samba is running. The structure-generated
tdb file is guaranteed to be consistent, but if a Samba daemon possessed data cached in
memory, the original tdb file itself may have been in a inconsistent state. Therefore, it is best
to perform backups when the server is under a light load.

Command synopsis

tdbbackup [options] filename.tdb

Options

-h

Display a brief help listing.

-s suffix

Specify the suffix to append to backup files.

-v

Validate a tdb file. If file corruption is detected, you must restore it from a valid backup
copy.

The tdbdump tool prints the contexts of a tdb file to standard output.

Command synopsis

tdbdump filename.tdb

The tdbtool program is an interactive utility for viewing and modifying tdb files. It should be
viewed as a very low-level database management tool and used only as a last resort.

Command synopsis

tdbtool filename.TDb

After opening filename.tdb, you will be presented with a basic TDb> prompt. You can view the list of

available commands by running the help command.

tdbtool commands

create dbname

Create a new tdb file named dbname.

cdump

Dump the tdb contents as a series of connection records.

delete key

Remove a record from the tdb.

dump

Dump the tdb contents as strings.

erase

Remove all records in the current open tdb file.

freelist

Display the database internal freelist structure.

hexkeys

Dump the database keys as hexadecimal strings.

info

Print summary information about the tdb structure and records.

insert key data

Add a new record to the tdb.

keys

Dump the database keys as ASCII strings.

list

Display the database's internal hashlist and freelist structures.

move key newfilename.tdb

Move a record referenced by key in the current open tdb to newfilename.tdb.

open dbname

Open an existing tdb filename dbname.

show key

Display the record indexed by key.

store key data

Replace an existing record in the tdb.

quit

Exit the current tdbtool interactive session.

The testparm program checks a Samba configuration file for obvious errors.

Command synopsis

testparm [options] [filename] [hostname] [IP_addr]

If the configuration file is not provided using the filename argument, then it defaults to the compile

time location (e.g., /usr/local/samba/lib/smb.conf). If the hostname and an IP address of a system
are included, an extra check is made to ensure that the system is allowed to connect to each service
defined in the configuration file. This is done by comparing the hostname and IP address to the
definitions of the hosts allow and hosts deny parameters.

In addition to the following options, testparm also supports the standard --help, --usage, and --
version arguments.

Options

-L|--server server_name

Set the %L configuration variable to the specified server name.

--parameter-name parameter_name

Print only the value of parameter_name to standard output.

-s|--suppress-prompt

Disable the default behavior of prompting for the Enter key to be pressed before printing
the list of configuration options for the server.

--section-name share

Limit the parameter listing to the smb.conf section share.

--show-all-parameters

Display a listing of all parameter names, type, and possible values. The output is
formatted so that it can easily be parsed in shell scripts.

-t|--encoding encoding_name

Print the smb.conf parameters and values using the specified character encoding_name.

-v|--verbose

Enable verbose output that includes listing all smb.conf parameters, even if set to the
default value. The default behavior is to provide a brief listing on only nondefault
settings.

This program retrieves and prints information from the winbindd daemon, which must be
running for wbinfo to function.

Command synopsis

wbinfo [options] [--domain=name]

Some command-line parameters allow you to limit the request to a specific domain defined by the --
domain argument.

In addition to the following options, wbinfo also supports the standard --help, --usage, and --
version arguments.

Options

-A|--allocate-rid

Allocate a new RID from the passdb backend and print the assigned value.

-a|--authenticate username% password

Check to see whether a user can authenticate through winbindd using the specified
username and password. Any user may request the clear text authentication, but only
the root user is able to test the challenge/response authentication mechanism.

-D|--domain-info DOMAIN

Print information about the specified DOMAIN such as the domain SID, status of AD

services, and realm name, if available.

-G|--gid-to-sid gid

Convert the Unix gid to a Windows SID.

-g|--domain-groups

Prints all groups that exist in Winbind's own domain as well as any trusted domains.

--getdcname DOMAIN

Query a domain controller in Winbind's own domain for the name of a valid DC in the
trusted DOMAIN.

--get-auth-user

Print the currently defined auth-user, if one has been specified using the --set-auth-

user option.

-I|--WINS-by-ip ip_address

Send a request to the WINS server configured in smb.conf to convert the ip_address to a

NetBIOS name.

-m|--trusted-domains

List all trusted domains known by winbindd included in the BUILTIN and local machine
domains.

-N|--WINS-by-name name

Send a request to the WINS server configured in smb.conf to convert the name to an IP

address.

-n|--name-to-sid name

Print the SID corresponding to the name specified. The argument can be specified as
DOMAIN/name (or by using a character other than the slash, as defined by the Winbind
separator character) to specify both the domain and the name. If the domain and
separator are omitted, the value of the workgroup parameter in the Samba configuration
file is used as the name of the domain.

-p|--ping

Send a simple ping request to winbindd to determine whether it is running.

-r|--user-groups username

Print the list of Unix group IDs to which the domain user belongs.

-S|--sid-to-uid SID

Convert the SID to a Unix uid and prints the result.

-s|--sid-to-name SID

Convert the specified SID to a user or group name.

--separator

Print the current winbind separator character.

--set-auth-user username% password

An alternative set of credentials to use when connecting to a domain controller. This
option is normally not needed in current Samba releases.

--sequence

Print the current known sequence numbers for all trusted domains. This can be helpful in
debugging problems since unavailable domains will be listed as DISCONNECTED.

-t|--check-secret

Request winbindd to validate the Samba's current machine trust account.

-U|--uid-to-sid uid

Convert the Unix uid to a Windows SID.

-u|--domain-users

Print all users that exist in Winbind's own domain, as well as any trusted domains.

--user-domgroups SID

List the SIDs of all domain groups to which the user belongs.

--user-sids SID

Retrieve a list of SIDs for all groups to which the user belongs, including domain local
groups.

Appendix B. Downloading Samba with
Subversion
In Chapter 2, we showed you how to download the latest stable version of Samba published by the
Samba developers. For most purposes (including all production servers), this procedure is sufficient.
However, sometime you might want to run a version of Samba that includes the latest bug fixes and
featuresmaybe for research and testing purposes, or just to see what the Samba developers have
been up to lately.

The Samba team keeps the latest Samba source code in a Subversion (SVN) repository. SVN is a
freely available source configuration management system distributed under an Apache/BSD-style
license. You can download the latest subversion release from http://subversion.tigris.org. The Samba
team describes various ways to access its own SVN repositories at http://devel.samba.org.

Samba's SVN tree is broken up into multiple branches, one branch for each development effort. The
current list of branches is as follows:

SAMBA_3_0

This is the branch for all Samba 3.0 development. The code in the tree can undergo major
changes between each 3.0.x release. If you want to watch (or participate in) the bleeding edge
of Samba 3.0 development, this is the branch to obtain.

