
Learning the bash Shell, 3rd Edition 7

Table of Contents 8

Copyright 11

Preface 12

 bash Versions 13

 Summary of bash Features 14

 Intended Audience 15

 Code Examples 16

 Chapter Summary 17

 Conventions Used in This Handbook 19

 We'd Like to Hear from You 21

 Using Code Examples 22

 Safari Enabled 23

 Acknowledgments for the First Edition 24

 Acknowledgments for the Second Edition 25

 Acknowledgments for the Third Edition 26

Chapter 1. bash Basics 27

 1.1. What Is a Shell? 29

 1.2. Scope of This Book 30

 1.3. History of UNIX Shells 31

 1.4. Getting bash 34

 1.5. Interactive Shell Use 36

 1.6. Files 37

 1.7. Input and Output 45

 1.8. Background Jobs 50

 1.9. Special Characters and Quoting 53

 1.10. Help 60

Chapter 2. Command-Line Editing 62

 2.1. Enabling Command-Line Editing 64

 2.2. The History List 65

 2.3. emacs Editing Mode 66

 2.4. vi Editing Mode 76

 2.5. The fc Command 88

Learning the bash Shell, 3rd Edition 7

Table of Contents 8

Copyright 11

Preface 12

 bash Versions 13

 Summary of bash Features 14

 Intended Audience 15

 Code Examples 16

 Chapter Summary 17

 Conventions Used in This Handbook 19

 We'd Like to Hear from You 21

 Using Code Examples 22

 Safari Enabled 23

 Acknowledgments for the First Edition 24

 Acknowledgments for the Second Edition 25

 Acknowledgments for the Third Edition 26

Chapter 1. bash Basics 27

 1.1. What Is a Shell? 29

 1.2. Scope of This Book 30

 1.3. History of UNIX Shells 31

 1.4. Getting bash 34

 1.5. Interactive Shell Use 36

 1.6. Files 37

 1.7. Input and Output 45

 1.8. Background Jobs 50

 1.9. Special Characters and Quoting 53

 1.10. Help 60

Chapter 2. Command-Line Editing 62

 2.1. Enabling Command-Line Editing 64

 2.2. The History List 65

 2.3. emacs Editing Mode 66

 2.4. vi Editing Mode 76

 2.5. The fc Command 88

 2.6. History Expansion 91

 2.7. readline 94

 2.8. Keyboard Habits 99

Chapter 3. Customizing Your Environment 101

 3.1. The .bash_profile, .bash_logout, and .bashrc Files 103

 3.2. Aliases 105

 3.3. Options 109

 3.4. Shell Variables 112

 3.5. Customization and Subprocesses 128

 3.6. Customization Hints 134

Chapter 4. Basic Shell Programming 135

 4.1. Shell Scripts and Functions 136

 4.2. Shell Variables 142

 4.3. String Operators 149

 4.4. Command Substitution 161

 4.5. Advanced Examples: pushd and popd 166

Chapter 5. Flow Control 170

 5.1. if/else 172

 5.2. for 191

 5.3. case 201

 5.4. select 205

 5.5. while and until 209

Chapter 6. Command-Line Options and Typed Variables 212

 6.1. Command-Line Options 213

 6.2. Typed Variables 224

 6.3. Integer Variables and Arithmetic 226

 6.4. Arrays 241

Chapter 7. Input/Output and Command-Line Processing 247

 7.1. I/O Redirectors 248

 7.2. String I/O 257

 7.3. Command-Line Processing 274

Chapter 8. Process Handling 296

 8.1. Process IDs and Job Numbers 297

 8.2. Job Control 299

 8.3. Signals 304

 8.4. trap 312

 8.5. Coroutines 320

 8.6. Subshells 325

 8.7. Process Substitution 328

Chapter 9. Debugging Shell Programs 329

 9.1. Basic Debugging Aids 330

 9.2. A bash Debugger 341

Chapter 10. bash Administration 371

 10.1. Installing bash as the Standard Shell 372

 10.2. Environment Customization 376

 10.3. System Security Features 380

Chapter 11. Shell Scripting 384

 11.1. What's That Do? 385

 11.2. Starting Up 388

 11.3. Potential Problems 391

 11.4. Don't Use bash 393

Chapter 12. bash for Your System 394

 12.1. Obtaining bash 395

 12.2. Unpacking the Archive 396

 12.3. What's in the Archive 397

 12.4. Who Do I Turn to? 405

Appendix A. Related Shells 407

 A.1. The Bourne Shell 408

 A.2. The IEEE 1003.2 POSIX Shell Standard 412

 A.3. The Korn Shell 415

 A.4. pdksh 417

 A.5. zsh 418

 A.6. Shell Clones and Unix-like Platforms 419

Appendix B. Reference Lists 422

 B.1. Invocation 423

 B.2. Prompt String Customizations 426

 B.3. Built-In Commands and Reserved Words 428

 B.4. Built-In Shell Variables 432

 B.5. Test Operators 440

 B.6. set Options 443

 B.7. shopt Options 445

 B.8. I/O Redirection 448

 B.9. emacs Mode Commands 450

 B.10. vi Control Mode Commands 453

Appendix C. Loadable Built-Ins 456

Appendix D. Programmable Completion 463

Colophon 468

Index 469

 index_SYMBOL 470

 index_A 475

 index_B 477

 index_C 481

 index_D 487

 index_E 489

 index_F 494

 index_G 496

 index_H 497

 index_I 499

 index_J 501

 index_K 502

 index_L 503

 index_M 505

 index_N 506

 index_O 507

 index_P 508

 index_Q 511

 index_R 512

 index_S 514

 index_T 519

 index_U 521

 index_V 522

 index_W 523

 index_X 524

 index_Y 525

 index_Z 526

 < Day Day Up >

Learning the bash Shell, 3rd Edition

By Cameron Newham

...

Publisher: O'Reilly

Pub Date: March 2005

ISBN: 0-596-00965-8

Pages: 352

Table of Contents | Index | Errata

This refreshed edition serves as the most valuable guide yet to the bash shell. It's full of

practical examples of shell commands and programs guaranteed to make everyday use of Linux

that much easier. Includes information on key bindings, command line editing and processing,

integrated programming features, signal handling, and much more!

 < Day Day Up >

 < Day Day Up >

Learning the bash Shell, 3rd Edition

By Cameron Newham

...

Publisher: O'Reilly

Pub Date: March 2005

ISBN: 0-596-00965-8

Pages: 352

Table of Contents | Index | Errata

 Copyright

 Preface

 bash Versions

 Summary of bash Features

 Intended Audience

 Code Examples

 Chapter Summary

 Conventions Used in This Handbook

 We'd Like to Hear from You

 Using Code Examples

 Safari Enabled

 Acknowledgments for the First Edition

 Acknowledgments for the Second Edition

 Acknowledgments for the Third Edition

 Chapter 1. bash Basics

 Section 1.1. What Is a Shell?

 Section 1.2. Scope of This Book

 Section 1.3. History of UNIX Shells

 Section 1.4. Getting bash

 Section 1.5. Interactive Shell Use

 Section 1.6. Files

 Section 1.7. Input and Output

 Section 1.8. Background Jobs

 Section 1.9. Special Characters and Quoting

 Section 1.10. Help

 Chapter 2. Command-Line Editing

 Section 2.1. Enabling Command-Line Editing

 Section 2.2. The History List

 Section 2.3. emacs Editing Mode

 Section 2.4. vi Editing Mode

 Section 2.5. The fc Command

 Section 2.6. History Expansion

 Section 2.7. readline

 Section 2.8. Keyboard Habits

 Chapter 3. Customizing Your Environment

 Section 3.1. The .bash_profile, .bash_logout, and .bashrc Files

 Section 3.2. Aliases

 Section 3.3. Options

 Section 3.4. Shell Variables

 Section 3.5. Customization and Subprocesses

 Section 3.6. Customization Hints

 Chapter 4. Basic Shell Programming

 Section 4.1. Shell Scripts and Functions

 Section 4.2. Shell Variables

 Section 4.3. String Operators

 Section 4.4. Command Substitution

 Section 4.5. Advanced Examples: pushd and popd

 Chapter 5. Flow Control

 Section 5.1. if/else

 Section 5.2. for

 Section 5.3. case

 Section 5.4. select

 Section 5.5. while and until

 Chapter 6. Command-Line Options and Typed Variables

 Section 6.1. Command-Line Options

 Section 6.2. Typed Variables

 Section 6.3. Integer Variables and Arithmetic

 Section 6.4. Arrays

 Chapter 7. Input/Output and Command-Line Processing

 Section 7.1. I/O Redirectors

 Section 7.2. String I/O

 Section 7.3. Command-Line Processing

 Chapter 8. Process Handling

 Section 8.1. Process IDs and Job Numbers

 Section 8.2. Job Control

 Section 8.3. Signals

 Section 8.4. trap

 Section 8.5. Coroutines

 Section 8.6. Subshells

 Section 8.7. Process Substitution

 Chapter 9. Debugging Shell Programs

 Section 9.1. Basic Debugging Aids

 Section 9.2. A bash Debugger

 Chapter 10. bash Administration

 Section 10.1. Installing bash as the Standard Shell

 Section 10.2. Environment Customization

 Section 10.3. System Security Features

 Chapter 11. Shell Scripting

 Section 11.1. What's That Do?

 Section 11.2. Starting Up

 Section 11.3. Potential Problems

 Section 11.4. Don't Use bash

 Chapter 12. bash for Your System

 Section 12.1. Obtaining bash

 Section 12.2. Unpacking the Archive

 Section 12.3. What's in the Archive

 Section 12.4. Who Do I Turn to?

 Appendix A. Related Shells

 Section A.1. The Bourne Shell

 Section A.2. The IEEE 1003.2 POSIX Shell Standard

 Section A.3. The Korn Shell

 Section A.4. pdksh

 Section A.5. zsh

 Section A.6. Shell Clones and Unix-like Platforms

 Appendix B. Reference Lists

 Section B.1. Invocation

 Section B.2. Prompt String Customizations

 Section B.3. Built-In Commands and Reserved Words

 Section B.4. Built-In Shell Variables

 Section B.5. Test Operators

 Section B.6. set Options

 Section B.7. shopt Options

 Section B.8. I/O Redirection

 Section B.9. emacs Mode Commands

 Section B.10. vi Control Mode Commands

 Appendix C. Loadable Built-Ins

 Appendix D. Programmable Completion

 Colophon

 Index

 < Day Day Up >

 < Day Day Up >

Copyright © 2005, 1998, 1995 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com .

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks
of O'Reilly Media, Inc. Learning the bash Shell , the image of a silver bass, and related trade
dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

 < Day Day Up >

http://safari.oreilly.com

 < Day Day Up >

Preface
The first thing users of the UNIX or Linux operating systems come face to face with is the shell .
"Shell" is the UNIX term for a user interface to the system—something that lets you
communicate with the computer via the keyboard and the display. Shells are just separate
programs that encapsulate the system, and, as such, there are many to choose from.

Systems are usually set up with a "standard" shell that new users adopt without question.
However, some of these standard shells are rather old and lack many features of the newer shells.
This is a shame, because shells have a large bearing on your working environment. Since
changing shells is as easy as changing hats, there is no reason not to change to the latest and
greatest in shell technology.

Of the many shells to choose from, this book introduces the Bourne Again shell (bash for
short), a modern general-purpose shell. Other useful modern shells are the Korn shell (ksh) and
the "Tenex C shell" (tcsh); both are also the subjects of O'Reilly handbooks.

 < Day Day Up >

 < Day Day Up >

bash Versions

This book is relevant to all versions of bash , although older versions lack some of the features
of the most recent version.[1] You can easily find out which version you are using by typing echo
$BASH_VERSION . The earliest public version of bash was 1.0, and the most recent is 3.0
(released in July 2004). If you have an older version, you might like to upgrade to the latest one.
Chapter 12 shows you how to go about it.

[1] Throughout this book we have clearly marked with footnotes the features that are not present in the earlier versions.

 < Day Day Up >

 < Day Day Up >

Summary of bash Features

bash is a backward-compatible evolutionary successor to the Bourne shell that includes most of
the C shell's major advantages as well as features from the Korn shell and a few new features of
its own. Features appropriated from the C shell include:

Directory manipulation, with the pushd , popd , and dirs commands.

Job control, including the fg and bg commands and the ability to stop jobs with CTRL-Z.

Brace expansion, for generating arbitrary strings.

Tilde expansion, a shorthand way to refer to directories.

Aliases, which allow you to define shorthand names for commands or command lines.

Command history, which lets you recall previously entered commands.

bash 's major new features include:

Command-line editing, allowing you to use vi - or emacs -style editing commands on your
command lines.

Key bindings that allow you to set up customized editing key sequences.

Integrated programming features: the functionality of several external UNIX commands,
including test , expr , getopt , and echo , has been integrated into the shell itself, enabling
common programming tasks to be done more cleanly and efficiently.

Control structures, especially the select construct, which enables easy menu generation.

New options and variables that give you more ways to customize your environment.

One dimensional arrays that allow easy referencing and manipulation of lists of data.

Dynamic loading of built-ins, plus the ability to write your own and load them into the
running shell.

 < Day Day Up >

 < Day Day Up >

Intended Audience

This book is designed to address casual UNIX and Linux users who are just above the "raw
beginner" level. You should be familiar with the process of logging in, entering commands, and
doing simple things with files. Although Chapter 1 reviews concepts such as the tree-like file and
directory scheme, you may find that it moves too quickly if you're a complete neophyte. In that
case, we recommend the O'Reilly handbook, Learning the UNIX Operating System , by Jerry
Peek, Grace Todino, and John Strang.

If you're an experienced user, you may wish to skip Chapter 1 altogether. But if your experience
is with the C shell, you may find that Chapter 1 reveals a few subtle differences between the bash
and C shells.

No matter what your level of experience is, you will undoubtedly learn many things in this book
that will make you a more productive bash user—from major features down to details at the
"nook-and-cranny" level that you may not have been aware of.

If you are interested in shell programming (writing shell scripts and functions that automate
everyday tasks or serve as system utilities), you should also find this book useful. However, we
have deliberately avoided drawing a strong distinction between interactive shell use (entering
commands during a login session) and shell programming. We see shell programming as a
natural, inevitable outgrowth of increasing experience as a user.

Accordingly, each chapter depends on those previous to it, and although the first three chapters
are oriented toward interactive use only, subsequent chapters describe interactive, user-oriented
features in addition to programming concepts.

This book aims to show you that writing useful shell programs doesn't require a computing
degree. Even if you are completely new to computing, there is no reason why you shouldn't be
able to harness the power of bash within a short time.

Toward that end, we decided not to spend too much time on features of exclusive interest to
low-level systems programmers. Concepts like file descriptors and special file types might only
confuse the casual user, and anyway, we figure those of you who understand such things are
smart enough to extrapolate the necessary information from our cursory discussions.

 < Day Day Up >

 < Day Day Up >

Code Examples

This book is full of examples of shell commands and programs designed to be useful in your
everyday life as a user, not just to illustrate the feature being explained. In Chapter 4 and
onwards, we include various programming problems, which we call tasks , that illustrate
particular shell programming concepts. Some tasks have solutions that are refined in subsequent
chapters. The later chapters also include programming exercises, many of which build on the
tasks in the chapter.

Feel free to use any code you see in this book and to pass it along to friends and colleagues. We
especially encourage you to modify and enhance it yourself.

If you want to try examples but you don't use bash as your login shell, you must put the
following line at the top of each shell script:

#!/bin/bash

If bash isn't installed as the file /bin/bash , substitute its pathname in the above.

 < Day Day Up >

 < Day Day Up >

Chapter Summary

If you want to investigate specific topics rather than read the entire book through, here is a
chapter-by-chapter summary:

Chapter 1 introduces bash and tells you how to install it as your login shell. Then it surveys the
basics of interactive shell use, including overviews of the UNIX file and directory scheme,
standard I/O, and background jobs.

Chapter 2 discusses the shell's command history mechanism (including the emacs - and vi -
editing modes), history substitution and the fc history command, and key bindings with readline
and bind .

Chapter 3 covers ways to customize your shell environment without programming by using the
startup and environment files. Aliases, options, and shell variables are the customization
techniques discussed.

Chapter 4 is an introduction to shell programming. It explains the basics of shell scripts and
functions, and discusses several important "nuts-and-bolts" programming features: string
manipulation operators, brace expansion, command-line arguments (positional parameters), and
command substitution.

Chapter 5 continues the discussion of shell programming by describing command exit status,
conditional expressions, and the shell's flow-control structures: if , for , case , select , while ,
and until .

Chapter 6 goes into depth about positional parameters and command-line option processing,
then discusses special types and properties of variables, integer arithmetic, and arrays.

Chapter 7 gives a detailed description of bash I/O. This chapter covers all of the shell's I/O
redirectors, as well as the line-at-a-time I/O commands read and echo . It also discusses the
shell's command-line processing mechanism and the eval command.

Chapter 8 covers process-related issues in detail. It starts with a discussion of job control, then
gets into various low-level information about processes, including process IDs, signals, and
traps. The chapter then moves to a higher level of abstraction to discuss coroutines and
subshells.

Chapter 9 discusses various debugging techniques, like trace and verbose modes, and the "fake"
signal traps. It then presents in detail a useful shell tool, written using the shell itself: a bash

debugger.

Chapter 10 gives information for system administrators, including techniques for implementing
system-wide shell customization and features related to system security.

Chapter 11 discusses ways to make bash scripts more maintainable.

Chapter 12 shows you how to go about getting bash and how to install it on your system. It also
outlines what to do in the event of problems along the way.

Appendix A compares bash to several similar shells, including the standard Bourne shell, the
POSIX shell standard, the Korn shell (ksh), the public-domain Korn shell (pdksh), and the Z
Shell (zsh).

Appendix B contains lists of shell invocation options, built-in commands, built-in variables,
conditional test operators, options, I/O redirection, and emacs- and vi -editing mode commands.

Appendix C gives information on writing and compiling your own loadable built-ins.

Appendix D looks at the basics of programmable completion.

 < Day Day Up >

 < Day Day Up >

Conventions Used in This Handbook

We leave it as understood that when you enter a shell command, you press RETURN at the end.
RETURN is labeled ENTER on some keyboards.

Characters called CTRL-X , where X is any letter, are entered by holding down the CTRL (or
CTL, or CONTROL) key and pressing that letter. Although we give the letter in uppercase, you
can press the letter without the SHIFT key.

Other special characters are LINEFEED (which is the same as CTRL-J), BACKSPACE (same
as CTRL-H), ESC, TAB, and DEL (sometimes labeled DELETE or RUBOUT).

This book uses the following font conventions:

Italic

Used for UNIX filenames, commands not built into the shell (which are files anyway), and
shell functions. Italic is also used for dummy parameters that should be replaced with an
actual value, to distinguish the vi and emacs programs from their bash modes, and to
highlight special terms the first time they are defined.

Bold

Used for bash built-in commands, aliases, variables, and options, as well as command lines
when they are within regular text. Bold is used for all elements typed in by the user within
regular text.

Constant Width

Used in examples to show the contents of files or the output from commands.

Constant Bold

Used in examples to show interaction between the user and the shell; any text the user types
in is shown in Constant Bold . For example:$ pwd/home/cam/adventure/carrol
$

Constant Italic

Used in displayed command lines for dummy parameters that should be replaced with an
actual value.

Square Brackets

Used in Chapter 2 to show the position of the cursor on the command line being edited.
For example:grep -l Alice < ~cam/book/[a]iw

We use UNIX as a shorthand for "UNIX and Linux." Purists will correctly insist that Linux
is not UNIX—but as far as this book is concerned, they behave identically.

 < Day Day Up >

 < Day Day Up >

We'd Like to Hear from You

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/bash3

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly
Network, see our web site at:

http://www.oreilly.com

 < Day Day Up >

http://www.oreilly.com/catalog/bash3
http://www.oreilly.com

 < Day Day Up >

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM
of examples from O'Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example "Learning the bash Shell , Third Edition, by Cameron
Newham and Bill Rosenblatt. Copyright 2005 O'Reilly Media, Inc., 0-596-00965-8."

 < Day Day Up >

 < Day Day Up >

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology
book, that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.com .

 < Day Day Up >

http://safari.oreilly.com

 < Day Day Up >

Acknowledgments for the First Edition

This project has been an interesting experience and wouldn't have been possible without the help
of a number of people. Firstly, I'd like to thank Brian Fox and Chet Ramey for creating bash and
making it the polished product it is today. Thanks also to Chet Ramey for promptly answering all
of my questions on bash and pointing out my errors.

Many thanks to Bill Rosenblatt for Learning the korn Shell , on which this book is based;
Michael O'Reilly and Michael Malone at iiNet Technologies for their useful comments and
suggestions (and my net.connection!); Chris Thorne, Justin Twiss, David Quin-Conroy, and my
mum for their comments, suggestions, and corrections; Linus Torvalds for the Linux operating
system which introduced me to bash and was the platform for all of my work on the book; Brian
Fox for providing a short history of bash ; David Korn for information on the latest Korn shell.
Thanks also to Depeche Mode for "101" as a backdrop while I worked, Laurence Durbridge for
being a likable pest and never failing to ask "Finished the book yet?" and Adam (for being in my
book).

The sharp eyes of our technical reviewers picked up many mistakes. Thanks to Matt Healy, Chet
Ramey, Bill Reynolds, Bill Rosenblatt, and Norm Walsh for taking time out to go through the
manuscript.

The crew at O'Reilly were indispensable in getting this book out the door. I'd like to thank Lenny
Muellner for providing me with the formatting tools for the job, Chris Reilley for the figures, and
Edie Freedman for the cover design. On the production end, I'd like to thank David Sewell for
his copyediting, Clairemarie Fisher O'Leary for managing the production process, Michael
Deutsch and Jane Ellin for their production assistance, Ellen Siever for tools support, Kismet
McDonough for providing quality assurance, and Seth Maislin for the index.

I'm grateful to Frank Willison for taking me up on my first piece of email to ORA: "What about a
book on bash ?"

Last but by no means least, a big thank you to my editor, Mike Loukides, who helped steer me
through this project.

 < Day Day Up >

 < Day Day Up >

Acknowledgments for the Second Edition

Thanks to all the people at O'Reilly. Gigi Estabrook was the editor for the second edition. Nicole
Gipson Arigo was the production editor and project manager. Nancy Wolfe Kotary and Ellie
Fountain Maden performed quality control checks. Seth Maislin wrote the index. Edie Freedman
designed the cover, and Nancy Priest designed the interior format of the book. Lenny Muellner
implemented the format in troff. Robert Romano updated the illustrations for the second edition.

 < Day Day Up >

 < Day Day Up >

Acknowledgments for the Third Edition

Thanks to the production people at O'Reilly and to the indexer.

Thanks to Chet Ramey for once again swiftly answering my queries on bash and for providing
helpful comments on the book. I'd also like to thank Ian Macdonald for his feedback on
Programmable Completion.

 < Day Day Up >

 < Day Day Up >

Chapter 1. bash Basics
Since the early 1970s, when it was first created, the UNIX operating system has become more
and more popular. During this time it has branched out into different versions, and taken on such
names as Ultrix, AIX, Xenix, SunOS, and Linux. Starting on minicomputers and mainframes, it
has moved onto desktop workstations and even personal computers used at work and home. No
longer a system used only by academics and computing wizards at universities and research
centers, UNIX is used in many businesses, schools, and homes. As time goes on, more people
will come into contact with UNIX.

You may have used UNIX at your school, office, or home to run your applications, print
documents, and read your electronic mail. But have you ever thought about the process that
happens when you type a command and hit RETURN?

Several layers of events take place whenever you enter a command, but we're going to consider
only the top layer, known as the shell . Generically speaking, a shell is any user interface to the
UNIX operating system, i.e., any program that takes input from the user, translates it into
instructions that the operating system can understand, and conveys the operating system's output
back to the user. Figure 1-1 shows the relationship between user, shell, and operating system.

Figure 1-1. The shell is a layer around the UNIX operating system

There are various types of user interfaces. bash belongs to the most common category, known
as character-based user interfaces. These interfaces accept lines of textual commands that the
user types in; they usually produce text-based output. Other types of interfaces include the
increasingly common graphical user interfaces (GUI), which add the ability to display arbitrary
graphics (not just typewriter characters) and to accept input from a mouse or other pointing
device, touch-screen interfaces (such as those on some bank teller machines), and so on.

 < Day Day Up >

 < Day Day Up >

1.1. What Is a Shell?

The shell's job, then, is to translate the user's command lines into operating system instructions.
For example, consider this command line:

sort -n phonelist > phonelist.sorted

This means, "Sort lines in the file phonelist in numerical order, and put the result in the file
phonelist.sorted ." Here's what the shell does with this command:

Breaks up the line into the pieces sort , -n , phonelist , > , and phonelist.sorted . These
pieces are called words.

1.

Determines the purpose of the words: sort is a command, -n and phonelist are arguments,
and > and phonelist.sorted , taken together, are I/O instructions.

2.

Sets up the I/O according to > phonelist.sorted (output to the file phone list.sorted) and
some standard, implicit instructions.

3.

Finds the command sort in a file and runs it with the option -n (numerical order) and the
argument phonelist (input filename).

4.

Of course, each of these steps really involves several substeps, each of which includes a
particular instruction to the underlying operating system.

Remember that the shell itself is not UNIX—just the user interface to it. UNIX is one of the first
operating systems to make the user interface independent of the operating system.

 < Day Day Up >

 < Day Day Up >

1.2. Scope of This Book

In this book you will learn about bash , which is one of the most recent and powerful of the
major UNIX shells. There are two ways to use bash : as a user interface and as a programming
environment.

This chapter and the next cover interactive use. These two chapters should give you enough
background to use the shell confidently and productively for most of your everyday tasks.

After you have been using the shell for a while, you will undoubtedly find certain characteristics
of your environment (the shell's "look and feel") that you would like to change, and tasks that
you would like to automate. Chapter 3 shows several ways of doing this.

Chapter 3 also prepares you for shell programming, the bulk of which is covered in Chapter 4
through Chapter 6 . You need not have any programming experience to understand these
chapters and learn shell programming. Chapter 7 and Chapter 8 give more complete descriptions
of the shell's I/O and process-handling capabilities, while Chapter 9 discusses various techniques
for debugging shell programs.

You'll learn a lot about bash in this book; you'll also learn about UNIX utilities and the way the
UNIX operating system works in general. It's possible to become a virtuoso shell programmer
without any previous programming experience. At the same time, we've carefully avoided going
into excessive detail about UNIX internals. We maintain that you shouldn't have to be an internals
expert to use and program the shell effectively, and we won't dwell on the few shell features that
are intended specifically for low-level systems programmers.

 < Day Day Up >

 < Day Day Up >

1.3. History of UNIX Shells

The independence of the shell from the UNIX operating system per se has led to the
development of dozens of shells throughout UNIX history—although only a few have achieved
widespread use.

The first major shell was the Bourne shell (named after its inventor, Steven Bourne); it was
included in the first popular version of UNIX, Version 7, starting in 1979. The Bourne shell is
known on the system as sh . Although UNIX has gone through many, many changes, the Bourne
shell is still popular and essentially unchanged. Several UNIX utilities and administration features
depend on it.

The first widely used alternative shell was the C shell, or csh . This was written by Bill Joy at the
University of California at Berkeley as part of the Berkeley Software Distribution (BSD) version
of UNIX that came out a couple of years after Version 7.

The C shell gets its name from the resemblance of its commands to statements in the C
Programming Language, which makes the shell easier for programmers on UNIX systems to
learn. It supports a number of operating system features (e.g., job control; see Chapter 8) that
were unique to BSD UNIX but by now have migrated to most other modern versions. It also has
a few important features (e.g., aliases; see Chapter 3) that make it easier to use in general.

In recent years a number of other shells have become popular. The most notable of these is the
Korn shell. This shell is a commercial product that incorporates the best features of the Bourne
and C shells, plus many features of its own.[1] The Korn shell is similar to bash in most respects;
both have an abundance of features that make them easy to work with. The advantage of bash is
that it is free. For further information on the Korn shell see Appendix A .

[1] The Korn shell can be downloaded for free but it comes with a license that will require payment if the shell is used in
certain situations.

1.3.1. The Bourne Again Shell

The Bourne Again shell (named in punning tribute to Steve Bourne's shell) was created for use in
the GNU project.[2] The GNU project was started by Richard Stallman of the Free Software
Foundation (FSF) for the purpose of creating a UNIX-compatible operating system and
replacing all of the commercial UNIX utilities with freely distributable ones. GNU embodies not
only new software utilities, but a new distribution concept: the copyleft . Copylefted software

may be freely distributed so long as no restrictions are placed on further distribution (for
example, the source code must be made freely available).

[2] GNU is a recursive acronym, standing for "GNU's Not UNIX."

bash , intended to be the standard shell for the GNU system, was officially "born" on Sunday,
January 10, 1988. Brian Fox wrote the original versions of bash and readline and continued to
improve the shell up until 1993. Early in 1989 he was joined by Chet Ramey, who was
responsible for numerous bug fixes and the inclusion of many useful features. Chet Ramey is
now the official maintainer of bash and continues to make further enhancements.

In keeping with the GNU principles, all versions of bash since 0.99 have been freely available
from the FSF. bash has found its way onto every major version of UNIX and is rapidly
becoming the most popular Bourne shell derivative. It is the standard shell included with Linux, a
widely used free UNIX operating system, and Apple's Mac OS X.

In 1995 Chet Ramey began working on a major new release, 2.0, which was released to the
public for the first time on December 23, 1996. bash 2.0 added a range of new features to the
old release (the one before being 1.14.7) and brought the shell into better compliance with
various standards. bash 3.0 improves on the previous version and rounds out the feature list and
standards compliance.

This book describes bash 3.0. It is applicable to all previous releases of bash . Any features of
the current release that are different in, or missing from, previous releases will be noted in the
text.

1.3.2. Features of bash

Although the Bourne shell is still known as the "standard" shell, bash is becoming increasingly
popular. In addition to its Bourne shell compatibility, it includes the best features of the C and
Korn shells as well as several advantages of its own.

bash 's command-line editing modes are the features that tend to attract people to it first. With
command-line editing, it's much easier to go back and fix mistakes or modify previous
commands than it is with the C shell's history mechanism—and the Bourne shell doesn't let you
do this at all.

The other major bash feature that is intended mostly for interactive users is job control. As
Chapter 8 explains, job control gives you the ability to stop, start, and pause any number of
commands at the same time. This feature was borrowed almost verbatim from the C shell.

The rest of bash 's important advantages are meant mainly for shell customizers and
programmers. It has many new options and variables for customization, and its programming

features have been significantly expanded to include function definition, more control structures,
integer arithmetic, advanced I/O control, and more.

 < Day Day Up >

 < Day Day Up >

1.4. Getting bash

You may or may not be using bash right now. Your system administrator probably set your
account up with whatever shell he uses as the "standard" on the system. You may not even have
been aware that there is more than one shell available.

Yet it's easy for you to determine which shell you are using. Log in to your system and type
echo $SHELL at the prompt. You will see a response containing sh , csh , ksh , or bash ; these
denote the Bourne, C, Korn, and bash shells, respectively. (There's also a chance that you're
using another shell such as tcsh .)

If you aren't using bash and you want to, then you first need to find out if it exists on your
system. Just type bash . If you get a new prompt consisting of some information followed by a
dollar sign (e.g., bash3 $), then all is well; type exit to go back to your normal shell.

If you get a "not found" message, your system may not have it. Ask your system administrator
or another knowledgeable user; there's a chance that you might have some version of bash
installed on the system in a place (directory) that is not normally accessible to you. If not, read
Chapter 11 to find out how you can obtain a version of bash .

Once you know you have bash on your system, you can invoke it from whatever other shell you
use by typing bash as above. However, it's much better to install it as your login shell , i.e., the
shell that you get automatically whenever you log in. You may be able to do the installation by
yourself. Here are instructions that are designed to work on the widest variety of UNIX systems.
If something doesn't work (e.g., you type in a command and get a "not found" error message or
a blank line as the response), you'll have to abort the process and see your system administrator.
Alternatively, turn to Chapter 12 where we demonstrate a less straightforward way of replacing
your current shell.

You need to find out where bash is on your system, i.e., in which directory it's installed. You
might be able to find the location by typing whereis bash (especially if you are using the C
shell); if that doesn't work, try whence bash , which bash , or this complex command:[3]

[3] Make sure you use the correct quotation mark in this command: ' rather than ` .

grep bash /etc/passwd | awk -F: '{print $7}' | sort -u

You should see a response that looks like /bin/bash or /usr/local/bin/bash .

To install bash as your login shell, type chsh bash-name , where bash-name is the response
you got to your whereis command (or whatever worked). For example:

% chsh /usr/local/bin/bash

You'll either get an error message saying that the shell is invalid, or you'll be prompted for your
password.[4] Type in your password, then log out and log back in again to start using bash .

[4] For system security reasons, only certain programs are allowed to be installed as login shells.

 < Day Day Up >

 < Day Day Up >

1.5. Interactive Shell Use

When you use the shell interactively, you engage in a login session that begins when you log in
and ends when you type exit or logout or press CTRL-D. [5] During a login session, you type in
command lines to the shell; these are lines of text ending in RETURN that you type in to your
terminal or workstation.

[5] The shell can be set up so that it ignores a single CTRL-D to end the session. We recommend doing this, because
CTRL-D is too easy to type by accident. See the section on options in Chapter 3 for further details.

By default, the shell prompts you for each command with an information string followed by a
dollar sign, though as you will see in Chapter 3 , the entire prompt can be changed.

1.5.1. Commands, Arguments, and Options

Shell command lines consist of one or more words, which are separated on a command line by
blanks or TABs. The first word on the line is the command . The rest (if any) are arguments
(also called parameters) to the command, which are names of things on which the command
will act.

For example, the command line lp myfile consists of the command lp (print a file) and the single
argument myfile . lp treats myfile as the name of a file to print. Arguments are often names of
files, but not necessarily: in the command line mail cam , the mail program treats cam as the
username to which a message will be sent.

An option is a special type of argument that gives the command specific information on what it is
supposed to do. Options usually consist of a dash followed by a letter; we say "usually" because
this is a convention rather than a hard-and-fast rule. The command lp -h myfile contains the
option -h , which tells lp not to print the "banner page" before it prints the file.

Sometimes options take their own arguments. For example, lp -d lp1 -h myfile has two options
and one argument. The first option is -d lp1 , which means "Send the output to the printer
(destination) called lp1 ." The second option and argument are the same as in the previous
example.

 < Day Day Up >

 < Day Day Up >

1.6. Files

Although arguments to commands aren't always files, files are the most important types of
"things" on any UNIX system. A file can contain any kind of information, and indeed there are
different types of files. Three types are by far the most important:

Regular files

Also called text files; these contain readable characters. For example, this book was
created from several regular files that contain the text of the book plus human-readable
formatting instructions to the troff word processor.

Executable files

Also called programs; these are invoked as commands. Some can't be read by humans;
others—the shell scripts that we'll examine in this book—are just special text files. The shell
itself is a (non-human-readable) executable file called bash .

Directories

These are like folders that contain other files—possibly other directories (called
subdirectories).

1.6.1. Directories

Let's review the most important concepts about directories. The fact that directories can contain
other directories leads to a hierarchical structure, more popularly known as a tree , for all files on
a UNIX system.

Figure 1-1 shows part of a typical directory tree; rectangles are directories and ovals are regular
files.

Figure 1-2. A tree of directories and files

The top of the tree is a directory called root that has no name on the system.[6] All files can be
named by expressing their location on the system relative to root ; such names are built by listing
all of the directory names (in order from root), separated by slashes (/), followed by the file's
name. This way of naming files is called a full (or absolute) pathname .

[6] Most UNIX tutorials say that root has the name / . We stand by this alternative explanation because it is more
logically consistent with the rest of the UNIX filename conventions.

For example, say there is a file called aaiw that is in the directory book , which is in the directory
cam , which is in the directory home , which is in the root directory. This file's full pathname is
/home/cam/book/aaiw .

1.6.1.1 The working directory

Of course, it's annoying to have to use full pathnames whenever you need to specify a file. So
there is also the concept of the working directory (sometimes called the current directory), which
is the directory you are "in" at any given time. If you give a pathname with no leading slash, then
the location of the file is worked out relative to the working directory. Such pathnames are called
relative pathnames; you'll use them much more often than full pathnames.

When you log in to the system, your working directory is initially set to a special directory called
your home (or login) directory. System administrators often set up the system so that
everyone's home directory name is the same as their login name, and all home directories are
contained in a common directory under root .

For example, /home/cam is a typical home directory. If this is your working directory and you
give the command lp memo , then the system looks for the file memo in /home/cam . If you have
a directory called hatter in your home directory, and it contains the file teatime , then you can
print it with the command lp hatter/teatime .

1.6.1.2 Tilde notation

As you can well imagine, home directories occur often in pathnames. Although many systems are
organized so that all home directories have a common parent (such as /home or /users), you
should not rely on that being the case, nor should you even have to know the absolute pathname
of someone's home directory.

Therefore, bash has a way of abbreviating home directories: just precede the name of the user
with a tilde (~). For example, you could refer to the file story in user alice 's home directory as
~alice/story . This is an absolute pathname, so it doesn't matter what your working directory is
when you use it. If alice 's home directory has a subdirectory called adventure and the file is in
there instead, you can use ~alice/adventure/story as its name.

Even more convenient, a tilde by itself refers to your own home directory. You can refer to a file
called notes in your home directory as ~/notes (note the difference between that and ~notes ,
which the shell would try to interpret as user notes 's home directory). If notes is in your
adventure subdirectory, then you can call it ~/adventure/notes . This notation is handiest when
your working directory is not in your home directory tree, e.g., when it's some system directory
like /tmp .

1.6.1.3 Changing working directories

If you want to change your working directory, use the command cd . If you don't remember
your working directory, the command pwd tells the shell to print it.

cd takes as an argument the name of the directory you want to become your working directory.
It can be relative to your current directory, it can contain a tilde, or it can be absolute (starting
with a slash). If you omit the argument, cd changes to your home directory (i.e., it's the same as
cd ~).

Table 1-1 gives some sample cd commands. Each command assumes that your working
directory is /home/cam just before the command is executed, and that your directory structure
looks like Figure 1-1 .

Table 1-1. Sample cd commands

Command New working directory

cd book /home/cam/book

cd book/wonderland /home/cam/book/wonderland

cd ~/book/wonderland /home/cam/book/wonderland

cd /usr/lib /usr/lib

cd .. /home

cd ../gryphon /home/gryphon

cd ~gryphon /home/gryphon

The first four are straightforward. The next two use a special directory called . . (two dots),
which means "parent of this directory." Every directory has one of these; it's a universal way to
get to the directory above the current one in the hierarchy—which is called the parent
directory.[7]

[7] Each directory also has the special directory . (single dot), which just means "this directory." Thus, cd . effectively
does nothing. Both . and . . are actually special hidden files in each directory that point to the directory itself and to its
parent directory, respectively. root is its own parent.

Another feature of bash 's cd command is the form cd - , which changes to whatever directory
you were in before the current one. For example, if you start out in /usr/lib , type cd without an
argument to go to your home directory, and then type cd - , you will be back in /usr/lib .

1.6.2. Filenames, Wildcards, and Pathname Expansion

Sometimes you need to run a command on more than one file at a time. The most common
example of such a command is ls , which lists information about files. In its simplest form,
without options or arguments, it lists the names of all files in the working directory except special
hidden files, whose names begin with a dot (.).

If you give ls filename arguments, it will list those files—which is sort of silly: if your current
directory has the files duchess and queen in it and you type ls duchess queen , the system will
simply print those filenames.

Actually, ls is more often used with options that tell it to list information about the files, like the -l
(long) option, which tells ls to list the file's owner, size, time of last modification, and other
information, or -a (all), which also lists the hidden files described above. But sometimes you
want to verify the existence of a certain group of files without having to know all of their names;

for example, if you use a text editor, you might want to see which files in your current directory
have names that end in .txt .

Filenames are so important in UNIX that the shell provides a built-in way to specify the pattern of
a set of filenames without having to know all of the names themselves. You can use special
characters, called wildcards , in filenames to turn them into patterns. Table 1-2 lists the basic
wildcards.

Table 1-2. Basic wildcards

Wildcard Matches

? Any single character

* Any string of characters

[set] Any character in set

[! set] Any character not in set

The ? wildcard matches any single character, so that if your directory contains the files
program.c , program.log , and program.o , then the expression program .? matches
program.c and program.o but not program.log .

The asterisk (*) is more powerful and far more widely used; it matches any string of characters.
The expression program .* will match all three files in the previous paragraph; text editor users
can use the expression *.txt to match their input files.[8]

[8] MS-DOS and VAX/VMS users should note that there is nothing special about the dot (.) in UNIX filenames
(aside from the leading dot, which "hides" the file); it's just another character. For example, ls * lists all files in the
current directory; you don't need *.* as you do on other systems. Indeed, ls *.* won't list all the files—only those that
have at least one dot in the middle of the name.

Table 1-3 should help demonstrate how the asterisk works. Assume that you have the files bob ,
darlene , dave , ed , frank , and fred in your working directory.

Table 1-3. Using the * wildcard

Expression Yields

fr* frank fred

Expression Yields

* ed ed fred

b* bob

* e* darlene dave ed fred

* r* darlene frank fred

* bob darlene dave ed frank fred

d* e darlene dave

g* g*

Notice that * can stand for nothing: both *ed and *e* match ed . Also notice that the last
example shows what the shell does if it can't match anything: it just leaves the string with the
wildcard untouched.

The remaining wildcard is the set construct. A set is a list of characters (e.g., abc), an inclusive
range (e.g., a-z), or some combination of the two. If you want the dash character to be part of a
list, just list it first or last. Table 1-4 should explain things more clearly.

Table 1-4. Using the set construct wildcards

Expression Matches

[abc] a, b, or c

[.,;] Period, comma, or semicolon

[-_] Dash or underscore

[a-c] a, b, or c

[a-z] All lowercase letters

[!0-9] All non-digits

[0-9!] All digits and exclamation point

[a-zA-Z] All lower- and uppercase letters

[a-zA-Z0-9_-] All letters, all digits, underscore, and dash

* ed ed fred

b* bob

* e* darlene dave ed fred

* r* darlene frank fred

* bob darlene dave ed frank fred

d* e darlene dave

g* g*

Notice that * can stand for nothing: both *ed and *e* match ed . Also notice that the last
example shows what the shell does if it can't match anything: it just leaves the string with the
wildcard untouched.

The remaining wildcard is the set construct. A set is a list of characters (e.g., abc), an inclusive
range (e.g., a-z), or some combination of the two. If you want the dash character to be part of a
list, just list it first or last. Table 1-4 should explain things more clearly.

Table 1-4. Using the set construct wildcards

Expression Matches

[abc] a, b, or c

[.,;] Period, comma, or semicolon

[-_] Dash or underscore

[a-c] a, b, or c

[a-z] All lowercase letters

[!0-9] All non-digits

[0-9!] All digits and exclamation point

[a-zA-Z] All lower- and uppercase letters

[a-zA-Z0-9_-] All letters, all digits, underscore, and dash

In the original wildcard example, program.[co] and program.[a-z] both match program.c and
program.o , but not program.log .

An exclamation point after the left bracket lets you "negate" a set. For example, [!.;] matches any
character except period and semicolon; [!a-zA-Z] matches any character that isn't a letter. To
match ! itself, place it after the first character in the set, or precede it with a backslash, as in [\!] .

The range notation is handy, but you shouldn't make too many assumptions about what
characters are included in a range. It's safe to use a range for uppercase letters, lowercase letters,
digits, or any subranges thereof (e.g., [f-q] , [2-6]). Don't use ranges on punctuation characters
or mixed-case letters: e.g., [a-Z] and [A-z] should not be trusted to include all of the letters and
nothing more. The problem is that such ranges are not entirely portable between different types
of computers.[9]

[9] Specifically, ranges depend on the character encoding scheme your computer uses (normally ASCII, but IBM
mainframes use EBCDIC) and the character set used by the current locale (ranges in languages other than English may
not give expected results).

The process of matching expressions containing wildcards to filenames is called wildcard
expansion or globbing . This is just one of several steps the shell takes when reading and
processing a command line; another that we have already seen is tilde expansion, where tildes are
replaced with home directories where applicable. We'll see others in later chapters, and the full
details of the process are enumerated in Chapter 7 .

However, it's important to be aware that the commands that you run only see the results of
wildcard expansion. That is, they just see a list of arguments, and they have no knowledge of
how those arguments came into being. For example, if you type ls fr* and your files are as on
the previous page, then the shell expands the command line to ls fred frank and invokes the
command ls with arguments fred and frank . If you type ls g* , then (because there is no
match) ls will be given the literal string g* and will complain with the error message, g*: No such
file or directory .[10]

[10] This is different from the C shell's wildcard mechanism, which prints an error message and doesn't execute the
command at all.

Here is an example that should help make things clearer. Suppose you are a C programmer. This
means that you deal with files whose names end in .c (programs, also known as source files), .h
(header files for programs), and .o (object code files that aren't human-readable), as well as other
files. Let's say you want to list all source, object, and header files in your working directory. The
command ls *.[cho] does the trick. The shell expands *.[cho] to all files whose names end in a
period followed by a c , h , or o and passes the resulting list to ls as arguments. In other words,
ls will see the filenames just as if they were all typed in individually—but notice that we required
no knowledge of the actual filenames whatsoever! We let the wildcards do the work.

The wildcard examples that we have seen so far are actually part of a more general concept

called pathname expansion . Just as it is possible to use wildcards in the current directory, they
can also be used as part of a pathname. For example, if you wanted to list all of the files in the
directories /usr and /usr2 , you could type ls /usr* . If you were only interested in the files
beginning with the letters b and e in these directories, you could type ls /usr*/[be]* to list them.

1.6.3. Brace Expansion

A concept closely related to pathname expansion is brace expansion. Whereas pathname
expansion wildcards will expand to files and directories that exist, brace expansion expands to an
arbitrary string of a given form: an optional preamble , followed by comma-separated strings
between braces, and followed by an optional postscript . If you type echo b{ed,olt,ar}s , you'll
see the words beds , bolts , and bars printed. Each instance of a string inside the braces is
combined with the preamble b and the postscript s . Notice that these are not filenames—the
strings produced are independent of filenames. It is also possible to nest the braces, as in
b{ar{d,n,k},ed}s . This will result in the expansion bards , barns , barks , and beds .

You can also use a slightly different type of brace expansion for creating a sequence of letters or
numbers. If you type echo {2..5} you'll see this expands to 2 3 4 5 . Typing echo {d..h} results
in the expansion d e f g h .[11]

[11] This form of brace expansion is not available in bash prior to Version 3.0.

Brace expansion can also be used with wildcard expansions. In the example from the previous
section where we listed the source, object, and header files in the working directory, we could
have used ls *.{c,h,o} .[12]

[12] This differs slightly from C shell brace expansion. bash requires at least one unquoted comma to perform an
expansion; otherwise, the word is left unchanged, e.g., b{o}lt remains as b{o}lt .

 < Day Day Up >

 < Day Day Up >

1.7. Input and Output

The software field—really, any scientific field—tends to advance most quickly and impressively
on those few occasions when someone (i.e., not a committee) comes up with an idea that is
small in concept yet enormous in its implications. The standard input and output scheme of
UNIX has to be on the short list of such ideas, along with such classic innovations as the LISP
language, the relational data model, and object-oriented programming.

The UNIX I/O scheme is based on two dazzlingly simple ideas. First, UNIX file I/O takes the
form of arbitrarily long sequences of characters (bytes). In contrast, file systems of older vintage
have more complicated I/O schemes (e.g., "block," "record," "card image," etc.). Second,
everything on the system that produces or accepts data is treated as a file; this includes hardware
devices like disk drives and terminals. Older systems treated every device differently. Both of
these ideas have made systems programmers' lives much more pleasant.

1.7.1. Standard I/O

By convention, each UNIX program has a single way of accepting input called standard input ,
a single way of producing output called standard output , and a single way of producing error
messages called standard error output , usually shortened to standard error . Of course, a
program can have other input and output sources as well, as we will see in Chapter 7 .

Standard I/O was the first scheme of its kind that was designed specifically for interactive users
at terminals, rather than the older batch style of use that usually involved decks of punch-cards.
Since the UNIX shell provides the user interface, it should come as no surprise that standard I/O
was designed to fit in very neatly with the shell.

All shells handle standard I/O in basically the same way. Each program that you invoke has all
three standard I/O channels set to your terminal or workstation, so that standard input is your
keyboard, and standard output and error are your screen or window. For example, the mail
utility prints messages to you on the standard output, and when you use it to send messages to
other users, it accepts your input on the standard input. This means that you view messages on
your screen and type new ones in on your keyboard.

When necessary, you can redirect input and output to come from or go to a file instead. If you
want to send the contents of a pre-existing file to someone as mail, you redirect mail 's standard
input so that it reads from that file instead of your keyboard.

You can also hook programs together in a pipeline , in which the standard output of one
program feeds directly into the standard input of another; for example, you could feed mail
output directly to the lp program so that messages are printed instead of shown on the screen.

This makes it possible to use UNIX utilities as building blocks for bigger programs. Many UNIX
utility programs are meant to be used in this way: they each perform a specific type of filtering
operation on input text. Although this isn't a textbook on UNIX utilities, they are essential to
productive shell use. The more popular filtering utilities are listed in Table 1-5 .

Table 1-5. Popular UNIX data filtering utilities

Utility Purpose

cat Copy input to output

grep Search for strings in the input

sort Sort lines in the input

cut Extract columns from input

sed Perform editing operations on input

tr Translate characters in the input to other characters

You may have used some of these before and noticed that they take names of input files as
arguments and produce output on standard output. You may not know, however, that all of them
(and most other UNIX utilities) accept input from standard input if you omit the argument.[13]

[13] If a particular UNIX utility doesn't accept standard input when you leave out the filename argument, try using a dash
(-) as the argument. Some UNIX systems provide standard input as a file, so you could try providing the file /dev/stdin
as the input file argument.

For example, the most basic utility is cat , which simply copies its input to its output. If you type
cat with a filename argument, it will print out the contents of that file on your screen. But if you
invoke it with no arguments, it will expect standard input and copy it to standard output. Try it:
cat will wait for you to type a line of text; when you type RETURN, cat will repeat the text back
to you. To stop the process, hit CTRL-D at the beginning of a line. You will see ^D when you
type CTRL-D. Here's what this should look like:

$ cat

Here is a line of text.

Here is a line of text.

This is another line of text.

This is another line of text.

^D

$

1.7.2. I/O Redirection

cat is short for "catenate," i.e., link together. It accepts multiple filename arguments and copies
them to the standard output. But let's pretend, for now, that cat and other utilities don't accept
filename arguments and accept only standard input. As we said above, the shell lets you redirect
standard input so that it comes from a file. The notation command < filename does this; it sets
things up so that command takes standard input from a file instead of from a terminal.

For example, if you have a file called cheshire that contains some text, then cat < cheshire will
print cheshire 's contents out onto your terminal. sort < cheshire will sort the lines in the
cheshire file and print the result on your terminal (remember: we're pretending that these utilities
don't take filename arguments).

Similarly, command > filename causes the command 's standard output to be redirected to the
named file. The classic "canonical" example of this is date > now : the date command prints the
current date and time on the standard output; the previous command saves it in a file called now
.

Input and output redirectors can be combined. For example: the cp command is normally used
to copy files; if for some reason it didn't exist or was broken, you could use cat in this way:

$ cat < file1 > file2

This would be similar to cp file1 file2 .

1.7.3. Pipelines

It is also possible to redirect the output of a command into the standard input of another
command instead of a file. The construct that does this is called the pipe, notated as | . A
command line that includes two or more commands connected with pipes is called a pipeline.

Pipes are very often used with the more command, which works just like cat except that it prints
its output screen by screen, pausing for the user to type SPACE (next screen), RETURN (next
line), or other commands. If you're in a directory with a large number of files and you want to

see details about them, ls -l | more will give you a detailed listing a screen at a time.

Pipelines can get very complex, and they can also be combined with other I/O directors. To see
a sorted listing of the file cheshire a screen at a time, type sort < cheshire | more . To print it
instead of viewing it on your terminal, type sort < cheshire | lp .

Here's a more complicated example. The file /etc/passwd stores information about users'
accounts on a UNIX system. Each line in the file contains a user's login name, user ID number,
encrypted password, home directory, login shell, and other information. The first field of each
line is the login name; fields are separated by colons (:). A sample line might look like this:

cam:LM1c7GhNesD4GhF3iEHrH4FeCKB/:501:100:Cameron Newham:/home/cam:/bin/bash

To get a sorted listing of all users on the system, type:

$ cut -d: -f1 < /etc/passwd | sort

(Actually, you can omit the < , since cut accepts input filename arguments.) The cut command
extracts the first field (-f1), where fields are separated by colons (-d :), from the input. The entire
pipeline will print a list that looks like this:

adm

bin

cam

daemon

davidqc

ftp

games

gonzo

...

If you want to send the list directly to the printer (instead of your screen), you can extend the
pipeline like this:

$ cut -d: -f1 < /etc/passwd | sort | lp

Now you should see how I/O directors and pipelines support the UNIX building block

philosophy. The notation is extremely terse and powerful. Just as important, the pipe concept
eliminates the need for messy temporary files to store command output before it is fed into other
commands.

For example, to do the same sort of thing as the above command line on other operating systems
(assuming that equivalent utilities are available...), you need three commands. On DEC's
VAX/VMS system, they might look like this:

$ cut [etc]passwd /d=":" /f=1 /out=temp1

$ sort temp1 /out=temp2

$ print temp2

$ delete temp1 temp2

After sufficient practice, you will find yourself routinely typing in powerful command pipelines
that do in one line what it would take several commands (and temporary files) in other operating
systems to accomplish.

 < Day Day Up >

 < Day Day Up >

1.8. Background Jobs

Pipes are actually a special case of a more general feature: doing more than one thing at a time.
This is a capability that many other commercial operating systems don't have, because of the
rigid limits that they tend to impose upon users. UNIX, on the other hand, was developed in a
research lab and meant for internal use, so it does relatively little to impose limits on the
resources available to users on a computer—as usual, leaning towards uncluttered simplicity
rather than overcomplexity.

"Doing more than one thing at a time" means running more than one program at the same time.
You do this when you invoke a pipeline; you can also do it by logging on to a UNIX system as
many times simultaneously as you wish. (If you try that on an IBM's VM/CMS system, for
example, you will get an obnoxious "already logged in" message.)

The shell also lets you run more than one command at a time during a single login session.
Normally, when you type a command and hit RETURN, the shell will let the command have
control of your terminal until it is done; you can't type in further commands until the first one is
done. But if you want to run a command that does not require user input and you want to do
other things while the command is running, put an ampersand (&) after the command.

This is called running the command in the background, and a command that runs in this way is
called a background job; by contrast, a job run the normal way is called a foreground job. When
you start a background job, you get your shell prompt back immediately, enabling you to enter
other commands.

The most obvious use for background jobs is programs that take a long time to run, such as sort
or uncompress on large files. For example, assume you just got an enormous compressed file
loaded into your directory from magnetic tape.[14] Let's say the file is gcc.tar.Z , which is a
compressed archive file that contains well over 10 MB of source code files.

[14] Compressed files are created by the compress utility, which packs files into smaller amounts of space; they have
names of the form filename.Z , where filename is the name of the original uncompressed file.

Type uncompress gcc.tar & (you can omit the .Z), and the system will start a job in the
background that uncompresses the data "in place" and ends up with the file gcc.tar . Right after
you type the command, you will see a line like this:

[1] 175

followed by your shell prompt, meaning that you can enter other commands. Those numbers
give you ways of referring to your background job; Chapter 8 explains them in detail.

You can check on background jobs with the command jobs . For each background job, jobs
prints a line similar to the above but with an indication of the job's status:

[1]+ Running uncompress gcc.tar &

When the job finishes, you will see a message like this right before your shell prompt:

[1]+ Done uncompress gcc.tar

The message changes if your background job terminated with an error; again, see Chapter 8 for
details.

1.8.1. Background I/O

Jobs you put in the background should not do I/O to your terminal. Just think about it for a
moment and you'll understand why.

By definition, a background job doesn't have control over your terminal. Among other things,
this means that only the foreground process (or, if none, the shell itself) is "listening" for input
from your keyboard. If a background job needs keyboard input, it will often just sit there doing
nothing until you do something about it (as described in Chapter 8).

If a background job produces screen output, the output will just appear on your screen. If you
are running a job in the foreground that produces output too, then the output from the two jobs
will be randomly (and often annoyingly) interspersed.

If you want to run a job in the background that expects standard input or produces standard
output, you usually want to redirect the I/O so that it comes from or goes to a file. Programs that
produce small, one-line messages (warnings, "done" messages, etc.) are an exception to this
general rule; you may not mind if these are interspersed with whatever other output you are
seeing at a given time.

For example, the diff utility examines two files, whose names are given as arguments, and prints a
summary of their differences on the standard output. If the files are exactly the same, diff is
silent. Usually, you invoke diff expecting to see a few lines that are different.

diff , like sort and compress , can take a long time to run if the input files are very large. Suppose
that you have two large files that are called warandpeace.txt and warandpeace.txt.old . The
command diff warandpeace.txt warandpeace.txt.old [15] reveals that the author decided to

change the name "Ivan" to "Aleksandr" throughout the entire file—i.e., hundreds of differences,
resulting in very large amounts of output.

[15] You could use diff warandpeace* as a shorthand to save typing—as long as there are no other files with names of
that form. Remember that diff doesn't see the arguments until after the shell has expanded the wildcards. Many people
overlook this use of wildcards.

If you type diff warandpeace.txt warandpeace.txt.old & , then the system will spew lots and
lots of output at you, which will be difficult to stop—even with the techniques explained in
Chapter 7 . However, if you type:

$ diff warandpeace.txt warandpeace.txt.old > txtdiff &

then the differences will be saved in the file txtdiff for you to examine later.

1.8.2. Background Jobs and Priorities

Background jobs can save you a lot of thumb-twiddling time. Just remember that such jobs eat
up lots of system resources like memory and the processor (CPU). Just because you're running
several jobs at once doesn't mean that they will run faster than they would if run sequentially—in
fact, performance is usually slightly worse.

Every job on the system is assigned a priority , a number that tells the operating system how
much priority to give the job when it doles out resources (the higher the number, the lower the
priority). Commands that you enter from the shell, whether foreground or background jobs,
usually have the same priority. The system administrator is able to run commands at a higher
priority than normal users.

Note that if you're on a multiuser system, running lots of background jobs may eat up more than
your fair share of resources, and you should consider whether having your job run as fast as
possible is really more important than being a good citizen.

Speaking of good citizenship, there is also a UNIX command that lets you lower the priority of
any job: the aptly named nice . If you type nice command , where command can be a complex
shell command line with pipes, redirectors, etc., then the command will run at a lower
priority.[16] You can control just how much lower by giving nice a numerical argument; consult
the nice manpage for details.[17]

[16] Complex commands following nice should be quoted.

[17] If you are a system administrator logged in as root , then you can also use nice to raise a job's priority.

 < Day Day Up >

 < Day Day Up >

1.9. Special Characters and Quoting

The characters < , > , | , and & are four examples of special characters that have particular
meanings to the shell. The wildcards we saw earlier in this chapter (* , ? , and [...]) are also
special characters.

Table 1-6 gives the meanings of all special characters within shell command lines only. Other
characters have special meanings in specific situations, such as the regular expressions and
string-handling operators that we'll see in Chapter 3 and Chapter 4 .

Table 1-6. Special characters

Character Meaning See chapter

~ Home directory Chapter 1

` Command substitution (archaic) Chapter 4

Comment Chapter 4

$ Variable expression Chapter 3

& Background job Chapter 1

* String wildcard Chapter 1

(Start subshell Chapter 8

) End subshell Chapter 8

\ Quote next character Chapter 1

| Pipe Chapter 1

[Start character-set wildcard Chapter 1

] End character-set wildcard Chapter 1

{ Start command block Chapter 7

} End command block Chapter 7

; Shell command separator Chapter 3

Character Meaning See chapter

` Strong quote Chapter 1

<"> Weak quote Chapter 1

< Input redirect Chapter 1

> Output redirect Chapter 1

/ Pathname directory separator Chapter 1

? Single-character wildcard Chapter 1

! Pipeline logical NOT Chapter 5

1.9.1. Quoting

Sometimes you will want to use special characters literally, i.e., without their special meanings.
This is called quoting . If you surround a string of characters with single quotation marks (or
quotes), you strip all characters within the quotes of any special meaning they might have.

The most obvious situation where you might need to quote a string is with the echo command,
which just takes its arguments and prints them to the standard output. What is the point of this?
As you will see in later chapters, the shell does quite a bit of processing on command
lines—most of which involves some of the special characters listed in Table 1-6 . echo is a way
of making the result of that processing available on the standard output.

What if we want to print the string 2 * 3 > 5 is a valid inequality ? Suppose you type this:

$ echo 2 * 3 > 5 is a valid inequality.

You would get your shell prompt back, as if nothing happened! But then there would be a new
file, with the name 5 , containing "2", the names of all files in your current directory, and then the
string 3 is a valid inequality . Make sure you understand why.[18]

[18] This should also teach you something about the flexibility of placing I/O redirectors anywhere on the command
line—even in places where they don't seem to make sense.

However, if you type:

$ echo '2 * 3 > 5 is a valid inequality.'

the result is the string, taken literally. You needn't quote the entire line, just the portion containing

` Strong quote Chapter 1

<"> Weak quote Chapter 1

< Input redirect Chapter 1

> Output redirect Chapter 1

/ Pathname directory separator Chapter 1

? Single-character wildcard Chapter 1

! Pipeline logical NOT Chapter 5

1.9.1. Quoting

Sometimes you will want to use special characters literally, i.e., without their special meanings.
This is called quoting . If you surround a string of characters with single quotation marks (or
quotes), you strip all characters within the quotes of any special meaning they might have.

The most obvious situation where you might need to quote a string is with the echo command,
which just takes its arguments and prints them to the standard output. What is the point of this?
As you will see in later chapters, the shell does quite a bit of processing on command
lines—most of which involves some of the special characters listed in Table 1-6 . echo is a way
of making the result of that processing available on the standard output.

What if we want to print the string 2 * 3 > 5 is a valid inequality ? Suppose you type this:

$ echo 2 * 3 > 5 is a valid inequality.

You would get your shell prompt back, as if nothing happened! But then there would be a new
file, with the name 5 , containing "2", the names of all files in your current directory, and then the
string 3 is a valid inequality . Make sure you understand why.[18]

[18] This should also teach you something about the flexibility of placing I/O redirectors anywhere on the command
line—even in places where they don't seem to make sense.

However, if you type:

$ echo '2 * 3 > 5 is a valid inequality.'

the result is the string, taken literally. You needn't quote the entire line, just the portion containing

special characters (or characters you think might be special, if you just want to be sure):

$ echo '2 * 3 > 5' is a valid inequality.

This has exactly the same result.

Notice that Table 1-6 lists double quotes (") as weak quotes. A string in double quotes is
subjected to some of the steps the shell takes to process command lines, but not all. (In other
words, it treats only some special characters as special.) You'll see in later chapters why double
quotes are sometimes preferable; Chapter 7 contains the most comprehensive explanation of the
shell's rules for quoting and other aspects of command-line processing. For now, though, you
should stick to single quotes.

1.9.2. Backslash-Escaping

Another way to change the meaning of a character is to precede it with a backslash (\). This is
called backslash-escaping the character. In most cases, when you backslash-escape a character,
you quote it. For example:

$ echo 2 * 3 \> 5 is a valid inequality.

will produce the same results as if you surrounded the string with single quotes. To use a literal
backslash, just surround it with quotes ('\ ') or, even better, backslash-escape it (\\).

Here is a more practical example of quoting special characters. A few UNIX commands take
arguments that often include wildcard characters, which need to be escaped so the shell doesn't
process them first. The most common such command is find , which searches for files
throughout entire directory trees.

To use find , you supply the root of the tree you want to search and arguments that describe the
characteristics of the file(s) you want to find. For example, the command find . -name string
searches the directory tree whose root is your current directory for files whose names match the
string. (Other arguments allow you to search by the file's size, owner, permissions, date of last
access, etc.)

You can use wildcards in the string, but you must quote them, so that the find command itself
can match them against names of files in each directory it searches. The command find . -name
`*.c ' will match all files whose names end in .c anywhere in your current directory,
subdirectories, sub-subdirectories, etc.

1.9.3. Quoting Quotation Marks

You can also use a backslash to include double quotes within a quoted string. For example:

$ echo \"2 * 3 \> 5\" is a valid inequality.

produces the following output:

"2 * 3 > 5" is a valid inequality.

However, this won't work with single quotes inside quoted expressions. For example, echo
`Hatter\'s tea party' will not give you Hatter's tea party . You can get around this limitation in
various ways. First, try eliminating the quotes:

$ echo Hatter\'s tea party

If no other characters are special (as is the case here), this works. Otherwise, you can use the
following command:

$ echo 'Hatter'\''s tea party'

That is, `\ '' (i.e., single quote, backslash, single quote, single quote) acts like a single quote
within a quoted string. Why? The first ' in `\ '' ends the quoted string we started with (`Hatter) ,
the \ ' inserts a literal single quote, and the next ' starts another quoted string that ends with the
word "party". If you understand this, then you will have no trouble resolving the other
bewildering issues that arise from the shell's often cryptic syntax.

1.9.4. Continuing Lines

A related issue is how to continue the text of a command beyond a single line on your terminal or
workstation window. The answer is conceptually simple: just quote the RETURN key. After all,
RETURN is really just another character.

You can do this in two ways: by ending a line with a backslash, or by not closing a quote mark
(i.e., by including RETURN in a quoted string). If you use the backslash, there must be nothing
between it and the end of the line—not even spaces or TABs.

Whether you use a backslash or a single quote, you are telling the shell to ignore the special
meaning of the RETURN character. After you press RETURN, the shell understands that you
haven't finished your command line (i.e., since you haven't typed a "real" RETURN), so it
responds with a secondary prompt, which is > by default, and waits for you to finish the line.
You can continue a line as many times as you wish.

For example, if you want the shell to print the first sentence of of Lewis Carroll's Alice's
Adventures in Wonderland , you can type this:

$ echo The Caterpillar and Alice looked at each other for some \

> time in silence: at last Caterpillar took the hookah out of its \

> mouth, and addressed her in a languid, sleepy voice.

Or you can do it this way:

$ echo 'The Caterpillar and Alice looked at each other for some

> time in silence: at last Caterpillar took the hookah out of its

> mouth, and addressed her in a languid, sleepy voice.'

1.9.5. Control Keys

Control keys—those that you type by holding down the CONTROL (or CTRL) key and hitting
another key—are another type of special character. These normally don't print anything on your
screen, but the operating system interprets a few of them as special commands. You already
know one of them: RETURN is actually the same as CTRL-M (try it and see). You have
probably also used the BACKSPACE or DEL key to erase typos on your command line.

Actually, many control keys have functions that don't really concern you—yet you should know
about them for future reference and in case you type them by accident.

Perhaps the most difficult thing about control keys is that they can differ from system to system.
The usual arrangement is shown in Table 1-7 , which lists the control keys that all major modern
versions of UNIX support. Note that DEL and CTRL-? are the same character.

You can use the stty command to find out what your settings are and change them if you wish;
see Chapter 8 for details. If the version of UNIX on your system is one of those that derive from
BSD (such as SunOS and OS X), type stty all to see your control-key settings; you will see
something like this:

erase kill werase rprnt flush lnext susp intr quit stop eof

^? ^U ^W ^R ^O ^V ^Z/^Y ^C ^\ ^S/^Q ^D

Table 1-7. Control keys

Control key stty name Function description

CTRL-C intr Stop current command

CTRL-D eof End of input

CTRL-\ quit Stop current command if CTRL-C doesn't work

CTRL-S stop Halt output to screen

CTRL-Q Restart output to screen

DEL or CTRL-? erase Erase last character

CTRL-U kill Erase entire command line

CTRL-Z susp Suspend current command (see Chapter 8)

The ^X notation stands for CTRL-X . If your UNIX version derives from System III or System
V (this includes AIX, HP/UX, SCO, Linux, and Xenix), type stty -a .

The resulting output will include this information:

intr = ^c; quit = ^|; erase = DEL; kill = ^u; eof = ^d; eol = ^`;

swtch = ^`; susp = ^z; dsusp <undef>;

The control key you will probably use most often is CTRL-C, sometimes called the interrupt
key. This stops—or tries to stop—the command that is currently running. You will want to use
this when you enter a command and find that it's taking too long, you gave it the wrong
arguments, you change your mind about wanting to run it, or whatever.

Sometimes CTRL-C doesn't work; in that case, if you really want to stop a job, try CTRL-\. But
don't just type CTRL-\; always try CTRL-C first! Chapter 8 explains why in detail. For now,
suffice it to say that CTRL-C gives the running job more of a chance to clean up before exiting,
so that files and other resources are not left in funny states.

We've already seen an example of CTRL-D. When you are running a command that accepts
standard input from your keyboard, CTRL-D tells the process that your input is finished—as if
the process were reading a file and it reached the end of the file. mail is a utility in which this
happens often. When you are typing in a message, you end by typing CTRL-D. This tells mail
that your message is complete and ready to be sent. Most utilities that accept standard input
understand CTRL-D as the end-of-input character, though many such programs accept
commands like q , quit , exit , etc.

CTRL-S and CTRL-Q are called flow-control characters. They represent an antiquated way of
stopping and restarting the flow of output from one device to another (e.g., from the computer to
your terminal) that was useful when the speed of such output was low. They are rather obsolete
in these days of high-speed networks. In fact, under the latter conditions, CTRL-S and CTRL-Q
are basically a nuisance. The only thing you really need to know about them is that if your screen
output becomes "stuck," then you may have hit CTRL-S by accident. Type CTRL-Q to restart
the output; any keys you may have hit in between will then take effect.

The final group of control characters gives you rudimentary ways to edit your command line.
DEL acts as a backspace key (in fact, some systems use the actual BACKSPACE or CTRL-H
key as "erase" instead of DEL); CTRL-U erases the entire line and lets you start over. Again,
these have been superseded.[19] The next chapter will look at bash 's editing modes, which are
among its most useful features and far more powerful than the limited editing capabilities
described here.

[19] Why are so many outmoded control keys still in use? They have nothing to do with the shell per se ; instead, they
are recognized by the tty driver , an old and hoary part of the operating system's lower depths that controls input and
output to/from your terminal.

 < Day Day Up >

 < Day Day Up >

1.10. Help

A feature in bash that no other shell has is an online help system. The help command gives
information on commands in bash . If you type help by itself, you'll get a list of the built-in shell
commands along with their options.

If you provide help with a shell command name it will give you a detailed description of the
command:

$ help cd

cd: cd [-L | -P] [dir]

 Change the current directory to DIR. The variable $HOME is the

 default DIR. The variable $CDPATH defines the search path for

 the directory containing DIR. Alternative directory names in

 CDPATH are separated by a colon (:). A null directory name is

 the same as the current directory, i.e. `.'. If DIR begins with

 a slash (/), then $CDPATH is not used. If the directory is not

 found, and the shell option `cdable_vars' is set, then try the

 word as a variable name. If that variable has a value, then cd

 to the value of that variable. The -P option says to use the

 physical directory structure instead of following symbolic links;

 the -L option forces symbolic links to be followed.

You can also provide help with a partial name, in which case it will return details on all
commands matching the partial name. For example, help re will provide details on read ,
readonly , and return . The partial name can also include wildcards. You'll need to quote the
name to ensure that the wildcard is not expanded to a filename. So the last example is equivalent
to help `re*', and help ̀ re??' will only return details on read .

Sometimes help will show more than a screenful of information and it will scroll the screen. You
can use the more command to show one screenful at a time by typing help command | more .

 < Day Day Up >

 < Day Day Up >

Chapter 2. Command-Line Editing
It's always possible to make mistakes when you type at a computer keyboard, but perhaps even
more so when you are using a UNIX shell. UNIX shell syntax is powerful, yet terse, full of odd
characters, and not particularly mnemonic, making it possible to construct command lines that
are as cryptic as they are complex. The Bourne and C shells exacerbate this situation by giving
you extremely limited ways of editing your command lines.

In particular, there is no way to recall a previous command line so that you can fix a mistake. If
you are an experienced Bourne shell user, undoubtedly you know the frustration of having to
retype long command lines. You can use the BACKSPACE key to edit, but once you hit
RETURN, it's gone forever!

The C shell provided a small improvement via its history mechanism, which provides a few very
awkward ways of editing previous commands. But there are more than a few people who have
wondered, "Why can't I edit my UNIX command lines in the same way I can edit text with an
editor?"

This is exactly what bash allows you to do. It has editing modes that allow you to edit command
lines with editing commands similar to those of the two most popular UNIX editors, vi and
emacs . It also provides a much-extended analog to the C shell history mechanism called fc (for
fix command) that, among other things, allows you to use your favorite editor directly for editing
your command lines. To round things out, bash also provides the original C shell history
mechanism.

In this chapter, we will discuss the features that are common to all of bash 's command-history
facilities; after that, we will deal with each facility in detail. If you use either vi or emacs , you may
wish to read the section on the emulation mode for only the one you use.[1] If you use neither vi
or emacs , but are interested in learning one of the editing modes anyway, we suggest emacs-
mode, because it is more of a natural extension of the minimal editing capability you get with the
bare shell.

[1] You will get the most out of these sections if you are already familiar with the editor(s) in question. Good sources for
more complete information on the editors are the O'Reilly books Learning the vi Editor , by Linda Lamb and Arnold
Robbins, and Learning GNU Emacs , by Debra Cameron, James Elliott, and Marc Loy.

We should mention up front that both emacs- and vi-modes introduce the potential for clashes
with control keys set up by the UNIX terminal interface. Recall the control keys shown in
Chapter 1 in Table 1-7 , and the sample stty command output. The control keys shown there

override their functions in the editing modes.

During the rest of this chapter, we'll warn you when an editing command clashes with the default
setting of a terminal-interface control key.

 < Day Day Up >

 < Day Day Up >

2.1. Enabling Command-Line Editing

bash initially starts interactively with emacs-mode as the default (unless you have started bash
with the -noediting option;[2] see Chapter 10). There are two ways to enter either editing mode
while in the shell. First, you can use the set command:

[2] -nolineediting in versions of bash prior to 2.0.

$ set -o emacs

or:

$ set -o vi

The second way of selecting the editing mode is to set a readline variable in the file .inputrc .
We will look at this method later in this chapter.

You will find that the vi - and emacs -editing modes are good at emulating the basic commands
of these editors, but not their advanced features; their main purpose is to let you transfer
"keyboard habits" from your favorite editor to the shell. fc is quite a powerful facility; it is mainly
meant to supplant C shell history and as an "escape hatch" for users of editors other than vi or
emacs . Therefore the section on fc is mainly recommended to C shell users and those who don't
use either standard editor.

 < Day Day Up >

 < Day Day Up >

2.2. The History List

All of bash 's command history facilities depend on a list that records commands as you type
them into the shell. Whenever you log in or start another interactive shell, bash reads an initial
history list from the file .bash_history in your home directory. From that point on, every bash
interactive session maintains its own list of commands. When you exit from a shell, it saves the
list in .bash_history . You can call this file whatever you like by setting the environment variable
HISTFILE . We'll look more closely at HISTFILE and some other related command history
variables in the next chapter.

 < Day Day Up >

 < Day Day Up >

2.3. emacs Editing Mode

If you are an emacs user, you will find it most useful to think of emacs editing mode as a
simplified emacs with a single, one-line window. All of the basic commands are available for
cursor motion, cut-and-paste, and search.

2.3.1. Basic Commands

emacs -mode uses control keys for the most basic editing functions. If you aren't familiar with
emacs , you can think of these as extensions of the rudimentary "erase" character (usually
BACKSPACE or DEL) that UNIX provides through its interface to users' terminals. For the sake
of consistency, we'll assume your erase character is DEL from now on; if it is CTRL-H or
something else, you will need to make a mental substitution. The most basic control-key
commands are shown in Table 2-1 . (Important : remember that typing CTRL-D when your
command line is empty may log you off!) The basic keyboard habits of emacs-mode are easy to
learn, but they do require that you assimilate a couple of concepts that are peculiar to the emacs
editor.

Table 2-1. Basic emacs-mode commands

Command Description

CTRL-B Move backward one character (without deleting)

CTRL-F Move forward one character

DEL Delete one character backward

CTRL-D Delete one character forward

The first of these is the use of CTRL-B and CTRL-F for backward and forward cursor motion.
These keys have the advantage of being obvious mnemonics. You can also use the left and right
cursor motion keys ("arrow" keys), but for the rest of this discussion we will use the control
keys, as they work on all keyboards. In emacs-mode, the point (sometimes also called dot) is an
imaginary place just to the left of the character the cursor is on. In the command descriptions in
Table 2-1 , some say "forward" while others say "backward." Think of forward as "to the right

of point" and backward as "to the left of point."

For example, let's say you type in a line and, instead of typing RETURN, you type CTRL-B and
hold it down so that it repeats. The cursor will move to the left until it is over the first character
on the line, like this:

$ [f]grep -l Duchess < ~cam/book/alice_in_wonderland

Now the cursor is on the f , and point is at the beginning of the line, just before the f . If you
type DEL, nothing will happen because there are no characters to the left of point. However, if
you press CTRL-D (the "delete character forward" command) you will delete the first letter:

$ [g]rep -l Duchess < ~cam/book/alice_in_wonderland

Point is still at the beginning of the line. If this were the desired command, you could hit
RETURN now and run it; you don't need to move the cursor back to the end of the line.
However, you could type CTRL-F repeatedly to get there:

$ grep -l Duchess < ~cam/book/alice_in_wonderland[]

At this point, typing CTRL-D wouldn't do anything, but hitting DEL would erase the final d .

2.3.2. Word Commands

The basic commands are really all you need to get around a command line, but a set of more
advanced commands lets you do it with fewer keystrokes. These commands operate on words
rather than single characters; emacs-mode defines a word as a sequence of one or more
alphanumeric characters.

The word commands are shown in Table 2-2 . The basic commands are all single characters,
whereas these consist of two keystrokes, ESC followed by a letter. You will notice that the
command ESC X , where X is any letter, often does for a word what CTRL-X does for a single
character. "Kill" is another word for "delete"; it is the standard term used in the readline library
documentation for an "undoable" deletion.

Table 2-2. emacs-mode word commands

Command Description

ESC-B Move one word backward

ESC-F Move one word forward

ESC-DEL Kill one word backward

ESC-CTRL-H Kill one word backward

ESC-D Kill one word forward

CTRL-Y Retrieve ("yank") last item killed

To return to our example: if we type ESC-B, point will move back a word. Since the underscore
(_) is not an alphanumeric character, emacs-mode will stop there:

$ grep -l Duchess < ~cam/book/alice_in_[w]onderland

The cursor is on the w in wonderland , and point is between the _ and the w . Now let's say we
want to change the -l option of this command from Duchess to Cheshire . We need to move
back on the command line, so we type ESC-B four more times. This gets us here:

$ grep -l Duchess < ~[c]am/book/alice_in_wonderland

If we type ESC-B again, we end up at the beginning of Duchess :

$ grep -l [D]uchess < ~cam/book/alice_in_wonderland

Why? Remember that a word is defined as a sequence of alphanumeric characters only.
Therefore < is not a word; the next word in the backward direction is Duchess . We are now in
position to delete Duchess , so we type ESC-D and get:

$ grep -l []< ~cam/book/alice_in_wonderland

Now we can type in the desired argument:

$ grep -l Cheshire[]< ~cam/book/alice_in_wonderland

If you want Duchess back again you can use the CTRL-Y command. The CTRL-Y "yank"
command will undelete a word if the word was the last thing deleted. In this case, CTRL-Y
would insert Duchess at the point.

2.3.3. Line Commands

There are still more efficient ways of moving around a command line in emacs-mode. A few
commands deal with the entire line; they are shown in Table 2-3 .

Table 2-3. emacs-mode line commands

Command Description

CTRL-A Move to beginning of line

CTRL-E Move to end of line

CTRL-K Kill forward to end of line

Using CTRL-A, CTRL-E, and CTRL-K should be straightforward. Remember that CTRL-Y
will always undelete the last thing deleted; if you use CTRL-K, that could be quite a few
characters.

2.3.4. Moving Around in the History List

Now we know how to get around the command line efficiently and make changes. But that
doesn't address the original issue of recalling previous commands by accessing the history list.
emacs-mode has several commands for doing this, summarized in Table 2-4 .

