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Introduction
Thanks for buying Cisco Network Security Little Black Book, the definitive guide for security
configurations on Cisco routers.

New business practices and opportunities are driving a multitude of changes in all areas of
enterprise networks, and as such, enterprise security is becoming more and more prevalent as
enterprises try to understand and manage the risks associated with the rapid development of
business applications deployed over the enterprise network. This coupled with the exponential
growth of the Internet has presented a daunting security problem to most enterprises: How does the
enterprise implement and update security defenses and practices in an attempt to reduce its
vulnerability to exposure from security breaches?

In this book, I will attempt to bridge the gap between the theory and practice of network security and
place much of its emphasis on securing the enterprise infrastructure, but first let me emphasize that
there is no such thing as absolute security. The statement that a network is secure, is more often
than not, misunderstood to mean that there is no possibility of a security breach. However, as you
will see throughout this book, having a secure network means that the proper security mechanisms
have been put in place in an attempt to reduce most of the risks enterprise assets are exposed to. I
have tried to include enough detail on the theories and protocols for reasonable comprehension so
that the networking professional can make informed choices regarding security technologies.
Although the focus of this book is on the Cisco product offering, the principles apply to many other
environments as well.

Is this Book for You?

Cisco Network Security Little Black Book was written with the intermediate or advanced user in
mind. The following topics are among those that are covered:

Internet Protocol Security (IPSec)• 
Network Address Translation (NAT)• 
Authentication, authorization, and accounting (AAA)• 
TCP Intercept• 
Unicast Reverse Path Forwarding (Unicast RPF)• 
Ethernet Switch Security• 

How to Use this Book

This book is similar in format to a typical book in the Little Black Book series. Each chapter has two
main sections: "In Brief," followed by "Immediate Solutions."

"In Brief" introduces the subject matter of the chapter and explains the principles it is based upon.
This section does not delve too deeply into details; instead it elaborates only on the points that are
most important for understanding the material in "Immediate Solutions." "Immediate Solutions"
presents several tasks related to the subject of the chapter and presented in "In Brief." The tasks in
"Immediate Solutions" vary from simple to complex. The vast array of task levels provides a broad
coverage of the subject.

This book contains seven chapters. The following sections include a brief preview of each one.
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Chapter 1: Securing the Infrastructure

Chapter 1 provides insight into enterprise security problems and challenges that face many
organizations today in the "Internet Age" and focuses on the configuration of networking devices to
ensure restricted and confidential access to them within the enterprise infrastructure.

Chapter 2: AAA Security Technologies

Chapter 2 includes a detailed examination of Cisco's authentication, authorization, and accounting
(AAA) architecture, and the technologies that not only use its features, but also provide them. It
presents proven concepts useful for implementing AAA security solutions and discusses how to
configure networking devices to support the AAA architecture.

Chapter 3: Perimeter Router Security

Chapter 3 describes many of the security issues that arise when connecting an enterprise network
to the Internet. It also details the technologies that can be used to minimize the threat of exposure to
the enterprise and its assets. The chapter covers features such as TCP Intercept, Unicast Reverse
Path Forwarding (Unicast RPF), and Network Address Translation (NAT).

Chapter 4: IOS Firewall Feature Set

Chapter 4 discusses the add−on component to the Cisco IOS that provides routers with many of the
features available to the PIX firewall, which extends to routers with similar functionality as that
provided from a separate firewall device. It covers features such as ContextBased Access Control
(CBAC), Port Application Mapping (PAM), and the IOS Firewall Intrusion Detection System (IDS).

Chapter 5: Cisco Encryption Technology

Chapter 5 presents on overview of encryption algorithms, hashing techniques, symmetric key
encryption, asymmetric key encryption, and digital signatures. It discusses how to configure a router
to support Cisco Encryption Technologies and presents detailed methods for testing the encryption
configuration.

Chapter 6: Internet Protocol Security

Chapter 6 presents an overview of the framework of open standards for ensuring secure private
communications over IP networks and IPSec. It discusses how to configure a router for support of
the protocols used to create IPSec virtual private networks (VPNs) and details the configuration of
preshared keys, manual keys, and certificate authority support.

Chapter 7: Additional Access List Features

Chapter details the use of access lists and the security features they provide. It discusses the use of
dynamic and reflexive access lists, as well as standard and extended access lists.

Appendix A: IOS Firewall IDS Signature List

Appendix A provides a detailed list of the 59 intrusion−detection signatures that are included in the
Cisco IOS Firewall feature set. The signatures are presented in numerical order with a detailed
description of the signature number contained within the Cisco Secure IDS Network Security
Database (NSD).
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Appendix B: Securing Ethernet Switches

Appendix B presents an overview of methods used to provide security for the Catalyst Ethernet
model of switches. This appendix discusses how to configure VLANS, Vlan Access Lists, IP permit
lists, port security, SNMP security, and support for the AAA architecture on the Catalyst line of
Ethernet switches.

The Little Black Book Philosophy

Written by experienced professionals, Coriolis Little Black Books are terse, easily "thumb−able"
question−answerers and problem−solvers. The Little Black Book's unique two−part chapter
format—brief technical overviews followed by practical immediate solutions—is structured to help
you use your knowledge, solve problems, and quickly master complex technical issues to become
an expert. By breaking down complex topics into easily manageable components, this format helps
you quickly find what you're looking for, with the diagrams and code you need to make it happen.

The author sincerely believes that this book will provide a more cost−effective and timesaving
means for preparing and deploying Cisco security features and services. By using this reference,
the reader can focus on the fundamentals of the material, instead of spending time deciding on
acquiring numerous expensive texts that may turn out to be, on the whole, inapplicable to the
desired subject matter. This book also provides the depth and coverage of the subject matter in an
attempt to avoid gaps in security−related technologies that are presented in other "single" reference
books. The information security material in this book is presented in an organized, professional
manner, that will be a primary source of information for individuals new to the field of security, as
well as for practicing security professionals. This book is mostly a practical guide for configuring
security−related technologies on Cisco routers, and as such, the chapters may be read in any order.

I  welcome your feedback on th is book.  You can ei ther emai l  The Cor io l is  Group at
ctp@coriolis.com, or email me directly at joefharris@netscape.net. Errata, updates, and more are
available at http://www.coriolis.com/.
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Chapter 1: Securing the Infrastructure

In Brief

This chapter is made up of two parts. The first part provides insight into enterprise security problems
and challenges that face many organizations today in the "Internet Age." The Internet has changed
the way people live, work, and play. Even more so, it has revolutionized the way business is
conducted and the methods in which businesses communicate. More and more businesses are
recognizing that the Internet provides them with a relatively inexpensive medium for conducting
business on a global scale. Unfortunately, the Internet is missing a lot of key components, one of
which is security. The Internet possesses an unlimited number of possibilities for enterprises, but
enterprises must first weigh the risk of conducting business on the Internet against the security
measures necessary to protect the business they are trying to conduct. As a result of the Internet,
information traffic loads within the enterprise have increased exponentially, and so, too, has the
business value of the infrastructure that supports the higher traffic loads, thereby increasing the risk
of vulnerability to security breaches.