SAMBA_3_0_XX

Each numeric 3.0 release (e.g., 3.0.23) will be assigned a branch for bug fixes (also know as
letter releases). For example, the SAMBA_3_0_23 branch was created once version 3.0.23 was
publicly available. Developers commit fixes to this tree for inclusion in the next bug fix release,
such as 3.0.23a, 3.0.23b, and so on. This approach allows the more aggressive development to
continue in the SAMBA_3_0 tree, making it easier to fix any minor, but important bugs in the
current release code.

SAMBA_3_0_RELEASE

This branch contains the most recently released (or about to be released) version of Samba
3.0.

SAMBA_4_0

This is the research branch used for developing features under the guise of Samba 4. Refer to
Chapter 1 for more information on Samba 4.

http://subversion.tigris.org
http://devel.samba.org

Once you have a working SVN client and have decided which branch to download, you can obtain the
source tree with a single command. The following example downloads the current Samba 3.0
development tree to a local directory named samba3:

$ svn co svn://svnanon.samba.org/samba/branches/SAMBA_3_0 samba3

The resulting directory tree will have the same structure as the Samba source distribution described
in Chapter 2, except with additional directories named .svn throughout the source tree. These
directories are used by SVN to store information about each file in the source tree and how to update
them.

Before following the steps outlined in Chapter 2 to compile Samba, build the configure script and
related files by running the autogen command. You must have Autoconf version 2.53 or higher
installed in order to perform this step.

$ cd samba3/source
$./autogen.sh
./autogen.sh: running script/mkversion.sh
./script/mkversion.sh: 'include/version.h' created for
 Samba("3.0.24pre1-SVN-build-17944")
./autogen.sh: running autoheader
./autogen.sh: running autoconf
Now run ./configure and then make.

You are now ready to build the Samba SVN tree, using the same procedures as you would for an
official source release.

You can also download the Samba SVN trees using anonymous rsync from
rsync://rsync.samba.org/ftp/unpacked/.

The Samba developers typically update the Samba source code multiple times per day. Whenever
you want to catch up to the latest changes, cd to the samba3 directory and run the following
command:

$ svn up

Each time you do this, you must reconfigure, recompile, and reinstall to update your installation, as
we showed you in Chapter 2.

Appendix C. Configure Options
As we explained in Chapter 2, the configure program is run before the Samba source code is
compiled to adapt the build process to the local architecture. At this stage, it is possible to specify
options to customize Samba's behavior further and include or exclude features. Here is an example of
specifying configure options:

$./configure --prefix

=/opt/samba --with-acl-support

This example specification configures the Samba installation to install in /opt/samba rather than the
default of /usr/local/samba and to include support for filesystem ACLs. We have picked these two
configure options because they illustrate the usage of the two types of options that are included in
versions up to Samba 3.0. The --with-acl-support option is a Boolean option, which can take a
value of yes or no. If you want to be more explicit, you can specify --with-acl-support=yes. To turn
an option off explicitly, you can also specify --without-feature rather than --with-feature=no.

Options such as --prefix are following by an equal sign (=) and one or more arguments. In this case,
we are specifying a directory to be used as the software's install root.

The supported configure options vary from release to release. To get a list of the configure options
for your release, use the following command:

$./configure --help

Table C-1 lists the configure options found in the 3.0.22 release.

Table C-1. Configuration options

Configuration option Description

--enable-cups Use the CUPS client libraries when communicating with cupsd to
manage printers and print jobs.

Configuration option Description

--enable-debug Build Samba to include debugging symbols for use with debuggers
such as gdb.

--enable-developer Enable additional compiler flags and other developer settings.

--enable-dmalloc Enable integration with the dmalloc memory debugging library.

--enable-iprint Include support for the iPrint server libraries from Novell.

--enable-pie Turn on support for Position Independent Executables (PIE) when
compiling.

--enable-socket-wrapper Replace basic network socket support with a local communication
needed to run make test.

--with-aio-support Support asynchronous disk I/O.

--with-acl-support Support Unix filesystem ACLs.

--with-ads Include support for Active Directory integratio (requires --with-krb5
and --with-ldap).

--with-afs Support clear-text logins to access Andrew Filesystem (AFS) mounts.

--with-automount Support locating home directories in NIS automount maps.

--with-cfenc=directory Use internal CoreFoundation encoding API when building on OS
X/Darwin.

--with-cifsmount Build the Linux CIFS filesystem mount helper utilities.

--with-configdir=directory Location of configuration files.

--with-dce-dfs Support clear-text logins to access DCE/DFS mounts.

--with-fake-kaserver Include AFS Kerberos Authentication (KA) server support.

--with-fhs Use FHS-compliant locations of files.

--with-included-popt Use Samba's popt() libraries rather than the system version.

--with-krb5=base-dir Support Kerberos 5 (required for ADS support).

--with-ldap Support communicating with LDAP directory services (required for
ADS support).

--with-libiconv=directory Specify the location of the iconv library.

--with-libmsrpc Build the MS-RPC client library.

--with-libsmbclient Build the SMB/CIFS client library.

--with-libsmbsharemodes Build the share modes tdb library.

--with-lockdir=directory Location of lock files.

--with-
logfilebase=directory

Location of logfiles.

--with-pam Enable PAM support in smbd.

--with-pam_smbpass Build pam_smbpass.so PAM module.

--with-piddir=directory Location of PID files.

--enable-debug Build Samba to include debugging symbols for use with debuggers
such as gdb.

--enable-developer Enable additional compiler flags and other developer settings.

--enable-dmalloc Enable integration with the dmalloc memory debugging library.

--enable-iprint Include support for the iPrint server libraries from Novell.

--enable-pie Turn on support for Position Independent Executables (PIE) when
compiling.

--enable-socket-wrapper Replace basic network socket support with a local communication
needed to run make test.

--with-aio-support Support asynchronous disk I/O.

--with-acl-support Support Unix filesystem ACLs.

--with-ads Include support for Active Directory integratio (requires --with-krb5
and --with-ldap).

--with-afs Support clear-text logins to access Andrew Filesystem (AFS) mounts.

--with-automount Support locating home directories in NIS automount maps.

--with-cfenc=directory Use internal CoreFoundation encoding API when building on OS
X/Darwin.

--with-cifsmount Build the Linux CIFS filesystem mount helper utilities.

--with-configdir=directory Location of configuration files.

--with-dce-dfs Support clear-text logins to access DCE/DFS mounts.

--with-fake-kaserver Include AFS Kerberos Authentication (KA) server support.

--with-fhs Use FHS-compliant locations of files.

--with-included-popt Use Samba's popt() libraries rather than the system version.

--with-krb5=base-dir Support Kerberos 5 (required for ADS support).

--with-ldap Support communicating with LDAP directory services (required for
ADS support).

--with-libiconv=directory Specify the location of the iconv library.

--with-libmsrpc Build the MS-RPC client library.

--with-libsmbclient Build the SMB/CIFS client library.

--with-libsmbsharemodes Build the share modes tdb library.

--with-lockdir=directory Location of lock files.

--with-
logfilebase=directory

Location of logfiles.

--with-pam Enable PAM support in smbd.