Table 2-4. emacs-mode commands for moving through the history list

Command Description

CTRL-P Move to previous line

CTRL-N Move to next line

CTRL-R Search backward

ESC-< Move to first line of history list

ESC-> Move to last line of history list

CTRL-P and CTRL-N move you through the command history. If you have cursor motion keys
(arrow keys) you can use them instead. The up-arrow is the same as CTRL-P and the down-
arrow is the same as CTRL-N. For the rest of this discussion, we'll stick to using the control
keys because they can be used on all keyboards.

CTRL-P is by far the one you will use most often—it's the "I made a mistake, let me go back
and fix it" key. You can use it as many times as you wish to scroll back through the history list.
If you want to get back to the last command you entered, you can hold down CTRL-N until
bash beeps at you, or just type ESC->. As an example, you hit RETURN to run the command
above, but you get an error message telling you that your option letter was incorrect. You want
to change it without retyping the whole thing.

First, you would type CTRL-P to recall the bad command. You get it back with point at the end:

$ grep -l Duchess < ~cam/book/alice_in_wonderland[]

After CTRL-A, ESC-F, two CTRL-Fs, and CTRL-D, you have:

$ grep -[]Duchess < ~cam/book/alice_in_wonderland

You decide to try -s instead of -l , so you type s and hit RETURN. You get the same error
message, so you give up and look it up in the manual. You find out that the command you want
is fgrep— not grep— after all.

You sigh heavily and go back and find the fgrep command you typed in an hour ago. To do this,
you type CTRL-R; whatever was on the line will disappear and be replaced by (reverse-i-
search)` ':. Then type fgrep , and you will see this:

$ (reverse-i-search)`fgrep': fgrep -l Duchess <~cam/book/ \

 alice_in_wonderland[]

The shell dynamically searches back through the command history each time you type a letter,
looking for the current substring in the previous commands. In this example, when you typed f
the shell would have printed the most recent command in the history with that letter in it. As you
typed more letters, the shell narrowed the search until you ended up with the line displayed
above. Of course, this may not have been the particular line you wanted. Typing CTRL-R again
makes the shell search further back in the history list for a line with "fgrep" in it. If the shell
doesn't find the substring again, it will beep.

If you try the fgrep command by hitting RETURN, two things will happen. First, of course, the
command will run. Second, this line will be entered into the history list at the end, and your

"current line" will be at the end as well. You will no longer be somewhere else in the command
history.

Another handy trick to save typing if you have already done a search is to type CTRL-R twice in
a row. This recalls the previous search string you typed in.[3]

[3] Not available in versions of bash prior to 2.05a.

CTRL-P, CTRL-N, and CTRL-R are clearly the most important emacs-mode commands that
deal with the command history. The others are less useful but are included for compatibility with
the full emacs editor.

2.3.5. Textual Completion

One of the most powerful (and typically underused) features of emacs-mode is its textual
completion facility, inspired by similar features in the full emacs editor, the C shell, and
(originally) the old DEC TOPS-20 operating system.

The premise behind textual completion is simple: you should have to type only as much of a
filename, user name, function, etc., to identify it unambiguously. This is an excellent feature; there
is an analogous one in vi-mode. We recommend that you take the time to learn it, since it will
save you quite a bit of typing.

There are three commands in emacs-mode that relate to textual completion. The most important
is TAB.[4] When you type in a word of text followed by TAB, bash will attempt to complete the
name. Then one of four things can happen:

[4] emacs users will recognize this as minibuffer completion.

If there is nothing whose name begins with the word, the shell will beep and nothing further
will happen.

1.

If there is a command name in the search path, a function name, or a filename that the string
uniquely matches, the shell will type the rest of it, followed by a space in case you want to
type in more command arguments. Command name completion is only attempted when the
word is in a command position (e.g., at the start of a line).

2.

If there is a directory that the string uniquely matches, the shell will complete the filename,
followed by a slash.

3.

If there is more than one way to complete the name, the shell will complete out to the
longest common prefix among the available choices. Commands in the search path and
functions take precedence over filenames.

4.

4.

For example, assume you have a directory with the files tweedledee.c and tweedledum.c . You
want to compile the first of these by typing cc tweedledee.c . You type cc twee followed by
TAB. This is not an unambiguous prefix, since the prefix "twee" is common to both filenames,
so the shell only completes out to cc tweedled . You need to type more letters to distinguish
between them, so you type e and hit TAB again. Then the shell completes out to "cc
tweedledee.c ", leaving the extra space for you to type in other filenames or options.

If you didn't know what options were available after trying to complete cc twee , you could
press TAB again. bash prints out the possible completions for you and presents your input line
again:

$ cc tweedled

tweedledee.c tweedledum.c

$ cc tweedled

A related command is ESC-? , which expands the prefix to all possible choices, listing them to
standard output. Be aware that the completion mechanism doesn't necessarily expand to a
filename. If there are functions and commands that satisfy the string you provide, the shell
expands those first and ignores any files in the current directory. As we'll see, you can force
completion to a particular type.

It is also possible to complete other environment entities. If the text being completed is preceded
by a dollar sign ($), the shell attempts to expand the name to that of a shell variable (see Chapter
3 , for a discussion of shell variables). If the text is preceded by a tilde (~), completion to a
username is attempted; if preceded by an at sign (@), a hostname is attempted.

For example, suppose there was a username cameron on the system. If you wanted to change
to this user's home directory, you could just use tilde notation and type the first few letters of the
name, followed by a TAB:

$ cd ~ca

which would expand to:

$ cd ~cameron/

You can force the shell to complete to specific things. Table 2-5 lists the standard keys for these.

Table 2-5. Completion command

Command Description

TAB Attempt to perform general completion of the text

ESC-? List the possible completions

ESC-/ Attempt filename completion

CTRL-X / List the possible filename completions

ESC-~ Attempt username completion

CTRL-X ~ List the possible username completions

ESC-$ Attempt variable completion

CTRL-X $ List the possible variable completions

ESC-@ Attempt hostname completion

CTRL-X @ List the possible hostname completions

ESC-! Attempt command completion

CTRL-X ! List the possible command completions

ESC-TAB Attempt completion from previous commands in the history list

If you find that you are interested only in completing long filenames, you are probably better off
using ESC-/ rather than TAB. This ensures that the result will be a filename and not a function or
command name.

2.3.6. Miscellaneous Commands

Several miscellaneous commands complete emacs editing mode; they are shown in Table 2-6 .

Table 2-6. emacs-mode miscellaneous commands

Command Description

CTRL-J Same as RETURN

CTRL-L Clears the screen, placing the current line at the top of the screen

CTRL-M Same as RETURN

Command Description

CTRL-O Same as RETURN, then display next line in command history

CTRL-T Transpose two characters on either side of point and move point forward by one

CTRL-U Kills the line from the beginning to point

CTRL-V Quoted insert

CTRL-[Same as ESC (most keyboards)

ESC-C Capitalize word after point

ESC-U Change word after point to all capital letters

ESC-L Change word after point to all lowercase letters

ESC-. Insert last word in previous command line after point

ESC-_ Same as ESC-.

BSD-derived systems use CTRL-V and CTRL-W as default settings for the "quote next
character" and "word erase" terminal interface functions, respectively.

A few of these miscellaneous commands are worth discussing, even though they may not be
among the most useful emacs-mode commands.

CTRL-O is useful for repeating a sequence of commands you have already entered. Just go back
to the first command in the sequence and press CTRL-O instead of RETURN. This will execute
the command and bring up the next command in the history list. Press CTRL-O again to enter
this command and bring up the next one. Repeat this until you see the last command in the
sequence; then just hit RETURN.

Of the case-changing commands, ESC-L is useful when you hit the CAPS LOCK key by
accident and don't notice it immediately. Since all-caps words aren't used too often in the UNIX
world, you probably won't use ESC-U very often.

CTRL-V will cause the next character you type to appear in the command line as is; i.e., if it is
an editing command (or an otherwise special character like CTRL-D), it will be stripped of its
special meaning.

If it seems like there are too many synonyms for RETURN, bear in mind that CTRL-M is
actually the same (ASCII) character as RETURN, and that CTRL-J is actually the same as
LINEFEED, which UNIX usually accepts in lieu of RETURN anyway.

ESC-. and ESC-_ are useful if you want to run several commands on a given file. The usual

CTRL-O Same as RETURN, then display next line in command history

CTRL-T Transpose two characters on either side of point and move point forward by one

CTRL-U Kills the line from the beginning to point

CTRL-V Quoted insert

CTRL-[Same as ESC (most keyboards)

ESC-C Capitalize word after point

ESC-U Change word after point to all capital letters

ESC-L Change word after point to all lowercase letters

ESC-. Insert last word in previous command line after point

ESC-_ Same as ESC-.

BSD-derived systems use CTRL-V and CTRL-W as default settings for the "quote next
character" and "word erase" terminal interface functions, respectively.

A few of these miscellaneous commands are worth discussing, even though they may not be
among the most useful emacs-mode commands.

CTRL-O is useful for repeating a sequence of commands you have already entered. Just go back
to the first command in the sequence and press CTRL-O instead of RETURN. This will execute
the command and bring up the next command in the history list. Press CTRL-O again to enter
this command and bring up the next one. Repeat this until you see the last command in the
sequence; then just hit RETURN.

Of the case-changing commands, ESC-L is useful when you hit the CAPS LOCK key by
accident and don't notice it immediately. Since all-caps words aren't used too often in the UNIX
world, you probably won't use ESC-U very often.

CTRL-V will cause the next character you type to appear in the command line as is; i.e., if it is
an editing command (or an otherwise special character like CTRL-D), it will be stripped of its
special meaning.

If it seems like there are too many synonyms for RETURN, bear in mind that CTRL-M is
actually the same (ASCII) character as RETURN, and that CTRL-J is actually the same as
LINEFEED, which UNIX usually accepts in lieu of RETURN anyway.

ESC-. and ESC-_ are useful if you want to run several commands on a given file. The usual

UNIX convention is that a filename is the last argument to a command. Therefore you can save
typing by just entering each command followed by SPACE and then typing ESC-. or ESC-_.
For example, say you want to examine a file using more , so you type:

$ more myfilewithaverylongname

Then you decide you want to print it, so you type the print command lp . You can avoid typing
the very long name by typing lp followed by a space and then ESC-. or ESC-_; bash will insert
myfilewithaverylongname for you.

 < Day Day Up >

 < Day Day Up >

2.4. vi Editing Mode

Like emacs-mode, vi-mode essentially creates a one-line editing window into the history list. vi-
mode is popular because vi is the most standard UNIX editor. But the function for which vi was
designed, writing C programs, has different editing requirements from those of command
interpreters. As a result, although it is possible to do complex things in vi with relatively few
keystrokes, the relatively simple things you need to do in bash sometimes take too many
keystrokes.

Like vi , vi-mode has two modes of its own: input and control mode. The former is for typing
commands (as in normal bash use); the latter is for moving around the command line and the
history list. When you are in input mode, you can type commands in and hit RETURN to run
them. In addition, you have minimal editing capabilities via control characters, which are
summarized in Table 2-7

Table 2-7. Editing commands in vi input mode

Command Description

DEL Delete previous character

CTRL-W Erase previous word (i.e., erase until a blank)

CTRL-V Quote the next character

ESC Enter control mode (see below)

Note that at least some of these—depending on which version of UNIX you have—are the same
as the editing commands provided by UNIX through its terminal interface.[5] vi-mode will use
your "erase" character as the "delete previous character" key; usually it is set to DEL or CTRL-
H (BACKSPACE). CTRL-V works the same way as in emacs-mode; it causes the next
character to appear in the command line as is and lose its special meaning.

[5] In particular, versions of UNIX derived from 4.x BSD have all of these commands built in.

Under normal circumstances, you just stay in input mode. But if you want to go back and make
changes to your command line, or if you want to recall previous commands, you need to go into
control mode. To do this, hit ESC.

2.4.1. Simple Control Mode Commands

A full range of vi editing commands are available to you in control mode. The simplest of these
move you around the command line and are summarized in Table 2-8 . vi-mode contains two
"word" concepts. The simplest is any sequence of non-blank characters; we'll call this a non-
blank word . The other is any sequence of only alphanumeric characters (letters and digits) plus
the underscore (_), or any sequence of only non-alphanumeric characters; we'll just call this a
word .[6]

[6] Neither of these definitions is the same as the definition of a word in emacs-mode.

Table 2-8. Basic vi control mode commands

Command Description

h Move left one character

l Move right one character

w Move right one word

b Move left one word

W Move to beginning of next non-blank word

B Move to beginning of preceding non-blank word

e Move to end of current word

E Move to end of current non-blank word

0 Move to beginning of line

^ Move to first non-blank character in line

$ Move to end of line

All of these commands except the last three can be preceded by a number that acts as a repeat
count. Whenever you type a number for the repeat count, the number replaces the command
prompt for the duration of the repeat command. If your keyboard has cursor motion keys
("arrow" keys), you can use the left and right arrows to move between characters instead of the
h and l keys. Repeat counts will work with the cursor keys as well.

The last two will be familiar to users of UNIX utilities (such as grep) that use regular
expressions, as well as to vi users.

Time for a few examples. Let's say you type in this line and, before you hit RETURN, decide
you want to change it:

$ fgrep -l Duchess < ~cam/book/alice_in_wonderland[]

As shown, your cursor is beyond the last character of the line. First, type ESC to enter control
mode; your cursor will move back one space so that it is on the d . Then if you type h , your
cursor will move back to the n . If you type 3h from the n , you will end up at the r .

Now we will see the difference between the two "word" concepts. Go back to the end of the line
by typing $. If you type b , the word in question is alice_in_wonderland , and the cursor will
end up on the a :

$ fgrep -l Duchess < ~cam/book/[a]lice_in_wonderland

If you type b again, the next word is the slash (it's a "sequence" of non-alphanumeric
characters), so the cursor ends up over it:

$ fgrep -l Duchess < ~cam/book[/]alice_in_wonderland

However, if you typed B instead of b , the non-blank word would be the entire pathname, and
the cursor would end up at the beginning of it—over the tilde:

$ fgrep -l Duchess < [~]cam/book/alice_in_wonderland

You would have had to type b four times—or just 4b— to get the same effect, since there are
four "words" in the part of the pathname to the left of /alice_in_wonderland : book , slash, cam
, and the leading tilde.

At this point, w and W do the opposite: typing w gets you over the c , since the tilde is a
"word," while typing W brings you to the end of the line. But whereas w and W take you to the
beginning of the next word, e and E take you to the end of the current word. Thus, if you type w
with the cursor on the tilde, you get to:

$ fgrep -l Duchess < ~[c]am/book/alice_in_wonderland

Then typing e gets you to:

$ fgrep -l Duchess < ~ca[m]/book/alice_in_wonderland

And typing an additional w gets you to:

$ fgrep -l Duchess < ~cam[/]book/alice_in_wonderland

On the other hand, E gets you to the end of the current non-blank word—in this case, the end of
the line. (If you find these commands non-mnemonic, you're right. The only way to assimilate
them is through lots of practice.)

2.4.2. Entering and Changing Text

Now that you know how to enter control mode and move around on the command line, you
need to know how to get back into input mode so you can make changes and type in additional
commands. A number of commands take you from control mode into input mode; they are listed
in Table 2-9 . All of them enter input mode a bit differently.

Table 2-9. Commands for entering vi input mode

Command Description

i Text inserted before current character (insert)

a Text inserted after current character (append)

I Text inserted at beginning of line

A Text inserted at end of line

R Text overwrites existing text

Most likely, you will use either i or a consistently, and you may use R occasionally. I and A are
abbreviations for 0i and $a respectively. To illustrate the difference between i , a , and R , say
we start out with our example line:

$ fgrep -l Duchess < ~cam/book[/]alice_in_wonderland

If you type i followed by end , you will get:

$ fgrep -l Duchess < ~cam/bookend[/]alice_in_wonderland

That is, the cursor will always appear to be under the / before alice_in_wonderland . But if you
type a instead of i , you will notice the cursor move one space to the right. Then if you type
miss_ , you will get:

$ fgrep -l Duchess < ~cam/book/miss_[a]lice_in_wonderland

That is, the cursor will always be just after the last character you typed, until you type ESC to
end your input. Finally, if you go back to the first a in alice_in_wonderland , type R instead,
and then type through_the_looking_glass , you will see:

$ fgrep -l Duchess < ~cam/book/through_the_looking_glas[s]

In other words, you will be replacing (hence R) instead of inserting text.

Why capital R instead of lowercase r ? The latter is a slightly different command, which replaces
only one character and does not enter input mode. With r , the next single character overwrites
the character under the cursor. So if we start with the original command line and type r followed
by a semicolon, we get:

$ fgrep -l Duchess < ~cam/book[;]alice_in_wonderland

If you precede r with a number N , it will allow you to replace the next N existing characters on
the line—but still not enter input mode. Lowercase r is effective for fixing erroneous option
letters, I/O redirection characters, punctuation, and so on.

2.4.3. Deletion Commands

Now that you know how to enter commands and move around the line, you need to know how
to delete. The basic deletion command in vi-mode is d followed by one other letter. This letter
determines what the unit and direction of deletion is, and it corresponds to a motion command,
as listed previously in Table 2-8 .

Table 2-10 shows some commonly used examples.

Table 2-10. Some vi-mode deletion commands

Command Description

dh Delete one character backwards

Command Description

dl Delete one character forwards

db Delete one word backwards

dw Delete one word forwards

dB Delete one non-blank word backwards

dW Delete one non-blank word forwards

d$ Delete to end of line

d0 Delete to beginning of line

These commands have a few variations and abbreviations. If you use a c instead of d , you will
enter input mode after it does the deletion. You can supply a numeric repeat count either before
or after the d (or c). Table 2-11 lists the available abbreviations.

Table 2-11. Abbreviations for vi-mode delete commands

Command Description

D Equivalent to d$ (delete to end of line)

dd Equivalent to 0d$ (delete entire line)

C Equivalent to c$ (delete to end of line, enter input mode)

cc Equivalent to 0c$ (delete entire line, enter input mode)

X Equivalent to dl (delete character backwards)

x Equivalent to dh (delete character forwards)

Most people tend to use D to delete to end of line, dd to delete an entire line, and x (as
"backspace") to delete single characters. If you aren't a hardcore vi user, you may find it difficult
to make sure the more esoteric deletion commands are at your fingertips.

Every good editor provides "un-delete" commands as well as delete commands, and vi-mode is
no exception. vi-mode maintains a delete buffer that stores all of the modifications to text on the
current line only (note that this is different from the full vi editor). The command u undoes
previous text modifications. If you type u , it will undo the last change. Typing it again will undo

dl Delete one character forwards

db Delete one word backwards

dw Delete one word forwards

dB Delete one non-blank word backwards

dW Delete one non-blank word forwards

d$ Delete to end of line

d0 Delete to beginning of line

These commands have a few variations and abbreviations. If you use a c instead of d , you will
enter input mode after it does the deletion. You can supply a numeric repeat count either before
or after the d (or c). Table 2-11 lists the available abbreviations.

Table 2-11. Abbreviations for vi-mode delete commands

Command Description

D Equivalent to d$ (delete to end of line)

dd Equivalent to 0d$ (delete entire line)

C Equivalent to c$ (delete to end of line, enter input mode)

cc Equivalent to 0c$ (delete entire line, enter input mode)

X Equivalent to dl (delete character backwards)

x Equivalent to dh (delete character forwards)

Most people tend to use D to delete to end of line, dd to delete an entire line, and x (as
"backspace") to delete single characters. If you aren't a hardcore vi user, you may find it difficult
to make sure the more esoteric deletion commands are at your fingertips.

Every good editor provides "un-delete" commands as well as delete commands, and vi-mode is
no exception. vi-mode maintains a delete buffer that stores all of the modifications to text on the
current line only (note that this is different from the full vi editor). The command u undoes
previous text modifications. If you type u , it will undo the last change. Typing it again will undo

the change before that. When there are no more undo's, bash will beep. A related command is .
(dot), which repeats the last text modification command.

There is also a way to save text in the delete buffer without having to delete it in the first place:
just type in a delete command but use y ("yank") instead of d . This does not modify anything,
but it allows you to retrieve the yanked text as many times as you like later on. The commands to
retrieve yanked text are p , which inserts the text on the current line to the right of the cursor, and
P , which inserts it to the left of the cursor. The y , p , and P commands are powerful but far
better suited to "real vi " tasks like making global changes to documents or programs than to
shell commands, so we doubt you'll use them very often.

2.4.4. Moving Around in the History List

The next group of vi control mode commands we cover allows you to move around in and
search your command history. This is the all-important functionality that lets you go back and fix
an erroneous command without retyping the entire line. These commands are summarized in
Table 2-12 .

Table 2-12. vi control mode commands for searching the command history

Command Description

k or - Move backward one line

j or + Move forward one line

G Move to line given by repeat count

/string Search backward for string

?string Search forward for string

n Repeat search in same direction as previous

N Repeat search in opposite direction of previous

The first two can also be accomplished with the up and down cursor movement keys if your
keyboard has them. The first three can be preceded by repeat counts (e.g., 3k or 3- moves back
three lines in the command history).

If you aren't familiar with vi and its cultural history, you may be wondering at the wisdom of
choosing such seemingly poor mnemonics as h , j , k , and l for backward character, forward

line, backward line, and forward character, respectively. Well, there actually is a rationale for the
choices—other than that they are all together on the standard keyboard. Bill Joy originally
developed vi to run on Lear-Siegler ADM-3a terminals, which were the first popular models with
addressable cursors (meaning that a program could send an ADM-3a command to move the
cursor to a specified location on the screen). The ADM-3a's h , j , k , and l keys had little
arrows on them, so Joy decided to use those keys for appropriate commands in vi . Another
(partial) rationale for the command choices is that CTRL-H is the traditional backspace key, and
CTRL-J denotes linefeed.

Perhaps + and - are better mnemonics than j and k , but the latter have the advantage of being
more easily accessible to touch typists. In either case, these are the most basic commands for
moving around the history list. To see how they work, let's use the same examples from the
emacs-mode section earlier.

You enter the example command (RETURN works in both input and control modes, as does
LINEFEED or CTRL-J):

$ fgrep -l Duchess < ~cam/book/alice_in_wonderland

but you get an error message saying that your option letter was wrong. You want to change it to -
s without having to retype the entire command. Assuming you are in control mode (you may
have to type ESC to put yourself in control mode), you type k or - to get the command back.
Your cursor will be at the beginning of the line:

$ [f]grep -l Duchess < ~cam/book/alice_in_wonderland

Type w to get to the - , then l to get to the l . Now you can replace it by typing rs ; press
RETURN to run the command.

Now let's say you get another error message, and you finally decide to look at the manual page
for the fgrep command. You remember having done this a while ago today, so rather than typing
in the entire man command, you search for the last one you used. To do this, type ESC to enter
control mode (if you are already in control mode, this will have no effect), then type / followed
by man or ma . To be on the safe side, you can also type ^ma ; the ^ means match only lines
that begin with ma .[7]

[7] Fans of vi and search utilities like grep should note that caret (^) for beginning-of-line is the only context operator
vi-mode provides for search strings.

But typing /^ma doesn't give you what you want: instead, the shell gives you:

$ make myprogram

To search for "man" again, you can type n , which does another backward search using the last
search string. Typing / again without an argument and hitting RETURN will accomplish the
same thing.

The G command retrieves the command whose number is the same as the numeric prefix
argument you supply. G depends on the command numbering scheme described in Chapter 3
Section 3.4.2.3 . Without a prefix argument, it goes to command number 1. This may be useful
to former C shell users who still want to use command numbers.

2.4.5. Character-Finding Commands

There are some additional motion commands in vi-mode, although they are less useful than the
ones we saw earlier in the chapter. These commands allow you to move to the position of a
particular character in the line. They are summarized in Table 2-13 , in which x denotes any
character.

All of these commands can be preceded by a repeat count.

Table 2-13. vi-mode character-finding commands

Command Description

fx Move right to next occurrence of x

Fx Move left to previous occurrence of x

tx Move right to next occurrence of x, then back one space

Tx Move left to previous occurrence of x, then forward one space

; Redo last character-finding command

, Redo last character-finding command in opposite direction

Starting with the previous example: let's say you want to change Duchess to Duckess . Make sure
that you're at the end of the line (or, in any case, to the left of the h in Duchess); then, if you
type Fh , your cursor will move to the h :

$ fgrep -l Duc[h]ess < ~cam/book/alice_in_wonderland

At this point, you could type r to replace the h with k . But let's say you wanted to change

Duchess to Dutchess . You would need to move one space to the right of the u . Of course,
you could just type l . But, given that you're somewhere to the right of Duchess , the fastest way
to move to the c would be to type Tu instead of Fu followed by l .

As an example of how the repeat count can be used with character-finding commands, let's say
you want to change the filename from alice_in_wonderland to alice . In this case, assuming
your cursor is still on the D , you need to get to one character beyond the second slash. To do
this, you can type 2fa . Your cursor will then be on the a in alice_in_wonderland .

The character-finding commands also have associated delete commands. Read the command
definitions in the previous table and mentally substitute "delete" for move. You'll get what
happens when you precede the given character-finding command with a d . The deletion includes
the character given as argument. For example, assume that your cursor is under the a in
alice_in_wonderland :

$ fgrep -l Duchess < ~cam/book/[a]lice_in_wonderland

If you want to change alice_in_wonderland to natalie_in_wonderland , one possibility is to
type dfc . This means "delete right to next occurrence of c," i.e., delete "alic". Then you can
type i (to enter input mode) and then "natali" to complete the change.

One final command rounds out the vi control mode commands for getting around on the current
line: you can use the pipe character (|) to move to a specific column, whose number is given by
a numeric prefix argument. Column counts start at 1; count only your input, not the space taken
up by the prompt string. The default repeat count is 1, of course, which means that typing | by
itself is equivalent to 0 (see Table 2-8).

2.4.6. Textual Completion

Although the character-finding commands and | are not particularly useful, vi-mode provides one
additional feature that we think you will use quite often: textual completion. This feature is not
part of the real vi editor, and it was undoubtedly inspired by similar features in emacs and,
originally, in the TOPS-20 operating system for DEC mainframes.

The rationale behind textual completion is simple: you should have to type only as much of a
filename, user name, function, etc. as is necessary. Backslash (\) is the command that tells bash
to do completion in vi-mode. If you type in a word, hit ESC to enter control mode, and then
type \ , one of four things will happen; they are the same as for TAB in emacs-mode:

If there is nothing whose name begins with the word, the shell will beep and nothing further
will happen.

1.

2.

1.

If there is a command name in the search path, a function name, or a filename that the string
uniquely matches, the shell will type the rest of it, followed by a space in case you want to
type in more command arguments. Command name completion is only attempted when the
word is in a command position (e.g., at the start of a line).

2.

If there is a directory that the string uniquely matches, the shell will complete the filename,
followed by a slash.

3.

If there is more than one way to complete the name, the shell will complete out to the
longest common prefix among the available choices. Commands in the search path and
functions take precedence over filenames.

4.

A related command is * . It behaves similarly to ESC-\, but if there is more than one completion
possibility (number four in the previous list), it lists all of them and allows you to type further.
Thus, it resembles the * shell wildcard character.

Less useful is the command = , which does the same kind of expansion as * , but in a different
way. Instead of expanding the names onto the command line, it prints them, then gives you your
shell prompt back and retypes whatever was on your command line before you typed = . For
example, if the files in your directory include tweedledee.c and tweedledum.c , and you type
tweedl followed by ESC and then = , you will see this:

$ cc tweedl

tweedledee.c tweedledum.c

It is also possible to expand other environment entities, as we saw in emacs-mode. If the text
being expanded is preceded by a dollar sign ($), the shell will attempt to expand the name to that
of a shell variable. If the text is preceded by a tilde (~), expansion to a username is attempted; if
preceded by an at sign (@), a hostname.

2.4.7. Miscellaneous Commands

Several miscellaneous commands round out vi-mode; some of them are quite esoteric. They are
listed in Table 2-14 .

Table 2-14. Miscellaneous vi-mode commands

Command Description

~ Invert (twiddle) case of current character(s)

- Append last word of previous command, enter input mode

CTRL-L
Clear the screen and redraw the current line on it; good for when your screen
becomes garbled

#
Prepend # (comment character) to the line and send it to the history list; useful for
saving a command to be executed later without having to retype it[8]

[8] The line is also "executed" by the shell. However, # is the shell's comment character, so the shell ignores it.

The first of these can be preceded by a repeat count. A repeat count of n preceding the ~
changes the case of the next n characters. The cursor will advance accordingly.

A repeat count preceding _ causes the n th word in the previous command to be inserted in the
current line; without the count, the last word is used. Omitting the repeat count is useful because
a filename is usually the last thing on a UNIX command line, and because users often run several
commands in a row on the same file. With this feature, you can type all of the commands (except
the first) followed by ESC-_, and the shell will insert the filename.

 < Day Day Up >

 < Day Day Up >

2.5. The fc Command

fc is a built-in shell command that provides a superset of the C shell history mechanism. You can
use it to examine the most recent commands you entered, to edit one or more commands with
your favorite "real" editor, and to run old commands with changes without having to type the
entire command in again. We'll look at each of these uses in turn.

The -l option to fc lists previous commands. It takes arguments that refer to commands in the
history list. Arguments can be numbers or alphanumeric strings; numbers refer to the commands
in the history list, while strings refer to the most recent command beginning with the string. fc
treats arguments in a rather complex way:

If you give two arguments, they serve as the first and last commands to be shown.

If you specify one number argument, only the command with that number is shown.

With a single string argument, it searches for the most recent command starting with that
string and shows you everything from that command to the most recent command.

If you specify no arguments, you will see the last 16 commands you entered. bash also has
a built-in command for displaying the history: history .

A few examples should make these options clearer. Let's say you logged in and entered these
commands:

ls -l

more myfile

vi myfile

wc -l myfile

pr myfile | lp -h

If you type fc -l with no arguments, you will see the above list with command numbers, as in:

1 ls -l

2 more myfile

3 vi myfile

4 wc -l myfile

5 pr myfile | lp -h

Adding another option, -n , suppresses the line numbers. If you want to see only commands 2
through 4, type fc -l 2 4 . If you want to see only the vi command, type fc -l 3 . To see
everything from the vi command up to the present, type fc -l v . Finally, if you want to see
commands between more and wc , you can type fc -l m w , fc -l m 4 , fc -l 2 4 , etc.

The other important option to fc is -e for "edit." This is useful as an "escape hatch" from vi- and
emacs-modes if you aren't used to either of those editors. You can specify the pathname of your
favorite editor and edit commands from your history list; then when you have made the changes,
the shell will actually execute the new lines.

Let's say your favorite editor is a little home-brew gem called zed . You could edit your
commands by typing:

$ fc -e /usr/local/bin/zed

This seems like a lot of work just to fix a typo in your previous command; fortunately, there is a
better way. You can set the environment variable FCEDIT to the pathname of the editor you
want fc to use. If you put a line in your .bash_profile or environment file saying:[9]

[9] See Chapter 3 for information on the bash startup file .bash_profile .

FCEDIT=/usr/local/bin/zed

you will get zed when you invoke fc . If FCEDIT isn't set, then bash uses whatever the variable
EDITOR is set to. If that's also not set, then bash defaults to vi .

fc is usually used to fix a recent command. When used without options, it handles arguments a
bit differently than it does for the fc -l variation discussed earlier:

With no arguments, fc loads the editor with the most recent command.

With a numeric argument, fc loads the editor with the command with that number.

With a string argument, fc loads the most recent command starting with that string.

With two arguments to fc , the arguments specify the beginning and end of a range of
commands, as above.

Remember that fc actually runs the command(s) after you edit them. Therefore, the last-named
choice can be dangerous. bash will attempt to execute all commands in the range you specify
when you exit your editor. If you have typed in any multi-line constructs (like those we will cover
in Chapter 5), the results could be even more dangerous. Although these might seem like valid
ways of generating "instant shell programs," a far better strategy would be to direct the output of
fc -ln with the same arguments to a file; then edit that file and execute the commands when you're
satisfied with them:

$ fc -l cp > lastcommands$ vi lastcommands$ source lastcommands

In this case, the shell will not try to execute the file when you leave the editor!

There is one final option with fc . fc -s allows you to rerun a command. With an argument, fc will
rerun the last command starting with the given string. Without an argument, it will rerun the
previous command. The -s option also allows you to provide a pattern and replacement. For
example, if you typed:

$ cs prog.c

You could correct it with fc -s cs=cc . This can be combined with the string search: fc -s cs=cc
cs . The last occurence of cs will be found and replaced with cc .

 < Day Day Up >

 < Day Day Up >

2.6. History Expansion

If you are a C shell user, you may be familiar with the history expansion mechanism that it
provides. bash provides a similar set of features. History expansion is a primitive way to recall
and edit commands in the history list. The way to recall commands is by the use of event
designators . Table 2-15 gives a complete list.

Table 2-15. Event designators

Command Description

! Start a history substitution

!! Refers to the last command

! n Refers to command line n

!- n Refers to the current command line minus n

! string Refers to the most recent command starting with string

!? string ?
Refers to the most recent command containing string ; the ending ? is
optional

^ string1
^string2

Repeat the last command, replacing string1 with string2

By far the most useful command is !! . Typing !! on the command line re-executes the last
command. If you know the command number of a specific command, you can use the !n form,
where n is the command number. Command numbers can be determined from the history
command. Alternatively, you can re-execute the most recent command beginning with the
specified string by using ! string .

You might also find the last expansion in the table to be of some use if you've made a typing
mistake. For example, you might have typed:

$ cat through_the_loking_glass | grep Tweedledee > dee.list

Instead of moving back to the line and changing loking to looking , you could just type
^lok^look . This will change the string lok to look and then execute the resulting command.

It's also possible to refer to certain words in a previous command by the use of a word
designator . Table 2-16 lists available designators. Note that when counting words, bash (like
most UNIX programs) starts counting with zero, not with one.

Table 2-16. Word designators

Designator Description

0 The zeroth (first) word in a line

n The n th word in a line

^ The first argument (the second word)

$ The last argument in a line

% The word matched by the most recent ?string search

x-y A range of words from x to y . -y is synonymous with 0-y

*
All words but the zeroth (first); synonymous with 1-$.; if there is only one word on
the line, an empty string is returned

x * Synonymous with x -$

x- The words from x to the second to last word

The word designator follows the event designator, separated by a colon. You could, for
example, repeat the previous command with different arguments by typing !!:0 followed by the
new arguments.

Event designators may also be followed by modifiers . The modifiers follow the word
designator, if there is one. Table 2-17 lists the available modifiers.

Table 2-17. Modifiers

Modifier Description

h Removes a trailing pathname component, leaving the head

Modifier Description

r Removes a trailing suffix of the form .xxx

e Removes all but the trailing suffix

t Removes all leading pathname components, leaving the tail

p Prints the resulting command but doesn't execute it

q Quotes the substituted words, escaping further substitutions

x Quotes the substituted words, breaking them into words at blanks and newlines

s/old /new / Substitutes new for old

More than one modifier may be used with an event designator; each one is separated by a colon.

History expansion is fine for re-executing a command quickly, but it has been superseded by the
command-line editing facilities that we looked at earlier in this chapter. Its inclusion is really only
for completeness, and we feel you are better off mastering the techniques offered in the vi or
emacs editing modes.

 < Day Day Up >

r Removes a trailing suffix of the form .xxx

e Removes all but the trailing suffix

t Removes all leading pathname components, leaving the tail

p Prints the resulting command but doesn't execute it

q Quotes the substituted words, escaping further substitutions

x Quotes the substituted words, breaking them into words at blanks and newlines

s/old /new / Substitutes new for old

More than one modifier may be used with an event designator; each one is separated by a colon.

History expansion is fine for re-executing a command quickly, but it has been superseded by the
command-line editing facilities that we looked at earlier in this chapter. Its inclusion is really only
for completeness, and we feel you are better off mastering the techniques offered in the vi or
emacs editing modes.

 < Day Day Up >

 < Day Day Up >

2.7. readline

bash 's command-line editing interface is readline . It is actually a library of software developed
for the GNU project that can be used by applications requiring a text-based interface. It provides
editing and text-manipulation features to make it easier for the user to enter and edit text. Just as
importantly, it allows standardization, in terms of both key strokes and customization methods,
across all applications that use it.

readline provides default editing in either of two modes: vi or emacs . Both modes provide a
subset of the editing commands found in the full editors. We've already looked at the command
sets of these modes in the previous sections of this chapter. We'll now look at how you can
make your own command sets.

readline gives bash added flexibility compared to other shells because it can be customized
through the use of key bindings, either from the command line or in a special startup file. You
can also set readline variables. We'll see how you can set up readline using your own startup
file now, and then go on to examine how the binding capability can be used from the command
line.

2.7.1. The readline Startup File

The default startup file is called .inputrc and must exist in your home directory if you wish to
customize readline . You can change the default filename by setting the environment variable
INPUTRC (see Chapter 3 for further information on environment variables).

When bash starts up, it reads the startup file (if there is one) and any settings there come into
effect. The startup file is just a sequence of lines that bind a keyname to a macro or readline
function name. You can also place comments in the file by preceding any line with a # .

You can use either an English name or a key escape sequence for the keyname. For example, to
bind CTRL-T to the movement command for moving to the end of the current line, you could
place Control-t: end-of-line in your .inputrc . If you wanted to use a key escape sequence you
could have put "\C-t<">: end-of-line . The \C- is the escape sequence prefix for Control. The
advantage of the key sequence is that you can specify a sequence of keys for an action. In our
example, once readline has read this line, typing a CTRL-T will cause the cursor to move to the
end of the line.

The end-of-line in the previous example is a readline function. There are over 60 functions that

allow you to control everything from cursor motions to changing text and command completion
(for a complete list, see the bash manual page). All of the emacs and vi editing mode commands
that we looked at in this chapter have associated functions. This allows you to customize the
default modes or make up completely new ones using your own key sequences.

Besides the readline functions, you can also bind a macro to a key sequence. A macro is simply
a sequence of keystrokes inside single or double quotes. Typing the key sequence causes the
keys in the macro to be entered as though you had typed them. For example, we could bind
some text to CTRL-T; "\C-t<">: <">Curiouser and curiouser!<"> . Hitting CTRL-T would
cause the phrase Curiouser and curiouser! to appear on the command line.

If you want to use single or double quotes in your macros or key sequence, you can escape
them by using a backslash (\). Table 2-18 lists the common escape sequences.

Table 2-18. Escape sequences

Sequence Description

\C- Control key prefix

\M- Meta (Escape) key prefix

\e The escape character

\\ The backslash character (\)

\<"> The double quote character (<">)

\' The single quote character (')

readline also allows simple conditionals in the .inputrc . There are three directives: $if , $else ,
and $endif . The conditional of the $if can be an editing mode, a terminal type, or an
application-specific condition.

To test for an editing mode, you can use the form mode= and test for either vi or emacs . For
instance, to set up readline so that setting CTRL-T will take place only in emacs mode, you
could put the following in your .inputrc :

$if mode=emacs

"\C-t": "Curiouser and curiouser!"

$endif

Likewise, to test for a terminal type, you can use the form term= . You must provide the full
terminal name on the right-hand side of the test. This is useful when you need a terminal-specific
key binding. You may, for instance, want to bind the function keys of a particular terminal type
to key sequences.

If you have other applications that use readline , you might like to keep your bash -specific
bindings separate. You can do this with the last of the conditionals. Each application that uses
readline sets its own variable, which you can test for. To test for bash specifics, you could put
$if bash into your .inputrc .

2.7.1.1 readline variables

readline has its own set of variables that you can set from within your .inputrc . Table 2-19 lists
them.[10]

[10] The variables disable-completion , enable-keypad , input-meta , mark-directories , and visible-stats are not
available in versions of bash prior to 2.0.

Table 2-19. readline variables

Variable Description

bell-style
If set to none , readline never rings the bell (beeps). If set to visible , readline
will attempt to use a visible bell. If set to audible , it will attempt to ring the
bell. The default is audible .

comment-
begin

The string to insert when the readline insert-comment command is executed.
The default is a # .

completion-
query-items

Determines when the user is asked to see further completions if the number of
completions is greater than that given. The default is 100.

convert-meta
If set to On , converts characters with the eighth bit set to an ASCII key
sequence by stripping the eighth bit and prepending an escape character. The
default is On .

disable-
completion

If set to On , inhibits word completion. Completion characters will be inserted
into the line as if they had been mapped to self-insert . The default is Off .

editing-mode Sets the editing mode to vi or emacs .

Variable Description

enable-keypad
If set to On , readline tries to enable the keyboard's application keypad when
it is called. Some systems need this to enable the arrow keys. The default is
Off .

expand-tilde
If set to On , tilde expansion is attempted when readline attempts word
completion. The default is Off .

horizontal-
scroll-mode

Set to On means that lines will scroll horizontally if you type beyond the right-
hand side of the screen. The default is Off , which wraps the line onto a new
screen line.

input-meta
If set to On , eight-bit input will be accepted. The default is Off . This is
synonymous with meta-flag .

keymap

Sets readline 's current keymap for bindings. Acceptable names are emacs ,
emacs-standard , emacs-meta , emacs-ctlx , vi , vi-move , vi-command and vi-
insert . The default is emacs . Note that the value of editing-mode also affects
the keymap.

mark-
directories

If set to On , completed directory names have a slash appended.

mark-
modified-lines

If set to On , displays an asterisk at the start of history lines that have been
modified. The default is Off .

meta-flag If set to On , eight-bit input will be accepted. The default is Off .

output-meta
If set to On , displays characters with the eighth bit set directly. The default is
Off .

show-all-if-
ambiguous

If set to On , words with more than one possible completion are listed instead
of ringing the bell. The default is Off .

visible-stats
If set to On , a character denoting a file's type as reported by the stat system
call is appended to the filename when listing possible completions. The default
is Off .

To set any of the variables, you can use the set command in your .inputrc . For example, to set
vi-mode when you start up, you could place the line set editing-mode vi in your .inputrc .
Every time bash starts it would change to vi-mode.

2.7.2. Key Bindings Using bind

enable-keypad
If set to On , readline tries to enable the keyboard's application keypad when
it is called. Some systems need this to enable the arrow keys. The default is
Off .

expand-tilde
If set to On , tilde expansion is attempted when readline attempts word
completion. The default is Off .

horizontal-
scroll-mode

Set to On means that lines will scroll horizontally if you type beyond the right-
hand side of the screen. The default is Off , which wraps the line onto a new
screen line.

input-meta
If set to On , eight-bit input will be accepted. The default is Off . This is
synonymous with meta-flag .

keymap

Sets readline 's current keymap for bindings. Acceptable names are emacs ,
emacs-standard , emacs-meta , emacs-ctlx , vi , vi-move , vi-command and vi-
insert . The default is emacs . Note that the value of editing-mode also affects
the keymap.

mark-
directories

If set to On , completed directory names have a slash appended.

mark-
modified-lines

If set to On , displays an asterisk at the start of history lines that have been
modified. The default is Off .

meta-flag If set to On , eight-bit input will be accepted. The default is Off .

output-meta
If set to On , displays characters with the eighth bit set directly. The default is
Off .

show-all-if-
ambiguous

If set to On , words with more than one possible completion are listed instead
of ringing the bell. The default is Off .

visible-stats
If set to On , a character denoting a file's type as reported by the stat system
call is appended to the filename when listing possible completions. The default
is Off .

To set any of the variables, you can use the set command in your .inputrc . For example, to set
vi-mode when you start up, you could place the line set editing-mode vi in your .inputrc .
Every time bash starts it would change to vi-mode.

2.7.2. Key Bindings Using bind

If you want to try out key bindings or you want to see what the current settings are, you can do it
from the bash command line by using the bind command. The binding syntax is the same as that
of the .inputrc file, but you have to surround each binding in quotes so that it is taken as one
argument.

To bind a string to CTRL-T, we could type bind `"\C-t<">: <">Curiouser and curiouser!"'.
This would bind the given string to CTRL-T just as in the .inputrc , except that the binding will
apply only to the current shell and will cease once you log out.

bind also allows you to print out the bindings currently in effect by typing bind -P .[11] If you do
so, you'll see things like:

[11] Versions of bash prior to 2.0 use -d instead of -p , and -v instead of -P . Also, the -r , -V , -S , -s , -u , and the
new -v and -x options are not available in these older versions.

abort can be found on "\C-g", "\C-x\C-g", "\e\C-g".

accept-line can be found on "\C-j", "\C-m".

alias-expand-line is not bound to any keys

arrow-key-prefix is not bound to any keys

backward-char can be found on "\C-b", "\eOD", "\e[D".

...

If you just want to see the names of the readline functions, you can use bind -l .

You can also unbind a function by using bind -u along with the name of the function; all keys for
that function will then be unbound. Unbinding a key sequence can be done with bind -r followed
by the sequence.

bind -x is useful if you want to bind a shell command to a key sequence. For example, bind -x
`"\C-l":ls ' binds CTRL-L to the ls command. Hitting CTRL-L would then give a directory
listing.

Another option you might find useful is -p . This prints out the bindings to standard output in a
format that can be re-read by bind , or used as a .inputrc file. So, to create a complete .inputrc
file that you can then edit, you could type bind -p > .inputrc .

To read the file back in again you can use another option, -f . This option takes a filename as its
argument and reads the key bindings from that file. You can also use it to update the key
bindings if you've just modified your .inputrc .

 < Day Day Up >

 < Day Day Up >

2.8. Keyboard Habits

In this chapter we have seen that bash provides command-line editing with two modes: vi and
emacs . You may be wondering why these two editors were chosen. The primary reason is
because vi and emacs are the most widely used editors for UNIX. People who have used either
editor will find familiar editing facilities.

If you are not familiar with either of these editors, you should seriously consider adopting emacs-
mode keyboard habits. Because it is based on control keys and doesn't require you to think in
terms of a "command mode" and "insert mode," you will find emacs-mode easier to assimilate.
Although the full emacs is an extremely powerful editor, its command structure lends itself very
well to small subsetting: there are several "mini-emacs" editors floating around for UNIX, MS-
DOS, and other systems.

The same cannot be said for vi , because its command structure is really meant for use in a full-
screen editor. vi is quite powerful too, in its way, but its power becomes evident only when it is
used for purposes similar to that for which it was designed: editing source code in C and LISP.
As mentioned earlier, a vi user has the power to move mountains in few keystrokes—but at the
cost of being unable to do anything meaningful in very few keystrokes. Unfortunately, the latter is
most desired in a command interpreter, especially nowadays when users are spending more time
within applications and less time working with the shell. In short, if you don't already know vi ,
you will probably find its commands obscure and confusing.

Both bash editing modes have quite a few commands; you will undoubtedly develop keyboard
habits that include just a few of them. If you use emacs-mode and you aren't familiar with the full
emacs , here is a subset that is easy to learn yet enables you to do just about anything:

For cursor motion around a command line, stick to CTRL-A and CTRL-E for beginning
and end of line, and CTRL-F and CTRL-B for moving around.

Delete using DEL (or whatever your "erase" key is) and CTRL-D; as with CTRL-F and
CTRL-B, hold down to repeat if necessary. Use CTRL-K to erase the entire line.

Use CTRL-P and CTRL-N (or the up and down arrow keys) to move through the
command history.

Use CTRL-R to search for a command you need to run again.

Use TAB for filename completion.

After a few hours spent learning these keystrokes, you will wonder how you ever got along
without command-line editing.

 < Day Day Up >

 < Day Day Up >

Chapter 3. Customizing Your
Environment
An environment is a collection of concepts that express the things a computer system or other
set of tools does in terms designed to be understandable and coherent, and a look and feel that is
comfortable. For example, your desk at work is an environment. Concepts involved in desk
work usually include memos, phone calls, letters, forms, etc. The tools on or in your desk that
you use to deal with these things include paper, staples, envelopes, pens, a telephone, a
calculator, etc. Every one of these has a set of characteristics that express how you use it; such
characteristics range from location on your desk or in a drawer (for simple tools) to more
sophisticated things like which numbers the memory buttons on your phone are set to. Taken
together, these characteristics make up your desk's look and feel.

You customize the look and feel of your desk environment by putting pens where you can most
easily reach them, programming your phone buttons, etc. In general, the more customization you
have done, the more tailored to your personal needs—and therefore the more productive—your
environment is.

Similarly, UNIX shells present you with such concepts as files, directories, and standard input
and output, while UNIX itself gives you tools to work with these, such as file manipulation
commands, text editors, and print queues. Your UNIX environment's look and feel is determined
by your keyboard and display, of course, but also by how you set up your directories, where
you put each kind of file, and what names you give to files, directories, and commands. There
are also more sophisticated ways of customizing your shell environment.

This chapter will look at the four most important features that bash provides for customizing
your environment.

Special files

The files .bash_profile , .bash_logout , and .bashrc that are read by bash when you log in
and out or start a new shell.

Aliases

Synonyms for commands or command strings that you can define for convenience.

Options

Controls for various aspects of your environment that you can turn on and off.

Variables

Changeable values that are referred to by a name. The shell and other programs can modify
their behavior according to the values stored in the variables.

Although these features are not the only ones available, they form the basis for doing more
advanced customization. They are also the features that are common to the various shells
available on UNIX. Later chapters will cover more advanced shell features, such as the ability to
program the shell.

 < Day Day Up >

 < Day Day Up >

3.1. The .bash_profile, .bash_logout, and .bashrc
Files

Three files in your home directory have a special meaning to bash , providing a way for you to
set up your account environment automatically when you log in and when you invoke another
bash shell, and allowing you to perform commands when you log out. These files may already
exist in your home directory, depending on how your system administrator has set up your
account. If they don't exist, your account is using only the default system file /etc/profile . You
can easily create your own bash files using your favorite text editor. If you are unfamiliar with
text editors available under UNIX, we suggest that you familiarize yourself with one of the better-
known ones such as vi or emacs before proceeding further with the techniques described in this
chapter.

The most important bash file, .bash_profile , is read and the commands in it executed by bash
every time you log in to the system. If you examine your .bash_profile you will probably see
lines similar to:

PATH=/sbin:/usr/sbin:/bin:/usr/bin:/usr/local/bin

SHELL=/bin/bash

MANPATH=/usr/man:/usr/X11/man

EDITOR=/usr/bin/vi

PS1='\h:\w\$ '

PS2='> '

export EDITOR

These lines define the basic environment for your login account. For the moment, it is probably
best to leave these lines alone until you understand what they do. When editing your
.bash_profile , just add your new lines after the existing ones.

Note that whatever you add to your .bash_profile won't take effect until the file is re-read by
logging out and then logging in again. Alternatively, you can also use the source command.[1] For
example:

[1] You can also use the synonymous command dot (.).

source .bash_profile

source executes the commands in the specified file, in this case .bash_profile , including any
commands that you have added.

bash allows two synonyms for .bash_profile : .bash_login , derived from the C shell's file
named .login , and .profile , derived from the Bourne shell and Korn shell files named .profile .
Only one of these three is read when you log in. If .bash_profile doesn't exist in your home
directory, then bash will look for .bash_login . If that doesn't exist it will look for .profile .

One advantage of bash 's ability to look for either synonym is that you can retain your .profile if
you have been using the Bourne shell. If you need to add bash -specific commands, you can put
them in .bash_profile followed by the command source .profile . When you log in, all the bash
-specific commands will be executed, and bash will source .profile , executing the remaining
commands. If you decide to switch to using the Bourne shell you don't have to modify your
existing files. A similar approach was intended for .bash_login and the C shell .login , but due to
differences in the basic syntax of the shells, this is not a good idea.

.bash_profile is read and executed only by the login shell. If you start up a new shell (a subshell
) by typing bash on the command line, it will attempt to read commands from the file .bashrc .
This scheme allows you the flexibility to separate startup commands needed at login time from
those you might need when you run a subshell. If you need to have the same commands run
regardless of whether it is a login shell or a subshell, you can just use the source command from
within .bash_profile to execute .bashrc . If .bashrc doesn't exist then no commands are
executed when you start up a subshell.

The file .bash_logout is read and executed every time a login shell exits. It is provided to round
out the capabilities for customizing your environment. If you wanted to execute some commands
that remove temporary files from your account or record how much time you have spent logged
in to the system then you would place the commands in .bash_logout . This file doesn't have to
exist in your account—if it isn't there when you log out, then no extra commands are executed.

 < Day Day Up >

 < Day Day Up >

3.2. Aliases

If you have used UNIX for any length of time you will have noticed that there are many
commands available and that some of them have cryptic names. Sometimes the commands you
use the most have a string of options and arguments that need to be specified. Wouldn't it be
nice if there was a feature that let you rename the commands or allowed you to type in something
simple instead of half a dozen options? Fortunately, bash provides such a feature: the alias.[2]

[2] C shell users should note that the bash alias feature does not support arguments in alias expansions, as C shell aliases
do. This functionality is provided by functions , which we'll look at in Chapter 4 .

Aliases can be defined on the command line, in your .bash_profile , or in your .bashrc , using
this form:

alias name=command

This syntax specifies that name is an alias for command . Whenever you type name as a
command, bash will substitute command in its place when it executes the line. Notice that there
are no spaces on either side of the equal sign (=); this is the required syntax.

There are a few basic ways to use an alias. The first, and simplest, is as a more mnemonic name
for an existing command. Many commonly used UNIX commands have names that are poor
mnemonics and are therefore excellent candidates for aliasing, the classic example being:

alias search=grep

grep , the UNIX file-searching utility, was named as an acronym for something like "Generalized
Regular Expression Parser."[3] This acronym may mean something to a computer scientist, but
not to the office administrator who has to find Fred in a list of phone numbers. If you have to
find Fred and you have the word search defined as an alias for grep , you can type:

[3] Another theory has it that grep stands for the command "g/re/p", in the old ed text editor, which does essentially the
same thing as grep .

$ search Fred phonelist

Some people who aren't particularly good typists like to use aliases for typographical errors they
make often. For example:

alias emcas=emacs

alias mali=mail

alias gerp=grep

This can be handy, but we feel you're probably better off suffering with the error message and
getting the correct spelling under your fingers. Another common way to use an alias is as a
shorthand for a longer command string. For example, you may have a directory to which you
need to go often. It's buried deep in your directory hierarchy, so you want to set up an alias that
will allow you to cd there without typing (or even remembering) the entire pathname:

alias cdvoy='cd sipp/demo/animation/voyager'

Notice the quotes around the full cd command; these are necessary if the string being aliased
consists of more than one word.[4]

[4] This contrasts with C shell aliases, in which the quotes aren't required.

As another example, a useful option to the ls command is -F : it puts a slash (/) after directory
files and an asterisk (*) after executable files. Since typing a dash followed by a capital letter is
inconvenient, many people define an alias like this:

alias lf='ls -F'

A few things about aliases are important to remember. First, bash makes a textual substitution of
the alias for that which it is aliasing; it may help to imagine bash passing your command through
a text editor or word processor and issuing a "change" or "substitute" command before
interpreting and executing it. Any special characters (such as wildcards like * and ?) that result
when the alias is expanded are interpreted properly by the shell. [5] For example, to make it easier
to print all of the files in your directory, you could define the alias:

[5] An important corollary: wildcards and other special characters cannot be used in the names of aliases, i.e., on the left
side of the equal sign.

alias printall='pr * | lpr'

Second, keep in mind that aliases are recursive, which means that it is possible to alias an alias. A
legitimate objection to the previous example is that the alias, while mnemonic, is too long and
doesn't save enough typing. If we want to keep this alias but add a shorter abbreviation, we
could define:

alias pa=printall

With recursive aliasing available it would seem possible to create an infinite loop:

alias ls='ls -l'

bash ensures that this loop cannot happen, because only the first word of the replacement text is
checked for further aliasing; if that word is identical to the alias being expanded, it is not
expanded a second time. The above command will work as expected (typing ls produces a long
list with permissions, sizes, owners, etc.), while in more meaningless situations such as:

alias listfile=ls

alias ls=listfile

the alias listfile is ignored.

Aliases can be used only for the beginning of a command string—albeit with certain exceptions.
In the cd example above, you might want to define an alias for the directory name alone, not for
the entire command. But if you define:

alias anim=sipp/demo/animation/voyager

and then type cd anim , bash will probably print a message like anim: No such file or
directory .

An obscure feature of bash 's alias facility—one not present in the analogous C shell
feature—provides a way around this problem. If the value of an alias (the right side of the equal
sign) ends in a blank, then bash tries to do alias substitution on the next word on the command
line. To make the value of an alias end in a blank, you need to surround it with quotes.

Here is how you would use this capability to allow aliases for directory names, at least for use
with the cd command. Just define:

alias cd='cd '

This causes bash to search for an alias for the directory name argument to cd , which in the
previous example would enable it to expand the alias anim correctly.

Another way to define a directory variable for use with the cd command is to use the
environment variable cdable_vars , discussed later in this chapter.

Finally, there are a few useful adjuncts to the basic alias command. If you type alias name
without an equal sign (=) and value, the shell will print the alias's value or alias name not found

if it is undefined. If you type alias without any arguments, you get a list of all the aliases you
have defined. The command unalias name removes any alias definition for its argument.

Aliases are very handy for creating a comfortable environment, but they have essentially been
superseded by shell scripts and functions, which we will look at in the next chapter. These give
you everything aliases do plus much more, so if you become proficient at them, you may find
that you don't need aliases anymore. However, aliases are ideal for novices who find UNIX to be
a rather forbidding place, full of terseness and devoid of good mnemonics. Chapter 4 shows the
order of precedence when, for example, an alias and a function have the same name.

 < Day Day Up >

 < Day Day Up >

3.3. Options

While aliases let you create convenient names for commands, they don't really let you change the
shell's behavior. Options are one way of doing this. A shell option is a setting that is either "on"
or "off." While several options relate to arcane shell features that are of interest only to
programmers, those that we will cover here are of interest to all users.

The basic commands that relate to options are set -o optionname and set + o optionname . You
can change more than one option with the one set command by preceding each optionname with
a -o or +o . The use of plus (+) and minus (-) signs is counterintuitive: the - turns the named
option on, while the + turns it off. The reason for this incongruity is that the dash (-) is the
conventional UNIX way of specifying options to a command, while the use of + is an
afterthought.

Most options also have one-letter abbreviations that can be used in lieu of the set -o command;
for example, set -o noglob can be abbreviated set -f . These abbreviations are carryovers from
the Bourne shell. Like several other "extra" bash features, they exist to ensure upward
compatibility; otherwise, their use is not encouraged.

Table 3-1 lists the options that are useful to general UNIX users. All of them are off by default
except as noted.

Table 3-1. Basic shell options

Option Description

emacs Enters emacs editing mode (on by default)

ignoreeof
Doesn't allow use of a single CTRL-D to log off; use the exit command to log off
immediately (this has the same effect as setting the shell variable IGNOREEOF=10)

noclobber Doesn't allow output redirection (>) to overwrite an existing file

noglob
Doesn't expand filename wildcards like * and ? (wildcard expansion is sometimes
called globbing)

nounset Indicates an error when trying to use a variable that is undefined

vi Enters vi editing mode

There are several other options (21 in all; Appendix B lists them). To check the status of an
option, just type set -o . bash will print a list of all options along with their settings.

3.3.1. shopt

bash 2.0 introduced a new built-in for configuring shell behaviour, shopt . This built-in is meant
as a replacement for option configuration originally done through environment variables and the
set command. [6]

[6] Appendix B provides a complete list of shopt shell options and the corresponding environment variables in earlier
versions of the shell.

The shopt -o functionality is a duplication of parts of the set command and is provided for
completeness on the part of shopt , while retaining backward compatibility by its continued
inclusion in set .

The format for this command is shopt options option-names . Table 3-2 lists shopt 's options.

Table 3-2. Options to shopt

Option Meaning

-p Displays a list of the settable options and their current values

-s Sets each option name

-u Unsets each option name

-q Suppresses normal output; the return status indicates if a variable is set or unset

-o
Allows the values of the option names to be those defined for the -o option of the set
command

The default action is to unset (turn off) the named options. If no options and arguments are
given, or the -p option is used, shopt displays a list of the settable options and the values that
they currently have. If -s or -u is also given, the list is confined to only those options that are set
or unset, respectively.

A list of the most useful option names is given in Table 3-3 . A complete list is given in Appendix
B .

Table 3-3. shopt option names

Option Meaning

cdable_vars
If set, an argument to the cd built-in command that is not a directory is assumed
to be the name of a variable whose value is the directory to change to.

checkhash
If set, bash checks that a command found in the hash table exists before trying to
execute it. If a hashed command no longer exists, a normal path search is
performed.

cmdhist
If set, bash attempts to save all lines of a multiple-line command in the same
history entry.

dotglob
If set, bash includes filenames beginning with a . (dot) in the results of pathname
expansion.

execfail
If set, a non-interactive shell will not exit if it cannot execute the file specified as
an argument to the exec command. An interactive shell does not exit if exec fails.

histappend
If set, the history list is appended to the file named by the value of the
HISTFILE variable when the shell exits, rather than overwriting the file.

lithist
If set, and the cmdhist option is enabled, multiline commands are saved to the
history with embedded newlines, rather than using semicolon separators where
possible.

mailwarn
If set, and a file that bash is checking for mail has been accessed since the last
time it was checked, the message "The mail in mailfile has been read" is
displayed.

We'll look at the use of the various options later in this chapter.

 < Day Day Up >

 < Day Day Up >

3.4. Shell Variables

There are several characteristics of your environment that you may want to customize but that
cannot be expressed as an on/off choice. Characteristics of this type are specified in shell
variables. Shell variables can specify everything from your prompt string to how often the shell
checks for new mail.

Like an alias, a shell variable is a name that has a value associated with it. bash keeps track of
several built-in shell variables; shell programmers can add their own. By convention, built-in
variables should have names in all capital letters. bash does, however, have two exceptions.[7]

The syntax for defining variables is somewhat similar to the syntax for aliases:

[7] Versions prior to 2.0 have many more lowercase built-in variables. Most of these are now obsolete, the functionality
having been moved to the shopt command.

varname=value

There must be no space on either side of the equal sign, and if the value is more than one word,
it must be surrounded by quotes. To use the value of a variable in a command, precede its name
by a dollar sign ($).

You can delete a variable with the command unset varname . Normally this isn't useful, since all
variables that don't exist are assumed to be null, i.e., equal to the empty string "". But if you use
the set option nounset , which causes the shell to indicate an error when it encounters an
undefined variable, then you may be interested in unset .

The easiest way to check a variable's value is to use the echo built-in command. All echo does is
print its arguments, but not until the shell has evaluated them. This includes—among other things
that will be discussed later—taking the values of variables and expanding filename wildcards. So,
if the variable wonderland has the value alice , typing:

$ echo "$wonderland"

will cause the shell to simply print alice . If the variable is undefined, the shell will print a blank
line. A more verbose way to do this is:

$ echo "The value of \$ varname is \"$ varname \"."

The first dollar sign and the inner double quotes are backslash-escaped (i.e., preceded with \ so
the shell doesn't try to interpret them—see Chapter 1) so they appear literally in the output,
which for the above example would be:

The value of $wonderland is "alice".

3.4.1. Variables and Quoting

Notice that we used double quotes around variables (and strings containing them) in these echo
examples. In Chapter 1 , we said that some special characters inside double quotes are still
interpreted, while none are interpreted inside single quotes.

A special character that "survives" double quotes is the dollar sign—meaning that variables are
evaluated. It's possible to do without the double quotes in some cases; for example, we could
have written the above echo command this way:

$ echo The value of \$ varname is \"$ varname \".

But double quotes are more generally correct. Here's why. Suppose we did this:

$ fred='Four spaces between these words.'

Then if we entered the command echo $fred , the result would be:

Four spaces between these words.

What happened to the extra spaces? Without the double quotes, the shell splits the string into
words after substituting the variable's value, as it normally does when it processes command
lines. The double quotes circumvent this part of the process (by making the shell think that the
whole quoted string is a single word).

Therefore the command echo "$fred " prints this:

Four spaces between these words.

The distinction between single and double quotes becomes particularly important when we start
dealing with variables that contain user or file input later on.

Double quotes also allow other special characters to work, as we'll see in Chapter 4 , Chapter 6 ,
and Chapter 7 . But for now, we'll revise the "When in doubt, use single quotes" rule in Chapter
1 by adding, "...unless a string contains a variable, in which case you should use double quotes."

3.4.2. Built-In Variables

As with options, some built-in shell variables are meaningful to general UNIX users, while others
are arcana for hackers. We'll look at the more generally useful ones here, and we'll save some of
the more obscure ones for later chapters. Again, Appendix B contains a complete list.

3.4.2.1 Editing mode variables

Several shell variables relate to the command-line editing modes that we saw in the previous
chapter. These are listed in Table 3-4 .

Table 3-4. Editing mode variables

Variable Meaning

HISTCMD The history number of the current command.

HISTCONTROL

A list of patterns, separated by colons (:), which can have the following
values. ignorespace : lines beginning with a space are not entered into
the history list. ignoredups : lines matching the last history line are not
entered. erasedups : all previous lines matching the current line are
removed from the history list before the line is saved. ignoreboth :
enables both ignorespace and ignoredups .[8]

HISTIGNORE

A list of patterns, separated by colons (:), used to decide which
command lines to save in the history list. Patterns are considered to
start at the beginning of the command line and must fully specify the
line, i.e., no wildcard (*) is implicitly appended. The patterns are
checked against the line after HISTCONTROL is applied. An
ampersand (&) matches the previous line. An explicit & may be
generated by escaping it with a backslash.[9]

HISTFILE
Name of history file in which the command history is saved. The
default is ~/.bash_history .

HISTFILESIZE
The maximum number of lines to store in the history file. The default is
500. When this variable is assigned a value, the history file is truncated,
if necessary, to the given number of lines.

HISTSIZE
The maximum number of commands to remember in the command
history. The default is 500.

Variable Meaning

HISTTIMEFORMAT

If it is set and not null, its value is used as a format string for strftime(3)
to print the time stamp associated with each history entry displayed by
the history command. Time stamps are written to the history file so
they may be preserved across shell sessions.[10]

FCEDIT Pathname of the editor to use with the fc command.

[8] history_control is synonymous with HISTCONTROL in versions of bash prior to 2.0. Versions prior to 1.14 only
define history_control . ignoreboth is not available in bash versions prior to 1.14. HISTCONTROL is a colon-
separated list, and erasedups has been added in bash 3.0 and later.

[9] This variable is not available in versions of bash prior to 2.0.

[10] This variable is not available in versions of bash prior to 3.0.

In the previous chapter, we saw how bash numbers commands. To find out the current
command number in an interactive shell, you can use the HISTCMD . Note that if you unset
HISTCMD , it will lose its special meaning, even if you subsequently set it again.

We also saw in the last chapter how bash keeps the history list in memory and saves it to a file
when you exit a shell session. The variables HISTFILESIZE and HISTSIZE allow you to set
the maximum number of lines that the shell saves in the history file, and the maximum number of
lines to "remember" in the history list, i.e., the lines that it displays with the history command.

Suppose you wanted to maintain a small history file in your home directory. By setting
HISTFILESIZE to 100, you immediately cause the history file to allow a maximum of 100 lines.
If it is already larger than the size you specify, it will be truncated.

HISTSIZE works in the same way, but only on the history that the current shell has in memory.
When you exit an interactive shell, HISTSIZE will be the maximum number of lines saved in
your history file. If you have already set HISTFILESIZE to be less than HISTSIZE , the saved
list will be truncated.

You can also cut down on the size of your history file and history list by use of the
HISTCONTROL variable. This is a colon-separated list of values. If it includes ignorespace ,
any commands that you type that start with a space won't appear in the history. Even more useful
is the ignoredups option. This discards consecutive entries from the history list that are
duplicated. Suppose you want to monitor the size of a file with ls as it is being created. Normally,
every time you type ls it will appear in your history. By setting HISTCONTROL to ignoredups
, only the first ls will appear in the history.

The variable HISTIGNORE allows you to specify a list of patterns which the command line is
checked against. If the command line matches one of the patterns, it is not entered into the

HISTTIMEFORMAT

If it is set and not null, its value is used as a format string for strftime(3)
to print the time stamp associated with each history entry displayed by
the history command. Time stamps are written to the history file so
they may be preserved across shell sessions.[10]

FCEDIT Pathname of the editor to use with the fc command.

[8] history_control is synonymous with HISTCONTROL in versions of bash prior to 2.0. Versions prior to 1.14 only
define history_control . ignoreboth is not available in bash versions prior to 1.14. HISTCONTROL is a colon-
separated list, and erasedups has been added in bash 3.0 and later.

[9] This variable is not available in versions of bash prior to 2.0.

[10] This variable is not available in versions of bash prior to 3.0.

In the previous chapter, we saw how bash numbers commands. To find out the current
command number in an interactive shell, you can use the HISTCMD . Note that if you unset
HISTCMD , it will lose its special meaning, even if you subsequently set it again.

We also saw in the last chapter how bash keeps the history list in memory and saves it to a file
when you exit a shell session. The variables HISTFILESIZE and HISTSIZE allow you to set
the maximum number of lines that the shell saves in the history file, and the maximum number of
lines to "remember" in the history list, i.e., the lines that it displays with the history command.

Suppose you wanted to maintain a small history file in your home directory. By setting
HISTFILESIZE to 100, you immediately cause the history file to allow a maximum of 100 lines.
If it is already larger than the size you specify, it will be truncated.

HISTSIZE works in the same way, but only on the history that the current shell has in memory.
When you exit an interactive shell, HISTSIZE will be the maximum number of lines saved in
your history file. If you have already set HISTFILESIZE to be less than HISTSIZE , the saved
list will be truncated.

You can also cut down on the size of your history file and history list by use of the
HISTCONTROL variable. This is a colon-separated list of values. If it includes ignorespace ,
any commands that you type that start with a space won't appear in the history. Even more useful
is the ignoredups option. This discards consecutive entries from the history list that are
duplicated. Suppose you want to monitor the size of a file with ls as it is being created. Normally,
every time you type ls it will appear in your history. By setting HISTCONTROL to ignoredups
, only the first ls will appear in the history.

The variable HISTIGNORE allows you to specify a list of patterns which the command line is
checked against. If the command line matches one of the patterns, it is not entered into the

history list. You can also request that it ignore duplicates by using the pattern & .

For example, suppose you didn't want any command starting with l , nor any duplicates, to
appear in the history. Setting HISTIGNORE to l*:& will do just that. Just as with other pattern
matching we have seen, the wildcard after the l will match any command line starting with that
letter.

Another useful variable is HISTTIMEFORMAT , which prepends a time stamp to each history
entry showing when the command was executed. If it is unset or the value is null then no time
stamp is written. If a format is given then time stamps are inserted using the specified format as
part of the history and are shown with the history command.

The time stamp formats are shown in Table 3-5 . Some of the results will be displayed using the
particular format for the underlying locale, e.g., weekday names will be translated into the
language being used on the system.

Table 3-5. Time stamp formats

Format Replaced by

%a The locale's abbreviated weekday name

%A The locale's full weekday name

%b The locale's abbreviated month name

%B The locale's full month name

%c The locale's appropriate date and time representation

%C
The century number (the year divided by 100 and truncated to an integer) as a decimal
number [00-99]

%d The day of the month as a decimal number [01-31]

%D The date in American format; the same value as %m/%d/%y.

%e
The day of the month as a decimal number [1-31]; a single digit is preceded by a
space

%h The same as %b

%H The hour (24-hour clock) as a decimal number [00-23]

%I The hour (12-hour clock) as a decimal number [01-12]

%j The day of the year as a decimal number [001-366]

Format Replaced by

%m The month as a decimal number [01-12]

%M The minute as a decimal number [00-59]

%n A newline character

%p The locale's equivalent of either a.m. or p.m

%r
The time in a.m. and p.m. notation; in the POSIX locale this is equivalent to
%I:%M:%S %p

%R The time in 24-hour notation (%H:%M)

%S The second as a decimal number [00-61]

%t A tab character

%T The time (%H:%M:%S)

%u The weekday as a decimal number [1-7], with 1 representing Monday

%U
The week number of the year (Sunday as the first day of the week) as a decimal
number [00-53]

%V

The week number of the year (Monday as the first day of the week) as a decimal
number [01-53]; if the week containing 1 January has four or more days in the new
year, then it is considered week 1—otherwise, it is the last week of the previous year,
and the next week is week 1

%w The weekday as a decimal number [0-6], with 0 representing Sunday

%W
The week number of the year (Monday as the first day of the week) as a decimal
number [00-53]; all days in a new year preceding the first Monday are considered to
be in week 0

%x The locale's appropriate date representation

%X The locale's appropriate time representation

%y The year without century as a decimal number [00-99]

%Y The year with century as a decimal number

%Z The timezone name or abbreviation, or by nothing if no timezone information exists

%% %

If you wanted to have the date and time with each history entry, you could put:

%m The month as a decimal number [01-12]

%M The minute as a decimal number [00-59]

%n A newline character

%p The locale's equivalent of either a.m. or p.m

%r
The time in a.m. and p.m. notation; in the POSIX locale this is equivalent to
%I:%M:%S %p

%R The time in 24-hour notation (%H:%M)

%S The second as a decimal number [00-61]

%t A tab character

%T The time (%H:%M:%S)

%u The weekday as a decimal number [1-7], with 1 representing Monday

%U
The week number of the year (Sunday as the first day of the week) as a decimal
number [00-53]

%V

The week number of the year (Monday as the first day of the week) as a decimal
number [01-53]; if the week containing 1 January has four or more days in the new
year, then it is considered week 1—otherwise, it is the last week of the previous year,
and the next week is week 1

%w The weekday as a decimal number [0-6], with 0 representing Sunday

%W
The week number of the year (Monday as the first day of the week) as a decimal
number [00-53]; all days in a new year preceding the first Monday are considered to
be in week 0

%x The locale's appropriate date representation

%X The locale's appropriate time representation

%y The year without century as a decimal number [00-99]

%Y The year with century as a decimal number

%Z The timezone name or abbreviation, or by nothing if no timezone information exists

%% %

If you wanted to have the date and time with each history entry, you could put:

HISTTIMEFORMAT="%y/%m/%d %T "

then the output of the history command would look something like:

...

78 04/11/26 17:14:05 HISTTIMEFORMAT="%y/%m/%d %T "

79 04/11/26 17:14:08 ls -l

80 04/11/26 17:14:09 history

If the history has never had a date format set before then all of the entries prior to setting the
variable will get the time stamp of the time the variable was set. If you set
HISTTIMEFORMAT to null and then set it to a format, the previous time stamps are retained
and displayed in the new format.

3.4.2.2 Mail variables

Since the mail program is not running all the time, there is no way for it to inform you when you
get new mail; therefore the shell does this instead.[11] The shell can't actually check for incoming
mail, but it can look at your mail file periodically and determine whether the file has been
modified since the last check. The variables listed in Table 3-6 let you control how this works.

[11] BSD UNIX users should note that the biff command on those systems does a better job of informing you about
new mail; while bash only prints "you have new mail" messages right before it prints command prompts, biff can do so
at any time.

Table 3-6. Mail variables

Variable Meaning

MAIL Name of file to check for incoming mail

MAILCHECK How often, in seconds, to check for new mail (default 60 seconds)

MAILPATH List of filenames, separated by colons (:), to check for incoming mail

Under the simplest scenario, you use the standard UNIX mail program, and your mail file is
/usr/mail/yourname or something similar. In this case, you would just set the variable MAIL to
this filename if you want your mail checked:

MAIL=/usr/mail/yourname

If your system administrator hasn't already done it for you, put a line like this in your
.bash_profile .

However, some people use nonstandard mailers that use multiple mail files; MAILPATH was
designed to accommodate this. bash will use the value of MAIL as the name of the file to check,
unless MAILPATH is set; in which case, the shell will check each file in the MAILPATH list
for new mail. You can use this mechanism to have the shell print a different message for each
mail file: for each mail filename in MAILPATH , append a question mark followed by the
message you want printed.

For example, let's say you have a mail system that automatically sorts your mail into files
according to the username of the sender. You have mail files called /usr/mail/you/martin ,
/usr/mail/you/geoffm , /usr/mail/you/paulr , etc. You define your MAILPATH as follows:

MAILPATH=/usr/mail/you/martin:/usr/mail/you/geoffm:\

/usr/mail/you/paulr

If you get mail from Martin Lee, the file /usr/mail/you/martin will change. bash will notice the
change within one minute and print the message:

You have new mail in /usr/mail/you/martin

If you are in the middle of running a command, the shell will wait until the command finishes (or
is suspended) to print the message. To customize this further, you could define MAILPATH to
be:

MAILPATH="\

/usr/mail/you/martin?You have mail from Martin.:\

/usr/mail/you/geoffm?Mail from Geoff has arrived.:\

/usr/mail/you/paulr?There is new mail from Paul."

The backslashes at the end of each line allow you to continue your command on the next line.
But be careful: you can't indent subsequent lines. Now, if you get mail from Martin, the shell will
print:

You have mail from Martin.

You can also use the variable $_ in the message to print the name of the current mail file. For
example:

MAILPATH='/usr/mail/you?You have some new mail in $_'

When new mail arrives, this will print the line:

You have some new mail in /usr/mail/you

The ability to receive notification of mail can be switched on and off by using the mailwarn
option to the shopt command.

3.4.2.3 Prompting variables

If you have seen enough experienced UNIX users at work, you may already have realized that the
shell's prompt is not engraved in stone. Many of these users have all kinds of things encoded in
their prompts. It is possible to put useful information into the prompt, including the date and the
current directory. We'll give you some of the information you need to modify your own here; the
rest will come in the next chapter.

Actually , bash uses four prompt strings. They are stored in the variables PS1 , PS2 , PS3 , and
PS4 . The first of these is called the primary prompt string; it is your usual shell prompt, and its
default value is "\s-\v\$ ".[12] Many people like to set their primary prompt string to something
containing their login name. Here is one way to do this:

[12] In versions of bash prior to 2.0, the default is "bash\$ ".

PS1="\u--> "

The \u tells bash to insert the name of the current user into the prompt string. If your user name
is alice , your prompt string will be "alice—> ". If you are a C shell user and, like many such
people, are used to having a history number in your prompt string, bash can do this similarly to
the C shell: if the sequence \! is used in the prompt string, it will substitute the history number.
Thus, if you define your prompt string to be:

PS1="\u \!--> "

then your prompts will be like alice 1—> , alice 2—> , and so on.

But perhaps the most useful way to set up your prompt string is so that it always contains your
current directory. This way, you needn't type pwd to remember where you are. Here's how:

PS1="\w--> "

Table 3-7 lists the prompt customizations that are available.[13]

[13] \a, \e, \H, \T, \@, \v, and \V are not available in versions prior to 2.0. \D was introduced in bash 2.05b.

Table 3-7. Prompt string customizations

Command Meaning

\a The ASCII bell character (007)

\A The current time in 24-hour HH:MM format

\d The date in "Weekday Month Day" format

\D {format
}

The format is passed to strftime(3) and the result is inserted into the prompt
string; an empty format results in a locale-specific time representation; the braces
are required

\e The ASCII escape character (033)

\H The hostname

\h The hostname up to the first "."

\j The number of jobs currently managed by the shell

\l The basename of the shell's terminal device name

\n A carriage return and line feed

\r A carriage return

\s The name of the shell

\T The current time in 12-hour HH:MM:SS format

\t The current time in HH:MM:SS format

\@ The current time in 12-hour a.m./p.m. format

\u The username of the current user

\v The version of bash (e.g., 2.00)

\V The release of bash ; the version and patchlevel (e.g., 2.00.0)

\w The current working directory

Command Meaning

\W The basename of the current working directory

\# The command number of the current command

\! The history number of the current command

\$ If the effective UID is 0, print a #, otherwise print a $

\nnn Character code in octal

\\ Print a backslash

\[Begin a sequence of non-printing characters, such as terminal control sequences

\] End a sequence of non-printing characters

PS2 is called the secondary prompt string; its default value is > . It is used when you type an
incomplete line and hit RETURN, as an indication that you must finish your command. For
example, assume that you start a quoted string but don't close the quote. Then if you hit
RETURN, the shell will print > and wait for you to finish the string:

$ echo "This is a long line, # PS1 for the command

> which is terminated down here" # PS2 for the continuation

$ # PS1 for the next command

PS3 and PS4 relate to shell programming and debugging. They will be explained in Chapter 5 ,
and Chapter 9 .

3.4.2.4 Command search path

Another important variable is PATH , which helps the shell find the commands you enter.

As you probably know, every command you use is actually a file that contains code for your
machine to run.[14] These files are called executable files or just executables for short. They are
stored in various directories. Some directories, like /bin or /usr/bin , are standard on all UNIX
systems; some depend on the particular version of UNIX you are using; some are unique to your
machine; if you are a programmer, some may even be your own. In any case, there is no reason
why you should have to know where a command's executable file is in order to run it.