The second part of this chapter focuses on configuration of Cisco routers to ensure restricted and
confidential access to network devices within the enterprise infrastructure. This chapter examines
common features used to secure access to physical and logical interfaces and technologies used to
effectively manage routing updates and control commonly exploited methods for gaining access into
networking devices. It also examines what Simple Network Management Protocol (SNMP) is used
for within a network and methods used to secure SNMP access to networking devices. Finally, it
examines the HTTP server function that a Cisco router can perform, the security risks associated
with it, and the methods used to protect the router if this function is used.

Enterprise Security Problems

One of the major security problems that enterprises face today is that sophisticated and sometimes
complicated security defenses are required to mitigate the newest threats posed by intruders and to
provide a reduction in business vulnerabilities. Another major hurdle involves choosing whether or
not a security solution is the proper fit for the business; a vast number of specialized products in the
market only work in certain parts of the network and fail to provide a true end−to−end solution for
the business. Security is a complicated subject in theory and in practice, and more often than not, is
very difficult to implement, especially when the solution must provide end−to−end security.

To provide the utmost security to your network, you must first have an idea of what it is you are
trying to protect. You must then decide what type of intruders you are trying to protect yourself from.
Intruders can take on many forms, including the following:

Current employees• 
Former employees• 
Employees that misuse the environment• 
Competitors• 
Thrill seekers• 

The most common terms used today to identify an individual who uses a computer to engage in
mischievous behavior are "hacker" and "cracker." A hacker is intensely interested in the innermost
workings of any computer operating system. Most often, hackers are programmers. As such, they
have advanced knowledge of operating systems and programming languages. They constantly
seek further knowledge, freely share what they have discovered, and, almost never, intentionally
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damage data. Hackers are sometimes referred to as white−hats.

A cracker breaks into or violates the integrity of someone else's system with malicious intent.
Crackers gain unauthorized access, destroy vital data, deny service to legitimate users, or basically
cause problems for their targets. Crackers are sometimes referred to as black−hats.

Types of Threats

The methods hackers and crackers use to gain unauthorized access into network devices are
known as threats. Having a security problem is bad enough, but defying any effort to categorically
group problems and define methods to protect against them, is the number, nature, and types of
security threats that exist today. These defy any effort that attempts to categorically group and
define methods to protect against problems. A generalized list of threats follows; the methods used
to thwart these threats will be discussed later in this chapter as well as throughout this book:

Unauthorized access—A network intruder can gain unauthorized access to networking
devices through a variety of means, three of which are as follows:

Physical—If attackers have physical access to a machine, more often than not, they
will be able to get in. The techniques used to gain access range from accessing the
device via the console to physically taking apart the system.

♦ 

System—System access assumes that the intruder already has a user account on
the system. Proper privileges should be granted to the user such that he or she is
authenticated and authorized only to do that which is deemed to be a function of his
or her job duties.

♦ 

Remote—Remote access involves intruders who attempt to penetrate the system
remotely from across the Internet, through a dial−up connection, or on local or wide
area network. This type of intruder usually has no account privileges.

♦ 

• 

Eavesdropping—Eavesdropping is used to capture TCP/IP or other protocol packets, thus
allowing the intruder to decode the contents of the packet using a protocol analyzer. "Packet
sniffing" is a more common term used to describe the act of eavesdropping. Eavesdropping
leads to information theft, like stolen credit card and social security numbers.

• 

Data manipulation—Data manipulation is simply the act of altering files on computers,
vandalizing a Web site, or replacing FTP files.

• 

Protocol weakness—The most−used protocol in circulation today is TCP/IP. This protocol
was designed a long time ago. As a result, a number of its design flaws can lead to possible
security problems, such as smurf attacks, IP spoofing, TCP sequence number prediction,
and SYN floods. The IP protocol itself is a very trusting protocol; therefore, hackers are free
to forge and change IP data.

• 

Session replay—Intruders can eavesdrop on one or more users involved in a communication
session and manipulate the data in such a manner according to the hack they are trying to
perform.

• 

This list does not by any means include all of the types of security threats. Its purpose is to give you
a general idea of the number and types of methods intruders have at their disposal.

Enterprise Security Challenges

One the biggest challenges that IT managers face is choosing from among the vast number of
security offerings and vendors in the market space. IT managers must weigh the cost of security
products against things such as performance, manageability, and scalability. After sorting through
each vendor, IT managers must choose the security solution that most uniquely adapts to and
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satisfies their business environment. The solution that is chosen must not be overly restrictive and
must allow the business to enable new applications, innovations, and services as needed, without
unnecessary challenges.

After IT managers choose a security solution that most adequately meets their specific needs, more
often than not they find themselves having to develop a design that will allow them to smoothly
integrate the solution into a network environment of products developed by different vendors. This
usually adds to the cost of implementation and overall operation of the network. On top of that, IT
managers must hire skilled security engineers or spend money from their budgets to adequately
train their existing engineers to support the new technologies.

After an organization's IT management has recognized the existence of security threats and has
directed changes to improve its posture or information security process, they should formulate a
plan to address the issue. The first step in implementing this plan is the development of a security
policy.

Enterprise Security Policy

Request for Comments (RFC) 2196, Site Security Handbook, states that "A security policy is a
formal statement of rules by which people who are given access to an organization's technology
and information must abide." A security policy should not determine how an enterprise operates;
instead, the business of the enterprise should dictate how a security policy is written. Business
opportunities are what drive the need for security in the first place. The main purpose of a security
policy is to inform anyone that uses the enterprise's network of the requirements for protecting the
enterprise's technology and information assets. The policy should specify the mechanisms through
which these requirements can be met. Of all the documents an organization develops, the security
policy is one of the most important.

Prior to developing the security policy, you should conduct a risk assessment to determine the
appropriate corporate security measures. The assessment helps to determine areas in which
security needs to be addressed, how the security needs to be addressed, and the overall level of
security that needs to be applied in order to implement adequate security controls. A risk
assessment is a process whereby critical assets are identified and values are placed on the assets.
You determine how much each asset is at risk of being compromised and how much you need to
upgrade or add to it to meet your business needs.

To develop a security policy that is not overly restrictive for users, that balances ease of use with a
certain level of security, and that is enforceable both technically and organizationally, the policy
should contain, at a minimum, some of the topics in the following list:

Acceptable use policy—Spells out what users are allowed and not allowed to do on the
various components within the network; this includes the type of traffic allowed on the
network. The policy should be as explicit as possible to avoid any ambiguity or
misunderstanding.

• 

Remote access policy—Spells out to users acceptable or unacceptable behavior when they
have connected to the enterprise via the Internet, a dial−up connection, a virtual private
network (VPN), or any other method of remote connectivity.

• 

Incident handling policy—Addresses planning and developing procedures to handle
incidents before they occur. This document also creates a centralized group to be the
primary focus when an incident happens. The incident handling policy can be contained
within the actual security policy, but due to corporate structure, this document often actually
exists as a subdocument to the security policy.

• 
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Internet access policy—Defines what the enterprise considers to be ethical, proper use of its
Internet connection.