--with-pam_smbpass Build pam_smbpass.so PAM module.

--with-piddir=directory Location of PID files.

Configuration option Description

--with-
privatedir=directory

Location of smbpasswd file.

--with-profiling-data Support gathering of profiling information.

--with-quotas Support interaction with filesystem disk quotas.

--with-readline=directory Enable support for the readline library.

--with-sendfile-support Support sendfile() system call.

--with-smbmount Support smbmount and smbfs.

--with-smbtorture4-
path=path

Specify the location of the smbtorture tool from the SAMBA_4_0 SVN
branch for use in make test.

--with-spinlocks Use spinlocks instead of fcntl locks.

--with-static-

modules=modules

--with-shared-

modules=modules

List plug-ins that should be linked statically into Samba or built as
shared libraries.

--with-swatdir=directory Location of SWAT files.

--with-syslog Support syslog message logging.

--with-sys-quotas Include support for Samba's filesystem quota abstraction layer.

--with-utmp Support utmp file accounting.

--with-vfs-afsacl Inlucde the AFS ACL Virtual Filesystem (VFS) plug-in.

--with-winbind Build Winbind support.

--with-
privatedir=directory

Location of smbpasswd file.

--with-profiling-data Support gathering of profiling information.

--with-quotas Support interaction with filesystem disk quotas.

--with-readline=directory Enable support for the readline library.

--with-sendfile-support Support sendfile() system call.

--with-smbmount Support smbmount and smbfs.

--with-smbtorture4-
path=path

Specify the location of the smbtorture tool from the SAMBA_4_0 SVN
branch for use in make test.

--with-spinlocks Use spinlocks instead of fcntl locks.

--with-static-

modules=modules

--with-shared-

modules=modules

List plug-ins that should be linked statically into Samba or built as
shared libraries.

--with-swatdir=directory Location of SWAT files.

--with-syslog Support syslog message logging.

--with-sys-quotas Include support for Samba's filesystem quota abstraction layer.

--with-utmp Support utmp file accounting.

--with-vfs-afsacl Inlucde the AFS ACL Virtual Filesystem (VFS) plug-in.

--with-winbind Build Winbind support.

C.1. Install Directory and Library Options

--prefix= directory

Define the install root directory used for the Samba daemons, client tools, configuration files,
and libraries.

--enable-pie

Enable support for Position Independent Executables (PIE), if supported by the compiler.

--with-cfenc =directory

Enable support for special Unicode encodings when building on OS X/Darwin systems.

--with-configdir =directory

The directory in which Samba keeps its configuration file, usually called smb.conf.

--with-fhs

Adhere to the Filesystem Hierarchy Standard (FHS) when locating files. For details, see http:
//www.pathname.com/fhs.

--with-included-popt

Include Samba's own support for parsing command-line options, instead of using the local
system's popt() C-library function.

--with-krb5 =base-dir

Include support for Kerberos Version 5, specifying the base directory of the Kerberos
distribution. This version of Kerberos is compatible with Windows 2000 and Windows Server
2003 Active Directory domains.

--with-ldap

Include support for accessing LDAP directory services. This includes using the ldapsam passdb
plug-in and integration with Active Directory. Currently, Samba supports only the OpenLDAP
client libraries joining an AD domain.

--with-libiconv =directory

A location for iconv() support. The iconv() function exists in the C library to perform
conversion between different character sets. This option allows Samba's default method of
determining the location of the iconv() library to be overridden. Ordinarily, the configuration
process checks for support in the C library on the system and, if not found, uses code included
in the Samba source tree. Using --with-libiconv, it is possible to specify explicitly where the
support is located. The include files are assumed to be in directory/include, and library files
are assumed to be in directory/lib.

--with-lockdir =directory

The directory in which Samba keeps its database of information, including tdb files, browse.dat
and wins.dat.

--with-logfilebase =directory

The directory in which Samba keeps logfiles for the smbd, nmbd, and winbindd daemons.

--with-piddir =directory

The directory in which Samba keeps the PID files for keeping track of the process IDs of the
parent Samba daemons.

--with-privatedir =directory

The directory in which Samba keeps the smbpasswd , secrets.tdb , and related files for
authentication.

--with-readline =directory

Location for readline() support. The readline function exists in the C library to accept a line of
input from an interactive user and provide support for editing and history. Samba uses these
functions in smbclient and rpcclient.

--with-swatdir =directory

Where to install the HTML and images files for SWAT.

C.2. Developer Options

--enable-debug

--enable-developer

--enable-dmalloc

These options are of primary use to Samba developers or when tracking down a bug in the
Samba source code. The --enable-debug option provides the necessary symbols for use with
debuggers such as gdb. The --enable-developer option is for adding additional compiler
checks. And the --enable-dmalloc option support for the dmalloc runtime memory debugging
tools.

--enable-socket-wrapper

Include the internal socket wrapper libraries needed to support running a suite of regression
tests driven by the make test command.

--with-profiling-data

Include support for analyzing the execution time of Samba's internal code.

--with-smbtorture4-path= path

Location of the smbtorture tool built from the the SAMBA_4_0 SVN branch. The Samba 4
version of this utility offers a much wider ranges of tests than the older one included in the
Samba 3.0 releases.

C.3. Authentication Options

--with-ads

This is a convenience option that enables both --with-krb5 and --with-ldap. Both Kerberos 5
and LDAP support must be present on the system in order to support integration with Active
Directory. More on building and configuring Samba in AD domains is discussed in Chapters 2
and 10.

--with-afs

Include support for authenticating users who are accessing files on an Andrew Filesystem (AFS)
mount thourgh Samba. This option requires that clear-text passwords be enabled on both the
client and Samba server. Because it is not actively maintained, this feature may be removed in
a future release. More details about users and authentication can be found in Chapter 5.

--with-dce-dfs

Include support for authenticating users in a Distributed Computing Environment Distributed
Filesystem (DCE/DFS) environment. This is a distributed filesystem included in some Unix
variants and is not the same as Microsoft's Distributed Filesystem (MS-DFS). This option
requires clear-text password functionality to be enabled on both the client and Samba server.
Because it is not actively maintained, this feature may be removed in a future release. More
details about users and authentication can be found in Chapter 5.

--with-fake-kaserver

This option allows Samba to act as a Kerberos Authentication (KA) server when exporting AFS
volumes.

--with-pam

When this configure option is specified and the parameter obey pam restrictions in the Samba
configuration file is set to yes, Samba obeys PAM's configuration regarding account and session
management. More information on Samba's use of PAM is in Chapter 5.

--with-pam_smbpass

When this option is specified, the compilation process builds a PAM module called
pam_smbpass.so and places it in the source/bin directory. This module allows applications
outside of the Samba suite to authenticate users with Samba's configured passdb backend. For

more information, see the README file in the source/pam_smbpass directory of the Samba
distribution.

--with-winbind

Include Winbind support in Samba. This option is enabled automatically on systems that are
known to support Winbind functionality. For more information on Winbind, see Chapter 10.