[14] Unless it's a built-in command (one of those shown in boldface , like cd and echo), in which case the code is
simply part of the executable file for the entire shell.

\W The basename of the current working directory

\# The command number of the current command

\! The history number of the current command

\$ If the effective UID is 0, print a #, otherwise print a $

\nnn Character code in octal

\\ Print a backslash

\[Begin a sequence of non-printing characters, such as terminal control sequences

\] End a sequence of non-printing characters

PS2 is called the secondary prompt string; its default value is > . It is used when you type an
incomplete line and hit RETURN, as an indication that you must finish your command. For
example, assume that you start a quoted string but don't close the quote. Then if you hit
RETURN, the shell will print > and wait for you to finish the string:

$ echo "This is a long line, # PS1 for the command

> which is terminated down here" # PS2 for the continuation

$ # PS1 for the next command

PS3 and PS4 relate to shell programming and debugging. They will be explained in Chapter 5 ,
and Chapter 9 .

3.4.2.4 Command search path

Another important variable is PATH , which helps the shell find the commands you enter.

As you probably know, every command you use is actually a file that contains code for your
machine to run.[14] These files are called executable files or just executables for short. They are
stored in various directories. Some directories, like /bin or /usr/bin , are standard on all UNIX
systems; some depend on the particular version of UNIX you are using; some are unique to your
machine; if you are a programmer, some may even be your own. In any case, there is no reason
why you should have to know where a command's executable file is in order to run it.

[14] Unless it's a built-in command (one of those shown in boldface , like cd and echo), in which case the code is
simply part of the executable file for the entire shell.

That is where PATH comes in. Its value is a list of directories that the shell searches every time
you enter a command;[15] the directory names are separated by colons (:), just like the files in
MAILPATH .

[15] Unless the command name contains a slash (/), in which case the search does not take place.

For example, if you type echo $PATH , you will see something like this:

/bin:/usr/bin:/usr/local/bin:/usr/X386/bin

Why should you care about your path? There are two main reasons. First, once you have read
the later chapters of this book and you try writing your own shell programs, you will want to test
them and eventually set aside a directory for them. Second, your system may be set up so that
certain restricted commands' executable files are kept in directories that are not listed in PATH .
For example, there may be a directory /usr/games in which there are executables that are
verboten during regular working hours.

Therefore you may want to add directories to your PATH . Let's say you have created a bin
directory under your login directory, which is /home/you , for your own shell scripts and
programs. To add this directory to your PATH so that it is there every time you log in, put this
line in your .bash_profile :

PATH=$PATH":/home/you/bin"

This line sets PATH to whatever it was before, followed immediately by a colon and
/home/you/bin .

This is the safe way of doing it. When you enter a command, the shell searches directories in the
order they appear in PATH until it finds an executable file. Therefore, if you have a shell script
or program whose name is the same as an existing command, the shell will use the existing
command—unless you type in the command's full pathname to make it clear. For example, if
you have created your own version of the more command in the above directory and your
PATH is set up as in the last example, you will need to type /home/you/bin/more (or just
~/bin/more) to get your version.

The more reckless way of resetting your path is to put your own directory before the other
directories:

PATH="/home/you/bin:"$PATH

This is unsafe because you are trusting that your own version of the more command works
properly. But it is also risky for a more important reason: system security. If your PATH is set
up in this way, you leave open a "hole" that is well known to computer crackers and mischief

makers: they can install "Trojan horses" and do other things to steal files or do damage. (See
Chapter 10 for more details.) Therefore, unless you have complete control of (and confidence in)
everyone who uses your system, use the first of the two methods of adding your own command
directory.

If you need to know which directory a command comes from, you need not look at directories
in your PATH until you find it. The shell built-in command type prints the full pathname of the
command you give it as argument, or just the command's name and its type if it's a built-in
command itself (like cd), an alias, or a function (as we'll see in Chapter 4).

3.4.2.5 Command hashing

You may be thinking that having to go and find a command in a large list of possible places
would take a long time, and you'd be right. To speed things up, bash uses what is known as a
hash table.

Every time the shell goes and finds a command in the search path, it enters it in the hash table. If
you then use the command again, bash first checks the hash table to see if the command is
listed. If it is, it uses the path given in the table and executes the command; otherwise, it just has
to go and look for the command in the search path.

You can see what is currently in the hash table with the command hash :

$ hash

hits command

 2 /bin/cat

 1 /usr/bin/stat

 2 /usr/bin/less

 1 /usr/bin/man

 2 /usr/bin/apropos

 2 /bin/more

 1 /bin/ln

 3 /bin/ls

 1 /bin/ps

 2 /bin/vi

This not only shows the hashed commands, but how many times they have been executed (the
hits) during the current login session.

Supplying a command name to hash forces the shell to look up the command in the search path
and enter it in the hash table. You can also make bash "forget" what is in the hash table by using
hash -r to remove everything in the table or hash -d name to remove the specified name.[16]

Another option, -p , allows you to enter a command into the hash table, even if the command
doesn't exist.[17]

[16] The -d option is not available in versions of bash prior to 2.05b.

[17] The -p option is not available in versions of bash prior to 2.0.

Command hashing can be turned on and off with the hashall option to set . In general use, there
shouldn't be any need to turn it off.

Don't be too concerned about the details of hashing. The command hashing and lookup is all
done by bash without you knowing it's taking place.

3.4.2.6 Directory search path and variables

CDPATH is a variable whose value, like that of PATH , is a list of directories separated by
colons. Its purpose is to augment the functionality of the cd built-in command.

By default, CDPATH isn't set (meaning that it is null), and when you type cd dirname , the shell
will look in the current directory for a subdirectory that is called dirname .[18] If you set
CDPATH , you give the shell a list of places to look for dirname ; the list may or may not
include the current directory.

[18] This search is disabled when dirname starts with a slash. It is also disabled when dirname starts with ./ or ../ .

Here is an example. Consider the alias for the long cd command from earlier in this chapter:

alias cdvoy='cd sipp/demo/animation/voyager'

Now suppose there were a few directories under this directory to which you need to go often;
they are called src , bin , and doc . You define your CDPATH like this:

CDPATH=:~/sipp/demo/animation/voyager

In other words, you define your CDPATH to be the empty string (meaning the current
directory) followed by ~/sipp/demo/animation/voyager .

With this setup, if you type cd doc , then the shell will look in the current directory for a

(sub)directory called doc . Assuming that it doesn't find one, it looks in the directory
~/sipp/demo/animation/voyager . The shell finds the doc directory there, so you go directly
there.

If you often find yourself going to a specific group of directories as you work on a particular
project, you can use CDPATH to get there quickly. Note that this feature will only be useful if
you update it whenever your work habits change.

bash provides another shorthand mechanism for referring to directories; if you set the shell
option cdable_vars using shopt ,[19] any argument supplied to the cd command that is not a
directory is assumed to be a variable.

[19] In versions of bash prior to 2.0, cdable_vars is a shell variable that you can set and unset.

We might define the variable anim to be ~/sipp/demo/animation/voyager . If we set
cdable_vars and then type:

cd anim

the current directory will become ~/sipp/demo/animation/voyager .

3.4.2.7 Miscellaneous variables

We have covered the shell variables that are important from the standpoint of customization.
There are also several that serve as status indicators and for various other miscellaneous
purposes. Their meanings are relatively straightforward; the more basic ones are summarized in
Table 3-8 .

Table 3-8. Status variables

Variable Meaning

HOME Name of your home (login) directory

SECONDS Number of seconds since the shell was invoked

BASH Pathname of this instance of the shell you are running

BASH_VERSION The version number of the shell you are running

BASH_VERSINFO An array of version information for the shell you are running

PWD Current directory

Variable Meaning

OLDPWD Previous directory before the last cd command

The shell sets the values of these variables, except HOME (which is set by the login process:
login , rshd , etc.). The first five are set at login time, the last two whenever you change
directories. Although you can also set their values, just like any other variables, it is difficult to
imagine any situation where you would want to. In the case of SECONDS , if you set it to a new
value it will start counting from the value you give it, but if you unset SECONDS it will lose its
special meaning, even if you subsequently set it again.

 < Day Day Up >

OLDPWD Previous directory before the last cd command

The shell sets the values of these variables, except HOME (which is set by the login process:
login , rshd , etc.). The first five are set at login time, the last two whenever you change
directories. Although you can also set their values, just like any other variables, it is difficult to
imagine any situation where you would want to. In the case of SECONDS , if you set it to a new
value it will start counting from the value you give it, but if you unset SECONDS it will lose its
special meaning, even if you subsequently set it again.

 < Day Day Up >

 < Day Day Up >

3.5. Customization and Subprocesses

Some of the variables discussed above are used by commands you may run—as opposed to the
shell itself—so that they can determine certain aspects of your environment. The majority,
however, are not even known outside the shell.

This dichotomy begs an important question: which shell "things" are known outside the shell,
and which are only internal? This question is at the heart of many misunderstandings about the
shell and shell programming. Before we answer, we'll ask it again in a more precise way: which
shell "things" are known to subprocesses? Remember that whenever you enter a command, you
are telling the shell to run that command in a subprocess; furthermore, some complex programs
may start their own subprocesses.

Now for the answer, which (like many UNIX concepts) is unfortunately not as simple as you
might like. A few things are known to subprocesses, but the reverse is not true: subprocesses
can never make these things known to the processes that created them.

Which things are known depends on whether the subprocess in question is a bash program (see
Chapter 4) or an interactive shell. If the subprocess is a bash program, then it's possible to
propagate nearly every type of thing we've seen in this chapter—options and variables—plus a
few we'll see later.

3.5.1. Environment Variables

By default, only one kind of thing is known to all kinds of subprocesses: a special class of shell
variables called environment variables . Some of the built-in variables we have seen are actually
environment variables: HOME , MAIL , PATH , and PWD .

It should be clear why these and other variables need to be known by subprocesses. For
example, text editors like vi and emacs need to know what kind of terminal you are using; the
environment variable TERM is their way of determining this. As another example, most UNIX
mail programs allow you to edit a message with your favorite text editor. How does mail know
which editor to use? The value of EDITOR (or sometimes VISUAL).

Any variable can become an environment variable. First it must be defined as usual; then it must
be exported with the command:[20]

[20] Unless automatic exporting has been turned on by set -a or set -o allexport , in which case all variables that are
assigned to will be exported.

export varnames

(varnames can be a list of variable names separated by blanks). You can combine variable
assignment and the export into one statement:

export wonderland=alice

It is also possible to define variables to be in the environment of a particular subprocess
(command) only, by preceding the command with the variable assignment, like this:

varname=value command

You can put as many assignments before the command as you want.[21] For example, assume
that you're using the emacs editor. You are having problems getting it to work with your terminal,
so you're experimenting with different values of TERM . You can do this most easily by
entering commands that look like:

[21] There is an obscure option, set -k , that lets you put this type of environment variable definition anywhere on the
command line, not just at the beginning.

TERM=trythisone emacs filename

emacs will have trythisone defined as its value of TERM , yet the environment variable in your
shell will keep whatever value (if any) it had before. This syntax is surprisingly useful, but not
very widely used; we won't see it much throughout the remainder of this book.

Nevertheless, environment variables are important. Most .bash_profile files include definitions of
environment variables; the sample built-in .bash_profile earlier in this chapter contained six such
definitions:

PATH=/sbin:/usr/sbin:/bin:/usr/bin:/usr/local/bin

SHELL=/bin/bash

MANPATH=/usr/man:/usr/X11/man

EDITOR=/usr/bin/vi

PS1='\h:\w\$ '

PS2='> '

export EDITOR

You can find out which variables are environment variables and what their values are by typing
export without arguments or by using the -p option to the command.

Some environment variable names have been used by so many applications that they have
become standard across many shell environments. These variables are not built into bash ,
although some shells, such as the Korn shell, have them as built-ins. Table 3-9 lists the ones you
are most likely to come across.

Table 3-9. Standard variables

Variable Meaning

COLUMNS The number of columns your display has[22]

EDITOR Pathname of your text editor

LINES The number of lines your display has

SHELL Pathname of the shell you are running

TERM The type of terminal that you are using

[22] Note that bash will set COLUMNS and LINES during certain situations, such as when the window the shell is in
changes in size.

You may well find that some of these already exist in your own environment, most likely set from
the system /etc/profile file (see Chapter 10). You can define them yourself in your .bash_profile
and export them, as we did earlier.

3.5.1.1 Terminal types

The variable TERM is vitally important for any program that uses your entire screen or window,
like a text editor. Such programs include all screen editors (such as vi and emacs), more , and
countless third-party applications.

Because users are spending more and more time within programs, and less and less using the
shell itself, it is extremely important that your TERM is set correctly. It's really your system
administrator's job to help you do this (or to do it for you), but in case you need to do it
yourself, here are a few guidelines.

The value of TERM must be a short character string with lowercase letters that appears as a
filename in the terminfo database.[23] This database is a two-tiered directory of files under the

root directory /usr/lib/terminfo . This directory contains subdirectories with single-character
names; these in turn contain files of terminal information for all terminals whose names begin with
that character. Each file describes how to tell the terminal in question to do certain common
things like position the cursor on the screen, go into reverse video, scroll, insert text, and so on.
The descriptions are in binary form (i.e., not readable by humans).

[23] Note that most modern UNIX systems now use a database rather than a flat file for the terminal descriptions.

Names of terminal description files are the same as that of the terminal being described;
sometimes an abbreviation is used. For example, the DEC VT100 has a description in the file
/usr/lib/terminfo/v/vt100 . An xterm terminal window under the X Window System has a
description in /usr/lib/terminfo/x/xterm .

Sometimes your UNIX software will set up TERM incorrectly; this usually happens for X
terminals and PC-based UNIX systems. Therefore, you should check the value of TERM by
typing echo $TERM before going any further. If you find that your UNIX system isn't setting
the right value for you (especially likely if your terminal is of a different make from that of your
computer), you need to find the appropriate value of TERM yourself.

The best way to find the TERM value—if you can't find a local guru to do it for you—is to
guess the terminfo name and search for a file of that name under /usr/lib/terminfo by using ls .
For example, if your terminal is a Hewlett-Packard 70092, you could try:

$ cd /usr/lib/terminfo

$ ls 7/7*

If you are successful, you will see something like this:

70092 70092A 70092a

In this case, the three names are likely to be synonyms for (links to) the same terminal
description, so you could use any one as a value of TERM . In other words, you could put any
of these three lines in your .bash_profile :

TERM=70092

TERM=70092A

TERM=70092a

If you aren't successful, ls will print an error message, and you will have to make another guess
and try again. If you find that terminfo contains nothing that resembles your terminal, all is not
lost. Consult your terminal's manual to see if the terminal can emulate a more popular model;

nowadays the odds for this are excellent.

Conversely, terminfo may have several entries that relate to your terminal, for submodels, special
modes, etc. If you have a choice of which entry to use as your value of TERM , we suggest
you test each one out with your text editor or any other screen-oriented programs you use and
see which one works best.

The process is much simpler if you are using a windowing system, in which your "terminals" are
logical portions of the screen rather than physical devices. In this case, operating system-
dependent software was written to control your terminal window(s), so the odds are very good
that if it knows how to handle window resizing and complex cursor motion, then it is capable of
dealing with simple things like TERM . The X Window System, for example, automatically sets
xterm as its value for TERM in an xterm terminal window.

3.5.1.2 Other common variables

Some programs, such as mail , need to know what type of editor you would like to use. In most
cases they will default to a common editor like ed unless you set the EDITOR variable to the
path of your favorite editor and export it in your .bash_profile .

Some programs run shells as subprocesses within themselves (e.g., many mail programs and the
emacs editor's shell mode); by convention they use the SHELL variable to determine which shell
to use. SHELL is usually set by the process that invokes the login shell; usually login or
something like rshd if you are logged in remotely. bash sets it only if it hasn't already been set.

You may have noticed that the value of SHELL looks the same as BASH . These two variables
serve slightly different purposes. BASH is set to the pathname of the current shell, whether it is
an interactive shell or not. SHELL , on the other hand, is set to the name of your login shell,
which may be a completely different shell.

COLUMNS and LINES are used by screen-oriented editors like vi . In most cases a default is
used if they are undefined, but if you are having display problems with screen-oriented
applications then you should check these variables to see if they are correct.

3.5.2. The Environment File

Although environment variables will always be known to subprocesses, the shell must be
explicitly told which other variables, options, aliases, and so on, are to be communicated to
subprocesses. The way to do this is to put all such definitions into the environment file . bash 's
default environment file is the .bashrc file that we touched on briefly at the beginning of this
chapter.

Remember, if you take your definitions out of .bash_profile and put them in .bashrc , you will
have to have the line source .bashrc at the end of your .bash_profile so that the definitions
become available to the login shell.

The idea of the environment file comes from the C shell's .cshrc file. This is reflected in the
choice of the name .bashrc . The rc suffix for initialization files is practically universal throughout
the UNIX world.[24]

[24] According to the folklore, it stands for "run commands" and has its origins in old DEC operating systems.

As a general rule, you should put as few definitions as possible in .bash_profile and as many as
possible in your environment file. Because definitions add to rather than take away from an
environment, there is little chance that they will cause something in a subprocess not to work
properly. (An exception might be name clashes if you go overboard with aliases.)

The only things that really need to be in .bash_profile are environment variables and their exports
and commands that aren't definitions but actually run or produce output when you log in. Option
and alias definitions should go into the environment file. In fact, there are many bash users who
have tiny .bash_profile files, e.g.:

stty stop ^S intr ^C erase ^?

date

source .bashrc

Although this is a small .bash_profile , this user's environment file could be huge.

 < Day Day Up >

 < Day Day Up >

3.6. Customization Hints

You should feel free to try any of the techniques presented in this chapter. The best strategy is to
test something out by typing it into the shell during your login session; then if you decide you
want to make it a permanent part of your environment, add it to your .bash_profile .

A nice, painless way to add to your .bash_profile without going into a text editor makes use of
the echo command and one of bash 's editing modes. If you type a customization command in
and later decide to add it to your .bash_profile , you can recall it via CTRL-P or CTRL-R (in
emacs-mode) or j , - , or ? (vi-mode). Let's say the line is:

PS1="\u \!--> "

After you recall it, edit the line so that it is preceded by an echo command, surrounded by single
quotes, and followed by an I/O redirector that (as you will see in Chapter 7) appends the output
to ~/.bash_profile :

$ echo 'PS1="\u \!--> " ' >> ~/.bash_profile

Remember that the single quotes are important because they prevent the shell from trying to
interpret things like dollar signs, double quotes, and exclamation points. Also make sure that you
use a double right-caret (>>). A single one will overwrite the file rather than appending to it.

 < Day Day Up >

 < Day Day Up >

Chapter 4. Basic Shell Programming
If you have become familiar with the customization techniques we presented in the previous
chapter, you have probably run into various modifications to your environment that you want to
make but can't—yet. Shell programming makes these possible.

bash has some of the most advanced programming capabilities of any command interpreter of
its type. Although its syntax is nowhere near as elegant or consistent as that of most conventional
programming languages, its power and flexibility are comparable. In fact, bash can be used as a
complete environment for writing software prototypes.

Some aspects of bash programming are really extensions of the customization techniques we
have already seen, while others resemble traditional programming language features. We have
structured this chapter so that if you aren't a programmer, you can read this chapter and do quite
a bit more than you could with the information in the previous chapter. Experience with a
conventional programming language like Pascal or C is helpful (though not strictly necessary) for
subsequent chapters. Throughout the rest of the book, we will encounter occasional
programming problems, called tasks , whose solutions make use of the concepts we cover.

 < Day Day Up >

 < Day Day Up >

4.1. Shell Scripts and Functions

A script (a file that contains shell commands) is a shell program. Your .bash_profile and
environment files, discussed in the previous chapter, are shell scripts.

You can create a script using the text editor of your choice. Once you have created one, there
are two ways to run it. One, which we have already covered, is to type source scriptname . This
causes the commands in the script to be read and run as if you typed them in.

The second way to run a script is simply to type its name and hit RETURN, just as if you were
invoking a built-in command. This, of course, is the more convenient way. This method makes
the script look just like any other UNIX command, and in fact several "regular" commands are
implemented as shell scripts (i.e., not as programs originally written in C or some other
language), including spell , man on some systems, and various commands for system
administrators. The resulting lack of distinction between "user command files" and "built-in
commands" is one factor in UNIX's extensibility and, hence, its favored status among
programmers.

You can run a script by typing its name only if the directory where the script is located is in your
command search path, or . (the current directory) is part of your command search path, i.e., the
script's directory path (as discussed in Chapter 3). If these aren't in your path, you must type
./scriptname , which is really the same thing as typing the script's absolute pathname (see
Chapter 1).

Before you can invoke the shell script by name, you must also give it "execute" permission. If
you are familiar with the UNIX filesystem, you know that files have three types of permissions
(read, write, and execute) and that those permissions apply to three categories of user (the file's
owner, a group of users, and everyone else). Normally, when you create a file with a text editor,
the file is set up with read and write permission for you and read-only permission for everyone
else.

Therefore you must give your script execute permission explicitly, by using the chmod
command. The simplest way to do this is to type:

$ chmod +x scriptname

Your text editor will preserve this permission if you make subsequent changes to your script. If
you don't add execute permission to the script and you try to invoke it, the shell will print the

message:

scriptname: Permission denied

But there is a more important difference between the two ways of running shell scripts. While
using source causes the commands in the script to be run as if they were part of your login
session, the "just the name" method causes the shell to do a series of things. First, it runs another
copy of the shell as a subprocess; this is called a subshell . The subshell then takes commands
from the script, runs them, and terminates, handing control back to the parent shell.

Figure 4-1 shows how the shell executes scripts. Assume you have a simple shell script called
alice that contains the commands hatter and gryphon . In .a, typing source alice causes the two
commands to run in the same shell, just as if you had typed them in by hand. .b shows what
happens when you type just alice : the commands run in the subshell while the parent shell waits
for the subshell to finish.

You may find it interesting to compare this with the situation in .c, which shows what happens
when you type alice & . As you will recall from Chapter 1 , the & makes the command run in
the background , which is really just another term for "subprocess." It turns out that the only
significant difference between .c and .b is that you have control of your terminal or workstation
while the command runs—you need not wait until it finishes before you can enter further
commands.

Figure 4-1. Ways to run a shell script

There are many ramifications to using subshells. An important one is that the export ed

environment variables that we saw in the last chapter (e.g., TERM , EDITOR , PWD) are
known in subshells, whereas other shell variables (such as any that you define in your
.bash_profile without an export statement) are not.

Other issues involving subshells are too complex to go into now; see Chapter 7 and Chapter 8
for more details about subshell I/O and process characteristics, respectively. For now, just bear
in mind that a script normally runs in a subshell.

4.1.1. Functions

bash 's function feature is an expanded version of a similar facility in the System V Bourne shell
and a few other shells. A function is sort of a script-within-a-script; you use it to define some
shell code by name and store it in the shell's memory, to be invoked and run later.

Functions improve the shell's programmability significantly, for two main reasons. First, when
you invoke a function, it is already in the shell's memory; therefore a function runs faster.
Modern computers have plenty of memory, so there is no need to worry about the amount of
space a typical function takes up. For this reason, most people define as many commonly used
functions as possible rather than keep lots of scripts around.

The other advantage of functions is that they are ideal for organizing long shell scripts into
modular "chunks" of code that are easier to develop and maintain. If you aren't a programmer,
ask one what life would be like without functions (also called procedures or subroutines in other
languages) and you'll probably get an earful.

To define a function, you can use either one of two forms:

function functname{

 shell commands}

or:

functname ()

{

 shell commands }

There is no functional difference between the two. We will use both forms in this book. You can
also delete a function definition with the command unset -f functname .

When you define a function, you tell the shell to store its name and definition (i.e., the shell

commands it contains) in memory. If you want to run the function later, just type in its name
followed by any arguments, as if it were a shell script.

You can find out what functions are defined in your login session by typing declare -f . The
shell will print not just the names but the definitions of all functions, in alphabetical order by
function name. Since this may result in long output, you might want to pipe the output through
more or redirect it to a file for examination with a text editor. If you just want to see the names of
the functions, you can use declare -F .[1] We will look at declare in more detail in Chapter 6 .

[1] The -F option is not available in versions of bash prior to 2.0.

Apart from the advantages, there are two important differences between functions and scripts.
First, functions do not run in separate processes, as scripts do when you invoke them by name;
the "semantics" of running a function are more like those of your .bash_profile when you log in
or any script when invoked with the source command. Second, if a function has the same name
as a script or executable program, the function takes precedence.

This is a good time to show the order of precedence for the various sources of commands when
you type a command to the shell:

Aliases1.

Keywords such as function and several others, like if and for , which we will see in
Chapter 5

2.

Functions3.

Built-ins like cd and type4.

Scripts and executable programs, for which the shell searches in the directories listed in the
PATH environment variable

5.

Thus, an alias takes precedence over a function or a script with the same name. You can,
however, change the order of precedence by using the built-ins command , builtin , and enable
. This allows you to define functions, aliases, and script files with the same names, and select
which one you want to execute. We'll examine this process in more detail in the section on
command-line processing in Chapter 7 .

If you need to know the exact source of a command, there are options to the type built-in
command that we saw in Chapter 3 . type by itself will print how bash would interpret the
command, based on the search locations listed above. If you supply more than one argument to
type , it will print the information for each command in turn. If you had a shell script, a function,
and an alias all called dodo , type would tell you that dodo , as an alias, would be used if you
typed dodo .

type has several options that allow you to find specific details of a command. If you want to find
out all of the definitions for dodo you can use type -a . This will produce output similar to the
following:

$ type -all dodo

dodo is aliased to `echo "Everybody has won, and all must have prizes"'

dodo is a function

dodo ()

{

 echo "Everybody has won, and all must have prizes"

}

dodo is ./dodo

It is also possible to restrict the search to commands that are executable files or shell scripts by
using the -p option. If the command as typed to bash executes a file or shell script, the path
name of the file is returned; otherwise, nothing is printed.

The -P option forces type to look for executable files or shell scripts even if the result of -t
would not return file .

A further option, -f , suppresses shell function lookup, i.e., only keywords, files and aliases will
be returned.[2]

[2] The options -f and -P are not available in versions of bash prior to 2.05b.

The default output from type is verbose; it will give you the full definition for an alias or
function. By using the -t option, you can restrict this to a single word descriptor: alias , keyword
, function , builtin , or file . For example:

$ type -t bash

file

$ type -t if

keyword

The -t option can also be used with all other options.

We will refer mainly to scripts throughout the remainder of this book, but unless we note

otherwise, you should assume that whatever we say applies equally to functions.

 < Day Day Up >

 < Day Day Up >

4.2. Shell Variables

bash derives much of its programming functionality from shell variables. We've already seen the
basics of variables. To recap briefly: they are named places to store data, usually in the form of
character strings, and their values can be obtained by preceding their names with dollar signs ($).
Certain variables, called environment variables , are conventionally named in all capital letters,
and their values are made known (with the export statement) to subprocesses.

If you are a programmer, you already know that just about every major programming language
uses variables in some way; in fact, an important way of characterizing differences between
languages is comparing their facilities for variables.

The chief difference between bash 's variable schema and those of conventional languages is that
bash 's places heavy emphasis on character strings. (Thus it has more in common with a special-
purpose language like SNOBOL than a general-purpose one like Pascal.) This is also true of the
Bourne shell and the C shell, but bash goes beyond them by having additional mechanisms for
handling integers explicitly.

4.2.1. Positional Parameters

As we have already seen, you can define values for variables with statements of the form
varname=value , e.g.:

$ hatter=mad

$ echo "$hatter"

mad

The shell predefines some environment variables when you log in. There are other built-in
variables that are vital to shell programming. We will look at a few of them now and save the
others for later.

The most important special, built-in variables are called positional parameters . These hold the
command-line arguments to scripts when they are invoked. Positional parameters have the names
1 , 2 , 3 , etc., meaning that their values are denoted by $1 , $2 , $3 , etc. There is also a
positional parameter 0 , whose value is the name of the script (i.e., the command typed in to
invoke it).

Two special variables contain all of the positional parameters (except positional parameter 0): *
and @ . The difference between them is subtle but important, and it's apparent only when they
are within double quotes.

"$* " is a single string that consists of all of the positional parameters, separated by the first
character in the value of the environment variable IFS (internal field separator), which is a space,
TAB, and NEWLINE by default. On the other hand, "$@ " is equal to "$1 " "$2 ". .. "$ N ",
where N is the number of positional parameters. That is, it's equal to N separate double-quoted
strings, which are separated by spaces. If there are no positional parameters, "$@ " expands to
nothing. We'll explore the ramifications of this difference in a little while.

The variable # holds the number of positional parameters (as a character string). All of these
variables are "read-only," meaning that you can't assign new values to them within scripts.

For example, assume that you have the following simple shell script:

echo "alice: $@"

echo "$0: $1 $2 $3 $4"

echo "$# arguments"

Assume further that the script is called alice . Then if you type alice in wonderland , you will
see the following output:

alice: in wonderland

alice: in wonderland

2 arguments

In this case, $3 and $4 are unset, which means that the shell will substitute the empty (or null)
string for them.[3]

[3] Unless the option nounset is turned on, in which case the shell will return an error message.

4.2.1.1 Positional parameters in functions

Shell functions use positional parameters and special variables like * and # in exactly the same
way as shell scripts do. If you wanted to define alice as a function, you could put the following
in your .bash_profile or environment file:

function alice

{

 echo "alice: $*"

 echo "$0: $1 $2 $3 $4"

 echo "$# arguments"

}

You will get the same result if you type alice in wonderland .

Typically, several shell functions are defined within a single shell script. Therefore each function
will need to handle its own arguments, which in turn means that each function needs to keep
track of positional parameters separately. Sure enough, each function has its own copies of these
variables (even though functions don't run in their own subshells, as scripts do); we say that such
variables are local to the function.

However, other variables defined within functions are not local (they are global), meaning that
their values are known throughout the entire shell script. For example, assume that you have a
shell script called ascript that contains this:

function afunc

{

 echo in function: $0 $1 $2

 var1="in function"

 echo var1: $var1

}

var1="outside function"

echo var1: $var1

echo $0: $1 $2

afunc funcarg1 funcarg2

echo var1: $var1

echo $0: $1 $2

If you invoke this script by typing ascript arg1 arg2 , you will see this output:

var1: outside function

ascript: arg1 arg2

in function: ascript funcarg1 funcarg2

var1: in function

var1: in function

ascript: arg1 arg2

In other words, the function afunc changes the value of the variable var1 from "outside
function" to "in function," and that change is known outside the function, while $1 and $2 have
different values in the function and the main script. Notice that $0 doesn't change because the
function executes in the environment of the shell script and $0 takes the name of the script.
Figure 4-2 shows the scope of each variable graphically.

Figure 4-2. Functions have their own positional parameters

4.2.2. Local Variables in Functions

A local statement inside a function definition makes the variables involved all become local to
that function. The ability to define variables that are local to "subprogram" units (procedures,
functions, subroutines, etc.) is necessary for writing large programs, because it helps keep
subprograms independent of the main program and of each other.

Here is the function from our last example with the variable var1 made local:

function afunc

{

 local var1

 echo in function: $0 $1 $2

 var1="in function"

 echo var1: $var1

}

Now the result of running ascript arg1 arg2 is:

var1: outside function

ascript: arg1 arg2

in function: ascript funcarg1 funcarg2

var1: in function

var1: outside function

ascript: arg1 arg2

Figure 4-3 shows the scope of each variable in our new script. Note that afunc now has its own,
local copy of var1 , although the original var1 would still be used by any other functions that
ascript invokes.

Figure 4-3. Functions can have local variables

4.2.3. Quoting with $@ and $*

Now that we have this background, let's take a closer look at "$@ " and "$* ". These variables
are two of the shell's greatest idiosyncracies, so we'll discuss some of the most common sources
of confusion.

Why are the elements of "$* " separated by the first character of IFS instead of just
spaces? To give you output flexibility. As a simple example, let's say you want to print a list
of positional parameters separated by commas. This script would do it:
IFS=,

echo "$*"

Changing IFS in a script is risky, but it's probably OK as long as nothing else in the script
depends on it. If this script were called arglist , then the command arglist alice dormouse
hatter would produce the output alice,dormouse,hatter . Chapter 5 and Chapter 10
contain other examples of changing IFS .

Why does "$@ " act like N separate double-quoted strings? To allow you to use them again
as separate values. For example, say you want to call a function within your script with the
same list of positional parameters, like this:
function countargs

{

 echo "$# args."

}

Assume your script is called with the same arguments as arglist above. Then if it contains
the command countargs "$* ", the function will print 1 args . But if the command is
countargs "$@ ", the function will print 3 args .

4.2.4. More on Variable Syntax

Before we show the many things you can do with shell variables, we have to point out a
simplification we have been making: the syntax of $varname for taking the value of a variable is
actually the simple form of the more general syntax, ${varname} .

Why two syntaxes? For one thing, the more general syntax is necessary if your code refers to
more than nine positional parameters: you must use ${10} for the tenth instead of $10 . Aside
from that, consider the following case where you would like to place an underscore after your
user ID:

echo $UID_

The shell will try to use UID_ as the name of the variable. Unless, by chance, $UID_ already
exists, this won't print anything (the value being null or the empty string, ""). To obtain the
desired result, you need to enclose the shell variable in curly brackets:

echo ${UID}_

It is safe to omit the curly brackets ({}) if the variable name is followed by a character that isn't a
letter, digit, or underscore.

 < Day Day Up >

 < Day Day Up >

4.3. String Operators

The curly-bracket syntax allows for the shell's string operators . String operators allow you to
manipulate values of variables in various useful ways without having to write full-blown programs
or resort to external UNIX utilities. You can do a lot with string-handling operators even if you
haven't yet mastered the programming features we'll see in later chapters.

In particular, string operators let you do the following:

Ensure that variables exist (i.e., are defined and have non-null values)

Set default values for variables

Catch errors that result from variables not being set

Remove portions of variables' values that match patterns

4.3.1. Syntax of String Operators

The basic idea behind the syntax of string operators is that special characters that denote
operations are inserted between the variable's name and the right curly bracket. Any argument
that the operator may need is inserted to the operator's right.

The first group of string-handling operators tests for the existence of variables and allows
substitutions of default values under certain conditions. These are listed in Table 4-1 .[4]

[4] The colon (:) in all but the last of these operators is actually optional. If the colon is omitted, then change "exists and
isn't null" to "exists" in each definition, i.e., the operator tests for existence only.

Table 4-1. Substitution operators

Operator Substitution

${ varname
:- word }

If varname exists and isn't null, return its value; otherwise return word .

Purpose : Returning a default value if the variable is undefined.

Example : ${count:-0} evaluates to 0 if count is undefined.

${ varname
:= word }

If varname exists and isn't null, return its value; otherwise set it to word and then
return its value. Positional and special parameters cannot be assigned this way.

Purpose : Setting a variable to a default value if it is undefined.

Example : ${count:=0} sets count to 0 if it is undefined.

${ varname
:? message
}

If varname exists and isn't null, return its value; otherwise print varname :
followed by message , and abort the current command or script (non-interactive
shells only). Omitting message produces the default message parameter null or
not set .

Purpose : Catching errors that result from variables being undefined.

Example : {count:? "undefined! "} prints "count: undefined!" and exits if count
is undefined.

${ varname
:+word }

If varname exists and isn't null, return word ; otherwise return null.

Purpose : Testing for the existence of a variable.

Example : ${count:+1} returns 1 (which could mean "true") if count is defined.

${ varname
:offset
:length }

Performs substring expansion.[5] It returns the substring of $varname starting at
offset and up to length characters. The first character in $varname is position 0.
If length is omitted, the substring starts at offset and continues to the end of
$varname . If offset is less than 0 then the position is taken from the end of
$varname . If varname is @, the length is the number of positional parameters
starting at parameter offset.

Purpose : Returning parts of a string (substrings or slices).

Example : If count is set to frogfootman , ${count:4} returns footman .
${count:4:4} returns foot .

[5] The substring expansion operator is not available in versions of bash prior to 2.0.

The first of these operators is ideal for setting defaults for command-line arguments in case the

user omits them. We'll use this technique in our first programming task.

Task 4-1
You have a large album collection, and you want to write some software to keep
track of it. Assume that you have a file of data on how many albums you have by
each artist. Lines in the file look like this:

5 Depeche Mode

2 Split Enz

3 Simple Minds

1 Vivaldi, Antonio

Write a program that prints the N highest lines, i.e., the N artists by whom you have
the most albums. The default for N should be 10. The program should take one
argument for the name of the input file and an optional second argument for how
many lines to print.

By far the best approach to this type of script is to use built-in UNIX utilities, combining them
with I/O redirectors and pipes. This is the classic "building-block" philosophy of UNIX that is
another reason for its great popularity with programmers. The building-block technique lets us
write a first version of the script that is only one line long:

sort -nr $1 | head -${2:-10}

Here is how this works: the sort program sorts the data in the file whose name is given as the first
argument ($1). The -n option tells sort to interpret the first word on each line as a number
(instead of as a character string); the -r tells it to reverse the comparisons, so as to sort in
descending order.

The output of sort is piped into the head utility, which, when given the argument - N , prints the
first N lines of its input on the standard output. The expression -${2:-10} evaluates to a dash (-)
followed by the second argument if it is given, or to -10 if it's not; notice that the variable in this
expression is 2 , which is the second positional parameter.

Assume the script we want to write is called highest . Then if the user types highest myfile , the
line that actually runs is:

sort -nr myfile | head -10

Or if the user types highest myfile 22 , the line that runs is:

sort -nr myfile | head -22

Make sure you understand how the :- string operator provides a default value.

This is a perfectly good, runnable script—but it has a few problems. First, its one line is a bit
cryptic. While this isn't much of a problem for such a tiny script, it's not wise to write long,
elaborate scripts in this manner. A few minor changes will make the code more readable.

First, we can add comments to the code; anything between # and the end of a line is a comment.
At a minimum, the script should start with a few comment lines that indicate what the script does
and what arguments it accepts. Second, we can improve the variable names by assigning the
values of the positional parameters to regular variables with mnemonic names. Finally, we can
add blank lines to space things out; blank lines, like comments, are ignored. Here is a more
readable version:

#

highest filename [howmany]

#

Print howmany highest-numbered lines in file filename.

The input file is assumed to have lines that start with

numbers. Default for howmany is 10.

#

filename=$1

howmany=${2:-10}

sort -nr $filename | head -$howmany

The square brackets around howmany in the comments adhere to the convention in UNIX
documentation that square brackets denote optional arguments.

The changes we just made improve the code's readability but not how it runs. What if the user
were to invoke the script without any arguments? Remember that positional parameters default to
null if they aren't defined. If there are no arguments, then $1 and $2 are both null. The variable
howmany ($2) is set up to default to 10, but there is no default for filename ($1). The result
would be that this command runs:

sort -nr | head -10

As it happens, if sort is called without a filename argument, it expects input to come from
standard input, e.g., a pipe (|) or a user's terminal. Since it doesn't have the pipe, it will expect the
terminal. This means that the script will appear to hang! Although you could always hit CTRL-D
or CTRL-C to get out of the script, a naive user might not know this.

Therefore we need to make sure that the user supplies at least one argument. There are a few
ways of doing this; one of them involves another string operator. We'll replace the line:

filename=$1

with:

filename=${1:?"filename missing."}

This will cause two things to happen if a user invokes the script without any arguments: first the
shell will print the somewhat unfortunate message:

highest: 1: filename missing.

to the standard error output. Second, the script will exit without running the remaining code.
With a somewhat "kludgy" modification, we can get a slightly better error message.

Consider this code:

filename=$1

filename=${filename:?"missing."}

This results in the message:

highest: filename: missing.

(Make sure you understand why.) Of course, there are ways of printing whatever message is
desired; we'll find out how in Chapter 5 .

Before we move on, we'll look more closely at the three remaining operators in Table 4-1 and see
how we can incorporate them into our task solution. The := operator does roughly the same
thing as :- , except that it has the "side effect" of setting the value of the variable to the given
word if the variable doesn't exist.

Therefore we would like to use := in our script in place of :- , but we can't; we'd be trying to set
the value of a positional parameter, which is not allowed. But if we replaced:

howmany=${2:-10}

with just:

howmany=$2

and moved the substitution down to the actual command line (as we did at the start), then we
could use the := operator:

sort -nr $filename | head -${howmany:=10}

The operator :+ substitutes a value if the given variable exists and isn't null. Here is how we can
use it in our example: let's say we want to give the user the option of adding a header line to the
script's output. If she types the option -h , then the output will be preceded by the line:

ALBUMS ARTIST

Assume further that this option ends up in the variable header , i.e., $header is -h if the option
is set or null if not. (Later we will see how to do this without disturbing the other positional
parameters.)

The following expression yields null if the variable header is null, or ALBUMSARTIST\n if it
is non-null:

${header:+"ALBUMSARTIST\n"}

This means that we can put the line:

echo -e -n ${header:+"ALBUMSARTIST\n"}

right before the command line that does the actual work. The -n option to echo causes it not to
print a LINEFEED after printing its arguments. Therefore this echo statement will print
nothing—not even a blank line—if header is null; otherwise it will print the header line and a

LINEFEED (\n). The -e option makes echo interpret the \n as a LINEFEED rather than literally.

The final operator, substring expansion, returns sections of a string. We can use it to "pick out"
parts of a string that are of interest. Assume that our script is able to assign lines of the sorted
list, one at a time, to the variable album_line . If we want to print out just the album name and
ignore the number of albums, we can use substring expansion:

echo ${album_line:8}

This prints everything from character position 8, which is the start of each album name, onwards.

If we just want to print the numbers and not the album names, we can do so by supplying the
length of the substring:

echo ${album_line:0:7}

Although this example may seem rather useless, it should give you a feel for how to use
substrings. When combined with some of the programming features discussed later in the book,
substrings can be extremely useful.

4.3.2. Patterns and Pattern Matching

We'll continue refining our solution to Task 4-1 later in this chapter. The next type of string
operator is used to match portions of a variable's string value against patterns . Patterns, as we
saw in Chapter 1 , are strings that can contain wildcard characters (* , ? , and [] for character
sets and ranges).

Table 4-2 lists bash 's pattern-matching operators.

Table 4-2. Pattern-matching operators

Operator Meaning

$ {variable
#pattern }

If the pattern matches the beginning of the variable's value, delete the
shortest part that matches and return the rest.

$ {variable
##pattern }

If the pattern matches the beginning of the variable's value, delete the
longest part that matches and return the rest.

$ {variable
%pattern }

If the pattern matches the end of the variable's value, delete the shortest
part that matches and return the rest.

Operator Meaning

$ {variable
%%pattern }

If the pattern matches the end of the variable's value, delete the longest part
that matches and return the rest.

$ {variable/
pattern/ string }$
{variable//
pattern/ string }

The longest match to pattern in variable is replaced by string . In the first
form, only the first match is replaced. In the second form, all matches are
replaced. If the pattern begins with a # , it must match at the start of the
variable. If it begins with a % , it must match with the end of the variable. If
string is null, the matches are deleted. If variable is @ or * , the operation
is applied to each positional parameter in turn and the expansion is the
resultant list.[6]

[6] The pattern-matching and replacement operator is not available in versions of bash prior to 2.0.

These can be hard to remember; here's a handy mnemonic device: # matches the front because
number signs precede numbers; % matches the rear because percent signs follow numbers.

The classic use for pattern-matching operators is in stripping off components of pathnames,
such as directory prefixes and filename suffixes. With that in mind, here is an example that shows
how all of the operators work. Assume that the variable path has the value
/home/cam/book/long.file.name ; then:

Expression Result

${path##/*/} long.file.name

${path#/*/} cam/book/long.file.name

$path /home/cam/book/long.file.name

${path%.*} /home/cam/book/long.file

${path%%.*} /home/cam/book/long

The two patterns used here are /*/ , which matches anything between two slashes, and .* , which
matches a dot followed by anything.

The longest and shortest pattern-matching operators produce the same output unless they are
used with the * wildcard operator. As an example, if filename had the value alicece , then both
${filename%ce} and ${filename%%ce} would produce the result alice . This is because ce is
an exact match; for a match to occur, the string ce must appear on the end $filename . Both the
short and long matches will then match the last grouping of ce and delete it. If, however, we had
used the * wildcard, then ${filename%ce*} would produce alice because it matches the
shortest occurrence of ce followed by anything else. ${filename%%ce*} would return ali

$ {variable
%%pattern }

If the pattern matches the end of the variable's value, delete the longest part
that matches and return the rest.

$ {variable/
pattern/ string }$
{variable//
pattern/ string }

The longest match to pattern in variable is replaced by string . In the first
form, only the first match is replaced. In the second form, all matches are
replaced. If the pattern begins with a # , it must match at the start of the
variable. If it begins with a % , it must match with the end of the variable. If
string is null, the matches are deleted. If variable is @ or * , the operation
is applied to each positional parameter in turn and the expansion is the
resultant list.[6]

[6] The pattern-matching and replacement operator is not available in versions of bash prior to 2.0.

These can be hard to remember; here's a handy mnemonic device: # matches the front because
number signs precede numbers; % matches the rear because percent signs follow numbers.

The classic use for pattern-matching operators is in stripping off components of pathnames,
such as directory prefixes and filename suffixes. With that in mind, here is an example that shows
how all of the operators work. Assume that the variable path has the value
/home/cam/book/long.file.name ; then:

Expression Result

${path##/*/} long.file.name

${path#/*/} cam/book/long.file.name

$path /home/cam/book/long.file.name

${path%.*} /home/cam/book/long.file

${path%%.*} /home/cam/book/long

The two patterns used here are /*/ , which matches anything between two slashes, and .* , which
matches a dot followed by anything.

The longest and shortest pattern-matching operators produce the same output unless they are
used with the * wildcard operator. As an example, if filename had the value alicece , then both
${filename%ce} and ${filename%%ce} would produce the result alice . This is because ce is
an exact match; for a match to occur, the string ce must appear on the end $filename . Both the
short and long matches will then match the last grouping of ce and delete it. If, however, we had
used the * wildcard, then ${filename%ce*} would produce alice because it matches the
shortest occurrence of ce followed by anything else. ${filename%%ce*} would return ali

because it matches the longest occurrence of ce followed by anything else; in this case the first
and second ce .

The next task will incorporate one of these pattern-matching operators.

Task 4-2
You are writing a graphics file conversion utility for use in creating a web page. You
want to be able to take a PCX file and convert it to a JPEG file for use on the web
page.[7]

[7] PCX is a popular graphics file format under Microsoft Windows. JPEG (Joint Photographic Expert Group) is a
common graphics format on the Internet and is used to a great extent on web pages.

Graphics file conversion utilities are quite common because of the plethora of different graphics
formats and file types. They allow you to specify an input file, usually from a range of different
formats, and convert it to an output file of a different format. In this case, we want to take a PCX
file, which can't be displayed with a web browser, and convert it to a JPEG which can be
displayed by nearly all browsers. Part of this process is taking the filename of the PCX file,
which ends in .pcx , and changing it to one ending in .jpg for the output file. In essence, you
want to take the original filename and strip off the .pcx , then append .jpg . A single shell
statement will do this:

outfile=${filename%.pcx}.jpg

The shell takes the filename and looks for .pcx on the end of the string. If it is found, .pcx is
stripped off and the rest of the string is returned. For example, if filename had the value
alice.pcx , the expression ${filename%.pcx} would return alice . The .jpg is appended to form
the desired alice.jpg , which is then stored in the variable outfile .

If filename had an inappropriate value (without the .pcx) such as alice.xpm , the above
expression would evaluate to alice.xpm.jpg : since there was no match, nothing is deleted from
the value of filename , and .jpg is appended anyway. Note, however, that if filename contained
more than one dot (e.g., if it were alice.1.pcx— the expression would still produce the desired
value alice.1.jpg).

The next task uses the longest pattern-matching operator.

Task 4-3
You are implementing a filter that prepares a text file for printer output. You want to
put the file's name—without any directory prefix—on the "banner" page. Assume
that, in your script, you have the pathname of the file to be printed stored in the
variable pathname .

Clearly, the objective is to remove the directory prefix from the pathname. The following line will
do it:

bannername=${pathname##*/}

This solution is similar to the first line in the examples shown before. If pathname were just a
filename, the pattern */ (anything followed by a slash) would not match and the value of the
expression would be pathname untouched. If pathname were something like book/wonderland
, the prefix book/ would match the pattern and be deleted, leaving just wonderland as the
expression's value. The same thing would happen if pathname were something like /home/cam/
book/wonderland : since the ## deletes the longest match, it deletes the entire /home/cam/book/ .

If we used #*/ instead of ##*/ , the expression would have the incorrect value
home/cam/book/wonderland , because the shortest instance of "anything followed by a slash" at
the beginning of the string is just a slash (/).

The construct ${ variable ##*/} is actually equivalent to the UNIX utility basename . basename
takes a pathname as argument and returns the filename only; it is meant to be used with the shell's
command substitution mechanism (see the following explanation). basename is less efficient than
${ variable ##*/} because it runs in its own separate process rather than within the shell. Another
utility, dirname , does essentially the opposite of basename : it returns the directory prefix only.
It is equivalent to the bash expression ${ variable %/*} and is less efficient for the same reason.

The last operator in the table matches patterns and performs substitutions. Task 4-4 is a simple
task where it comes in useful.

Task 4-4
The directories in PATH can be hard to distinguish when printed out as one line with
colon delimiters. You want a simple way to display them, one to a line.

As directory names are separated by colons, the easiest way would be to replace each colon with
a LINEFEED:

$ echo -e ${PATH//:/'\n'}

/home/cam/bin

/usr/local/bin

/bin

/usr/bin

/usr/X11R6/bin

Each occurrence of the colon is replaced by \n. As we saw earlier, the -e option allows echo to
interpret \n as a LINEFEED. In this case we used the second of the two substitution forms. If
we'd used the first form, only the first colon would have been replaced with a \n.

4.3.3. Length Operator

There is one remaining operator on variables. It is ${# varname } , which returns the length of
the value of the variable as a character string. (In Chapter 6 , we will see how to treat this and
similar values as actual numbers so they can be used in arithmetic expressions.) For example, if
filename has the value alice.c , then ${#filename} would have the value 7 .

4.3.4. Extended Pattern Matching

Bash provides a further set of pattern matching operators if the shopt option extglob is switched
on. Each operator takes one or more patterns, normally strings, separated by the vertical bar (|).
The extended pattern matching operators are given in Table 4-3 .[8]

[8] Be aware that these are not available in early releases of bash 2.0.

Table 4-3. Pattern-matching operators

Operator Meaning

*(patternlist) Matches zero or more occurrences of the given patterns.

+(patternlist) Matches one or more occurrences of the given patterns.

?(patternlist) Matches zero or one occurrences of the given patterns.

@(patternlist) Matches exactly one of the given patterns.

!(patternlist) Matches anything except one of the given patterns.

Some examples of these include:

*(alice|hatter|hare) would match zero or more occurrences of alice , hatter , and hare .
So it would match the null string, alice , alicehatter , etc.

+(alice|hatter|hare) would do the same except not match the null string.

?(alice|hatter|hare) would only match the null string, alice , hatter , or hare .

@(alice|hatter|hare) would only match alice , hatter , or hare .

!(alice|hatter|hare) matches everything except alice , hatter , and hare .

The values provided can contain shell wildcards too. So, for example, +([0-9]) matches a
number of one or more digits. The patterns can also be nested, so you could remove all files
except those beginning with vt followed by a number by doing rm !(vt+([0-9])) .

 < Day Day Up >

 < Day Day Up >

4.4. Command Substitution

From the discussion so far, we've seen two ways of getting values into variables: by assignment
statements and by the user supplying them as command-line arguments (positional parameters).
There is another way: command substitution , which allows you to use the standard output of a
command as if it were the value of a variable. You will soon see how powerful this feature is.

The syntax of command substitution is:[9]

[9] Bourne and C shell users should note that the command substitution syntax of those shells, `UNIX command ` (with
backward quotes, or grave accents), is also supported by bash for backward compatibility reasons. However, it is
harder to read and less conducive to nesting.

$(UNIX command)

The command inside the parentheses is run, and anything the command writes to standard output
is returned as the value of the expression. These constructs can be nested, i.e., the UNIX
command can contain command substitutions.

Here are some simple examples:

The value of $(pwd) is the current directory (same as the environment variable $PWD).

The value of $(ls $HOME) is the names of all files in your home directory.

The value of $(ls $(pwd)) is the names of all files in the current directory.

The value of $(< alice) is the contents of the file alice with any trailing newlines
removed.[10]

[10] Not available in versions of bash prior to 2.02.

To find out detailed information about a command if you don't know where its file resides,
type ls -l $(type -path -all command-name). The -all option forces type to do a pathname
look-up and -path causes it to ignore keywords, built-ins, etc.

If you want to edit (with vi) every chapter of your book on bash that has the phrase
"command substitution," assuming that your chapter files all begin with ch, you could type:
vi $(grep -l 'command substitution' ch*)

The -l option to grep prints only the names of files that contain matches.

Command substitution, like variable and tilde expansion, is done within double quotes.
Therefore, our rule in Chapter 1 and Chapter 3 about using single quotes for strings unless they
contain variables will now be extended: "When in doubt, use single quotes, unless the string
contains variables or command substitutions, in which case use double quotes."

Command substitution helps us with the solution to the next programming task, which relates to
the album database in Task 4-1.

Task 4-5
The file used in Task 4-1 is actually a report derived from a bigger table of data about
albums. This table consists of several columns, or fields , to which a user refers by
names like "artist," "title," "year," etc. The columns are separated by vertical bars (| ,
the same as the UNIX pipe character). To deal with individual columns in the table,
field names need to be converted to field numbers.

Suppose there is a shell function called getfield that takes the field name as argument
and writes the corresponding field (or column) number on the standard output. Use
this routine to help extract a column from the data table.

The cut utility is a natural for this task. cut is a data filter: it extracts columns from tabular data. If
you supply the numbers of columns you want to extract from the input, cut will print only those
columns on the standard output. Columns can be character positions or—relevant in this
example—fields that are separated by TAB characters or other delimiters.[11] Assume that the
data table in our task is a file called albums and that it looks like this:

[11] Some older BSD-derived systems don't have cut , but you can use awk instead. Whenever you see a command of
the form: cut -f N -d C filename , use this instead: awk -F C '{print $ N } ' filename .

Depeche Mode|Speak and Spell|Mute Records|1981

Depeche Mode|Some Great Reward|Mute Records|1984

Depeche Mode|101|Mute Records|1989

Depeche Mode|Violator|Mute Records|1990

Depeche Mode|Songs of Faith and Devotion|Mute Records|1993

...

Here is how we would use cut to extract the fourth (year) column:

cut -f4 -d\| albums

The -d argument is used to specify the character used as field delimiter (TAB is the default). The
vertical bar must be backslash-escaped so that the shell doesn't try to interpret it as a pipe.

From this line of code and the getfield routine, we can easily derive the solution to the task.
Assume that the first argument to getfield is the name of the field the user wants to extract. Then
the solution is:

fieldname=$1

cut -f$(getfield $fieldname) -d\| albums

If we called this script with the argument year , the output would be:

1981

1984

1989

1990

1993

...

Task 4-6 shows another small task that makes use of cut .

Task 4-6
Send a mail message to everyone who is currently logged in.

The command who tells you who is logged in (as well as which terminal they're on and when
they logged in). Its output looks like this:

root tty1 Oct 13 12:05

michael tty5 Oct 13 12:58

cam tty23 Oct 13 11:51

kilrath tty25 Oct 13 11:58

The fields are separated by spaces, not TABs. Since we need the first field, we can get away
with using a space as the field separator in the cut command. (Otherwise we'd have to use the
option to cut that uses character columns instead of fields.) To provide a space character as an
argument on a command line, you can surround it by quotes:

$ who | cut -d' ' -f1

With the above who output, this command's output would look like this:

root

michael

cam

kilrath

This leads directly to a solution to the task. Just type:

$ mail $(who | cut -d' ' -f1)

The command mail root michael cam kilrath will run and then you can type your message.

Task 4-7 is another task that shows how useful command pipelines can be in command
substitution.

Task 4-7
The ls command gives you pattern-matching capability with wildcards, but it doesn't
allow you to select files by modification date . Devise a mechanism that lets you do
this.

Here is a function that allows you to list all files that were last modified on the date you give as
argument. Once again, we choose a function for speed reasons. No pun is intended by the

function's name:

function lsd

{

 date=$1

 ls -l | grep -i "^.\{42\}$date" | cut -c55-

}

This function depends on the column layout of the ls -l command. In particular, it depends on
dates starting in column 42 and filenames starting in column 55. If this isn't the case in your
version of UNIX, you will need to adjust the column numbers.[12]

[12] For example, ls -l on SunOS 4.1.x has dates starting in column 33 and filenames starting in column 46.

We use the grep search utility to match the date given as argument (in the form Mon DD , e.g.,
Jan 15 or Oct 6 , the latter having two spaces) to the output of ls -l . This gives us a long listing
of only those files whose dates match the argument. The -i option to grep allows you to use all
lowercase letters in the month name, while the rather fancy argument means, "Match any line that
contains 41 characters followed by the function argument." For example, typing lsd `jan 15'
causes grep to search for lines that match any 41 characters followed by jan 15 (or Jan 15
).[13]

[13] Some older BSD-derived versions of UNIX (without System V extensions) do not support the \{ N \} option. For
this example, use 42 periods in a row instead of .\{42\} .

The output of grep is piped through our ubiquitous friend cut to retrieve the filenames only. The
argument to cut tells it to extract characters in column 55 through the end of the line.

With command substitution, you can use this function with any command that accepts filename
arguments. For example, if you want to print all files in your current directory that were last
modified today, and today is January 15th, you could type:

$ lp $(lsd 'jan 15')

The output of lsd is on multiple lines (one for each filename), but LINEFEEDs are legal field
separators for the lp command, because the environment variable IFS (see earlier in this chapter)
contains LINEFEED by default.

 < Day Day Up >

 < Day Day Up >

4.5. Advanced Examples: pushd and popd

We will conclude this chapter with a couple of functions that are already built into bash but are
useful in demonstrating some of the concepts we have covered in this chapter.[14]

[14] Your copy of bash may not have pushd and popd , since it can be configured without these built-ins.

Task 4-8
The functions pushd and popd implement a stack of directories that enable you to
move to another directory temporarily and have the shell remember where you were.
Implement them as shell functions.

We will start by implementing a significant subset of their capabilities and finish the
implementation in Chapter 6 .

Think of a stack as a spring-loaded dish receptacle in a cafeteria. When you place dishes on the
receptacle, the spring compresses so that the top stays at roughly the same level. The dish most
recently placed on the stack is the first to be taken when someone wants food; thus, the stack is
known as a "last-in, first-out" or LIFO structure. Putting something onto a stack is known in
computer science parlance as pushing , and taking something off the top is called popping .

A stack is very handy for remembering directories, as we will see; it can "hold your place" up to
an arbitrary number of times. The cd - form of the cd command does this, but only to one level.
For example: if you are in firstdir and then you change to seconddir , you can type cd - to go
back. But if you start out in firstdir , then change to seconddir , and then go to thirddir , you
can use cd - only to go back to seconddir . If you type cd - again, you will be back in thirddir ,
because it is the previous directory.[15]

[15] Think of cd - as a synonym for cd $OLDPWD ; see the previous chapter.

If you want the "nested" remember-and-change functionality that will take you back to firstdir ,
you need a stack of directories along with the pushd and popd commands. Here is how these
work:

The first time pushd dir is called, pushd pushes the current directory onto the stack, then
cd s to dir and pushes it onto the stack.

Subsequent calls to pushd dir cd to dir and push dir only onto the stack.

popd removes the top directory off the stack, revealing a new top. Then it cd s to the new
top directory.

For example, consider the series of events in Table 4-4 . Assume that you have just logged in,
and that you are in your home directory (/home/you).

Table 4-4. pushd/popd example

Command Stack contents Result directory

pushd lizard /home/you/lizard /home/you /home/you/lizard

pushd /etc /etc /home/you/lizard /home/you /etc

popd /home/you/lizard /home/you /home/you/lizard

popd /home/you /home/you

popd <empty> (error)

We will implement a stack as an environment variable containing a list of directories separated by
spaces.[16]

[16] bash also maintains a directory stack for the pushd and popd built-ins, accessible through the environment variable
DIRSTACK . Unlike our version, however, it is implemented as an array (see Chapter 6 for details on arrays).

Your directory stack should be initialized to the null string when you log in. To do this, put this
in your .bash_profile :

DIR_STACK=""

export DIR_STACK

Do not put this in your environment file if you have one. The export statement guarantees that
DIR_STACK is known to all subprocesses; you want to initialize it only once. If you put this
code in an environment file, it will get reinitialized in every subshell, which you probably don't
want.

Next, we need to implement pushd and popd as functions. Here are our initial versions:

pushd ()

{

 dirname=$1

 DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}"

 cd ${dirname:?"missing directory name."}

 echo "$DIR_STACK"

}

popd ()

{

 DIR_STACK=${DIR_STACK#* }

 cd ${DIR_STACK%% *}

 echo "$PWD"

}

Notice that there isn't much code! Let's go through the two functions and see how they work,
starting with pushd . The first line merely saves the first argument in the variable dirname for
readability reasons.

The second line of the function pushes the new directory onto the stack. The expression
${DIR_STACK:- $PWD` '} evaluates to $DIR_STACK if it is non-null or $PWD '' (the
current directory and a space) if it is null. The expression within double quotes, then, consists of
the argument given, followed by a single space, followed by DIR_STACK or the current
directory and a space. The trailing space on the current directory is required for pattern matching
in the popd function; each directory in the stack is considered to be of the form "dirname ".

The double quotes in the assignment ensure that all of this is packaged into a single string for
assignment back to DIR_STACK. Thus, this line of code handles the special initial case (when
the stack is empty) as well as the more usual case (when it's not empty).

The third line's main purpose is to change to the new directory. We use the :? operator to handle
the error when the argument is missing: if the argument is given, then the expression ${dirname:?
"missing directory name ."} evaluates to $dirname , but if it is not given, the shell will print the
message pushd: dirname: missing directory name and exit from the function.

The last line merely prints the contents of the stack, with the implication that the leftmost
directory is both the current directory and at the top of the stack. (This is why we chose spaces
to separate directories, rather than the more customary colons as in PATH and MAILPATH.)

The popd function makes yet another use of the shell's pattern-matching operators. Its first line
uses the # operator, which tries to delete the shortest match of the pattern "* " (anything
followed by a space) from the value of DIR_STACK. The result is that the top directory and the
space following it are deleted from the stack. This is why we need the space on the end of the
first directory pushed onto the stack.

The second line of popd uses the pattern-matching operator %% to delete the longest match to
the pattern "* " (a space followed by anything) from DIR_STACK. This extracts the top
directory as an argument to cd , but it doesn't affect the value of DIR_STACK because there is
no assignment. The final line just prints a confirmation message.

This code is deficient in four ways. First, it has no provision for errors. For example:

What if the user tries to push a directory that doesn't exist or is invalid?

What if the user tries popd and the stack is empty?

Test your understanding of the code by figuring out how it would respond to these error
conditions. The second problem is that if you use pushd in a shell script, it will exit everything if
no argument is given; ${ varname :? message } always exits from non-interactive shells. It won't,
however, exit an interactive shell from which the function is called. The third deficiency is that it
implements only some of the functionality of bash 's pushd and popd commands—albeit the
most useful parts. In the next chapter, we will see how to overcome all of these deficiencies.

The fourth problem with the code is that it will not work if, for some reason, a directory name
contains a space. The code will treat the space as a separator character. We'll accept this
deficiency for now, but you might like to think about how to overcome it in the next few
chapters.

 < Day Day Up >

 < Day Day Up >

Chapter 5. Flow Control
If you are a programmer, you may have read the last chapter—with its claim at the outset that
bash has an advanced set of programming capabilities—and wondered where many of the
features from conventional languages were. Perhaps the most glaringly obvious "hole" in our
coverage thus far concerns flow control constructs like if , for , while , and so on.

Flow control gives a programmer the power to specify that only certain portions of a program
run, or that certain portions run repeatedly, according to conditions such as the values of
variables, whether or not commands execute properly, and others. We call this the ability to
control the flow of a program's execution.

Almost every shell script or function that's been shown thus far has had no flow control—they
have just been lists of commands to be run! Yet bash , like the C and Bourne shells, has all of
the flow control abilities you would expect and more; we will examine them in this chapter. We'll
use them to enhance the solutions to some of the programming tasks we saw in the last chapter
and to solve tasks that we will introduce here.

Although we have attempted to explain flow control so that nonprogrammers can understand it,
we also sympathize with programmers who dread having to slog through yet another tabula rasa
explanation. For this reason, some of our discussions relate bash 's flow-control mechanisms to
those that programmers should know already. Therefore you will be in a better position to
understand this chapter if you already have a basic knowledge of flow control concepts.

bash supports the following flow control constructs:

if/else

Execute a list of statements if a certain condition is/is not true

for

Execute a list of statements a fixed number of times

while

Execute a list of statements repeatedly while a certain condition holds true

until

Execute a list of statements repeatedly until a certain condition holds true

case

Execute one of several lists of statements depending on the value of a variable

In addition, bash provides a new type of flow-control construct:

select

Allow the user to select one of a list of possibilities from a menu

We will now cover each of these in detail.

 < Day Day Up >

 < Day Day Up >

5.1. if/else

The simplest type of flow control construct is the conditional , embodied in bash 's if
statement. You use a conditional when you want to choose whether or not to do something, or
to choose among a small number of things to do, according to the truth or falsehood of
conditions . Conditions test values of shell variables, characteristics of files, whether or not
commands run successfully, and other factors. The shell has a large set of built-in tests that are
relevant to the task of shell programming.

The if construct has the following syntax:

if condition

then

 statements

[elif condition

 then statements...]

[else

 statements]

fi

The simplest form (without the elif and else parts, or clauses) executes the statements only if
the condition is true. If you add an else clause, you get the ability to execute one set of
statements if a condition is true or another set of statements if the condition is false. You can use
as many elif (a contraction of "else if") clauses as you wish; they introduce more conditions, and
thus more choices for which set of statements to execute. If you use one or more elif s, you can
think of the else clause as the "if all else fails" part.

5.1.1. Exit Status

Perhaps the only aspect of this syntax that differs from that of conventional languages like C and
Pascal is that the "condition" is really a list of statements rather than the more usual Boolean (true
or false) expression. How is the truth or falsehood of the condition determined? It has to do with
a general UNIX concept that we haven't covered yet: the exit status of commands.

Every UNIX command, whether it comes from source code in C, some other language, or a shell
script/function, returns an integer code to its calling process—the shell in this case—when it
finishes. This is called the exit status. 0 is usually the OK exit status, while anything else (1 to
255) usually denotes an error. [1]

[1] Because this is a convention and not a "law," there are exceptions. For example, diff (find differences between two
files) returns 0 for "no differences," 1 for "differences found," or 2 for an error such as an invalid filename argument.

if checks the exit status of the last statement in the list following the if keyword. The list is
usually just a single statement. If the status is 0, the condition evaluates to true; if it is anything
else, the condition is considered false. The same is true for each condition attached to an elif
statement (if any).

This enables us to write code of the form:

if command ran successfully

then

 normal processing

else

 error processing

fi

More specifically, we can now improve on the pushd function that we saw in the last chapter:

pushd ()

{

 dirname=$1

 DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}"

 cd ${dirname:?"missing directory name."}

 echo $DIR_STACK

}

This function requires a valid directory as its argument. Let's look at how it handles error
conditions: if no argument is given, the third line of code prints an error message and exits. This
is fine.

However, the function reacts deceptively when an argument is given that isn't a valid directory. In

case you didn't figure it out when reading the last chapter, here is what happens: the cd fails,
leaving you in the same directory you were in. This is also appropriate. But the second line of
code has pushed the bad directory onto the stack anyway, and the last line prints a message that
leads you to believe that the push was successful. Even placing the cd before the stack
assignment won't help because it doesn't exit the function if there is an error.

We need to prevent the bad directory from being pushed and to print an error message. Here is
how we can do this:

pushd ()

{

 dirname=$1

 if cd ${dirname:?"missing directory name."} # if cd was successful

 then

 DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}" # push the directory

 echo $DIR_STACK

 else

 echo still in $PWD. # else do nothing

 fi

}

The call to cd is now inside an if construct. If cd is successful, it will return 0; the next two lines
of code are run, finishing the pushd operation. But if the cd fails, it returns with exit status 1, and
pushd will print a message saying that you haven't gone anywhere.

Notice that in providing the check for a bad directory, we have slightly altered the way pushd
functions. The stack will now always start out with two copies of the first directory pushed onto
it. That is because $PWD is expanded after the new directory has been changed to. We'll fix this
in the next section.

You can usually rely on built-in commands and standard UNIX utilities to return appropriate exit
statuses, but what about your own shell scripts and functions? For example, what if you wrote a
cd function that overrides the built-in command?

Let's say you have the following code in your .bash_profile .

cd ()

{

 builtin cd "$@"

 echo "$OLDPWD --> $PWD"

}

The function cd simply changes directories and prints a message saying where you were and
where you are now. Because functions have higher priority than most built-in commands in the
shell's order of command look-up, we need to make sure that the built-in cd is called, otherwise
the shell will enter an endless loop of calling the function, known as infinite recursion .

The builtin command allows us to do this. builtin tells the shell to use the built-in command and
ignore any function of that name. Using builtin is easy; you just give it the name of the built-in
you want to execute and any parameters you want to pass. If you pass in the name of something
which isn't a built-in command, builtin will display an appropriate message. For example:
builtin: alice: not a shell builtin .

We want this function to return the same exit status that the built-in cd returns. The problem is
that the exit status is reset by every command, so it "disappears" if you don't save it immediately.
In this function, the built-in cd 's exit status disappears when the echo statement runs (and sets
its own exit status).

Therefore, we need to save the status that cd sets and use it as the entire function's exit status.
Two shell features we haven't seen yet provide the way. First is the special shell variable ? ,
whose value ($?) is the exit status of the last command that ran. For example:

cd baddir

echo $?

causes the shell to print 1 , while the following command causes it to print 0 :

cd gooddir

echo $?

So, to save the exit status we need to assign the value of ? to a variable with the line es=$? right
after the cd is done.

5.1.2. Return

The second feature we need is the statement return N , which causes the surrounding function

to exit with exit status N . N is actually optional; it defaults to the exit status of the last command.
Functions that finish without a return statement (i.e., every one we have seen so far) return
whatever the last statement returns. return can only be used inside functions, and shell scripts
that have been executed with source . In contrast, the statement exit N exits the entire script, no
matter how deeply you are nested in functions.

Getting back to our example: if the call to the built-in cd were last in our cd function, it would
behave properly. Unfortunately, we really need the assignment statement where it is. Therefore
we need to save cd 's exit status and return it as the function's exit status. Here is how to do it:

cd ()

{

 builtin cd "$@"

 es=$?

 echo "$OLDPWD --> $PWD"

 return $es

}

The second line saves the exit status of cd in the variable es ; the fourth returns it as the
function's exit status. We'll see a substantial cd "wrapper" in Chapter 7 .

Exit statuses aren't very useful for anything other than their intended purpose. In particular, you
may be tempted to use them as "return values" of functions, as you would with functions in C or
Pascal. That won't work; you should use variables or command substitution instead to simulate
this effect.

5.1.3. Combinations of Exit Statuses

One of the more obscure parts of bash syntax allows you to combine exit statuses logically, so
that you can test more than one thing at a time.

The syntax statement1 && statement2 means, "execute statement1 , and if its exit status is 0,
execute statement2 ." The syntax statement1 || statement2 is the converse: it means, "execute
statement1 , and if its exit status is not 0, execute statement2 ." At first, these look like "if/then"
and "if not/then" constructs, respectively. But they are really intended for use within conditions
of if constructs—as C programmers will readily understand.

It's much more useful to think of these constructs as "and" and "or," respectively. Consider this:

if statement1 && statement2

then

 ...

fi

In this case, statement1 is executed. If it returns a 0 status, then presumably it ran without error.
Then statement2 runs. The then clause is executed if statement2 returns a 0 status. Conversely,
if statement1 fails (returns a non-zero exit status), then statement2 doesn't even run; the last
statement that actually ran was statement1 , which failed—so the then clause doesn't run, either.
Taken all together, it's fair to conclude that the then clause runs if statement1 and statement2
both succeeded.

Similarly, consider this:

if statement1 || statement2

then

 ...

fi

If statement1 succeeds, then statement2 does not run. This makes statement1 the last statement,
which means that the then clause runs. On the other hand, if statement1 fails, then statement2
runs, and whether the then clause runs or not depends on the success of statement2 . The
upshot is that the then clause runs if statement1 or statement2 succeeds.

bash also allows you to reverse the return status of a statement with the use of ! , the logical
"not". Preceding a statement with ! will cause it to return 0 if it fails and 1 if it succeeds. We'll see
an example of this at the end of this chapter.

As a simple example of testing exit statuses, assume that we need to write a script that checks a
file for the presence of two words and just prints a message saying whether either word is in the
file or not. We can use grep for this: it returns exit status 0 if it found the given string in its input,
non-zero if not:

filename=$1

word1=$2

word2=$3

if grep $word1 $filename || grep $word2 $filename

then

 echo "$word1 or $word2 is in $filename."

fi

The then clause of this code runs if either grep statement succeeds. Now assume that we want
the script to say whether the input file contains both words. Here's how to do it:

filename=$1

word1=$2

word2=$3

if grep $word1 $filename && grep $word2 $filename

then

 echo "$word1 and $word2 are both in $filename."

fi

We'll see more examples of these logical operators later in this chapter.

5.1.4. Condition Tests

Exit statuses are the only things an if construct can test. But that doesn't mean you can check
only whether commands ran properly. The shell provides two ways of testing a variety of
conditions. The first is with the [...] construct, which is available in many different versions of the
Bourne shell.[2] The second is by using the newer [[...]] construct.[3] The second version is
identical to the first except that word splitting and pathname expansion are not performed on the
words within the brackets. For the examples in this chapter we will use the first form of the
construct.

[2] The built-in command test is synonymous with [...]. For example, to test the equivalence of two strings you can
either put [string1 = string2] or test string1 = string2 .

[3] [[...]] is not available in versions of bash prior to 2.05.

You can use the construct to check many different attributes of a file (whether it exists, what type
of file it is, what its permissions and ownership are, etc.), compare two files to see which is
newer, and do comparisons on strings.

[condition] is actually a statement just like any other, except that the only thing it does is return
an exit status that tells whether condition is true. (The spaces after the opening bracket "[" and
before the closing bracket "]" are required.) Thus it fits within the if construct's syntax.

5.1.4.1 String comparisons

The square brackets ([]) surround expressions that include various types of operators . We will
start with the string comparison operators, listed in Table 5-1 . (Notice that there are no
operators for "greater than or equal" or "less than or equal" comparisons.) In the table, str1 and
str2 refer to expressions with a string value.

Table 5-1. String comparison operators

Operator True if...

str1 = str2[4] str1 matches str2

str1 != str2 str1 does not match str2

str1 < str2 str1 is less than str2

str1 > str2 str1 is greater than str2

-n str1 str1 is not null (has length greater than 0)

-z str1 str1 is null (has length 0)

[4] Note that there is only one equal sign (=). This is a common source of error.

We can use one of these operators to improve our popd function, which reacts badly if you try
to pop and the stack is empty. Recall that the code for popd is:

popd ()

{

 DIR_STACK=${DIR_STACK#* }

 cd ${DIR_STACK%% *}

 echo "$PWD"

}

If the stack is empty, then $DIR_STACK is the null string, as is the expression
${DIR_STACK%% } . This means that you will change to your home directory; instead, we
want popd to print an error message and do nothing.

To accomplish this, we need to test for an empty stack, i.e., whether $DIR_STACK is null or
not. Here is one way to do it:

popd ()

{

 if [-n "$DIR_STACK"]; then

 DIR_STACK=${DIR_STACK#* }

 cd ${DIR_STACK%% *}

 echo "$PWD"

 else

 echo "stack empty, still in $PWD."

 fi

}

In the condition, we have placed the $DIR_STACK in double quotes, so that when it is
expanded it is treated as a single word. If you don't do this, the shell will expand $DIR_STACK
to individual words and the test will complain that it was given too many arguments.

There is another reason for placing $DIR_STACK in double quotes, which will become
important later on: sometimes the variable being tested will expand to nothing, and in this
example the test will become [-n] , which returns true . Surrounding the variable in double
quotes ensures that even if it expands to nothing, there will be an empty string as an argument
(i.e., [-n ""]).

Also notice that instead of putting then on a separate line, we put it on the same line as the if
after a semicolon, which is the shell's standard statement separator character.

We could have used operators other than -n . For example, we could have used -z and switched
the code in the then and else clauses.

While we're cleaning up code we wrote in the last chapter, let's fix up the error handling in the
highest script (Task 5-1). The code for that script was:

filename=${1:?"filename missing."}

howmany=${2:-10}

sort -nr $filename | head -$howmany

Recall that if you omit the first argument (the filename), the shell prints the message highest: 1:
filename missing . We can make this better by substituting a more standard "usage" message.
While we are at it, we can also make the command more in line with conventional UNIX
commands by requiring a dash before the optional argument.

if [-z "$1"]; then

 echo 'usage: highest filename [-N]'

else

 filename=$1

 howmany=${2:--10}

 sort -nr $filename | head $howmany

fi

Notice that we have moved the dash in front of $howmany inside the parameter expansion
${2:—10} .

It is considered better programming style to enclose all of the code in the if -then -else , but
such code can get confusing if you are writing a long script in which you need to check for
errors and bail out at several points along the way. Therefore, a more usual style for shell
programming follows.

if [-z "$1"]; then

 echo 'usage: highest filename [-N]'

 exit 1

fi

filename=$1

howmany=${2:--10}

sort -nr $filename | head $howmany

The exit statement informs any calling program whether it ran successfully or not.

As an example of the = operator, we can add to the graphics utility that we touched on in Task
4-2. Recall that we were given a filename ending in .pcx (the original graphics file), and we
needed to construct a filename that was the same but ended in .jpg (the output file). It would be
nice to be able to convert several other types of formats to JPEG files so that we could use them
on a web page. Some common types we might want to convert besides PCX include XPM (X
PixMap), TGA (Targa), TIFF (Tagged Image File Format), and GIF.

We won't attempt to perform the actual manipulations needed to convert one graphics format to
another ourselves. Instead we'll use some tools that are freely available on the Internet, graphics
conversion utilities from the NetPBM archive. [5]

[5] NetPBM is a free, portable graphics conversion utility package. Further details can be found on the NetPBM
homepage http://netpbm.sourceforge.net/

Don't worry about the details of how these utilities work; all we want to do is create a shell
frontend that processes the filenames and calls the correct conversion utilities. At this point it is
sufficient to know that each conversion utility takes a filename as an argument and sends the
results of the conversion to standard output. To reduce the number of conversion programs
necessary to convert between the 30 or so different graphics formats it supports, NetPBM has
its own set of internal formats. These are called Portable Anymap files (also called PNMs) with
extensions .ppm (Portable Pix Map) for color images, .pgm (Portable Gray Map) for grayscale
images, and .pbm (Portable Bit Map) for black and white images. Each graphics format has a
utility to convert to and from this "central" PNM format.

The frontend script we are developing should first choose the correct conversion utility based on
the filename extension, and then convert the resulting PNM file into a JPEG:

filename=$1

extension=${filename##*.}

pnmfile=${filename%.*}.pnm

outfile=${filename%.*}.jpg

if [-z $filename]; then

 echo "procfile: No file specified"

 exit 1

fi

if [$extension = jpg]; then

http://netpbm.sourceforge.net/

 exit 0

elif [$extension = tga]; then

 tgatoppm $filename > $pnmfile

elif [$extension = xpm]; then

 xpmtoppm $filename > $pnmfile

elif [$extension = pcx]; then

 pcxtoppm $filename > $pnmfile

elif [$extension = tif]; then

 tifftopnm $filename > $pnmfile

elif [$extension = gif]; then

 giftopnm $filename > $pnmfile

else

 echo "procfile: $filename is an unknown graphics file."

 exit 1

fi

pnmtojpeg $pnmfile > $outfile

rm $pnmfile

Recall from the previous chapter that the expression ${filename%.*} deletes the extension from
filename ; ${filename##*.} deletes the basename and keeps the extension.

Once the correct conversion is chosen, the script runs the utility and writes the output to a
temporary file. The second to last line takes the temporary file and converts it to a JPEG. The
temporary file is then removed. Notice that if the original file was a JPEG we just exit without
having to do any processing.