• 

Email policy—Defines the acceptable use of the enterprise's email systems, including
personal emails and Web−based email.

• 

Physical security policy—Defines controls that pertain to physical device security and
access.

• 

After you've completed the enterprise security policy, the last step is to perform regular audits.
Audits not only give you a baseline by which to judge what is deemed as normal activity or network
behavior, they also, in many cases, produce results that will be the first alert in the detection of a
security breach. Noticing unusual events within the network can help to catch intruders before they
can cause any further damage.

Securing the Enterprise

The enterprise infrastructure is vulnerable to many different security threats (discussed earlier) from
any number of intruders. The solution to the infrastructure security problem is to securely configure
components of the network against vulnerabilities based on the network security policy. Most
network security vulnerabilities are well known, and the measures used to counteract them will be
examined in detail throughout this chapter.

Physical and Logical Security

Physical and logical security include the following:

Securing console access• 
Securing Telnet access• 
Setting privilege levels• 
Disabling password recovery• 
Configuring password encryption• 
Setting banner messages• 

Securing Console Access

It's important to put the proper physical security mechanisms into place. If the proper physical
security mechanisms are not in place, an intruder could potentially bypass all other logical security
mechanisms and gain access to the device. If an intruder can gain access to the administrative
interface of the router, he could view and change the device's configuration and gain access to
other networking equipment. The first thing you should do to thwart intruders is to set a console
password. If the intruder has already gained physical access to the device, he'll attempt to gain
network access through the console port first. The console port supports many different methods for
authenticating a user and allowing access, some of which are listed here:

Console password• 
Local user database• 
TACACS+• 
RADIUS• 

Securing Telnet Access

Telnet is a protocol that allows a user to establish a remote connection to a device. After connected
to the remote device, you are presented with a screen that is identical to the screen that would be
displayed if you were directly connected to the console port. Telnet ports on a router are referred to
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as virtual terminal ports. Telnet is really no different from a console connection, and as such, the
proper logical security mechanisms should be put into place to ensure that only responsible
personnel are allowed Telnet access. Virtual terminal ports support many different methods for
authenticating a user and allowing access. Some of the methods are included in the following list:

Vty password• 
Local user database• 
TACACS+• 
RADIUS• 

Setting Privilege Levels

Privilege levels associate router commands with each security level configured on the router. This
allows for a finer granularity of control when restricting user access. There are 16 privilege levels
contained within the router operating system. Level 2 to level 14 are customizable and allow you to
configure multiple privilege levels and multiple passwords to enable certain users to have access to
specific commands.

Disabling Password Recovery

Setting passwords is the first line of defense against intruders. Sometimes passwords are forgotten
and must be recovered. All Cisco password recovery procedures dictate that the user performs the
password recovery process from the console port of the router or switch. There are, however,
certain circumstances in which the widely available password recovery procedure should be
disabled. One such circumstance is an emergency Add, Move, or Change (AMC), whereby a
networking device needs to be in a location that does not have the proper mechanisms in place for
physical security, thus allowing an intruder a greater chance of circumventing traditional security
measures.

Configuring Password Encryption

All Cisco console and Telnet passwords configured on the router are stored in plain text within the
configuration of the router by default, thus making them easily readable. If someone issues the
show running−config privileged mode command, the password is displayed. Another instance
when the password can easily be read is if you store your configurations on a TFTP server, the
intruder only needs to gain access into the TFTP machine, after which the intruder can read the
configuration with a simple text editor. Password encryption stores passwords in an encrypted
manner on the router. The encryption is applied to all configured passwords on the router.

Setting Banner Messages

You can use banner messages to issue statements to users, indicating who is and who is not
allowed access into the router. Banner messages should indicate the seriousness of an attempt to
gain unauthorized access into the device and should never reflect to the user that gaining
unauthorized access is acceptable. If possible, recite certain civil and federal laws that are
applicable to unauthorized access and let users know what the punishment would be for accessing
the device without express written permission. If possible, have certified legal experts within the
company review the banner message.

SNMP

The Simple Network Management Protocol (SNMP) is an application−layer protocol that helps to
facilitate the exchange of management information between network devices. SNMP enables
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network administrators to manage network performance, find and solve network problems, and plan
for network growth. An SNMP network consists of three key components: managed devices,
agents, and network−management systems (NMSs). A managed device is a network node that
contains an SNMP agent and resides on a managed network. Managed devices collect and store
management information and make this information available to NMSs by use of the SNMP
protocol. Managed devices can be routers, access servers, switches, computer hosts, or printers.
An agent is a network−management software module that resides in a managed device. An agent
has local knowledge of management information and translates that information into a form
compatible with SNMP. An NMS executes applications that monitor and control managed devices.
NMSs provide the bulk of the processing and memory resources required for network management.
An SNMP managed device has various access levels. These are as follows:

Read−only— Allows read access of the Management Information Base (MIB) on the
managed device

• 

Read/write—Allows read and write access of the Management Information Base on the
managed device

• 

Write−only—Allows write access of the Management Information Base on the managed
device

• 

Routers can send notifications to NMS machines when a particular event occurs. The SNMP
notifications can be sent as a trap or inform request. Traps are unreliable because the receiver does
not send an acknowledgment that it received a trap. However, an NMS machine that receives an
inform request acknowledges the message with an SNMP response. If the NMS does not receive
an inform request, it does not send a response. If the sender never receives a response, the inform
request can be sent again. Thus, informs are more reliable.

Cisco IOS software supports the following versions of SNMP:

SNMPv1• 
SNMPv2c• 
SNMPv3• 

Both SNMPv1 and SNMPv2c use a community−based form of security. The group of managers
able to access the agent is defined by an access list and password.

SNMPv2c support includes a bulk retrieval mechanism and more detailed error−message reporting
to management stations. The bulk retrieval mechanism supports the retrieval of large quantities of
information, minimizing the number of polls required. The SNMPv2c improved error−handling
support includes a larger number of error codes that distinguish different kinds of error conditions.
Error return codes in SNMPv2c report the error type.

SNMPv3 provides for both security models and security levels. A security model is an authentication
strategy that is set up for a user and the group in which the user resides. A security level is the
permitted level of security within a security model. A combination of a security model and a security
level will determine which security mechanism is employed when an SNMP packet is handled.

Routing Protocol Authentication

Routing protocol authentication prevents the introduction of false or unauthorized routing messages
from unapproved sources. With authentication configured, the router will authenticate the source of
each routing protocol packet that it receives from its neighbors. Routers exchange an authentication
key or a password that is configured on each router. The key or password must match between
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neighbors.

There are two types of routing protocol authentication: plain text authentication and Message Digest
5 (MD5) authentication. Plain text authentication is generally not recommended because the
authentication key is sent across the network in clear text, making plain text authentication
susceptible to eavesdropping attempts. MD5 authentication creates a hash value from the key; the
hash value instead of the actual password is exchanged between neighbors, preventing the
password from being read because the hash, not the password, is transmitted across the network.