C.4. File Serving Features

--with-aio-support

Include experimental support for using the operating system's asynchronous disk I/O features.
This is currently supported only on Linux platforms.

--with-acl-support

Include support for Unix filesystem access control lists (ACLs). The server must provide a
filesystem ACL interface that is supported by Samba. See Chapter 6 for details.

--with-automount

Include support for the automounter, a feature often used in conjunction with NFS, to mount
NFS shares automatically at the first attempt to access them. This feature is not actively
maintained and may be removed in a future release.

--with-nisplus-home

Include support for locating the NIS+ server that is serving a particular user's home directory
and telling the client to connect to it. Use --with-automount along with this option. This feature
is not actively maintained and may be removed in a future release.

--with-quotas

Include integration with filesystem disk-quota support.

--with-sendfile-support

Check to see whether the Samba host operating system supports the sendfile() system call,
which speeds up file transfers by copying data directly to and from kernel buffers, avoiding the
overhead of copying to and from buffers in user space. If the operating system has the
sendfile() system call, support is included in Samba for the use sendfile configuration file
option.

--with-spinlocks

Use spin locks instead of the normal method of file locking that uses the fcntl() C-library
function. Using this option results in a Samba installation that consumes much more CPU time

on the host system. Use it only when absolutely necessary.

--with-syslog

Include support for syslog error logging. This option must be specified for the Samba
configuration file parameters syslog and syslog only to work. This option is widely supported,
but might not work correctly on all Samba host systems.

--with-sys-quotas

Include Samba's quota abstraction layer when integrating with filesystem quotes. Also refer to
the --with-quotas option.

--with-utmp

Include support for user accounting in the system's utmp file. This option is necessary for the
utmp and utmp directory Samba configuration file options to work. The option is widely
supported, but might not work correctly on all Samba host systems.

--with-vfs-afsacl

Build a VFS module for interacting with AFS ACLs rather than using the default POSIX ACL
mapping enabled by the --with-acl-support option.

C.5. Printing Options

--enable-cups

Include support for communicating with a CUPS server using the libcups.so library. The server
must have the CUPS header files and development libraries installed for this feature. More
about Samba, CUPS, and printing is presented in Chapter 7.

--enable-iprint

Include support for communicating with the Novell iPrint server. The server must have the
iPrint header files and development libraries installed for this feature. More about Samba and
printing is presented in Chapter 7.

C.6. Clients and Libraries

--with-cifsmount

Enable building the Linux cifs mount helper tools (mount.cifs and umount.cifs). You can find
more information about the Linux cifs filesystem in Chapter 11.

--with-libmsrpc

Create the static and shared version (if supported on the platform) of a Remote Procedure Call
(RPC) client library.

--with-libsmbclient

Create the static and shared version (if supported on the platform) of an SMB/CIFS client
library.

--with-libsmbsharemodes

Create the static and shared versions (if supported on the platform) of a library that allows file
services outside of smbd to access Samba's share mode database. This option allows for
integrating SMB/CIFS file locking with other file-sharing protocols, such as NetWare.

--with-smbmount

Enable building the user-space utilities for mounting the Linux smbfs filesystem. Note that the
cifs filesystem has made smbfs obselete.

--with-static-modules= modules

--with-shared-modules= modules

Enable a list of plug-ins to be built as static features inside of Samba or as external share
libraries. The primary use of these options is to build Winbind's idmap_rid and idmap_ad
modules as shared libraries. More about Winbind and idmap backends can be found in Chapter
10.

About the Authors

Gerald (Jerry) Carter received his master's degree in computer science from Auburn University,
where he continues to pursue his Ph.D. His involvement with Unix systems and network
administration of Unix began in 1995, and he has been a member of the Samba development team
since 1998. Jerry currently works for Hewlett-Packard, working on embedded printing appliances. He
has published articles with various web-based magazines and teaches instructional courses as a
consultant for several companies and conferences.

Jay Ts is a system administrator and programmer with many years of experience working with
several versions of Unix and other operating systems. Nowadays, he works as an independent
consultant out of his home in Sedona, Arizona.

Robert Eckstein has worked with Java since its first release. In a previous life, he was an editor for
O'Reilly Media, Inc. and a programmer for Motorola's cellular technology division. He has authored,
co-authored, or edited a number of books, including Java Swing, Java Enterprise Best Practices,
Using Samba, XML Pocket Reference, and Webmaster in a Nutshell. In his spare time, he has been
known to tinker with filmmaking and digital photography, as well as collect vintage video game
consoles. He currently lives in Austin, Texas, with his wife, Michelle, his children, Lauren and Nathan,
and their talking dog, Ginger.

Colophon

The animal on the cover of Using Samba, Third Edition, is an African ground hornbill (Bucorvus
cafer). This type of bird is one of 50 hornbill species. The African ground hornbill is a medium- to
large-size bird characterized by a bright red waddle under a very long beak, dark-colored body and
wings, long eyelashes, and short legs. Like all hornbills, it has a casque, a large but lightweight
growth on the top of its beak, which grows more folds as the bird ages. It is the only ground-dwelling
species of hornbill, though it is able to fly when necessary. It lives in the grasslands of southern and
eastern Africa and nests in the foliage of dense trees, not in nest holes in the ground as other
hornbills do. Its diet includes mostly fruit, as well as large insects and small mammals. The African
ground hornbill is considered sacred by many Africans, and, as such, this bird is part of many legends
and superstitions.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The cover font is
Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont's TheSans Mono Condensed.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

${configdir}/smb.conf

${privatedir}/*

. (period), NetBIOS names and

/etc/passwd file, authenticating users against

/etc/samba

/etc/samba/private

/opt/samba

/usr/local/samba

/usr/local/samba/bin

/usr/local/samba/lib

/usr/local/samba/man

/usr/local/samba/private

/usr/local/samba/sbin

/usr/local/samba/swat

/usr/local/samba/var

/var/lib/samba

/var/log/samba

/var/run

[homes] share

_ _MSBROWSE _ _ resource entry 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

access control entries (ACEs) 2nd

Access Denied error

account storage

account utilities

accounts

ACLs

 access control entries (ACEs)

 DOS compatibility options

 Explorer security tab, understanding

 nt acl support

 options

 POSIX

 specifying

 Windows 2000 and

 Windows access masks and

Active Directory 2nd

Active Directory domains 2nd

Add Computer to Domain dialog

add group script

add machine script

add machine script option

add user script

add user to group script

Address Resolution Protocol (ARP) 2nd

ADMIN$ share

Advanced Server for Unix product

AFS ACLs

Albitz, Paul

anonymous browsing

assdb recommendations

attributes ranges

auditing and debugging with net ads search

authentication

 defined

 failed

 guest-related parameters

 passwords

Authentication Server (AS) (Kerberos)

authorization

authorization lists

authorization parameters

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

backends (CUPS modules)

 passdb 2nd

backup browser 2nd

backup domain controllers (BDCs)

backups

bcast (name resolve order)

bind interfaces only option (smb.conf file)

broadcast address

browse lists 2nd

browser

 backup

 potential

browser elections 2nd

browsing 2nd 3rd

 a list of computers and shared resources, defined

 anonymous

 cross-subnet

 server from the client

 shared resource of a specific computer

Browsing and Windows 95 Networking and CIFS/E Browser Protocol

browsing configuration options

browsing daemon

browsing enhancements

browsing, configuring Samba for

BSD printing system, adding

BSD Unix

 automatically starting Samba daemons

byte range locking 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

C$ share

Can't copy service name, unable to copy to itself

Can't find include file [name]

capturing network traffic

case preservation

case sensitivity

check password script

checking (message from configure script)