This script has a few problems. We'll look at improving it later in this chapter.

5.1.4.2 File attribute checking

The other kind of operator that can be used in conditional expressions checks a file for certain
properties. There are 24 such operators. We will cover those of most general interest here; the
rest refer to arcana like sticky bits, sockets, and file descriptors, and thus are of interest only to
systems hackers. Refer to Appendix B for the complete list. Table 5-2 lists those that we will
examine.

Table 5-2. File attribute operators

Operator True if...

-a file file exists

-d file file exists and is a directory

-e file file exists; same as - a

-f file file exists and is a regular file (i.e., not a directory or other special type of file)

-r file You have read permission on file

-s file file exists and is not empty

-w file You have write permission on file

-x file
You have execute permission on file , or directory search permission if it is a
directory

-N file file was modified since it was last read

-O file You own file

-G file file 's group ID matches yours (or one of yours, if you are in multiple groups)

file1 -nt
file2

file1 is newer than file2 [6]

file1 -ot
file2

file1 is older than file2

[6] Specifically, the -nt and -ot operators compare modification times of two files.

Before we get to an example, you should know that conditional expressions inside [and] can
also be combined using the logical operators && and || , just as we saw with plain shell
commands, in the previous section entitled Section 5.1.3 . " For example:

if [condition] && [condition]; then

It's also possible to combine shell commands with conditional expressions using logical
operators, like this:

if command && [condition]; then

 ...

You can also negate the truth value of a conditional expression by preceding it with an
exclamation point (!), so that ! expr evaluates to true only if expr is false. Furthermore, you can
make complex logical expressions of conditional operators by grouping them with parentheses
(which must be "escaped" with backslashes to prevent the shell from treating them specially),
and by using two logical operators we haven't seen yet: -a (AND) and -o (OR).

The -a and -o operators are similar to the && and || operators used with exit statuses. However,
unlike those operators, -a and -o are only available inside a test conditional expression.

Here is how we would use two of the file operators, a logical operator, and a string operator to
fix the problem of duplicate stack entries in our pushd function. Instead of having cd determine
whether the argument given is a valid directory—i.e., by returning with a bad exit status if it's
not—we can do the checking ourselves. Here is the code:

pushd ()

{

 dirname=$1

 if [-n "$dirname"] && [\(-d "$dirname" \) -a \

 \(-x "$dirname" \)]; then

 DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}"

 cd $dirname

 echo "$DIR_STACK"

 else

 echo "still in $PWD."

 fi

}

The conditional expression evaluates to true only if the argument $1 is not null (-n), a directory

(-d) and the user has permission to change to it (-x).[7] Notice that this conditional handles the
case where the argument is missing ($dirname is null) first; if it is, the rest of the condition is not
executed. This is important because, if we had just put:

[7] Remember that the same permission flag that determines execute permission on a regular file determines search
permission on a directory. This is why the -x operator checks both things depending on file type.

if [\(-n "$dirname"\) -a \(-d "$dirname" \) -a \

 \(-x "$dirname" \)]; then

the second condition, if null, would cause test to complain and the function would exit
prematurely.

Here is a more comprehensive example of the use of file operators.

Task 5-1
Write a script that prints essentially the same information as ls -l but in a more user-
friendly way.

Although the code for this task looks at first sight quite complicated, it is a straightforward
application of many of the file operators:

if [! -e "$1"]; then

 echo "file $1 does not exist."

 exit 1

fi

if [-d "$1"]; then

 echo -n "$1 is a directory that you may "

 if [! -x "$1"]; then

 echo -n "not "

 fi

 echo "search."

elif [-f "$1"]; then

 echo "$1 is a regular file."

else

 echo "$1 is a special type of file."

fi

if [-O "$1"]; then

 echo 'you own the file.'

else

 echo 'you do not own the file.'

fi

if [-r "$1"]; then

 echo 'you have read permission on the file.'

fi

if [-w "$1"]; then

 echo 'you have write permission on the file.'

fi

if [-x "$1" -a ! -d "$1"]; then

 echo 'you have execute permission on the file.'

fi

We'll call this script fileinfo . Here's how it works:

The first conditional tests if the file given as argument does not exist (the exclamation point
is the "not" operator; the spaces around it are required). If the file does not exist, the script
prints an error message and exits with error status.

The second conditional tests if the file is a directory. If so, the first echo prints part of a
message; remember that the -n option tells echo not to print a LINEFEED at the end. The
inner conditional checks if you do not have search permission on the directory. If you don't
have search permission, the word "not" is added to the partial message. Then, the message
is completed with "search." and a LINEFEED.

The elif clause checks if the file is a regular file; if so, it prints a message.

The else clause accounts for the various special file types on recent UNIX systems, such as
sockets, devices, FIFO files, etc. We assume that the casual user isn't interested in details
of these.

The next conditional tests to see if the file is owned by you (i.e., if its owner ID is the same
as your login ID). If so, it prints a message saying that you own it.

The next two conditionals test for your read and write permission on the file.

The last conditional checks if you can execute the file. It checks to see if you have execute
permission and that the file is not a directory. (If the file were a directory, execute
permission would really mean directory search permission.) In this test we haven't used any
brackets to group the tests and have relied on operator precedence. Simply put, operator
precedence is the order in which the shell processes the operators. This is exactly the same
concept as arithmetic precedence in mathematics, where multiply and divide are done before
addition and subtraction. In our case, [-x "$1" -a ! -d "$1"] is equivalent to [\(-x "$1"
\) -a \(! -d "$1" \)] . The file tests are done first, followed by any negations (!) and
followed by the AND and OR tests.

As an example of fileinfo 's output, assume that you do an ls -l of your current directory and it
contains these lines:

-rwxr-xr-x 1 cam users 2987 Jan 10 20:43 adventure

-rw-r--r-- 1 cam users 30 Jan 10 21:45 alice

-r--r--r-- 1 root root 58379 Jan 11 21:30 core

drwxr-xr-x 2 cam users 1024 Jan 10 21:41 dodo

alice and core are regular files, dodo is a directory, and adventure is a shell script. Typing
fileinfo adventure produces this output:

adventure is a regular file.

you own the file.

you have read permission on the file.

you have write permission on the file.

you have execute permission on the file.

Typing fileinfo alice results in this:

alice is a regular file.

you own the file.

you have read permission on the file.

you have write permission on the file.

Finally, typing fileinfo dodo results in this:

dodo is a directory that you may search.

you own the file.

you have read permission on the file.

you have write permission on the file.

Typing fileinfo core produces this:

core is a regular file.

you do not own the file.

you have read permission on the file.

5.1.5. Integer Conditionals

The shell also provides a set of arithmetic tests. These are different from character string
comparisons like < and > , which compare lexicographic values of strings,[8] not numeric
values. For example, "6" is greater than "57" lexicographically, just as "p" is greater than "ox,"
but of course the opposite is true when they're compared as integers.

[8] "Lexicographic order" is really just "dictionary order."

The integer comparison operators are summarized in Table 5-3 .

Table 5-3. Arithmetic test operators

Test Comparison

-lt Less than

-le Less than or equal

-eq Equal

Test Comparison

-ge Greater than or equal

-gt Greater than

-ne Not equal

You'll find these to be of the most use in the context of the integer variables we'll see in the next
chapter. They're necessary if you want to combine integer tests with other types of tests within
the same conditional expression.

However, the shell has a separate syntax for conditional expressions that involve integers only.
It's considerably more efficient, so you should use it in preference to the arithmetic test operators
listed above. Again, we'll cover the shell's integer conditionals in the next chapter.

 < Day Day Up >

-ge Greater than or equal

-gt Greater than

-ne Not equal

You'll find these to be of the most use in the context of the integer variables we'll see in the next
chapter. They're necessary if you want to combine integer tests with other types of tests within
the same conditional expression.

However, the shell has a separate syntax for conditional expressions that involve integers only.
It's considerably more efficient, so you should use it in preference to the arithmetic test operators
listed above. Again, we'll cover the shell's integer conditionals in the next chapter.

 < Day Day Up >

 < Day Day Up >

5.2. for

The most obvious enhancement to make the previous script is the ability to report on multiple
files instead of just one. Tests like -e and -d take only single arguments, so we need a way of
calling the code once for each file given on the command line.

The way to do this—indeed, the way to do many things with bash— is with a looping construct.
The simplest and most widely applicable of the shell's looping constructs is the for loop. We'll
use for to enhance fileinfo soon.

The for loop allows you to repeat a section of code a fixed number of times. During each time
through the code (known as an iteration), a special variable called a loop variable is set to a
different value; this way each iteration can do something slightly different.

The for loop is somewhat, but not entirely, similar to its counterparts in conventional languages
like C and Pascal. The chief difference is that the shell's standard for loop doesn't let you
specify a number of times to iterate or a range of values over which to iterate; instead, it only lets
you give a fixed list of values. In other words, you can't do anything like this Pascal-type code,
which executes statements 10 times:

for x := 1 to 10 do

begin

 statements...

end

However, the for loop is ideal for working with arguments on the command line and with sets of
files (e.g., all files in a given directory). We'll look at an example of each of these. But first, we'll
show the syntax for the for construct:

for name [in list]

do

 statements that can use $name...

done

The list is a list of names. (If in list is omitted, the list defaults to "$@ ", i.e., the quoted list of

command-line arguments, but we'll always supply the in list for the sake of clarity.) In our
solutions to the following task, we'll show two simple ways to specify lists.

Task 5-2
Task 4-4 used pattern matching and substitution to list the directories in PATH , one
to a line. Unfortunately, old versions of bash don't have that particular pattern
operator. Write a general shell script, listpath , that prints each directory in PATH ,
one per line. In addition, have it print out information about each directory, such as
the permissions and the modification times.

The easiest way to do this is by changing the IFS variable we saw in Chapter 4 :

IFS=:

for dir in $PATH

do

 ls -ld $dir

done

This sets the IFS to be a colon, which is the separator used in PATH . The for loop loops
through, setting dir to each of the colon delimited fields in PATH . ls is used to print out the
directory name and associated information. The -l parameter specifies the "long" format and the
-d tells ls to show only the directory itself and not its contents.

In using this you might see an error generated by ls saying, for example, ls: /usr/TeX/bin: No
such file or directory . It indicates that a directory in PATH doesn't exist. We can modify the
listpath script to check the PATH variable for nonexistent directories by adding some of the
tests we saw earlier:

IFS=:

for dir in $PATH; do

 if [-z "$dir"]; then dir=.; fi

 if ! [-e "$dir"]; then

 echo "$dir doesn't exist"

 elif ! [-d "$dir"]; then

 echo "$dir isn't a directory"

 else

 ls -ld $dir

 fi

done

This time, as the script loops, we first check to see if the length of $dir is zero (caused by
having a value of :: in the PATH). If it is, we set it to the current directory, then check to see if
the directory doesn't exist. If it doesn't, we print out an appropriate message. Otherwise, we
check to see if the file is not a directory. If it isn't, we say so.

The foregoing illustrated a simple use of for , but it's much more common to use for to iterate
through a list of command-line arguments. To show this, we can enhance the fileinfo script
above to accept multiple arguments. First, we write a bit of "wrapper" code that does the
iteration:

for filename in "$@" ; do

 finfo "$filename"

 echo

done

Next, we make the original script into a function called finfo :[9]

[9] A function can have the same name as a script; however, this isn't good programming practice.

finfo ()

{

 if [! -e "$1"]; then

 print "file $1 does not exist."

 return 1

 fi

 ...

}

The complete script consists of the for loop code and the above function, in either order; good
programming style dictates that the function definition should go first.

The fileinfo script works as follows: in the for statement, "$@ " is a list of all positional
parameters. For each argument, the body of the loop is run with filename set to that argument.
In other words, the function finfo is called once for each value of $filename as its first argument
($1). The call to echo after the call to finfo merely prints a blank line between sets of information
about each file.

Given a directory with the same files as the earlier example, typing fileinfo* would produce the
following output:

adventure is a regular file.

you own the file.

you have read permission on the file.

you have write permission on the file.

you have execute permission on the file.

alice is a regular file.

you own the file.

you have read permission on the file.

you have write permission on the file.

core is a regular file.

you do not own the file.

you have read permission on the file.

dodo is a directory that you may search.

you own the file.

you have read permission on the file.

you have write permission on the file.

Here is a programming task that exploits the other major use of for .

Task 5-3
It is possible to print out all of the directories below a given one by using the -R
option of ls . Unfortunately, this doesn't give much idea about the directory structure
because it prints all the files and directories line by line. Write a script that performs a
recursive directory listing and produces output that gives an idea of the structure for
a small number of subdirectories.

We'll probably want output that looks something like this:

.

 adventure

 aaiw

 dodo

 duchess

 hatter

 march_hare

 queen

 tarts

 biog

 ttlg

 red_queen

 tweedledee

 tweedledum

 lewis.carroll

Each column represents a directory level. Entries below and to the right of an entry are files and
directories under that directory. Files are just listed with no entries to their right. This example
shows that the directory adventure and the file lewis.carroll are in the current directory; the
directories aaiw and ttlg , and the file biog are under adventure , etc. To make life simple, we'll
use TABs to line the columns up and ignore any "bleed over" of filenames from one column into
an adjacent one.

We need to be able to traverse the directory hierarchy. To do this easily we'll use a programming
technique known as recursion . Recursion is simply referencing something from itself; in our
case, calling a piece of code from itself. For example, consider this script, tracedir , in your
home directory:

file=$1

echo $file

if [-d "$file"]; then

 cd $file

 ~/tracedir $(ls)

 cd ..

fi

First we copy and print the first argument. Then we test to see if it is a directory. If it is, we cd to
it and call the script again with an argument of the files in that directory. This script is recursive;
when the first argument is a directory, a new shell is invoked and a new script is run on the new
directory. The old script waits until the new script returns, then the old script executes a cd back
up one level and exits. This happens in each invocation of the tracedir script. The recursion will
stop only when the first argument isn't a directory.

Running this on the directory structure listed above with the argument adventure will produce:

adventure

aaiw

dodo

dodo is a file and the script exits.

This script has a few problems, but it is the basis for the solution to this task. One major
problem with the script is that it is very inefficient. Each time the script is called, a new shell is
created. We can improve on this by making the script into a function, because (as you probably
remember from Chapter 4) functions are part of the shell they are started from. We also need a
way to set up the TAB spacing. The easiest way is to have an initializing script or function and
call the recursive routine from that. Let's look at this routine.

recls ()

{

 singletab="\t"

 for tryfile in "$@"; do

 echo $tryfile

 if [-d "$tryfile"]; then

 thisfile=$tryfile

 recdir $(command ls $tryfile)

 fi

 done

 unset dir singletab tab

}

First, we set up a variable to hold the TAB character for the echo command (Chapter 7 explains
all of the options and formatting commands you can use with echo). Then we loop through
each argument supplied to the function and print it out. If it is a directory, we call our recursive
routine, supplying the list of files with ls . We have introduced a new command at this point:
command . command is a shell built-in that disables function and alias look-up. In this case, it is
used to make sure that the ls command is one from your command search path, PATH, and not
a function (for further information on command see Chapter 7). After it's all over, we clean up
by unsetting the variables we have used.

Now we can expand on our earlier shell script.

recdir ()

{

 tab=tabsingletab

 for file in "$@"; do

 echo -e tabfile

 thisfile=$thisfile/$file

 if [-d "$thisfile"]; then

 recdir $(command ls $thisfile)

 fi

 thisfile=${thisfile%/*}

 done

 tab=${tab%"$singletab"}

}

Each time it is called, recdir loops through the files it is given as arguments. For each one it
prints the filename and then, if the file is a directory, calls itself with arguments set to the contents
of the directory. There are two details that have to be taken care of: the number of TABs to use,
and the pathname of the "current" directory in the recursion.

Each time we go down a level in the directory hierarchy we want to add a TAB character, so we
append a TAB to the variable tab every time we enter recdir . Likewise, when we exit recdir we
are moving up a directory level, so we remove the TAB when we leave the function. Initially, tab
is not set, so the first time recdir is called, tab will be set to one TAB. If we recurse into a lower
directory, recdir will be called again and another TAB will be appended. Remember that tab is a
global variable, so it will grow and shrink in TABs for every entry and exit of recdir . The -e
option to echo tells it to recognize escaped formatting characters, in our case the TAB character,
\t .

In this version of the recursive routine we haven't used cd to move between directories. That
means that an ls of a directory will have to be supplied with a relative path to files further down in
the hierarchy. To do this, we need to keep track of the directory we are currently examining. The
initialization routine sets the variable thisfile to the directory name each time a directory is found

while looping. This variable is then used in the recursive routine to keep the relative pathname of
the current file being examined. On each iteration of the loop, thisfile has the current filename
appended to it, and at the end of the loop the filename is removed.

You might like to think of ways to modify the behavior and improve the output of this code.
Here are some programming challenges:

In the current version, there is no way to determine if biog is a file or a directory. An empty
directory looks no different to a file in the listing. Change the output so it appends a / to
each directory name when it displays it.

1.

Modify the code so that it only recurses down a maximum of eight subdirectories (which is
about the maximum before the lines overflow the right-hand side of the screen). Hint: think
about how TABs have been implemented.

2.

Change the output so it includes dashed lines and adds a blank line after each directory,
thus:

.

|

|-------adventure

| |

| |-------aaiw

| | |

| | |-------dodo

| | |-------duchess

| | |-------hatter

| | |-------march_hare

| | |-------queen

| | |-------tarts

| |

| |-------biog

...

3.

4.

Hint: you need at least two other variables that contain the characters "| " and "- ".4.

At the start of this section we pointed out that the for loop in its standard form wasn't capable of
iterating over a specified range of values as can be done in most programming languages. bash
2.0 introduced a new style of for loop which caters for this task; the arithmetic for loop. Well
come back to it in the next chapter when we look at arithmetic operations.

 < Day Day Up >

 < Day Day Up >

5.3. case

T he next flow-control construct we will cover is case . While the case statement in Pascal and
the similar switch statement in Java and C can be used to test simple values like integers and
characters, bash 's case construct lets you test strings against patterns that can contain wildcard
characters. Like its conventional-language counterparts, case lets you express a series of if-then-
else type statements in a concise way.

The syntax of case is as follows:

case expression in

 pattern1)

 statements ;;

 pattern2)

 statements ;;

 ...

esac

Any of the pattern s can actually be several patterns separated by pipe characters (|). If
expression matches one of the patterns, its corresponding statements are executed. If there are
several patterns separated by pipe characters, the expression can match any of them in order for
the associated statements to be run. The patterns are checked in order until a match is found; if
none is found, nothing happens.

This construct should become clearer with an example. Let's revisit our solution to Task 4-2 and
the additions to it presented earlier in this chapter (our graphics utility). Remember that we wrote
some code that processed input files according to their suffixes (.pcx for PCX format, .gif for
GIF format, etc.).

We can improve upon this solution in two ways. Firstly, we can use a for loop to allow multiple
files to be processed one at a time; secondly, we can use the case construct to streamline the
code:

for filename in "$@"; do

 pnmfile=${filename%.*}.ppm

 case $filename in

 *.jpg) exit 0 ;;

 *.tga) tgatoppm $filename > $pnmfile ;;

 *.xpm) xpmtoppm $filename > $pnmfile ;;

 *.pcx) pcxtoppm $filename > $pnmfile ;;

 *.tif) tifftopnm $filename > $pnmfile ;;

 *.gif) giftopnm $filename > $pnmfile ;;

 *) echo "procfile: $filename is an unknown graphics file."

 exit 1 ;;

 esac

 outfile=${pnmfile%.ppm}.new.jpg

 pnmtojpeg $pnmfile > $outfile

 rm $pnmfile

done

The case construct in this code does the same thing as the if statements that we saw in the earlier
version. It is, however, clearer and easier to follow.

The first six patterns in the case statement match the various file extensions that we wish to
process. The last pattern matches anything that hasn't already been matched by the previous
statements. It is essentially a catchall and is analogous to the default case in C.

There is another slight difference to the previous version; we have moved the pattern matching
and replacement inside the added for loop that processes all of the command-line arguments.
Each time we pass through the loop, we want to create a temporary and final file with a name
based on the name in the current command-line argument.

We'll return to this example in Chapter 6 , when we further develop the script and discuss how to
handle dash options on the command line. In the meantime, here is a task that requires that we
use case .

Task 5-4
Write a function that implements the Korn shell's cd old new . cd takes the pathname
of the current directory and tries to find the string old . If it finds it, it substitutes new
and attempts to change to the resulting directory.

We can implement this by using a case statement to check the number of arguments and the
built-in cd command to do the actual change of directory.

Here is the code:[10]

[10] To make the function a little clearer, we've used some advanced I/O redirection. I/O redirection is covered in
Chapter 7 .

cd()

{

 case "$#" in

 0 | 1) builtin cd $1 ;;

 2) newdir=${PWD//$1/$2}

 case "$newdir" in

 $PWD) echo "bash: cd: bad substitution" >&2 ;

 return 1 ;;

 *) builtin cd "$newdir" ;;

 esac ;;

 *) echo "bash: cd: wrong arg count" 1>&2 ; return 1 ;;

 esac

}

The case statement in this task tests the number of arguments to our cd command against three
alternatives.

For zero or one arguments, we want our cd to work just like the built-in one. The first alternative
in the case statement does this. It includes something we haven't used so far; the pipe symbol
between the 0 and 1 means that either pattern is an acceptable match. If the number of arguments
is either of these, the built-in cd is executed.

The next alternative is for two arguments, which is where we'll add the new functionality to cd .
The first thing that has to be done is finding and replacing the old string with the new one. We
use the pattern matching and replacement that we saw in the last chapter, the result being
assigned to newdir . If the substitution didn't take place, the pathname will be unchanged. We'll
use this fact in the next few lines.

Another case statement chooses between performing the cd or reporting an error because the
new directory is unchanged. The * alternative is a catchall for anything other than the current
pathname (caught by the first alternative).

You might notice one small problem with this code: if your old and new strings are the same
you'll get bash:: cd: bad substitution . It should just leave you in the same directory with no
error message, but because the directory path doesn't change, it uses the first alternative in the
inner case statement. The problem lies in knowing if sed has performed a substitution or not.
You might like to think about ways to fix this problem (hint: you could use grep to check
whether the pathname has the old string in it).

The last alternative in the outer case statement prints an error message if there are more than two
arguments.

 < Day Day Up >

 < Day Day Up >

5.4. select

All of the flow-control constructs we have seen so far are also available in the Bourne shell, and
the C shell has equivalents with different syntax. Our next construct, select , is available only in
the Korn shell and bash ;[11] moreover, it has no analogy in conventional programming
languages.

[11] select is not available in bash versions prior to 1.14.

select allows you to generate simple menus easily. It has concise syntax, but it does quite a lot
of work. The syntax is:

select name [in list]

do

 statements that can use $name...

done

This is the same syntax as for except for the keyword select . And like for , you can omit the in
list and it will default to "$@ ", i.e., the list of quoted command-line arguments. Here is what
select does:

Generates a menu of each item in list, formatted with numbers for each choice1.

Prompts the user for a number2.

Stores the selected choice in the variable name and the selected number in the built-in
variable REPLY

3.

Executes the statements in the body4.

Repeats the process forever (but see below for how to exit)5.

Here is a task that adds another command to our pushd and popd utilities.

Task 5-5
Write a function that allows the user to select a directory from a list of directories
currently in the pushd directory stack. The selected directory is moved to the front of
the stack and becomes the current working directory.

The display and selection of directories is best handled by using select . We can start off with
something along the lines of:[12]

[12] Versions of bash prior to 1.14.3 have a serious bug with select . These versions will crash if the select list is
empty. In this case, surround select s with a test for a null list.

selectd ()

{

 PS3='directory? '

 select selection in $DIR_STACK; do

 if [$selection]; then

 #statements that manipulate the stack...

 break

 else

 echo 'invalid selection.'

 fi

 done

}

If you type DIR_STACK= "/usr /home /bin " and execute this function, you'll see:

1) /usr

2) /home

3) /bin

directory?

The built-in shell variable PS3 contains the prompt string that select uses; its default value is the
not particularly useful "#? ". So the first line of the above code sets it to a more relevant value.

The select statement constructs the menu from the list of choices. If the user enters a valid
number (from 1 to the number of directories), then the variable selection is set to the
corresponding value; otherwise it is null. (If the user just presses RETURN, the shell prints the
menu again.)

The code in the loop body checks if selection is non-null. If so, it executes the statements we
will add in a short while; then the break statement exits the select loop. If selection is null, the
code prints an error message and repeats the menu and prompt.

The break statement is the usual way of exiting a select loop. Actually (like its analog in Java
and C), it can be used to exit any surrounding control structure we've seen so far (except case ,
where the double semicolons act like break) as well as the while and until we will see soon.
We haven't introduced break until now because it is considered bad coding style to use it to exit
a loop. However, it can make code easier to read if used judiciously. break is necessary for
exiting select when the user makes a valid choice. [13]

[13] A user can also type CTRL-D (for end-of-input) to get out of a select loop. This gives the user a uniform way of
exiting, but it doesn't help the shell programmer much.

Now we'll add the missing pieces to the code:

selectd ()

{

 PS3='directory? '

 dirstack=" $DIR_STACK "

 select selection in $dirstack; do

 if [$selection]; then

 DIR_STACK="$selection${dirstack%% $selection *}"

 DIR_STACK="$DIR_STACK ${dirstack##* $selection }"

 DIR_STACK=${DIR_STACK% }

 cd $selection

 break

 else

 echo 'invalid selection.'

 fi

 done

}

The first two lines initialize environment variables. dirstack is a copy of DIR_STACK with
spaces appended at the beginning and end so that each directory in the list is of the form space
directory space . This form simplifies the code when we come to manipulating the directory
stack.

The select and if statements are the same as in our initial function. The new code inside the if
uses bash 's pattern-matching capability to manipulate the directory stack.

The first statement sets DIR_STACK to selection , followed by dirstack with everything from
selection to the end of the list removed. The second statement adds everything in the list from
the directory following selection to the end of DIR_STACK . The next line removes the trailing
space that was appended at the start. To complete the operation, a cd is performed to the new
directory, followed by a break to exit the select code.

As an example of the list manipulation performed in this function, consider a DIR_STACK set
to /home /bin /usr2 . In this case, dirstack would become /home /bin /usr2 . Typing selectd
would result in:

$ selectd

1) /home

2) /bin

3) /usr2

directory?

After selecting /bin from the list, the first statement inside the if section sets DIR_STACK to
/bin followed by dirstack with everything from /bin onwards removed, i.e., /home .

The second statement then takes DIR_STACK and appends everything in dirstack following
/bin (i.e., /usr2) to it. The value of DIR_STACK becomes /bin /home /usr2 . The trailing
space is removed in the next line.

 < Day Day Up >

 < Day Day Up >

5.5. while and until

The remaining two flow control constructs bash provides are while and until . These are
similar; they both allow a section of code to be run repetitively while (or until) a certain condition
becomes true. They also resemble analogous constructs in Pascal (while /do and repeat /until)
and C (while and do /until).

while and until are actually most useful when combined with features we will see in the next
chapter, such as integer arithmetic, input/output of variables, and command-line processing. Yet
we can show a useful example even with what we have covered so far.

The syntax for while is:

while condition do

 statements... done

For until , just substitute until for while in the above example. As with if , the condition is really
a list of statements that are run; the exit status of the last one is used as the value of the
condition. You can use a conditional with test here, just as you can with if .

Note that the only difference between while and until is the way the condition is handled. In
while , the loop executes as long as the condition is true; in until , it runs as long as the
condition is false. The until condition is checked at the top of the loop, not at the bottom as it is
in analogous constructs in C and Pascal.

The result is that you can convert any until into a while by simply negating the condition. The
only place where until might be more meaningful is something like this:

until command ; do

 statements... done

The meaning of this is essentially, "Do statements until command runs correctly." This is not a
likely contingency.

Here is an earlier task that can be rewritten using a while .

Task 5-6
Reimplement Task 5-2 without the use of the IFS variable.

We can use the while construct and pattern matching to traverse the PATH list:

path=$PATH:

while [$path]; do

 ls -ld ${path%%:*}

 path=${path#*:}

done

The first line copies PATH to a temporary copy, path , and appends a colon to it. Normally
colons are used only between directories in PATH ; adding one to the end makes the code
simple.

Inside the while loop we display the directory with ls as we did in Task 5-2. path is then
updated by removing the first directory pathname and colon (which is why we needed to append
the colon in the first line of the script). The while will keep looping until $path expands to
nothing (the empty string ""), which occurs once the last directory in path has been listed.

Here is another task that is a good candidate for until .

Task 5-7
Write a script that attempts to copy a file to a directory and, if it fails, waits five
seconds, then tries again, continuing until it succeeds.

Here is the code:

until cp $1 $2; do

 echo 'Attempt to copy failed. waiting...'

 sleep 5

done

This is a fairly simple use of until . First, we use the cp command to perform the copy for us. If
it can't perform the copy for any reason, it will return with a non-zero exit code. We set our until
loop so that if the result of the copy is not 0 then the script prints a message and waits five
seconds.

As we said earlier, an until loop can be converted to a while by the use of the ! operator:

while ! cp $1 $2; do

 echo 'Attempt to copy failed. waiting...'

 sleep 5

done

In our opinion, you'll seldom need to use until ; therefore, we'll use while throughout the rest of
this book. We'll see further use of the while construct in Chapter 7 .

 < Day Day Up >

 < Day Day Up >

Chapter 6. Command-Line Options and
Typed Variables
You should have a healthy grasp of shell programming techniques now that you have gone
through the previous chapters. What you have learned up to this point enables you to write many
non-trivial, useful shell scripts and functions.

Still, you may have noticed some remaining gaps in the knowledge you need to write shell code
that behaves like the UNIX commands you are used to. In particular, if you are an experienced
UNIX user, it might have occurred to you that none of the example scripts shown so far have the
ability to handle options preceded by a dash (-) on the command line. And if you program in a
conventional language like C or Pascal, you will have noticed that the only type of data that we
have seen in shell variables is character strings; we haven't seen how to do arithmetic, for
example.

These capabilities are certainly crucial to the shell's ability to function as a useful UNIX
programming language. In this chapter, we will show how bash supports these and related
features.

 < Day Day Up >

 < Day Day Up >

6.1. Command-Line Options

We have already seen many examples of the positional parameters (variables called 1 , 2 , 3 ,
etc.) that the shell uses to store the command-line arguments to a shell script or function when it
runs. We have also seen related variables like * (for the string of all arguments) and # (for the
number of arguments).

Indeed, these variables hold all of the information on the user's command-line. But consider what
happens when options are involved. Typical UNIX commands have the form command [-
options]args , meaning that there can be 0 or more options. If a shell script processes the
command teatime alice hatter , then $1 is "alice" and $2 is "hatter". But if the command is
teatime -o alice hatter , then $1 is -o , $2 is "alice", and $3 is "hatter".

You might think you could write code like this to handle it:

if [$1 = -o]; then

 code that processes the -o option

 1=$2

 2=$3

fi

normal processing of $1 and $2...

But this code has several problems. First, assignments like 1=$2 are illegal because positional
parameters are read-only. Even if they were legal, another problem is that this kind of code
imposes limitations on how many arguments the script can handle—which is very unwise.
Furthermore, if this command had several possible options, the code to handle all of them would
get very messy very quickly.

6.1.1. shift

Luckily, the shell provides a way around this problem. The command shift performs the function
of:

1=$2

2=$3

...

for every argument, regardless of how many there are. If you supply a numeric argument to shift
, it will shift the arguments that many times over; for example, shift 3 has this effect:

1=$4

2=$5

...

This leads immediately to some code that handles a single option (call it -o) and arbitrarily many
arguments:

if [$1 = -o]; then

 process the -o option

 shift

fi

normal processing of arguments...

After the if construct, $1 , $2 , etc., are set to the correct arguments.

We can use shift together with the programming features we have seen so far to implement
simple option schemes. However, we will need additional help when things get more complex.
The getopts built-in command, which we will introduce later, provides this help.

shift by itself gives us enough power to implement the - N option to the highest script we saw in
Chapter 4 (Task 4-1). Recall that this script takes an input file that lists artists and the number of
albums you have by them. It sorts the list and prints out the N highest numbers, in descending
order. The code that does the actual data processing is:

filename=$1

howmany=${2:-10}

sort -nr $filename | head -$howmany

Our original syntax for calling this script was highest filename [- N] , where N defaults to 10 if

omitted. Let's change this to a more conventional UNIX syntax, in which options are given
before arguments: highest [- N] filename . Here is how we would write the script with this
syntax:

if [-n "$(echo $1 | grep '^-[0-9][0-9]*$')"]; then

 howmany=$1

 shift

elif [-n "$(echo $1 | grep '^-')"]; then

 print 'usage: highest [-N] filename'

 exit 1

else

 howmany="-10"

fi

filename=$1

sort -nr $filename | head $howmany

This uses the grep search utility to test if $1 matches the appropriate pattern. To do this we
provide the regular expression ^-[0-9][0-9]*$ to grep , which is interpreted as "an initial dash
followed by a digit, optionally followed by one or more digits." If a match is found then grep
will return the match and the test will be true, otherwise grep will return nothing and processing
will pass to the elif test. Notice that we have enclosed the regular expression in single quotes to
stop the shell from interpreting the $ and * , and pass them through to grep unmodified.

If $1 doesn't match, we test to see if it's an option at all, i.e., if it matches the pattern - followed
by anything else. If it does, then it's invalid; we print an error message and exit with error status.
If we reach the final (else) case, we assume that $1 is a filename and treat it as such in the
ensuing code. The rest of the script processes the data as before.

We can extend what we have learned so far to a general technique for handling multiple options.
For the sake of concreteness, assume that our script is called alice and we want to handle the
options -a , -b , and -c :

while [-n "$(echo $1 | grep '-')"]; do

 case $1 in

 -a) process option -a ;;

 -b) process option -b ;;

 -c) process option -c ;;

 *) echo 'usage: alice [-a] [-b] [-c] args...'

 exit 1

 esac

 shift

done

normal processing of arguments...

This code checks $1 repeatedly as long as it starts with a dash (-). Then the case construct runs
the appropriate code depending on which option $1 is. If the option is invalid—i.e., if it starts
with a dash but isn't -a , -b , or -c— then the script prints a usage message and returns with an
error exit status.

After each option is processed, the arguments are shifted over. The result is that the positional
parameters are set to the actual arguments when the while loop finishes.

Notice that this code is capable of handling options of arbitrary length, not just one letter (e.g., -
adventure instead of -a).

6.1.2. Options with Arguments

We need to add one more ingredient to make option processing really useful. Recall that many
commands have options that take their own arguments. For example, the cut command, on
which we relied heavily in Chapter 4 , accepts the option -d with an argument that determines the
field delimiter (if it is not the default TAB). To handle this type of option, we just use another
shift when we are processing the option.

Assume that, in our alice script, the option -b requires its own argument. Here is the modified
code that will process it:

while [-n "$(echo $1 | grep '-')"]; do

 case $1 in

 -a) process option -a ;;

 -b) process option -b

 $2 is the option's argument

 shift ;;

 -c) process option -c ;;

 *) echo 'usage: alice [-a] [-b barg] [-c] args...'

 exit 1

 esac

 shift

done

normal processing of arguments...

6.1.3. getopts

So far, we have a complete, but constrained, way of handling command-line options. The above
code does not allow a user to combine arguments with a single dash, e.g., -abc instead of -a -b -
c . It also doesn't allow one to specify arguments to options without a space in between, e.g., -
barg in addition to -b arg .[1]

[1] Although most UNIX commands allow this, it is actually contrary to the Command Syntax Standard Rules in intro
of the User's Manual .

The shell provides a built-in way to deal with multiple complex options without these constraints.
The built-in command getopts [2] can be used as the condition of the while in an option-
processing loop. Given a specification of which options are valid and which require their own
arguments, it sets up the body of the loop to process each option in turn.

[2] getopts replaces the external command getopt , used in Bourne shell programming; getopts is better integrated into
the shell's syntax and runs more efficiently. C programmers will recognize getopts as very similar to the standard library
routine getopt .

getopts takes two arguments. The first is a string that can contain letters and colons. Each letter
is a valid option; if a letter is followed by a colon, the option requires an argument. getopts picks
options off the command line and assigns each one (without the leading dash) to a variable
whose name is getopts 's second argument. As long as there are options left to process, getopts
will return exit status 0; when the options are exhausted, it returns exit status 1, causing the while
loop to exit.

getopts does a few other things that make option processing easier; we'll encounter them as we

examine how to use getopts in this example:

while getopts ":ab:c" opt; do

 case $opt in

 a) process option -a ;;

 b) process option -b

 $OPTARG is the option's argument ;;

 c) process option -c ;;

 \?) echo 'usage: alice [-a] [-b barg] [-c] args...'

 exit 1

 esac

done

shift $(($OPTIND - 1))

normal processing of arguments...

The call to getopts in the while condition sets up the loop to accept the options -a , -b , and -c ,
and specifies that -b takes an argument. (We will explain the : that starts the option string in a
moment.) Each time the loop body is executed, it will have the latest option available, without a
dash (-), in the variable opt .

If the user types an invalid option, getopts normally prints an unfortunate error message (of the
form cmd: getopts: illegal option — o) and sets opt to ? . However if you begin the option
letter string with a colon, getopts won't print the message.[3] We recommend that you specify
the colon and provide your own error message in a case that handles ? , as above.

[3] You can also turn off the getopts messages by setting the environment variable OPTERR to 0. We will continue to
use the colon method in this book.

We have modified the code in the case construct to reflect what getopts does. But notice that
there are no more shift statements inside the while loop: getopts does not rely on shift s to
keep track of where it is. It is unnecessary to shift arguments over until getopts is finished, i.e.,
until the while loop exits.

If an option has an argument, getopts stores it in the variable OPTARG , which can be used in
the code that processes the option.

The one shift statement left is after the while loop. getopts stores in the variable OPTIND the

number of the next argument to be processed; in this case, that's the number of the first (non-
option) command-line argument. For example, if the command line were alice -ab rabbit , then
$OPTIND would be "3". If it were alice -a -b rabbit , then $OPTIND would be "4".

The expression $(($OPTIND - 1)) is an arithmetic expression (as we'll see later in this chapter)
equal to $OPTIND minus 1. This value is used as the argument to shift . The result is that the
correct number of arguments are shifted out of the way, leaving the "real" arguments as $1 , $2 ,
etc.

Before we continue, now is a good time to summarize everything getopts does:

Its first argument is a string containing all valid option letters. If an option requires an
argument, a colon follows its letter in the string. An initial colon causes getopts not to print
an error message when the user gives an invalid option.

1.

Its second argument is the name of a variable that will hold each option letter (without any
leading dash) as it is processed.

2.

If an option takes an argument, the argument is stored in the variable OPTARG .3.

The variable OPTIND contains a number equal to the next command-line argument to be
processed. After getopts is done, it equals the number of the first "real" argument.

4.

The advantages of getopts are that it minimizes extra code necessary to process options and
fully supports the standard UNIX option syntax (as specified in intro of the User's Manual).

As a more concrete example, let's return to our graphics utility (Task 4-2). So far, we have given
our script the ability to process various types of graphics files such as PCX files (ending with
.pcx), GIF files (.gif), XPM files (.xpm), etc. As a reminder, here is what we have coded in the
script so far:

filename=$1

if [-z $filename]; then

 echo "procfile: No file specified"

 exit 1

fi

for filename in "$@"; do

 pnmfile=${filename%.*}.ppm

 case $filename in

 *.jpg) exit 0 ;;

 *.tga) tgatoppm $filename > $pnmfile ;;

 *.xpm) xpmtoppm $filename > $pnmfile ;;

 *.pcx) pcxtoppm $filename > $pnmfile ;;

 *.tif) tifftopnm $filename > $pnmfile ;;

 *.gif) giftopnm $filename > $pnmfile ;;

 *) echo "procfile: $filename is an unknown graphics file."

 exit 1 ;;

 esac

 outfile=${pnmfile%.ppm}.new.jpg

 pnmtojpeg $pnmfile > $outfile

 rm $pnmfile

done

This script works quite well, in that it will convert the various different graphics files that we have
lying around into JPEG files suitable for our web page. However, NetPBM has a whole range of
useful utilities besides file converters that we could use on the images. It would be nice to be able

to select some of them from our script.

Things we might wish to do to modify the images include changing the size and placing a border
around them. We want to make the script as flexible as possible; we will want to change the size
of the resulting images and we might not want a border around every one of them, so we need to
be able to specify to the script what it should do. This is where the command-line option
processing will come in useful.

We can change the size of an image by using the NetPBM utility pnmscale . You'll recall from
the last chapter that the NetPBM package has its own format called PNM, the Portable Anymap.
The fancy utilities we'll be using to change the size and add borders work on PNMs. Fortunately,
our script already converts the various formats we give it into PNMs. Besides a PNM file,
pnmscale also requires some arguments telling it how to scale the image.[4] There are various
different ways to do this, but the one we'll choose is -xysize which takes a horizontal and a
vertical size in pixels for the final image.[5]

[4] We'll also need the -quiet option, which suppresses diagnostic output from some NetPBM utilities.

[5] Actually, -xysize fits the image into a box defined by its arguments without changing the aspect ratio of the image,
i.e., without stretching the image horizontally or vertically. For example, if you had an image of size 200 by 100 pixels
and you processed it with pnmscale -xysize 100 100 , you'd end up with an image of size 100 by 50 pixels.

The other utility we need is pnmmargin , which places a colored border around an image. Its
arguments are the width of the border in pixels and the color of the border.

Our graphics utility will need some options to reflect the ones we have just seen. -s size will
specify a size into which the final image will fit (minus any border), -w width will specify the
width of the border around the image, and -c color-name will specify the color of the border.

Here is the code for the script procimage that includes the option processing:

Set up the defaults

size=320

width=1

colour="-color black"

usage="Usage: $0 [-s N] [-w N] [-c S] imagefile..."

while getopts ":s:w:c:" opt; do

 case $opt in

 s) size=$OPTARG ;;

 w) width=$OPTARG ;;

 c) colour="-color $OPTARG" ;;

 \?) echo $usage

 exit 1 ;;

 esac

done

shift $(($OPTIND - 1))

if [-z "$@"]; then

 echo $usage

 exit 1

fi

Process the input files

for filename in "$*"; do

 ppmfile=${filename%.*}.ppm

 case $filename in

 *.gif) giftopnm $filename > $ppmfile ;;

 *.tga) tgatoppm $filename > $ppmfile ;;

 *.xpm) xpmtoppm $filename > $ppmfile ;;

 *.pcx) pcxtoppm $filename > $ppmfile ;;

 *.tif) tifftopnm $filename > $ppmfile ;;

 *.jpg) jpegtopnm -quiet $filename > $ppmfile ;;

 *) echo "$0: Unknown filetype '${filename##*.}'"

 exit 1;;

 esac

 outfile=${ppmfile%.ppm}.new.jpg

 pnmscale -quiet -xysize $size $size $ppmfile |

 pnmmargin $colour $width |

 pnmtojpeg > $outfile

 rm $ppmfile

done

The first several lines of this script initialize variables with default settings. The defaults set the
image size to 320 pixels and a black border of width 1 pixel.

The while , getopts , and case constructs process the options in the same way as in the
previous example. The code for the first three options assigns the respective argument to a
variable (replacing the default value). The last option is a catchall for any invalid options.

The rest of the code works in much the same way as in the previous example except we have
added the pnmscale and pnmmargin utilities in a processing pipeline at the end.

The script also now generates a different filename; it appends .new.jpg to the basename. This
allows us to process a JPEG file as input, applying scaling and borders, and write it out without
destroying the original file.

This version doesn't address every issue, e.g., what if we don't want any scaling to be
performed? We'll return to this script and develop it further in the next chapter.

 < Day Day Up >

 < Day Day Up >

6.2. Typed Variables

So far we've seen how bash variables can be assigned textual values. Variables can also have
other attributes, including being read only and being of type integer .

You can set variable attributes with the declare built-in. [6] Table 6-1 summarizes the available
options with declare .[7] A - turns the option on, while + turns it off.

[6] The typeset built-in is synonymous with declare but is considered obsolete.

[7] The -a and -F options are not available in bash prior to version 2.0.

Table 6-1. Declare options

Option Meaning

-a The variables are treated as arrays

-f Use function names only

-F Display function names without definitions

-i The variables are treated as integers

-r Makes the variables read-only

-x Marks the variables for export via the environment

Typing declare on its own displays the values of all variables in the environment. The -f option
limits this display to the function names and definitions currently in the environment. -F limits it
further by displaying only the function names.

The -a option declares arrays— a variable type that we haven't seen yet, but will be discussed
shortly.

The -i option is used to create an integer variable, one that holds numeric values and can be used
in and modified by arithmetic operations. Consider this example:

$ val1=12 val2=5

$ result1=val*val2

$ echo $result1

val1*val2

$

$ declare -i val3=12 val4=5

$ declare -i result2

$ result2=val3*val4

$ echo $result2

60

In the first example, the variables are ordinary shell variables and the result is just the string
"val1*val2". In the second example, all of the variables have been declared as type integer . The
variable result contains the result of the arithmetic computation twelve multiplied by five.
Actually, we didn't need to declare val3 and val4 as type integer. Anything being assigned to
result2 is interpreted as an arithmetic statement and evaluation is attempted.

The -x option to declare operates in the same way as the export built-in that we saw in Chapter
3 . It allows the listed variables to be exported outside the current shell environment.

The -r option creates a read-only variable, one that cannot have its value changed by subsequent
assignment statements and cannot be unset .

A related built-in is readonly name . .. which operates in exactly the same way as declare -r .
readonly has three options: -f , which makes readonly interpret the name arguments as function
names rather than variable names, -p , which makes the built-in print a list of all read-only names,
and -a , which interprets the name arguments as arrays.

Lastly, variables declare d in a function are local to that function, just like using local to declare
them.

 < Day Day Up >

 < Day Day Up >

6.3. Integer Variables and Arithmetic

The expression $(($OPTIND - 1)) in the last graphics utility example shows another way that
the shell can do integer arithmetic. As you might guess, the shell interprets words surrounded by
$((and)) as arithmetic expressions.[8] Variables in arithmetic expressions do not need to be
preceded by dollar signs, though it is not wrong to do so.

[8] You can also use the older form $[...] , but we don't recommend this because it will be phased out in future versions
of bash .

Arithmetic expressions are evaluated inside double quotes, like tildes, variables, and command
substitutions. We're finally in a position to state the definitive rule about quoting strings: when in
doubt, enclose a string in single quotes, unless it contains tildes or any expression involving a
dollar sign, in which case you should use double quotes.

For example, the date command on modern versions of UNIX accepts arguments that tell it how
to format its output. The argument +%j tells it to print the day of the year, i.e., the number of
days since December 31st of the previous year.

We can use +%j to print a little holiday anticipation message:

echo "Only $(((365-$(date +%j)) / 7)) weeks until the New Year"

We'll show where this fits in the overall scheme of command-line processing in Chapter 7 .

The arithmetic expression feature is built into bash 's syntax, and was available in the Bourne
shell (most versions) only through the external command expr . Thus it is yet another example of
a desirable feature provided by an external command being better integrated into the shell.
getopts , as we have already seen, is another example of this design trend.

bash arithmetic expressions are equivalent to their counterparts in the Java and C languages.[9]

Precedence and associativity are the same as in C. Table 6-2 shows the arithmetic operators that
are supported. Although some of these are (or contain) special characters, there is no need to
backslash-escape them, because they are within the $((...)) syntax.

[9] The assignment forms of these operators are also permitted. For example, $((x += 2)) adds 2 to x and stores the
result back in x .

Table 6-2. Arithmetic operators

Operator Meaning

++ Increment by one (prefix and postfix)

— Decrement by one (prefix and postfix)

+ Plus

- Minus

* Multiplication

/ Division (with truncation)

% Remainder

** Exponentiation[10]

<< Bit-shift left

>> Bit-shift right

& Bitwise and

| Bitwise or

~ Bitwise not

! Logical not

^ Bitwise exclusive or

, Sequential evaluation

[10] Note that ** is not in the C language.

The ++ and - operators are useful when you want to increment or decrement a value by one.[11]

They work the same as in Java and C, e.g., value++ increments value by 1. This is called post-
increment ; there is also a pre-increment : ++value . The difference becomes evident with an
example:

[11] ++ and - are not available in versions of bash prior to 2.04.

$ i=0

$ echo $i

0

$ echo $((i++))

0

$ echo $i

1

$ echo $((++i))

2

$ echo $i

2

In both cases the value has been incremented by one. However, in the first case (post-increment)
the value of the variable was passed to echo and then the variable was incremented. In the
second case (pre-increment) the increment was performed and then the variable passed to echo.

Parentheses can be used to group subexpressions. The arithmetic expression syntax also (as in
C) supports relational operators as "truth values" of 1 for true and 0 for false. Table 6-3 shows
the relational operators and the logical operators that can be used to combine relational
expressions.

Table 6-3. Relational operators

Operator Meaning

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

&& Logical and

|| Logical or

For example, $((3 > 2)) has the value 1; $(((3 > 2) || (4 <= 1))) also has the value 1, since at

least one of the two subexpressions is true.

The shell also supports base N numbers, where N can be from 2 to 36. The notation B # N
means "N base B ". Of course, if you omit the B # , the base defaults to 10.

6.3.1. Arithmetic Conditionals

In Chapter 5 , we saw how to compare strings by the use of [...] notation (or with the test built-
in). Arithmetic conditions can also be tested in this way. However, the tests have to be carried
out with their own operators. These are shown in Table 6-4 .

Table 6-4. Test relational operators

Operator Meaning

-lt Less than

-gt Greater than

-le Less than or equal to

-ge Greater than or equal to

-eq Equal to

-ne Not equal to

And as with string comparisons, the arithmetic test returns a result of true or false; 0 if true, 1
otherwise. So, for example, [3 -gt 2] produces exit status 0, as does [\(3 -gt 2 \) || \(4 -le 1 \)
] , but [\(3 -gt 2 \) && \(4 -le 1 \)] has exit status 1 since the second subexpression isn't true.

In these examples we have had to escape the parentheses and pass them to test as separate
arguments. As you can see, the result can look rather unreadable if there are many parentheses.

Another way to make arithmetic tests is to use the $((...)) form to encapsulate the condition. For
example: [$(((3 > 2) && (4 <= 1))) = 1] . This evaluates the conditionals and then compares
the resulting value to 1 (true).[12]

[12] Note that the truth values returned by $((...)) are 1 for true, 0 for false—the reverse of the test and exit statuses.

There is an even neater and more efficient way of performing an arithmetic test: by using the
((...)) construct.[13] This returns an exit status of 0 if the expression is true, and 1 otherwise.

[13] ((...)) is not available in versions of bash prior to 2.0.

The above expression using this construct becomes (((3 > 2) && (4 <= 1))) . This example
returns with an exit status of 1 because, as we said, the second subexpression is false.

6.3.2. Arithmetic Variables and Assignment

As we saw earlier, you can define integer variables by using declare . You can also evaluate
arithmetic expressions and assign them to variables with the use of let . The syntax is:

let intvar=expression

It is not necessary (because it's actually redundant) to surround the expression with $((and)) in
a let statement. let doesn't create a variable of type integer; it only causes the expression
following the assignment to be interpreted as an arithmetic one. As with any variable assignment,
there must not be any space on either side of the equal sign (=). It is good practice to surround
expressions with quotes, since many characters are treated as special by the shell (e.g., * , # ,
and parentheses); furthermore, you must quote expressions that include whitespace (spaces or
TABs). See Table 6-5 for examples.

Table 6-5. Sample integer expression assignments

Assignment Value

let x= $x

1+4 5

`1 + 4' 5

`(2+3) * 5' 25

`2 + 3 * 5' 17

`17 / 3' 5

`17 % 3' 2

`1<<4' 16

`48>>3' 6

`17 & 3' 1

Assignment Value

`17 | 3' 19

`17 ^ 3' 18

Task 6-1
Here is a small task that makes use of integer arithmetic. Write a script called ndu that
prints a summary of the disk space usage for each directory argument (and any
subdirectories), both in terms of bytes, and kilobytes or megabytes (whichever is
appropriate).

Here is the code:

for dir in ${*:-.}; do

 if [-e $dir]; then

 result=$(du -s $dir | cut -f 1)

 let total=$result*1024

 echo -n "Total for $dir = $total bytes"

 if [$total -ge 1048576]; then

 echo " ($((total/1048576)) Mb)"

 elif [$total -ge 1024]; then

 echo " ($((total/1024)) Kb)"

 fi

 fi

done

To obtain the disk usage of files and directories, we can use the UNIX utility du . The default

`17 | 3' 19

`17 ^ 3' 18

Task 6-1
Here is a small task that makes use of integer arithmetic. Write a script called ndu that
prints a summary of the disk space usage for each directory argument (and any
subdirectories), both in terms of bytes, and kilobytes or megabytes (whichever is
appropriate).

Here is the code:

for dir in ${*:-.}; do

 if [-e $dir]; then

 result=$(du -s $dir | cut -f 1)

 let total=$result*1024

 echo -n "Total for $dir = $total bytes"

 if [$total -ge 1048576]; then

 echo " ($((total/1048576)) Mb)"

 elif [$total -ge 1024]; then

 echo " ($((total/1024)) Kb)"

 fi

 fi

done

To obtain the disk usage of files and directories, we can use the UNIX utility du . The default

output of du is a list of directories with the amount of space each one uses, and looks something
like this:

6 ./toc

3 ./figlist

6 ./tablist

1 ./exlist

1 ./index/idx

22 ./index

39 .

If you don't specify a directory to du , it will use the current directory (.). Each directory and
subdirectory is listed along with the amount of space it uses. The grand total is given in the last
line.

The amount of space used by each directory and all the files in it is listed in terms of blocks.
Depending on the UNIX system you are running on, one block can represent 512 or 1024 bytes.
Each file and directory uses at least one block. Even if a file or directory is empty, it is still
allocated a block of space in the filesystem.

In our case, we are only interested in the total usage, given on the last line of du 's output. To
obtain only this line, we can use the -s option of du . Once we have the line, we want only the
number of blocks and can throw away the directory name. For this we use our old friend cut to
extract the first field.

Once we have the total, we can multiply it by the number of bytes in a block (1024 in this case)
and print the result in terms of bytes. We then test to see if the total is greater than the number of
bytes in one megabyte (1048576 bytes, which is 1024 x 1024) and if it is, we can print how many
megabytes it is by dividing the total by this large number. If not, we see if it can be expressed in
kilobytes, otherwise nothing is printed.

We need to make sure that any specified directories exist, otherwise du will print an error
message and the script will fail. We do this by using the test for file or directory existence (-e)
that we saw in Chapter 5 before calling du .

To round out this script, it would be nice to imitate du as closely as possible by providing for
multiple arguments. To do this, we wrap the code in a for loop. Notice how parameter
substitution has been used to specify the current directory if no arguments are given.

As a bigger example of integer arithmetic, we will complete our emulation of the pushd and popd

functions (Task 4-8). Remember that these functions operate on DIR_STACK , a stack of
directories represented as a string with the directory names separated by spaces. bash 's pushd
and popd take additional types of arguments, which are:

pushd +n takes the nth directory in the stack (starting with 0), rotates it to the top, and cd s
to it.

pushd without arguments, instead of complaining, swaps the two top directories on the
stack and cd s to the new top.

popd +n takes the nth directory in the stack and just deletes it.

The most useful of these features is the ability to get at the n th directory in the stack. Here are
the latest versions of both functions:

.ps 8

pushd ()

{

 dirname=$1 if [-n $dirname] && [\(-d $dirname \) -a

 \(-x $dirname \)]; then

 DIR_STACK="$dirname ${DIR_STACK:-$PWD' '}"

 cd $dirname

 echo "$DIR_STACK"

 else

 echo "still in $PWD."

 fi

}

popd ()

{

 if [-n "$DIR_STACK"]; then

 DIR_STACK=${DIR_STACK#* }

 cd ${DIR_STACK%% *}

 echo "$PWD"

 else

 echo "stack empty, still in $PWD."

 fi

}

To get at the n th directory, we use a while loop that transfers the top directory to a temporary
copy of the stack n times. We'll put the loop into a function called getNdirs that looks like this:

getNdirs ()

{

 stackfront=''

 let count=0

 while [$count -le $1]; do

 target=${DIR_STACK%${DIR_STACK#* }}

 stackfront="$stackfront$target"

 DIR_STACK=${DIR_STACK#$target}

 let count=count+1

 done

 stackfront=${stackfront%$target}

}

The argument passed to getNdirs is the n in question. The variable target contains the directory
currently being moved from DIR_STACK to a temporary stack, stackfront . target will
contain the n th directory and stackfront will have all of the directories above (and including)
target when the loop finishes. stackfront starts as null; count , which counts the number of
loop iterations, starts as 0.

The first line of the loop body copies the first directory on the stack to target . The next line
appends target to stackfront and the following line removes target from the stack
${DIR_STACK#$target} . The last line increments the counter for the next iteration. The entire

loop executes n +1 times, for values of count from 0 to N .

When the loop finishes, the directory in $target is the n th directory. The expression
${stackfront%$target} removes this directory from stackfront so that stackfront will contain
the first n -1 directories. Furthermore, DIR_STACK now contains the "back" of the stack, i.e.,
the stack without the first n directories. With this in mind, we can now write the code for the
improved versions of pushd and popd :

pushd ()

{

 if [$(echo $1 | grep '^+[0-9][0-9]*$')]; then

 # case of pushd +n: rotate n-th directory to top

 let num=${1#+}

 getNdirs $num

 DIR_STACK="$target$stackfront$DIR_STACK"

 cd $target

 echo "$DIR_STACK"

 elif [-z "$1"]; then

 # case of pushd without args; swap top two directories

 firstdir=${DIR_STACK%% *}

 DIR_STACK=${DIR_STACK#* }

 seconddir=${DIR_STACK%% *}

 DIR_STACK=${DIR_STACK#* }

 DIR_STACK="$seconddir $firstdir $DIR_STACK"

 cd $seconddir

 else

 # normal case of pushd dirname

 dirname=$1

 if [\(-d $dirname \) -a \(-x $dirname \)]; then

 DIR_STACK="$dirname ${DIR_STACK:-$PWD" "}"

 cd $dirname

 echo "$DIR_STACK"

 else

 echo still in "$PWD."

 fi

 fi

}

popd ()

{

 if [$(echo $1 | grep '^+[0-9][0-9]*$')]; then

 # case of popd +n: delete n-th directory from stack

 let num=${1#+}

 getNdirs $num

 DIR_STACK="$stackfront$DIR_STACK"

 cd ${DIR_STACK%% *}

 echo "$PWD"

 else

 # normal case of popd without argument

 if [-n "$DIR_STACK"]; then

 DIR_STACK=${DIR_STACK#* }

 cd ${DIR_STACK%% *}

 echo "$PWD"

 else

 echo "stack empty, still in $PWD."

 fi

 fi

}

These functions have grown rather large; let's look at them in turn. The if at the beginning of
pushd checks if the first argument is an option of the form + N . If so, the first body of code is
run. The first let simply strips the plus sign (+) from the argument and assigns the result—as an
integer—to the variable num . This, in turn, is passed to the getNdirs function.

The next assignment statement sets DIR_STACK to the new ordering of the list. Then the
function cd s to the new directory and prints the current directory stack.

The elif clause tests for no argument, in which case pushd should swap the top two directories
on the stack. The first four lines of this clause assign the top two directories to firstdir and
seconddir , and delete these from the stack. Then, as above, the code puts the stack back
together in the new order and cd s to the new top directory.

The else clause corresponds to the usual case, where the user supplies a directory name as
argument.

popd works similarly. The if clause checks for the + N option, which in this case means "delete
the n th directory." A let extracts the N as an integer; the getNdirs function puts the first n
directories into stackfront . Finally, the stack is put back together with the n th directory
missing, and a cd is performed in case the deleted directory was the first in the list.

The else clause covers the usual case, where the user doesn't supply an argument.

Before we leave this subject, here are a few exercises that should test your understanding of this
code:

Implement bash's dirs command and the options +n and -l . dirs by itself displays the list
of currently remembered directories (those in the stack). The +n option prints out the n th
directory (starting at 0) and the -l option produces a long listing; any tildes (~) are replaced
by the full pathname.

1.

2.

Modify the getNdirs function so that it checks for N exceeding the number of directories in
the stack and exits with an appropriate error message if true.

2.

Modify pushd , popd , and getNdirs so that they use variables of type integer in the
arithmetic expressions.

3.

Change getNdirs so that it uses cut (with command substitution), instead of the while loop,
to extract the first N directories. This uses less code but runs more slowly because of the
extra processes generated.

4.

bash's versions of pushd and popd also have a -N option. In both cases -N causes the n th
directory from the right-hand side of the list to have the operation performed on it. As with
+N , it starts at 0. Add this functionality.

5.

Use getNdirs to reimplement the selectd function from the last chapter.6.

6.3.3. Arithmetic for Loops

Chapter 5 introduced the for loop and briefly mentioned another type of for loop, more akin to
the construct found in many programming languages like Java and C. This type of for loop is
called an arithmetic for loop.[14]

[14] Versions of bash prior to 2.04 do not have this type of loop.

The form of an arithmetic for loop is very similar to those found in Java and C:

for ((initialisation ; ending condition ; update))

do

 statements...

done

There are four sections to the loop, the first three being arithmetic expressions and the last being
a set of statements just as in the standard loop that we saw in the last chapter.

The first expression, initialisation , is something that is done once at the start of the loop and if
it evaluates to true the loop continues its process; otherwise, it skips the loop and continues with
the next statement. When initialisation is true the loop then evaluates ending condition . If this is
true then it executes statements , evaluates update and repeats the cycle again by evaluation
ending condition . The loop continues until ending condition becomes false or the loop is exited
via one of the statement s.

Usually initialisation is used to set an arithmetic variable to some initial value, update updates

that variable, and ending condition tests the variable. Any of the values may be left out in which
case they automatically evaluate to true. The following simple example:

for ((;;))

do

 read var

 if ["$var" = "."]; then

 break

 fi

done

loops forever reading lines until a line consisting of a . is found. We'll look at using the
expressions in an arithmetic for loop in our next task.

Task 6-2
Write a script that uses for loops to print out a multiplication table for the numbers 1
to 12.

This task is best accomplished using nested for loops:

for ((i=1; i <= 12 ; i++))

do

 for ((j=1 ; j <= 12 ; j++))

 do

 echo -ne "$((j * i))\t"

 done

 echo

done

The script begins with a for loop using a variable i ; the initialisation clause sets i to 1, the
ending condition clause tests i against the limit (12 in our case), and the update clause adds 1 to
i each time around the loop. The body of the loop is another for loop, this time with a variable
called j . This is identical to the i for loop except that j is being updated.

The body of the j loop has an echo statement where the two variables are multiplied together and
printed along with a trailing tab. We deliberately don't print a newline (with the -n option to echo)
so that the numbers appear on one line. Once the inner loop has finished a newline is printed so
that the set of numbers starts on the next line.

Arithmetic for loops are useful when dealing with arrays, which we'll now look at.

 < Day Day Up >

 < Day Day Up >

6.4. Arrays

The pushd and popd functions use a string variable to hold a list of directories and manipulate
the list with the string pattern-matching operators. Although this is quite efficient for adding or
retrieving items at the beginning or end of the string, it becomes cumbersome when attempting to
access items that are anywhere else, e.g., obtaining item N with the getNdirs function. It would
be nice to be able to specify the number, or index , of the item and retrieve it. Arrays allow us to
do this.[15]

[15] Support for arrays is not available in versions of bash prior to 2.0.

An array is like a series of slots that hold values. Each slot is known as an element , and each
element can be accessed via a numerical index. An array element can contain a string or a
number, and you can use it just like any other variable. The indices for arrays start at 0 and
continue up to a very large number.[16] So, for example, the fifth element of array names would
be names[4] . Indices can be any valid arithmetic expression that evaluates to a number greater
than or equal to 0.

[16] Actually, up to 599147937791. That's almost six hundred billion, so yes, it's pretty large.

There are several ways to assign values to arrays. The most straightforward way is with an
assignment, just like any other variable:

names[2]=alice

names[0]=hatter

names[1]=duchess

This assigns hatter to element 0 , duchess to element 1 , and alice to element 2 of the array
names .

Another way to assign values is with a compound assignment:

names=([2]=alice [0]=hatter [1]=duchess)

This is equivalent to the first example and is convenient for initializing an array with a set of
values. Notice that we didn't have to specify the indices in numerical order. In fact, we don't even
have to supply the indices if we reorder our values slightly:

names=(hatter duchess alice)

bash automatically assigns the values to consecutive elements starting at 0. If we provide an
index at some point in the compound assignment, the values get assigned consecutively from that
point on, so:

names=(hatter [5]=duchess alice)

assigns hatter to element 0 , duchess to element 5 , and alice to element 6 .

An array is created automatically by any assignment of these forms. To explicitly create an empty
array, you can use the -a option to declare . Any attributes that you set for the array with
declare (e.g., the read-only attribute) apply to the entire array. For example, the statement
declare -ar names would create a read-only array called names . Every element of the array
would be read-only.

An element in an array may be referenced with the syntax ${ array [i]}. So, from our last
example above, the statement echo ${names[5]} would print the string "duchess". If no index is
supplied, array element 0 is assumed.

You can also use the special indices @ and * . These return all of the values in the array and
work in the same way as for the positional parameters; when the array reference is within double
quotes, using * expands the reference to one word consisting of all the values in the array
separated by the first character of the IFS variable, while @ expands the values in the array to
separate words. When unquoted, both of them expand the values of the array to separate words.
Just as with positional parameters, this is useful for iterating through the values with a for loop:

for i in "${names[@]}"; do

 echo $i

done

Any array elements which are unassigned don't exist; they default to null strings if you explicitly
reference them. Therefore, the previous looping example will print out only the assigned elements
in the array names . If there were three values at indexes 1, 45, and 1005, only those three values
would be printed.

If you want to know what indices currently have values in an array then you can use
${!array[@]} . In the last example this would return 1 45 1005.[17]

[17] This is not available in versions of bash prior to 3.0.

A useful operator that you can use with arrays is # , the length operator that we saw in Chapter 4

. To find out the length of any element in the array, you can use ${#array[i]} . Similarly, to find
out how many values there are in the array, use * or @ as the index. So, for names=(hatter
[5]=duchess alice) , ${#names[5]} has the value 7, and ${#names[@]} has the value 3.

Reassigning to an existing array with a compound array statement replaces the old array with the
new one. All of the old values are lost, even if they were at different indices to the new elements.
For example, if we reassigned names to be ([100]=tweedledee tweedledum) , the values
hatter , duchess , and alice would disappear.

You can destroy any element or the entire array by using the unset built-in. If you specify an
index, that particular element will be unset. unset names[100] , for instance, would remove the
value at index 100 ; tweedledee in the example above. However, unlike assignment, if you don't
specify an index the entire array is unset, not just element 0. You can explicitly specify unsetting
the entire array by using * or @ as the index.

Let's now look at a simple example that uses arrays to match user IDs to account names on the
system. The code takes a user ID as an argument and prints the name of the account plus the
number of accounts currently on the system:

for i in $(cut -f 1,3 -d: /etc/passwd) ; do

 array[${i#*:}]=${i%:*}

done

echo "User ID $1 is ${array[$1]}."

echo "There are currently ${#array[@]} user accounts on the system."

We use cut to create a list from fields 1 and 3 in the /etc/passwd file. Field 1 is the account name
and field 3 is the user ID for the account. The script loops through this list using the user ID as
an index for each array element and assigns each account name to that element. The script then
uses the supplied argument as an index into the array, prints out the value at that index, and prints
the number of existing array values.

We'll now look at combining our knowledge of arrays with arithmetic for loops in the next task:

Task 6-3
Write a selection sort script that takes numbers in an array and sorts them.

Selection sort is a common algorithm for quickly sorting a set of elements. While it isn't the
quickest sorting algorithm available, it is easy to understand and implement.

It works by selecting the smallest element in the set and moving it to the head of the set. It then
repeats the process for the remainder of the set until the end of the set is reached.

For example, to sort the set 21543 it would start at 2 and then move down the set. 1 is less than 2
(and the other elements) so 1 is moved to the start: 12543. Then looking at 2 and moving down
the list it finds nothing less than 2 so it moves to the next element, 5. Moving down the list 4 is
less than 5, but 3 is less than 4, so 3 is moved: 12354. The next element is 5, and 4 is less than
this so 4 is moved: 12345. Five is the last element so the sort is finished.

The code for this is as follows:

values=(39 5 36 12 9 3 2 30 4 18 22 1 28 25)

numvalues=${#values[@]}

for ((i=0; i < numvalues; i++)); do

 lowest=$i

 for ((j=i; j < numvalues; j++)); do

 if [${values[j]} -le ${values[$lowest]}; then

 lowest=$j

 fi

 done

 temp=${values[i]}

 values[i]=${values[lowest]}

 values[lowest]=$temp

done

for ((i=0; i < numvalues; i++)); do

 echo -ne "${values[$i]}\t"

done

echo

At the start of the script we set up an array of randomly ordered values and a variable to hold the
number of array elements as a convenience.

The outer i for loop is for looping over the entire array and pointing to the current "head" (where
we put any value we need to swap). The variable lowest is set to this index.

The inner j loop is for looping over the remainder of the array. It compares the remaining
elements with the value at lowest ; if a value is less then lowest is set to the index of that element.

Once the inner loop is finished the values of the "head" (i) element and lowest are swapped by
using a temporary variable temp .

On completing the outer loop, the script prints out the sorted array elements.

Note that some of the environment variables in bash are arrays; DIRSTACK functions as a
stack for the pushd and popd built-ins, BASH_VERSINFO is an array of version information
for the current instance of the shell, and PIPESTATUS is an array of exit status values for the
last foreground pipe that was executed.

We'll see a further use of arrays when we build a bash debugger in Chapter 9 .

To end this chapter, here are some problems relating to what we've just covered:

Improve the account ID script so that it checks whether the argument is a number. Also,
add a test to print an appropriate message if the user ID doesn't exist.

1.

Make the script print out the username (field 5) as well. Hint: this isn't as easy as it sounds.
A username can have spaces in it, causing the for loop to iterate on each part of the name.

2.

As mentioned earlier, the built-in versions of pushd and popd use an array to implement the
stack. Change the pushd , popd , and getNdirs code that we developed in this chapter so
that it uses arrays.

3.

Change the selection sort in the last task into a bubble sort . A bubble sort works by
iterating over the list comparing pairs of elements and swapping them if they are in incorrect
order. It then repeats the process from the start of the list and continues until the list is

4.

traversed with no swaps.

4.

 < Day Day Up >

 < Day Day Up >

Chapter 7. Input/Output and Command-
Line Processing
The past few chapters have gone into detail about various shell programming techniques, mostly
focused on the flow of data and control through shell programs. In this chapter, we switch the
focus to two related topics. The first is the shell's mechanisms for doing file-oriented input and
output. We present information that expands on what you already know about the shell's basic
I/O redirectors.

Second, we'll "zoom in" and talk about I/O at the line and word level. This is a fundamentally
different topic, since it involves moving information between the domains of files/terminals and
shell variables. echo and command substitution are two ways of doing this that we've seen so
far.

Our discussion of line and word I/O will lead into a more detailed explanation of how the shell
processes command lines. This information is necessary so that you can understand exactly how
the shell deals with quotation , and so that you can appreciate the power of an advanced
command called eval , which we will cover at the end of the chapter.

 < Day Day Up >

 < Day Day Up >

7.1. I/O Redirectors

In Chapter 1 , you learned about the shell's basic I/O redirectors: > , < , and | . Although these
are enough to get you through 95% of your UNIX life, you should know that bash supports
many other redirectors. Table 7-1 lists them, including the three we've already seen. Although
some of the rest are broadly useful, others are mainly for systems programmers.

Table 7-1. I/O redirectors

Redirector Function

cmd1 |
cmd2

Pipe; take standard output of cmd1 as standard input to cmd2 .

> file Direct standard output to file .

< file Take standard input from file .

>> file Direct standard output to file ; append to file if it already exists.

>| file Force standard output to file even if noclobber is set.

n >| file Force output to file from file descriptor n even if noclobber is set.

<> file Use file as both standard input and standard output.

n <> file Use file as both input and output for file descriptor n .

<< label Here-document; see text.

n > file Direct file descriptor n to file .

n < file Take file descriptor n from file .

n >> file Direct file descriptor n to file ; append to file if it already exists.

n >& Duplicate standard output to file descriptor n .

n <& Duplicate standard input from file descriptor n .

n >&m File descriptor n is made to be a copy of the output file descriptor.

n <&m File descriptor n is made to be a copy of the input file descriptor.

Redirector Function

&>file Directs standard output and standard error to file .

<&- Close the standard input.

>&- Close the standard output.

n >&- Close the output from file descriptor n .

n <&- Close the input from file descriptor n .

n>&word

If n is not specified, the standard output (file descriptor 1) is used. If the digits in
word do not specify a file descriptor open for output, a redirection error occurs.
As a special case, if n is omitted, and word does not expand to one or more
digits, the standard output and standard error are redirected as described
previously.

n<&word

If word expands to one or more digits, the file descriptor denoted by n is made to
be a copy of that file descriptor. If the digits in word do not specify a file
descriptor open for input, a redirection error occurs. If word evaluates to -, file
descriptor n is closed. If n is not specified, the standard input (file descriptor 0) is
used.

n>&digit-
Moves the file descriptor digit to file descriptor n , or the standard output (file
descriptor 1) if n is not specified.

n<&digit-
Moves the file descriptor digit to file descriptor n , or the standard input (file
descriptor 0) if n is not specified. digit is closed after being duplicated to n .

Notice that some of the redirectors in Table 7-1 contain a digit n , and that their descriptions
contain the term file descriptor ; we'll cover that in a little while.

The first two new redirectors, >> and >| , are simple variations on the standard output redirector
> . The >> appends to the output file (instead of overwriting it) if it already exists; otherwise it
acts exactly like > . A common use of >> is for adding a line to an initialization file (such as
.bashrc or .mailrc) when you don't want to bother with a text editor. For example:

$ cat >> .bashrc

 alias cdmnt='mount -t iso9660 /dev/sbpcd /cdrom'

 ^D

As we saw in Chapter 1 , cat without an argument uses standard input as its input. This allows
you to type the input and end it with CTRL-D on its own line. The alias line will be appended to

&>file Directs standard output and standard error to file .

<&- Close the standard input.

>&- Close the standard output.

n >&- Close the output from file descriptor n .

n <&- Close the input from file descriptor n .

n>&word

If n is not specified, the standard output (file descriptor 1) is used. If the digits in
word do not specify a file descriptor open for output, a redirection error occurs.
As a special case, if n is omitted, and word does not expand to one or more
digits, the standard output and standard error are redirected as described
previously.

n<&word

If word expands to one or more digits, the file descriptor denoted by n is made to
be a copy of that file descriptor. If the digits in word do not specify a file
descriptor open for input, a redirection error occurs. If word evaluates to -, file
descriptor n is closed. If n is not specified, the standard input (file descriptor 0) is
used.

n>&digit-
Moves the file descriptor digit to file descriptor n , or the standard output (file
descriptor 1) if n is not specified.

n<&digit-
Moves the file descriptor digit to file descriptor n , or the standard input (file
descriptor 0) if n is not specified. digit is closed after being duplicated to n .

Notice that some of the redirectors in Table 7-1 contain a digit n , and that their descriptions
contain the term file descriptor ; we'll cover that in a little while.

The first two new redirectors, >> and >| , are simple variations on the standard output redirector
> . The >> appends to the output file (instead of overwriting it) if it already exists; otherwise it
acts exactly like > . A common use of >> is for adding a line to an initialization file (such as
.bashrc or .mailrc) when you don't want to bother with a text editor. For example:

$ cat >> .bashrc

 alias cdmnt='mount -t iso9660 /dev/sbpcd /cdrom'

 ^D

As we saw in Chapter 1 , cat without an argument uses standard input as its input. This allows
you to type the input and end it with CTRL-D on its own line. The alias line will be appended to

the file .bashrc if it already exists; if it doesn't, the file is created with that one line.

Recall from Chapter 3 , that you can prevent the shell from overwriting a file with > file by typing
set -o noclobber . >| overrides noclobber— it's the "Do it anyway, dammit!" redirector.

The redirector <> is mainly meant for use with device files (in the /dev directory), i.e., files that
correspond to hardware devices such as terminals and communication lines. Low-level systems
programmers can use it to test device drivers; otherwise, it's not very useful.

The rest of the redirectors will only be useful in special situations and you are unlikely to need
them most of the time.

7.1.1. Here-documents

The << label redirector essentially forces the input to a command to be the shell's standard
input, which is read until there is a line that contains only label . The input in between is called a
here-document . Here-documents aren't very interesting when used from the command prompt.
In fact, it's the same as the normal use of standard input except for the label. We could use a
here-document to simulate the mail facility. When you send a message to someone with the mail
utility, you end the message with a dot (.). The body of the message is saved in a file, msgfile :

$ cat >> msgfile << .

 > this is the text of

 > our message.

 > .

Here-documents are meant to be used from within shell scripts; they let you specify "batch"
input to programs. A common use of here-documents is with simple text editors like ed . Task 7-
1 is a programming task that uses a here-document in this way.

Task 7-1
The s file command in mail saves the current message in file . If the message came
over a network (such as the Internet), then it has several header lines prepended that
give information about network routing. Write a shell script that deletes the header
lines from the file.

We can use ed to delete the header lines. To do this, we need to know something about the
syntax of mail messages; specifically, that there is always a blank line between the header lines
and the message text. The ed command 1,/^[]* $/d does the trick: it means, "Delete from line 1
until the first blank line." We also need the ed commands w (write the changed file) and q (quit).
Here is the code that solves the task:

ed $1 << EOF

1,/^[]*$/d

w

q

EOF

The shell does parameter (variable) substitution and command substitution on text in a here-
document, meaning that you can use shell variables and commands to customize the text. A
good example of this is the bashbug script, which sends a bug report to the bash maintainer (see
Chapter 11). Here is a stripped-down version:

MACHINE="i586"

OS="linux-gnu"

CC="gcc"

CFLAGS=" -DPROGRAM='bash' -DHOSTTYPE='i586' -DOSTYPE='linux-gnu' \

 -DMACHTYPE='i586-pc-linux-gnu' -DSHELL -DHAVE_CONFIG_H -I. \

 -I. -I./lib -g -O2"

RELEASE="2.01"

PATCHLEVEL="0"

RELSTATUS="release"

MACHTYPE="i586-pc-linux-gnu"

TEMP=/tmp/bbug.$$

case "$RELSTATUS" in

alpha*|beta*) BUGBASH=chet@po.cwru.edu ;;

*) BUGBASH=bug-bash@prep.ai.mit.edu ;;

esac

BUGADDR="${1-$BUGBASH}"

UN=

if (uname) >/dev/null 2>&1; then

 UN=`uname -a`

fi

cat > $TEMP <<EOF

From: ${USER}

To: ${BUGADDR}

Subject: [50 character or so descriptive subject here (for reference)]

Configuration Information [Automatically generated, do not change]:

Machine: $MACHINE

OS: $OS

Compiler: $CC

Compilation CFLAGS: $CFLAGS

uname output: $UN

Machine Type: $MACHTYPE

bash Version: $RELEASE

Patch Level: $PATCHLEVEL

Release Status: $RELSTATUS

Description:

 [Detailed description of the problem, suggestion, or complaint.]

Repeat-By:

 [Describe the sequence of events that causes the problem

 to occur.]

Fix:

 [Description of how to fix the problem. If you don't know a

 fix for the problem, don't include this section.]

EOF

vi $TEMP

mail $BUGADDR < $TEMP

The first eight lines are generated when bashbug is installed. The shell will then substitute the
appropriate values for the variables in the text whenever the script is run.

The redirector << has two variations. First, you can prevent the shell from doing parameter and
command substitution by surrounding the label in single or double quotes. In the above example,
if you used the line cat > $TEMP << `EOF ', then text like $USER and $MACHINE would
remain untouched (defeating the purpose of this particular script).

The second variation is <<- , which deletes leading TABs (but not blanks) from the here-
document and the label line. This allows you to indent the here-document's text, making the shell
script more readable:

cat > $TEMP <<-EOF

 From: ${USER}

 To: ${BUGADDR}

 Subject: [50 character or so descriptive subject here]

 Configuration Information [Automatically generated,

 do not change]:

 Machine: $MACHINE

 OS: $OS

 Compiler: $CC

 Compilation CFLAGS: $CFLAGS

 ...

EOF

Make sure you are careful when choosing your label so that it doesn't appear as an actual input
line.