Routing Filters

Route filtering enables the network administrator to keep tight control over route advertisements.
Frequently, companies merge or form a partnership with other companies. This can pose a
challenge because the companies need to be interconnected yet remain under separate
administrative control. Because you do not have complete control over all parts of the network, the
network can become vulnerable to malicious routing or misconfiguration. Route filters ensure that
routers will advertise as well as accept legitimate networks. They work by regulating the flow of
routes that are entered into or advertised out of the routing table.

Filtering the networks that are advertised out of a routing process or accepted into the routing
process helps to increase security because, if no route is advertised to a downstream or upstream
neighbor, then no route apparently exists to the network. This will keep intruders from having logical
connectivity to the target destination. It also increases the network stability to a certain degree.
Misconfiguration is determined to be the largest contributor of network instability; however, an
intruder could introduce into routing updates false information that could result in routing problems.

Suppressing Routing Advertisements

To prevent routers on a local network from learning about routes that are dynamically advertised out
on the interface, you can define the interface as passive. Defining an interface as passive keeps
routing update messages from being sent through a router interface, preventing other systems on
the interface from learning about routes dynamically from this router. You can configure a passive
interface for all IP routing protocols except Border Gateway Protocol (BGP).

In networks with large numbers of interfaces, you can set all interfaces to passive using the
passive−interface default command. This feature allows the administrator to selectively determine
over which interfaces the protocol needs to run. After the determination is made to allow the
protocol to run on the interface, the administrator can disable the passive−interface feature on an
interface−by−interface basis with the no passive−interface <interface> command.

Note Making an interface passive for the Enhanced Interior Gateway Routing Protocol (EIGRP)
disables route advertisements sent out the interface that was made passive, just as any other
routing protocol; however, the interface will not listen for route advertisements either.

HTTP Access

Cisco IOS software on routers is equipped with a Web browser user interface that allows you to
issue commands into the router via the Web interface. The Web browser user interface can be
customized and tailored to your business environment. The HTTP server is disabled by default;
when it's enabled, it introduces some new security vulnerabilities into your network. The HTTP
server function, when it's enabled, gives all client devices with logical connectivity to the router the
ability to monitor or modify the configuration of the router. All that needs to reside on the client is a
software package that interprets packets on port 80. This is obviously a major security issue.
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However, the router software allows you to change the default port that the HTTP server is running
on. You can also configure an access list of specific hosts that are allowed Web access to the router
and apply the access list to the HTTP server. Authentication of each user provides better security if
you elect to use the router's HTTP server functions. Authentication can take place by one of four
different methods:

AAA—Indicates that the AAA function is used for authentication.• 
Enable—Indicates that the configured enable password is used for authentication. This is
the default authentication method.

• 

Local—Indicates that the locally configured security database is used for authentication.• 
TACACS+—Indicates that the Terminal Access Controller Access system is used for
authentication.

• 

Immediate Solutions

Configuring Console Security

The console port is used to attach a terminal directly into the router. By default, no security is
applied to the console port and the setup utility does not prompt you to configure security for
console access. Cisco routers have many different modes of operation, one of which is user mode.
When you first access the router via the console port, the router will prompt you for a password, if
one has been configured. After successfully supplying the password, you are logged into user mode
on the router. When a Cisco router is in user mode, the router will display its hostname followed by
the greater than symbol. Here is an example of user mode access:

SecureRouter>

User mode has limited functionality. Enable mode, also called privileged mode, can be accessed by
typing the enable command. If passwords have been configured to access this level of the IOS, the
router prompts you for the correct password. When a Cisco router is in enable mode, the router will
display its hostname followed by the pound sign. Here is an example of enable mode access:

SecureRouter#

Cisco passwords are case sensitive. The simplest and most direct way to connect to the network
device is to use a direct connection to the console port of a router or switch. You can configure a
console password to authenticate users for user mode access by entering the following commands:

SecureRouter#config t
Enter configuration commands, one per line. End with CNTL/Z.
SecureRouter(config)#line con 0
SecureRouter(config−line)#password Coriolis
SecureRouter(config−line)#login
SecureRouter(config−line)#end
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The preceding configuration sets the user mode password to Coriolis. Cisco routers also maintain
a local user authentication database, which can be used to authenticate users who connect directly
to the console port of a router. Here's an example of configuring the router to use the local user
database for authentication of users who attempt to access the router via the console:

!
username Fred privilege 15 password 0 Flintstone
username Elroy privilege 12 password 0 Jetson
username Captain privilege 8 password 0 Kirk
!
line con 0
 login local
 transport input none
!

The preceding configuration defines three users: Fred, Elroy, and Captain. Each user has an
associated privilege level defined for their respective login credentials and has a password that is
associated with their username. This allows Fred to log into the router with a username of Fred and
a password of Flintstone. Because Fred's privilege level defines the maximum privilege level that
can be configured on the router, Fred is considered to be the super−user. Elroy has a privilege
level of 12 and the password Jetson.

Note Assignment of privilege levels is discussed in detail later in this chapter.

By assigning Elroy a privilege of 12, the administrator can limit the functionality that Elroy may
have on the router. That's also the case for Captain. When a user plugs into the console port of a
router configured with local authentication, they are first prompted for their username; after
successfully passing the correct username to the router, they are then prompted for the password
that is associated with that username. The following example details these steps:

User Access Verification

Username: Fred
Password: Flintstone
SecureRouter#

Now, what do you think would happen if you were to attempt to log in with the username of Fred
and the password that is associated with Elroy? You would suspect that the router would deny you
access. This example details this attempt:

User Access Verification

Username: Fred
Password: Jetson
% Login invalid

Username:
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From this, you can see that you must supply the password that is associated with the username
with which you are attempting to gain access.

Warning When using local authentication and assigning privilege levels, you must be
careful to associate the correct username with the correct privilege level.
Anyone who logs in with a privilege level that is equal to 2 or above is logged
directly into privileged mode.

Configuring Telnet Security

Directly connecting to the console of a router is generally a relatively easy method for gaining
access to the device; however, this method is inconvenient and not abundantly scalable. If console
access is the only method available to gain access into the device, an administrator must always
walk, drive, or fly to the physical location of the router and plug into the device's console port.
Fortunately, there are methods for gaining access into the router from a remote location. The most
common method of remote administration for a Cisco router is to use a Telnet session. Unlike with
console access, there are four configuration requirements that must be met before you can use this
method of access:

An enable password must be supplied. This is discussed in the next section.• 
The router must have an IP address assigned to a routable interface.• 
The routing table of the router must contain a route for the source of the Telnet packet.• 
Under line configuration mode, a vty password must be supplied.• 

The steps involved in defining Telnet security are similar to the steps used to configure console
security. An example of configuring the fourth requirement (after the first three have been met) can
be seen here:

SecureRouter#config t
Enter configuration commands, one per line. End with CNTL/Z.
SecureRouter(config)#line vty 0 4
SecureRouter(config−line)#login
SecureRouter(config−line)#password letmein
SecureRouter(config−line)#end
SecureRouter#

As mentioned in the preceding section, "Configuring Console Security," Cisco routers also maintain
a local user authentication database, which can be used to authenticate users who directly connect
to the console port of a router. Here is an example of configuring the router to use the local user
database for authentication of users who attempt to access the router via the console:

!
username Fred privilege 15 password 0 Flintstone
username Elroy privilege 12 password 0 Jetson
username Captain privilege 8 password 0 Kirk
!
line vty 0 4
 login local

The result is that, when a user telnets to the router with this configuration, they will be prompted to
enter a username and password before being allowed to gain access into the router.
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Routers can also restrict Telnet access to authorized users with the use of an access list. The
access list is then applied to the virtual terminal ports of the router with the access−class
command. This allows you to restrict Telnet access from a particular IP address or a subnet of IP
addresses. Use the following steps to this method of security:

Use the access−list global configuration command to configure an access list that permits
the specific hosts that are allowed Telnet access.