CIFS (Common Internet File System)

cifs mount helper tools

CIFS Technical Reference from the Storage Network Industry Association

clear-text passwords

Client for Microsoft Networks

commands

 findsmb

 ntlm_auth

 options

 authentication

 common

 connection

 profiles

 smbcacls

 smbcquotas

 smbget

 smbspool

 smbstatus

 smbtar

 smbtree

 tdbbackup

 tdbdump

comment option (smb.conf file)

comp.protocols.smb newsgroup

compiling and installing Samba

components, Windows

Computer Management MMC plug-in

config.log file

config.status file

configuration files

configure options

 bindir

 datadir

 enable-cups 2nd 3rd

 enable-debug 2nd 3rd

 enable-developer 2nd

 enable-dmalloc 2nd

 enable-iprint 2nd

 enable-pie 2nd

 enable-socket-wrapper 2nd

 libdir

 localstatedir=directory

 mandir

 prefix 2nd

 prefix=directory

 sample execution

 sbindir

 with-acl-support 2nd 3rd

 with-ads 2nd 3rd

 with-afs 2nd

 with-aio-support 2nd

 with-automount 2nd

 with-cfenc=directory 2nd

 with-cifsmount 2nd

 with-configdir=directory 2nd 3rd

 with-dce-dfs 2nd

 with-fake-kaserver 2nd

 with-fhs 2nd 3rd

 with-included-popt 2nd

 with-krb5=base-dir 2nd

 with-ldap 2nd

 with-libiconv=directory 2nd

 with-libmsrpc 2nd

 with-libsmbclient 2nd

 with-libsmbsharemodes 2nd

 with-lockdir=directory 2nd 3rd

 with-logfilebase=directory 2nd 3rd

 with-msdfs

 with-nisplus-home

 with-pam 2nd

 with-pam_smbpass 2nd

 with-piddir=directory 2nd 3rd

 with-privatedir=directory 2nd 3rd

 with-profiling-data

 with-quotas 2nd

 with-readline=directory 2nd

 with-sendfile-support 2nd

 with-shared-modules=modules 2nd

 with-smbmount 2nd 3rd

 with-smbtorture4-path=path

 with-smbwrapper

 with-spinlocks 2nd

 with-static-modules=modules 2nd

 with-swatdir=directory 2nd

 with-sys-quotas 2nd

 with-syslog 2nd

 with-utmp 2nd

 with-vfs-afsacl 2nd

 with-winbind 2nd

configure script 2nd

control firewall.cpl

copy option (smb.conf file)

create directory mask

create mask

creating (message from configure script)

CREATOR GROUP

CREATOR OWNER

CUPS (Common Unix Printing System)

 printer daemon (cupsd)

 Samba and

 server

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

daemons

 bound to ports

Darwin and smbfs

dat files

 ${lockdir}/browse.dat

 ${lockdir}/wins.dat

datagram primitives

datagram services (NBT)

 defined

 tips

debug option (pam_windbind)

delete group script

delete user from group script

delete user script

developer options

 enable-debug

 enable-developer

 enable-dmalloc

 enable-socket-wrapper

 with-profiling-data

 with-smbtorture4-path=path

Digital Equipment Corporation (DEC)

disable netbios parameter

Distributed Computing Environment Distributed Filesystem (DCE/DFS)

DNS

 servers, name resolution and

 versus hostnames

DNS proxy, configuring on WINS server 2nd

Domain Admins

domain controllers 2nd

 location parameters

 Windows NT 4.0

domain joins, setting up

 Domain Admins

 required privileges

 Windows client

domain master (browsing configuration options)

domain master browser

 Samba as

 verifying Samba as

domain master parameter

domain member servers 2nd

 domain and ADS security modes

 locating domain controller

 security = ads

 security = domain

 joining a domain

domain trusts

 net rpc trustdom commands

domains

DOS attributes

 Archive

 Hidden

 options

 permission bits

 ReadOnly

 System

downloading Samba with Subversion

dpkg

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

elections

encrypt passwords option

error messages from configure script

EventLog tdb files

eventlogadm command 2nd

excluding files

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

failed logons

fault tree

File and Printer Sharing for Microsoft Networks

file range locking

file shares, controlling authorization for

file sharing

filenames

 8.3 convention

 case sensitivity

 length

 mapping from long filenames to short ones

 name mangling

 valid characters

files, hiding

filesystem differences

findsmb command

findsmb program

firewall configuration

force create mode

force directory mode

FreeBSD smbfs

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

getgrent() function

getgrnam() function

getpwent() function

getpwnam() function

Ghostscript ps2pdf command

GIDs

Global parameter name found in service section

GNU General Public License

GnuPG

Google

GPG key

group ID (GID)

group management options

group mapping

 Printer Admins

 prtadmin Unix group membership

groupnet command, ADS functions

guest access

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

h-node (NetBios node type)

hash method

hash2 method

hide files

hiding

hostname, defending

HOSTS

hosts (name resolve order)

hosts deny option (smb.conf file)

hosts.allow and hosts.deny files

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

iconv library

iconv() support

idmap backed = ad

idmap backed = ldap

idmap gid option (Winbind)

idmap uid option (Winbind)

idmap_rid plug-in

ifconfig command

ifmember.exe tool

Ignoring unknown parameter name

inetd

 starting from

inetd daemon

inherit owner

inherit permissions

inheritance options

installation directories

installation directories for Samba

installing Samba

 bundled versions

 source, overview of steps

interfaces option (smb.conf file)

Internet Protocol (TCP/IP)

IP addresses

IPC$ share

ipconfig command

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Kerberos

 encryption

 errors

 Clock skew too great

 KDC has no support for encryption type while getting initial credentials

 Preauthentication failed

 Unable to locate a KDC for the requested realm

 integrating Unix services

 kdestroy command

 terminology

Kerberos 5 (Krb5) authentication services

Kerberos Authentication (KA) server

Key Distribution Center (KDC) (Kerberos)

kill command

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

LDAP 2nd

 parameters supported in smb.conf

 requests

ldap password sync

ldapsam backend 2nd

ldapsam passdb

leasing options

Lendecke, Volker

libnss_winbind.so

libsmbclient library

Linux SMB/CIFS filesystem

 allowing nonroot users to mount SMB/CIFS file shares

 installation

 mounting an SMB/CIFS file share

 Unix extensions

Liu, Cricket

LMHOSTS files 2nd

 name resolution and

lmhosts parameter (name resolve order)

local master (browsing configuration options)

local master option (smb.conf file)

local nested groups

log level option (smb.conf file)

logfile option (smb.conf file) 2nd

logfiles 2nd

 example

 levels

 nmbd

 sample output of levels 2 and 3

logging

 activating and deactivating

 by individual client systems or users

 using syslog

login home option

login path option

login script option

logon drive option

Logon Failure error

logons, failed

lpadmin command (Unix)

lpq command and lprm command strings

lusrmgr.msc tool

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Mac OS X

 automatically starting Samba daemons

 graphical interface to smbutil and mount_smbfs functionality

 smbfs and

mailing lists, Samba

make install command (Unix)

make revert command (Unix)

make utility (Unix)

mangling method global parameter

MANPATH environment variable

map hidden

map readonly

mapping from long filenames to short ones

max log size option (smb.conf file)