A slight variation on this is provided by the here string . It takes the form <<<word ; the word
is expanded and supplied on the standard input.

7.1.2. File Descriptors

The next few redirectors in Table 7-1 depend on the notion of a file descriptor . Like the device
files used with <> , this is a low-level UNIX I/O concept that is of interest only to systems
programmers—and then only occasionally. You can get by with a few basic facts about them;
for the whole story, look at the entries for read (), write (), fcntl (), and others in Section 2 of
the UNIX manual. You might wish to refer to UNIX Power Tools by Shelley Powers, Jerry Peek,
Tim O'Reilly, and Mike Loukides (O'Reilly).

File descriptors are integers starting at 0 that refer to particular streams of data associated with a
process. When a process starts, it usually has three file descriptors open. These correspond to
the three standards : standard input (file descriptor 0), standard output (1), and standard error
(2). If a process opens additional files for input or output, they are assigned to the next available
file descriptors, starting with 3.

By far the most common use of file descriptors with bash is in saving standard error in a file.
For example, if you want to save the error messages from a long job in a file so that they don't
scroll off the screen, append 2> file to your command. If you also want to save standard output,
append > file1 2> file2 .

This leads to another programming task.

Task 7-2
You want to start a long job in the background (so that your terminal is freed up) and
save both standard output and standard error in a single log file. Write a script that
does this.

We'll call this script start . The code is very terse:

"$@" > logfile 2>&1 &

This line executes whatever command and parameters follow start . (The command cannot
contain pipes or output redirectors.) It sends the command's standard output to logfile .

Then, the redirector 2>&1 says, "send standard error (file descriptor 2) to the same place as
standard output (file descriptor 1)." Since standard output is redirected to logfile , standard error
will go there too. The final & puts the job in the background so that you get your shell prompt
back.

As a small variation on this theme, we can send both standard output and standard error into a
pipe instead of a file: command 2>& 1 | ... does this. (Make sure you understand why.) Here is a
script that sends both standard output and standard error to the logfile (as above) and to the
terminal:

"$@" 2>&1 | tee logfile &

The command tee takes its standard input and copies it to standard output and the file given as
argument.

These scripts have one shortcoming: you must remain logged in until the job completes.
Although you can always type jobs (see Chapter 1) to check on progress, you can't leave your
terminal until the job finishes, unless you want to risk a breach of security.[1] We'll see how to
solve this problem in the next chapter.

[1] Don't put it past people to come up to your unattended terminal and cause mischief!

The other file-descriptor-oriented redirectors (e.g., <& n) are usually used for reading input
from (or writing output to) more than one file at the same time. We'll see an example later in this
chapter. Otherwise, they're mainly meant for systems programmers, as are <&- (force standard
input to close) and >&- (force standard output to close).

Before we leave this topic, we should just note that 1> is the same as > , and 0< is the same as <
. If you understand this, then you probably know all you need to know about file descriptors.

 < Day Day Up >

 < Day Day Up >

7.2. String I/O

Now we'll zoom back in to the string I/O level and examine the echo and read statements, which
give the shell I/O capabilities that are more analogous to those of conventional programming
languages.

7.2.1. echo

As we've seen countless times in this book, echo simply prints its arguments to standard output.
Now we'll explore the command in greater detail.

7.2.1.1 Options to echo

echo accepts a few dash options, listed in Table 7-2 .

Table 7-2. echo options

Option Function

-e Turns on the interpretation of backslash-escaped characters

-E
Turns off the interpretation of backslash-escaped characters on systems where this
mode is the default

-n Omits the final newline (same as the \c escape sequence)

7.2.1.2 echo escape sequences

echo accepts a number of escape sequences that start with a backslash.[2] They are listed in
Table 7-3 .

[2] You must use a double backslash if you don't surround the string that contains them with quotes; otherwise, the shell
itself "steals" a backslash before passing the arguments to echo .

These sequences exhibit fairly predictable behavior, except for \f : on some displays, it causes a

screen clear, while on others it causes a line feed. It ejects the page on most printers. \v is
somewhat obsolete; it usually causes a line feed.

Table 7-3. echo escape sequences

Sequence Character printed

\a ALERT or CTRL-G (bell)

\b BACKSPACE or CTRL-H

\c Omit final NEWLINE

\e Escape character (same as \E)

\E Escape character[3]

\f FORMFEED or CTRL-L

\n NEWLINE (not at end of command) or CTRL-J

\r RETURN (ENTER) or CTRL-M

\t TAB or CTRL-I

\v VERTICAL TAB or CTRL-K

\ n ASCII character with octal (base-8) value n , where n is 1 to 3 digits

\0nnn
The eight-bit character whose value is the octal (base-8) value nnn where nnn is 1
to 3 digits

\xHH
The eight-bit character whose value is the hexadecimal (base-16) value HH (one or
two digits)

\\ Single backslash

[3] Not available in versions of bash prior to 2.0.

The \n , \0 , and \x sequences are even more device-dependent and can be used for complex
I/O, such as cursor control and special graphics characters.

7.2.2. printf

bash 's echo command is quite powerful and for most cases entirely adequate. However, there
are occasions where a more powerful and flexible approach is needed for printing information,

especially when the information needs to be formatted. bash provides this by giving access to a
powerful system-level printing library known as printf .[4]

[4] printf is not available in versions of bash prior to version 2.02.

The printf command can output a string similar to the echo command:

printf "hello world"

Unlike the echo command, printf does not automatically provide a newline. If we want to make
it do the exactly same as a standard echo then we must provide one by adding \n to the end:

printf "hello world\n"

You may ask why this is any better than echo . The printf command has two parts, which is
what makes it so powerful.

printf format-string [arguments]

The first part is a string that describes the format specifications; this is best supplied as a string
constant in quotes. The second part is an argument list, such as a list of strings or variable values
that correspond to the format specifications. (The format is reused as necessary to use up all of
the arguments. If the format requires more arguments than are supplied, the extra format
specifications behave as if a zero value or null string, as appropriate, had been supplied). A
format specification is preceded by a percent sign (%), and the specifier is one of the characters
described below. Two of the main format specifiers are %s for strings and %d for decimal
integers.

This sounds complicated but we can begin by re-casting the last example:

printf "%s %s\n" hello world

This prints hello world on a line of its own, just as the previous example did. The word hello
has been assigned to the first format specification, %s . Likewise, world has been assigned to the
second %s . printf then prints these two strings followed by the newline.

We could also achieve the same result by making hello an explicit part of the format string:

$ printf "hello %s\n" world

hello world

The allowed specifiers are shown in Table 7-4 .

Table 7-4. printf format specifiers

Specifier Description

%c ASCII character (prints first character of corresponding argument)

%d Decimal integer

%i Same as %d

%e
Floating-point format ([-]d .precision e[+-]dd) (see following text for meaning of
precision)

%E Floating-point format ([-]d.precision E[+-]dd)

%f Floating-point format ([-]ddd.precision)

%g %e or %f conversion, whichever is shorter, with trailing zeros removed

%G %E or %f conversion, whichever is shortest, with trailing zeros removed

%o Unsigned octal value

%s String

%u Unsigned decimal value

%x Unsigned hexadecimal number; uses a-f for 10 to 15

%X Unsigned hexadecimal number; uses A-F for 10 to 15

%% Literal %

The printf command can be used to specify the width and alignment of output fields. A format
expression can take three optional modifiers following % and preceding the format specifier:

%flags width.precision format-specifier

The width of the output field is a numeric value. When you specify a field width, the contents of
the field are right-justified by default. You must specify a flag of "-" to get left-justification. (The
rest of the flags are discussed shortly.) Thus, "%-20s" outputs a left-justified string in a field 20
characters wide. If the string is less than 20 characters, the field is padded with whitespace to fill.
In the following examples, a | is output to indicate the actual width of the field. The first example
right-justifies the text:

printf "|%10s|\n" hello

It produces:

| hello|

The next example left-justifies the text:

printf "|%-10s|\n" hello

It produces:

|hello |

The precision modifier, used for decimal or floating-point values, controls the number of digits
that appear in the result. For string values, it controls the maximum number of characters from
the string that will be printed.

You can specify both the width and precision dynamically, via values in the printf argument list.
You do this by specifying asterisks, instead of literal values.

$ myvar=42.123456

$ printf "|%*.*G|\n" 5 6 $myvar

|42.1235|

In this example, the width is 5, the precision is 6, and the value to print comes from the value of
myvar .

The precision is optional. Its exact meaning varies by control letter, as shown in Table 7-5 .

Table 7-5. Meaning of precision

Conversion Precision means

%d, %I, %o,
%u, %x, %X

The minimum number of digits to print. When the value has fewer digits, it is
padded with leading zeros. The default precision is 1.

Conversion Precision means

%e, %E
The minimum number of digits to print. When the value has fewer digits, it is
padded with zeros after the decimal point. The default precision is 10. A
precision of 0 inhibits printing of the decimal point.

%f The number of digits to the right of the decimal point.

%g, %G The maximum number of significant digits.

%s The maximum number of characters to print.

Finally, one or more flags may precede the field width and the precision. We've already seen the
"-" flag for left-justification. The rest of the flags are shown in Table 7-6 .

Table 7-6. Flags for printf

Character Description

- Left-justify the formatted value within the field.

space Prefix positive values with a space and negative values with a minus.

+ Always prefix numeric values with a sign, even if the value is positive.

#
Use an alternate form: %o has a preceding 0; %x and %X are prefixed with 0x and
0X, respectively; %e, %E and %f always have a decimal point in the result; and %g
and %G do not have trailing zeros removed.

0
Pad output with zeros, not spaces. This only happens when the field width is wider
than the converted result. In the C language, this flag applies to all output formats,
even non-numeric ones. For bash , it only applies to the numeric formats.

If printf cannot perform a format conversion, it returns a non-zero exit status.

7.2.2.1 Additional bash printf specifiers

Besides the standard specifiers just described, the bash shell (and other POSIX compliant
shells) accepts two additional specifiers. These provide useful features at the expense of
nonportability to versions of the printf command found in some other shells and in other places
in UNIX:

%e, %E
The minimum number of digits to print. When the value has fewer digits, it is
padded with zeros after the decimal point. The default precision is 10. A
precision of 0 inhibits printing of the decimal point.

%f The number of digits to the right of the decimal point.

%g, %G The maximum number of significant digits.

%s The maximum number of characters to print.

Finally, one or more flags may precede the field width and the precision. We've already seen the
"-" flag for left-justification. The rest of the flags are shown in Table 7-6 .

Table 7-6. Flags for printf

Character Description

- Left-justify the formatted value within the field.

space Prefix positive values with a space and negative values with a minus.

+ Always prefix numeric values with a sign, even if the value is positive.

#
Use an alternate form: %o has a preceding 0; %x and %X are prefixed with 0x and
0X, respectively; %e, %E and %f always have a decimal point in the result; and %g
and %G do not have trailing zeros removed.

0
Pad output with zeros, not spaces. This only happens when the field width is wider
than the converted result. In the C language, this flag applies to all output formats,
even non-numeric ones. For bash , it only applies to the numeric formats.

If printf cannot perform a format conversion, it returns a non-zero exit status.

7.2.2.1 Additional bash printf specifiers

Besides the standard specifiers just described, the bash shell (and other POSIX compliant
shells) accepts two additional specifiers. These provide useful features at the expense of
nonportability to versions of the printf command found in some other shells and in other places
in UNIX:

%b

When used instead of %s, expands echo -style escape sequences in the argument string.
For example:

$ printf "%s\n" 'hello\nworld'

hello\nworld

$ printf "%b\n" 'hello\nworld'

hello

world

%q

When used instead of %s, prints the string argument in such a way that it can be used for
shell input. For example:

$ printf "%q\n" "greetings to the world"

greetings\ to\ the\ world

7.2.3. read

The other half of the shell's string I/O facilities is the read command, which allows you to read
values into shell variables. The basic syntax is:

read var1 var2...

This statement takes a line from the standard input and breaks it down into words delimited by
any of the characters in the value of the environment variable IFS (see Chapter 4 ; these are
usually a space, a TAB, and NEWLINE). The words are assigned to variables var1 , var2 , etc.
For example:

$ read character1 character2alice duchess$ echo $character1alice

$ echo $character2duchess

If there are more words than variables, then excess words are assigned to the last variable. If you

omit the variables altogether, the entire line of input is assigned to the variable REPLY .

You may have identified this as the "missing ingredient" in the shell programming capabilities we
have seen thus far. It resembles input statements in conventional languages, like its namesake in
Pascal. So why did we wait this long to introduce it?

Actually, read is sort of an "escape hatch" from traditional shell programming philosophy, which
dictates that the most important unit of data to process is a text file , and that UNIX utilities such
as cut , grep , sort , etc., should be used as building blocks for writing programs.

read , on the other hand, implies line-by-line processing. You could use it to write a shell script
that does what a pipeline of utilities would normally do, but such a script would inevitably look
like:

while (read a line) do

 process the line

 print the processed line

end

This type of script is usually much slower than a pipeline; furthermore, it has the same form as a
program someone might write in C (or some similar language) that does the same thing much
faster. In other words, if you are going to write it in this line-by-line way, there is little point in
writing a shell script.

7.2.3.1 Reading lines from files

Nevertheless, shell scripts with read are useful for certain kinds of tasks. One is when you are
reading data from a file small enough so that efficiency isn't a concern (say a few hundred lines
or less), and it's really necessary to get bits of input into shell variables.

Consider the case of a UNIX machine that has terminals that are hardwired to the terminal lines
of the machine. It would be nice if the TERM environment variable was set to the correct
terminal type when a user logged in.

One way to do this would be to have some code that sets the terminal information when a user
logs in. This code would presumably reside in /etc/profile , the system-wide initialization file that
bash runs before running a user's .bash_profile . If the terminals on the system change over
time—as surely they must—then the code would have to be changed. It would be better to store
the information in a file and change just the file instead.

Assume we put the information in a file whose format is typical of such UNIX "system

configuration" files: each line contains a device name, a TAB, and a TERM value.

We'll call the file /etc/terms , and it would typically look something like this:

console console

tty01 wy60

tty03 vt100

tty04 vt100

tty07 wy85

tty08 vt100

The values on the left are terminal lines and those on the right are the terminal types that TERM
can be set to. The terminals connected to this system are a Wyse 60 (wy60), three VT100s
(vt100), and a Wyse 85 (wy85). The machines' master terminal is the console, which has a
TERM value of console .

We can use read to get the data from this file, but first we need to know how to test for the end-
of-file condition. Simple: read 's exit status is 1 (i.e., non-zero) when there is nothing to read.
This leads to a clean while loop:

TERM=vt100 # assume this as a default

line=$(tty)

while read dev termtype; do

 if [$dev = $line]; then

 TERM=$termtype

 echo "TERM set to $TERM."

 break

 fi

done

The while loop reads each line of the input into the variables dev and termtype . In each pass
through the loop, the if looks for a match between $dev and the user's tty ($line , obtained by
command substitution from the tty command). If a match is found, TERM is set, a message is
printed, and the loop exits; otherwise TERM remains at the default setting of vt100 .

We are not quite done, though: this code reads from the standard input, not from /etc/terms ! We

need to know how to redirect input to multiple commands . It turns out that there are a few ways
of doing this.

7.2.3.2 I/O redirection and multiple commands

One way to solve the problem is with a subshell , as we'll see in the next chapter. This involves
creating a separate process to do the reading. However, it is usually more efficient to do it in the
same process; bash gives us four ways of doing this.

The first, which we have seen already, is with a function:

findterm () {

 TERM=vt100 # assume this as a default

 line=$(tty)

 while read dev termtype; do

 if [$dev = $line]; then

 TERM=$termtype

 echo "TERM set to $TERM."

 break;

 fi

 done

}

findterm < /etc/terms

A function acts like a script in that it has its own set of standard I/O descriptors, which can be
redirected in the line of code that calls the function. In other words, you can think of this code as
if findterm were a script and you typed findterm < /etc/terms on the command line. The read
statement takes input from /etc/terms a line at a time, and the function runs correctly.

The second way is to simplify this slightly by placing the redirection at the end of the function:

findterm () {

 TERM=vt100 # assume this as a default

 line=$(tty)

 while read dev termtype; do

 if [$dev = $line]; then

 TERM=$termtype

 echo "TERM set to $TERM."

 break;

 fi

 done

} < /etc/terms

Whenever findterm is called, it takes its input from /etc/terms .

The third way is by putting the I/O redirector at the end of the loop, like this:

TERM=vt100 # assume this as a default

line=$(tty)

while read dev termtype; do

 if [$dev = $line]; then

 TERM=$termtype

 echo "TERM set to $TERM."

 break;

 fi

done < /etc/terms

You can use this technique with any flow-control construct, including if ...fi , case ...esac ,
select ...done , and until ...done . This makes sense because these are all compound statements
that the shell treats as single commands for these purposes. This technique works fine—the read
command reads a line at a time—as long as all of the input is done within the compound
statement.

7.2.3.3 Command blocks

But if you want to redirect I/O to or from an arbitrary group of commands without creating a
separate process, you need to use a construct that we haven't seen yet. If you surround some

code with { and } , the code will behave like a function that has no name. This is another type of
compound statement. In accordance with the equivalent concept in the C language, we'll call this
a command block .

What good is a block? In this case, it means that the code within the curly brackets ({}) will take
standard I/O descriptors just as we described in the last block of code. This construct is
appropriate for the current example because the code needs to be called only once, and the entire
script is not really large enough to merit breaking down into functions. Here is how we use a
block in the example:

{

 TERM=vt100 # assume this as a default

 line=$(tty)

 while read dev termtype; do

 if [$dev = $line]; then

 TERM=$termtype

 echo "TERM set to $TERM."

 break;

 fi

 done

} < /etc/terms

To help you understand how this works, think of the curly brackets and the code inside them as
if they were one command, i.e.:

{ TERM=vt100; line=$(tty); while ... } < /etc/terms;

Configuration files for system administration tasks like this one are actually fairly common; a
prominent example is /etc/hosts , which lists machines that are accessible in a TCP/IP network.
We can make /etc/terms more like these standard files by allowing comment lines in the file that
start with # , just as in shell scripts. This way /etc/terms can look like this:

#

System Console is console

console console

#

Cameron's line has a Wyse 60

tty01 wy60

...

We can handle comment lines by modifying the while loop so that it ignores lines begining with
. We can place a grep in the test:

if [-z "$(echo $dev | grep ^#)"] && [$dev = $line]; then

 ...

As we saw in Chapter 5 , the && combines the two conditions so that both must be true for the
entire condition to be true.

As another example of command blocks, consider the case of creating a standard algebraic
notation frontend to the dc command. dc is a UNIX utility that simulates a Reverse Polish
Notation (RPN) calculator:[5]

[5] If you have ever owned a Hewlett-Packard calculator you will be familiar with RPN. We'll discuss RPN further in
one of the exercises at the end of this chapter.

{ while read line; do

 echo "$(alg2rpn $line)"

 done

} | dc

We'll assume that the actual conversion from one notation to the other is handled by a function
called alg2rpn . It takes a line of standard algebraic notation as an argument and prints the RPN
equivalent on the standard output. The while loop reads lines and passes them through the
conversion function, until an EOF is typed. Everything is executed inside the command block
and the output is piped to the dc command for evaluation.

7.2.3.4 Reading user input

The other type of task to which read is suited is prompting a user for input. Think about it: we
have hardly seen any such scripts so far in this book. In fact, the only ones were the modified
solutions to Task 5-4, which involved select .

As you've probably figured out, read can be used to get user input into shell variables.

We can use echo to prompt the user, like this:

echo -n 'terminal? '

read TERM

echo "TERM is $TERM"

Here is what this looks like when it runs:

terminal? wy60TERM is wy60

However, shell convention dictates that prompts should go to standard error , not standard
output. (Recall that select prompts to standard error.) We could just use file descriptor 2 with
the output redirector we saw earlier in this chapter:

echo -n 'terminal? ' >&2

read TERM

echo TERM is $TERM

We'll now look at a more complex example by showing how Task 5-5 would be done if select
didn't exist. Compare this with the code in Chapter 5 :

echo 'Select a directory:'

done=false

while [$done = false]; do

 do=true

 num=1

 for direc in $DIR_STACK; do

 echo $num) $direc

 num=$((num+1))

 done

 echo -n 'directory? '

 read REPLY

 if [$REPLY -lt $num] && [$REPLY -gt 0]; then

 set - $DIR_STACK

 #statements that manipulate the stack...

 break

 else

 echo 'invalid selection.'

 fi

done

The while loop is necessary so that the code repeats if the user makes an invalid choice. select
includes the ability to construct multicolumn menus if there are many choices, and better handling
of null user input.

Before leaving read , we should note that it has eight options: -a , -d , -e , -n , -p , -r , -t , and -s
.[6] The first of these options allows you to read values into an array. Each successive item read
in is assigned to the given array starting at index 0. For example:

[6] -a , -d , -e , -n , -p, -t and -s are not available in versions of bash prior to 2.0.

$ read -a people

alice duchess dodo

$ echo ${people[2]}

dodo

$

In this case, the array people now contains the items alice , duchess , and dodo .

A delimiter can be specified with the -d option. This will read a line up until the first character of
the delimiter is reached. For example:

$ read -s stop aline

alice duches$

$ echo $aline

alice duche

$

The option -e can be used only with scripts run from interactive shells. It causes readline to be
used to gather the input line, which means that you can use any of the readline editing features
that we looked at in Chapter 2 .

The -n option specifies how many characters will be read by read . For example, if we specify
that it should read only ten characters in then it will return after reading that many:

$ read -n 10 aline

abcdefghij$

$ echo $aline

abcdefghij

$

The -p option followed by a string argument prints the string before reading input. We could
have used this in the earlier examples of read , where we printed out a prompt before doing the
read. For example, the directory selection script could have used read -p `directory?' REPLY
.

read lets you input lines that are longer than the width of your display by providing a backslash
(\) as a continuation character, just as in shell scripts. The -r option overrides this, in case your
script reads from a file that may contain lines that happen to end in backslashes. read -r also
preserves any other escape sequences the input might contain. For example, if the file hatter
contains this line:

A line with a\n escape sequence

Then read -r aline will include the backslash in the variable aline , whereas without the -r , read
will "eat" the backslash. As a result:

$ read -r aline < hatter$ echo -e "$aline"

A line with a

 escape sequence

$

However:

$ read aline < hatter$ echo -e "$aline"

A line with an escape sequence

$

The -s option forces read to not echo the characters that are typed to the terminal. This can be
useful in cases where a shell may want to take single keystroke commands without displaying the
typed characters on the terminal (e.g., moving something around with the arrow keys). In this
case it could be combined with the -n option to read a single character each time in a loop: read
-s -n1 key

The last option, -t , allows a time in seconds to be specified. read will wait the specified time for
input and then finish. This is useful if you want a script to wait for input but continue processing
if nothing is supplied.

 < Day Day Up >

 < Day Day Up >

7.3. Command-Line Processing

We've seen how the shell uses read to process input lines: it deals with single quotes (`'), double
quotes (""), and backslashes (\); it separates lines into words, according to delimiters in the
environment variable IFS ; and it assigns the words to shell variables. We can think of this
process as a subset of the things the shell does when processing command lines .

We've touched upon command-line processing throughout this book; now is a good time to
make the whole thing explicit. Each line that the shell reads from the standard input or a script is
called a pipeline ; it contains one or more commands separated by zero or more pipe characters
(|). For each pipeline it reads, the shell breaks it up into commands, sets up the I/O for the
pipeline, then does the following for each command (Figure 7-1):

Figure 7-1. Steps in command-line processing

Splits the command into tokens that are separated by the fixed set of metacharacters:
SPACE, TAB, NEWLINE, ; , (,) , < , > , | , and & . Types of tokens include words,
keywords, I/O redirectors, and semicolons.

1.

Checks the first token of each command to see if it is a keyword with no quotes or2.

backslashes. If it's an opening keyword, such as if and other control-structure openers,
function , { , or (, then the command is actually a compound command. The shell sets
things up internally for the compound command, reads the next command, and starts the
process again. If the keyword isn't a compound command opener (e.g., is a control-
structure "middle" like then , else , or do , an "end" like fi or done , or a logical operator),
the shell signals a syntax error.

2.

Checks the first word of each command against the list of aliases. If a match is found, it
substitutes the alias's definition and goes back to Step 1; otherwise, it goes on to Step 4.
This scheme allows recursive aliases (see Chapter 3). It also allows aliases for keywords to
be defined, e.g., alias aslongas=while or alias procedure=function .

3.

Performs brace expansion. For example, a{b,c} becomes ab ac .4.

Substitutes the user's home directory ($HOME) for tilde if it is at the beginning of a word.
Substitutes user's home directory for ~ user.[7]

[7] Two obscure variations on this: the shell substitutes the current directory ($PWD) for ~+ and the previous
directory ($OLDPWD) for ~- . In bash 2.0 there are two more: ~N+ and ~N-. These are replaced by the
corresponding element in the directory stack as given by the dirs command.

5.

Performs parameter (variable) substitution for any expression that starts with a dollar sign ($
).

6.

Does command substitution for any expression of the form $(string) .7.

Evaluates arithmetic expressions of the form $((string)) .8.

Takes the parts of the line that resulted from parameter, command, and arithmetic
substitution and splits them into words again. This time it uses the characters in $IFS as
delimiters instead of the set of metacharacters in Step 1.

9.

Performs pathname expansion, a.k.a. wildcard expansion, for any occurrences of * , ? ,
and [/] pairs.

10.

Uses the first word as a command by looking up its source according to the rest of the list
in Chapter 4 , i.e., as a function command, then as a built-in, then as a file in any of the
directories in $PATH .

11.

Runs the command after setting up I/O redirection and other such things.12.

That's a lot of steps—and it's not even the whole story! But before we go on, an example should
make this process clearer. Assume that the following command has been run:

alias ll="ls -l"

Further assume that a file exists called .hist537 in user alice 's home directory, which is
/home/alice , and that there is a double-dollar-sign variable $$ whose value is 2537 (we'll see
what this special variable is in the next chapter).

Now let's see how the shell processes the following command:

ll $(type -path cc) ~alice/.*$(($$%1000))

Here is what happens to this line:

ll $(type -path cc) ~alice/.*$(($$%1000)) splits the input into words.1.

ll is not a keyword, so Step 2 does nothing.2.

ls -l $(type -path cc) ~alice/.*$(($$%1000)) substitutes ls -l for its alias "ll".
The shell then repeats Steps 1 through 3; Step 2 splits the ls -l into two words.

3.

ls -l $(type -path cc) ~alice/.*$(($$%1000)) does nothing.4.

ls -l $(type -path cc) /home/alice/.*$(($$%1000)) expands ~alice into
/home/alice .

5.

ls -l $(type -path cc) /home/alice/.*$((2537%1000)) substitutes 2537 for $$.6.

ls -l /usr/bin/cc /home/alice/.*$((2537%1000)) does command substitution on
"type -path cc".

7.

ls -l /usr/bin/cc /home/alice/.*537 evaluates the arithmetic expression
2537%1000 .

8.

ls -l /usr/bin/cc /home/alice/.*537 does nothing.9.

ls -l /usr/bin/cc /home/alice/.hist537 substitutes the filename for the wildcard
expression .*537 .

10.

The command ls is found in /usr/bin .11.

/usr/bin/ls is run with the option -l and the two arguments.12.

Although this list of steps is fairly straightforward, it is not the whole story. There are still five
ways to modify the process: quoting; using command , builtin , or enable ; and using the
advanced command eval .

7.3.1. Quoting

You can think of quoting as a way of getting the shell to skip some of the 12 steps above. In
particular:

Single quotes (`') bypass everything through Step 10—including aliasing. All characters
inside a pair of single quotes are untouched. You can't have single quotes inside single
quotes—not even if you precede them with backslashes.[8]

[8] However, as we saw in Chapter 1 , `\ '' (i.e., single quote, backslash, single quote, single quote) acts pretty
much like a single quote in the middle of a single-quoted string; e.g., ̀ abc `\ '`def ' evaluates to abc `def .

Double quotes ("") bypass Steps 1 through 4, plus steps 9 and 10. That is, they ignore pipe
characters, aliases, tilde substitution, wildcard expansion, and splitting into words via
delimiters (e.g., blanks) inside the double quotes. Single quotes inside double quotes have
no effect. But double quotes do allow parameter substitution, command substitution, and
arithmetic expression evaluation. You can include a double quote inside a double-quoted
string by preceding it with a backslash (\). You must also backslash-escape $, ` (the
archaic command substitution delimiter), and \ itself.

Table 7-7 has simple examples to show how these work; they assume the statement
person=hatter was run and user alice 's home directory is /home/alice .

If you are wondering whether to use single or double quotes in a particular shell programming
situation, it is safest to use single quotes unless you specifically need parameter, command, or
arithmetic substitution.

Table 7-7. Examples of quoting rules

Expression Value

$person hatter

"$person" hatter

\$person $person

`$person' $person

"'$person'" 'hatter'

~alice /home/alice

"~alice" ~alice

Expression Value

`~alice' ~alice

7.3.2. command, builtin, and enable

Before moving on to the last part of the command-line processing cycle, we'll take a look at the
command lookup order that we touched on in Chapter 4 and how it can be altered with several
shell built-ins.

The default order for command lookup is functions, followed by built-ins, with scripts and
executables last. There are three built-ins that you can use to override this order: command ,
builtin , and enable .

command removes alias and function lookup.[9] Only built-ins and commands found in the
search path are executed. This is useful if you want to create functions that have the same name
as a shell built-in or a command in the search path and you need to call the original command
from the function. For instance, we might want to create a function called cd that replaces the
standard cd command with one that does some fancy things and then executes the built-in cd :

[9] command removes alias lookup as a side effect. Because the first argument of command is no longer the first word
that bash parses, it is not subjected to alias lookup.

cd ()

{

 #Some fancy things

 command cd

}

In this case we avoid plunging the function into a recursive loop by placing command in front of
cd . This ensures that the built-in cd is called and not the function.

command has some options, listed in Table 7-8 .

Table 7-8. command options

Option Description

`~alice' ~alice

7.3.2. command, builtin, and enable

Before moving on to the last part of the command-line processing cycle, we'll take a look at the
command lookup order that we touched on in Chapter 4 and how it can be altered with several
shell built-ins.

The default order for command lookup is functions, followed by built-ins, with scripts and
executables last. There are three built-ins that you can use to override this order: command ,
builtin , and enable .

command removes alias and function lookup.[9] Only built-ins and commands found in the
search path are executed. This is useful if you want to create functions that have the same name
as a shell built-in or a command in the search path and you need to call the original command
from the function. For instance, we might want to create a function called cd that replaces the
standard cd command with one that does some fancy things and then executes the built-in cd :

[9] command removes alias lookup as a side effect. Because the first argument of command is no longer the first word
that bash parses, it is not subjected to alias lookup.

cd ()

{

 #Some fancy things

 command cd

}

In this case we avoid plunging the function into a recursive loop by placing command in front of
cd . This ensures that the built-in cd is called and not the function.

command has some options, listed in Table 7-8 .

Table 7-8. command options

Option Description

-p Uses a default value for PATH

-v Prints the command or pathname used to invoke the command

-V A more verbose description than with -v

- Turns off further option checking

The -p option is a default path which guarantees that the command lookup will find all of the
standard UNIX utilities. In this case, command will ignore the directories in your PATH .[10]

[10] Unless bash has been compiled with a brain-dead value for the default. See Chapter 11 for how to change the
default value.

builtin is very similar to command but is more restrictive. It looks up only built-in commands,
ignoring functions and commands found in PATH . We could have replaced command with
builtin in the cd example above.

The last command enables and disables shell built-ins—it is called enable . Disabling a built-in
allows a shell script or executable of the same name to be run without giving a full pathname.
Consider the problem many beginning UNIX shell programmers have when they name a script
test . Much to their surprise, executing test usually results in nothing, because the shell is
executing the built-in test , rather than the shell script. Disabling the built-in with enable
overcomes this.[11]

[11] Note that the wrong test may still be run. If your current directory is the last in PATH you'll probably execute the
system file test . test is not a good name for a program.

Table 7-9 lists the options available with enable .[12] Some options are for working with
dynamically loadable built-ins. See Appendix C for details on these options, and how to create
and load your own built-in commands.

[12] The -d , -f , -p , and -s options are not available in versions of bash prior to 2.0.

Table 7-9. enable options

Option Description

-a Displays every built-in and whether it is enabled or not

-d Deletes a built-in loaded with -f

Option Description

-f filename Loads a new built-in from the shared-object filename

-n Disables a built-in or displays a list of disabled built-ins

-p Displays a list of all of the built-ins

-s Restricts the output to POSIX "special" built-ins

Of these options, -n is the most useful; it is used to disable a built-in. enable without an option
enables a built-in. More than one built-in can be given as arguments to enable , so enable -n
pushd popd dirs would disable the pushd , popd , and dirs built-ins.[13]

[13] Be careful—it is possible to disable enable (enable -n enable). There is a compile-time option that allows builtin
to act as an escape-hatch. For more details, see Chapter 11 .

You can find out what built-ins are currently enabled and disabled by using the command on its
own, or with the -p option; enable or enable -p will list all enabled built-ins, and enable -n will
list all disabled built-ins. To get a complete list with their current status, you can use enable -a .

The -s option restricts the output to POSIX `special' built-ins. These are :, ., source , break ,
continue , eval , exec , exit , export , readonly , return , set , shift , trap , and unset .

7.3.3. eval

We have seen that quoting lets you skip steps in command-line processing. Then there's the eval
command, which lets you go through the process again. Performing command-line processing
twice may seem strange, but it's actually very powerful: it lets you write scripts that create
command strings on the fly and then pass them to the shell for execution. This means that you
can give scripts "intelligence" to modify their own behavior as they are running.

The eval statement tells the shell to take eval 's arguments and run them through the command-
line processing steps all over again. To help you understand the implications of eval , we'll start
with a trivial example and work our way up to a situation in which we're constructing and running
commands on the fly.

eval ls passes the string ls to the shell to execute; the shell prints a list of files in the current
directory. Very simple; there is nothing about the string ls that needs to be sent through the
command-processing steps twice. But consider this:

listpage="ls | more"

$listpage

-f filename Loads a new built-in from the shared-object filename

-n Disables a built-in or displays a list of disabled built-ins

-p Displays a list of all of the built-ins

-s Restricts the output to POSIX "special" built-ins

Of these options, -n is the most useful; it is used to disable a built-in. enable without an option
enables a built-in. More than one built-in can be given as arguments to enable , so enable -n
pushd popd dirs would disable the pushd , popd , and dirs built-ins.[13]

[13] Be careful—it is possible to disable enable (enable -n enable). There is a compile-time option that allows builtin
to act as an escape-hatch. For more details, see Chapter 11 .

You can find out what built-ins are currently enabled and disabled by using the command on its
own, or with the -p option; enable or enable -p will list all enabled built-ins, and enable -n will
list all disabled built-ins. To get a complete list with their current status, you can use enable -a .

The -s option restricts the output to POSIX `special' built-ins. These are :, ., source , break ,
continue , eval , exec , exit , export , readonly , return , set , shift , trap , and unset .

7.3.3. eval

We have seen that quoting lets you skip steps in command-line processing. Then there's the eval
command, which lets you go through the process again. Performing command-line processing
twice may seem strange, but it's actually very powerful: it lets you write scripts that create
command strings on the fly and then pass them to the shell for execution. This means that you
can give scripts "intelligence" to modify their own behavior as they are running.

The eval statement tells the shell to take eval 's arguments and run them through the command-
line processing steps all over again. To help you understand the implications of eval , we'll start
with a trivial example and work our way up to a situation in which we're constructing and running
commands on the fly.

eval ls passes the string ls to the shell to execute; the shell prints a list of files in the current
directory. Very simple; there is nothing about the string ls that needs to be sent through the
command-processing steps twice. But consider this:

listpage="ls | more"

$listpage

Instead of producing a paginated file listing, the shell will treat | and more as arguments to ls ,
and ls will complain that no files of those names exist. Why? Because the pipe character
"appears" in Step 6 when the shell evaluates the variable, after it has actually looked for pipe
characters. The variable's expansion isn't even parsed until Step 9. As a result, the shell will treat |
and more as arguments to ls , so that ls will try to find files called | and more in the current
directory!

Now consider eval $listpage instead of just $listpage . When the shell gets to the last step, it
will run the command eval with arguments ls , | , and more . This causes the shell to go back to
Step 1 with a line that consists of these arguments. It finds | in Step 2 and splits the line into two
commands, ls and more . Each command is processed in the normal (and in both cases trivial)
way. The result is a paginated list of the files in your current directory.

Now you may start to see how powerful eval can be. It is an advanced feature that requires
considerable programming cleverness to be used most effectively. It even has a bit of the flavor
of artificial intelligence, in that it enables you to write programs that can "write" and execute other
programs.[14] You probably won't use eval for everyday shell programming, but it's worth
taking the time to understand what it can do.

[14] You could actually do this without eval , by echo ing commands to a temporary file and then "sourcing" that file
with . filename . But that is much less efficient.

As a more interesting example, we'll revisit Task 4-1, the very first task in the book. In it, we
constructed a simple pipeline that sorts a file and prints out the first N lines, where N defaults to
10. The resulting pipeline was:

sort -nr $1 | head -${2:-10}

The first argument specified the file to sort; $2 is the number of lines to print.

Now suppose we change the task just a bit so that the default is to print the entire file instead of
10 lines. This means that we don't want to use head at all in the default case. We could do this in
the following way:

if [-n "$2"]; then

 sort -nr $1 | head -$2

else

 sort -nr $1

fi

In other words, we decide which pipeline to run according to whether $2 is null. But here is a
more compact solution:

eval sort -nr \$1 ${2:+"| head -\$2"}

The last expression in this line evaluates to the string | head -\$2 if $2 exists (is not null); if $2 is
null, then the expression is null too. We backslash-escape dollar signs (\$) before variable names
to prevent unpredictable results if the variables' values contain special characters like > or | . The
backslash effectively puts off the variables' evaluation until the eval command itself runs. So the
entire line is either:

eval sort -nr \$1 | head -\$2

if $2 is given, or:

eval sort -nr \$1

if $2 is null. Once again, we can't just run this command without eval because the pipe is
"uncovered" after the shell tries to break the line up into commands. eval causes the shell to run
the correct pipeline when $2 is given.

Next, we'll revisit Task 7-2 from earlier in this chapter, the start script that lets you start a
command in the background and save its standard output and standard error in a logfile. Recall
that the one-line solution to this task had the restriction that the command could not contain
output redirectors or pipes. Although the former doesn't make sense when you think about it,
you certainly would want the ability to start a pipeline in this way.

eval is the obvious way to solve this problem:

eval "$@" > logfile 2>&1 &

The only restriction that this imposes on the user is that pipes and other such special characters
be quoted (surrounded by quotes or preceded by backslashes).

Here's a way to apply eval in conjunction with various other interesting shell programming
concepts.

Task 7-3
Implement the core of the make utility as a shell script.

make is known primarily as a programmer's tool, but it seems as though someone finds a new
use for it every day. Without going into too much extraneous detail, make basically keeps track
of multiple files in a particular project, some of which depend on others (e.g., a document
depends on its word processor input file(s)). It makes sure that when you change a file, all of the
other files that depend on it are processed.

For example, assume you're using the troff word processor to write a book. You have files for
the book's chapters called ch1.t , ch2.t , and so on; the troff output for these files are ch1.out ,
ch2.out , etc. You run commands like troff ch N .t > ch N .out to do the processing. While
you're working on the book, you tend to make changes to several files at a time.

In this situation, you can use make to keep track of which files need to be reprocessed, so that
all you need to do is type make , and it will figure out what needs to be done. You don't need to
remember to reprocess the files that have changed.

How does make do this? Simple: it compares the modification times of the input and output files
(called sources and targets in make terminology), and if the input file is newer, then make
reprocesses it.

You tell make which files to check by building a file called makefile that has constructs like this:

target : source1 source2 ...

 commands to make target

This essentially says, "For target to be up to date, it must be newer than all of the source s. If it's
not, run the commands to bring it up to date." The commands are on one or more lines that must
start with TABs: e.g., to make ch7.out :

ch7.out : ch7.t

 troff ch7.t > ch7.out

Now suppose that we write a shell function called makecmd that reads and executes a single
construct of this form. Assume that the makefile is read from standard input. The function would
look like the following code.

makecmd ()

{

 read target colon sources

 for src in $sources; do

 if [$src -nt $target]; then

 while read cmd && [$(grep \t* $cmd)]; do

 echo "$cmd"

 eval ${cmd#\t}

 done

 break

 fi

 done

}

This function reads the line with the target and sources; the variable colon is just a placeholder
for the :. Then it checks each source to see if it's newer than the target, using the -nt file attribute
test operator that we saw in Chapter 5 . If the source is newer, it reads, prints, and executes the
commands until it finds a line that doesn't start with a TAB or it reaches end-of-file. (The real
make does more than this; see the exercises at the end of this chapter.) After running the
commands (which are stripped of the initial TAB), it breaks out of the for loop, so that it doesn't
run the commands more than once.

As a final example of eval , we'll look again at procimage , the graphics utility that we developed
in the last three chapters. Recall that one of the problems with the script as it stands is that it
performs the process of scaling and bordering regardless of whether you want them. If no
command-line options are present, a default size, border width, and border color are used.
Rather than invent some if then logic to get around this, we'll look at how you can dynamically
build a pipeline of commands in the script; those commands that aren't needed simply disappear
when the time comes to execute them. As an added bonus, we'll add another capability to our
script: image enhancement .

Looking at the procimage script you'll notice that the NetPBM commands form a nice pipeline;
the output of one operation becomes the input to the next, until we end up with the final image. If
it weren't for having to use a particular conversion utility, we could reduce the script to the
following pipeline (ignoring options for now):

cat $filename | convertimage | pnmscale | pnmmargin |\

 pnmtojpeg > $outfile

Or, better yet:

convertimage $filename | pnmscale | pnmmargin | pnmtojpeg \

 > $outfile

As we've already seen, this is equivalent to:

eval convertimage $filename | pnmscale | pnmmargin |\

 pnmtojpeg > $outfile

And knowing what we do about how eval operates, we can transform this into:

eval "convertimage" $filename " | pnmscale" " | pnmmargin" \

 " | pnmtojpeg " > $outfile

And thence to:

convert='convertimage'

scale=' | pnmscale'

border=' | pnmmargin'

standardise=' | pnmtojpeg

eval $convert $filename $scale $border $standardise > $outfile

Now consider what happens when we don't want to scale the image. We do this:

scale=""

while getopts ":s:w:c:" opt; do

 case $opt in

 s) scale=' | pnmscale' ;;

 ...

eval $convert $filename $scale $border $standardise > $outfile

In this code fragment, scale is set to a default of the empty string. If -s is not given on the
command line, then the final line evaluates with $scale as the empty string and the pipeline will
"collapse" into:

$convert $filename $border $standardise > $outfile

Using this principle, we can modify the previous version of the procimage script and produce a
pipeline version. For each input file we need to construct and run a pipeline based upon the
options given on the command line. Here is the new version:

Set up the defaults

width=1

colour='-color grey'

usage="Usage: $0 [-s N] [-w N] [-c S] imagefile..."

Initialise the pipeline components

standardise=' | pnmtojpeg -quiet'

while getopts ":s:w:c:" opt; do

 case $opt in

 s) size=$OPTARG

 scale=' | pnmscale -quiet -xysize $size $size' ;;

 w) width=$OPTARG

 border=' | pnmmargin $colour $width' ;;

 c) colour="-color $OPTARG"

 border=' | pnmmargin $colour $width' ;;

 \?) echo $usage

 exit 1 ;;

 esac

done

shift $(($OPTIND - 1))

if [-z "$@"]; then

 echo $usage

 exit 1

fi

Process the input files

for filename in "$@"; do

 case $filename in

 *.gif) convert='giftopnm' ;;

 *.tga) convert='tgatoppm' ;;

 *.xpm) convert='xpmtoppm' ;;

 *.pcx) convert='pcxtoppm' ;;

 *.tif) convert='tifftopnm' ;;

 *.jpg) convert='jpegtopnm -quiet' ;;

 *) echo "$0: Unknown filetype '${filename##*.}'"

 exit 1;;

 esac

 outfile=${filename%.*}.new.jpg

 eval $convert $filename $scale $border $standardise > $outfile

done

This version has been simplified somewhat from the previous one in that it no longer needs a
temporary file to hold the converted file. It is also a lot easier to read and understand. To show
how easy it is to add further processing to the script, we'll now add one more NetPBM utility.

NetPBM provides a utility to enhance an image and make it sharper: pnmnlfilt . This utility is an
image filter that samples the image and can enhance edges in the image (it can also smooth the
image if given the appropriate values). It takes two parameters that tell it how much to enhance
the image. For the purposes of our script, we'll just choose some optimal values and provide an
option to switch enhancement on and off in the script.

To put the new capability in place all we have to do is add the new option (-S) to the getopts
case statement, update the usage line, and add a new variable to the pipeline. Here is the new
code:

Set up the defaults

width=1

colour='-color grey'

usage="Usage: $0 [-S] [-s N] [-w N] [-c S] imagefile..."

Initialise the pipeline components

standardise=' | pnmtojpeg -quiet'

while getopts ":Ss:w:c:" opt; do

 case $opt in

 S) sharpness=' | pnmnlfilt -0.7 0.45' ;;

 s) size=$OPTARG

 scale=' | pnmscale -quiet -xysize $size $size' ;;

 w) width=$OPTARG

 border=' | pnmmargin $colour $width' ;;

 c) colour="-color $OPTARG"

 border=' | pnmmargin $colour $width' ;;

 \?) echo $usage

 exit 1 ;;

 esac

done

shift $(($OPTIND - 1))

if [-z "$@"]; then

 echo $usage

 exit 1

fi

Process the input files

for filename in "$@"; do

 case $filename in

 *.gif) convert='giftopnm' ;;

 *.tga) convert='tgatoppm' ;;

 *.xpm) convert='xpmtoppm' ;;

 *.pcx) convert='pcxtoppm' ;;

 *.tif) convert='tifftopnm' ;;

 *.jpg) convert='jpegtopnm -quiet' ;;

 *) echo "$0: Unknown filetype '${filename##*.}'"

 exit 1;;

 esac

 outfile=${filename%.*}.new.jpg

 eval $convert $filename $scale $border $sharpness $standardise > $outfile

done

We could go on forever with increasingly complex examples of eval , but we'll settle for
concluding the chapter with a few exercises. The questions in Exercise 3 are really more like
items on the menu of food for thought.

Here are a couple of ways to enhance procimage, the graphics utility:

Add an option, -q , that allows the user to turn on and off the printing of diagnostic
information from the NetPBM utilities. You'll need to map -q to the -quiet option of
the utilities. Also, add your own diagnostic output for those utilities that don't print
anything, e.g., the format conversions.

a.

Add an option that allows the user to specify the order that the NetPBM processes
take place, i.e., whether enhancing the image comes before bordering, or bordering
comes before resizing. Rather than using an if construct to make the choice amongst
hard-coded orders, construct a string dynamically which will look similar to this:

"eval $convert $filename $scale $border $sharpness

 $standardise > $outfile"

b.

c.

1.

You'll then need eval to evaluate this string.c.

The function makecmd in the solution to Task 7-3 represents an oversimplification of the
real make's functionality. make actually checks file dependencies recursively, meaning that a
source on one line in a makefile can be a target on another line. For example, the book
chapters in the example could themselves depend on some figures in separate files that were
made with a graphics package.

Write a function called readtargets that goes through the makefile and stores all of the
targets in a variable or temporary file.

a.

makecmd merely checks to see if any of the sources are newer than the given target. It
should really be a recursive routine that looks like this:

function makecmd ()

{

 target=$1

 get sources for $target

 for each source src; do

 if $src is also a target in this makefile then

 makecmd $src

 fi

 if [$src -nt $target]; then

 run commands to make target

 return

 fi

 done

}

b.

Implement this.c.

Write the "driver" script that turns the makecmd function into a full make program.
This should make the target given as argument, or if none is given, the first target listed

d.

e.

2.

in the makefile.

d.

The above makecmd still doesn't do one important thing that the real make does: allow
for "symbolic" targets that aren't files. These give make much of the power that makes
it applicable to such an incredible variety of situations. Symbolic targets always have a
modification time of 0, so that make always runs the commands to make them. Modify
makecmd so that it allows for symbolic targets. (Hint: the crux of this problem is to
figure out how to get a file's modification time. This is quite difficult.)

e.

Here are some problems that really test your knowledge of eval and the shell's command-
line processing rules. Solve these and you're a true bash hacker!

Advanced shell programmers sometimes use a little trick that includes eval : using the
value of a variable as the name of another variable. In other words, you can give a shell
script control over the names of variables to which it assigns values. The latest version
of bash has this built in in the form of ${! varname }, where varname contains the
name of another variable that will be the target of the operation. This is known as
indirect expansion. How would you do this only using eval ? (Hint: if $object equals
"person", and $person is "alice", then you might think that you could type echo
$$object and get the response alice . This doesn't actually work, but it's on the right
track.)

a.

You could use the above technique together with other eval tricks to implement new
control structures for the shell. For example, see if you can write a script that emulates
the behavior of a for loop in a conventional language like C or Pascal, i.e., a loop that
iterates a fixed number of times, with a loop variable that steps from 1 to the number of
iterations (or, for C fans, 0 to iterations-1). Call your script loop to avoid clashes with
the keywords for and do .

b.

The pushd , popd , and dirs functions that we built up in previous chapters can't
handle directories with spaces in their names (because DIR_STACK uses a space as a
delimiter). Use eval to overcome this limitation. (Hint: use eval to implement an array.
Each array element is called array1, array2, ... arrayn, and each array element contains a
directory name.)

c.

(The following doesn't have that much to do with the material in this chapter per se, but
it is a classic programming exercise:) Write the function alg2rpn used in the section on
command blocks. Here's how to do this: Arithmetic expressions in algebraic notation
have the form expr op expr , where each expr is either a number or another expression
(perhaps in parentheses), and op is +, -, x, /, or % (remainder). In RPN, expressions
have the form expr expr op . For example: the algebraic expression 2 +3 is 2 3 + in
RPN; the RPN equivalent of (2+3) x (9-5) is 2 3 + 9 5 - x . The main advantage of

d.

3.

RPN is that it obviates the need for parentheses and operator precedence rules (e.g., x
is evaluated before +). The dc program accepts standard RPN, but each expression
should have "p" appended to it, which tells dc to print its result; e.g., the first example
above should be given to dc as 2 3 + p .

You need to write a routine that converts algebraic notation to RPN. This should be (or
include) a function that calls itself (a recursive function) whenever it encounters a
subexpression. It is especially important that this function keep track of where it is in
the input string and how much of the string it "eats up" during its processing. (Hint:
make use of the pattern-matching operators discussed in Chapter 4 to ease the task of
parsing input strings.) To make your life easier, don't worry about operator precedence
for now; just convert to RPN from left to right: e.g., treat 3+4x5 as (3+ 4)x5 and
3x4+5 as (3x4)+5 . This makes it possible for you to convert the input string on the
fly, i.e., without having to read in the whole thing before doing any processing.

e.

Enhance your solution to the previous exercise so that it supports operator precedence
in the "usual" order: x, /, % (remainder) +, -. For example, treat 3+4x5 as 3+(4x5) and
3x4+5 as (3x4)+5 .

f.

Here is something else to really test your skills; write a graphics utility script, index, that
takes a list of image files, reduces them in size and creates an "index" image. An index
image is comprised of thumbnail-sized versions of the original images, placed neatly in
columns and rows, and with a caption underneath (usually the name of the original file).
Besides the list of files, you'll need some options, including the number of columns to
create and the size of the thumbnail images. You might also like to include an option to
specify the gap between each image. The new NetPBM utilities you'll need are pbmtext
and pnmcat . You'll also need pnmscale and one or more of the conversion utilities,
depending upon whether you decide to take in various formats (as we did for
procimage) and what output format you decide on. pbmtext takes as an argument
some text and converts the text into a PNM bitmap. pnmcat is a little more complex.
Like cat , it concatenates things; in this case, images. You can specify as many PNM
files as you like as arguments and pnmcat will put them together into one long image.
By using the -lr and -tb options, you can specify whether you want the images to be
placed one after the other going from left to right, or from top to bottom. The first
option to pnmcat is the background color. It can be either -black for a black
background, or -white for a white background. We suggest -white to match the
pbmtext black text on a white background. You'll need to take each file, run the
filename through pbmtext , and use pnmcat to place it underneath a scaled down
version of the original image. Then you'll need to continue doing this for each file and
use pnmcat to connect them together. In addition, you'll have to keep tabs on how
many columns you have completed and when to start a new row. Note that you'll need
to build up the rows individually and use pnmcat to connect them together. pnmcat

g.

won't do this for you automatically.

 < Day Day Up >

 < Day Day Up >

Chapter 8. Process Handling
The UNIX operating system built its reputation on a small number of concepts, all of which are
simple yet powerful. We've seen most of them by now: standard input/output, pipes, text-filtering
utilities, the tree-structured file system, and so on. UNIX also gained notoriety as the first small-
computer operating system to give each user control over more than one process. We call this
capability user-controlled multitasking .

You may not think that multitasking is a big deal. You're probably used to the idea of running a
process in the background by putting an ampersand (&) at the end of the command line. You
have also seen the idea of a subshell in Chapter 4 , when we showed how shell scripts run.

In this chapter, we will cover most of bash 's features that relate to multitasking and process
handling in general. We say "most" because some of these features are, like the file descriptors
we saw in the previous chapter, of interest only to low-level systems programmers.

We'll start out by looking at certain important primitives for identifying processes and for
controlling them during login sessions and within shell scripts. Then we will move out to a
higher-level perspective, looking at ways to get processes to communicate with each other. We'll
look in more detail at concepts we've already seen, like pipes and subshells.

Don't worry about getting bogged down in low-level technical details about UNIX. We will
provide only the technical information that is necessary to explain higher-level features, plus a
few other tidbits designed to pique your curiosity. If you are interested in finding out more about
these areas, refer to your UNIX Programmer's Manual or a book on UNIX internals that pertains
to your version of UNIX. You might also find UNIX Power Tools of value.

We strongly recommend that you try out the examples in this chapter. The behavior of code that
involves multiple processes is not as easy to understand on paper as most of the other examples
in this book.

 < Day Day Up >

 < Day Day Up >

8.1. Process IDs and Job Numbers

UNIX gives all processes numbers, called process IDs , when they are created. You will notice
that when you run a command in the background by appending & to it, the shell responds with a
line that looks like this:

$ alice &[1] 93

In this example, 93 is the process ID for the alice process. The [1] is a job number assigned by
the shell (not the operating system). What's the difference? Job numbers refer to background
processes that are currently running under your shell, while process IDs refer to all processes
currently running on the entire system, for all users. The term job basically refers to a command
line that was invoked from your shell.

If you start up additional background jobs while the first one is still running, the shell will number
them 2, 3, etc. For example:

$ duchess &[2] 102

$ hatter &[3] 104

Clearly, 1, 2, and 3 are easier to remember than 93, 102, and 104!

The shell includes job numbers in messages it prints when a background job completes:[1]

[1] The messages are, by default, printed before the next prompt is displayed so as not to interrupt any output on the
display. You can make the notification messages display immediately by using set -b .

[1]+ Done alice

We'll explain what the plus sign means soon. If the job exits with non-zero status (see Chapter 5
), the shell will indicate the exit status:[2]

[2] In POSIX mode, the message is slightly different: "[1]+ Done(1) alice ". The number in parentheses is the exit status
of the job. POSIX mode can be selected via the set command or by starting bash in POSIX mode. For further
information, see Table 2-1 and Table 2-5

[1]+ Exit 1 alice

The shell prints other types of messages when certain abnormal things happen to background
jobs; we'll see these later in this chapter.

 < Day Day Up >

 < Day Day Up >

8.2. Job Control

Why should you care about process IDs or job numbers? Actually, you could probably get
along fine through your UNIX life without ever referring to process IDs (unless you use a
windowing workstation—as we'll see soon). Job numbers are more important, however: you can
use them with the shell commands for job control .[3]

[3] If you have an older version of UNIX, it is possible that your system does not support job control. This is
particularly true for many systems derived from Xenix, System III, or early versions of System V. On such systems,
bash does not have the fg and bg commands, job number arguments to kill and wait , typing CTRL-Z to suspend a
job, or the TSTP signal.

You already know the most obvious way of controlling a job: create one in the background with
& . Once a job is running in the background, you can let it run to completion, bring it into the
foreground , or send it a message called a signal .

8.2.1. Foreground and Background

The built-in command fg brings a background job into the foreground. Normally this means that
the job will have control of your terminal or window and therefore will be able to accept your
input. In other words, the job will begin to act as if you typed its command without the & .

If you have only one background job running, you can use fg without arguments, and the shell
will bring that job into the foreground. But if you have several jobs running in the background,
the shell will pick the one that you put into the background most recently. If you want some other
job put into the foreground, you need to use the job's command name, preceded by a percent
sign (%), or you can use its job number, also preceded by %, or its process ID without a
percent sign. If you don't remember which jobs are running, you can use the command jobs to
list them.

A few examples should make this clearer. Let's say you created three background jobs as above.
Then if you type jobs , you will see this:

[1] Running alice &

[2]- Running duchess &

[3]+ Running hatter &

jobs has a few interesting options. jobs -l also lists process IDs:

[1] 93 Running alice &

[2]- 102 Running duchess &

[3]+ 104 Running hatter &

The -p option tells jobs to list only process IDs:

93

102

104

(This could be useful with command substitution; see Task 8-1.) The -n option lists only those
jobs whose status has changed since the shell last reported it—whether with a jobs command or
otherwise. -r restricts the list to jobs that are running, while -s restricts the list to those jobs which
are stopped, e.g., waiting for input from the keyboard.[4] Finally, you can use the -x option to
execute a command. Any job number provided to the command will be substituted with the
process ID of the job. For example, if alice is running in the background, then executing jobs -x
echo %1 will print the process ID of alice .

[4] Options -r and -s are not available in bash prior to version 2.0.

If you type fg without an argument, the shell will put hatter in the foreground, because it was put
in the background most recently. But if you type fg %duchess (or fg %2), duchess will go in
the foreground.

You can also refer to the job most recently put in the background by %+ . Similarly, %- refers
to the next -most-recently backgrounded job (duchess in this case). That explains the plus and
minus signs in the above: the plus sign shows the most recent job whose status has changed; the
minus sign shows the next-most-recently invoked job.[5]

[5] This is analogous to ~+ and ~- as references to the current and previous directory; see the footnote in Chapter 7 .
Also: %% is a synonym for %+ .

If more than one background job has the same command, then % command will distinguish
between them by choosing the most recently invoked job (as you'd expect). If this isn't what you
want, you need to use the job number instead of the command name. However, if the commands
have different arguments , you can use %? string instead of % command . %? string refers to
the job whose command contains the string. For example, assume you started these background
jobs:

$ hatter mad &[1] 189

$ hatter teatime &[2] 190

$

Then you can use %?mad and %?teatime to refer to each of them, although actually %?ma
and %?tea are sufficient to uniquely identify them.

Table 8-1 lists all of the ways to refer to background jobs. Given how infrequently people use
job control commands, job numbers or command names are sufficient, and the other ways are
superfluous.

%N

Job number N

%string

Job whose command begins with string

%?string

Job whose command contains string

%+

Most recently invoked background job

%%

Same as above

% -

Second most recently invoked background job

Table 8-1. Ways to refer to background jobs

Reference Background job

8.2.2. Suspending a Job

Just as you can put background jobs into the foreground with fg , you can also put a foreground

job into the background. This involves suspending a job, so that the shell regains control of your
terminal.

To suspend a job, type CTRL-Z while it is running.[6] This is analogous to typing CTRL-C (or
whatever your interrupt key is), except that you can resume the job after you have stopped it.
When you type CTRL-Z, the shell responds with a message like this:

[6] This assumes that the CTRL-Z key is set up as your suspend key; just as with CTRL-C and interrupts, this is
conventional but by no means required.

[1]+ Stopped command

Then it gives you your prompt back. To resume a suspended job so that it continues to run in
the foreground, just type fg . If, for some reason, you put other jobs in the background after you
typed CTRL-Z, use fg with a job name or number.

For example:

alice is running...CTRL-Z[1]+ Stopped alice

$ hatter &[2] 145

$ fg %alicealice resumes in the foreground...

The ability to suspend jobs and resume them in the foreground comes in very handy when you
have a conventional terminal (as opposed to a windowing workstation) and you are using a text
editor like vi on a file that needs to be processed. For example, if you are editing a file for the
troff text processor, you can do the following:

$ vi myfileedit the file... CTRL-ZStopped [1] vi

$ troff myfiletroff reports an error$ fgvi comes back up in the same place in your file

Programmers often use the same technique when debugging source code.

You will probably also find it useful to suspend a job and resume it in the background instead of
the foreground. You may start a command in the foreground (i.e., normally) and find that it takes
much longer than you expected—for example, a grep , sort , or database query. You need the
command to finish, but you would also like control of your terminal back so that you can do
other work. If you type CTRL-Z followed by bg , you will move the job to the background.[7]

[7] Be warned, however, that not all commands are "well-behaved" when you do this. Be especially careful with
commands that run over a network on a remote machine; you may end up confusing the remote program.

You can also suspend a job with CTRL-Y. This is slightly different from CTRL-Z in that the

process is only stopped when it attempts to read input from the terminal.

 < Day Day Up >

 < Day Day Up >

8.3. Signals

We mentioned earlier that typing CTRL-Z to suspend a job is similar to typing CTRL-C to stop
a job, except that you can resume the job later. They are actually similar in a deeper way: both are
particular cases of the act of sending a signal to a process.

A signal is a message that one process sends to another when some abnormal event takes place
or when it wants the other process to do something. Most of the time, a process sends a signal
to a subprocess it created. You're undoubtedly already comfortable with the idea that one
process can communicate with another through an I/O pipeline; think of a signal as another way
for processes to communicate with each other. (In fact, any textbook on operating systems will
tell you that both are examples of the general concept of interprocess communication , or
IPC.[8])

[8] Pipes and signals were the only IPC mechanisms in early versions of UNIX. More modern versions like System V
and BSD have additional mechanisms, such as sockets, named pipes, and shared memory. Named pipes are accessible
to shell programmers through the mknod (1) command, which is beyond the scope of this book.

Depending on the version of UNIX, there are two or three dozen types of signals, including a few
that can be used for whatever purpose a programmer wishes. Signals have numbers (from 1 to
the number of signals the system supports) and names; we'll use the latter. You can get a list of
all the signals on your system, by name and number, by typing kill -l . Bear in mind, when you
write shell code involving signals, that signal names are more portable to other versions of UNIX
than signal numbers.

8.3.1. Control-Key Signals

When you type CTRL-C, you tell the shell to send the INT (for "interrupt") signal to the current
job; CTRL-Z sends TSTP (on most systems, for "terminal stop"). You can also send the
current job a QUIT signal by typing CTRL-\ (control-backslash); this is sort of like a "stronger"
version of CTRL-C.[9] You would normally use CTRL-\ when (and only when) CTRL-C
doesn't work.

[9] CTRL-\ can also cause the shell to leave a file called core in your current directory. This file contains an image of the
process to which you sent the signal; a programmer could use it to help debug the program that was running. The file's
name is a (very) old-fashioned term for a computer's memory. Other signals leave these "core dumps" as well; unless
you require them, or someone else does, just delete them.

As we'll see soon, there is also a "panic" signal called KILL that you can send to a process when

even CTRL-\ doesn't work. But it isn't attached to any control key, which means that you can't
use it to stop the currently running process. INT, TSTP, and QUIT are the only signals you can
use with control keys.[10]

[10] Some BSD-derived systems have additional control-key signals.

You can customize the control keys used to send signals with options of the stty command.
These vary from system to system—consult your manpage for the command—but the usual
syntax is stty signame char . signame is a name for the signal that, unfortunately, is often not the
same as the names we use here. Table 1-7 in Chapter 1 lists stty names for signals found on all
versions of UNIX. char is the control character, which you can give using the convention that
^(circumflex) represents "control." For example, to set your INT key to CTRL-X on most
systems, use:

stty intr ^X

Now that we've told you how to do this, we should add that we don't recommend it. Changing
your signal keys could lead to trouble if someone else has to stop a runaway process on your
machine.

Most of the other signals are used by the operating system to advise processes of error
conditions, like a bad machine code instruction, bad memory address, or division by zero, or
"interesting" events such as a timer ("alarm") going off. The remaining signals are used for
esoteric error conditions of interest only to low-level systems programmers; newer versions of
UNIX have even more signal types.

8.3.2. kill

You can use the built-in shell command kill to send a signal to any process you created—not
just the currently running job. kill takes as an argument the process ID, job number, or command
name of the process to which you want to send the signal. By default, kill sends the TERM
("terminate") signal, which usually has the same effect as the INT signal you send with CTRL-C.
But you can specify a different signal by using the signal name (or number) as an option,
preceded by a dash.

kill is so named because of the nature of the default TERM signal, but there is another reason,
which has to do with the way UNIX handles signals in general. The full details are too complex
to go into here, but the following explanation should suffice.

Most signals cause a process that receives them to die; therefore, if you send any one of these
signals, you "kill" the process that receives it. However, programs can be set up to Section 8.4
specific signals and take some other action. For example, a text editor would do well to save the

file being edited before terminating when it receives a signal such as INT, TERM, or QUIT.
Determining what to do when various signals come in is part of the fun of UNIX systems
programming.

Here is an example of kill . Say you have an alice process in the background, with process ID
150 and job number 1, which needs to be stopped. You would start with this command:

$ kill %1

If you were successful, you would see a message like this:

[1]+ Terminated alice

If you don't see this, then the TERM signal failed to terminate the job. The next step would be to
try QUIT:

$ kill -QUIT %1

If that worked, you would see this message:

[1]+ Exit 131 alice

The 131 is the exit status returned by alice .[11] But if even QUIT doesn't work, the "last-ditch"
method would be to use KILL:

[11] When a shell script is sent a signal, it exits with status 128+N , where N is the number of the signal it received. In
this case, alice is a shell script, and QUIT happens to be signal number 3.

$ kill -KILL %1

This produces the message:

[1]+ Killed alice

It is impossible for a process to Section 8.4 a KILL signal—the operating system should
terminate the process immediately and unconditionally. If it doesn't, then either your process is in
one of the "funny states" we'll see later in this chapter, or (far less likely) there's a bug in your
version of UNIX.

Here's another example.

Task 8-1
Write a script called killalljobs that kills all background jobs.

The solution to this task is simple, relying on jobs -p :

kill "$@" $(jobs -p)

You may be tempted to use the KILL signal immediately, instead of trying TERM (the default)
and QUIT first. Don't do this. TERM and QUIT are designed to give a process the chance to
"clean up" before exiting, whereas KILL will stop the process, wherever it may be in its
computation. Use KILL only as a last resort!

You can use the kill command with any process you create, not just jobs in the background of
your current shell. For example, if you use a windowing system, then you may have several
terminal windows, each of which runs its own shell. If one shell is running a process that you
want to stop, you can kill it from another window—but you can't refer to it with a job number
because it's running under a different shell. You must instead use its process ID.

8.3.3. ps

This is probably the only situation in which a casual user would need to know the ID of a
process. The command ps gives you this information; however, it can give you lots of extra
information as well.

ps is a complex command. It takes several options, some of which differ from one version of
UNIX to another. To add to the confusion, you may need different options on different UNIX
versions to get the same information! We will use options available on the two major types of
UNIX systems, those derived from System V (such as many of the versions for Intel Pentium
PCs, as well as IBM's AIX and Hewlett-Packard's HP/UX) and BSD (Mac OS X, SunOS,
BSD/OS). If you aren't sure which kind of UNIX version you have, try the System V options
first.

You can invoke ps in its simplest form without any options. In this case, it will print a line of
information about the current login shell and any processes running under it (i.e., background
jobs). For example, if you were to invoke three background jobs, as we saw earlier in the
chapter, the ps command on System V-derived versions of UNIX would produce output that
looks something like this:

 PID TTY TIME COMD

 146 pts/10 0:03 -bash

 2349 pts/10 0:03 alice

 2367 pts/10 0:17 hatter

 2389 pts/10 0:09 duchess

 2390 pts/10 0:00 ps

The output on BSD-derived systems looks like this:

 PID TT STAT TIME COMMAND

 146 10 S 0:03 /bin/bash

 2349 10 R 0:03 alice

 2367 10 D 0:17 hatter teatime

 2389 10 R 0:09 duchess

 2390 10 R 0:00 ps

(You can ignore the STAT column.) This is a bit like the jobs command. PID is the process ID;
TTY (or TT) is the terminal (or pseudo-terminal, if you are using a windowing system) the
process was invoked from; TIME is the amount of processor time (not real or "wall clock" time)
the process has used so far; COMD (or COMMAND) is the command. Notice that the BSD
version includes the command's arguments, if any; also notice that the first line reports on the
parent shell process, and in the last line, ps reports on itself.

ps without arguments lists all processes started from the current terminal or pseudo-terminal. But
since ps is not a shell command, it doesn't correlate process IDs with the shell's job numbers. It
also doesn't help you find the ID of the runaway process in another shell window.

To get this information, use ps -a (for "all"); this lists information on a different set of processes,
depending on your UNIX version.

8.3.3.1 System V

Instead of listing all processes that were started under a specific terminal, ps -a on System V-
derived systems lists all processes associated with any terminal that aren't group leaders. For our
purposes, a "group leader" is the parent shell of a terminal or window. Therefore, if you are
using a windowing system, ps -a lists all jobs started in all windows (by all users), but not their

parent shells.

Assume that, in the previous example, you have only one terminal or window. Then ps -a will
print the same output as plain ps except for the first line, since that's the parent shell. This
doesn't seem to be very useful.

But consider what happens when you have multiple windows open. Let's say you have three
windows, all running terminal emulators like xterm for the X Window System. You start
background jobs alice , duchess , and hatter in windows with pseudo-terminal numbers 1, 2,
and 3, respectively. This situation is shown in Figure 8-1 .

Figure 8-1. Background jobs in multiple windows

Assume you are in the uppermost window. If you type ps , you will see something like this:

 PID TTY TIME COMD

 146 pts/1 0:03 bash

2349 pts/1 0:03 alice

2390 pts/1 0:00 ps

But if you type ps -a , you will see this:

 PID TTY TIME COMD

 146 pts/1 0:03 bash

2349 pts/1 0:03 alice

2367 pts/2 0:17 duchess

2389 pts/3 0:09 hatter

2390 pts/1 0:00 ps

Now you should see how ps -a can help you track down a runaway process. If it's hatter , you
can type kill 2389 . If that doesn't work, try kill -QUIT 2389 , or in the worst case, kill -KILL
2389 .

8.3.3.2 BSD

On BSD-derived systems, ps -a lists all jobs that were started on any terminal; in other words,
it's a bit like concatenating the the results of plain ps for every user on the system. Given the
above scenario, ps -a will show you all processes that the System V version shows, plus the
group leaders (parent shells).

Unfortunately, ps -a (on any version of UNIX) will not report processes that are in certain
conditions where they "forget" things like what shell invoked them and what terminal they belong
to. Such processes are known as "zombies" or "orphans." If you have a serious runaway
process problem, it's possible that the process has entered one of these states.

Let's not worry about why or how a process gets this way. All you need to understand is that the
process doesn't show up when you type ps -a . You need another option to ps to see it: on
System V, it's ps -e ("everything"), whereas on BSD, it's ps -ax .

These options tell ps to list processes that either weren't started from terminals or "forgot" what
terminal they were started from. The former category includes lots of processes that you
probably didn't even know existed: these include basic processes that run the system and so-
called daemons (pronounced "demons") that handle system services like mail, printing, network
filesystems, etc.

In fact, the output of ps -e or ps -ax is an excellent source of education about UNIX system
internals, if you're curious about them. Run the command on your system and, for each line of
the listing that looks interesting, invoke man on the process name or look it up in the UNIX
Programmer's Manual for your system.

User shells and processes are listed at the very bottom of ps -e or ps -ax output; this is where
you should look for runaway processes. Notice that many processes in the listing have ? instead
of a terminal. Either these aren't supposed to have one (such as the basic daemons) or they're
runaways. Therefore it's likely that if ps -a doesn't find a process you're trying to kill, ps -e (or
ps -ax) will list it with ? in the TTY (or TT) column. You can determine which process you
want by looking at the COMD (or COMMAND) column.

 < Day Day Up >

 < Day Day Up >

8.4. trap

We've been discussing how signals affect the casual user; now let's talk a bit about how shell
programmers can use them. We won't go into too much depth about this, because it's really the
domain of systems programmers.

We mentioned above that programs in general can be set up to Section 8.4 specific signals and
process them in their own way. The trap built-in command lets you do this from within a shell
script. trap is most important for "bullet-proofing" large shell programs so that they react
appropriately to abnormal events—just as programs in any language should guard against invalid
input. It's also important for certain systems programming tasks, as we'll see in the next chapter.

The syntax of trap is:

trap cmd sig1 sig2 ...

That is, when any of sig1 , sig2 , etc., are received, run cmd , then resume execution. After cmd
finishes, the script resumes execution just after the command that was interrupted.[12]

[12] This is what usually happens. Sometimes the command currently running will abort (sleep acts like this, as we'll see
soon); at other times it will finish running. Further details are beyond the scope of this book.

Of course, cmd can be a script or function. The sig s can be specified by name or by number.
You can also invoke trap without arguments, in which case the shell will print a list of any traps
that have been set, using symbolic names for the signals.

Here's a simple example that shows how trap works. Suppose we have a shell script called loop
with this code:

while true; do

 sleep 60

done

This will just pause for 60 seconds (the sleep command) and repeat indefinitely. true is a "do-
nothing" command whose exit status is always 0.[13] Try typing in this script. Invoke it, let it run
for a little while, then type CTRL-C (assuming that is your interrupt key). It should stop, and you
should get your shell prompt back.

[13] This command is the same as the built-in shell no-op command ":".

Now insert this line at the beginning of the script:

trap "echo 'You hit control-C!'" INT

Invoke the script again. Now hit CTRL-C. The odds are overwhelming that you are interrupting
the sleep command (as opposed to true). You should see the message "You hit control-C!",
and the script will not stop running; instead, the sleep command will abort, and it will loop
around and start another sleep . Hit CTRL-Z to get it to stop and then type kill %1 .

Next, run the script in the background by typing loop & . Type kill %loop (i.e., send it the
TERM signal); the script will terminate. Add TERM to the trap command, so that it looks like
this:

trap "echo 'You hit control-C!'" INT TERM

Now repeat the process: run it in the background and type kill %loop . As before, you will see
the message and the process will keep on running. Type kill -KILL %loop to stop it.

Notice that the message isn't really appropriate when you use kill . We'll change the script so it
prints a better message in the kill case:

trap "echo 'You hit control-C!'" INT

trap "echo 'You tried to kill me!'" TERM

while true; do

 sleep 60

done

Now try it both ways: in the foreground with CTRL-C and in the background with kill . You'll
see different messages.

8.4.1. Traps and Functions

The relationship between traps and shell functions is straightforward, but it has certain nuances
that are worth discussing. The most important thing to understand is that functions are
considered part of the shell that invokes them. This means that traps defined in the invoking shell
will be recognized inside the function, and more importantly, any traps defined in the function

will be recognized by the invoking shell once the function has been called. Consider this code:

settrap () {

 trap "echo 'You hit control-C!'" INT

}

settrap

while true; do

 sleep 60

done

If you invoke this script and hit your interrupt key, it will print "You hit control-C!" In this case
the trap defined in settrap still exists when the function exits.

Now consider:

loop () {

 trap "echo 'How dare you!'" INT

 while true; do

 sleep 60

 done

}

trap "echo 'You hit control-C!'" INT

loop

When you run this script and hit your interrupt key, it will print "How dare you!" In this case the
trap is defined in the calling script, but when the function is called the trap is redefined. The first
definition is lost. A similar thing happens with:

loop () {

 trap "echo 'How dare you!'" INT

}

trap "echo 'You hit control-C!'" INT

loop

while true; do

 sleep 60

done

Once again, the trap is redefined in the function; this is the definition used once the loop is
entered.

We'll now show a more practical example of traps.

Task 8-2
As part of an electronic mail system, write the shell code that lets a user compose a
message.

The basic idea is to use cat to create the message in a temporary file and then hand the file's
name off to a program that actually sends the message to its destination. The code to create the
file is very simple:

msgfile=/tmp/msg$$

cat > $msgfile

Since cat without an argument reads from the standard input, this will just wait for the user to
type a message and end it with the end-of-text character CTRL-D.

8.4.2. Process ID Variables and Temporary Files

The only thing new about this script is $$ in the filename expression. This is a special shell
variable whose value is the process ID of the current shell.

To see how $$ works, type ps and note the process ID of your shell process (bash). Then type
echo "$$ "; the shell will respond with that same number. Now type bash to start a subshell, and

when you get a prompt, repeat the process. You should see a different number, probably slightly
higher than the last one.

A related built-in shell variable is ! (i.e., its value is $!), which contains the process ID of the
most recently invoked background job. To see how this works, invoke any job in the
background and note the process ID printed by the shell next to [1] . Then type echo "$! "; you
should see the same number.

To return to our mail example: since all processes on the system must have unique process IDs,
$$ is excellent for constructing names of temporary files.

The directory /tmp is conventionally used for temporary files. Many systems also have another
directory, /var/tmp , for the same purpose.

Nevertheless, a program should clean up such files before it exits, to avoid taking up
unnecessary disk space. We could do this in our code very easily by adding the line rm
$msgfile after the code that actually sends the message. But what if the program receives a signal
during execution? For example, what if a user changes her mind about sending the message and
hits CTRL-C to stop the process? We would need to clean up before exiting. We'll emulate the
actual UNIX mail system by saving the message being written in a file called dead.letter in the
current directory. We can do this by using trap with a command string that includes an exit
command:

trap 'mv $msgfile dead.letter; exit' INT TERM

msgfile=/tmp/msg$$

cat > $msgfile

send the contents of $msgfile to the specified mail address...

rm $msgfile

When the script receives an INT or TERM signal, it will remove the temp file and then exit. Note
that the command string isn't evaluated until it needs to be run, so $msgfile will contain the
correct value; that's why we surround the string in single quotes.

But what if the script receives a signal before msgfile is created—unlikely though that may be?
Then mv will try to rename a file that doesn't exist. To fix this, we need to test for the existence
of the file $msgfile before trying to delete it. The code for this is a bit unwieldy to put in a single
command string, so we'll use a function instead:

function cleanup {

 if [-e $msgfile]; then

 mv $msgfile dead.letter

 fi

 exit

}

trap cleanup INT TERM

msgfile=/tmp/msg$$

cat > $msgfile

send the contents of $msgfile to the specified mail address...

rm $msgfile

8.4.3. Ignoring Signals

Sometimes a signal comes in that you don't want to do anything about. If you give the null string
("" or `') as the command argument to trap , then the shell will effectively ignore that signal. The
classic example of a signal you may want to ignore is HUP (hangup). This can occur on some
UNIX systems when a hangup (disconnection while using a modem—literally "hanging up") or
some other network outage takes place.

HUP has the usual default behavior: it will kill the process that receives it. But there are bound to
be times when you don't want a background job to terminate when it receives a hangup signal.

To do this, you could write a simple function that looks like this:

function ignorehup {

 trap "" HUP

 eval "$@"

}

We write this as a function instead of a script for reasons that will become clearer when we look
in detail at subshells at the end of this chapter.

Actually, there is a UNIX command called nohup that does precisely this. The start script from
the last chapter could include nohup :

eval nohup "$@" > logfile 2>&1 &

This prevents HUP from terminating your command and saves its standard and error output in a
file. Actually, the following is just as good:

nohup "$@" > logfile 2>&1 &

If you understand why eval is essentially redundant when you use nohup in this case, then you
have a firm grasp on the material in the previous chapter. Note that if you don't specify a
redirection for any output from the command, nohup places it in a file called nohup.out .

8.4.4. disown

Another way to ignore the HUP signal is with the disown built-in.[14] disown takes as an
argument a job specification, such as the process ID or job ID, and removes the process from
the list of jobs. The process is effectively "disowned" by the shell from that point on, i.e., you
can only refer to it by its process ID since it is no longer in the job table.

[14] disown is not available in versions of bash prior to 2.0.

disown 's -h option performs the same function as nohup ; it specifies that the shell should stop
the hangup signal from reaching the process under certain circumstances. Unlike nohup , it is up
to you to specify where the output from the process is to go.

disown also provides two options which can be of use. -a with no other arguments applies the
operation to all jobs owned by the shell. The -r option with does the same but only for currently
running jobs.