1. 

Use the access−class access−list−number {in|out} command to apply the access list to
the virtual terminal ports.

2. 

In the following example, the router is configured to allow only three hosts Telnet access on each of
the available virtual terminal ports:

Router−A#config t
Enter configuration commands, one per line. End with CNTL/Z.
Router−A(config)#access−list 10 permit 10.10.10.19
Router−A(config)#access−list 10 permit 10.10.11.20
Router−A(config)#access−list 10 permit 10.10.12.130
Router−A(config)#line vty 0 4
Router−A(config−line)#access−class 10 in
Router−A(config−line)#end
Router−A#

Note Remember, console and Telnet security is not preconfigured for you by default. One of your
first configuration steps when you initially set up your router should be to configure each of
these interfaces.

Configuring Enable Mode Security

To configure enable mode access, you can use one of two commands: enable password or
enable secret. Both commands accomplish the same thing, allowing access to enable mode.
However, the enable secret command is considered to be more secure because it uses a one−way
encryption scheme based on the MD5 hashing function. Only use the enable password command
with older IOS images and/or boot ROMs that have no knowledge of the newer enable secret
command.

Note The MD5 encryption algorithm will be discussed in detail in Chapter 6. For now, just
remember that this method is considered more secure.

You configure an enable password by entering the enable password <password> command in
global configuration mode:

SecureRouter#config t
Enter configuration commands, one per line. End with CNTL/Z.
SecureRouter(config)#enable password Omni−Pass01
SecureRouter(config)#end
SecureRouter#

The preceding configuration sets the enable password to Omni−Pass01. The result of setting the
enable password can be seen in the following output. From the user mode prompt, you must enter
the enable command to gain access into privileged mode:

17



SecureRouter>enable
Password: Omni−Pass01
SecureRouter#

Note After you enter the enable command, the password you type at the password prompt
will not be displayed. Be sure to type the password exactly as it is configured in the
enable password command.

You configure an enable secret password by entering the following command in global configuration
mode:

SecureRouter#config t
Enter configuration commands, one per line. End with CNTL/Z.
SecureRouter(config)#enable secret Long@Horn10
SecureRouter(config)#end
SecureRouter#

The preceding configuration sets the enable secret password to Long@Horn10. The result of
setting the enable secret password can be seen in the following output. From the user mode
prompt, you must enter the enable command to gain access into privileged mode, as follows:

SecureRouter>enable
Password: Long@Horn10
SecureRouter#

Note After you enter the enable command, the password you type at the password prompt
will not be displayed. Be sure to type the password exactly as it is configured in the
enable password command.

Disabling Password Recovery

The first line of defense against intruders is to set passwords on routers. Sometimes passwords are
forgotten and must be recovered. There are, however, some instances in which the widely known
password recovery procedures should be disabled. When physical security is not possible or in a
network emergency, password recovery can be disabled.

Note Password recovery on routers and switches is outside the scope of this book. However, if you
need an index of password recovery procedures for Cisco network devices, see the following
Cisco Web page: http://www.cisco.com/warp/public/474.

The key to recovering a password on a Cisco router is through manipulation of the configuration
registers of the router. All router passwords are stored in the startup configuration, so if the
configuration registers are changed properly, the startup configuration with the passwords stored
within them can be bypassed. If you have disabled the password recovery mechanisms, you will not
be able to perform password recovery on the router. Disabling the password recovery procedure of
a Cisco router is a decision that must be thought out ahead of time because the command used to
disable password recovery also disables ROMMON.
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Warning The command discussed in this section is not recommended for use on any production
router and is explained here only for the benefit of learning within a lab environment.

You can disable the Cisco password recovery procedure by issuing the  no service
password−recovery command in global configuration mode:

SecureRouter#config t
Enter configuration commands, one per line. End with CNTR/Z.
SecureRouter(config)#no service password−recovery
WARNING:
Executing this command will disable password recovery mechanism.
 Do not execute this command without another plan for
password recovery.

Are you sure you want to continue? [yes/no]: yes

As you can see, the IOS reminds you of how serious disabling the password recovery procedures
are with a warning message and a prompt allowing you to change your mind. To see the results of
changing the password recovery feature, issue the show running−config command. The effects of
issuing the command can be seen in the following configuration:

SecureRouter#show run
Building configuration... 
Current configuration: 
!
version 12.0
service password−encryption
no service password−recovery
!
hostname SecureRouter

After password recovery has been disabled and the configuration has been saved, the widely
available password recovery procedure will not be available on the router. The following output
verifies that password recovery is indeed disabled:

SecureRouter#reload
Proceed with reload? [confirm]

00:14:34: %SYS−5−RELOAD: Reload requested
System Bootstrap, Version 11.3(2)XA4, RELEASE SOFTWARE (fc1)
Copyright (c) 1999 by cisco Systems, Inc.
TAC:Home:SW:IOS:Specials for info
PC = 0xfff14ee8, Vector = 0x500, SP = 0x680127b0
C2600 platform with 49152 Kbytes of main memory

PASSWORD RECOVERY FUNCTIONALITY IS DISABLED
program load complete, entry point: 0x80008000, size: 0x928024
Self decompressing the image : #######################....

Warning The use of the command discussed in this section is not recommended for a
production router. It should be used only in extreme circumstances or in a lab
environment!
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If the no service password−recovery command has been issued on a Cisco router and the
passwords have been forgotten, you must contact your Cisco Technical Support Engineer to obtain
help in gaining access into the router and enabling the password recovery process again.

Configuring Privilege Levels for Users

As mentioned earlier, the Cisco IOS software has two modes of operation. You can configure up to
16 levels of commands for each mode, which allows you to selectively assign authority on a
per−user basis. Commands entered into the IOS can be associated with each privilege level. You
configure the privilege level for a command using the global configuration command privilege
<mode> level <level> <command>. The exact syntax of this command is as follows:

privilege mode level level command | reset command

Figure 1.1 displays three users, Cindy, Marsha, and Jan, connected to a local segment. Cindy is
the network engineer; she has full control over Router A. Marsha and Jan are system
administrators; they need only limited functionality on Router A. Here is an example of the
configuration that meets this requirement:

enable secret Cindy
enable secret level 3 Marsha
enable secret level 2 Jan
privilege exec level 3 debug
privilege exec level 3 show running−config
privilege exec level 3 telnet
privilege exec level 2 ping
privilege exec level 2 sh int ser0
privilege exec level 2 sh ip route
line con 0
login

Figure 1.1: Using privilege levels to create administrative levels.
This configuration provides Cindy with the default full administrative rights to the router. Marsha is
given access to all features that are allowed with administrative level 3 and can perform the
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commands that are listed with a privilege level of 3. Jan is assigned a privilege level of 2 and is
given access to all features and allowed to perform the commands listed with a privilege level of 2.
The key is that each user must use the enable <level> command from the user mode prompt and
log in with the password assigned for that level. An example is provided here:

SecureRouter>
SecureRouter>enable 3
Password: Marsha
SecureRouter#

Configuring Password Encryption

It's relatively simple to configure password encryption on Cisco routers. When password encryption
is configured, all passwords that are configured on the router are converted to an unsophisticated
reversible cipher. Although the algorithm that is used to convert the passwords is somewhat
unsophisticated, it still serves a very good purpose. Intruders cannot simply view the password in
plain text and know what the password is. To enable the use of password encryption, use the
command service password−encryption.