Microsoft Distributed File System (MS-DFS) 2nd

migrating NT domain

mkdir command

mmap() implementation

MMC Shared Folders plug-in

mount command

mount.cifs

mount.cifs helper

mount_smbfs program 2nd

msdfs

multihomed servers

My Network Places

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

name mangling

name resolution 2nd 3rd 4th

 configuring in Samba

 methods

 using broadcast packets

name resolve order (name-resolution configuration option)

Name Service Switch (NSS) layer

name services

 defined

 identifying what's in use

name-query requests

name-resolution configuration options

NBNS name registration, versus broadcast

NBT

 services

nbtstat utility

 examples 2nd

net ads command

net ads keytab management options

net command

 ADS functions

 changetrustpw

 info

 join

 keytab

 leave

 lookup

 password

 printer

 search

 status

 testjoin

 user

 command synopsis

 miscellaneous functions

 cache

 getlocalsid

 groupmap

 help

 idmap

 lookup

 setlocalsid

 time

 miscellaneous options

 RAP functions

 remote administration with

 Active Directory

 Lightweight Directory Access Protocol (LDAP)

 net ads command

 net rpc

 net rpc service list command

 Remote Administration Protocol (RAP)

 Remote Protocol Call (RPC)

 services

 shares

 RPC functions

 abortshutdown

 changetrustpw

 file

 getsid

 group

 info

 join

 password

 printer

 registry

 rights

 service

 share

 shutdown

 testjoin

 trustdom

 user

 target options

net groupmap command

Net Logon

net program

net rpc

 rights command

 rights list command

 service list command

 trustdom commands

 trustdom list command

net tool

net use command, testing connections with

net view program

 testing client browsing

net.exe command

NetAuth2()

NetBEUI protocol

NetBIOS

 group resource types

 overview

 resource names and types

 troubleshooting

 unique resource types

netbios aliases option (smb.conf file)

netbios name option (smb.conf file)

NetBIOS name service

NetBT

netmask, using to troubleshoot

NetRequestChallenge()

NetSamLogon()

network addresses

 finding your specific address

network browsing

Network Neighborhood

network, simple

networking

 components

news, Samba

NIS (Network Information Service), server

NIS passwd map, authenticating users against

NIS support

NIS+ server, installing Samba with support for locating

nmbd 2nd

nmbd daemon 2nd 3rd 4th

 automatic startup

 starting manually

 testing

nmblookup command

nmblookup program 2nd

 testing clients

 testing network

 testing servers

NormalizePath bash function

NOTE: name is flagged unavailable

Novell iPrint server

nss_ldap library

nt acl support

ntconfig.pol

NTLM (challenge/response authentication)

NTLM authentication

ntlm_auth

ntlm_auth command

NTLMv2

number of address ranges

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

oplocks (opportunistic locking)

os level (browsing configuration options)

os level option (smb.conf file)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

padc command

PADL software

PAM (Pluggable Authentication Modules)

PAM configuration

pam password change

PAM stack, authenticating users against

pam_winbind options

pam_winbind.so

par command

passdb backends 2nd

passwd chat

passwords and authentication

 authorization lists

 authorization parameters

 clear-text passwords

 controlling authorization for file shares

 group mapping

 myth of Windows and encrypted password support

 name prefixed by the plus sign

 NTLM

 NTLMv2

 password server parameter

 password synchronization options

 password synchronizing

 passwords, encrypted

 Pluggable Authentication Modules (PAM)

 user management

 user privilege management

PATH environment variable

path option (smb.conf file)

pdbedit 2nd

 command

 program

PDF printer, creating

peer-to-peer networking

Performance Monitor

permissions 2nd

 options

 token

pkginfo

point and print (p-n-p)

 disabling

 print drivers, installing

 testing

 Windows Add Printer Wizard (APW)

 Windows NT-only (version 2) drivers

point-to-point communication

popt() C-library function

ports used by Samba for SMB networking

Position Independent Executables (PIE)

POSIX ACL

postexec

preexec

preferred master

 browsing configuration options 2nd

 parameter (smb.conf file)

prefix option

prefix=directory option

preserve case

Primary Domain Controller (PDC)

principal (Kerberos)

Print Spooler

PRINT$ share

printcap.local file

printer sharing

printing

 [printers]

 BSD print system, adding

 commands

 CUPS (Common Unix Printing System)

 default printing commands used to communicate with the operating system

 DeviceMode, initializing

 extreme print management

 Ghostscript ps2pdf command

 lpq command and lprm command strings

 Mac OS X environment

 parameters

 path parameter

 PDF printer, creating

 point and print (p-n-p)

 print shares

 variables

 printcap name values

 queue lists and tdb files

 security and

 SMB printer sharing in OS

 smbd daemon

 spooling versus

 System V Unix system

 testing point and print (p-n-p)

 testparm

 to remote SMB printers using CUPS

 Windows print drivers

 Windows printers, sharing

profiles command

prtadmin Unix group membership

ps command (Unix)

 looking for daemon processes with

pwdutils package

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

queue lists

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

read-only option (smb.conf file)

readline() support

ReadOnly DOS attribute

realm (Kerberos)

reconfiguring Samba

recycle module

relative identifier (RID) 2nd

Remote Administration Protocol (RAP)

remote announce (browsing configuration options)

remote announce option

 smb.conf file

remote browse sync (browsing configuration options)

Remote Procedure Call (RPC)

Remote Procedure Call (RPC) client library

Remote Registry Service

remote server management

 file shares

 Performance Monitor

 services

rename user script

require_membership_of=SID option (pam_windbind)

resolv.conf file

RFC2307bis extensions

RID (relative identifier)

root preexec

rpcclient program

rpm command (Unix)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

SAM (Security Account Manager)

Samba

 advantages of using

 as domain member server

 common services

 distribution, overview

 downloading

 introduction

 simple network

 web site

 what is

Samba 3.0, roles

Samba backup domain (BDC)

 configuring

 passdb recommendations

Samba Primary Domain Controller (PDC)

 configuring

 managing users and groups

 setting up domain joins

 system policies

 user profiles

 five minimum requirements

Samba public GPG key

samba-vscan virus scanning plug-in

search paths, setting

secret key (Kerberos)

secrets.tdb

section

Security Descriptor Definition Language (SDDL)

security descriptors

security levels

security modes

security tab in Explorer

security, and printers

SeMachineAccountPrivilege

server announcements

Server Manager (srvmgr.exe) application

server scripts, executing

server string option (smb.conf file)

service

Service Location Protocol (SLP)