8.4.5. Resetting Traps

Another "special case" of the trap command occurs when you give a dash (-) as the command
argument. This resets the action taken when the signal is received to the default, which usually is
termination of the process.

As an example of this, let's return to Task 8-2, our mail program. After the user has finished
sending the message, the temporary file is erased. At that point, since there is no longer any need
to clean up, we can reset the signal trap to its default state. The code for this, apart from function
definitions, is:

trap abortmsg INT

trap cleanup TERM

msgfile=/tmp/msg$$

cat > $msgfile

send the contents of $msgfile to the specified mail address...

rm $msgfile

trap - INT TERM

The last line of this code resets the handlers for the INT and TERM signals.

At this point you may be thinking that you could get seriously carried away with signal handling
in a shell script. It is true that "industrial strength" programs devote considerable amounts of
code to dealing with signals. But these programs are almost always large enough so that the
signal-handling code is a tiny fraction of the whole thing. For example, you can bet that the real
UNIX mail system is pretty darn bullet-proof.

However, you will probably never write a shell script that is complex enough, and that needs to
be robust enough, to merit lots of signal handling. You may write a prototype for a program as
large as mail in shell code, but prototypes by definition do not need to be bullet-proofed.

Therefore, you shouldn't worry about putting signal-handling code in every 20-line shell script
you write. Our advice is to determine if there are any situations in which a signal could cause
your program to do something seriously bad and add code to deal with those contingencies.
What is "seriously bad"? Well, with respect to the above examples, we'd say that the case where
HUP causes your job to terminate is seriously bad, while the temporary file situation in our mail
program is not.

 < Day Day Up >

 < Day Day Up >

8.5. Coroutines

We've spent the last several pages on almost microscopic details of process behavior. Rather
than continue our descent into the murky depths, we'll revert to a higher-level view of processes.

Earlier in this chapter, we covered ways of controlling multiple simultaneous jobs within an
interactive login session; now we'll consider multiple process control within shell programs.
When two (or more) processes are explicitly programmed to run simultaneously and possibly
communicate with each other, we call them coroutines .

This is actually nothing new: a pipeline is an example of coroutines. The shell's pipeline construct
encapsulates a fairly sophisticated set of rules about how processes interact with each other. If
we take a closer look at these rules, we'll be better able to understand other ways of handling
coroutines—most of which turn out to be simpler than pipelines.

When you invoke a simple pipeline—say, ls | more— the shell invokes a series of UNIX
primitive operations, or system calls . In effect, the shell tells UNIX to do the following things; in
case you're interested, we include in parentheses the actual system call used at each step:

Create two subprocesses, which we'll call P1 and P2 (the fork system call).1.

Set up I/O between the processes so that P1's standard output feeds into P2's standard
input (pipe).

2.

Start /bin/ls in process P1 (exec).3.

Start /bin/more in process P2 (exec).4.

Wait for both processes to finish (wait).5.

You can probably imagine how the above steps change when the pipeline involves more than two
processes.

Now let's make things simpler. We'll see how to get multiple processes to run at the same time if
the processes do not need to communicate. For example, we want the processes alice and
hatter to run as coroutines, without communication, in a shell script. Our initial solution would
be this:

alice &

hatter

Assume for the moment that hatter is the last command in the script. The above will work—but
only if alice finishes first. If alice is still running when the script finishes, then it becomes an
orphan , i.e., it enters one of the "funny states" we mentioned earlier in this chapter. Never mind
the details of orphanhood; just believe that you don't want this to happen, and if it does, you may
need to use the "runaway process" method of stopping it, discussed earlier in this chapter.

8.5.1. wait

There is a way of making sure the script doesn't finish before alice does: the built-in command
wait . Without arguments, wait simply waits until all background jobs have finished. So to make
sure the above code behaves properly, we would add wait , like this:

alice &

hatter

wait

Here, if hatter finishes first, the parent shell will wait for alice to finish before finishing itself.

If your script has more than one background job and you need to wait for specific ones to finish,
you can give wait the process ID of the job.

However, you will probably find that wait without arguments suffices for all coroutines you will
ever program. Situations in which you would need to wait for specific background jobs are quite
complex and beyond the scope of this book.

8.5.2. Advantages and Disadvantages of Coroutines

In fact, you may be wondering why you would ever need to program coroutines that don't
communicate with each other. For example, why not just run hatter after alice in the usual way?
What advantage is there in running the two jobs simultaneously?

Even if you are running on a computer with only one processor (CPU), then there may be a
performance advantage.

Roughly speaking, you can characterize a process in terms of how it uses system resources in
three ways: whether it is CPU-intensive (e.g., does lots of number crunching), I/O-intensive
(does a lot of reading or writing to the disk), or interactive (requires user intervention).

We already know from Chapter 1 that it makes no sense to run an interactive job in the
background. But apart from that, the more two or more processes differ with respect to these
three criteria, the more advantage there is in running them simultaneously. For example, a
number-crunching statistical calculation would do well when running at the same time as a long,
I/O-intensive database query.

On the other hand, if two processes use resources in similar ways, it may even be less efficient to
run them at the same time as it would be to run them sequentially. Why? Basically, because under
such circumstances, the operating system often has to "time-slice" the resource(s) in contention.

For example, if both processes are "disk hogs," the operating system may enter a mode where it
constantly switches control of the disk back and forth between the two competing processes; the
system ends up spending at least as much time doing the switching as it does on the processes
themselves. This phenomenon is known as thrashing ; at its most severe, it can cause a system
to come to a virtual standstill. Thrashing is a common problem; system administrators and
operating system designers both spend lots of time trying to minimize it.

8.5.3. Parallelization

If you have a computer with multiple CPUs you should be less concerned about thrashing.
Furthermore, coroutines can provide dramatic increases in speed on this type of machine, which
is often called a parallel computer; analogously, breaking up a process into coroutines is
sometimes called parallelizing the job.

Normally, when you start a background job on a multiple-CPU machine, the computer will assign
it to the next available processor. This means that the two jobs are actually—not just
metaphorically—running at the same time.

In this case, the running time of the coroutines is essentially equal to that of the longest-running
job plus a bit of overhead, instead of the sum of the runtimes of all processes (although if the
CPUs all share a common disk drive, the possibility of I/O-related thrashing still exists). In the
best case—all jobs having the same runtime and no I/O contention—you get a speedup factor
equal to the number of CPUs.

Parallelizing a program is often not easy; there are several subtle issues involved and there's
plenty of room for error. Nevertheless, it's worthwhile to know how to parallelize a shell script
whether or not you have a parallel machine, especially since such machines are becoming more
and more common.

We'll show how to do this—and give you an idea of some problems involved—by means of a
simple task whose solution is amenable to parallelization.

Task 8-3
Write a utility that allows you to make multiple copies of a file at the same time.

We'll call this script mcp . The command mcp filename dest1 dest2 . .. should copy filename to
all of the destinations given. The code for this should be fairly obvious:

file=$1

shift

for dest in "$@"; do

 cp $file $dest

done

Now let's say we have a parallel computer and we want this command to run as fast as possible.
To parallelize this script, it's a simple matter of firing off the cp commands in the background
and adding a wait at the end:

file=$1

shift

for dest in "$@"; do

 cp $file $dest &

done

wait

Simple, right? Well, there is one little problem: what happens if the user specifies duplicate
destinations? If you're lucky, the file just gets copied to the same place twice. Otherwise, the
identical cp commands will interfere with each other, possibly resulting in a file that contains two
interspersed copies of the original file. In contrast, if you give the regular cp command two
arguments that point to the same file, it will print an error message and do nothing.

To fix this problem, we would have to write code that checks the argument list for duplicates.
Although this isn't too hard to do (see the exercises at the end of this chapter), the time it takes
that code to run might offset any gain in speed from parallelization; furthermore, the code that
does the checking detracts from the simple elegance of the script.

As you can see, even a seemingly trivial parallelization task has problems resulting from multiple
processes that have concurrent access to a given system resource (a file in this case). Such
problems, known as concurrency control issues, become much more difficult as the complexity
of the application increases. Complex concurrent programs often have much more code for
handling the special cases than for the actual job the program is supposed to do!

Therefore, it shouldn't surprise you that much research has been and is being done on
parallelization, the ultimate goal being to devise a tool that parallelizes code automatically. (Such
tools do exist; they usually work in the confines of some narrow subset of the problem.) Even if
you don't have access to a multiple-CPU machine, parallelizing a shell script is an interesting
exercise that should acquaint you with some of the issues that surround coroutines.

 < Day Day Up >

 < Day Day Up >

8.6. Subshells

To conclude this chapter, we will look at a simple type of interprocess relationship: that of a
subshell with its parent shell. We saw in Chapter 3 that whenever you run a shell script, you
actually invoke another copy of the shell that is a subprocess of the main, or parent , shell
process. Now let's look at subshells in more detail.

8.6.1. Subshell Inheritance

The most important things you need to know about subshells are what characteristics they get, or
inherit , from their parents. These are as follows:

The current directory

Environment variables

Standard input, output, and error, plus any other open file descriptors

Signals that are ignored

Just as important are the things that a subshell does not inherit from its parent:

Shell variables, except environment variables and those defined in the environment file
(usually .bashrc)

Handling of signals that are not ignored

We covered some of this in Chapter 3 , but these points are common sources of confusion, so
they bear repeating.

8.6.2. Nested Subshells

Subshells need not be in separate scripts; you can also start a subshell within the same script (or
function) as the parent. You do this in a manner very similar to the command blocks we saw in
the last chapter. Just surround some shell code with parentheses (instead of curly brackets), and
that code will run in a subshell. We'll call this a nested subshell.

For example, here is the calculator program from the last chapter, with a subshell instead of a
command block:

(while read line; do

 echo "$(alg2rpn $line)"

 done

) | dc

The code inside the parentheses will run as a separate process. This is usually less efficient than
a command block. The differences in functionality between subshells and command blocks are
very few; they primarily pertain to issues of scope, i.e., the domains in which definitions of things
like shell variables and signal traps are known. First, code inside a nested subshell obeys the
above rules of subshell inheritance, except that it knows about variables defined in the
surrounding shell; in contrast, think of blocks as code units that inherit everything from the outer
shell. Second, variables and traps defined inside a command block are known to the shell code
after the block, whereas those defined in a subshell are not.

For example, consider this code:

{

 hatter=mad

 trap "echo 'You hit CTRL-C!'" INT

}

while true; do

 echo "\$hatter is $hatter"

 sleep 60

done

If you run this code, you will see the message $hatter is mad every 60 seconds, and if you hit
CTRL-C, you will see the message, You hit CTRL-C! . You will need to hit CTRL-Z to stop it
(don't forget to kill it with kill %+). Now let's change it to a nested subshell:

(

 hatter=mad

 trap "echo 'You hit CTRL-C!'" INT

)

while true; do

 echo "\$hatter is $hatter"

 sleep 60

done

If you run this, you will see the message $hatter is ; the outer shell doesn't know about the
subshell's definition of hatter and therefore thinks it's null. Furthermore, the outer shell doesn't
know about the subshell's trap of the INT signal, so if you hit CTRL-C, the script will terminate.

If a language supports code nesting, then it's considered desirable that definitions inside a nested
unit have a scope limited to that nested unit. In other words, nested subshells give you better
control than command blocks over the scope of variables and signal traps. Therefore, we feel
that you should use subshells instead of command blocks if they are to contain variable
definitions or signal traps—unless efficiency is a concern.

 < Day Day Up >

 < Day Day Up >

8.7. Process Substitution

A unique but rarely used feature of bash is process substitution . Let's say that you had two
versions of a program that produced large quantities of output. You want to see the differences
between the output from each version. You could run the two programs, redirecting their output
to files, and then use the cmp utility to see what the differences were.

Another way would be to use process substitution. There are two forms of this substitution. One
is for input to a process: > (list); the other is for output from a process: < (list). list is a
process that has its input or output connected to something via a named pipe . A named pipe is
simply a temporary file that acts like a pipe with a name.

In our case, we could connect the outputs of the two programs to the input of cmp via named
pipes:

cmp <(prog1) <(prog2)

prog1 and prog2 are run concurrently and connect their outputs to named pipes. cmp reads
from each of the pipes and compares the information, printing any differences as it does so.

This chapter has covered a lot of territory. Here are some exercises that should help you make
sure you have a firm grasp on the material. Don't worry if you have trouble with the last one; it's
especially difficult.

Write a shell script called pinfo that combines the jobs and ps commands by printing a list
of jobs with their job numbers, corresponding process IDs, running times, and full
commands.

1.

Take a non-trivial shell script and "bullet-proof" it with signal traps.2.

Take a non-trivial shell script and parallelize it as much as possible.3.

Write the code that checks for duplicate arguments to the mcp script. Bear in mind that
different pathnames can point to the same file. (Hint: if $i is "1", then eval `echo \${$i}'
prints the first command-line argument. Make sure you understand why.)

4.

 < Day Day Up >

 < Day Day Up >

Chapter 9. Debugging Shell Programs
We hope that we have convinced you that bash can be used as a serious UNIX programming
environment. It certainly has enough features, control structures, etc. But another essential part of
a programming environment is a set of powerful, integrated support tools . For example, there is
a wide assortment of screen editors, compilers, debuggers, profilers, cross-referencers, etc., for
languages like C and C++. If you program in one of these languages, you probably take such
tools for granted, and you would undoubtedly cringe at the thought of having to develop code
with, say, the ed editor and the adb machine-language debugger.

But what about programming support tools for bash ? Of course, you can use any editor you
like, including vi and emacs . And because the shell is an interpreted language, you don't need a
compiler.[1] But there are no other tools available.

[1] Actually, if you are really concerned about efficiency, there are shell code compilers on the market; they convert shell
scripts to C code that often runs quite a bit faster.

This chapter looks at some useful features that you can use to debug shell programs. We'll look
at how you can utilize them in the first part of this chapter. We'll then look at some powerful new
features of bash , not present in most Bourne shell workalikes, which will help in building a shell
script debugging tool. At the end of the chapter, we'll show step by step how to build a
debugger for bash . The debugger, called bashdb , is a basic yet functional program that will not
only serve as an extended example of various shell programming techniques, but will also
provide you with a useful tool for examining the workings of your own shell scripts.

 < Day Day Up >

 < Day Day Up >

9.1. Basic Debugging Aids

What sort of functionality do you need to debug a program? At the most empirical level, you
need a way of determining what is causing your program to behave badly, and where the
problem is in the code. You usually start with an obvious what (such as an error message,
inappropriate output, infinite loop, etc.), try to work backwards until you find a what that is
closer to the actual problem (e.g., a variable with a bad value, a bad option to a command), and
eventually arrive at the exact where in your program. Then you can worry about how to fix it.

Notice that these steps represent a process of starting with obvious information and ending up
with often obscure facts gleaned through deduction and intuition. Debugging aids make it easier
to deduce and intuit by providing relevant information easily or even automatically, preferably
without modifying your code.

The simplest debugging aid (for any language) is the output statement, echo , in the shell's case.
Indeed, old-time programmers debugged their FORTRAN code by inserting WRITE cards into
their decks. You can debug by putting lots of echo statements in your code (and removing them
later), but you will have to spend lots of time narrowing down not only what exact information
you want but also where you need to see it. You will also probably have to wade through lots
and lots of output to find the information you really want.

9.1.1. Set Options

Luckily, the shell has a few basic features that give you debugging functionality beyond that of
echo . The most basic of these are options to the set -o command (as covered in Chapter 3).
These options can also be used on the command line when running a script, as Table 9-1 shows.

Table 9-1. Debugging options

set -o option Command-line option Action

noexec -n Don't run commands; check for syntax errors only

verbose -v Echo commands before running them

xtrace -x Echo commands after command-line processing

The verbose option simply echoes (to standard error) whatever input the shell gets. It is useful
for finding the exact point at which a script is bombing. For example, assume your script looks
like this:

alice

hatter

march

teatime

treacle

well

None of these commands is a standard UNIX program, and each does its work silently. Say the
script crashes with a cryptic message like "segmentation violation." This tells you nothing about
which command caused the error. If you type bash -v scriptname , you might see this:

alice

hatter

march

segmentation violation

teatime

treacle

well

Now you know that march is the probable culprit—though it is also possible that march
bombed because of something it expected alice or hatter to do (e.g., create an input file) that
they did incorrectly.

The xtrace option is more powerful: it echoes command lines after they have been through
parameter substitution, command substitution, and the other steps of command-line processing
(as listed in Chapter 7). For example:

.ps 8

$ set -o xtrace$ alice=girl+ alice=girl

$ echo "$alice"+ echo girl

girl

$ ls -l $(type -path vi)++ type -path vi

+ ls -F -l /usr/bin/vi

lrwxrwxrwx 1 root root 5 Jul 26 20:59 /usr/bin/vi -> elvis*

$

As you can see, xtrace starts each line it prints with + (each + representing a level of expansion).
This is actually customizable: it's the value of the built-in shell variable PS4 . So if you set PS4
to "xtrace—> " (e.g., in your .bash_profile or .bashrc), then you'll get xtrace listings that look
like this:

.ps 8

$ ls -l $(type -path vi)xxtrace--> type -path vi

xtrace--> ls -l /usr/bin/vi

lrwxrwxrwx 1 root root 5 Jul 26 20:59 /usr/bin/vi -> elvis*

$

Notice that for multiple levels of expansion, only the first character of PS4 is printed. This makes
the output more readable.

An even better way of customizing PS4 is to use a built-in variable we haven't seen yet:
LINENO , which holds the number of the currently running line in a shell script.[2] Put this line
in your .bash_profile or environment file:

[2] In versions of bash prior to 2.0, LINENO won't give you the current line in a function. LINENO , instead, gives an
approximation of the number of simple commands executed so far in the current function.

PS4='line $LINENO: '

We use the same technique as we did with PS1 in Chapter 3 : using single quotes to postpone
the evaluation of the string until each time the shell prints the prompt. This will print messages of
the form line N : in your trace output. You could even include the name of the shell script you're
debugging in this prompt by using the positional parameter $0 :

PS4='$0 line $LINENO: '

As another example, say you are trying to track down a bug in a script called alice that contains

this code:

dbfmq=$1.fmq

...

fndrs=$(cut -f3 -d' ' $dfbmq)

You type alice teatime to run it in the normal way, and it hangs. Then you type bash -x alice
teatime , and you see this:

+ dbfmq=teatime.fmq

...

+ + cut -f3 -d

It hangs again at this point. You notice that cut doesn't have a filename argument, which means
that there must be something wrong with the variable dbfmq . But it has executed the assignment
statement dbfmq=teatime.fmq properly... ah-hah ! You made a typo in the variable name inside
the command substitution construct.[3] You fix it, and the script works properly.

[3] We should admit that if you had turned on the nounset option at the top of this script, the shell would have flagged
this error.

The last option is noexec , which reads in the shell script and checks for syntax errors, but
doesn't execute anything. It's worth using if your script is syntactically complex (lots of loops,
command blocks, string operators, etc.) and the bug has side effects (like creating a large file or
hanging up the system).

You can turn on these options with set -o option in your shell scripts, and, as explained in
Chapter 3 , turn them off with set +o option . For example, if you're debugging a chunk of code,
you can precede it with set -o xtrace to print out the executed commands, and end the chunk
with set +o xtrace .

Note, however, that once you have turned noexec on, you won't be able to turn it off; a set +o
noexec will never be executed.

9.1.2. Fake Signals

Fake signals are more sophisticated set of debugging aids. They can be used in trap statements
to get the shell to act under certain conditions. Recall from the previous chapter that trap allows
you to install some code that runs when a particular signal is sent to your script.

Fake signals work in the same way, but they are generated by the shell itself, as opposed to the
other signals which are generated externally. They represent runtime events that are likely to be of
interest to debuggers—both human ones and software tools—and can be treated just like real
signals within shell scripts. Table 9-2 lists the four fake signals available in bash .

Table 9-2. Fake signals

Fake signal Sent when

EXIT The shell exits from script

ERR A command returning a non-zero exit status

DEBUG The shell has executed a statement[4]

RETURN
A shell function or a script executed with the . or source builtins finishes
executing[5]

[4] The DEBUG signal is not available in bash versions prior to 2.0.

[5] The RETURN signal is not available in bash versions prior to 3.0.

9.1.2.1 EXIT

The EXIT trap, when set, will run its code whenever the script within which it was set exits.[6]

[6] You can use this signal only for the exiting of a script. Functions don't generate the EXIT signal, as they are part of
the current shell invocation.

Here's a simple example:

trap 'echo exiting from the script' EXIT

echo 'start of the script'

If you run this script, you will see this output:

start of the script

exiting from the script

In other words, the script starts by setting the trap for its own exit, then prints a message. The
script then exits, which causes the shell to generate the signal EXIT, which in turn runs the code

echo exiting from the script .

An EXIT trap occurs no matter how the script exits—whether normally (by finishing the last
statement), by an explicit exit or return statement, or by receiving a "real" signal such as INT or
TERM. Consider this inane number-guessing program:

trap 'echo Thank you for playing!' EXIT

magicnum=$(($RANDOM%10+1))

echo 'Guess a number between 1 and 10:'

while read -p 'Guess: ' guess ; do

 sleep 4

 if ["$guess" = $magicnum]; then

 echo 'Right!'

 exit

 fi

 echo 'Wrong!'

done

This program picks a number between 1 and 10 by getting a random number (the built-in variable
RANDOM), extracting the last digit (the remainder when divided by 10), and adding 1. Then it
prompts you for a guess, and after 4 seconds, it will tell you if you guessed right.

If you did, the program will exit with the message, "Thank you for playing!", i.e., it will run the
EXIT trap code. If you were wrong, it will prompt you again and repeat the process until you get
it right. If you get bored with this little game and hit CTRL-C or CTRL-D while waiting for it to
tell you whether you were right, you will also see the message.

The EXIT trap is especially useful when you want to print out the values of variables at the point
that your script exits. For example, by printing the value of loop counter variables, you can find
the most appropriate places in a complicated script, with many nested for loops, to enable
xtrace or place debug output.

9.1.2.2 ERR

The fake signal ERR enables you to run code whenever a command in the surrounding script or

function exits with non-zero status. Trap code for ERR can take advantage of the built-in
variable ? , which holds the exit status of the previous command. It survives the trap and is
accessible at the beginning of the trap-handling code.

A simple but effective use of this is to put the following code into a script you want to debug:

function errtrap {

 es=$?

 echo "ERROR: Command exited with status $es."

}

trap errtrap ERR

The first line saves the nonzero exit status in the local variable es .

For example, if the shell can't find a command, it returns status 127. If you put the code in a
script with a line of gibberish (like "nhbdeuje"), the shell responds with:

scriptname: line N: nhbdeuje: command not found

ERROR: command exited with status 127.

N is the number of the line in the script that contains the bad command. In this case, the shell
prints the line number as part of its own error-reporting mechanism, since the error was a
command that the shell could not find. But if the nonzero exit status comes from another
program, the shell doesn't report the line number. For example:

function errtrap {

 es=$?

 echo "ERROR: Command exited with status $es."

}

trap errtrap ERR

function bad {

 return 17

}

bad

This only prints ERROR: Command exited with status 17 .

It would obviously be an improvement to include the line number in this error message. The
built-in variable LINENO exists, but if you use it inside a function, it evaluates to the line number
in the function, not in the overall file. In other words, if you used $LINENO in the echo
statement in the errtrap routine, it would always evaluate to 2.

To get around this problem, we simply pass $LINENO as an argument to the trap handler,
surrounding it in single quotes so that it doesn't get evaluated until the fake signal actually comes
in:

function errtrap {

 es=$?

 echo "ERROR line $1: Command exited with status $es."

}

trap 'errtrap $LINENO' ERR

...

If you use this with the above example, the result is the message, ERROR line 12: Command
exited with status 17 . This is much more useful. We'll see a variation on this technique shortly.

This simple code is actually not a bad all-purpose debugging mechanism. It takes into account
that a nonzero exit status does not necessarily indicate an undesirable condition or event:
remember that every control construct with a conditional (if , while , etc.) uses a nonzero exit
status to mean "false." Accordingly, the shell doesn't generate ERR traps when statements or
expressions in the "condition" parts of control structures produce nonzero exit statuses. Also, an
ERR trap is not inherited by shell functions, command substitutions, and commands executed in
a subshell. However this inheritance behaviour can be turned on by using set -o errtrace (or set
-E).[7]

[7] Inheritance of the ERR trap is not available in versions of bash prior to 3.0.

One disadvantage is that exit statuses are not as uniform (or even as meaningful) as they should
be, as we explained in Chapter 5 . A particular exit status need not say anything about the nature
of the error or even that there was an error.

9.1.2.3 DEBUG

Another fake signal, DEBUG, causes the trap code to be executed before every statement in a
function or script.[8] This has two main uses. First is the use for humans, as a sort of "brute
force" method of tracking a certain element of a program's state that you notice has gone awry.

[8] Warning: the DEBUG trap was run after statements in versions of bash prior to 2.05b. The debugger in this
chapter has been written for the current version of bash where the trap is run before each statement.

For example, you notice the value of a particular variable is running amok. The naive approach is
to put in a lot of echo statements to check the variable's value at several points. The DEBUG
trap makes this easier by letting you do this:

function dbgtrap

{

 echo "badvar is $badvar "

}

trap dbgtrap DEBUG

...section of code in which the problem occurs...

trap - DEBUG # turn off the DEBUG trap

This code will print the value of the wayward variable before every statement between the two
trap s.

One important point to remember when using DEBUG is that it is not inherited by functions
called from the shell in which it is set. In other words, if your shell sets a DEBUG trap and then
calls a function, the statements within the function will not execute the trap. There are three ways
around this. Firstly you can set a trap for DEBUG explicitly within the function. Alternately you
can declare the function with the -t option which turns on debug inheritance in functions and
allows a function to inherit a DEBUG trap from the caller. Lastly you can use set -o functrace
(or set -T) which does the same thing as declare but applies to all functions.[9]

[9] Inheritance of the DEBUG trap, declare -t , set -o functrace , and set -T are not available in bash prior to version
3.0.

The second use of the DEBUG signal is as a primitive for implementing a bash debugger. We'll
look at doing just that shortly.

9.1.2.4 RETURN

A RETURN trap is executed each time a shell function or a script executed with the . or source
commands finishes executing.

As with DEBUG, the RETURN trap is not inherited by functions. You again have the options of
setting the trap for RETURN within the function, declare the function with the -t option so that
that function inherits the trap, or use set -o functrace to turn on the inheritance for all functions.

Here is a simple example of a RETURN trap:

function returntrap {

 echo "A return occurred"

}

trap returntrap RETURN

function hello {

 echo "hello world"

}

hello

When the script is executed it executes the hello function and then runs the trap:

$./returndemo

hello world

A return occurred

$

Notice that it didn't trap when the script itself finished. The trap would only have run at the end
of the script if we'd source d the script. Normally, to trap at the exiting of the script we'd also
need to define a trap for the EXIT signal that we looked at earlier.

In addition to these fake signals, bash 3.0 added some other features to help with writing a full-

scale debugger for bash . The first of these is the extdebug option to the shopt command,
which switches on certain things that are useful for a debugger. These include:

The -F option to declare displays the source filename and line number corresponding to
each function name supplied as an argument.

If the command that is run by the DEBUG trap returns a non-zero value, the next command
is skipped and not executed.

If the command run by the DEBUG trap returns a value of 2, and the shell is executing in a
subroutine (a shell function or a shell script executed by the . or source commands), a call
to return is simulated.

The shell also has a new option, —debugger , which switches on both the extdebug and
functrace functionality.

9.1.3. Debugging Variables

Bash 3.0 added some useful environment variables to aid in writing a debugger. These include
BASH_SOURCE, which contains an array of filenames that correspond to what is currently
executing; BASH_LINENO, which is an array of line numbers that correspond to function calls
that have been made; BASH_ARGC and BASH_ARGV array variables, the first holding the
number of parameters in each frame and the second the parameters themselves.

We'll now look at writing a debugger, although we'll keep things simple and avoid using these
variables. This also means the debugger will work with earlier versions of bash .

 < Day Day Up >

 < Day Day Up >

9.2. A bash Debugger

In this section we'll develop a very basic debugger for bash .[10] Most debuggers have numerous
sophisticated features that help a programmer in dissecting a program, but just about all of them
include the ability to step through a running program, stop it at selected places, and examine the
values of variables. These simple features are what we will concentrate on providing in our
debugger. Specifically, we'll provide the ability to:

[10] Unfortunately, the debugger will not work with versions of bash prior to 2.0, because they do not implement the
DEBUG signal.

Specify places in the program at which to stop execution. These are called breakpoints .

Execute a specified number of statements in the program. This is called stepping .

Examine and change the state of the program during its execution. This includes being able
to print out the values of variables and change them when the program is stopped at a
breakpoint or after stepping.

Print out the source code we are debugging along with indications of where breakpoints are
and what line in the program we are currently executing.

Provide the debugging capability without having to change the original source code of the
program we wish to debug in any way.

As you will see, the capability to do all of these things (and more) is easily provided by the
constructs and methods we have seen in previous chapters.

9.2.1. Structure of the Debugger

The bashdb debugger works by taking a shell script and turning it into a debugger for itself. It
does this by concatenating debugger functionality and the target script, which we'll call the guinea
pig script, and storing it in another file that then gets executed. The process is transparent to
users—they will be unaware that the code that is executing is actually a modified copy of their
script.

The bash debugger has three main sections: the driver , the preamble , and the debugger
functions .

9.2.1.1 The driver script

The driver script is responsible for setting everything up. It is a script called bashdb and looks
like this:

bashdb - a bash debugger

Driver Script: concatenates the preamble and the target script

and then executes the new script.

echo 'bash Debugger version 1.0'

_dbname=${0##*/}

if (($# < 1)) ; then

 echo "$_dbname: Usage: $_dbname filename" >&2

 exit 1

fi

_guineapig=$1

if [! -r $1]; then

 echo "$_dbname: Cannot read file '$_guineapig'." >&2

 exit 1

fi

shift

_tmpdir=/tmp

_libdir=.

_debugfile=$_tmpdir/bashdb.$$ # temporary file for script that is

 being debugged

cat $_libdir/bashdb.pre $_guineapig > $_debugfile

exec bash $_debugfile $_guineapig $_tmpdir $_libdir "$@"

bashdb takes as the first argument the name of guinea pig file. Any subsequent arguments are
passed on to the guinea pig as its positional parameters.

If no arguments are given, bashdb prints out a usage line and exits with an error status.
Otherwise, it checks to see if the file exists. If it doesn't, exist then bashdb prints a message and
exits with an error status. If all is in order, bashdb constructs a temporary file in the way we saw
in the last chapter. If you don't have (or don't have access to) /tmp on your system, then you can
substitute a different directory for _tmpdir .[11] The variable _libdir is the name of the directory
that contains files needed by bashdb (bashdb.pre and bashdb.fns). If you are installing bashdb
on your system for everyone to use, you might want to place them in /usr/lib .

[11] All function names and variables (except those local to functions) in bashdb have names beginning with an
underscore (_), to minimize the possibility of clashes with names in the guinea pig script.

The cat statement builds the modified copy of the guinea pig file: it contains the script found in
bashdb.pre (which we'll look at shortly) followed by a copy of the guinea pig.

9.2.1.2 exec

The last line runs the newly created script with exec , a statement we haven't discussed yet.
We've chosen to wait until now to introduce it because—as we think you'll agree—it can be
dangerous. exec takes its arguments as a command line and runs the command in place of the
current program, in the same process. In other words, a shell that runs exec will terminate
immediately and be replaced by exec 's arguments.[12]

[12] exec can also be used with an I/O redirector only; this makes the redirector take effect for the remainder of the
script or login session. For example, the line exec 2>errlog at the top of a script directs standard error to the file
errlog for the rest of the script.

In our script, exec just runs the newly constructed shell script, i.e., the guinea pig with its
debugger, in another shell. It passes the new script three arguments—the name of the original
guinea pig file ($_guineapig), the name of the temporary directory ($_tmpdir), and the name
of the library directory ($_libdir)—followed by the user's positional parameters, if any.

9.2.2. The Preamble

Now we'll look at the code that gets prepended to the guinea pig script; we call this the preamble.
It's kept in the file bashdb.pre and looks like this:

bashdb preamble

This file gets prepended to the shell script being debugged.

Arguments:

$1 = the name of the original guinea pig script

$2 = the directory where temporary files are stored

$3 = the directory where bashdb.pre and bashdb.fns are stored

_debugfile=$0

_guineapig=$1

_tmpdir=$2

_libdir=$3

shift 3

source $_libdir/bashdb.fns

_linebp=

let _trace=0

let _i=1

while read; do

 _lines[$_i]=$REPLY

 let _i=$_i+1

done < $_guineapig

trap _cleanup EXIT

let _steps=1

trap '_steptrap $(($LINENO -29))' DEBUG

The first few lines save the three fixed arguments in variables and shift them out of the way, so
that the positional parameters (if any) are those that the user supplied on the command line as
arguments to the guinea pig. Then, the preamble reads in another file, bashdb.fns , which
contains all of the functions necessary for the operation of the debugger itself. We put this code
in a separate file to minimize the size of the temporary file. We'll examine bashdb.fns shortly.

Next, bashdb.pre initializes a breakpoint array to empty and execution tracing to off (see the
following discussion), then reads the original guinea pig script into an array of lines. We need the
source lines from the original script for two reasons: to allow the debugger to print out the script
showing where the breakpoints are, and to print out the lines of code as they execute if tracing is
turned on. You'll notice that we assign the script lines to _lines from the environment variable
$REPLY rather than reading them into the array directly. This is because $REPLY preserves
any leading whitespace in the lines, i.e., it preserves the indentation and layout of the original
script.

The last five lines of code set up the conditions necessary for the debugger to begin working.
The first trap command sets up a clean-up routine that runs when the fake signal EXIT occurs.
The clean-up routine, normally called when the debugger and guinea pig script finish, just erases
the temporary file. The next line sets the variable _steps to 1 so that when the debugger is first
entered, it will stop after the first line.

The next line sets up the routine _steptrap to run when the fake signal DEBUG occurs.

The built-in variable LINENO , which we saw earlier in the chapter, is used to provide line
numbers in the debugger. However, if we just used LINENO as is, we'd get line numbers above
30 because LINENO would be including the lines in the preamble. To get around this, we can
pass LINENO minus the number of lines in the preamble to the trap.[13]

[13] If you are typing or scanning in the preamble code from this book, make sure that the last line in the file is the call to
set the trap, i.e., no blank lines should appear after the call to trap .

9.2.3. Debugger Functions

The function _steptrap is the entry point into the debugger; it is defined in the file bashdb.fns .
Here is _steptrap :

After each line of the test script is executed the shell traps to

this function.

function _steptrap

{

 _curline=$1 # the number of the line that just ran

 (($_trace)) && _msg "$PS4 line $_curline: ${_lines[$_curline]}"

 if (($_steps >= 0)); then

 let _steps="$_steps - 1"

 fi

 # First check to see if a line number breakpoint was reached.

 # If it was, then enter the debugger.

 if _at_linenumbp ; then

 _msg "Reached breakpoint at line $_curline"

 _cmdloop

 # It wasn't, so check whether a break condition exists and is true.

 # If it is, then enter the debugger.

 elif [-n "$_brcond"] && eval $_brcond; then

 _msg "Break condition $_brcond true at line $_curline"

 _cmdloop

 # It wasn't, so check if we are in step mode and the number of steps

 # is up. If it is then enter the debugger.

 elif (($_steps == 0)); then

 _msg "Stopped at line $_curline"

 _cmdloop

 fi

}

_steptrap starts by setting _curline to the number of the guinea pig line that just ran. If
execution tracing is on, it prints the PS4 execution trace prompt (like the shell's xtrace mode),
line number, and line of code itself. It then decrements the number of steps if the number of
steps still left is greater than or equal to zero.

Then it does one of two things: it enters the debugger via _cmdloop , or it returns so the shell
can execute the next statement. It chooses the former if a breakpoint or break condition has been
reached, or if the user stepped into this statement.

9.2.3.1 Commands

We will explain shortly how _steptrap determines these things; now we will look at _cmdloop .
It's a simple combination of the case statements we saw in Chapter 5 , and the calculator loop we
saw in the previous chapter.

The Debugger Command Loop

function _cmdloop {

 local cmd args

 while read -e -p "bashdb> " cmd args; do

 case $cmd in

 \? | h) _menu ;; # print command menu

 bc) _setbc $args ;; # set a break condition

 bp) _setbp $args ;; # set a breakpoint at the given

 # line

 cb) _clearbp $args ;; # clear one or all breakpoints

 ds) _displayscript ;; # list the script and show the

 # breakpoints

 g) return ;; # "go": start/resume execution of

 # the script

 q) exit ;; # quit

 s) let _steps=${args:-1} # single step N times

 # (default = 1)

 return ;;

 x) _xtrace ;; # toggle execution trace

 !*) eval ${cmd#!} $args ;; # pass to the shell

 *) _msg "Invalid command: '$cmd'" ;;

 esac

 done

}

At each iteration, _cmdloop prints a prompt, reads a command, and processes it. We use read -
e so that the user can take advantage of the readline command-line editing. The commands are
all one- or two-letter abbreviations; quick for typing, but terse in the UNIX style.[14]

[14] There is nothing to stop you from changing the commands to something you find easier to remember. There is no
"official" bash debugger, so feel free to change the debugger to suit your needs.

Table 9-3 summarizes the debugger commands.

Table 9-3. bashdb commands

Command Action

bp N Set breakpoint at line N

bp List breakpoints and break condition

bc string Set break condition to string

bc Clear break condition

cb N Clear breakpoint at line N

cb Clear all breakpoints

Command Action

ds Display the test script and breakpoints

g Start/resume execution

s [N] Execute N statements (default 1)

x Toggle execution trace on/off

h , ? Print the help menu

! string Pass string to a shell

q Quit

Before looking at the individual commands, it is important that you understand how control
passes through _steptrap , the command loop, and the guinea pig.

_steptrap runs after every statement in the guinea pig as a result of the trap on DEBUG in the
preamble. If a breakpoint has been reached or the user previously typed in a step command(s),
_steptrap calls the command loop. In doing so, it effectively "interrupts" the shell that is running
the guinea pig to hand control over to the user.

The user can invoke debugger commands as well as shell commands that run in the same shell as
the guinea pig. This means that you can use shell commands to check values of variables, signal
traps, and any other information local to the script being debugged. The command loop
continues to run, and the user stays in control, until he types g , q , or s . We'll now look in detail
at what happens in each of these cases.

Typing g has the effect of running the guinea pig uninterrupted until it finishes or hits a
breakpoint. It simply exits the command loop and returns to _steptrap , which exits as well. The
shell then regains control and runs the next statement in the guinea pig script. Another DEBUG
signal occurs and the shell traps to _steptrap again. If there are no breakpoints then _steptrap
will just exit. This process will repeat until a breakpoint is reached or the guinea pig finishes.

The q command calls the function _cleanup , which erases the temporary file and exits the
program.

9.2.3.2 Stepping

When the user types s , the command loop code sets the variable _steps to the number of steps
the user wants to execute, i.e., to the argument given. Assume at first that the user omits the
argument, meaning that _steps is set to 1. Then the command loop exits and returns control to

ds Display the test script and breakpoints

g Start/resume execution

s [N] Execute N statements (default 1)

x Toggle execution trace on/off

h , ? Print the help menu

! string Pass string to a shell

q Quit

Before looking at the individual commands, it is important that you understand how control
passes through _steptrap , the command loop, and the guinea pig.

_steptrap runs after every statement in the guinea pig as a result of the trap on DEBUG in the
preamble. If a breakpoint has been reached or the user previously typed in a step command(s),
_steptrap calls the command loop. In doing so, it effectively "interrupts" the shell that is running
the guinea pig to hand control over to the user.

The user can invoke debugger commands as well as shell commands that run in the same shell as
the guinea pig. This means that you can use shell commands to check values of variables, signal
traps, and any other information local to the script being debugged. The command loop
continues to run, and the user stays in control, until he types g , q , or s . We'll now look in detail
at what happens in each of these cases.

Typing g has the effect of running the guinea pig uninterrupted until it finishes or hits a
breakpoint. It simply exits the command loop and returns to _steptrap , which exits as well. The
shell then regains control and runs the next statement in the guinea pig script. Another DEBUG
signal occurs and the shell traps to _steptrap again. If there are no breakpoints then _steptrap
will just exit. This process will repeat until a breakpoint is reached or the guinea pig finishes.

The q command calls the function _cleanup , which erases the temporary file and exits the
program.

9.2.3.2 Stepping

When the user types s , the command loop code sets the variable _steps to the number of steps
the user wants to execute, i.e., to the argument given. Assume at first that the user omits the
argument, meaning that _steps is set to 1. Then the command loop exits and returns control to

_steptrap , which (as above) exits and hands control back to the shell. The shell runs the next
statement and returns to _steptrap , which then decrements _steps to 0. Then the second elif
conditional becomes true because _steps is 0 and prints a "stopped" message and then calls the
command loop.

Now assume that the user supplies an argument to s , say 3. _steps is set to 3. Then the
following happens:

After the next statement runs, _steptrap is called again. It enters the first if clause, since
_steps is greater than 0. _steptrap decrements _steps to 2 and exits, returning control to
the shell.

1.

This process repeats, another step in the guinea pig is run, and _steps becomes 1.2.

A third statement is run and we're back in _steptrap . _steps is decremented to 0, the
second elif clause is run, and _steptrap breaks out to the command loop again.

3.

The overall effect is that the three steps run and then the debugger takes over again.

All of the other debugger commands cause the shell to stay in the command loop, meaning that
the user prolongs the "interruption" of the shell.

9.2.3.3 Breakpoints

Now we'll examine the breakpoint-related commands and the breakpoint mechanism in general.
The bp command calls the function _setbp , which can do two things, depending on whether an
argument is supplied or not. Here is the code for _setbp :

Set a breakpoint at the given line number or list breakpoints

function _setbp

{

 local i

 if [-z "$1"]; then

 _listbp

 elif [$(echo $1 | grep '^[0-9]*')]; then

 if [-n "${_lines[$1]}"]; then

 _linebp=($(echo $((for i in ${_linebp[*]} $1; do

 echo $i; done) | sort -n)))

 _msg "Breakpoint set at line $1"

 else

 _msg "Breakpoints can only be set on non-blank lines"

 fi

 else

 _msg "Please specify a numeric line number"

 fi

}

If no argument is supplied, _setbp calls _listbp , which prints the line numbers that have
breakpoints set. If anything other than a number is supplied as an argument, an error message is
printed and control returns to the command loop. Providing a number as the argument allows us
to set a breakpoint; however, we have to do another test before doing so.

What happens if the user decides to set a breakpoint at a nonsensical point: a blank line, or at line
1,000 of a 10-line program? If the breakpoint is set well beyond the end of the program, it will
never be reached and will cause no problem. If, however, a breakpoint is set at a blank line, it will
cause problems. The reason is that the DEBUG trap only occurs after each executed simple
command in a script, not each line. Blank lines never generate the DEBUG signal. The user could
set a breakpoint on a blank line, in which case continuing execution with the g command would
never break back out to the debugger.

We can fix both of these problems by making sure that breakpoints are set only on lines with
text.[15] After making the tests, we can add the breakpoint to the breakpoint array, _linebp . This
is a little more complex than it sounds. In order to make the code in other sections of the
debugger simpler, we should maintain a sorted array of breakpoints. To do this, we echo all of
the line numbers currently in the array, along with the new number, in a subshell and pipe them
into the UNIX sort command. sort -n sorts a list into numerically ascending order. The result of
this is a list of ordered numbers which we then assign back to the _linebp array with a
compound assignment.

[15] This isn't a complete solution. Certain other lines (e.g., comments) will also be ignored by the DEBUG trap. See the
list of limitations and the exercises at the end of this chapter.

To complement the user's ability to add breakpoints, we also allow the user to delete them. The
cb command allows the user to clear single breakpoints or all breakpoints, depending on whether

a line number argument is supplied or not. For example, cb 12 clears a breakpoint at line 12 (if a
breakpoint was set at that line). cb on its own would clear all of the breakpoints that have been
set. It is useful to look briefly at how this works; here is the code for the function that is called
with the cb command, _clearbp :

function _clearbp

{

 local i

 if [-z "$1"]; then

 unset _linebp[*]

 _msg "All breakpoints have been cleared"

 elif [$(echo $1 | grep '^[0-9]*')]; then

 _linebp=($(echo $(for i in ${_linebp[*]}; do

 if (($1 != $i)); then echo $i; fi; done)))

 _msg "Breakpoint cleared at line $1"

 else

 _msg "Please specify a numeric line number"

 fi

}

The structure of the code is similar to that used for setting the breakpoints. If no argument was
supplied to the command, the breakpoint array is unset, effectively deleting all the breakpoints. If
an argument was supplied and is not a number, we print out an error message and exit.

A numeric argument to the cb command means the code has to search the list of breakpoints and
delete the specified one. We can easily make the deletion by following a procedure similar to the
one we used when we added a breakpoint in _setbp . We execute a loop in a subshell, printing
out the line numbers in the breakpoints list and ignoring any that match the provided argument.
The echoed values once again form a compound statement, which can then be assigned to an
array variable.[16]

[16] bash versions 2.01 and earlier have a bug in assigning arrays to themselves that prevents the code for setbp and
clearbp from working. In each case, you can get around this bug by assigning _linebp to a local variable first, unset
ting it, and then assigning the local variable back to it. Better yet, update to a more recent version of bash .

The function _at_linenumbp is called by _steptrap after every statement; it checks whether the
shell has arrived at a line number breakpoint. The code for the function is:

See if this line number has a breakpoint

function _at_linenumbp

{

 local i=0

 if ["$_linebp"]; then

 while (($i < ${#_linebp[@]})); do

 if ((${_linebp[$i]} == $_curline)); then

 return 0

 fi

 let i=$i+1

 done

 fi

 return 1

}

The function simply loops through the breakpoint array and checks the current line number
against each one. If a match is found, it returns true (i.e., returns 0). Otherwise, it continues
looping, looking for a match until the end of the array is reached. It then returns false .

It is possible to find out exactly what line the debugger is up to and where the breakpoints have
been set in the guinea pig by using the ds command. We'll see an example of the output later,
when we run a sample bashdb debugging session. The code for this function is fairly
straightforward:

Print out the shell script and mark the location of breakpoints

and the current line

function _displayscript

{

 local i=1 j=0 bp cl

 (while (($i < ${#_lines[@]})); do

 if [${_linebp[$j]}] && ((${_linebp[$j]} == $i)); then

 bp='*'

 let j=$j+1

 else

 bp=' '

 fi

 if (($_curline == $i)); then

 cl=">"

 else

 cl=" "

 fi

 echo "$i:$bp $cl ${_lines[$i]}"

 let i=$i+1

 done

) | more

}

This function contains a subshell, the output of which is piped to the UNIX more command. We
have done this for user-friendly reasons; a long script would scroll up the screen quickly and the
users may not have displays that allow them to scroll back to previous pages of screen output.
more displays one screenful of output at a time.

The core of the subshell code loops through the lines of the guinea pig script. It first tests to see
if the line it is about to display is in the array of breakpoints. If it is, a breakpoint character (*) is
set and the local variable j is incremented. j was initialized to 0 at the beginning of the function; it
contains the current breakpoint that we are up to. It should now be apparent why we went to the
trouble of sorting the breakpoints in _setbp : both the line numbers and the breakpoint numbers
increment sequentially, and once we pass a line number that has a breakpoint and find it in the

breakpoint array, we know that future breakpoints in the script must be further on in the array. If
the breakpoint array contained line numbers in a random order, we'd have to search the entire
array to find out if a line number was in the array or not.

The core of the subshell code then checks to see if the current line and the line it is about to
display are the same. If they are, a "current line" character (>) is set. The current displayed line
number (stored in i), breakpoint character, current line character, and script line are then printed
out.

We think you'll agree that the added complexity in the handling of breakpoints is well worth it.
Being able to display the script and the location of breakpoints is an important feature in any
debugger.

9.2.3.4 Break conditions

bashdb provides another method of breaking out of the guinea pig script: the break condition .
This is a string that the user can specify that is evaluated as a command; if it is true (i.e., returns
exit status 0), the debugger enters the command loop.

Since the break condition can be any line of shell code, there's a lot of flexibility in what can be
tested. For example, you can break when a variable reaches a certain value—e.g., (($x < 0))—
or when a particular piece of text has been written to a file (grep string file). You will probably
think of all kinds of uses for this feature.[17] To set a break condition, type bc string . To
remove it, type bc without arguments—this installs the null string, which is ignored.

[17] Bear in mind that if your break condition sends anything to standard output or standard error, you will see it after
every statement executed. Also, make sure your break condition doesn't take a long time to run; otherwise your script
will run very, very slowly.

_steptrap evaluates the break condition $_brcond only if it's not null. If the break condition
evaluates to 0, then the if clause is true and, once again, _steptrap calls the command loop.

9.2.3.5 Execution tracing

The final feature of the debugger is execution tracing , available with the x command.

The function _xtrace "toggles" execution tracing simply by assigning to the variable _trace the
logical "not" of its current value, so that it alternates between 0 (off) and 1 (on). The preamble
initializes it to 0.

9.2.3.6 Debugger limitations

We have kept bashdb reasonably simple so that you can see the fundamentals of building a shell
script debugger. Although it contains some useful features and is designed to be a real tool, not
just a scripting example, it has some important limitations. Some are described in the list that
follows.

Debuggers tend to run programs slower than if they were executed on their own. bashdb is
no exception. Depending upon the script you use it on, you'll find the debugger runs
everything anywhere from 8 to 30 times more slowly. This isn't so much of a problem if you
are stepping through a script in small increments, but bear it in mind if you have, say,
initialization code with large looping constructs.

1.

The debugger will not "step down" into shell scripts that are called from the guinea pig. To
do this, you'd have to edit your guinea pig script and change a call to scriptname to bashdb
scriptname.

2.

Similarly, nested subshells are treated as one gigantic statement; you cannot step down into
them at all.

3.

The guinea pig itself should not trap on the fake signals DEBUG and EXIT; otherwise the
debugger won't work.

4.

Command error handling could be significantly improved.5.

Many of these are not insurmountable and you can experiment with solving them yourself; see
the exercises at the end of this chapter.

The debugger from an earlier version of this book helped inspire a more comprehensive bash
debugger maintained by Rocky Bernstein, which you can find at the Bash Debugger Project,
http://bashdb.sourceforge.net/ .

9.2.4. A Sample bashdb Session

Now we'll show a transcript of an actual session with bashdb , in which the guinea pig is the
solution to Task 6-1, the script ndu . Here is the transcript of the debugging session:

[bash]$ bashdb ndu

bash Debugger version 1.0

Stopped at line 0

bashdb> ds

1: for dir in ${*:-.}; do

http://bashdb.sourceforge.net/

2: if [-e $dir]; then

3: result=$(du -s $dir | cut -f 1)

4: let total=$result*1024

5:

6: echo -n "Total for $dir = $total bytes"

7:

8: if [$total -ge 1048576]; then

9: echo " ($((total/1048576)) Mb)"

10: elif [$total -ge 1024]; then

11: echo " ($((total/1024)) Kb)"

12: fi

13: fi

14: done

bashdb> s

Stopped at line 2

bashdb> bp 4

Breakpoint set at line 4

bashdb> bp 8

Breakpoint set at line 8

bashdb> bp 11

Breakpoint set at line 11

bashdb> ds

1: for dir in ${*:-.}; do

2: > if [-e $dir]; then

3: result=$(du -s $dir | cut -f 1)

4:* let total=$result*1024

5:

6: echo -n "Total for $dir = $total bytes"

7:

8:* if [$total -ge 1048576]; then

9: echo " ($((total/1048576)) Mb)"

10: elif [$total -ge 1024]; then

11:* echo " ($((total/1024)) Kb)"

12: fi

13: fi

14: done

bashdb> g

Reached breakpoint at line 4

bashdb> !echo $total

6840032

bashdb> cb 8

Breakpoint cleared at line 8

bashdb> ds

1: for dir in ${*:-.}; do

2: if [-e $dir]; then

3: result=$(du -s $dir | cut -f 1)

4:* > let total=$result*1024

5:

6: echo -n "Total for $dir = $total bytes"

7:

8: if [$total -ge 1048576]; then

9: echo " ($((total/1048576)) Mb)"

10: elif [$total -ge 1024]; then

11:* echo " ($((total/1024)) Kb)"

12: fi

13: fi

14: done

bashdb> bp

Breakpoints at lines: 4 11

Break on condition:

bashdb> !total=5600

bashdb> g

Total for . = 5600 bytes (5 Kb)

Reached breakpoint at line 11

bashdb> cb

All breakpoints have been cleared

bashdb> ds

1: for dir in ${*:-.}; do

2: if [-e $dir]; then

3: result=$(du -s $dir | cut -f 1)

4: let total=$result*1024

5:

6: echo -n "Total for $dir = $total bytes"

7:

8: if [$total -ge 1048576]; then

9: echo " ($((total/1048576)) Mb)"

10: elif [$total -ge 1024]; then

11: > echo " ($((total/1024)) Kb)"

12: fi

13: fi

14: done

bashdb> g

[bash]$

First, we display the script with ds and then perform a step, taking execution to line 2 of ndu .
We then set breakpoints at lines 4, 8, and 11 and display the script again. This time the
breakpoints are clearly marked by asterisks (*). The right angle bracket (>) indicates that line 2
was the most recent line executed.

Next, we continue execution of the script that breaks at line 4. We print out the value of total
now and decide to clear the breakpoint at line 8. Displaying the script confirms that the
breakpoint at line 8 is indeed gone. We can also use the bp command, and it too shows that the
only breakpoints set are at lines 4 and 11.

At this stage we might decide that we want to check the logic of the if branch at line 11. This
requires that $total be greater than or equal to 1,024, but less than 1,048,576. As we saw
previously, $total is very large, so we set its value to 5,600 so that it will execute the second part
of the if and continue execution. The script enters that section of the if correctly, prints out the
value, and stops at the breakpoint.

To finish off, we clear the breakpoints, display the script again, and then continue execution,
which exits the script.

9.2.5. Exercises

We'll conclude this chapter with some suggested enhancements to our simple debugger and a
complete listing of the debugger command source code.

Improve command error handling in these ways:

Check that the arguments to s are valid numbers and print an appropriate error message
if they aren't.

a.

Check that a breakpoint actually exists before clearing it and warn the user if the line
doesn't have a breakpoint.

b.

Any other error handling that you can think of.c.

1.

Add code to remove duplicate breakpoints (more than one breakpoint on one line).2.

Enhance the cb command so that the user can specify more than one breakpoint to be3.

4.

2.

cleared at a time.
3.

Implement an option that causes a break into the debugger whenever a command exits with
non-zero status:

Implement it as the command-line option -e .a.

Implement it as the debugger command e to toggle it on and off. (Hint: when you enter
_steptrap , $? is still the exit status of the last command that ran.)

b.

4.

Implement a command that prints out the status of the debugger: whether execution trace is
on/off, error exit is on/off, and the number of the last line to be executed. In addition, move
the functionality for displaying the breakpoints from bp to the new option.

5.

Add support for multiple break conditions, so that bashdb stops execution whenever one
of them becomes true and prints a message indicating which one became true. Do this by
storing the break conditions in an array. Try to make this as efficient as possible, since the
checking will take place after every statement.

6.

Add the ability to watch variables.

Add a command aw that takes a variable name as an argument and adds it to a list of
variables to watch. Any watched variables are printed out when execution trace is
toggled on.

a.

Add another command cw that, without an argument, removes all of the variables from
the watch list. With an argument, it removes the specified variable.

b.

7.

Although placing an underscore at the start of the debugger identifiers will avoid name
clashes in most cases, think of ways to automatically detect name clashes with the guinea
pig script and how to get around this problem. (Hint: you could rename the clashing names
in the guinea pig script at the point where it gets combined with the preamble and placed in
the temporary file.)

8.

Add any other features you can think of.9.

Finally, here is a complete source listing of the debugger function file bashdb.fns :

After each line of the test script is executed the shell traps to

this function.

function _steptrap

{

 _curline=$1 # the number of the line that just ran

 (($_trace)) && _msg "$PS4 line $_curline: ${_lines[$_curline]}"

 if (($_steps >= 0)); then

 let _steps="$_steps - 1"

 fi

 # First check to see if a line number breakpoint was reached.

 # If it was, then enter the debugger.

 if _at_linenumbp ; then

 _msg "Reached breakpoint at line $_curline"

 _cmdloop

 # It wasn't, so check whether a break condition exists and is true.

 # If it is, then enter the debugger

 elif [-n "$_brcond"] && eval $_brcond; then

 _msg "Break condition $_brcond true at line $_curline"

 _cmdloop

 # It wasn't, so check if we are in step mode and the number of

 # steps is up. If it is, then enter the debugger.

 elif (($_steps == 0)); then

 _msg "Stopped at line $_curline"

 _cmdloop

 fi

}

The Debugger Command Loop

function _cmdloop {

 local cmd args

 while read -e -p "bashdb> " cmd args; do

 case $cmd in

 \? | h) _menu ;; # print command menu

 bc) _setbc $args ;; # set a break condition

 bp) _setbp $args ;; # set a breakpoint at the given line

 cb) _clearbp $args ;; # clear one or all breakpoints

 ds) _displayscript ;; # list the script and show the

 # breakpoints

 g) return ;; # "go": start/resume execution of

 # the script

 q) exit ;; # quit

 s) let _steps=${args:-1} # single step N times (default = 1)

 return ;;

 x) _xtrace ;; # toggle execution trace

 *) eval ${cmd#!} $args ;; # pass to the shell

 *) _msg "Invalid command: '$cmd'" ;;

 esac

 done

}

See if this line number has a breakpoint

function _at_linenumbp

{

 local i=0

 # Loop through the breakpoints array and check to see if any of

 # them match the current line number. If they do return true (0)

 # otherwise return false.

 if ["$_linebp"]; then

 while (($i < ${#_linebp[@]})); do

 if ((${_linebp[$i]} == $_curline)); then

 return 0

 fi

 let i=$i+1

 done

 fi

 return 1

}

Set a breakpoint at the given line number or list breakpoints

function _setbp

{

 local i

 # If there are no arguments call the breakpoint list function.

 # Otherwise check to see if the argument was a positive number.

 # If it wasn't then print an error message. If it was then check

 # to see if the line number contains text. If it doesn't then

 # print an error message. If it does then echo the current

 # breakpoints and the new addition and pipe them to "sort" and

 # assign the result back to the list of breakpoints. This results

 # in keeping the breakpoints in numerical sorted order.

 # Note that we can remove duplicate breakpoints here by using

 # the -u option to sort which uniquifies the list.

 if [-z "$1"]; then

 _listbp

 elif [$(echo $1 | grep '^[0-9]*')]; then

 if [-n "${_lines[$1]}"]; then

 _linebp=($(echo $((for i in ${_linebp[*]} $1; do

 echo $i; done) | sort -n)))

 _msg "Breakpoint set at line $1"

 else

 _msg "Breakpoints can only be set on non-blank lines"

 fi

 else

 _msg "Please specify a numeric line number"

 fi

}

List breakpoints and break conditions

function _listbp

{

 if [-n "$_linebp"]; then

 _msg "Breakpoints at lines: ${_linebp[*]}"

 else

 _msg "No breakpoints have been set"

 fi

 _msg "Break on condition:"

 _msg "$_brcond"

}

Clear individual or all breakpoints

function _clearbp

{

 local i bps

 # If there are no arguments, then delete all the breakpoints.

 # Otherwise, check to see if the argument was a positive number.

 # If it wasn't, then print an error message. If it was, then

 # echo all of the current breakpoints except the passed one

 # and assign them to a local variable. (We need to do this because

 # assigning them back to _linebp would keep the array at the same

 # size and just move the values "back" one place, resulting in a

 # duplicate value). Then destroy the old array and assign the

 # elements of the local array, so we effectively recreate it,

 # minus the passed breakpoint.

 if [-z "$1"]; then

 unset _linebp[*]

 _msg "All breakpoints have been cleared"

 elif [$(echo $1 | grep '^[0-9]*')]; then

 bps=($(echo $(for i in ${_linebp[*]}; do

 if (($1 != $i)); then echo $i; fi; done)))

 unset _linebp[*]

 _linebp=(${bps[*]})

 _msg "Breakpoint cleared at line $1"

 else

 _msg "Please specify a numeric line number"

 fi

}

Set or clear a break condition

function _setbc

{

 if [-n "$*"]; then

 _brcond=$args

 _msg "Break when true: $_brcond"

 else

 _brcond=

 _msg "Break condition cleared"

 fi

}

Print out the shell script and mark the location of breakpoints

and the current line

function _displayscript

{

 local i=1 j=0 bp cl

 (while (($i < ${#_lines[@]})); do

 if [${_linebp[$j]}] && ((${_linebp[$j]} == $i)); then

 bp='*'

 let j=$j+1

 else

 bp=' '

 fi

 if (($_curline == $i)); then

 cl=">"

 else

 cl=" "

 fi

 echo "$i:$bp $cl ${_lines[$i]}"

 let i=$i+1

 done

) | more

}

Toggle execution trace on/off

function _xtrace

{

 let _trace="! $_trace"

 _msg "Execution trace "

 if (($_trace)); then

 _msg "on"

 else

 _msg "off"

 fi

}

Print the passed arguments to Standard Error

function _msg

{

 echo -e "$@" >&2

}

Print command menu

function _menu {

 _msg 'bashdb commands:

 bp N set breakpoint at line N

 bp list breakpoints and break condition

 bc string set break condition to string

 bc clear break condition

 cb N clear breakpoint at line N

 cb clear all breakpoints

 ds displays the test script and breakpoints

 g start/resume execution

 s [N] execute N statements (default 1)

 x toggle execution trace on/off

 h, ? print this menu

 ! string passes string to a shell

 q quit'

}

Erase the temporary file before exiting

function _cleanup

{

 rm $_debugfile 2>/dev/null

}

 < Day Day Up >

 < Day Day Up >

Chapter 10. bash Administration
There are two areas in which system administrators use the shell as part of their job: setting up a
generic environment for users and for system security. In this chapter, we'll discuss bash 's
features that relate to these tasks. We assume that you already know the basics of UNIX system
administration.[1]

[1] A good source of information on system administration is Essential System Administration by Æleen Frisch
(O'Reilly).

 < Day Day Up >

 < Day Day Up >

10.1. Installing bash as the Standard Shell

As a prelude to system-wide customization, we want to emphasize that bash can be installed as
if it were the standard Bourne shell, /bin/sh . Indeed, some systems, such as Linux, come with
bash installed instead of the Bourne shell.

If you want to do this with your system, you can just save the original Bourne shell to another
filename (in case someone needs to use it) and either install bash as sh in the /bin directory, or
better yet install bash in the /bin directory and create a symbolic link from /bin/sh to /bin/bash
using the command ln -s /bin/bash /bin/sh . The reason we think that the second option is better
is because bash changes its behavior slightly if started as sh , as we will see shortly.

As detailed in Appendix A , bash is backward-compatible with the Bourne shell, except that it
doesn't support ^ as a synonym for the pipe character (|) . Unless you have an ancient UNIX
system, or you have some very, very old shell scripts, you needn't worry about this.

But if you want to be absolutely sure, simply search through all shell scripts in all directories in
your PATH . An easy way to perform the search is to use the file command, which we saw in
Chapter 5 and Chapter 9 . file prints "executable shell script" when given the name of one.[2]

Here is a script that looks for ^ in shell scripts in every directory in your PATH :

[2] The exact message varies from system to system; make sure that yours prints this message when given the name of a
shell script. If not, just substitute the message your file command prints for "shell script" in the following code.

IFS=:

for d in $PATH; do

 echo checking $d:

 cd $d

 scripts=$(file * | grep 'shell script' | cut -d: -f1)

 for f in $scripts; do

 grep '\^' $f /dev/null

 done

done

The first line of this script makes it possible to use $PATH as an item list in the for loop. For

each directory, it cd s there and finds all shell scripts by piping the file command into grep and
then, to extract the filename only, into cut . Then for each shell script, it searches for the ^
character.[3]

[3] The inclusion of /dev/null in the grep command is a kludge that forces grep to print the names of files that contain a
match, even if there is only one such file in a given directory.

If you run this script, you will probably find several occurrences of ^— but these carets should
be used within regular expressions in grep , sed , or awk commands, not as pipe characters. As
long as carets are never used as pipes, it is safe for you to install bash as /bin/sh .

As we mentioned earlier, if bash is started as sh (because the executable file has been renamed
sh or there is a link from sh to bash) its startup behavior will change slightly to mimic the
Bourne shell as closely as possible. For login shells it only attempts to read /etc/profile and
~/.profile , ignoring any other startup files like ~/.bash_profile . For interactive shells it won't
read the initialization file ~/.bashrc .[4]

[4] bash also enters POSIX mode when started as sh . Versions of bash prior to 2.0 don't—POSIX mode has to be
explicitly set with the —posix command-line option.

10.1.1. POSIX Mode

Besides its native operating mode, bash can also be switched into POSIX mode. The POSIX
(Portable Operating System Interface) standard, described in detail in Appendix A , defines
guidelines for standardizing UNIX. One part of the POSIX standard covers shells.

bash is nearly 100% POSIX-compliant in its native mode. If you want strict POSIX adherence,
you can either star t bash with the —posix option, or set it from within the shell with set -o
posix .

Only in very rare circumstances would you ever have to use POSIX mode. The differences,
outlined in Appendix A , are small and are mostly concerned with the command lookup order
and how functions are handled. Most bash users should be able to get through life without ever
having to use this option.

10.1.2. Command-Line Options

bash has several command-line options that change the behavior of and pass information to the
shell. The options fall into two sets: single character options, like we've seen in previous chapters
of this book, and multicharacter options, which are a relatively recent improvement to UNIX
utilities.[5] Table 10-1 lists all of the options.[6]

[5] Multicharacter options are far more readable and easier to remember than the old, and usually cryptic, single

character options. All of the GNU utilities have multicharacter options, but many applications and utilities (certainly
those on old UNIX systems) allow only single-character options.

[6] See Appendix B for a list of options for versions of bash prior to 2.0.

Table 10-1. bash command-line options

Option Meaning

-c string
Commands are read from string , if present. Any arguments after string are
interpreted as positional parameters, starting with $0 .

-D
A list of all double-quoted strings preceded by $ is printed on the standard
ouput. These are the strings that are subject to language translation when the
current locale is not C or POSIX. This also turns on the -n option.

-i
Interactive shell. Ignores signals TERM, INT, and QUIT. With job control in
effect, TTIN, TTOU, and TSTP are also ignored.

-l Makes bash act as if invoked as a login shell.

-o option Takes the same arguments as set -o .

-O, +O shopt-
option

shopt-option is one of the shell options accepted by the shopt builtin. If shopt-
option is present, -O sets the value of that option; +O unsets it. If shopt-option
is not supplied, the names and values of the shell options accepted by shopt
are printed on the standard output. If the invocation option is +O , the output
is displayed in a format that may be reused as input.

-s
Reads commands from the standard input. If an argument is given to bash ,
this flag takes precedence (i.e., the argument won't be treated as a script name
and standard input will be read).

-r Restricted shell. See the Section 10.3.1 later in this chapter.

-v Prints shell input lines as they're read.

-
Signals the end of options and disables further option processing. Any options
after this are treated as filenames and arguments. — is synonymous with - .

—debugger
Arranges for the debugger profile to be executed before the shell starts. Turns
on extended debugging mode and shell function tracing.[7]

—dump-
strings

Does the same as -D .

Option Meaning

—dump-po-
strings

Does the same as -D but the output is in the GNU gettext po (portable object)
file format.

—help Displays a usage message and exits.

—login Makes bash act as if invoked as a login shell. Same as -l .

—noediting Does not use the GNU readline library to read command lines if interactive.

—noprofile
Does not read the startup file /etc/profile or any of the personal initialization
files.

—norc
Does not read the initialization file ~/.bashrc if the shell is interactive. This is on
by default if the shell is invoked as sh .

—posix
Changes the behavior of bash to follow the POSIX guidelines more closely
where the default operation of bash is different.

—quiet Shows no information on shell startup. This is the default.

—rcfile file ,
—init-file file

Executes commands read from file instead of from the initialization file
~/.bashrc if the shell is interactive.

—verbose Equivalent to -v .

—version Shows the version number of this instance of bash and then exits.

[7] Only available in bash version 3.0 and later.

The multicharacter options have to appear on the command line before the single-character
options. In addition to these, any set option can be used on the command line. Like shell built-
ins, using a + instead of - turns an option off.

Of these options, the most useful are -i (interactive), -r (restricted), -s (read from standard input),
-p (privileged), and -m (enable job control). Login shells are usually run with the -i , -s , and -m
flags. We'll look at restricted and privileged modes later in this chapter.

 < Day Day Up >

—dump-po-
strings

Does the same as -D but the output is in the GNU gettext po (portable object)
file format.

—help Displays a usage message and exits.

—login Makes bash act as if invoked as a login shell. Same as -l .

—noediting Does not use the GNU readline library to read command lines if interactive.

—noprofile
Does not read the startup file /etc/profile or any of the personal initialization
files.

—norc
Does not read the initialization file ~/.bashrc if the shell is interactive. This is on
by default if the shell is invoked as sh .

—posix
Changes the behavior of bash to follow the POSIX guidelines more closely
where the default operation of bash is different.

—quiet Shows no information on shell startup. This is the default.

—rcfile file ,
—init-file file

Executes commands read from file instead of from the initialization file
~/.bashrc if the shell is interactive.

—verbose Equivalent to -v .

—version Shows the version number of this instance of bash and then exits.

[7] Only available in bash version 3.0 and later.

The multicharacter options have to appear on the command line before the single-character
options. In addition to these, any set option can be used on the command line. Like shell built-
ins, using a + instead of - turns an option off.

Of these options, the most useful are -i (interactive), -r (restricted), -s (read from standard input),
-p (privileged), and -m (enable job control). Login shells are usually run with the -i , -s , and -m
flags. We'll look at restricted and privileged modes later in this chapter.

 < Day Day Up >

 < Day Day Up >

10.2. Environment Customization

Like the Bourne shell, bash uses the file /etc/profile for system-wide customization. When a user
logs in, the shell reads and runs /etc/profile before running the user's .bash_profile .

We won't cover all the possible commands you might want to put in /etc/profile . But bash has a
few unique features that are particularly relevant to system-wide customization; we'll discuss
them here.

We'll start with two built-in commands that you can use in /etc/profile to tailor your users'
environments and constrain their use of system resources. Users can also use these commands
in their .bash_profile , or at any other time, to override the default settings.

10.2.1. umask

umask , like the same command in most other shells, lets you specify the default permissions
that files have when users create them. It takes the same types of arguments that the chmod
command does, i.e., absolute (octal numbers) or symbolic permission values.

The umask contains the permissions that are turned off by default whenever a process creates a
file, regardless of what permission the process specifies.[8]

[8] If you are comfortable with Boolean logic, think of the umask as a number that the operating system logically ANDs
with the permission given by the creating process.

We'll use octal notation to show how this works. As you probably know, the digits in a
permission number stand (left to right) for the permissions of the owner, owner's group, and all
other users, respectively. Each digit, in turn, consists of three bits, which specify read, write, and
execute permissions from left to right. (If a file is a directory, the "execute" permission becomes
"search" permission, i.e., permission to cd to it, list its files, etc.)

For example, the octal number 640 equals the binary number 110 100 000. If a file has this
permission, then its owner can read and write it; users in the owner's group can only read it;
everyone else has no permission on it. A file with permission 755 gives its owner the right to
read, write, and execute it and everyone else the right to read and execute (but not write).

022 is a common umask value. This implies that when a file is created, the "most" permission it
could possibly have is 755—which is the usual permission of an executable that a compiler might
create. A text editor, on the other hand, might create a file with 666 permission (read and write

for everyone), but the umask forces it to be 644 instead.

10.2.2. ulimit

The ulimit command was originally used to specify the limit on file creation size. But bash 's
version has options that let you put limits on several different system resources. Table 10-2 lists
the options.

Table 10-2. ulimit resource options

Option Resource limited

-a All limits (for printing values only)

-c Core file size (1 Kb blocks)

-d Process data segment (Kb)

-f File size (1 Kb blocks)

-l Maximum size of a process that can be locked in memory (Kb)[9]

-m Maximum resident set size

-n File descriptors

-p Pipe size (512 byte blocks)

-s Process stack segment (Kb)

-t Process CPU time (seconds)

-u Maximum number of processes available to a user

-v Virtual memory (Kb)

[9] Not available in versions of bash prior to 2.0.

Each takes a numerical argument that specifies the limit in units shown in the table. You can also
give the argument "unlimited" (which may actually mean some physical limit), "hard" and "soft",
which refer to the current hard and soft limits (see below), or you can omit the argument, in
which case it will print the current limit. ulimit -a prints limits (or "unlimited") of all types.[10]

You can specify only one type of resource at a time. If you don't specify any option, -f is
assumed.

[10] The "hard" and "soft" arguments are not available in bash prior to version 2.05a.

Some of these options depend on operating system capabilities that don't exist in older UNIX
versions. In particular, some older versions have a fixed limit of 20 file descriptors per process
(making -n irrelevant), and some don't support virtual memory (making -v irrelevant).

The -d and -s options have to do with dynamic memory allocation , i.e., memory for which a
process asks the operating system at runtime. It's not necessary for casual users to limit these,
though software developers may want to do so to prevent buggy programs from trying to
allocate endless amounts of memory due to infinite loops.

The -v and -m options are similar; -v puts a limit on all uses of memory, and -m limits the
amount of physical memory that a process is allowed to use. You don't need these unless your
system has severe memory constraints or you want to limit process size to avoid thrashing.

The -u option is another option which is useful if you have system memory constraints or you
wish just wish to stop individual users from hogging the system resources.

You may want to specify limits on file size (-f and -c) if you have constraints on disk space.
Sometimes users actually mean to create huge files, but more often than not, a huge file is the
result of a buggy program that goes into an infinite loop. Software developers who use
debuggers like sdb , dbx , and gdb should not limit core file size, because core dumps are
necessary for debugging.

The -t option is another possible guard against infinite loops. However, a program that is in an
infinite loop but isn't allocating memory or writing files is not particularly dangerous; it's better to
leave this unlimited and just let the user kill the offending program.

In addition to the types of resources you can limit, ulimit lets you specify hard or soft limits.
Hard limits can be lowered by any user but only raised by the super user (root); users can lower
soft limits and raise them—but only as high as the hard limit for that resource.

If you give -H along with one (or more) of the options above, ulimit will set hard limits; -S sets
soft limits. Without either of these, ulimit sets the hard and soft limit. For example, the following
commands set the soft limit on file descriptors to 64 and the hard limit to unlimited:

ulimit -Sn 64

ulimit -Hn unlimited

When ulimit prints current limits, it prints soft limits unless you specify -H .

10.2.3. Types of Global Customization

The best possible approach to globally available customization would be a system-wide
environment file that is separate from each user's environment file—just like /etc/profile is
separate from each user's .bash_profile . Unfortunately, bash doesn't have this feature.

Nevertheless, the shell gives you a few ways to set up customizations that are available to all
users at all times. Environment variables are the most obvious; your /etc/profile file will
undoubtedly contain definitions for several of them, including PATH and TERM .

The variable TMOUT is useful when your system supports dialup lines. Set it to a number N ,
and if a user doesn't enter a command within N seconds after the shell last issued a prompt, the
shell will terminate. This feature is helpful in preventing people from "hogging" the dialup lines.

You may want to include some more complex customizations involving environment variables,
such as the prompt string PS1 containing the current directory (as seen in Chapter 4).

You can also turn on options, such as emacs or vi editing modes, or noclobber to protect
against inadvertent file overwriting. Any shell scripts you have written for general use also
contribute to customization.

Unfortunately, it's not possible to create a global alias. You can define aliases in /etc/profile , but
there is no way to make them part of the environment so that their definitions will propagate to
subshells. (In contrast, users can define global aliases by putting their definitions in ~/.bashrc .)

However, you can set up global functions. These are an excellent way to customize your
system's environment, because functions are part of the shell, not separate processes.

 < Day Day Up >

 < Day Day Up >

10.3. System Security Features

UNIX security is a problem of legendary notoriety. Just about every aspect of a UNIX system
has some security issue associated with it, and it's usually the system administrator's job to
worry about this issue.

bash has two features that help solve this problem: the restricted shell , which is intentionally
"brain damaged," and privileged mode , which is used with shell scripts that run as if the user
were root .

10.3.1. Restricted Shell

The restricted shell is designed to put the user into an environment where her ability to move
around and write files is severely limited. It's usually used for "guest" accounts.[11] You can
make a user's login shell restricted by putting rbash in the user's /etc/passwd entry.[12]

[11] This feature is not documented in the manual pages for old versions of bash .

[12] If this option has been included when the shell was compiled. See Chapter 11 for details on configuring bash .

The specific constraints imposed by the restricted shell disallow the user from doing the
following:

Changing working directories: cd is inoperative. If you try to use it, you will get the error
message bash: cd: restricted .

Redirecting output to a file: the redirectors > , >| , <> , and >> are not allowed.

Assigning a new value to the environment variables ENV , BASH_ENV , SHELL , or
PATH .

Specifying any commands with slashes (/) in them. The shell will treat files outside of the
current directory as "not found."

Using the exec built-in.

Specifying a filename containing a / as an argument to the . built-in command.

Importing function definitions from the shell environment at startup.

Adding or deleting built-in commands with the -f and -d options to the enable built-in
command.

Specifying the -p option to the builtin command.

Turning off restricted mode with set +r .

These restrictions go into effect after the user's .bash_profile and environment files are run. In
addition, it is wise to change the owner of the users' .bash_profile and .bashrc to root, and
make these files read-only. The users' home directory should also be made read-only.

This means that the restricted shell user's entire environment is set up in /etc/profile and
.bash_profile . Since the user can't access /etc/profile and can't overwrite .bash_profile , this
lets the system administrator configure the environment as he sees fit.

Two common ways of setting up such environments are to set up a directory of "safe"
commands and have that directory be the only one in PATH , and to set up a command menu
from which the user can't escape without exiting the shell.

10.3.2. A System Break-In Scenario

Before we explain the other security features, here is some background information on system
security that should help you understand why they are necessary.

Many problems with UNIX security hinge on a UNIX file attribute called the suid (set user ID)
bit. This is like a permission bit (see umask earlier in this chapter): when an executable file has it
turned on, the file runs with an effective user ID equal to the owner of the file, which is usually
root . The effective user ID is distinct from the real user ID of the process.

This feature lets administrators write scripts that do certain things that require root privilege (e.g.,
configure printers) in a controlled way. To set a file's suid bit, the superuser can type chmod
4755 filename ; the 4 is the suid bit.

Modern system administration wisdom says that creating suid shell scripts is a very, very bad
idea.[13] This has been especially true under the C shell, because its .cshrc environment file
introduces numerous opportunities for break-ins. bash 's environment file feature creates similar
security holes, although the security feature we'll see shortly make this problem less severe.

[13] In fact, most versions of UNIX intentionally disable the suid feature for shell scripts.

We'll show why it's dangerous to set a script's suid bit. Recall that in Chapter 3 , we mentioned
that it's not a good idea to put your personal bin directory at the front of your PATH . Here is a
scenario that shows how this placement combines with suid shell scripts to form a security hole:

a variation of the infamous "Trojan horse" scheme. First, the computer cracker has to find a user
on the system with an suid shell script. In addition, the user must have a PATH with her
personal bin directory listed before the public bin directories, and the cracker must have write
permission on the user's personal bin directory.

Once the cracker finds a user with these requirements, he follows these steps:

Looks at the suid script and finds a common utility that it calls. Let's say it's grep.

Creates the Trojan horse, which is this case is a shell script called grep in the user's personal bin
directory. The script looks like this:
cp /bin/bash filename chown root filename chmod 4755 filename /bin/grep "$@

rm ~/bin/grep

filename should be some unremarkable filename in a directory with public read and execute
permission, such as /bin or /usr/bin . The file, when created, will be that most heinous of
security holes: an suid interactive shell.

Sits back and waits for the user to run the suid shell script—which calls the Trojan horse, which
in turn creates the suid shell and then self-destructs.

Runs the suid shell and creates havoc.

10.3.3. Privileged Mode

The one way to protect against Trojan horses is privileged mode . This is a set -o option (set -o
privileged or set -p).

In privileged mode, when an suid bash shell script is invoked, the shell does not run the user's
environment file—i.e., it doesn't expand the user's BASH_ENV environment variable.