The following example shows a router configuration prior to enabling password encryption. An
enable password, a console password, and a Telnet password is configured:

SecureRouter#show running−config
!
enable password Cisco
!
line con 0
 password Networking
!
line vty 0 4
 password Security
!

The following example shows the command you would use to enable password encryption on the
router:

SecureRouter#config t
Enter configuration commands, one per line. End with CNTL/Z. 
SecureRouter(config)#service password−encryption
SecureRouter(config)#end
SecureRouter#

The results of enabling password encryption can be seen in the following example. Notice that each
password is now represented by a string of letters and numbers, which represents the encrypted
format of the password:

SecureRouter#show running−config
!
enable password 7 05280F1C2243
!
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line con 0
 password 7 04750E12182E5E45001702
!
line vty 0 4
 password 7 122A00140719051033
!

Warning Password encryption does not provide a very high level of security. There are widely
available passwords crackers that can reverse the encryption. I do, however, recommend
using the password encryption command on all routers. I also recommend that you take
additional security measures to protect your passwords.

Configuring Banner Messages

As mentioned in the section "In Brief" at the beginning of this chapter, you can display banner
messages to users who are attempting to gain access to the router. There are four types of banner
messages:

Message of the Day (MOTD)—Displayed at login. Useful for sending messages that affect
all network users.

• 

Login—Displayed after the Message of the Day banner appears and before the login
prompts.

• 

EXEC—Displayed whenever an EXEC process is initiated.• 
Incoming—Displayed on terminals connected to reverse Telnet lines.• 

The process for configuring banner messages is fairly simple. Enter the following command in
global configuration mode:

banner {exec|motd|login|incoming} [delimited character] –
 <message> [delimited character]

Here is a sample MOTD banner:

SecureRouter#config t
Enter configuration commands, one per line. End with CNTL/Z.
SecureRouter(config)#banner motd #
Enter TEXT message. End with the character '#'.

*******************************************************
*         WARNING...WARNING...WARNING...WARNING       *
*         YOU HAVE ACCESSED A RESTRICTED DEVICE       *
*    USE OF THIS DEVICE WITHOUT PRIOR AUTHORIZATION   *
*   OR FOR PURPOSES WHICH AUTHORIZATION HAS NOT BEEN  *
*           GRANTED IS STRICTLY PROHIBITED!!!         *
*******************************************************

#
SecureRouter(config)#end
SecureRouter#
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The results of setting the MOTD banner message can be seen by using the show running−config
command or by logging into the router. The following is an example of logging into the router from
the console port:

SecureRouter con0 is now available
......
Press RETURN to get started.
......
*******************************************************
*         WARNING...WARNING...WARNING...WARNING       *
*         YOU HAVE ACCESSED A RESTRICTED DEVICE       *
*    USE OF THIS DEVICE WITHOUT PRIOR AUTHORIZATION   *
*   OR FOR PURPOSES WHICH AUTHORIZATION HAS NOT BEEN  *
*           GRANTED IS STRICTLY PROHIBITED!!!         *
*******************************************************
SecureRouter>

EXEC banner messages, as mentioned earlier, are invoked when a user attempts to gain access
into privileged mode. (Accessing privileged mode was explained in "Configuring Enable Mode
Security" earlier in this chapter.) Industry−standard best practices recommend configuring a MOTD
banner message as well as an EXEC banner message. Working still on the same router, here's how
to configure an EXEC banner to complement the MOTD banner. This can be accomplished using
the following configuration:

SecureRouter#config t
Enter configuration commands, one per line. End with CNTL/Z. 
SecureRouter(config)#banner exec #
Enter TEXT message. End with the character '#'.
*******************************************************
*         WARNING...WARNING...WARNING...WARNING       *
*                                                     *
*         THIS IS A REMINDER...THIS IS A REMINDER     *
*                                                     *
*         YOU HAVE ACCESSED A RESTRICTED DEVICE       *
*    USE OF THIS DEVICE WITHOUT PRIOR AUTHORIZATION   *
*   OR FOR PURPOSES WHICH AUTHORIZATION HAS NOT BEEN  *
*           GRANTED IS STRICTLY PROHIBITED!!!         *
*******************************************************
#
SecureRouter(config)#end
SecureRouter#

The results of setting the EXEC message can be seen by using the show running−config
command or by using the telnet command to remotely connect to a router with the EXEC banner
enabled. The results of configuring both the MOTD banner and the EXEC banner can be seen here:

R1#telnet 192.168.10.1
Trying 192.168.10.1 ... Open

*******************************************************
*         WARNING...WARNING...WARNING...WARNING       *
*         YOU HAVE ACCESSED A RESTRICTED DEVICE       *
*    USE OF THIS DEVICE WITHOUT PRIOR AUTHORIZATION   *
*   OR FOR PURPOSES WHICH AUTHORIZATION HAS NOT BEEN  *
*           GRANTED IS STRICTLY PROHIBITED!!!         *
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*******************************************************

User Access Verification

Username: Fred
Password:
*******************************************************
*         WARNING...WARNING...WARNING...WARNING       *
*                                                     *
*         THIS IS A REMINDER...THIS IS A REMINDER     *
*                                                     *
*         YOU HAVE ACCESSED A RESTRICTED DEVICE       *
*    USE OF THIS DEVICE WITHOUT PRIOR AUTHORIZATION   *
*   OR FOR PURPOSES WHICH AUTHORIZATION HAS NOT BEEN  *
*           GRANTED IS STRICTLY PROHIBITED!!!         *
*******************************************************

SecureRouter>en
Password:
SecureRouter#

Notice that the EXEC banner is displayed after the user has passed the local authentication phase
on the router.

Configuring SNMP Security

There is no specific command that you use to enable SNMP. To configure SNMP support, perform
the tasks described in the following steps, only the first two steps are mandatory:

Enable the SNMP community string to define the relationship between the network
management station and the agent with the following command:

snmp−server community <string> {ro|rw} {number}

The number value references an optional access−list.

1. 

Use this command to configure the router to send traps to an NMS host:

snmp−server host host [version {1|2c}] <community string>
 <notification type>

2. 

Configure the type of traps for which a notification is sent to the NMS. You do so with the
following command:

snmp−server enable traps [notification type] –
 [notification option]

3. 