Service Ticket (Kerberos)

services

session key (Kerberos)

session primitives

session services (NBT)

 defined

 tips

set primary group script

setuid binaries

shares

 ADMIN$

 C$

 PRINT$

 special names

sharing files

sharing printers

short preserve case

SID (Windows security identifier)

SIDs (security identifiers)

SIGHUP signal

SIGTERM (15) signal

SMB networking

SMB printer sharing in OS X

SMB URI syntax

smb.conf file 2nd 3rd

 [homes]

 [printers] section

 browsing

 capitalization

 comments

 continuation in

 disk share

 disk share configuration

 examples

 line continuation

 location from bundled installation

 logging configuration options

 name resolution 2nd

 networking options

 options

 copy

 include

 parameter values

 plug-ins

 server

 server configuration file

 shares

 structure

 testing

 updating a live system

 variables

 virtual servers

 whitespace

SMB/CIFS

 file locking

 protocol

smbcacls command

smbcacls program

smbclient 2nd

 -L option

 backups with

 interactive session

 programming with

smbclient program

 commands

 !

 ?

 altname

 archive

 blocksize 2nd

 cancel print_jobid

 case_sensitive

 cd

 chmod

 chown

 del

 dir

 du

 exit

 get remote_file

 getfacl

 hardlink

 history

 lcd

 link

 listconnect

 lowercase

 mask

 mget

 mkdir

 more

 mput

 newer

 print

 prompt

 put

 pwd

 queue

 recurse

 rename

 reput

 rmdir

 setmode

 showconnect

 stat

 symlink

 tar

 tarmode

 volume

 connections with

 locally testing with

 minimal configuration

 testing browsing

smbcontrol command

 message types

 close-share

 debug

 debuglevel

 dmalloc-log-changed

 dmalloc-mark

 drvupgrade

 force-election

 nodestatus

 ping

 pool-usage

 printer-notify

 profile

 profile level

 reload-config

 shutdown

 options

smbcontrol program

smbcquotas command

smbd 2nd 3rd

 case sensitivity and

 Full Control and

 oplocks and

 permissions and

 VFS and

smbd daemon 2nd 3rd

smbfs

 versus cifs

smbget command

smbldap-tools package

smbmnt program

smbpasswd 2nd 3rd 4th 5th 6th

 command-line options available to root when running

 other options

 superuser options

smbpasswd file

smbprint program

smbprint.sysv

smbspool command

smbspool program

smbspool utility 2nd

smbstatus command

smbstatus program 2nd

smbtar command

smbtar program

smbtree command

smbutil 2nd

 relation to smbclient and nmblookup

smbutil program, testing print configuration

spoolss support, disabling

store dos attributes 2nd

strace command

Subversion (SVN)

svcctl list directive

svcctl list option

svcctl list parameter

SVN (Subversion)

swat

SWAT (Samba Web Administration Tool) 2nd

 creating smb.conf file

 Global Variables page

 login

symbolic links (symlinks)

synchronizing contents of netlogon share

synchronizing passwords

synchronizing with other WINS servers

sysdm.cpl

syslog

syslog error logging

syslog only option (smb.conf file)

syslog option (smb.conf file)

syslog.conf file

system policy file

System V Unix

 automatically starting Samba daemons

 system print jobs

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

TCP/IP

tcpdump utility

tdb and datafiles

tdb files

 ${lockdir}/account_policy.tdb

 ${lockdir}/brlock.tdb

 ${lockdir}/connections.tdb

 ${lockdir}/deferred_open.tdb

 ${lockdir}/eventlog/*tdb

 ${lockdir}/gencache.tdb

 ${lockdir}/group_mapping.tdb

 ${lockdir}/locking.tdb

 ${lockdir}/login_cache.tdb

 ${lockdir}/netsamlogon_cache.tdb

 ${lockdir}/nt*tdb

 ${lockdir}/permon/*tdb

 ${lockdir}/printing/*tdb

 ${lockdir}/registry.tdb

 ${lockdir}/sessionid.tdb

 ${lockdir}/share_info.tdb

 ${lockdir}/unexpected.tdb

 ${lockdir}/winbindd_cache.tdb

 ${lockdir}/winbindd_idmap.tdb

 ${lockdir}/wins.tdb

tdbbackup command

tdbdump command

tdbsam (TDB passdb backend)

tdbsam passdb

tdbtool commands

 cdump

 create

 delete

 dump

 erase

 freelist

 hexkeys

 info

 insert

 keys

 list

 move

 open

 quit

 show

 store

template homedir option (Winbind)

template shell option (Winbind)

testparm command

testparm program 2nd

 testing daemons with

The username could not be found error

Ticket Granting Service (TGS) (Kerberos)

Ticket Granting Ticket (TGT) (Kerberos)

time to live (TTL)

timestamp logs option (smb.conf file)

token

trace command

tracing system calls

Tridgell, Andrew

troubleshooting Samba

 browsing

 bug reports

 capturing network traffic

 checking smbd with telnet

 connections with ping

 documentation, FAQs, and wiki

 hostnames, lookup difficulties

 localhost issues

 looking for daemons bound to ports

 low-level IP

 name services

 name services with ping

 NetBIOS names

 network addresses

 network software with ping

 networking hardware with ping

 ping

 server daemons

 SMB connections

 SMB/CIFS protocol

 testing daemons with testparm

 tracing system calls

 tracking daemon startup

 unusual delays

truss command

try_first_pass option (pam_windbind)

tusc command

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

UIDs

umount.cifs

Unable

Unable to copy service--source not found: [name]

Unicode

Universal Plug-and-Play (UPnP)

Unix

 automounter

 clients

 permission bits

 utilities

 trace command

 viewing processes

Unix extended attributes

Unix password sync

Unix utilities, capturing network traffic

unknown_ok option (pam_windbind)

upgrading Samba

use kerberos keytab parameter

use_authtok option (pam_windbind)

use_first_pass option (pam_windbind)

user accounts, matching domain to local accounts

user ID (UID)

user management

 account storage

 account utilities

 ldap passwd sync

 ldapsam backend

 password synchronization options

 pdbedit

 relative identifier (RID)

 smbpasswd

 synchronizing passwords

 tdbsam

 username map

 Windows security identifier (SID)

user management options

User Manager for Domains application

user privileges management

 net rpc rights command

 net tool

user profiles

 definitive guide to

 options

 storing per-user settings

 usrmgr.exe

useradd command 2nd

username map

 username map script versus

username map script

usrmgr.exe

 user profiles

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

variables, smb.conf

 %$

 %a

 %d

 %G

 %g

 %H

 %h

 %I

 %L

 %M

 %m

 %N

 %P

 %p

 %R

 %S

 %T

 %U

 %u

 %v

veto oplock files

vetoing files

vfs object

Virtual File System (VFS)

virtualization

volume option (smb.conf file)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