Since privileged mode is an option, it is possible to turn it off with the command set +o
privileged (or set +p). But this doesn't help the potential system cracker: the shell automatically
changes its effective user ID to be the same as the real user ID—i.e., if you turn off privileged
mode, you also turn off suid .

Privileged mode is an excellent security feature; it solves a problem that originated when the
environment file idea first appeared in the C shell.

Nevertheless, we still strongly recommend against creating suid shell scripts. We have shown
how bash protects against break-ins in one particular situation, but that certainly does not imply
that bash is "safe" in any absolute sense. If you really must have suid scripts, you should

carefully consider all relevant security issues.

Finally, if you would like to learn more about UNIX security, we recommend Practical UNIX
and Internet Security , by Gene Spafford and Simson Garfinkel (O'Reilly).

 < Day Day Up >

 < Day Day Up >

Chapter 11. Shell Scripting
For the majority of this book, we've looked at the various elements that make up bash and how
you can use them in writing shell scripts. If you've used other programming languages you will
know that there is a difference between writing a piece of code that gets a job done and writing a
piece of code that does the job but is also maintainable and conforms to what we could call
"good practice."

This chapter will give a brief introduction to some aspects of good practice and writing
maintainable shell scripts along with helpful tips and tricks that you can use to make writing
scripts easier.

 < Day Day Up >

 < Day Day Up >

11.1. What's That Do?

Six months ago you coded up a 100 line shell script. It made perfect sense then, but now you
look at it and wonder, "Just what does that do?" This is a common pitfall among
programmers—especially those writing in a shell language. Unfortunately, shells have developed
with more than their fair share of obscure punctuation. This is a blessing for keeping typing to a
minimum but doesn't help readability. It's important to make your code as readable as possible.

11.1.1. Comments

The first rule of shell scripting is to comment your code . You should do this right from the start,
even if the script is only a couple of lines long. Shell scripts have a habit of growing from a
couple of lines to many hundreds of lines as more features are added, so it's best to get into the
habit of commenting your code right at the beginning.

To start with, consider having a main header or banner for your scripts. The information in the
header should, at a minimum, say what the script does. Here is an example of a script header:

#!/bin/bash

###

Name: graphconv.sh

#

Converts graphics files from one format to another.

#

Usage: graphconv.sh <input-file> <output-file>

#

Author: C. Newham

Date: 2004/12/02

###

This main header gives the name of the script, a brief summary of what it does, usage

information, the name of the author, and when the script was written.

If you are using a source control system (e.g., CVS), you can dispense with the author and date
as these will be stored when the script is archived. If you aren't using such a system, we strongly
advise that you not only include the above information but also place in the header additional
data such as modification dates and authors.

Whatever system you use, make sure that you make the format of the banner a standard across
all of your scripts.

Every function should also have a header. If it is a standalone function, it should have a main
header, as given above. If it is a function used locally in a script, it should have a simpler banner
stating what it does, what parameters it expects, and what it returns, e.g.:

Changes the filename extension

#

param: $infile - the original filename

#

returns: the modified name with new extension.

#

function change_filename()

...

Comments should also be used frequently in your code to say what the code is doing. While we
aren't about to dictate style, comments within the flow of the code are generally better on a line
by themselves, while variable declaration comments are better on the same line as the variable:

startup_dir=/home/startup/ # directory with startup files

file_limit=50 # maximum number of files to process

...

if [-d "$startup_dir"]

then

 # the startup directory exists so read any initialisation file.

 echo "initialising file processing..."

11.1.2. Variables and Constants

Headers and comments are just one way to document your code. Another is by the use of
descriptive variable names. Good variable names should give an indication of what the variable
represents. Names like "x", "resn" or "procd" will only have meaning at the time that you write
the script. Six months down the track and they will be a mystery.

Good names should be short but descriptive. The three examples above might have been more
meaningfully written as "file_limit", "resolution", and "was_processed". Don't make the names
too long; the name "horizontal_resolution_of_the_picture" just clutters a script and takes away
any advantage in making the name so descriptive.

Constants should be in uppercase and should normally be declared as read-only:

declare -r CAPITAL_OF_ENGLAND="London"

You should always avoid "magic numbers" sprinkled throughout the code by using constants.
For example:

if [[$process_result == 68]]

...

should be replaced with:

declare -ir STAGE_3_FAILURE=68

...

if [[$process_result == $STAGE_3_FAILURE]]

...

Not only does this make the code more readable but it makes changing the value easier,
especially if it is used numerous times in the script.

 < Day Day Up >

 < Day Day Up >

11.2. Starting Up

In Chapter 6 we talked about using getopts to obtain options and arguments passed in to a shell
script. This command makes it easy for the script programmer to process what the user has
provided, but what about the other half of the deal? The programmer must make an effort to
make life as easy for the user as possible. Nothing makes a user more irate than a script that
doesn't take standard arguments, doesn't provide a usage message, doesn't process the
arguments in the expected way, and forces the user into a way of thinking that the programmer
thinks is the right way. Having to examine the source code for a script to find out what is an
acceptable argument or option is usually the last straw!

The Free Software Foundation has published a set of guidelines for writing GNU software that
suggests standard ways in which UNIX utilities should operate.[1] When writing your own shell
scripts, it is worthwhile to follow the guidelines because your script will then look familiar to
users who have used other command-line programs.

[1] The document is available at http://www.gnu.org/prep/standards/ .

At a minimum your script should provide single letter options (such as -h) and long options with
the double dash (such as —help). It should also provide two options: —help and —version .
From the GNU manual:

—version

This option should direct the program to print information about its name, version, origin,
and legal status, all on standard output, and then exit successfully. Other options and
arguments should be ignored once this is seen, and the program should not perform its
normal function.

—help

This option should output brief documentation for how to invoke the program, on standard
output, then exit successfully. Other options and arguments should be ignored once this is
seen, and the program should not perform its normal function.

Near the end of the —help option's output there should be a line that says where to mail

http://www.gnu.org/prep/standards/

bug reports. It should have this format:

Report bugs to mailing-address .

Table 11-1 lists a few of the common single-letter and long options that you may consider
using for your own scripts. This list is by no means exhaustive and is intended merely for
guidance.

Table 11-1. Possible options

Long option Option Examples where used

—all -a du , ls , nm , stty , uname , unexpand

—append -a etags, tee, time

—binary -b cpio, diff

—blocks -b head, tail

—date -d touch

—directory -d cpio

—exclude-from -X tar

—file -f fgrep

—help -h man

—long -l ls

—line -l wc

—links -L cpio, ls

—output -o cc, sort

—quiet -q who

—recursive -r rm

—recursive -R ls

—silent -s Synonym for -quiet

—unique -u sort

—verbose -v cpio, tar

Long option Option Examples where used

—width -w pr, sdiff

For commands that take one or more input files and produce an output file it is considered good
practice to make only the input files normal arguments (i.e., command filename) and have the
output file specified by an option (i.e., command -o filename).

Another thing to watch out for is assuming that a particular environment variable needed by your
script has been set in the users' environment. If your script is relying on the user to have set an
environment variable, it is probably better to redesign your script to allow the value to be passed
in as an argument.

 < Day Day Up >

—width -w pr, sdiff

For commands that take one or more input files and produce an output file it is considered good
practice to make only the input files normal arguments (i.e., command filename) and have the
output file specified by an option (i.e., command -o filename).

Another thing to watch out for is assuming that a particular environment variable needed by your
script has been set in the users' environment. If your script is relying on the user to have set an
environment variable, it is probably better to redesign your script to allow the value to be passed
in as an argument.

 < Day Day Up >

 < Day Day Up >

11.3. Potential Problems

Here are some useful things to watch out for when writing shell scripts. Being aware of them will
not only save you time in tracking down bugs but will also make your scripts more robust, more
readable, and above all, more maintainable.

Don't create massive scripts or functions that try to do everything. Split functionality up into
smaller units and place them in functions. This not only makes the code easier to read but
makes it easier to debug.

Always place the shell execution directive (e.g., #!/bin/bash) at the top of your scripts to
ensure they will be run by bash .

Don't use reserved words for variable names. This can become very confusing:
let let="echo"

let echo="hello"

echo "$echo world"

Be careful with whitespace. Attempting the following assignment will not give the expected
result:
cat = 5

Don't use the same names for variables and functions:
function letter

{

 echo $1etter

}

letter=letter

letter letter

This causes more confusion that it's worth. While this example is contrived, be on your
guard for more subtle examples. To guard against this, try and name your functions using
verbs, e.g., function print_letter .

Be careful when using the test operator [...] . The following two if statements are not the
same, although they look very similar:
 if ["$var" = 42]

 if ["$var" -eq 42]

The first is a string comparison, the second an integer comparison. We suggest using ((...))
for arithmetic comparisons in if statements.

 < Day Day Up >

 < Day Day Up >

11.4. Don't Use bash

Sometimes you might start writing a script and after several hours of work find that you've
created a monster with many hundreds of lines of complicated code. This is not always a bad
thing, but it is a good idea to always be thinking about whether the job could be done in a better
way.

Usually the choice of programming language should take place at the design stage. If you are
starting from scratch on a Unix system you will have many options, including C and C++, perl ,
python , and a host of others. They all have their advantages and disadvantages, and no one
language will be the best solution for every problem.

If you find that your script has a huge amount of processing to do quickly or if the script
requires mathematical capabilities beyond simple integer arithmetic, it might be worthwhile
considering C or C++ for the job. If you are looking for better portability across systems,
python or perl might be a better match to the task.

However, even if bash is not suitable in the final solution to a problem, you might find it makes
an excellent language for mocking up your solution and trying out various options.

 < Day Day Up >

 < Day Day Up >

Chapter 12. bash for Your System
The first 10 chapters of this book looked at nearly all aspects of bash , from navigating the
filesystem and editing the command-line to writing shell scripts and functions using lesser-known
features of the shell. This is all very well and good, but what if you have an old version of bash
and want the new features shown in this book (or worse yet, you don't have bash at all)?

In this chapter we'll show you how to get the latest version of bash and install it on your system,
and we'll discuss potential problems you might encounter along the way. We'll also look briefly
at the examples that come with bash and how you can report bugs to the bash maintainer.

 < Day Day Up >

 < Day Day Up >

12.1. Obtaining bash

If you have a direct connection to the Internet, you should have no trouble obtaining bash ;
otherwise, you'll have to do a little more work.

The bash home page is located at http://www.gnu.org/software/bash/bash.html and you can find
the very latest details of the current distribution and where to obtain it from there.

You can also get bash on CD-ROM by ordering it directly from the Free Software Foundation,
either via the web ordering page at http://order.fsf.org or from:

The Free Software Foundation (FSF)

59 Temple Place - Suite 330

Boston, MA 02111-1307 USA

Phone: +1-617-542-5942

Fax: +1-617-542-2652

Email: order@fsf.org

 < Day Day Up >

http://www.gnu.org/software/bash/bash.html
http://order.fsf.org

 < Day Day Up >

12.2. Unpacking the Archive

Having obtained the archive file by one of the above methods, you need to unpack it and install it
on your system. Unpacking can be done anywhere—we'll assume you're unpacking it in your
home directory. Installing it on the system requires you to have root privileges. If you aren't a
system administrator with root access, you can still compile and use bash ; you just can't install
it as a system-wide utility. The first thing to do is uncompress the archive file by typing gunzip
bash-3.0.tar.gz .[1] Then you need to "untar" the archive by typing tar -xf bash-3.0.tar . The -
xf means "extract the archived material from the specified file." This will create a directory called
bash-3.0 in your home directory.

[1] gunzip is the GNU decompression utility. gunzip is popular but relatively new and some systems don't have it. If
your system doesn't, you can obtain it by the same methods as you obtained bash . gunzip is available from the FSF.
gzip -d does the same thing as gunzip .

The archive contains all of the source code needed to compile bash and a large amount of
documentation and examples. We'll look at these things and how you go about making a bash
executable in the rest of this chapter.

 < Day Day Up >

 < Day Day Up >

12.3. What's in the Archive

The bash archive contains a main directory (bash-3.0 for the current version) and a set of files
and subdirectories. Among the first files you should examine are:

MANIFEST

A list of all the files and directories in the archive

COPYING

The GNU Copyleft for bash

NEWS

A list of bug fixes and new features since the last version

README

A short introduction and instructions for compiling bash

You should also be aware of two directories:

doc

Information related to bash in various formats

examples

Examples of startup files, scripts, and functions

The other files and directories in the archive are mostly things that are needed during the build.
Unless you are going to go hacking into the internal workings of the shell, they shouldn't concern
you.

12.3.1. Documentation

The doc directory contains a few articles that are worth reading. Indeed, it would be well worth
printing out the manual entry for bash so you can use it in conjunction with this book. The
README file gives a short summary of the files.

The document you'll most often use is the manual page entry (bash.1). The file is in troff
format—that used by the manual pages. You can read it by processing it with the text-formatter
nroff and piping the output to a pager utility: nroff -man bash.1 | more should do the trick. You
can also print it off by piping it to the lineprinter (lp). This summarizes all of the facilities your
version of bash has and is the most up-to-date reference you can get. This document is also
available through the man facility once you've installed the package, but sometimes it's nice to
have a hard copy so you can write notes all over it.

Of the other documents, FAQ is a Frequently Asked Questions document with answers,
readline.3 is the manual entry for the readline facility, and article.ms is an article about the shell
that appeared in Linux Journal , by the current bash maintainer, Chet Ramey.

12.3.2. Configuring and Building bash

To compile bash "straight out of the box" is easy;[2] you just type configure and then make !
The bash configure script attempts to work out if you have various utilities and C library
functions, and whereabouts they reside on your system. It then stores the relevant information in
the file config.h . It also creates a file called config.status that is a script you can run to recreate
the current configuration information. While the configure is running, it prints out information on
what it is searching for and where it finds it.

[2] This configuration information pertains to bash version 3.0 and later. The configuration and installation for earlier
versions is fairly easy, although it differs in certain details. For further information, refer to the INSTALL instructions that
came with your version of bash .

The configure script also sets the location that bash will be installed; the default is the /usr/local
area (/usr/local/bin for the executable, /usr/local/man for the manual entries etc.). If you don't
have root privileges and want it in your own home directory, or you wish to install bash in some
other location, you'll need to specify a path to configure. You can do this with the —exec-prefix
option. For example:

$ configure --exec-prefix=/usr

specifies that the bash files will be placed under the /usr directory. Note that configure prefers
option arguments be given with an equals sign (=).

After the configuration finishes and you type make , the bash executable is built. A script called
bashbug is also generated, which allows you to report bugs in the format the bash maintainers
want. We'll look at how you use it later in this chapter.

Once the build finishes, you can see if the bash executable works by typing ./bash . If it doesn't,
turn to the Section 11.3 in Chapter 11 .

To install bash , type make install . This will create all of the necessary directories (bin , info ,
man and its subdirectories) and copy the files to them.

If you've installed bash in your home directory, be sure to add your own bin path to your
PATH and your own man path to MANPATH .

bash comes preconfigured with nearly all of its features enabled, but it is possible to customize
your version by specifying what you want with the —enable- feature and —disable- feature
command-line options to configure .

Table 12-1 is a list of the configurable features and a short description of what those features do.

Table 12-1. Configurable features

Feature Description

alias Support for aliases.

arith-for-
command

Support for the alternate form of the `for' command that behaves like the C
language for statement .

array-variables Support for one dimensional arrays.

bang-history C-shell-like history expansion and editing.

brace-
expansion

Brace expansion.

command-
timing

Support for the time command.

Feature Description

cond-
command

Support for the [[conditional command.

cond-regexp
Support for matching POSIX regular expressions using the =~ binary operator
in the [[conditional command.

directory-
stack

Support for the pushd , popd , and dirs directory manipulation commands .

disabled-
builtins

Whether a built-in can be run with the builtin command, even if it has been
disabled with enable -n .

dparen-
arithmetic

Support for ((...)) .

help-builtin Support for the help built-in.

history History via the fc and history commands .

job-control Job control via fg , bg , and jobs if supported by the operating system.

multibyte
Support for multibyte characters if the operating system provides the necessary
support .

net-
redirections

Special handling of filenames of the form /dev/tcp/HOST/PORT and
/dev/udp/HOST/PORT when used in redirections.

process-
substitution

Whether process substitution occurs, if supported by the operating system.

prompt-string-
decoding

Whether backslash escaped characters in PS1, PS2, PS3, and PS4 are allowed
.

progcomp
Programmable completion facilities. If readline is not enabled, this option has
no effect .

readline readline editing and history capabilities.

restricted Support for the restricted shell, the -r option to the shell, and rbash .

select The select construct.

usg-echo-
default

xpg-echo-
default

Make echo expand backslash-escaped characters by default, without requiring
the -e option. This sets the default value of the xpg_echo shell option to on ,
which makes the bash echo behave more like the version specified in the
Single Unix Specification, Version 2.

cond-
command

Support for the [[conditional command.

cond-regexp
Support for matching POSIX regular expressions using the =~ binary operator
in the [[conditional command.

directory-
stack

Support for the pushd , popd , and dirs directory manipulation commands .

disabled-
builtins

Whether a built-in can be run with the builtin command, even if it has been
disabled with enable -n .

dparen-
arithmetic

Support for ((...)) .

help-builtin Support for the help built-in.

history History via the fc and history commands .

job-control Job control via fg , bg , and jobs if supported by the operating system.

multibyte
Support for multibyte characters if the operating system provides the necessary
support .

net-
redirections

Special handling of filenames of the form /dev/tcp/HOST/PORT and
/dev/udp/HOST/PORT when used in redirections.

process-
substitution

Whether process substitution occurs, if supported by the operating system.

prompt-string-
decoding

Whether backslash escaped characters in PS1, PS2, PS3, and PS4 are allowed
.

progcomp
Programmable completion facilities. If readline is not enabled, this option has
no effect .

readline readline editing and history capabilities.

restricted Support for the restricted shell, the -r option to the shell, and rbash .

select The select construct.

usg-echo-
default

xpg-echo-
default

Make echo expand backslash-escaped characters by default, without requiring
the -e option. This sets the default value of the xpg_echo shell option to on ,
which makes the bash echo behave more like the version specified in the
Single Unix Specification, Version 2.

The options disabled-builtins and xpg-echo-default are disabled by default. The others are
enabled.

Many other shell features can be turned on or off by modifying the file config-.top.h . For further
details on this file and configuring bash in general, see INSTALL .

Finally, to clean up the source directory and remove all of the object files and executables, type
make clean . Make sure you run make install first, otherwise you'll have to rerun the
installation from scratch.

12.3.3. Testing bash

There are a series of tests that can be run on your newly built version of bash to see if it is
running correctly. The tests are scripts that are derived from problems reported in earlier
versions of the shell. Running these tests on the latest version of bash shouldn't cause any
errors.

To run the tests just type make tests in the main bash directory. The name of each test is
displayed, along with some warning messages, and then it is run. Successful tests produce no
output (unless otherwise noted in the warning messages).

If any of the tests fail, you'll see a list of things that represent differences between what is
expected and what happened. If this occurs you should file a bug report with the bash
maintainer. See the Section 12.4.2 later in this chapter for information on how to do this.

12.3.4. Potential Problems

Although bash has been installed on a large number of different machines and operating systems,
there are occasionally problems. Usually the problems aren't serious and a bit of investigation
can result in a quick solution.

If bash didn't compile, the first thing to do is check that configure guessed your machine and
operating system correctly. Then check the file NOTES , which contains some information on
specific UNIX systems. Also look in INSTALL for additional information on how to give
configure specific compilation instructions.

12.3.5. Installing bash as a Login Shell

Having installed bash and made sure it is working correctly, the next thing to do is to make it
your login shell. This can be accomplished in two ways.

Individual users can use the chsh (change shell) command after they log in to their accounts.
chsh asks for their password and displays a list of shells to choose from. Once a shell is chosen,
chsh changes the appropriate entry in /etc/passwd . For security reasons, chsh will only allow
you to change to a shell if it exists in the file /etc/shells (if /etc/shells doesn't exist, chsh asks for
the pathname of the shell).

Another way to change the login shell is to edit the password file directly. On most systems,
/etc/passwd will have lines of the form:

cam:pK1Z9BCJbzCrBNrkjRUdUiTtFOh/:501:100:Cameron Newham:/home/cam:/bin/bash

cc:kfDKDjfkeDJKJySFgJFWErrElpe/:502:100:Cheshire Cat:/home/cc:/bin/bash

As root you can just edit the last field of the lines in the password file to the pathname of
whatever shell you choose.

If you don't have root access and chsh doesn't work, you can still make bash your login shell.
The trick is to replace your current shell with bash by using exec from within one of the startup
files for your current shell.

If your current shell is similar to sh (e.g., ksh), you have to add the line:

[-f /pathname/bash] && exec /pathname/bash --login

to your .profile , where pathname is the path to your bash executable.

You will also have to create an empty file called .bash_profile . The existence of this file
prevents bash from reading your .profile and re-executing the exec— thus entering an infinite
loop. Any initialization code that you need for bash can just be placed in .bash_profile .

If your current shell is similar to csh (e.g., tcsh) things are slightly easier. You just have to add
the line:

if (-f /pathname/bash) exec /pathname/bash --login

to your .login , where pathname is the path to your bash executable.

12.3.6. Examples

The bash archive also includes an examples directory. This directory contains some
subdirectories for scripts, functions, and examples of startup files.

The startup files in the startup-files directory provide many examples of what you can put in
your own startup files. In particular, bash_aliases gives many useful aliases. Bear in mind that if
you copy these files wholesale, you'll have to edit them for your system because many of the
paths will be different. Refer to Chapter 3 for further information on changing these files to suit
your needs.

The functions directory contains about 50 files with function definitions that you might find
useful. Among them are:

basename

The basename utility, missing from some systems

dirfuncs

Directory manipulation facilities

dirname

The dirname utility, missing from some systems

whatis

An implementation of the Tenth Edition Bourne shell whatis builtin

whence

An almost exact clone of the Korn shell whence builtin

Especially helpful, if you come from a Korn shell background, is kshenv . This contains function
definitions for some common Korn facilities such as whence , print , and the two-parameter cd
builtins.

The scripts directory contains over 20 examples of bash scripts. The two largest scripts are
examples of the complex things you can do with shell scripts. The first is a (rather amusing)
adventure game interpreter and the second is a C shell interpreter. The other scripts include

examples of precedence rules, a scrolling text display, a "spinning wheel" progress display, and
how to prompt the user for a particular type of answer.

Not only are the script and function examples useful for including in your environment, they also
provide many alternative examples that you can learn from when reading this book. We
encourage you to experiment with them.

 < Day Day Up >

 < Day Day Up >

12.4. Who Do I Turn to?

No matter how good something is or how much documentation comes with it, you'll eventually
come across something that you don't understand or that doesn't work. In such cases it can't be
stressed enough to carefully read the documentation (in computer parlance: RTFM).[3] In many
cases this will answer your question or point out what you're doing wrong.

[3] RTFM stands for "Read The F(laming) Manual."

Sometimes you'll find this only adds to your confusion or confirms that there is something
wrong with the software. The next thing to do is to talk to a local bash guru to sort out the
problem. If that fails, or there is no guru, you'll have to turn to other means (currently only via the
Internet).

12.4.1. Asking Questions

If you have any questions about bash , there are currently two ways to go about getting them
answered. You can email questions to bash-maintainers@gnu.org or you can post your question
to the USENET newsgroups gnu.bash.bug or comp.unix.shell .

In both cases either the bash maintainer or some knowledgeable person on USENET will give
you advice. When asking a question, try to give a meaningful summary of your question in the
subject line.

12.4.2. Reporting Bugs

Bug reports should be sent to bug-bash@gnu.org , and include the version of bash and the
operating system it is running on, the compiler used to compile bash , a description of the
problem, a description of how the problem was produced, and, if possible, a fix for the
problem. The best way to do this is with the bashbug script, installed with bash .

Before you run bashbug , make sure you've set your EDITOR environment variable to your
favorite editor and have exported it (bashbug defaults to emacs , which may not be installed on
your system). When you execute bashbug it will enter the editor with a partially blank report
form. Some of the information (bash version, operating system version, etc.) will have been filled
in automatically. We'll take a brief look at the form, but most of it is self-explanatory.

The From : field should be filled out with your email address. For example:

From: confused@wonderland.oreilly.com

Next comes the Subject : field; make an effort to fill it out, as this makes it easier for the
maintainers when they need to look up your submission. Just replace the line surrounded by
square brackets with a meaningful summary of the problem.

The next few lines are a description of the system and should not be touched. Next comes the
Description : field. You should provide a detailed description of the problem and how it differs
from what is expected. Try to be as specific and concise as possible when describing the
problem.

The Repeat-By : field is where you describe how you generated the problem; if necessary, list
the exact keystrokes you used. Sometimes you won't be able to reproduce the problem yourself,
but you should still fill out this field with the events leading up to the problem. Attempt to reduce
the problem to the smallest possible form. For example, if it was a large shell script, try to isolate
the section that produced the problem and include only that in your report.

Lastly, the Fix : field is where you can provide the necessary patch to fix the problem if you've
investigated it and found out what was going wrong. If you have no idea what caused the
problem, just leave the field blank.

Once you've finished filling in the form, save it and exit your editor. The form will automatically
be sent to the maintainers.

 < Day Day Up >

 < Day Day Up >

Appendix A. Related Shells
The fragmentation of the UNIX marketplace has had its advantages and disadvantages. The
advantages came mostly in the early days: lack of standardization and proliferation among
technically knowledgeable academics and professionals contributed to a healthy "free market"
for UNIX software, in which several programs of the same type (e.g., shells, text editors, system
administration tools) would often compete for popularity. The best programs would usually
become the most widespread, while inferior software tended to fade away.

But often there was no single "best" program in a given category, so several would prevail. This
led to the current situation, where multiplicity of similar software has led to confusion, lack of
compatibility, and—most unfortunate of all—the inability of UNIX to capture as big a share of
the market as other operating platforms (MS-DOS, Microsoft Windows, Novell NetWare, etc.).

The "shell" category has probably suffered in this way more than any other type of software. As
we said in the Preface and in Chapter 1 , several shells are currently available; the differences
between them are often not all that great.

Therefore we felt it necessary to include information on shells similar to bash . This appendix
summarizes the differences between bash and the following:

The standard Bourne shell, as a kind of "baseline"

The IEEE POSIX 1003.2 shell Standard, to which bash adheres and other shells will adhere
in the future

The Korn shell (ksh), a popular commercial shell provided with many UNIX systems

pdksh , a widely used public domain Korn shell

zsh , a popular alternative to bash and the Korn shell

 < Day Day Up >

 < Day Day Up >

A.1. The Bourne Shell

bash is almost completely backward-compatible with the Bourne shell. The only significant
feature of the latter that bash doesn't support is ^ (caret) as a synonym for the pipe (|) character.
This is an archaic feature that the Bourne shell includes for its own backward compatibility with
earlier shells. No modern UNIX version has any shell code that uses ^ as a pipe.

To describe the differences between the Bourne shell and bash , we'll go through each chapter
of this book and enumerate the features discussed in the chapter that the Bourne shell does not
support. Although some versions of the Bourne shell exist that include a few bash features,[1] we
refer to the standard Bourne shell that has been around for many years.

[1] For example, the Bourne shell distributed with System V supports functions and a few other shell features common
to bash and the Korn shell.

Chapter 1

The cd - form of the cd command; tilde (~) expansion; the jobs command; the help built-
in.

Chapter 2

All. (That is, the Bourne shell doesn't support any of the readline , history, and editing
features discussed in this chapter.)

Chapter 3

Aliases; prompt string customization; set options. The Bourne shell supports only the
following: -e , -k , -n , -t , -u , -v , -x , and - . It doesn't support option names (-o). The
shopt built-in. Environment files aren't supported. The following built-in variables aren't
supported:

All variables beginning with BASH_

All variables beginning with COMP

CDPATH DIRSTACK

FCEDIT FUNCNAME

GROUPS HISTCMD

HISTCONTROL HISTFILE

HISTIGNORE HISTSIZE

HISTFILESIZE HOSTFILE

HOSTNAME HOSTTYPE

IGNOREEOF INPUTRC

LANG LC_ALL

LC_COLLATE LC_MESSAGES

LINENO MACHTYPE

MAILCHECK OLDPWD

OPTARG OPTERR

OPTIND OSTYPE

PIPESTATUS

PS3 PS4

POSIXLY_CORRECT PROMPT_COMMAND

PWD RANDOM

REPLY SECONDS

SHELLOPTS SHLVL

TIMEFORMAT TMOUT

auto_resume histchars

Chapter 4

Functions; the type command; the local command; the ${#parameter} operator; pattern-
matching variable operators (% , %% , # , ##). Extended pattern matching. Command-
substitution syntax is different: use the older ` command ` instead of $(command). The
built-in pushd and popd commands.

Chapter 5

The ! keyword; the select construct isn't supported. The Bourne shell return doesn't exit a
script when it is sourced with . (dot).

Chapter 6

Use the external command getopt instead of getopts , but note that it doesn't really do the
same thing. Integer arithmetic isn't supported: use the external command expr instead of the
$((arithmetic-exp)) syntax. The arithmetic conditional ((arithmetic-exp)) isn't
supported; use the old condition test syntax and the relational operators -lt , -eq , etc.
Array variables are not supported. declare and let aren't supported.

Chapter 7

The command , builtin , and enable built-ins. The -e and -E options to echo are not
supported. The I/O redirectors >| and <> are not supported. None of the options to read
is supported. printf is usually available as an external command.

Chapter 8

Job control—specifically, the jobs , fg , and bg commands. Job number notation with % ,
i.e., the kill and wait commands only accept process IDs. The - option to trap (reset trap
to the default for that signal). trap only accepts signal numbers, not logical names. The
disown built-in.

Chapter 9

The DEBUG, ERR, and RETURN fake signals are not supported. The EXIT fake signal is

supported as signal 0.

Chapter 10

The ulimit command and privileged mode aren't supported. The -S option to umask is not
supported. The Bourne shell's restrictive counterpart, rsh , only inhibits assignment to
PATH .

 < Day Day Up >

 < Day Day Up >

A.2. The IEEE 1003.2 POSIX Shell Standard

There have been many attempts to standardize UNIX. Hardware companies' monolithic attempts
at market domination, fragile industry coalitions, marketing failures, and other such efforts are the
stuff of history—and the stuff of frustration.

Only one standardization effort has not been tied to commercial interests: the Portable Operating
System Interface, known as POSIX. This effort started in 1981 with the /usr/group (now
UniForum) Standards Committee, which produced the /usr/group Standard three years later.
The list of contributors grew to include the Institute of Electrical and Electronic Engineers (IEEE)
and the International Organization for Standardization (ISO).

The first POSIX standard was published in 1988. This one, called IEEE P1003.1, covers low-
level issues at the system-call level. IEEE P1003.2, covering the shell, utility programs, and user
interface issues, was ratified in September 1992 after a six-year effort. In September 2001, a joint
revision of both standards was approved. The new standard, covering all the material in the two
earlier separate documents, became known as IEEE Standard 1003.1-2001. The latest version of
the standard is 1003.1-2004.

The POSIX standards were never meant to be rigid and absolute. The committee members
certainly weren't about to put guns to the heads of operating system implementers and force
them to adhere. Instead, the standards are designed to be flexible enough to allow for both
coexistence of similar available software, so that existing code isn't in danger of obsolescence,
and the addition of new features, so that vendors have the incentive to innovate. In other words,
they are supposed to be the kind of third-party standards that vendors might actually be
interested in following.

As a result, most UNIX vendors currently comply with both standards. bash is no exception; it
is almost 100% POSIX-compliant.

The shell part of the standard describes utilities that must be present on all systems, and others
that are optional, depending upon the nature of the system. One such option is the User
Portability Utilities option, which defines standards for interactive shell use and interactive utilities
like the vi editor. The standard—on the order of 2,000 pages—is available through the IEEE; for
information, contact the IEEE:

IEEE Customer Service

445 Hoes Lane, PO Box 1331

Piscataway, NJ 08855-1331

(800) 678-IEEE (United States and Canada)

(732) 981-0060 (international/local)

(732) 981-9667 (fax)

customer.service@ieee.org

http://www.standards.ieee.org/catalog/ordering.html

The committee members had two motivating factors to weigh when they designed the shell
standard. On the one hand, the design had to accommodate, as much as possible, existing shell
code written under various Bourne-derived shells (the Version 7, System V, BSD, and Korn
shells). These shells are different in several extremely subtle ways, most of which have to do with
the ways certain syntactic elements interact with each other.

It must have been quite difficult and tedious to spell out these differences, let alone to reach
compromises among them. Throw in biases of some committee members towards particular
shells, and you might understand why it took six years to ratify the first 1003.2 standard and
further years to merge the standards.

On the other hand, the shell design had to serve as a standard on which to base future shell
implementations. This implied goals of simplicity, clarity, and precision—objectives that seem
especially elusive in the context of the above problems.

The designers found one way of ameliorating this dilemma: they decided that the standard should
include not only the features included in the shell, but also those explicitly omitted and those
included but with unspecified functionality. The latter category allows some of the existing shells'
innovations to "sneak through" without becoming part of the standard, while listing omitted
features helps programmers determine which features in existing shell scripts won't be portable to
future shells.

The POSIX standard is primarily based on the System V Bourne shell, which is a superset of the
Version 7 shell discussed earlier in this appendix. Therefore you should assume that bash
features that aren't present in the Bourne shell also aren't included in the POSIX standard.

The following bash features are left "unspecified" in the standard, meaning that their syntax is
acceptable but their functionality is not standardized:

The other syntax for functions shown in Chapter 4 is supported; see the following
discussion.

http://www.standards.ieee.org/catalog/ordering.html

The [[...]] syntax for conditional tests. The external test or [...] utility should be used
instead.

The select control structure.

Code blocks ({...}) are supported, but for maximum portability, the curly brackets should
be quoted (for reasons too complicated to go into here).

Signal numbers are only allowed if the numbers for certain key signals (INT, TERM, and a
few others) are the same as on the most important historical versions of UNIX. In general,
shell scripts should use symbolic names for signals.

The POSIX standard supports functions, but the semantics are weaker: it is not possible to
define local variables, and functions can't be exported.

The command lookup order has been changed to allow certain built-in commands to be
overridden by functions. Built-in commands are divided into two sets by their positions in the
command lookup order: some are processed before functions, some after. Specifically, the built-
in commands break , : (do nothing), continue , .(source), eval , exec , exit , export ,
readonly , return , set , shift , trap , and unset take priority over functions.

Finally, because the POSIX standard is meant to promote shell script portability, it avoids
mentioning certain fundamental implementation issues: in particular, there is no requirement that
multitasking be used for background jobs, subshells, etc. This was done to allow portability to
non-multitasking systems like MS-DOS, so that shells on these systems can be POSIX-
compliant.

 < Day Day Up >

 < Day Day Up >

A.3. The Korn Shell

One of the first major alternatives to the "traditional" shells, Bourne and C, was the Korn shell,
publicly released in 1986 as part of AT&T's "Experimental Toolchest." The Korn shell was
written by David Korn at AT&T. The first version was unsupported, but eventually UNIX
System Laboratories (USL) decided to give it support when they released it with their version of
UNIX (System V Release 4) in 1989. The November 1988 Korn shell is the most widely used
version of this shell.

The 1988 release is not fully POSIX-compliant—less so than bash . The latest release (1993) has
brought the Korn shell into better compliance as well as providing more features and streamlining
existing features.

The 1993 Korn shell and bash share many features, but there are some important differences in
the Korn shell:

Functions are more like separate entities than part of the invoking shell (traps and options
are not shared with the invoking shell).

Associative arrays are supported.

Floating-point numbers and expressions are supported.

Coroutines are supported. Two processes can communicate with one another by using the
print and read commands.

The command print replaces echo . print can have a file descriptor specified and can be
used to communicate with coroutines.

Function autoloading is supported. Functions are read into memory only when they are
called.

One-dimensional arrays are supported, although they are limited in size (4,096 elements in
early versions of ksh93 , 64K elements in later releases).

The history list is kept in a file rather than in memory. This allows concurrent instantiations
of the shell to access the same history list, a possible advantage in certain circumstances.

There is no default startup file. If the environment variable ENV is not defined, nothing is
read.

The type command is replaced with the more restrictive whence .

The primary prompt string (PS1) doesn't allow escaped commands.

There is no built-in equivalent to enable .

There is no provision for key bindings and no direct equivalent to readline.

There are no built-in equivalents to pushd , popd , and dirs . They have to be defined as
functions if you want them.

The history substitution mechanism is not supported.

Prompt strings don't allow backslash-escaped special characters.

Many of the bash environment variables don't exist.

In addition, the startup and environment files for Korn are different, consisting of .profile and the
file specified by the ENV variable. The default environment file can be overridden by using the
variable ENV . There is no logout file.

For a more detailed list of the differences between bash and the Korn shell see the FAQ file in
the doc directory of the bash archive.

The Korn shell is a good alternative to bash . Its only major drawback is that it is upgraded only
every few years.

 < Day Day Up >

 < Day Day Up >

A.4. pdksh

pdksh (Public Domain Korn shell) is a version of the Korn shell that is a free alternative to bash .
pdksh is available as source code in various places on the Internet, including the USENET
newsgroup comp.sources.unix , and the pdksh home page
http://www.cs.mun.ca/~michael/pdksh/ of the current maintainer, Michael Rendell.

pdksh was originally written by Eric Gisin, who based it on Charles Forsyth's public domain
Version 7 Bourne shell. It has all Bourne shell features plus some of the POSIX extensions and a
few features of its own.

pdksh 's additional features include user-definable tilde notation, in which you can set up ~ as an
abbreviation for anything, not just usernames.

Otherwise, pdksh lacks a few features of the official Korn version and bash . In particular, it
lacks the following bash features:

The built-in variable PS4

The advanced I/O redirectors >| and <>

The options errexit , noclobber , and privileged

One important advantage that pdksh has over bash is that the executable is only about a third the
size and it runs considerably faster. Weighed against this is that it is less POSIX-compliant, has
had numerous people add code to it (so it hasn't been as strongly controlled as bash), and isn't
as polished a product as bash (for example, the documentation isn't anywhere near as detailed or
complete).

However, pdksh is a worthwhile alternative for those who want something other than bash and
can't obtain the Korn shell.

 < Day Day Up >

http://www.cs.mun.ca/~michael/pdksh/

 < Day Day Up >

A.5. zsh

zsh is a powerful interactive shell and scripting language with many features found in bash , ksh ,
and tcsh , as well as several unique features.

zsh was originally written by Paul Falsted in the early 1990s and is now maintained by various
people.

It is freely available and should compile and run on just about any modern version of Unix. Ports
for other operating systems are also available. The zsh home page is http://www.zsh.org . The
current version is 4.2.1.

Some of the main differences between bash and zsh are:

Extended globbing capabilities

A slightly more advanced textual completion system

A powerful multi-line command line editor

Various visual bells and whistles, such as command prompt color and placement

zsh is a good alternative to bash , especially for "power users."

 < Day Day Up >

http://www.zsh.org

 < Day Day Up >

A.6. Shell Clones and Unix-like Platforms

The proliferation of shells has not stopped at the boundaries of UNIX-dom. Many programmers
who got their initial experience on UNIX systems and subsequently crossed over into the PC
world wished for a nice UNIX-like environment. It's not surprising then that several UNIX shell-
style interfaces to small-computer operating systems have appeared, Bourne shell emulations
among them.

In the past several years, not only shell clones have appeared, but entire Unix "environments."
Two of them use shells that we've already discussed. Two others provide their own shell
reimplementations. Providing lists of major and minor differences is counterproductive. Instead,
this section describes each environment in turn (in alphabetical order), along with contact and
Internet download information.

A.6.1. Cygwin

Cygnus Consulting (now part of Red Hat) created the cygwin environment. First creating
cgywin.dll , a shared library that provides Unix system call emulation, they ported a large number
of GNU utilities to various versions of Microsoft Windows. The greatest functionality comes
under Windows/NT, Windows 2000, and Windows XP, although the environment can and does
work under Windows 95/98/ME, as well.

The cygwin environment uses bash for its shell, GCC for its C compiler, and the rest of the
GNU utilities for its Unix toolset. A sophisticated mount command provides a mapping of the
Windows C:\path notation to Unix filenames.

The cygwin project can be found at http://www.cygwin.com .

A.6.2. DJGPP

The DJGPP suite provides 32-bit GNU tools for the MS-DOS environment. To quote the web
page:

DJGPP is a complete 32-bit C/C++ development system for Intel 80386 (and higher) PCs
running MS-DOS. It includes ports of many GNU development utilities. The development tools
require a 80386 or newer computer to run, as do the programs they produce. In most cases, the
programs it produces can be sold commercially without license or royalties.

http://www.cygwin.com

The name comes from the initials of D.J. Delorie, who ported the GNU C++ compiler, g++ to
MS-DOS, and the text initials of g++, GPP. It grew into essentially a full Unix environment on
top of MS-DOS, with all the GNU tools and bash as its shell. Unlike cygwin or UWIN (see later
in this Appendix), you don't need a version of Windows, just a full 32-bit processor and MS-
DOS. (Although, of course, you can use DJGPP from within a Windows MS-DOS window.)
The web site is http://www.delorie.com/djgpp/ .

A.6.3. MKS Toolkit

Perhaps the most established Unix environment for the PC world is the MKS Toolkit from
Mortice Kern Systems:

MKS Canada - Corporate Headquarters

410 Albert Street

Waterloo, ON N2L 3V3

Canada

+1 519 884-2251

+1 519 884-8861 (fax)

+1 800 265-2797 (sales)

http://www.mks.com

The MKS Toolkit comes in various versions depending upon the development environment and
the number of developers who will be using it. It includes a shell that is POSIX-compliant, along
with just about all the features of the 1988 Korn shell, as well as over 300 utilities, such as awk ,
perl , vi , make , etc. Their library supports over 1,500 Unix APIs, making it extremely complete
and easy to port to the Windows environment. More information is available at
http://www.mkssoftware.com/products/tk/ds_tkdev.asp .

A.6.4. AT&T UWIN

The UWIN package is a project by David Korn and his colleagues to make a Unix environment
available under Microsoft Windows. It is similar in structure to cygwin , discussed earlier. A
shared library, posix.dll , provides emulation of the Unix system call APIs. The system call
emulation is quite complete. An interesting twist is that the Windows registry can be accessed as
a filesystem under /reg . On top of the Unix API emulation, ksh93 and over 200 Unix utilities (or
rather, re-implementations) have been compiled and run. The UWIN environment relies on the

http://www.delorie.com/djgpp/
http://www.mks.com
http://www.mkssoftware.com/products/tk/ds_tkdev.asp

native Microsoft Visual C/C++ compiler, although the GNU development tools are available for
download and use with UWIN.

The project can be found at http://www.research.att.com/sw/tools/uwin/ . The web site describes
what is available, with links for downloading binaries, as well as information on commercial
licensing of the UWIN package. Also included are links to various papers on UWIN, additional
useful software, and links to other, similar packages.

 < Day Day Up >

http://www.research.att.com/sw/tools/uwin/

 < Day Day Up >

Appendix B. Reference Lists
Section B.1. Invocation

Section B.2. Prompt String Customizations

Section B.3. Built-In Commands and Reserved Words

Section B.4. Built-In Shell Variables

Section B.5. Test Operators

Section B.6. set Options

Section B.7. shopt Options

Section B.8. I/O Redirection

Section B.9. emacs Mode Commands

Section B.10. vi Control Mode Commands
 < Day Day Up >

 < Day Day Up >

B.1. Invocation

Table B-1 and Table B-2 list the options you can use when invoking current versions of bash
and the older 1.x version, respectively.[1] The multicharacter options must appear on the
command line before the single-character options. In addition to these, any set option can be
used on the command line; see Table B-7 . Login shells are usually invoked with the options -i
(interactive), -s (read from standard input), and -m (enable job control).

[1] At the time of writing, the old 1.x versions of bash are still used. We strongly recommend that you upgrade to the
latest version. We have included a table of old options (Table B-2) just in case you encounter an old version of the
shell.

Table B-1. Command-line options

Option Meaning

-c string
Commands are read from string , if present. Any arguments after string are
interpreted as positional parameters, starting with $0 .

-D
A list of all double-quoted strings preceded by $ is printed on the standard
ouput. These are the strings that are subject to language translation when the
current locale is not C or POSIX. This also turns on the -n option.

-i
Interactive shell. Ignores signals TERM, INT, and QUIT. With job control in
effect, TTIN, TTOU, and TSTP are also ignored.

-l Makes bash act as if invoked as a login shell.

-o option Takes the same arguments as set -o .

-O, +O shopt-
option

shopt-option is one of the shell options accepted by the shopt builtin. If shopt-
option is present, -O sets the value of that option; +O unsets it. If shopt-option
is not supplied, the names and values of the shell options accepted by shopt
are printed on the standard output. If the invocation option is +O , the output
is displayed in a format that may be reused as input.

-s
Reads commands from the standard input. If an argument is given to bash ,
this flag takes precedence (i.e., the argument won't be treated as a script name
and standard input will be read).

Option Meaning

-r Restricted shell. See Chapter 10 .

-v Prints shell input lines as they're read.

-
Signals the end of options and disables further option processing. Any options
after this are treated as filenames and arguments. — is synonymous with - .

—debugger
Arranges for the debugger profile to be executed before the shell starts. Turns
on extended debugging mode and shell function tracing.[2]

—dump-
strings

Does the same as -D .

—dump-po-
strings

Does the same as -D but the output is in the GNU gettext po (portable object)
file format.

—help Displays a usage message and exits.

—login Makes bash act as if invoked as a login shell. Same as -l .

—noediting Does not use the GNU readline library to read command lines if interactive.

—noprofile
Does not read the startup file /etc/profile or any of the personal initialization
files.

—norc
Does not read the initialization file ~/.bashrc if the shell is interactive. This is on
by default if the shell is invoked as sh .

—posix
Changes the behavior of bash to follow the POSIX guidelines more closely
where the default operation of bash is different.

—quiet Shows no information on shell startup. This is the default.

—rcfile file ,
—init-file file

Executes commands read from file instead of the initialization file ~/.bashrc , if
the shell is interactive.

—verbose Equivalent to -v .

—version Shows the version number of this instance of bash and then exits.

[2] Only available in bash version 3.0 and later.

Table B-2. Old command-line options

-r Restricted shell. See Chapter 10 .

-v Prints shell input lines as they're read.

-
Signals the end of options and disables further option processing. Any options
after this are treated as filenames and arguments. — is synonymous with - .

—debugger
Arranges for the debugger profile to be executed before the shell starts. Turns
on extended debugging mode and shell function tracing.[2]

—dump-
strings

Does the same as -D .

—dump-po-
strings

Does the same as -D but the output is in the GNU gettext po (portable object)
file format.

—help Displays a usage message and exits.

—login Makes bash act as if invoked as a login shell. Same as -l .

—noediting Does not use the GNU readline library to read command lines if interactive.

—noprofile
Does not read the startup file /etc/profile or any of the personal initialization
files.

—norc
Does not read the initialization file ~/.bashrc if the shell is interactive. This is on
by default if the shell is invoked as sh .

—posix
Changes the behavior of bash to follow the POSIX guidelines more closely
where the default operation of bash is different.

—quiet Shows no information on shell startup. This is the default.

—rcfile file ,
—init-file file

Executes commands read from file instead of the initialization file ~/.bashrc , if
the shell is interactive.

—verbose Equivalent to -v .

—version Shows the version number of this instance of bash and then exits.

[2] Only available in bash version 3.0 and later.

Table B-2. Old command-line options

Option Meaning

-c string
Commands are read from string , if present. Any arguments after string
are interpreted as positional parameters, starting with $0 .

-i
Interactive shell. Ignores signals TERM, INT, and QUIT. With job control
in effect, TTIN, TTOU, and TSTP are also ignored.

-s
Reads commands from the standard input. If an argument is given to bash
, this flag takes precedence (i.e., the argument won't be treated as a script
name and standard input will be read).

-r Restricted shell. See Chapter 10 .

-
Signals the end of options and disables further option processing. Any
options after this are treated as filenames and arguments. — is
synonymous with - .

-norc
Does not read the initialization file ~/.bashrc if the shell is interactive. This
is on by default if the shell is invoked as sh .

-noprofile
Does not read the startup file /etc/profile or any of the personal
initialization files.

-rcfile file
Executes commands read from file instead of the initialization file
~/.bashrc , if the shell is interactive.

-version Shows the version number of this instance of bash when starting.

-quiet Shows no information on shell startup. This is the default.

-login Makes bash act as if invoked as a login shell.

-nobraceexpansion Does not perform curly brace expansion.

-nolineediting
Does not use the GNU readline library to read command lines if
interactive.

-posix
Changes the behavior of bash to follow the POSIX guidelines more
closely where the default operation of bash is different.

 < Day Day Up >

 < Day Day Up >

B.2. Prompt String Customizations

Table B-3 shows a summary of the prompt customizations that are available. The customizations
\[and \] are not available in bash versions prior to 1.14. \a, \e, \H, \T, \@, \v, and \V are not
available in versions prior to 2.0. \A, \D, \j, \l, and \r are only available in later versions of bash
2.0 and in bash 3.0.

Table B-3. Prompt string customizations

Command Meaning

\a The ASCII bell character (007)

\A The current time in 24-hour HH:MM format

\d The date in "Weekday Month Day" format

\D {format
}

The format is passed to strftime(3) and the result is inserted into the prompt
string; an empty format results in a locale-specific time representation; the braces
are required

\e The ASCII escape character (033)

\H The hostname

\h The hostname up to the first "."

\j The number of jobs currently managed by the shell

\l The basename of the shell's terminal device name

\n A carriage return and line feed

\r A carriage return

\s The name of the shell

\T The current time in 12-hour HH:MM:SS format

\t The current time in HH:MM:SS format

\@ The current time in 12-hour a.m./p.m. format

Command Meaning

\u The username of the current user

\v The version of bash (e.g., 2.00)

\V The release of bash ; the version and patchlevel (e.g., 3.00.0)

\w The current working directory

\W The basename of the current working directory

\# The command number of the current command

\! The history number of the current command

\$ If the effective UID is 0, print a #, otherwise print a $

\nnn Character code in octal

\\ Print a backslash

\[Begin a sequence of non-printing characters, such as terminal control sequences

\] End a sequence of non-printing characters

 < Day Day Up >

\u The username of the current user

\v The version of bash (e.g., 2.00)

\V The release of bash ; the version and patchlevel (e.g., 3.00.0)

\w The current working directory

\W The basename of the current working directory

\# The command number of the current command

\! The history number of the current command

\$ If the effective UID is 0, print a #, otherwise print a $

\nnn Character code in octal

\\ Print a backslash

\[Begin a sequence of non-printing characters, such as terminal control sequences

\] End a sequence of non-printing characters

 < Day Day Up >

 < Day Day Up >

B.3. Built-In Commands and Reserved Words

Table B-4 shows a summary of all built-in commands and reserved words. The letters in the
Type column of the table have the following meanings: R = reserved word, blank = Builtin.

Table B-4. Commands and reserved words

Command Chapter Type Summary

! 5 R Logical NOT of a command exit status.

: 7 Do nothing (just do expansions of any arguments).

. 4 Read file and execute its contents in current shell.

alias 3 Set up shorthand for command or command line.

bg 8 Put job in background.

bind 2 Bind a key sequence to a readline function or macro.

break 5 Exit from surrounding for , select , while , or until loop.

builtin 5 Execute the specified shell built-in.

case 5 R Reserved word. Multi-way conditional construct.

cd 1 Change working directory.

command 7 Run a command bypassing shell function lookup.

compgen D Generate possible completion matches.

complete D Specify how completion should be performed.

continue Skip to next iteration of for , select , while , or until loop.

declare 6 Declare variables and give them attributes.

dirs 6 Display the list of currently remembered directories.

disown 8 Remove a job from the job table.

do 5 R Part of a for , select , while , or until looping construct.

Command Chapter Type Summary

done 5 R Part of a for , select , while , or until looping construct.

echo 4 Expand and print any arguments.

elif 5 R Part of an if construct.

else 5 R Part of an if construct.

enable 7 Enable and disable built-in shell commands.

esac 5 R Part of a case construct.

eval 7 Run the given arguments through command-line processing.

exec 9 Replace the shell with the given program.

exit 5 Exit from the shell.

export 3 Create environment variables.

fc 2 Fix command (edit history file).

fg 8 Put background job in foreground.

fi 5 R Part of an if construct.

for 5 R Looping construct.

function 4 R Define a function.

getopts 6 Process command-line options.

hash 3 Full pathnames are determined and remembered.

help 1 Display helpful information on built-in commands.

history 1 Display command history.

if 5 R Conditional construct.

in 5 R Part of a case construct.

jobs 1 List any background jobs.

kill 8 Send a signal to a process.

let 6 Arithmetic variable assignment.

local 4 Create a local variable.

logout 1 Exits a login shell.

done 5 R Part of a for , select , while , or until looping construct.

echo 4 Expand and print any arguments.

elif 5 R Part of an if construct.

else 5 R Part of an if construct.

enable 7 Enable and disable built-in shell commands.

esac 5 R Part of a case construct.

eval 7 Run the given arguments through command-line processing.

exec 9 Replace the shell with the given program.

exit 5 Exit from the shell.

export 3 Create environment variables.

fc 2 Fix command (edit history file).

fg 8 Put background job in foreground.

fi 5 R Part of an if construct.

for 5 R Looping construct.

function 4 R Define a function.

getopts 6 Process command-line options.

hash 3 Full pathnames are determined and remembered.

help 1 Display helpful information on built-in commands.

history 1 Display command history.

if 5 R Conditional construct.

in 5 R Part of a case construct.

jobs 1 List any background jobs.

kill 8 Send a signal to a process.

let 6 Arithmetic variable assignment.

local 4 Create a local variable.

logout 1 Exits a login shell.

Command Chapter Type Summary

popd 4 Removes a directory from the directory stack.

pushd 4 Adds a directory to the directory stack.

pwd 1 Print the working directory.

read 7 Read a line from standard input.

readonly 6 Make variables read-only (unassignable).

return 5 Return from the surrounding function or script.

select 5 R Menu-generation construct.

set 3 Set options.

shift 6 Shift command-line arguments.

suspend Suspend execution of a shell.

test 5 Evaluates a conditional expression.

then 5 R Part of an if construct.

time R
Run command pipeline and print execution times. The format of
the output can be controlled with TIMEFORMAT .

times
Print the accumulated user and system times for processes run
from the shell.

trap 8 Set up a signal-catching routine.

type 3 Identify the source of a command.

typeset 6 Declare variables and give them attributes. Same as declare .

ulimit 10 Set/show process resource limits.

umask 10 Set/show file permission mask.

unalias 3 Remove alias definitions.

unset 3 Remove definitions of variables or functions.

until 5 R Looping construct.

wait 8 Wait for background job(s) to finish.

while 5 R Looping construct.

popd 4 Removes a directory from the directory stack.

pushd 4 Adds a directory to the directory stack.

pwd 1 Print the working directory.

read 7 Read a line from standard input.

readonly 6 Make variables read-only (unassignable).

return 5 Return from the surrounding function or script.

select 5 R Menu-generation construct.

set 3 Set options.

shift 6 Shift command-line arguments.

suspend Suspend execution of a shell.

test 5 Evaluates a conditional expression.

then 5 R Part of an if construct.

time R
Run command pipeline and print execution times. The format of
the output can be controlled with TIMEFORMAT .

times
Print the accumulated user and system times for processes run
from the shell.

trap 8 Set up a signal-catching routine.

type 3 Identify the source of a command.

typeset 6 Declare variables and give them attributes. Same as declare .

ulimit 10 Set/show process resource limits.

umask 10 Set/show file permission mask.

unalias 3 Remove alias definitions.

unset 3 Remove definitions of variables or functions.

until 5 R Looping construct.

wait 8 Wait for background job(s) to finish.

while 5 R Looping construct.

 < Day Day Up >

 < Day Day Up >

B.4. Built-In Shell Variables

Table B-5 shows a complete list of environment variables available in bash 3.0. The letters in the
Type column of the table have the following meanings: A = Array, L = colon separated list, R =
read-only, U = unsetting it causes it to lose its special meaning.

Note that the variables beginning BASH_, beginning COMP, DIRSTACK, FUNCNAME,
GLOBIGNORE, GROUPS, HISTIGNORE, HOSTNAME, HISTTIMEFORMAT, LANG,
LC_ALL, LC_COLLATE, LC_MESSAGE, MACHTYPE, PIPESTATUS, SHELLOPTS, and
TIMEFORMAT are not available in versions prior to 2.0. BASH_ENV replaces ENV found in
earlier versions.

Table B-5. Environment variables

Variable Chapter Type Description

* 4 R
The positional parameters given to the
current script or function.

@ 4 R
The positional parameters given to the
current script or function.

4 R
The number of arguments given to the
current script or function.

- R Options given to the shell on invocation.

? 5 R Exit status of the previous command.

 R Last argument to the previous command.

$ 8 R Process ID of the shell process.

! 8 R
Process ID of the last background
command.

0 4 R Name of the shell or shell script.

BASH 3
The full pathname used to invoke this
instance of bash .

Variable Chapter Type Description

BASH_ARGC 9 A

An array of values which are the number of
parameters in each frame of the current bash
execution call stack. The number of
parameters to the current subroutine (shell
function or script executed with . or source)
is at the top of the stack.

BASH_ARGV 9 A

All of the parameters in the current bash
execution call stack. The final parameter of
the last subroutine call is at the top of the
stack; the first parameter of the initial call is
at the bottom.

BASH_COMMAND 9

The command currently being executed or
about to be executed, unless the shell is
executing a command as the result of a trap,
in which case it is the command executing at
the time of the trap.

BASH_EXECUTION_STRING
The command argument to the -c invocation
option.

BASH_ENV 3
The name of a file to run as the environment
file when the shell is invoked.

BASH_LINENO 9 A

An array whose members are the line
numbers in source files corresponding to
each member of @var{FUNCNAME} .
${BASH_LINENO[$i]} is the line number
in the source file where ${FUNCNAME[$i
+ 1]} was called. The corresponding source
file name is ${BASH_SOURCE[$i + 1]} .

BASH_REMATCH AR

An array whose members are assigned by
the =~ binary operator to the [[conditional
command. The element with index 0 is the
portion of the string matching the entire
regular expression. The element with index n
is the portion of the string matching the n th
parenthesized subexpression.

BASH_ARGC 9 A

An array of values which are the number of
parameters in each frame of the current bash
execution call stack. The number of
parameters to the current subroutine (shell
function or script executed with . or source)
is at the top of the stack.

BASH_ARGV 9 A

All of the parameters in the current bash
execution call stack. The final parameter of
the last subroutine call is at the top of the
stack; the first parameter of the initial call is
at the bottom.

BASH_COMMAND 9

The command currently being executed or
about to be executed, unless the shell is
executing a command as the result of a trap,
in which case it is the command executing at
the time of the trap.

BASH_EXECUTION_STRING
The command argument to the -c invocation
option.

BASH_ENV 3
The name of a file to run as the environment
file when the shell is invoked.

BASH_LINENO 9 A

An array whose members are the line
numbers in source files corresponding to
each member of @var{FUNCNAME} .
${BASH_LINENO[$i]} is the line number
in the source file where ${FUNCNAME[$i
+ 1]} was called. The corresponding source
file name is ${BASH_SOURCE[$i + 1]} .

BASH_REMATCH AR

An array whose members are assigned by
the =~ binary operator to the [[conditional
command. The element with index 0 is the
portion of the string matching the entire
regular expression. The element with index n
is the portion of the string matching the n th
parenthesized subexpression.

Variable Chapter Type Description

BASH_SOURCE 9 A
An array containing the source filenames
corresponding to the elements in the
FUNCNAME array variable.

BASH_SUBSHELL
Incremented by one each time a subshell or
subshell environment is spawned. The initial
value is 0.

BASH_VERSION 3
The version number of this instance of bash
.

BASH_VERSINFO 3,6 AR
Version information for this instance of bash
. Each element of the array holds parts of the
version number.

CDPATH 3 L
A list of directories for the cd command to
search.

COMP_CWORD

An index into ${COMP_WORDS} of the
word containing the current cursor position.
This variable is available only in shell
functions invoked by the programmable
completion facilities.

COMP_LINE

The current command line. This variable is
available only in shell functions and external
commands invoked by the programmable
completion facilities.

COMP_POINT

The index of the current cursor position
relative to the beginning of the current
command. If the current cursor position is at
the end of the current command, the value of
this variable is equal to ${#COMP_LINE} .
This variable is available only in shell
functions and external commands invoked
by the programmable completion facilities.

COMP_WORDBREAKS U

The set of characters that the Readline
library treats as word separators when
performing word completion. If
COMP_WORDBREAKS is unset, it loses
its special properties, even if it is
subsequently reset.

BASH_SOURCE 9 A
An array containing the source filenames
corresponding to the elements in the
FUNCNAME array variable.

BASH_SUBSHELL
Incremented by one each time a subshell or
subshell environment is spawned. The initial
value is 0.

BASH_VERSION 3
The version number of this instance of bash
.

BASH_VERSINFO 3,6 AR
Version information for this instance of bash
. Each element of the array holds parts of the
version number.

CDPATH 3 L
A list of directories for the cd command to
search.

COMP_CWORD

An index into ${COMP_WORDS} of the
word containing the current cursor position.
This variable is available only in shell
functions invoked by the programmable
completion facilities.

COMP_LINE

The current command line. This variable is
available only in shell functions and external
commands invoked by the programmable
completion facilities.

COMP_POINT

The index of the current cursor position
relative to the beginning of the current
command. If the current cursor position is at
the end of the current command, the value of
this variable is equal to ${#COMP_LINE} .
This variable is available only in shell
functions and external commands invoked
by the programmable completion facilities.

COMP_WORDBREAKS U

The set of characters that the Readline
library treats as word separators when
performing word completion. If
COMP_WORDBREAKS is unset, it loses
its special properties, even if it is
subsequently reset.

Variable Chapter Type Description

COMP_WORDS A

An array of the individual words in the
current command line. This variable is
available only in shell functions invoked by
the programmable completion facilities.

COMPREPLY A
The possible completions generated by a
shell function invoked by the programmable
completion facility.

DIRSTACK 4,6 ARU The current contents of the directory stack.

EUID R The effective user ID of the current user.

FUNCNAME 9 ARU

An array containing the names of all shell
functions currently in the execution call
stack. The element with index 0 is the name
of any currently-executing shell function. The
bottom-most element is "main". This variable
exists only when a shell function is
executing.

FCEDIT 2 The default editor for the fc command.

FIGNORE L
A list of names to ignore when doing
filename completion.

GLOBIGNORE L
A list of patterns defining filenames to ignore
during pathname expansion.

GROUPS AR
An array containing a list of groups of which
the current user is a member.

IFS 7

The Internal Field Separator: a list of
characters that act as word separators.
Normally set to SPACE, TAB, and
NEWLINE.

HISTCMD 3 U The history number of the current command.

HISTCONTROL 3

A list of patterns, separated by colons (:),
which can have the following values.
ignorespace : lines beginning with a space
are not entered into the history list.
ignoredups : lines matching the last history
line are not entered. erasedups : all previous

COMP_WORDS A

An array of the individual words in the
current command line. This variable is
available only in shell functions invoked by
the programmable completion facilities.

COMPREPLY A
The possible completions generated by a
shell function invoked by the programmable
completion facility.

DIRSTACK 4,6 ARU The current contents of the directory stack.

EUID R The effective user ID of the current user.

FUNCNAME 9 ARU

An array containing the names of all shell
functions currently in the execution call
stack. The element with index 0 is the name
of any currently-executing shell function. The
bottom-most element is "main". This variable
exists only when a shell function is
executing.

FCEDIT 2 The default editor for the fc command.

FIGNORE L
A list of names to ignore when doing
filename completion.

GLOBIGNORE L
A list of patterns defining filenames to ignore
during pathname expansion.

GROUPS AR
An array containing a list of groups of which
the current user is a member.

IFS 7

The Internal Field Separator: a list of
characters that act as word separators.
Normally set to SPACE, TAB, and
NEWLINE.

HISTCMD 3 U The history number of the current command.

HISTCONTROL 3

A list of patterns, separated by colons (:),
which can have the following values.
ignorespace : lines beginning with a space
are not entered into the history list.
ignoredups : lines matching the last history
line are not entered. erasedups : all previous

Variable Chapter Type Description line are not entered. erasedups : all previous
lines matching the current line to are removed
from the history list before the line is saved.
ignoreboth : enables both ignorespace and
ignoredups .

HISTFILE 2 The name of the command history file.

HISTIGNORE 3
A list of patterns to decide what should be
retained in the history list.

HISTSIZE 2
The number of lines kept in the command
history.

HISTFILESIZE 3
The maximum number of lines kept in the
history file.

HISTTIMEFORMAT 3

If set and not null, its value is used as a
format string for strftime (3) to print the time
stamp associated with each history entry
displayed by the history builtin. If this
variable is set, time stamps are written to the
history file so they may be preserved across
shell sessions.

HOME 3 The home (login) directory.

HOSTFILE 3 The file to be used for hostname completion.

HOSTNAME The name of the current host.

HOSTTYPE 3 The type of machine bash is running on.

IGNOREEOF 3
The number of EOF characters received
before exiting an interactive shell.

INPUTRC 2 The readline startup file.

LANG
Used to determine the locale category for
any category not specifically selected with a
variable starting with LC_ .

LC_ALL
Overrides the value of LANG and any other
LC_ variable specifying a locale category.

LC_COLLATE
Determines the collation order used when
sorting the results of pathname expansion.

line are not entered. erasedups : all previous
lines matching the current line to are removed
from the history list before the line is saved.
ignoreboth : enables both ignorespace and
ignoredups .

HISTFILE 2 The name of the command history file.

HISTIGNORE 3
A list of patterns to decide what should be
retained in the history list.

HISTSIZE 2
The number of lines kept in the command
history.

HISTFILESIZE 3
The maximum number of lines kept in the
history file.

HISTTIMEFORMAT 3

If set and not null, its value is used as a
format string for strftime (3) to print the time
stamp associated with each history entry
displayed by the history builtin. If this
variable is set, time stamps are written to the
history file so they may be preserved across
shell sessions.

HOME 3 The home (login) directory.

HOSTFILE 3 The file to be used for hostname completion.

HOSTNAME The name of the current host.

HOSTTYPE 3 The type of machine bash is running on.

IGNOREEOF 3
The number of EOF characters received
before exiting an interactive shell.

INPUTRC 2 The readline startup file.

LANG
Used to determine the locale category for
any category not specifically selected with a
variable starting with LC_ .

LC_ALL
Overrides the value of LANG and any other
LC_ variable specifying a locale category.

LC_COLLATE
Determines the collation order used when
sorting the results of pathname expansion.

Variable Chapter Type Description

LC_CTYPE
Determines the interpretation of characters
and the behavior of character classes within
pathname expansion and pattern matching.

LC_MESSAGES
This variable determines the locale used to
translate double-quoted strings preceded by
a $.

LC_NUMERIC
Determines the locale category used for
number formatting.

LINENO 9 U
The number of the line that just ran in a
script or function.

MACHTYPE
A string describing the system on which
bash is executing.

MAIL 3 The name of the file to check for new mail.

MAILCHECK 3
How often (in seconds) to check for new
mail.

MAILPATH 3 L
A list of file names to check for new mail, if
MAIL is not set.

OLDPWD 3 The previous working directory.

OPTARG 6
The value of the last option argument
processed by getopts .

OPTERR 6
If set to 1, display error messages from
getopts .

OPTIND 6
The number of the first argument after
options.

OSTYPE
The operating system on which bash is
executing.

PATH 3 L The search path for commands.

PIPESTATUS 6 A
An array variable containing a list of exit
status values from the processes in the most
recently executed foreground pipeline.

If in the environment when bash starts, the
shell enters posix mode before reading the

LC_CTYPE
Determines the interpretation of characters
and the behavior of character classes within
pathname expansion and pattern matching.

LC_MESSAGES
This variable determines the locale used to
translate double-quoted strings preceded by
a $.

LC_NUMERIC
Determines the locale category used for
number formatting.

LINENO 9 U
The number of the line that just ran in a
script or function.

MACHTYPE
A string describing the system on which
bash is executing.

MAIL 3 The name of the file to check for new mail.

MAILCHECK 3
How often (in seconds) to check for new
mail.

MAILPATH 3 L
A list of file names to check for new mail, if
MAIL is not set.

OLDPWD 3 The previous working directory.

OPTARG 6
The value of the last option argument
processed by getopts .

OPTERR 6
If set to 1, display error messages from
getopts .

OPTIND 6
The number of the first argument after
options.

OSTYPE
The operating system on which bash is
executing.

PATH 3 L The search path for commands.

PIPESTATUS 6 A
An array variable containing a list of exit
status values from the processes in the most
recently executed foreground pipeline.

If in the environment when bash starts, the
shell enters posix mode before reading the

Variable Chapter Type Description

POSIXLY_CORRECT

shell enters posix mode before reading the
startup files, as if the —posix invocation
option had been supplied. If it is set while
the shell is running, bash enables posix mode
, as if the command set -o posix had been
executed.

PROMPT_COMMAND
The value is executed as a command before
the primary prompt is issued.

PS1 3 The primary command prompt string.

PS2 3 The prompt string for line continuations.

PS3 5 The prompt string for the select command.

PS4 9 The prompt string for the xtrace option.

PPID 8 R The process ID of the parent process.

PWD 3 The current working directory.

RANDOM 9 U
A random number between 0 and 32767
(215-1).

REPLY 5, 7
The user's response to the select command;
result of the read command if no variable
names are given.

SECONDS 3 U
The number of seconds since the shell was
invoked.

SHELL 3 The full pathname of the shell.

SHELLOPTS LR A list of enabled shell options.

SHLVL
Incremented by one each time an instance of
bash is invoked.

TIMEFORMAT
Specifies the format for the output from
using the time reserved word on a command
pipeline.

TMOUT 10
If set to a positive integer, the number of
seconds after which the shell automatically
terminates if no input is received.

UID R The user ID of the current user.

POSIXLY_CORRECT

shell enters posix mode before reading the
startup files, as if the —posix invocation
option had been supplied. If it is set while
the shell is running, bash enables posix mode
, as if the command set -o posix had been
executed.

PROMPT_COMMAND
The value is executed as a command before
the primary prompt is issued.

PS1 3 The primary command prompt string.

PS2 3 The prompt string for line continuations.

PS3 5 The prompt string for the select command.

PS4 9 The prompt string for the xtrace option.

PPID 8 R The process ID of the parent process.

PWD 3 The current working directory.

RANDOM 9 U
A random number between 0 and 32767
(215-1).

REPLY 5, 7
The user's response to the select command;
result of the read command if no variable
names are given.

SECONDS 3 U
The number of seconds since the shell was
invoked.

SHELL 3 The full pathname of the shell.

SHELLOPTS LR A list of enabled shell options.

SHLVL
Incremented by one each time an instance of
bash is invoked.

TIMEFORMAT
Specifies the format for the output from
using the time reserved word on a command
pipeline.

TMOUT 10
If set to a positive integer, the number of
seconds after which the shell automatically
terminates if no input is received.

UID R The user ID of the current user.

Variable Chapter Type Description

auto_resume Controls how job control works.

histchars
Specifies what to use as the history control
characters. Normally set to the string ̀ !^#'.

 < Day Day Up >

auto_resume Controls how job control works.

histchars
Specifies what to use as the history control
characters. Normally set to the string ̀ !^#'.

 < Day Day Up >

 < Day Day Up >

B.5. Test Operators

Table B-6 lists the operators that are used with test and the [...] and [[...]] constructs. They can
be logically combined with -a ("and") and -o ("or") and grouped with escaped parenthesis (\(...
\)). The string comparisons < and > and the [[...]] construct are not available in versions of
bash prior to 2.0.

Table B-6. Test operators

Operator True if...

-a file file exists

-b file file exists and is a block device file

-c file file exists and is a character device file

-d file file exists and is a directory

-e file file exists; same as -a

-f file file exists and is a regular file

-g file file exists and has its setgid bit set

-G file file exists and is owned by the effective group ID

-h file file exists and is a symbolic link

-k file file exists and has its sticky bit set

-L file file exists and is a symbolic link

-n string string is non-null

-N file file was modified since it was last read

-O file file exists and is owned by the effective user ID

-p file file exists and is a pipe or named pipe (FIFO file)

-r file file exists and is readable

Operator True if...

-s file file exists and is not empty

-S file file exists and is a socket

-t N File descriptor N points to a terminal

-u file file exists and has its setuid bit set

-w file file exists and is writeable

-x file file exists and is executable, or file is a directory that can be searched

-z string string has a length of zero

fileA -nt fileB fileA modification time is newer than fileB

fileA -ot fileB fileA modification time is older than fileB

fileA -ef fileB fileA and fileB point to the same file

stringA = stringB stringA equals stringB (POSIX version)

stringA == stringB stringA equals stringB

stringA != stringB stringA does not match stringB

stringA =~ regexp stringA matches the extended regular expression regexp[3]

stringA < stringB stringA sorts before stringB lexicographically

stringA > stringB stringA sorts after stringB lexicographically

exprA -eq exprB Arithmetic expressions exprA and exprB are equal

exprA -ne exprB Arithmetic expressions exprA and exprB are not equal

exprA -lt exprB exprA is less than exprB

exprA -gt exprB exprA is greater than exprB

exprA -le exprB exprA is less than or equal to exprB

exprA -ge exprB exprA is greater than or equal to exprB

exprA -a exprB exprA is true and exprB is true

exprA -o exprB exprA is true or exprB is true

[3] Only available in bash version 3.0 and later. May only be used inside [[...]] .

-s file file exists and is not empty

-S file file exists and is a socket

-t N File descriptor N points to a terminal

-u file file exists and has its setuid bit set

-w file file exists and is writeable

-x file file exists and is executable, or file is a directory that can be searched

-z string string has a length of zero

fileA -nt fileB fileA modification time is newer than fileB

fileA -ot fileB fileA modification time is older than fileB

fileA -ef fileB fileA and fileB point to the same file

stringA = stringB stringA equals stringB (POSIX version)

stringA == stringB stringA equals stringB

stringA != stringB stringA does not match stringB

stringA =~ regexp stringA matches the extended regular expression regexp[3]

stringA < stringB stringA sorts before stringB lexicographically

stringA > stringB stringA sorts after stringB lexicographically

exprA -eq exprB Arithmetic expressions exprA and exprB are equal

exprA -ne exprB Arithmetic expressions exprA and exprB are not equal

exprA -lt exprB exprA is less than exprB

exprA -gt exprB exprA is greater than exprB

exprA -le exprB exprA is less than or equal to exprB

exprA -ge exprB exprA is greater than or equal to exprB

exprA -a exprB exprA is true and exprB is true

exprA -o exprB exprA is true or exprB is true

[3] Only available in bash version 3.0 and later. May only be used inside [[...]] .

 < Day Day Up >

 < Day Day Up >

B.6. set Options

Table B-7 lists the options that can be turned on with the set - arg command. All are initially off
except where noted. Full Name s, where listed, are arguments to set that can be used with set -
o . The Full Name s braceexpand , histexpand , history , keyword , and onecmd are not
available in versions of bash prior to 2.0. Also, in those versions, hashing is switched with -d .

Table B-7. Options to set

Option Full name Meaning

-a allexport Export all subsequently defined or modified variables.

-B braceexpand The shell performs brace expansion. This is on by default.

-b notify Report the status of terminating background jobs immediately.

-C noclobber Don't allow redirection to overwrite existing files.

-E errtrace
Any trap on ERR is inherited by shell functions, command
substitutions, and commands executed in a subshell environment.

-e errexit

Exit the shell when a simple command exits with non-zero status. A
simple command is a command not part of a while , until , or if ; or
part of a && or || list; or a command whose return value is inverted by !
.

 emacs Use emacs -style command-line editing.

-f noglob Disable pathname expansion.

-H histexpand Enable ! style history substitution. On by default in an interactive shell.

 history Enable command history. On by default in interactive shells.

-h hashall Disable the hashing of commands.

 ignoreeof Disallow CTRL-D to exit the shell.

-k keyword Place keyword arguments in the environment for a command.

-m monitor Enable job control (on by default in interactive shells).

Option Full name Meaning

-n noexec
Read commands and check syntax but do not execute them. Ignored for
interactive shells.

-P physical
Do not follow symbolic links on commands that change the current
directory. Use the physical directory.

-p privileged Script is running in suid mode.

 pipefail
The return value of a pipeline is the value of the last (rightmost)
command to exit with a non-zero status, or zero if all commands in the
pipeline exit successfully. This option is disabled by default.

 posix
Change the default behavior to that of POSIX 1003.2 where it differs
from the standard.

-T functrace
Any trap on DEBUG is inherited by shell functions, command
substitutions, and commands executed in a subshell environment.

-t onecmd Exit after reading and executing one command.

-u nounset Treat undefined variables as errors, not as null.

-v verbose Print shell input lines before running them.

 vi Use vi -style command-line editing.

-x xtrace Print commands (after expansions) before running them.

-
Signals the end of options. All remaining arguments are assigned to the
positional parameters. -x and -v are turned off. If there are no remaining
arguments to set , the positional arguments remain unchanged.

—
With no arguments following, unset the positional parameters.
Otherwise, the positional parameters are set to the following arguments
(even if they begin with -).

 < Day Day Up >

-n noexec
Read commands and check syntax but do not execute them. Ignored for
interactive shells.

-P physical
Do not follow symbolic links on commands that change the current
directory. Use the physical directory.

-p privileged Script is running in suid mode.

 pipefail
The return value of a pipeline is the value of the last (rightmost)
command to exit with a non-zero status, or zero if all commands in the
pipeline exit successfully. This option is disabled by default.

 posix
Change the default behavior to that of POSIX 1003.2 where it differs
from the standard.

-T functrace
Any trap on DEBUG is inherited by shell functions, command
substitutions, and commands executed in a subshell environment.

-t onecmd Exit after reading and executing one command.

-u nounset Treat undefined variables as errors, not as null.

-v verbose Print shell input lines before running them.

 vi Use vi -style command-line editing.

-x xtrace Print commands (after expansions) before running them.

-
Signals the end of options. All remaining arguments are assigned to the
positional parameters. -x and -v are turned off. If there are no remaining
arguments to set , the positional arguments remain unchanged.

—
With no arguments following, unset the positional parameters.
Otherwise, the positional parameters are set to the following arguments
(even if they begin with -).

 < Day Day Up >

 < Day Day Up >

B.7. shopt Options

The shopt options are set with shopt -s arg and unset with shopt -u arg . See Table B-8 for
options to shopt . Versions of bash prior to 2.0 had environment variables to perform some of
these settings. Setting them equated to shopt -s .

The variables (and corresponding shopt options) were: allow_null_glob_expansion (nullglob
), cdable_vars (cdable_vars), command_oriented_history (cmdhist), glob_dot_filenames
(dotglob), no_exit_on_failed_exec (execfail). These variables no longer exist.

The options extdebug , failglob , force_fignore , and gnu_errfmt are not available in versions
of bash prior to 3.0.

Table B-8. Options to shopt

Option Meaning if set

cdable_vars
An argument to cd that is not a directory is assumed to be the
name of a variable whose value is the directory to change to.

cdspell

Minor errors in the spelling of a directory supplied to the cd
command will be corrected if there is a suitable match. This
correction includes missing letters, incorrect letters, and letter
transposition. It works for interactive shells only.

checkhash
Commands found in the hash table are checked for existence
before being executed and non-existence forces a PATH search.

checkwinsize
Checks the window size after each command and, if it has
changed, updates the variables LINES and COLUMNS
accordingly.

cmdhist
Attempt to save all lines of a multiline command in a single
history entry.

dotglob Filenames beginning with a . are included in pathname expansion.

execfail
A non-interactive shell will not exit if it cannot execute the
argument to an exec . Interactive shells do not exit if exec fails.