Set the system contact, location, and serial number. You can set the systems contact with
the snmp−server contact [text] command. You set the location with the snmp−server
location [text] command, and you set the serial number with the snmp−server chassis−id
[text] command.

4. 

Use the access−list command to specify a list of hosts that are allowed read−, read/write, or
write−only access to the router.

5. 

Figure 1.2 shows Router A, which is configured to allow SNMP read−only access and read/write
access from two separate hosts. Router A is also configured to send SNMP trap information to the
same two hosts. The following lines show how Router A should be configured so SNMP access
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from both host 192.168.40.1 and 192.168.40.2 is allowed and SNMP trap information is sent to both
hosts:

access−list 12 permit 192.168.40.1
access−list 13 permit 192.168.40.2
snmp−server contact Harris
snmp−server location Network Engineering
snmp−server chassis−id 100000333
snmp−server community observe RO 12
snmp−server community adjust RW 13
snmp−server host 192.168.40.1 observe snmp
snmp−server host 192.168.40.2 adjust snmp

Figure 1.2: Router A configured for SNMP.
Configuring RIP Authentication

There are two versions of Routing Information Protocol (RIP): version 1 and version 2. RIP version
1 does not support authentication of routing updates; however, RIP version 2 supports both plain
text and MD5 authentication. Figure 1.3 shows two routers, Router A and Router B, that exchange
RIP version 2 MD5 authentication updates.

Figure 1.3: Router A and Router B configured for RIP authentication.
Configuring authentication of RIP version 2 updates is fairly easy and very uniform. The basic
configuration includes the following steps:
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Define the key chain using the command key−chain < name> in global configuration mode.
This command transfers you to the key chain configuration mode.

1. 

Specify the key number with the key < number> command in key chain configuration mode.
You can configure multiple keys.

2. 

For each key, identify the key string with the key−string < string> command.3. 
Configure the period for which the key can be sent and received. Use the following
commands:

accept−lifetime <starttime> {infinite|end−time|duration −
seconds}

send−lifetime <starttime> {infinite|end−time|duration seconds}

4. 

Exit key chain configuration mode with the exit command.5. 
Under interface configuration mode, enable the authentication of RIP updates with this
command:

ip rip authentication key−chain <key chain name>

This command is all that is needed to use plain text authentication.

6. 

Optionally, under interface configuration mode, enable MD5 authentication of RIP updates
using the ip rip authentication mode md5 command.

7. 

The listings that follow show how Router A and Router B in Figure 1.3 should be configured to
authenticate updates from one another using RIP MD5 authentication. Listing 1.1 shows the
configuration of Router A, and Listing 1.2 shows the configuration of Router B.

Listing 1.1: Router A's configuration with MD5 authentication.

key chain systems
 key 1
  key−string router
!
interface Loopback0
 ip address 10.10.10.1 255.255.255.0
!
interface Ethernet0/0
 ip address 10.10.11.1 255.255.255.0
!
interface Serial0/0
 ip address 192.168.10.1 255.255.255.252
 ip rip authentication mode md5
 ip rip authentication key−chain systems
 clockrate 64000
!
router rip
 version 2
 network 10.0.0.0
 network 192.168.10.0
 no auto−summary

Listing 1.2: Router B's configuration with MD5 authentication.
key chain cisco
 key 1
  key−string router
!
interface Loopback0
 ip address 10.10.12.1 255.255.255.0
!
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interface FastEthernet0/0
 ip address 10.10.13.1 255.255.255.0
!
interface Serial0/0
 ip address 192.168.10.2 255.255.255.252
 ip rip authentication mode md5
 ip rip authentication key−chain cisco
! 
router rip
 version 2
 network 10.0.0.0
 network 192.168.10.0
 no auto−summary

The configuration in Listing 1.1 displays Router A's MD5 configuration. Router A is configured with a
key chain value of systems, a key value of 1, and a key−string value of router. Listing 1.2 displays
Router B's MD5 configuration. Router B is configured with a key chain value of cisco, a key value of
1, and a key−string value of router.

Note Notice that the key−chain <name> command of each router can have a different value;
however, the key−string <string> command must match for each key <number> that is
configured on each neighbor.

You can use the command debug ip rip to examine how RIP receives the encrypted routing
updates. Entering this command on Router A and Router B displays the output shown in Listing 1.3
and Listing 1.4, respectively.

Listing 1.3: The output of the command debug ip rip displays how Router A receives RIP routing
updates from Router B.

Router−A#debug ip rip
RIP protocol debugging is on
Router−A#
RIP: received packet with MD5 authentication
RIP: received v2 update from 192.168.10.2 on Serial0/0
     10.10.12.0/24 −> 0.0.0.0 in 1 hops
     10.10.13.0/24 −> 0.0.0.0 in 1 hops

Listing 1.4: The output of the command debug ip rip displays how Router B receives RIP routing
updates from Router A.
Router−B#debug ip rip
RIP protocol debugging is on
Router−B#
RIP: received packet with MD5 authentication
RIP: received v2 update from 192.168.10.1 on Serial0/0
     10.10.10.0/24 via 0.0.0.0 in 1 hops
     10.10.11.0/24 via 0.0.0.0 in 1 hops

Configuring EIGRP Authentication

EIGRP authentication of packets has been supported since IOS version 11.3. EIGRP route
authentication is similar to RIP version 2, but EIGRP authentication supports only the MD5 version
of packet encryption.
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EIGRP's authentication support may at first seem limited, but plain text authentication should be
configured only when neighboring routers do not support MD5. Because EIGRP is a proprietary
routing protocol developed by Cisco, it can be spoken only between two Cisco devices, so the issue
of another neighboring router not supporting the MD5 cryptographic checksum of packets should
never arise.

The steps for configuring authentication of EIGRP updates are similar to the steps for configuring
RIP version 2 authentication:

Define the key chain using the command key−chain < name> in global configuration mode.
This command transfers you to the key chain configuration mode.

1. 

Specify the key number with the key <number> command in key chain configuration mode.
You can configure multiple keys.

2. 

For each key, identify the key string with the key−string <string> command.3. 
Optionally, you can configure the period for which the key can be sent and received. Use the
following commands:

accept−lifetime <starttime> {infinite|end−time|duration −
seconds}

send−lifetime <starttime> {infinite|end−time|duration seconds}

4. 

Exit key chain configuration mode with the exit command.5. 
Under interface configuration mode, enable the authentication of EIGRP updates with this
command:

ip authentication key−chain eigrp <autonomous system>
 <key chain name>

6. 

Enable MD5 authentication of EIGRP updates using the following command:

ip authentication mode eigrp <autonomous system> md5

7. 

Listing 1.5 shows how Router A should be configured to authenticate updates from Router B using
EIGRP MD5 authentication, and Listing 1.6 shows the configuration for Router B.