WARNING: [name] service MUST be printable

WARNING: No path in service name - making it unavailable

WARNING: You have some share names that are longer than 12 characters

wbinfo command 2nd 3rd

 options

Winbind 2nd

 basic options

 group nesting options

 idmap backed = ad

 idmap backed = ldap

 idmap backends

 idmap_rid plug-in

 local nested groups

 PAM interface

 PAM option

 pam_winbind options

winbind cache time option (Winbind)

winbind enum groups option (Winbind)

winbind enum groups parameter

winbind enum users option (Winbind)

winbind enum users parameter

Winbind NSS sources

winbind separator option (Winbind)

winbindd 2nd 3rd

 last step before starting

winbindd daemon 2nd

Windows 95/98/Me identify node type

Windows access masks

Windows ACL inheritance, enabling

Windows Add Printer Wizard (APW)

Windows client, joining

Windows Internet Name Service (WINS)

 Architecture and Capacity Planning

Windows NT 4.0

 domain controller

 migrating to Samba

Windows NT security model

Windows printers, sharing

Windows relative IDs (RIDs)

Windows security identifier (SID)

Windows Service Control API

Windows setup

 browse the Samba server

 computer and workgroup names

 connecting to Samba server

 creating local users on Windows clients

 networking components

 TCP/IP

Windows System Account Manager (SAM)

Windows XP identify node type, ipconfig /all command

Windows.ini files

WINS

 client and a server interaction

 proxy, configuring

wins (name resolve order)

wins hook (name-resolution configuration option)

wins hook global option

wins proxy (name-resolution configuration option)

wins proxy option (smb.conf file)

wins server (name-resolution configuration option)

wins server parameter

WINS servers

 configuring Samba to use another

 setting Samba as

wins support (name-resolution configuration option)

wins support parameter 2nd

wins.dat file

workgroup parameter (smb.conf file)

workgroups, defined

writable option (smb.conf file)

write ok option (smb.conf file)

writeable option (smb.conf file)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

xinetd

 starting from

xinetd daemon

	Using Samba, 3rd Edition
	Table of Contents
	Copyright
	Preface

	Chapter 1. An Introduction to Samba
	Section 1.1. What Is Samba?
	Section 1.2. What Can Samba Do for Me?
	Section 1.3. The Common Internet File System
	Section 1.4. Connecting to a CIFS File Share
	Section 1.5. Browsing
	Section 1.6. Authentication: Peer-to-Peer Versus Domains
	Section 1.7. What's in Samba 3.0?
	Section 1.8. Future Research in Samba 4.0
	Section 1.9. What Can Samba Do?
	Section 1.10. An Overview of the Samba Distribution
	Section 1.11. How Can I Get Samba?

	Chapter 2. Installing Samba on a Unix System
	Section 2.1. Binary Packages
	Section 2.2. Compiling from Source
	Section 2.3. Compiling and Installing Samba
	Section 2.4. Enabling the Samba Web Administration Tool (SWAT)
	Section 2.5. A Basic Samba Configuration File
	Section 2.6. Firewall Configuration
	Section 2.7. Starting the Samba Daemons

	Chapter 3. Configuring Windows Clients
	Section 3.1. Windows Networking Concepts
	Section 3.2. Windows Setup

	Chapter 4. The Samba Configuration File
	Section 4.1. Basic Syntax and Rules
	Section 4.2. Special Sections
	Section 4.3. Configuration File Options
	Section 4.4. Basic Server Configuration
	Section 4.5. Disk Share Configuration
	Section 4.6. Networking Options with Samba
	Section 4.7. Virtual Servers
	Section 4.8. Logging Configuration Options

	Chapter 5. Accounts, Authentication, and Authorization
	Section 5.1. Security Modes
	Section 5.2. User Management
	Section 5.3. Group Mapping
	Section 5.4. User Privilege Management
	Section 5.5. Controlling Authorization for File Shares

	Chapter 6. Advanced Disk Shares
	Section 6.1. Special Share Names
	Section 6.2. Filesystem Differences
	Section 6.3. Access Control Lists
	Section 6.4. Microsoft Distributed File Systems
	Section 6.5. Virtual File Systems
	Section 6.6. Executing Server Scripts

	Chapter 7. Printing
	Section 7.1. Print Shares
	Section 7.2. A Usable Print Share
	Section 7.3. Samba and CUPS
	Section 7.4. The [printers] Service
	Section 7.5. Enabling SMB Printer Sharing in OS X
	Section 7.6. Creating a PDF Printer
	Section 7.7. Managing Windows Print Drivers
	Section 7.8. Printers and Security
	Section 7.9. Disabling Point and Print
	Section 7.10. Printing, Queue Lists, and tdb Files
	Section 7.11. Printing to Windows Printers
	Section 7.12. Printing Parameters

	Chapter 8. Name Resolution and Network Browsing
	Section 8.1. Name Resolution
	Section 8.2. Network Browsing

	Chapter 9. Domain Controllers
	Section 9.1. Samba Domains: NT 4.0 or Active Directory?
	Section 9.2. Configuring a Samba PDC
	Section 9.3. Configuring a Samba BDC
	Section 9.4. passdb Recommendations
	Section 9.5. Migrating an NT 4.0 Domain to Samba
	Section 9.6. Domain Trusts
	Section 9.7. Remote Server Management

	Chapter 10. Domain Member Servers
	Section 10.1. Joining a Domain
	Section 10.2. Domain and ADS Security Modes
	Section 10.3. Matching Domain Users to Local Accounts
	Section 10.4. Winbind
	Section 10.5. Additional Winbind Features

	Chapter 11. Unix Clients
	Section 11.1. The Linux CIFS Filesystem
	Section 11.2. FreeBSD's smbfs
	Section 11.3. Mac OS X
	Section 11.4. smbclient
	Section 11.5. Remote Administration with net

	Chapter 12. Troubleshooting Samba
	Section 12.1. The Tool Box
	Section 12.2. Samba Logs
	Section 12.3. Unix Utilities
	Section 12.4. The Fault Tree
	Section 12.5. Troubleshooting Browsing
	Section 12.6. Troubleshooting Name Services
	Section 12.7. Troubleshooting Network Addresses
	Section 12.8. Troubleshooting NetBIOS Names
	Section 12.9. Extra Resources

	Appendix A. Summary of Samba Daemons and Commands
	Section A.1. SMB URI Syntax
	Section A.2. Samba Daemons
	Section A.3. Samba Client Programs

	Appendix B. Downloading Samba with Subversion
	Appendix C. Configure Options
	Section C.1. Install Directory and Library Options
	Section C.2. Developer Options
	Section C.3. Authentication Options
	Section C.4. File Serving Features
	Section C.5. Printing Options
	Section C.6. Clients and Libraries

	About the Authors
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