Option Meaning if set

expand_aliases Aliases are expanded.

extdebug

Behavior intended for use by debuggers is enabled. This
includes: the -F option of declare displays the source filename
and line number corresponding to each function name supplied
as an argument; if the command run by the DEBUG trap returns
a non-zero value, the next command is skipped and not executed;
and if the command run by the DEBUG trap returns a value of 2,
and the shell is executing in a subroutine, a call to return is
simulated.

extglob Extended pattern matching features are enabled.

failglob
Patterns which fail to match filenames during pathname expansion
result in an expansion error.

force_fignore
The suffixes specified by the FIGNORE shell variable cause
words to be ignored when performing word completion even if
the ignored words are the only possible completions.

gnu_errfmt
Shell error messages are written in the standard GNU error
message format.

histappend
The history list is appended to the file named by the value of the
variable HISTFILE when the shell exits, rather than overwriting
the file.

histreedit
If readline is being used, the opportunity is given for re-editing a
failed history substitution.

histverify

If readline is being used, the results of history substitution are
not immediately passed to the shell parser. Instead, the resulting
line is loaded into the readline editing buffer, allowing further
modification.

hostcomplete
If readline is being used, an attempt will be made to perform
hostname completion when a word beginning with @ is being
completed.

huponexit
bash will send SIGHUP to all jobs when an interactive login shell
exits.

interactive_comments
Allows a word beginning with # and all subsequent characters on
the line to be ignored in an interactive shell.

expand_aliases Aliases are expanded.

extdebug

Behavior intended for use by debuggers is enabled. This
includes: the -F option of declare displays the source filename
and line number corresponding to each function name supplied
as an argument; if the command run by the DEBUG trap returns
a non-zero value, the next command is skipped and not executed;
and if the command run by the DEBUG trap returns a value of 2,
and the shell is executing in a subroutine, a call to return is
simulated.

extglob Extended pattern matching features are enabled.

failglob
Patterns which fail to match filenames during pathname expansion
result in an expansion error.

force_fignore
The suffixes specified by the FIGNORE shell variable cause
words to be ignored when performing word completion even if
the ignored words are the only possible completions.

gnu_errfmt
Shell error messages are written in the standard GNU error
message format.

histappend
The history list is appended to the file named by the value of the
variable HISTFILE when the shell exits, rather than overwriting
the file.

histreedit
If readline is being used, the opportunity is given for re-editing a
failed history substitution.

histverify

If readline is being used, the results of history substitution are
not immediately passed to the shell parser. Instead, the resulting
line is loaded into the readline editing buffer, allowing further
modification.

hostcomplete
If readline is being used, an attempt will be made to perform
hostname completion when a word beginning with @ is being
completed.

huponexit
bash will send SIGHUP to all jobs when an interactive login shell
exits.

interactive_comments
Allows a word beginning with # and all subsequent characters on
the line to be ignored in an interactive shell.

Option Meaning if set

lithist
If the cmdhist option is enabled, multiline commands are saved
to the history with embedded newlines rather than using
semicolon separators where possible.

login_shell If bash is started as a login shell. This is a read-only value.

mailwarn
If the file being checked for mail has been accessed since the last
time it was checked, the message "The mail in mailfile has been
read" is displayed.

no_empty_cmd_completion
If readline is being used, no attempt will be made to search the
PATH for possible completions when completion is attempted
on an empty line.

nocaseglob
bash matches filenames in a case-insensitive fashion when
performing pathname expansion.

nullglob
Allows patterns which match no files to expand to null strings
rather than to themselves.

progcomp Programmable completion facilities are enabled. Default is on.

promptvars
Prompt strings undergo variable and parameter expansion after
being expanded.

restricted_shell
Set if the shell is started in restricted mode. The value cannot be
changed.

shift_verbose
The shift built-in prints an error if it has shifted past the last
positional parameter.

sourcepath
The source built-in uses the value of PATH to find the directory
containing the file supplied as an argument.

xpg_echo echo expands backslash-escape sequences by default.

 < Day Day Up >

lithist
If the cmdhist option is enabled, multiline commands are saved
to the history with embedded newlines rather than using
semicolon separators where possible.

login_shell If bash is started as a login shell. This is a read-only value.

mailwarn
If the file being checked for mail has been accessed since the last
time it was checked, the message "The mail in mailfile has been
read" is displayed.

no_empty_cmd_completion
If readline is being used, no attempt will be made to search the
PATH for possible completions when completion is attempted
on an empty line.

nocaseglob
bash matches filenames in a case-insensitive fashion when
performing pathname expansion.

nullglob
Allows patterns which match no files to expand to null strings
rather than to themselves.

progcomp Programmable completion facilities are enabled. Default is on.

promptvars
Prompt strings undergo variable and parameter expansion after
being expanded.

restricted_shell
Set if the shell is started in restricted mode. The value cannot be
changed.

shift_verbose
The shift built-in prints an error if it has shifted past the last
positional parameter.

sourcepath
The source built-in uses the value of PATH to find the directory
containing the file supplied as an argument.

xpg_echo echo expands backslash-escape sequences by default.

 < Day Day Up >

 < Day Day Up >

B.8. I/O Redirection

Table B-9 shows a complete list of I/O redirectors. (This table is also included earlier as Table 7-
1 .) Note that there are two formats for specifying standard output and error redirection: &>file
and >&file . The second of these, and the one used throughout this book, is the preferred way.

Table B-9. I/O redirectors

Redirector Function

cmd1 |
cmd2

Pipe; take standard output of cmd1 as standard input to cmd2

> file Direct standard output to file

< file Take standard input from file

>> file Direct standard output to file ; append to file if it already exists

>| file Force standard output to file even if noclobber is set

n >| file Force output to file from file descriptor n even if noclobber set

<> file Use file as both standard input and standard output

n <> file Use file as both input and output for file descriptor n

<< label Here-document

n > file Direct file descriptor n to file

n < file Take file descriptor n from file

>> file Direct file descriptor n to file ; append to file if it already exists

n >& Duplicate standard output to file descriptor n

n <& Duplicate standard input from file descriptor n

n >&m File descriptor n is made to be a copy of the output file descriptor

n <&m File descriptor n is made to be a copy of the input file descriptor

Redirector Function

&> file Directs standard output and standard error to file

<&- Close the standard input

>&- Close the standard output

n >&- Close the output from file descriptor n

n <&- Close the input from file descriptor n

n>&word

If n is not specified, the standard output (file descriptor 1) is used; if the digits in
word do not specify a file descriptor open for output, a redirection error occurs;
as a special case, if n is omitted, and word does not expand to one or more digits,
the standard output and standard error are redirected as described previously

n<&word

If word expands to one or more digits, the file descriptor denoted by n is made to
be a copy of that file descriptor; if the digits in word do not specify a file
descriptor open for input, a redirection error occurs; if word evaluates to -, file
descriptor n is closed; if n is not specified, the standard input (file descriptor 0) is
used

n>&digit-
Moves the file descriptor digit to file descriptor n , or the standard output (file
descriptor 1) if n is not specified

n<&digit-
Moves the file descriptor digit to file descriptor n , or the standard input (file
descriptor 0) if n is not specified; digit is closed after being duplicated to n

 < Day Day Up >

&> file Directs standard output and standard error to file

<&- Close the standard input

>&- Close the standard output

n >&- Close the output from file descriptor n

n <&- Close the input from file descriptor n

n>&word

If n is not specified, the standard output (file descriptor 1) is used; if the digits in
word do not specify a file descriptor open for output, a redirection error occurs;
as a special case, if n is omitted, and word does not expand to one or more digits,
the standard output and standard error are redirected as described previously

n<&word

If word expands to one or more digits, the file descriptor denoted by n is made to
be a copy of that file descriptor; if the digits in word do not specify a file
descriptor open for input, a redirection error occurs; if word evaluates to -, file
descriptor n is closed; if n is not specified, the standard input (file descriptor 0) is
used

n>&digit-
Moves the file descriptor digit to file descriptor n , or the standard output (file
descriptor 1) if n is not specified

n<&digit-
Moves the file descriptor digit to file descriptor n , or the standard input (file
descriptor 0) if n is not specified; digit is closed after being duplicated to n

 < Day Day Up >

 < Day Day Up >

B.9. emacs Mode Commands

Table B-10 shows a complete list of emacs editing mode commands.

Table B-10. emacs mode commands

Command Meaning

CTRL-A Move to beginning of line

CTRL-B Move backward one character

CTRL-D Delete one character forward

CTRL-E Move to end of line

CTRL-F Move forward one character

CTRL-G Abort the current editing command and ring the terminal bell

CTRL-J Same as RETURN

CTRL-K Delete (kill) forward to end of line

CTRL-L Clear screen and redisplay the line

CTRL-M Same as RETURN

CTRL-N Next line in command history

CTRL-O Same as RETURN, then display next line in history file

CTRL-P Previous line in command history

CTRL-R Search backward

CTRL-S Search forward

CTRL-T Transpose two characters

CTRL-U Kill backward from point to the beginning of line

CTRL-V Make the next character typed verbatim

Command Meaning

CTRL-V TAB Insert a TAB

CTRL-W Kill the word behind the cursor, using whitespace as the boundary

CTRL-X / List the possible filename completions of the current word

CTRL-X ~ List the possible username completions of the current word

CTRL-X $ List the possible shell variable completions of the current word

CTRL-X @ List the possible hostname completions of the current word

CTRL-X ! List the possible command name completions of the current word

CTRL-X (Begin saving characters into the current keyboard macro

CTRL-X) Stop saving characters into the current keyboard macro

CTRL-X e Re-execute the last keyboard macro defined

CTRL-X CTRL-
R

Read in the contents of the readline initialization file

CTRL-X CTRL-
V

Display version information on this instance of bash

CTRL-Y Retrieve (yank) last item killed

DEL Delete one character backward

CTRL-[Same as ESC (most keyboards)

ESC-B Move one word backward

ESC-C Change word after point to all capital letters

ESC-D Delete one word forward

ESC-F Move one word forward

ESC-L Change word after point to all lowercase letters

ESC-N Non-incremental forward search

ESC-P Non-incremental reverse search

ESC-R Undo all the changes made to this line

ESC-T Transpose two words

ESC-U Change word after point to all uppercase letters

CTRL-V TAB Insert a TAB

CTRL-W Kill the word behind the cursor, using whitespace as the boundary

CTRL-X / List the possible filename completions of the current word

CTRL-X ~ List the possible username completions of the current word

CTRL-X $ List the possible shell variable completions of the current word

CTRL-X @ List the possible hostname completions of the current word

CTRL-X ! List the possible command name completions of the current word

CTRL-X (Begin saving characters into the current keyboard macro

CTRL-X) Stop saving characters into the current keyboard macro

CTRL-X e Re-execute the last keyboard macro defined

CTRL-X CTRL-
R

Read in the contents of the readline initialization file

CTRL-X CTRL-
V

Display version information on this instance of bash

CTRL-Y Retrieve (yank) last item killed

DEL Delete one character backward

CTRL-[Same as ESC (most keyboards)

ESC-B Move one word backward

ESC-C Change word after point to all capital letters

ESC-D Delete one word forward

ESC-F Move one word forward

ESC-L Change word after point to all lowercase letters

ESC-N Non-incremental forward search

ESC-P Non-incremental reverse search

ESC-R Undo all the changes made to this line

ESC-T Transpose two words

ESC-U Change word after point to all uppercase letters

Command Meaning

ESC-CTRL-E Perform shell alias, history, and word expansion on the line

ESC-CTRL-H Delete one word backward

ESC-CTRL-Y
Insert the first argument to the previous command (usually the second
word) at point

ESC-DEL Delete one word backward

ESC-^ Perform history expansion on the line

ESC-< Move to first line of history file

ESC-> Move to last line of history file

ESC-. Insert last word in previous command line after point

ESC-_ Same as above

TAB Attempt filename completion on current word

ESC-? List the possible completions of the text before point

ESC-/ Attempt filename completion on current word

ESC-~ Attempt username completion on current word

ESC-$ Attempt variable completion on current word

ESC-@ Attempt hostname completion on current word

ESC-! Attempt command name completion on current word

ESC-TAB Attempt completion from text in the command history

ESC-~ Attempt tilde expansion on the current word

ESC-\ Delete all the spaces and TABs around point

ESC-* Insert all of the completions that would be generated by ESC-= before point

ESC-= List the possible completions before point

ESC-{
Attempt filename completion and return the list to the shell enclosed within
braces

 < Day Day Up >

ESC-CTRL-E Perform shell alias, history, and word expansion on the line

ESC-CTRL-H Delete one word backward

ESC-CTRL-Y
Insert the first argument to the previous command (usually the second
word) at point

ESC-DEL Delete one word backward

ESC-^ Perform history expansion on the line

ESC-< Move to first line of history file

ESC-> Move to last line of history file

ESC-. Insert last word in previous command line after point

ESC-_ Same as above

TAB Attempt filename completion on current word

ESC-? List the possible completions of the text before point

ESC-/ Attempt filename completion on current word

ESC-~ Attempt username completion on current word

ESC-$ Attempt variable completion on current word

ESC-@ Attempt hostname completion on current word

ESC-! Attempt command name completion on current word

ESC-TAB Attempt completion from text in the command history

ESC-~ Attempt tilde expansion on the current word

ESC-\ Delete all the spaces and TABs around point

ESC-* Insert all of the completions that would be generated by ESC-= before point

ESC-= List the possible completions before point

ESC-{
Attempt filename completion and return the list to the shell enclosed within
braces

 < Day Day Up >

 < Day Day Up >

B.10. vi Control Mode Commands

Table B-11 shows a complete list of all vi control mode commands.

Table B-11. vi control mode commands

Command Meaning

h Move left one character

l Move right one character

w Move right one word

b Move left one word

W Move to beginning of next non-blank word

B Move to beginning of preceding non-blank word

e Move to end of current word

E Move to end of current non-blank word

0 Move to beginning of line

. Repeat the last a insertion.

^ Move to first non-blank character in line

$ Move to end of line

i Insert text before current character

a Insert text after current character

I Insert text at beginning of line

A Insert text at end of line

R Overwrite existing text

dh Delete one character backward

Command Meaning

dl Delete one character forward

db Delete one word backward

dw Delete one word forward

dB Delete one non-blank word backward

dW Delete one non-blank word forward

d$ Delete to end of line

d0 Delete to beginning of line

D Equivalent to d$ (delete to end of line)

dd Equivalent to 0d$ (delete entire line)

C Equivalent to c$ (delete to end of line, enter input mode)

cc Equivalent to 0c$ (delete entire line, enter input mode)

x Equivalent to dl (delete character forwards)

X Equivalent to dh (delete character backwards)

k or - Move backward one line

j or + Move forward one line

G Move to line given by repeat count

/ string Search forward for string

? string Search backward for string

n Repeat search forward

N Repeat search backward

f x Move right to next occurrence of x

F x Move left to previous occurrence of x

t x Move right to next occurrence of x , then back one space

T x Move left to previous occurrence of x , then forward one space

; Redo last character finding command

, Redo last character finding command in opposite direction

dl Delete one character forward

db Delete one word backward

dw Delete one word forward

dB Delete one non-blank word backward

dW Delete one non-blank word forward

d$ Delete to end of line

d0 Delete to beginning of line

D Equivalent to d$ (delete to end of line)

dd Equivalent to 0d$ (delete entire line)

C Equivalent to c$ (delete to end of line, enter input mode)

cc Equivalent to 0c$ (delete entire line, enter input mode)

x Equivalent to dl (delete character forwards)

X Equivalent to dh (delete character backwards)

k or - Move backward one line

j or + Move forward one line

G Move to line given by repeat count

/ string Search forward for string

? string Search backward for string

n Repeat search forward

N Repeat search backward

f x Move right to next occurrence of x

F x Move left to previous occurrence of x

t x Move right to next occurrence of x , then back one space

T x Move left to previous occurrence of x , then forward one space

; Redo last character finding command

, Redo last character finding command in opposite direction

Command Meaning

\ Do filename completion

* Do wildcard expansion (onto command line)

\= Do wildcard expansion (as printed list)

~ Invert (twiddle) case of current character(s)

_ Append last word of previous command, enter input mode

CTRL-L Start a new line and redraw the current line on it

Prepend # (comment character) to the line and send it to history

 < Day Day Up >

\ Do filename completion

* Do wildcard expansion (onto command line)

\= Do wildcard expansion (as printed list)

~ Invert (twiddle) case of current character(s)

_ Append last word of previous command, enter input mode

CTRL-L Start a new line and redraw the current line on it

Prepend # (comment character) to the line and send it to history

 < Day Day Up >

 < Day Day Up >

Appendix C. Loadable Built-Ins
bash 2.0 introduced a new feature that increased the flexibility of the shell: dynamically loadable
built-ins. On systems that support dynamic loading, you can write your own built-ins in C,
compile them into shared objects, and load them at any time from within the shell with the enable
built-in (see Chapter 7 for details on all of the enable options).

This appendix will discuss briefly how to go about writing a built-in and loading it in bash . The
discussion assumes that you have experience with writing, compiling, and linking C programs.

The bash archive contains a number of pre-written built-ins in the directory examples/loadables/
. You can build them by uncommenting the lines in the file Makefile that are relevent to your
system, and typing make . We'll take one of these built-ins, tty , and use it as a "case study" for
built-ins in general.

tty will mimic the standard UNIX command tty . It will print the name of the terminal that is
connected to standard input. The built-in will, like the command, return true if the device is a
TTY and false if it isn't. In addition, it will take an option, -s , which specifies that it should work
silently, i.e., print nothing and just return a result.

The C code for a built-in can be divided into three distinct sections: the code that implements the
functionality of the built-in, a help text message definition, and a structure describing the built-in
so that bash can access it.

The description structure is quite straightforward and takes the form:

struct builtin structname = {

 "builtin_name",

 function_name,

 BUILTIN_ENABLED,

 help_array,

 "usage",

 0

};

builtin_name is the name of the built-in as it appears in bash . The next field, function-name , is
the name of the C function that implements the built-in. We'll look at this in a moment.
BUILTIN_ENABLED is the initial state of the built-in, whether it is enabled or not. This field
should always be set to BUILTIN_ENABLED. help_array is an array of strings which are
printed when help is used on the built-in. usage is the shorter form of help; the command and its
options. The last field in the structure should be set to 0.

In our example we'll call the built-in tty , the C function tty_builtin , and the help array tty_doc .
The usage string will be tty [-s] . The resulting structure looks like this:

struct builtin tty_struct = {

 "tty",

 tty_builtin,

 BUILTIN_ENABLED,

 tty_doc,

 "tty [-s]",

 0

};

The next section is the code that does the work. It looks like this:

tty_builtin (list)

 WORD_LIST *list;

{

 int opt, sflag;

 char *t;

 reset_internal_getopt ();

 sflag = 0;

 while ((opt = internal_getopt (list, "s")) != -1)

 {

 switch (opt)

 {

 case 's':

 sflag = 1;

 break;

 default:

 builtin_usage ();

 return (EX_USAGE);

 }

 }

 list = loptend;

 t = ttyname (0);

 if (sflag == 0)

 puts (t ? t : "not a tty");

 return (t ? EXECUTION_SUCCESS : EXECUTION_FAILURE);

}

Built-in functions are always given a pointer to a list of type WORD_LIST. If the built-in doesn't
actually take any options, you must call no_options(list) and check its return value before any
further processing. If the return value is non-zero, your function should immediately return with
the value EX_USAGE.

You must always use internal_getopt rather than the standard C library getopt to process the
built-in options. Also, you must reset the option processing first by calling reset_internal_getopt
.

Option processing is performed in the standard way, except if the options are incorrect, in which
case you should return EX_USAGE. Any arguments left after option processing are pointed to
by loptend . Once the function is finished, it should return the value EXECUTION_SUCCESS
or EXECUTION_FAILURE.

In the case of our tty built-in, we then just call the standard C library routine ttyname , and if the
-s option wasn't given, print out the name of the tty (or "not a tty" if the device wasn't). The
function then returns success or failure, depending upon the result from the call to ttyname .

The last major section is the help definition. This is simply an array of strings, the last element of

the array being NULL. Each string is printed to standard output when help is run on the built-in.
You should, therefore, keep the strings to 76 characters or less (an 80-character standard display
minus a 4-character margin). In the case of tty , our help text looks like this:

char *tty_doc[] = {

 "tty writes the name of the terminal that is opened for standard",

 "input to standard output. If the `-s' option is supplied, nothing",

 "is written; the exit status determines whether or not the standard",

 "input is connected to a tty.",

 (char *)NULL

};

The last things to add to our code are the necessary C header files. These are stdio.h and the
bash header files config.h , builtins.h , shell.h , and bashgetopt.h .

Here is the C program in its entirety:

#include "config.h"

#include <stdio.h>

#include "builtins.h"

#include "shell.h"

#include "bashgetopt.h"

extern char *ttyname ();

tty_builtin (list)

 WORD_LIST *list;

{

 int opt, sflag;

 char *t;

 reset_internal_getopt ();

 sflag = 0;

 while ((opt = internal_getopt (list, "s")) != -1)

 {

 switch (opt)

 {

 case 's':

 sflag = 1;

 break;

 default:

 builtin_usage ();

 return (EX_USAGE);

 }

 }

 list = loptend;

 t = ttyname (0);

 if (sflag == 0)

 puts (t ? t : "not a tty");

 return (t ? EXECUTION_SUCCESS : EXECUTION_FAILURE);

}

char *tty_doc[] = {

 "tty writes the name of the terminal that is opened for standard",

 "input to standard output. If the `-s' option is supplied, nothing",

 "is written; the exit status determines whether or not the standard",

 "input is connected to a tty.",

 (char *)NULL

};

struct builtin tty_struct = {

 "tty",

 tty_builtin,

 BUILTIN_ENABLED,

 tty_doc,

 "tty [-s]",

 0

};

We now need to compile and link this as a dynamic shared object. Unfortunately, different
systems have different ways to specify how to compile dynamic shared objects. Table C-1 lists
some common systems and the commands needed to compile and link tty.c . Replace archive
with the path of the top level of the bash archive.

Table C-1. Shared object compilation

System Commands

SunOS 4 cc -pic -Iarchive -Iarchive /builtins -Iarchive /lib -c tty.c

 ld -assert pure-text -o tty tty.o

SunOS 5 cc -K pic -Iarchive -Iarchive /builtins -Iarchive /lib -c tty.c

 cc -dy -z text -G -i -h tty -o tty tty.o

SVR4, SVR4.2, Irix cc -K PIC -Iarchive -Iarchive /builtins -Iarchive /lib -c tty.c

 ld -dy -z text -G -h tty -o tty tty.o

AIX cc -K -Iarchive -Iarchive /builtins -Iarchive /lib -c tty.c

 ld -bdynamic -bnoentry -bexpall -G -o tty tty.o

Linux cc -fPIC -Iarchive -Iarchive /builtins -Iarchive /lib -c tty.c

 ld -shared -o tty tty.o

System Commands

NetBSD, FreeBSD cc -fpic -Iarchive -Iarchive /builtins -Iarchive /lib -c tty.c

 ld -x -Bshareable -o tty tty.o

After you have compiled and linked the program, you should have a shared object called tty . To
load this into bash , just type enable -f path/ tty tty , where path is the full pathname of the
shared object. You can remove a loaded built-in at any time with the -d option, e.g., enable -d
tty .

You can put as many built-ins as you like into one shared object; all you need are the three main
sections that we saw above for each built-in in the same C file. It is best, however, to keep the
number of built-ins per shared object small. You will also probably find it best to keep similar
built-ins, or built-ins that work together (e.g., pushd , popd , dirs), in the same shared object.

bash loads a shared object as a whole, so if you ask it to load one built-in from a shared object
that has twenty built-ins, it will load all 20 (but only one will be enabled). For this reason, keep
the number of built-ins small to save loading memory with unnecessary things, and group similar
built-ins so that if the user enables one of them, all of them will be loaded and ready in memory
for enabling.

 < Day Day Up >

NetBSD, FreeBSD cc -fpic -Iarchive -Iarchive /builtins -Iarchive /lib -c tty.c

 ld -x -Bshareable -o tty tty.o

After you have compiled and linked the program, you should have a shared object called tty . To
load this into bash , just type enable -f path/ tty tty , where path is the full pathname of the
shared object. You can remove a loaded built-in at any time with the -d option, e.g., enable -d
tty .

You can put as many built-ins as you like into one shared object; all you need are the three main
sections that we saw above for each built-in in the same C file. It is best, however, to keep the
number of built-ins per shared object small. You will also probably find it best to keep similar
built-ins, or built-ins that work together (e.g., pushd , popd , dirs), in the same shared object.

bash loads a shared object as a whole, so if you ask it to load one built-in from a shared object
that has twenty built-ins, it will load all 20 (but only one will be enabled). For this reason, keep
the number of built-ins small to save loading memory with unnecessary things, and group similar
built-ins so that if the user enables one of them, all of them will be loaded and ready in memory
for enabling.

 < Day Day Up >

 < Day Day Up >

Appendix D. Programmable Completion
Programmable completion is a feature that was introduced in bash 2.0.[1] It extends the built-in
textual completion that is discussed in Chapter 2 by providing hooks into the completion
mechanism. This means that it is possible to write virtually any form of completion desired. For
instance, if you were typing the man command, wouldn't it be nice to be able to hit TAB and
have the manual sections listed for you. Programmable completion allows you to do this and
much more.

[1] Technically it was added in bash Version 2.04.

This Appendix will only look at the basics of programmable completion. While completion is a
feature you are very likely to use in everyday shell operation, you are unlikely to need to delve
into the inner depths and actually write your own completion code. Fortunately the feature has
been around for some time and there are already several libraries of completion commands
developed by other people. We'll just outline the basic commands and procedures needed to use
the completion mechanism should you ever need to work on it yourself.

In order to be able to do textual completion in a particular way you first have to tell the shell how
to do it when you press the TAB key. This is done via the complete command.

The main argument of complete is a name that can be the name of a command or anything else
that you want textual completion to work with. As an example we will look at the gunzip
command that allows compressed archives of various types to be uncompressed. Normally, if
you were to type:[2]

[2] For the rest of this Appendix we will denote typing a TAB character as [TAB].

$ gunzip [TAB][TAB]

you would get a list of filenames from which to complete. This list will include all kinds of things
that are unsuitable for the gunzip command. What we really would like is the subset of those files
that are suitable for the command to work on. We can set this up by using complete :[3]

[3] In order for @(...) to work you will need extended pattern matching switched on (shopt -s extglob).

complete -A file -X '!*.@(Z|gz|tgz)' gunzip

Here we are telling completion mechanism that when the gunzip command is typed in we want it

to do something special. The -A flag is an action and takes a variety of arguments. In this case
we provide file as the argument, which asks the mechanism to provide a list of files as possible
completions. The next step is to cut this down by selecting only the files that we know will work
with gunzip . We've done this with the -X option, which takes as its argument a filter pattern.
When applied to the completion list the filter removes anything matching the pattern, i.e., the
result is everything that doesn't match the pattern. gunzip can uncompress a number of file types
including those with the extensions .Z , .gz , and .tgz . We want to match all filenames with
extensions that have one of these three patterns. We then have to negate this with a ! (remember,
the filter removes the patterns that match).

We can actually try this out first and see what completions would be returned without having to
install the completion with complete . We can do this via the compgen command:

compgen -A file -X '!*.@(Z|gz|tgz)'

This produces a list of completion strings (assuming you have some files in the current directory
with these extensions). compgen is useful for trying out filters to see what completion strings are
produced. It is also needed when more complex completion is required. We'll see an example of
this later in the Appendix.

Once we install the complete command above, either by sourcing a script with it in or executing
it on the command line, we can use the augmented completion mechanism with the gunzip
command:

$gunzip [TAB][TAB]

archive.tgz archive1.tgz file.Z

$gunzip

You can probably see that there are other things we could do. What about providing a list of
possible arguments for specific options to a command? For instance, the kill command can
takes a process ID but can optionally take a signal name preceded by a dash (-) or a signal name
following the option -n . We should be able to complete with PIDs but, if there is a dash or a -n ,
with signal names.

This is slightly more complex than the one-line example above. Here we will need some code to
distinguish what has already been typed in. We'll also need to get the PIDs and the signal names.
We'll put the code in a function and call the function via the completion mechanism. Here's the
code to call our function, which we'll name _kill :

complete -F _kill kill

The -F option to complete tells it to call the function named _kill when it is performing textual
completion for the kill command. The next step is to code the function:

_kill()

{

 local cur

 local sign

 COMPREPLY=()

 cur=${COMP_WORDS[COMP_CWORD]}

 if (($COMP_CWORD == 2)) && [[${COMP_WORDS[1]} == -n]]; then

 # return list of available signals

 _signals

 elif (($COMP_CWORD == 1)) && [["$cur" == -*]]; then

 # return list of available signals

 sign="-"

 _signals

 else

 # return list of available PIDs

 COMPREPLY=($(compgen -W '$(command ps axo pid | sed 1d)' $cur))

 fi

}

The code is fairly standard apart from the use of some special environment variables and a call to
a function called _signals , which we'll come to shortly.

The variable COMPREPLY is used to hold the result that is returned back to the completion
mechanism. It is an array that holds a set of completion strings. Initially this is set to an empty
array.

The local variable cur is a convenience variable to make the code more readable because the

value is used in several places. Its value is derived from an element in the array
COMP_WORDS. This array holds the individual words on the current command line.
COMP_CWORD is an index into the array; it gives the word containing the current cursor
position. The value of cur is the word currently containing the cursor.

The first if statement tests for the condition where the kill command is followed by the -n
option. If the first word was -n and we are on the second word, then we need to provide a list of
signal names for the completion mechanism.

The second if statement is similar, except this time we are looking to complete on the current
word, which starts with a dash and is followed by anything else. The body of this if again calls
_signals but this time it sets the sign variable to a dash. The reason for this will become obvious
when we look at the _signals function.

The remaining part in the else block returns a list of process IDs. This uses the compgen
command to help in creating the array of completion strings. First it runs the ps command to
obtain a list of PIDs and then pipes the result through sed to remove the first line (which is the
heading "PID").[4] This is then given as an argument to the -W option of compgen , which takes
a word list. compgen then returns all completion strings that match the value of the variable cur
and the resulting array is assigned to COMPREPLY.

[4] On AIX and Solaris you will have to use the command ps -efo pid .

compgen is important here because we can't just return the complete list of PIDs provided by ps
. The user may have already typed part of a PID and then attempted completion. As the partial
PID will be in the variable cur , compgen restricts the results to those that match or partially
match that value. For example if cur had the value 5 then compgen would return only values
beginning with a "5", such as 5, 59 or 562.

The last piece of the puzzle is the _signals function:

_signals()

{

 local i

 COMPREPLY=($(compgen -A signal SIG${cur#-}))

 for ((i=0; i < ${#COMPREPLY[@]}; i++)); do

 COMPREPLY[i]=$sign${COMPREPLY[i]#SIG}

 done

}

While we can get a list of signal names by using complete -A signal , the names are
unfortunately not in a form that is very usable and so we can't use this to directly generate the
array of names. The names generated begin with the letters "SIG" while the names needed by the
kill command don't. The _signal function should assign to COMPREPLY an array of signal
names, optionally preceded by a dash.

First we generate the list of signal names with compgen . Each name starts with the letters
"SIG". In order to get complete to provide the correct subset if the user has begun to type a
name, we add "SIG" to the beginning of the value in cur . We also take the opportunity to
remove any preceding dash that the value has so it will match.

We then loop on the array removing the letters "SIG" and adding a dash if needed (the value of
the variable sign) to each entry.

Both complete and compgen have many other options and actions; far more than we can cover
in a few simple exercises. If you are interested in taking programmable completion further, we
recommend looking in the bash manual and downloading some of the many examples that are
available on the Internet or in the bash archive under bash-3.0\examples\complete .

As you can see, textual completion can get quite involved and creating the necessary code can
be time-consuming. Fortunately there are already completion libraries available for bash . One of
these is the bash Completion Project, which can be found at
http://freshmeat.net/projects/bashcompletion/ .

 < Day Day Up >

http://freshmeat.net/projects/bashcompletion/

 < Day Day Up >

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Learning the bash Shell, Third Edition, is a silver bass, one of the
400-500 s\ pecies of sea bass. The silver bass, also known as the white perch, is found in
freshwater bays and river mouths along the Atlantic coast of North America from Nova Scotia to
South Carolina, and is most abundant in the Chesapeake region. Silver bass live in large schools
and feed on small fishes and crustaceans. Although many bass never stray far from one place
their whole lives, silver bass swim upstream to spawn, often becoming landlocked in the
process. Like most bass, the s\ ilver bass is attracted to bright, shiny objects, and can be drawn
quite close to swimmers and divers in this way.

Colleen Gorman was the production editor and copyeditor for Learning the bash Shell, Third
Edition . MaryAnne Weeks Mayo, Lydia Onofrei, and Emily Quill provided quality control. Peter
Ryan provided production assistance. Angela Howard wrote the index.

Edie Freedman designed the cover of this book. The cover image is a 19th-century engraving
from the Dover Pictorial Archive. Karen Montgomery produced the cover layout with Adobe
InDesign CS using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Judy Hoer to
FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil
Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the
heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were created by Chris Reilley and updated
for the third edition by Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia
FreeHand MX and Adobe Photoshop CS. This colophon was written by Clairemarie Fisher
O'Leary.

The online edition of this book was created by the Digital Books production group (John
Chodacki, Ken Douglass, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup
tools written and maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff
Liggett.

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U

] [V] [W] [X] [Y] [Z]

! (exclamation point)

 != (not equal to operator)

 != (string comparison operator)

 conditional not operator

 debugger command

 environment variable

 event designators

 extended pattern-matching operator

 logical not operator

 negation operator

 negation wildcard

 process ID shell variable

" (double quotes)

 arithmetic expressions in

 around shell variables

 around special characters

 backslash preceding

 command line processing of

(hash mark)

 ## (pattern-matching operator)

 array element length operator

 comments

 environment variable 2nd

 length operator

 pattern-matching operator 2nd

 prepend comment, vi

 printf flag

$ (dollar sign)

 $$ (shell variable)

 $((...)) (arithmetic expressions)

 $((...)) (arithmetic test)

 environment variable

 variable substitution 2nd 3rd

 vi command 2nd

 word designator

$0 positional parameter

$1 positional parameter

$2 positional parameter

$3 positional parameter

$else directive, readline

$endif directive, readline

$if directive, readline

% (percent sign)

 %% (job most recently put in background)

 %% (pattern-matching operator) 2nd

 %+ (job most recently put in background)

 %- (job second-most recently put in background)

 %? (job containing string)

 job numbers

 modulus operator

 pattern-matching operator

 printf format specifiers 2nd

 word designator

& (ampersand)

 && (logical and operator) 2nd 3rd

 &\\> (output and error redirection)

 bitwise and operator

 running commands in background 2nd

' (single quotes)

 around special characters

 command line processing of

 enclosing RETURN

 in alias definition

 when to use

() (parentheses)

 ((...)) (arithmetic test) 2nd 3rd

 command substitution

 grouping conditional operators

 in arithmetic expressions

 nested subshells

* (asterisk)

 ** (exponentiation operator)

 environment variable 2nd 3rd

 extended pattern-matching operator

 multiplication operator

 pattern-matching operator

 special array index

 textual completion, vi

 wildcard

 word designator

+ (plus sign)

 ++ (increment operator)

 addition operator

 extended pattern-matching operator

 printf flag

 vi command 2nd

 xtrace output

, (comma)

 sequential evaluation operator

 vi command

- (hyphen)

 -- (decrement operator)

 append word, vi

 environment variable

 preceding options

 printf flag

 subtraction operator

 vi command 2nd

-a (file attribute operator)

-a (logical operator)

-d (file attribute operator)

-e (file attribute operator)

-eq (equal to test operator)

-eq (integer comparison operator)

-f (file attribute operator)

-G (file attribute operator)

-ge (greater than or equal to test operator)

-ge (integer comparison operator)

-gt (greater than test operator)

-gt (integer comparison operator)

-le (integer comparison operator)

-le (less than or equal to test operator)

-lt (integer comparison operator)

-lt (less than test operator)

-N (file attribute operator)

-n (string comparison operator)

-ne (integer comparison operator)

-ne (not equal to test operator)

-nt (file attribute operator)

-O (file attribute operator)

-o (logical operator)

-ot (file attribute operator)

-r (file attribute operator)

-s (file attribute operator)

-w (file attribute operator)

-x (file attribute operator)

-z (string comparison operator)

. (dot)

 .. (parent directory)

 command

 current directory

 preceding filenames 2nd

 synonym to source command

 vi command

.bash_profile file

 environment file and

 environment variables in

 restricted 2nd

.bashrc file

 ignoring

 restricted

.inputrc file

.profile file

/ (slash)

 // (pattern-matching and replacement operator)

 division operator

 in restricted shell

 pattern-matching and replacement operator

 vi command

0 (zero) environment variable

0 (zero) printf flag

0 (zero) word designator

: (colon)

 :+ (string operator) 2nd

 :- (string operator)

 := (string operator) 2nd

 :? (string operator) 2nd

 command

 string operator

; (semicolon)

 statement separator

 vi command

< (less than sign)

 <& (input redirection)

 <&- (input redirection)

 << (bit-shift left operator)

 << (here-document) 2nd

 <= (less than or equal to operator)

 <\\> (input/output redirection)

 input redirection

 less than operator

 redirecting input

 string comparison operator

= (equal sign)

 == (equal to operator)

 string comparison operator

 textual completion, vi

> (greater than sign)

 output redirection

? (question mark)

 debugger command

 environment variable 2nd

 extended pattern-matching operator

 vi command

 wildcard

@ (at sign)

 environment variable 2nd 3rd

 extended pattern-matching operator

 hostname completion

 special array index

[] (brackets)

 [...] (condition test) 2nd 3rd

 [[...]] (condition test) 2nd 3rd

 wildcard

\\> (greater than sign)

 \\>& (output redirection) 2nd

 \\>&- (output redirection)

 \\>= (greater than or equal to operator)

 \\>\\> (bit-shift right operator)

 \\>\\> (output redirection)

 \\>| (output redirection) 2nd

 greater than operator

 output redirection

 string comparison operator

\\\\ (backslash)

 backslash-escaping

 continuation character 2nd

 escape character, echo

 escape character, prompt strings

 textual completion, vi

^ (caret)

 bitwise exclusive or operator

 event designator

 pipe character 2nd

 representing CTRL key

 vi command

 word designator

{} (braces)

 brace expansion wildcards

 command blocks in

 in shell variable syntax

| (vertical bar)

 bitwise or operator

 extended pattern matching

 in case statement

 pipe 2nd 3rd

 vi command

 || (logical or operator) 2nd 3rd

~ (tilde)

 bitwise not operator

 home directory

 in pathnames 2nd

 invert case, vi

 username completion

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

a command, vi

A command, vi

absolute pathname [See full pathname]

album example 2nd

alias command 2nd

aliases 2nd

 Bourne shell not supporting

 examples in archive for

 global (not possible)

 order of precedence for

 processing on command line

 recursive

 wildcards in

ampersand (&)

 && (logical and operator) 2nd 3rd

 &\\> (output and error redirection)

 bitwise and operator

 running commands in background 2nd

angle brackets [See greater than sign less than sign]

archive file for bash 2nd

arguments

 for command-line options

 in for statement list 2nd

 positional parameters for

arithmetic (integer) variables

 assignment

 declaring 2nd

arithmetic conditionals

arithmetic expressions

 associativity in

 evaluation of

 precedence in

 syntax for

arithmetic for statement 2nd

arithmetic operators 2nd

arrays

 assigning to themselves (bug)

 assigning values to

 associative, Korn

 declaring

 declaring variables as 2nd

 deleting

 deleting elements of

 element length operator for

 one-dimensional 2nd

 reading values into

 special indices for

arrow keys, emacs 2nd

assignment of arithmetic variables

associative arrays, Korn

asterisk (*)

 ** (exponentiation operator)

 environment variable 2nd 3rd

 extended pattern-matching operator

 multiplication operator

 pattern-matching operator

 special array index

 textual completion, vi

 wildcard

 word designator

at sign (@)

 environment variable 2nd 3rd

 extended pattern-matching operator

 hostname completion

 special array index

AT&T UWIN package

auto_resume environment variable

awk command

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

b command, vi

B command, vi

b command, vi

B command, vi

background I/O

background jobs

 bringing to foreground

 job number for

 priority of

 process ID for

 saving standard output and error to one file 2nd

 sending foreground jobs to

 sending job to background

 starting 2nd

 waiting until finished

backslash (\\\\)

 backslash-escaping

 continuation character 2nd

 escape character, echo

 escape character, prompt strings

 textual completion, vi

BACKSPACE command

bash

 archive file for

 bugs in, reporting

 building

 configuring

 customizing environment for

 documentation for 2nd

 environment

 examples in archive for 2nd

 features of 2nd

 global customization of

 help for

 history of

 installing

 installing as login shell 2nd

 installing as standard shell

 interactive use of

 location of, determining

 newsgroups for

 obtaining 2nd

 online help for

 options 2nd

 pathname of

 POSIX mode 2nd

 privileged mode

 programming featuers of

 restricted shell 2nd 3rd

 security

 shell variables 2nd

 support for

 testing 2nd

 troubleshooting installation of

 unpacking archive file

 version of, determining 2nd

 versions of 2nd

 when not to use

bash command

 - option 2nd

 - option (old)

 --debugger option 2nd

 debugging

 --dump-po-strings option 2nd

 --dump-strings option 2nd

 --help option 2nd 3rd

 --init-file option 2nd

 --login option 2nd

 --noediting option 2nd

 --noprofile option 2nd

 --norc option 2nd

 --posix option 2nd 3rd

 --quiet option 2nd

 --rcfile option 2nd

 --verbose option 2nd

 --version option 2nd 3rd

 -c option 2nd

 -c option (old)

 -D option 2nd

 -i option 2nd

 -i option (old)

 -l option 2nd

 -login option (old)

 -n option 2nd

 -nobraceexpansion option (old)

 -nolineediting option (old)

 -noprofile option (old)

 -norc option (old)

 -o option 2nd

 -O, +O options 2nd

 -posix option (old)

 -quiet option (old)

 -r option 2nd 3rd

 -r option (old)

 -rcfile option (old)

 -s option 2nd

 -s option (old)

 -T option

 -v option 2nd 3rd 4th

 -version option (old)

 -x option 2nd

 options for, list of 2nd

bash Completion Project

Bash Debugger Project

BASH environment variable 2nd 3rd

BASH_ARGC environment variable 2nd

BASH_ARGV environment variable 2nd

BASH_COMMAND environment variable

BASH_ENV environment variable 2nd 3rd

BASH_EXECUTION_STRING environment variable

.bash_history file

BASH_LINENO environment variable 2nd

.bash_login file

.bash_logout file

.bash_profile file 2nd

BASH_REMATCH environment variable

BASH_SOURCE environment variable 2nd

BASH_SUBSHELL environment variable

BASH_VERSINFO environment variable 2nd

BASH_VERSION environment variable 2nd 3rd

bashbug script

bashdb debugger 2nd

 break conditions

 breakpoints feature 2nd 3rd

 commands for

 driver script for

 execution tracing

 exercises for

 functions file for

 functions for

 limitations of

 preamble file for

 sample session of

 source code for

 stepping feature 2nd 3rd

.bashrc file 2nd

bc command, debugger 2nd

bell-style variable, readline

bg command 2nd 3rd

biff command

bind command 2nd

books

 Learning the UNIX Operating System (Peek, Todino, Strang)

 Practical UNIX and Internet Security (Spafford, Garfinkel)

Bourne Again shell [See bash]

Bourne shell [See sh]

Bourne, Steven 2nd

bp command, debugger 2nd

brace expansion 2nd 3rd

braces ({})

 brace expansion wildcards

 command blocks in

 in shell variable syntax

brackets ([])

 [...] (condition test) 2nd 3rd

 [[...]] (condition test) 2nd 3rd

 wildcard

break command

break conditions

break statement

breakpoints 2nd 3rd

BSD-derived systems, ps command on

bugs, reporting

built-in functions

 in bash archive

 loadable

builtin command 2nd 3rd 4th 5th

 -p option

 Bourne shell not supporting

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

C command, vi

C shell [See csh]

caret (^)

 bitwise exclusive or operator

 event designator

 pipe character 2nd

 representing CTRL key

 vi command

 word designator

case sensitivity

case statement

cat command 2nd

cb command, debugger 2nd

cc command, vi

cd command 2nd 3rd

 - option 2nd

 Bourne shell support

 CDPATH variable and

 in restricted shell

 variables in

cdable_vars shell option 2nd

CDPATH environment variable 2nd

character-based user interfaces

checkhash shell option

chmod command

chsh command 2nd

circumflex [See caret]

cmdhist shell option

cmp command

code examples [See examples]

colon (:)

 :+ (string operator) 2nd

 :- (string operator)

 := (string operator) 2nd

 :? (string operator) 2nd

 command

 string operator

COLUMNS environment variable 2nd

comma (,)

 sequential evaluation operator

 vi command

command aliases

command blocks 2nd

command command 2nd 3rd 4th

 - option

 -p option

 -v option

 -V option

 Bourne shell not supporting

command history 2nd

 appending to

 displaying

 emacs editing mode

 expansion commands

 fc command 2nd

 multiple-line commands in

 size of

 time stamp for

 vi editing mode

command line processing

 builtin command affecting

 command command affecting

 enable command affecting

 quoting affecting

 repeating

command substitution 2nd

command-line editing

 command history with fc command

 emacs editing mode

 history expansion

 readline editing interface

 selecting editing mode

 shell variables for

 vi editing mode

 which editing mode to use

command-line options

 for bash, list of

 for bash, setting

 guidelines for

 handling with positional parameters

 with arguments

commands

 . (dot)

 : (colon)

 alias command 2nd

 arguments for

 arguments for, in for statement list 2nd

 arguments for, positional parameters for

 awk command

 bash command

 bg command 2nd 3rd

 biff command

 bind command 2nd

 break command

 built-in, list of

 builtin command 2nd 3rd 4th 5th 6th

 cat command 2nd

 cd command 2nd 3rd 4th 5th 6th 7th

 chmod command

 chsh command 2nd

 cmp command

 command command 2nd 3rd 4th

 compgen command 2nd

 complete command 2nd

 continue command

 continuing beyond a single line 2nd

 countargs command

 cut command 2nd

 date command

 dc command

 declare command 2nd 3rd 4th 5th

 determining source of

 diff command 2nd

 dirs command 2nd 3rd 4th

 disown command 2nd

 du command 2nd

 echo command 2nd 3rd 4th 5th 6th 7th 8th

 editing on command line [See command-line editing]

 enable command 2nd 3rd 4th 5th 6th

 eval command 2nd

 exec command 2nd 3rd

 exit command 2nd 3rd

 exit status of

 export command 2nd 3rd

 fc command 2nd 3rd 4th

 fg command 2nd 3rd

 file command

 find command

 for bashdb debugger

 getopts command 2nd

 grep command 2nd

 hash command 2nd

 hashing

 help command 2nd 3rd 4th

 history command 2nd

 in hash table

 jobs command 2nd 3rd 4th 5th

 kill command 2nd 3rd 4th

 let command 2nd

 local command 2nd 3rd

 logout command 2nd

 ls command 2nd 3rd

 make command

 more command 2nd

 multiple, I/O redirection and

 nice command

 nohup command

 number of, determining

 order of precedence for

 popd command 2nd 3rd 4th

 precedence of, overriding

 precedence of, POSIX

 printf command

 ps command

 pushd command 2nd 3rd 4th

 pwd command 2nd

 rbash command

 read command 2nd

 readonly command 2nd

 renaming [See aliases]

 return command

 running in background

 sed command

 2nd [See set command]

 shell variables in

 shift command 2nd

 shopt command 2nd 3rd

 sort command 2nd 3rd

 source command 2nd

 stty command 2nd

 suspend command

 tee command

 test command 2nd

 time command

 times command

 tr command

 trap command 2nd 3rd

 true command

 type command 2nd 3rd

 typeset command 2nd

 ulimit command 2nd 3rd

 umask command 2nd 3rd

 unalias command 2nd

 unset command 2nd 3rd 4th

 wait command 2nd

 who command

comment-begin variable, readline

comments

 guidelines for

 in input files, handling

 prepending, vi

COMP_CWORD environment variable

COMP_LINE environment variable

COMP_POINT environment variable

COMP_WORDBREAKS environment variable

COMP_WORDS environment variable

compgen command 2nd

COMPGEN variable

complete command 2nd

completion, textual

 emacs editing mode

 programmable 2nd

 vi editing mode

completion-query-items variable, readline

COMPREPLY environment variable

concurrency control

conditional construct

 case statement

 select statement

conditionals, readline editing interface

conditions

 arithmetic operators for

 exit status determining

 file attribute checking

 integer comparisons

 logical operators for

 string comparisons

 testing

configure script

 --disable option

 --enable option

constants, naming

contact information

continuation character (\\\\) 2nd

continue command

continuing lines

control keys

 conflicting with editing mode commands

 emacs commands 2nd 3rd 4th 5th

 vi commands 2nd

control mode, vi editing mode 2nd

control-key signals

conventions used in this book

convert-meta variable, readline

copy file example

COPYING file, bash archive

Copyleft for bash

copylefted software

coroutines 2nd

countargs command

CPU-intensive processes

csh (C shell) 2nd

 fc command

 features from, included in bash

CTRL keys [See control keys]

CTRL-? command 2nd

CTRL-[command, emacs

CTRL-\\\\ command 2nd 3rd

CTRL-A command, emacs

CTRL-B command, emacs

CTRL-C command 2nd 3rd 4th 5th

CTRL-D command 2nd 3rd 4th 5th 6th

CTRL-D command, emacs 2nd

CTRL-E command, emacs

CTRL-F command, emacs

CTRL-H command 2nd

CTRL-J command, emacs 2nd

CTRL-K command, emacs

CTRL-L command, emacs

CTRL-L command, vi

CTRL-M command

CTRL-M command, emacs 2nd

CTRL-N command, emacs

CTRL-O command, emacs 2nd

CTRL-P command, emacs

CTRL-Q command 2nd 3rd

CTRL-R command, emacs

CTRL-S command 2nd

CTRL-T command, emacs

CTRL-U command

CTRL-U command, emacs

CTRL-V command, emacs 2nd 3rd

CTRL-V command, vi

CTRL-W command, emacs

CTRL-W command, vi

CTRL-X ! command, emacs

CTRL-X $ command, emacs 2nd

CTRL-X / command, emacs

CTRL-X @ command, emacs

CTRL-Y command

CTRL-Y command, emacs 2nd

CTRL-Z command 2nd 3rd 4th

current directory [See working directory]

cut command 2nd 3rd

cygwin environment (Cygnus Consulting)

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

D command, vi 2nd

d$ command, vi

d0 command, vi

data filtering utilities

date command

db command, vi

dB command, vi

dc command

dd command, vi 2nd

DEBUG signal 2nd 3rd

debugging

 bashdb debugger 2nd

 commands for

 functions for

 sample session of

 source code for

 bugs in bash, reporting

 echo command

 environment variables for

 fake signals

 set command

declare command 2nd

 -a option 2nd 3rd

 -f option 2nd

 -F option

 -f option

 -F option 2nd

 -i option 2nd

 -r option 2nd 3rd

DEL command 2nd 3rd

DEL command, emacs 2nd

DEL command, vi

dh command, vi

diff command 2nd

DIR_STACK environment variable 2nd 3rd 4th

directories 2nd

 home

 navigating

 tilde (~) notation

 working 2nd

directory listing example 2nd 3rd 4th

directory name, alias for

dirs command 2nd 3rd 4th

disable-completion variable, readline

disk space usage example

disown command 2nd

DJGPP suite, GNU tools for MS-DOS

dl command, vi

doc directory, bash archive 2nd

documentation directory, bash

dollar sign ($)

 $$ (shell variable)

 $((...)) (arithmetic expressions)

 $((...)) (arithmetic test)

 environment variable

 variable substitution 2nd 3rd

 vi command 2nd

 word designator

dot (.)

 .. (parent directory)

 command

 current directory

 preceding filenames 2nd

 synonym to source command

 vi command

dot (point) in emacs

dotglob shell option

double quotes (")

 arithmetic expressions in

 around shell variables

 around special characters

 backslash preceding

 command line processing of

 command substitution

 when to use

ds command, debugger 2nd

du command 2nd

dw command, vi

dW command, vi

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

e command, vi

E command, vi

e command, vi

E command, vi

echo command 2nd 3rd 4th

 -e option 2nd 3rd

 -E option

 -n option 2nd 3rd

 Bourne shell support

 escape sequences for

 Korn not supporting

ed text editor

editing [See command-line editing]

editing modes [See emacs editing mode vi editing mode]

editing-mode variable, readline

EDITOR environment variable 2nd 3rd 4th

electronic mail example

elements of arrays

elif clause, if statement

else clause, if statement

emacs editing mode

 commands conflicting with terminal interface control keys

 commands for, list of

 history commands

 line commands

 list of most-used commands

 point in

 selecting 2nd

 textual completion

 when to use

 word commands

emacs shell option

enable command 2nd 3rd 4th

 -a option

 -d option 2nd

 -f option 2nd

 -n option 2nd

 -p option

 -s option

 Bourne shell not supporting

 Korn not supporting

enable-keypad variable, readline

ENV environment variable 2nd 3rd

environment

 customizing 2nd

 files containing settings for

 shell variables

 subprocesses awareness of

environment file 2nd 3rd

environment variables 2nd

 ! (exclamation point)

 # (hash mark) 2nd

 $ (dollar sign)

 * (asterisk) 2nd 3rd

 - (hyphen)

 0 (zero)

 ? (question mark) 2nd 3rd

 @ (at sign) 2nd 3rd

 auto_resume

 BASH 2nd 3rd

 BASH_ARGC 2nd

 BASH_ARGV 2nd

 BASH_COMMAND

 BASH_ENV 2nd 3rd

 BASH_EXECUTION_STRING

 BASH_LINENO 2nd

 BASH_REMATCH

 BASH_SOURCE 2nd

 BASH_SUBSHELL

 BASH_VERSINFO 2nd

 BASH_VERSION 2nd 3rd

 Bourne shell not supporting, list of

 built-in, list of

 CDPATH 2nd

 COLUMNS 2nd

 COMP_CWORD

 COMP_LINE

 COMP_POINT

 COMP_WORDBREAKS

 COMP_WORDS

 COMPREPLY

 declaring shell variables as 2nd

 defining for subprocess only

 determining whether shell variable is

 DIR_STACK 2nd 3rd 4th

 EDITOR 2nd 3rd 4th

 ENV 2nd 3rd

 EUID

 exported

 FCEDIT 2nd 3rd

 FIGNORE

 FUNCNAME

 GLOBIGNORE

 GROUPS

 histchars

 HISTCMD 2nd 3rd

 HISTCONTROL 2nd 3rd

 HISTFILE 2nd 3rd

 HISTFILESIZE 2nd 3rd

 HISTIGNORE 2nd 3rd

 HISTSIZE 2nd 3rd

 HISTTIMEFORMAT 2nd 3rd

 HOME 2nd 3rd

 HOSTFILE

 HOSTNAME

 HOSTTYPE

 IFS 2nd 3rd 4th

 IGNOREEOF

 in .bash_profile file

 in subshells

 INPUTRC 2nd

 LANG

 LC_ALL

 LC_COLLATE

 LC_CTYPE

 LC_MESSAGES

 LC_NUMERIC

 LINENO 2nd 3rd

 LINES 2nd

 MACHTYPE

 MAIL 2nd 3rd

 MAILCHECK 2nd

 MAILPATH 2nd

 OLDPWD 2nd

 OPTARG 2nd

 OPTERR

 OPTIND 2nd

 OSTYPE

 PATH 2nd 3rd 4th

 PIPESTATUS

 POSIXLY_CORRECT

 PPID

 PROMPT_COMMAND

 PS1 2nd 3rd 4th

 PS2 2nd 3rd

 PS3 2nd 3rd

 PS4 2nd 3rd 4th

 PWD 2nd 3rd

 RANDOM 2nd

 REPLY 2nd 3rd

 scripts relying on

 SECOND

 SECONDS

 SHELL 2nd 3rd 4th 5th

 SHELLOPTS

 SHLVL

 substitution, emacs editing mode

 TERM 2nd 3rd 4th

 TIMEFORMAT

 TMOUT 2nd 3rd

 UID

 VISUAL

equal sign (=)

 == (equal to operator)

 string comparison operator

 textual completion, vi

ERR signal 2nd

error, standard 2nd 3rd

ESC command, vi

ESC-! command, emacs

ESC-$ command, emacs

ESC-. command, emacs 2nd

ESC-/ command, emacs

ESC-< command, emacs

ESC-? command, emacs

ESC-@ command, emacs

ESC-\\> command, emacs

ESC-_ command, emacs 2nd

ESC-B command, emacs

ESC-C command, emacs

ESC-CTRL-H command, emacs

ESC-D command, emacs

ESC-DEL command, emacs

ESC-F command, emacs

ESC-L command, emacs 2nd

ESC-TAB command, emacs

ESC-U command, emacs

ESC-~ command, emacs

EUID environment variable

eval command 2nd

event designators

examples [See album example] [See printer file filter example] [See mail example] [See ls by dates example]

[See ls example] [See directory listing example] [See Korn cd example] [See pushd directory stack example]

[See copy file example] [See graphics utility example] [See disk space usage example] [See pushd function

example] [See popd function example] [See selection sort example] [See mail header lines, deleting,

example] [See standard error and output file example] [See make utility example] [See killalljobs example]

[See electronic mail example] [See multiple copies example]

 in bash archive 2nd

examples directory, bash archive

exclamation point (!)

 != (not equal to operator)

 != (string comparison operator)

 conditional not operator

 debugger command

 environment variable

 event designators

 extended pattern-matching operator

 logical not operator

 negation operator

 negation wildcard

 process ID shell variable

exec command 2nd 3rd

exec statement

execfail shell variable

executable files

execute permission, for scripts

execution tracing

exit command 2nd 3rd 4th

EXIT signal 2nd 3rd

exit statement

exit status of commands

 combining

 reversing

expand-tilde variable, readline

export command 2nd 3rd

extglob shell option

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

f command, vi

F command, vi

fake signals 2nd

fc command 2nd 3rd 4th

 -e option

 -l option

 -m option

 -n option

 -s option

 -v option

FCEDIT environment variable 2nd 3rd

fg command 2nd 3rd

FIGNORE environment variable

file attribute checking

file attribute operators

file command

file descriptors 2nd

filename completion, emacs editing mode

filenames

 special handling of

 wildcards in

files [See also I/O]

 default permissions for

 limits on

 overwriting

 overwriting with output redirection, not allowing

 permissions for

 reading lines from

 redirecting output to

 specifiying on command line

 temporary

 types of

filtering utilities

find command

flow control [See also conditions]

 break statement

 case statement

 exit statement

 for statement

 if statement

 select statement

 select statements

 until statement

 while statement

flow control statements

folders

fonts used in this book

for statement

 arithmetic 2nd

 configuring

foreground jobs

 bringing background jobs to

 sending foreground jobs to background

formatted output [See printf command]

Fox, Brian

FSF (Free Software Foundation) 2nd

full pathname

FUNCNAME environment variable

functions

 Bourne shell not supporting

 compared to scripts

 declaring variables as function names 2nd

 defined, listing

 defining

 deleting

 displaying list of 2nd

 examples in archive for

 exit status of, specifying

 global

 global variables of

 Korn support

 loadable built-in functions

 local variables in

 local variables of

 naming

 order of precedence for

 popd function example

 positional parameters in

 pushd function example

 readline editing interface

 return values of

 traps and

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

g command, debugger 2nd

G command, vi 2nd

Garfinkel, Simson (Practical UNIX and Internet Security)

getopt command, Bourne shell

getopts command 2nd

global customization

global variables

globbing

 disabling

 extended operators for

 ignoring files for

GLOBIGNORE environment variable

GNU Copyleft for bash

GNU project

GNU tools for MS-DOS

graphical user interface (GUI)

graphics utility example 2nd 3rd

greater than sign (>)

 output redirection 2nd

greater than sign (\\>)

 \\>& (output redirection) 2nd

 \\>&- (output redirection)

 \\>= (greater than or equal to operator)

 \\>\\> (bit-shift right operator)

 \\>\\> (output redirection)

 \\>| (output redirection) 2nd

 greater than operator

 string comparison operator

grep command 2nd

GROUPS environment variable

guest accounts, restricted shell for

GUI (graphical user interface)

gunzip utility

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

h command, debugger

h command, vi 2nd 3rd

hangup (HUP) signal 2nd

hard limits

hash command 2nd

hash mark (#)

 ## (pattern-matching operator)

 array element length operator

 comments

 environment variable 2nd

 length operator

 pattern matching operator

 pattern-matching operator

 prepend comment

 printf flag

hash tables 2nd

hashall shell option

head utility

header files, for built-in functions

help

 for bash

 for built-in functions

help command 2nd 3rd 4th 5th

here-documents 2nd

hidden files

histappend shell option

histchars environment variable

HISTCMD environment variable 2nd 3rd

HISTCONTROL environment variable 2nd 3rd

HISTFILE environment variable 2nd 3rd

HISTFILESIZE environment variable 2nd 3rd

HISTIGNORE environment variable 2nd 3rd

history command 2nd

history of commands 2nd

 appending to

 displaying

 emacs editing mode

 expansion commands

 fc command 2nd

 multiple-line commands in

 size of

 time stamp for

 vi editing mode

HISTSIZE environment variable 2nd 3rd

HISTTIMEFORMAT environment variable 2nd 3rd

home directory 2nd 3rd

HOME environment variable 2nd 3rd

horizontal-scroll-mode variable, readline

HOSTFILE environment variable

hostname completion, emacs editing mode

HOSTNAME environment variable

HOSTTYPE environment variable

HUP (hangup) signal 2nd

hyphen (-)

 -- (decrement operator)

 append word, vi

 environment variable

 preceding options

 printf flag

 subtraction operator

 vi command 2nd

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

i command, vi

I command, vi

I/O

 background I/O

 for strings

I/O redirection 2nd 3rd 4th

 Bourne shell support

 exec command with

 files overwritten with, not allowing

 in restricted shell

 list of redirectors

 multiple commands and

 pdksh support

I/O-intensive processes

IEEE POSIX 1003.2 shell 2nd

if statement 2nd

IFS environment variable 2nd 3rd 4th

ignoredups option

IGNOREEOF environment variable

ignoreeof shell option

indices of array elements

indirect expansion

infinite loops, guarding against

infinite recursion

input

 from user, reading

 standard 2nd 3rd

input files, as command-line arguments

input mode, vi editing mode 2nd

input redirection [See I/O redirection]

input-meta variable, readline

.inputrc file

INPUTRC environment variable 2nd

INT (interrupt) signal 2nd

integer comparisons

integer variables [See arithmetic variables]

interactive processes

interactive use of bash

internal field separator (IFS) 2nd

interprocess communication (IPC)

interrupt (INT) signal

interrupt key

IPC (interprocess communication)

iteration

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

j command, vi 2nd

job control 2nd 3rd

 Bourne shell support

 bringing background job to foreground

 configuring

 foreground jobs

 listing running jobs

 priority of jobs

 resuming suspended jobs

 sending foreground jobs to background

 suspending jobs

job number

jobs command 2nd 3rd 4th

 -l option

 -n option

 -p option 2nd 3rd

 -r option

 -s option

 -x option

 Bourne shell not supporting

Joy, Bill

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

k command, vi 2nd 3rd

key bindings, readline 2nd

keymap variable, readline

keywords, processing on command line

kill command 2nd 3rd 4th

KILL signal

killalljobs example

Korn cd example

Korn shell [See ksh]

ksh (Korn shell) 2nd

 compared to bash

 public domain version of (pdksh)

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

l command, vi 2nd

LANG environment variable

LC_ALL environment variable

LC_COLLATE environment variable

LC_CTYPE environment variable

LC_MESSAGES environment variable

LC_NUMERIC environment variable

Learning the UNIX Operating System (Peek, Todino, Strang)

length operator

less than sign (<)

 <& (input redirection)

 <&- (input redirection)

 << (bit-shift left operator)

 << (here-document) 2nd

 <= (less than or equal to operator)

 <\\> (input/output redirection)

 input redirection

 less than operator

 redirecting input

 string comparison operator

let command 2nd

line continuation character 2nd

LINENO environment variable 2nd 3rd

LINES environment variable 2nd

lists, in for statement

lithist shell option

loadable built-in functions

local command 2nd 3rd

local statement

local variables 2nd 3rd

logging in, files read during

logging out

 CTRL-D for, disabling

 files executed during

logical operators 2nd 3rd 4th

login directory 2nd [See also home directory]

login shell

 bash acting as

 changing

 installing bash as 2nd

logout command 2nd 3rd

loop variable

looping construct

 arithmetic for statement 2nd

 for statement

 until statement

 while statement

ls by dates example

ls command 2nd

 -a option 2nd

 -F option

 -l option

 -R option

ls example

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

MACHTYPE environment variable

macros, readline editing interface

mail

 notification if already read

 shell variables for

MAIL environment variable 2nd 3rd

mail example

mail header lines, deleting, example

MAIL shell variable

MAILCHECK environment variable 2nd

MAILPATH environment variable 2nd

mailwarn shell option

make command

make install script

make script

make tests command

make utility example

MANIFEST file, bash archive

mark-directories variable, readline

mark-modified-lines variable, readline

memory, size limitations

menus, select statement for

meta-flag variable, readline

metacharacters, processing on command line

MKS Toolkit (Mortice Kern Systems)

more command 2nd

MS-DOS, GNU tools for

multibyte character support

multiple copies example

multitasking, user-controlled

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

n command, vi

N command, vi

n command, vi

named pipes

navigating directories

ndu (disk space usage) example

negating wildcards

nested subshells

NetPBM utility package 2nd

 pnmcat utility

 pnmmargin utility

 pnmnlfilt utility

 pnmscale utility

 pnmtext utility

NEWS file, bash archive

newsgroups for bash

nice command

noclobber shell option

noglob shell option

nohup command

nounset shell option

nroff test formatter

numbered parameter names [See positional parameters]

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

O command, vi

O'Reilly contact information

OLDPWD environment variable 2nd

one-dimensional arrays

online help

operators

 arithmetic operators

 assignment

 for conditions

 arithmetic operators 2nd

 file attribute operators

 string comparison operators

 logical operators

 relational operators

 string operators

OPTARG environment variable 2nd

OPTERR environment variable

OPTIND environment variable 2nd

options [See command-line options]

order of precedence

 for aliases

 for commands

 for functions

 for scripts

 in arithmetic expressions

 overriding

 POSIX

orphan processes

OSTYPE environment variable

output

 standard 2nd 3rd

output files, as command-line options

output redirection [See I/O redirection]

output-meta variable, readline

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

p command, vi

P command, vi

parallelization

parameters [See arguments]

parameters, positional [See positional parameters]

parent directory

parentheses (())

 ((...)) (arithmetic test) 2nd 3rd

 command substitution

 grouping conditional operators

 in arithmetic expressions

 nested subshells

PATH environment variable 2nd 3rd 4th

pathname expansion

pathnames

 expansion of

 tilde (~) notation 2nd

 wildcards for

pattern matching operators

 Bourne shell support

 extended

pbmtext utility

PC platforms, shells for

pdksh (Public Domain Korn shell)

Peek, Jerry (Learning the UNIX Operating System)

percent sign (%)

 %% (job most recently put in background)

 %% (pattern-matching operator) 2nd

 %+ (job most recently put in background)

 %- (job second-most recently put in background)

 %? (job containing string)

 job numbers

 modulus operator

 pattern-matching operator

 printf format specifiers 2nd

 word designator

permissions

 default

 for scripts

PID (process ID) 2nd

 determining

 shell variable containing

pipe character (^) 2nd

pipe character (|) 2nd

pipelines 2nd 3rd

 as coroutines

 in command line processing

 named pipes

 system calls invoked by

PIPESTATUS environment variable

plus sign (+)

 ++ (increment operatro)

 addition operator

 extended pattern-matching operator

 printf flag

 vi command

 xtrace output

PNM (Portable Anymap) format 2nd

pnmcat utility

pnmmargin utility, NetPBM

pnmnlfilt utility, NetPBM

pnmscale utility, NetPBM

point, emacs editing mode

popd command 2nd

 +n option

 -N option

 Bourne shell not supporting

 Korn not supporting

popd function example 2nd

Portable Anymap (PNM) format 2nd

positional parameters

 assignments using 2nd

 command-line options and

 in functions

POSIX regular expressions

POSIX shell 2nd 3rd

POSIX, bash using 2nd

POSIXLY_CORRECT environment variable

pound sign [See hash mark]

PPID environment variable

Practical UNIX and Internet Security (Spafford, Garfinkel)

precedence [See order of precedence]

print command, Korn

printer file filter example

printf command

 Bourne shell support

 flags for

 format specifiers for 2nd

priority of jobs

privileged mode

procedures [See functions]

process ID (PID)

 determining

 shell variable containing

process substitution 2nd

processes [See also signals]

 listing information about

 parallelization of

 simultaneous (coroutines)

 system resources used by

 zombies or orphans

profile

 customizing

 environment file and

 environment variables in

 ignoring

 restricted

programmable completion 2nd

programming language, choosing

programming, shell [See scripts]

programs [See executable files]

prompt string customizations

PROMPT_COMMAND environment variable

prompting shell variables

ps command

 -a option

 -ax option

 -e option

PS1 environment variable 2nd 3rd 4th

PS2 environment variable 2nd 3rd

PS3 environment variable 2nd 3rd

PS4 environment variable 2nd 3rd 4th 5th

pushd command 2nd

 +n option

 -N option

 Bourne shell not supporting

 Korn not supporting

pushd directory stack example

pushd function example 2nd 3rd

pwd command 2nd

PWD environment variable 2nd 3rd

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

q command, debugger 2nd

question mark (?)

 debugger command

 environment variable 2nd

 extended pattern-matching operator

 vi command

 wildcard 2nd

QUIT signal

quoting

 $@ and $* strings

 * (asterisk) environment variable

 @ (at sign) environment variable

 alias definition

 arithmetic expressions

 command substitution

 command-line processing and

 guidelines for

 in assignments

 RETURN key

 shell variables and

 special characters

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

R command, vi

Ramey, Chet

RANDOM environment variable 2nd

range wildcard notation

rbash command

read command 2nd

 -a option

 -e option

 -p option

 -r option

 -s option

 -t option

 Bourne shell support

 continuation character for

 in while loop

 reading lines from files

 reading user input

read-only variables, declaring 2nd

readline editing interface

 conditionals

 editing and history capabilities

 functions

 key bindings

 macros

 programmable completion and

 startup file

 variables

readline variable

README file, bash archive 2nd

readonly command 2nd

recursion

recursion, infinite

recursive aliases 2nd

regular files

relational operators 2nd

relative pathname

REPLY environment variable 2nd 3rd

reserved words, list of

resources [See books]

restricted shell 2nd 3rd 4th

return command

RETURN key

 CTRL-M equivalent for

 quoting

RETURN signal 2nd

return statement 2nd

return values of functions

Reverse Polish Notation (RPN) 2nd

root

RPN (Reverse Polish Notation) 2nd

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

s command, debugger 2nd

scripts

 comments in 2nd

 examples in archive for

 execute permission for

 functions in

 good practices for

 options for, guidelines

 order of precedence for

 potential problems with

 running

 running as background job

 running in subshells

 when not to use bash for

 whitespace in

SECOND environment variable

SECONDS environment variable

security

 PATH variable and

 privileged mode

 restricted shell

 suid bit and

 system break-in scenario

 Trojan horses

sed command

select statement 2nd

 Bourne shell not supporting

 POSIX support

selection sort example

semicolon (;)

 statement separator

 vi command

set command

 -k option

 -o and +o options 2nd

 -r option

 Bourne shell support

 debugging options for

 displaying settings of

 emacs option 2nd

 functrace option 2nd

 ignoreeof option

 noclobber option 2nd

 noexec option 2nd

 noglob option

 nounset option

 options for, list of

 options for, setting on bash command line 2nd

 pdksh support

 posix option

 privileged option 2nd

 verbose option 2nd

 vi option 2nd

 xtrace option 2nd

set user ID (suid) bit

set wildcard construct

sh (Bourne shell) 2nd

 compared to bash

 compatibility with bash

shared object compilation

SHELL environment variable 2nd 3rd 4th 5th

shell execution directive

shell programming [See scripts]

shell scripts [See scripts]

shell variables 2nd

 arithmetic

 attributes of

 braces syntax for

 built-in

 built-in, list of

 checking value of

 command substitution in

 containing process ID

 converting to environment variables

 declaring as arrays 2nd

 declaring as function names 2nd

 declaring as integers 2nd

 defining

 deleting

 displaying list of, with values

 exporting to environment 2nd

 for command-line editing

 for mail

 for prompting

 in arithmetic expressions

 naming 2nd 3rd

 not supported by Bourne shell

 positional parameters

 quoting

 read-only 2nd

 reading values into

 string operators for

 using in commands

 value of, as name of another variable

SHELLOPTS environment variable

shells 2nd 3rd 4th [See also bash]

 Bourne (sh) 2nd 3rd

 C shell (csh) 2nd

 determining which shell is in use

 history of

 IEEE POSIX 1003.2 2nd

 Korn (ksh) 2nd 3rd

 login shell 2nd 3rd

 on PC platforms

 Public Domain Korn (pdksh)

 restricted 2nd 3rd

 standard shell 2nd

 subshells

 Tenex C (tcsh)

 zsh

shift command 2nd

SHLVL environment variable

shopt command

 Bourne shell support

 extdebug option

 options for, list of

 options on bash command line for

show-all-if-ambiguous variable, readline

signals

 control-key signals

 fake

 ignoring

 kill command

 listing

 POSIX support

 trapping

single quotes (')

 around special characters

 command line processing of

 enclosing RETURN

 in alias definition

 when to use 2nd

slash (/)

 // (pattern-matching and replacement operator)

 division operator

 in restricted shell

 pattern-matching and replacement operator

 vi command

soft limits

sort command 2nd

 -n option

 -r option

source command 2nd

Spafford, Gene (Practical UNIX and Internet Security)

special characters

 backslash-escaping

 control keys

 quoting

Stallman, Richard

standard error

 file descriptor for

 prompts sent to

 saving to a file

standard error and output file example 2nd

standard input

 file descriptor for

 reading commands from

standard output

 file descriptor for

 saving to a file 2nd

standard shell 2nd

statement separator

status [See exit status of commands]

stepping, in debugger 2nd 3rd

Strang, John (Learning the UNIX Operating System)

string comparisons

string I/O

string operators

 comparison

 extended pattern matching operators

 length operator

 pattern matching operators

 substitution operators

stty command 2nd

subprocesses [See also background jobs]

 environment settings known to

subroutines [See functions]

subshells

 environment variables in

 inheritance of

 nested

 scripts running in

substitution operators

substring expansion

suid (set user ID) bit

suspend command

switch statement

system administration

 bash command options for

 configuring and building bash

 customizing environment

 global customization

 installing bash as login shell

 installing bash as standard shell

 obtaining bash

 switching bash to POSIX mode

 unpacking bash archive

system calls, pipelines invoking

System V, ps command

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

t command, vi

T command, vi

TAB command, emacs

tar utility

tcsh (Tenex C shell)

tee command

temporary files

Tenex C shell [See tcsh]

TERM (terminate) signal

TERM environment variable 2nd 3rd 4th

terminal stop (TSTP) signal

terminate (TERM) signal

terminfo database

test command 2nd

test operators, list of

text files [See regular files]

textual completion

 emacs editing mode

 programmable

 vi editing mode

thrashing

tilde (~)

 bitwise not operator

 home directory

 in pathnames 2nd

 invert case, vi

 username completion

time command

time stamp for command history

TIMEFORMAT environment variable

times command

TMOUT environment variable 2nd

Todino, Grace (Learning the UNIX Operating System)

tokens, processing on command line

tr command

tracing, execution

trap command 2nd

 - argument

 debugging with

 fake signals and

 ignoring signals using

 with exit command

traps

 fake signals for

 functions and

 resetting

tree

troff format

Trojan horses, protecting against

true command

TSTP (terminal stop) signal

tty built-in

type command 2nd 3rd

 -a option

 -f option

 -p option

 -P option

 -t option

 Bourne shell not supporting

 Korn not supporting

typed variables

typeset command 2nd

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

u command, vi

UID environment variable

ulimit command 2nd 3rd

umask command 2nd 3rd

unalias command 2nd

UNIX shells [See shells]

unset command 2nd 3rd 4th

until statement

user input, reading

user interfaces

user-controlled multitasking

username completion, emacs editing mode

UWIN package (AT&T)

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

variables

 in cd command

 undefined, not allowing

variables, environment [See environment variables]

variables, shell [See shell variables]

version of bash, determining 2nd

versions of bash 2nd

vertical bar (|)

 bitwise or operator

 extended pattern matching

 in case statement

 pipe 2nd 3rd

 vi command

 || (logical or operator) 2nd 3rd

vi editing mode

 character-finding commands

 commands conflicting with terminal interface control keys

 commands for, list of

 control mode commands

 deletion commands 2nd

 history list

 input mode commands

 selecting 2nd

 textual completion

 when to use

vi shell option

visible-stats variable, readline

VISUAL environment variable

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

w command, vi

W command, vi

w command, vi

W command, vi

wait command 2nd

whence command 2nd

whereis command

which command

while statement

 getopts command used with

 with read command

whitespace in scripts

who command

wildcard expansion

wildcards

 in aliases

 in filenames

 not expanding

word designators

words, in command

working directory 2nd 3rd 4th

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

x command, debugger

X command, vi

x command, vi 2nd

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

y command, vi

 < Day Day Up >

 < Day Day Up >

Index
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U]

[V] [W] [X] [Y] [Z]

zero (0) printf flag

zero (0) word designator

zombie processes

zsh shell

 < Day Day Up >

	Learning the bash Shell, 3rd Edition
	Table of Contents
	Copyright
	Preface
	bash Versions
	Summary of bash Features
	Intended Audience
	Code Examples
	Chapter Summary
	Conventions Used in This Handbook
	We'd Like to Hear from You
	Using Code Examples
	Safari Enabled
	Acknowledgments for the First Edition
	Acknowledgments for the Second Edition
	Acknowledgments for the Third Edition

	Chapter 1. bash Basics
	1.1. What Is a Shell?
	1.2. Scope of This Book
	1.3. History of UNIX Shells
	1.4. Getting bash
	1.5. Interactive Shell Use
	1.6. Files
	1.7. Input and Output
	1.8. Background Jobs
	1.9. Special Characters and Quoting
	1.10. Help

	Chapter 2. Command-Line Editing
	2.1. Enabling Command-Line Editing
	2.2. The History List
	2.3. emacs Editing Mode
	2.4. vi Editing Mode
	2.5. The fc Command
	2.6. History Expansion
	2.7. readline
	2.8. Keyboard Habits

	Chapter 3. Customizing Your Environment
	3.1. The .bash_profile, .bash_logout, and .bashrc Files
	3.2. Aliases
	3.3. Options
	3.4. Shell Variables
	3.5. Customization and Subprocesses
	3.6. Customization Hints

	Chapter 4. Basic Shell Programming
	4.1. Shell Scripts and Functions
	4.2. Shell Variables
	4.3. String Operators
	4.4. Command Substitution
	4.5. Advanced Examples: pushd and popd

	Chapter 5. Flow Control
	5.1. if/else
	5.2. for
	5.3. case
	5.4. select
	5.5. while and until

	Chapter 6. Command-Line Options and Typed Variables
	6.1. Command-Line Options
	6.2. Typed Variables
	6.3. Integer Variables and Arithmetic
	6.4. Arrays

	Chapter 7. Input/Output and Command-Line Processing
	7.1. I/O Redirectors
	7.2. String I/O
	7.3. Command-Line Processing

	Chapter 8. Process Handling
	8.1. Process IDs and Job Numbers
	8.2. Job Control
	8.3. Signals
	8.4. trap
	8.5. Coroutines
	8.6. Subshells
	8.7. Process Substitution

	Chapter 9. Debugging Shell Programs
	9.1. Basic Debugging Aids
	9.2. A bash Debugger

	Chapter 10. bash Administration
	10.1. Installing bash as the Standard Shell
	10.2. Environment Customization
	10.3. System Security Features

	Chapter 11. Shell Scripting
	11.1. What's That Do?
	11.2. Starting Up
	11.3. Potential Problems
	11.4. Don't Use bash

	Chapter 12. bash for Your System
	12.1. Obtaining bash
	12.2. Unpacking the Archive
	12.3. What's in the Archive
	12.4. Who Do I Turn to?

	Appendix A. Related Shells
	A.1. The Bourne Shell
	A.2. The IEEE 1003.2 POSIX Shell Standard
	A.3. The Korn Shell
	A.4. pdksh
	A.5. zsh
	A.6. Shell Clones and Unix-like Platforms

	Appendix B. Reference Lists
	B.1. Invocation
	B.2. Prompt String Customizations
	B.3. Built-In Commands and Reserved Words
	B.4. Built-In Shell Variables
	B.5. Test Operators
	B.6. set Options
	B.7. shopt Options
	B.8. I/O Redirection
	B.9. emacs Mode Commands
	B.10. vi Control Mode Commands

	Appendix C. Loadable Built-Ins
	Appendix D. Programmable Completion
	Colophon
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Y
	index_Z