Listing 1.5: Router A's configuration with MD5 authentication.

key chain router−a
 key 1
  key−string eigrp
!
interface Loopback0
 ip address 10.10.10.1 255.255.255.0
!
interface Ethernet0/0
 ip address 10.10.11.1 255.255.255.0
!
interface Serial0/0
 ip address 192.168.10.1 255.255.255.252
 ip authentication mode eigrp 2 md5
 ip authentication key−chain eigrp 2 router−a
 clockrate 64000
!
router eigrp 2
 network 10.0.0.0
 network 192.168.10.0
 no auto−summary
 eigrp log−neighbor−changes
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Listing 1.6: Router B's configuration with MD5 authentication.
key chain router−b
 key 1
  key−string eigrp
!
interface Loopback0
 ip address 10.10.12.1 255.255.255.0
!
interface Ethernet0/0
 ip address 10.10.13.1 255.255.255.0
!
interface Serial0/0
 ip address 192.168.10.2 255.255.255.252
 ip authentication mode eigrp 2 md5
 ip authentication key−chain eigrp 2 router−b
 clockrate 64000
!
router eigrp 2
 network 10.0.0.0
 network 192.168.10.0 
 no auto−summary
 eigrp log−neighbor−changes

Listing 1.5 configures Router A with a key chain value of router−a, a key value of 1, and a
key−string value of eigrp. Listing 1.6 configures Router B with a key chain value of router−b, a key
value of 1, and a key−string value of eigrp. Notice again that the key chain need not match between
routers; however, the key number and the key string associated with the key value must match
between routers configured to use that key value.

Although debugging of encrypted EIGRP packets is somewhat limited, a few commands can be
used to verify that packet encryption is taking place correctly. Two of those commands are debug
eigrp packet and show ip route. The debug eigrp packet command informs you if the router has
received a packet with the correct key value and key string. The output of issuing this command can
be seen here:

Router−A#debug eigrp packet
EIGRP Packets debugging is on
(UPDATE, REQUEST, QUERY, REPLY, HELLO, IPXSAP, PROBE, ACK)
Router−A#
EIGRP: received packet with MD5 authentication
EIGRP: received packet with MD5 authentication

Router A is receiving MD5−authenticated packets from it neighbor, Router B. However, we cannot
fully determine whether or not the authentication is taking place correctly without issuing the show
ip route command on Router A. This allows us to look at the route table and determine that packet
authentication is taking place correctly because the routes that Router B has sent to Router A are
installed into the route table. Listing 1.7 displays the output of the show ip route command.

Listing 1.7: Route table of Router A with correct authentication configured.

Router−A#sh ip route
...
C 192.168.10.0/24 is directly connected, Ethernet0/0
C 10.10.10.0 is directly connected, Loopback0
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C 10.10.11.0 is directly connected, Ethernet0/0
D 10.10.12.0 [90/409600] via 192.168.10.2, 00:18:36, Serial0/0
D 10.10.13.0 [90/409600] via 192.168.10.2, 00:18:36, Serial0/0
Router−A#

You can change Router A's key−string value for key 1 to see what kind of an effect this will have.
The following lines will change the key−string value for key 1 on Router A to ospf:

Router−A#config t
Enter configuration commands, one per line. End with CNTL/Z.
Router−A(config)#key chain router−a
Router−A(config−keychain)#key 1
Router−A(config−keychain−key)#key−string ospf
Router−A(config−keychain−key)#end
Router−A#

Now that Router A has a different key string associated with key 1, you would assume that packet
authentication is not taking place correctly. By issuing the debug eigrp packet command, you can
see that there is indeed a problem with authentication:

Router−A#debug eigrp packet
EIGRP Packets debugging is on
(UPDATE, REQUEST, QUERY, REPLY, HELLO, IPXSAP, PROBE, ACK)
Router−A#
EIGRP: received packet with MD5 authentication
EIGRP: ignored packet from 192.168.10.2 opcode = 5 (invalid
authentication)

Taking a quick look at the route table confirms that the authentication is incorrectly configured. Now
that the key strings are different, no routes from Router B are installed into the route table of Router
A. Listing 1.8 displays the routing table of Router A.

Listing 1.8: Route table of Router A with incorrect authentication configured.

Router−A#sh ip route
...
C    192.168.10.0/24 is directly connected, Ethernet0/0
     10.0.0.0/24 is subnetted, 2 subnets
C       10.10.10.0 is directly connected, Loopback0
C       10.10.11.0 is directly connected, Loopback1
Router−A#

Tip You can also issue the show ip eigrp neighbor command to determine if authentication is
configured correctly. If authentication is correctly configured, the neighboring router will be
displayed in the output of the command. If authentication is incorrectly configured, the neighbor
will not be displayed in the output.
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Configuring OSPF Authentication

Open Shortest Path First (OSPF) supports two forms of authentication: plain text and MD5. Plain
text authentication should be used only when neighboring devices do not support the more secure
MD5 authentication. To configure plain text authentication of OSPF packets, follow these steps:

In interface configuration mode, use the ip ospf authentication−key <key> command. The
key that is specified is the plain text password that will be used for authentication.

1. 

Enter OSPF configuration mode using the router ospf <process id> command. Then use
the area <area−id> authentication command to configure plain text authentication of OSPF
packets for an area.

2. 

Referring to Figure 1.4, we will configure Router A and Router B for plain text authentication of
OSPF packets. Listing 1.9 and Listing 1.10 display each router's configuration.

Figure 1.4: Router A and Router B configured for OSPF authentication.
Listing 1.9: Router A configured to authenticate OSPF packets using plain text authentication.
interface Loopback0
 ip address 10.10.10.1 255.255.255.0
!
interface Ethernet0/0
 ip address 10.10.11.1 255.255.255.0
!
interface Serial0/0
 ip address 192.168.10.1 255.255.255.252
 ip ospf authentication−key security
 clockrate 64000
router ospf 60
 area 0 authentication
 network 10.10.10.0 0.0.0.255 area 10
 network 10.10.11.0 0.0.0.255 area 11
 network 192.168.10.0 0.0.0.255 area 0

Listing 1.10: Router B configured to authenticate OSPF packets using plain text authentication.
interface Loopback0
 ip address 10.10.12.1 255.255.255.0
!
interface Ethernet0/0
 ip address 10.10.13.1 255.255.255.0
!
interface Serial0/0
 ip address 192.168.10.2 255.255.255.252
 ip ospf authentication−key security
router ospf 50
 area 0 authentication
 network 10.10.12.0 0.0.0.255 area 12
 network 10.10.13.0 0.0.0.255 area 13
 network 192.168.10.0 0.0.0.255 area 0
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In Listing 1.9 and Listing 1.10, plain text authentication is configured to authenticate updates across
area 0. By issuing the show ip ospf <process−id> command, you can determine if plain text
authentication is properly configured for each area. Here is an example of the output for the show
ip ospf command:

Router−B#show ip ospf 50
 Routing Process "ospf 50" with ID 10.10.13.1
 ......
    Area BACKBONE(0)
        Number of interfaces in this area is 1
        Area has simple password authentication
        SPF algorithm executed 7 times

To configure MD5 authentication of OSPF packets, follow the steps outlined here:

From interface configuration mode, enable the authentication of OSPF packets using MD5
with the following command:

ip ospf message−digest−key <key−id> md5 <key>

The value of the key−id allows passwords to be changed without having to disable
authentication.

1. 

Enter OSPF configuration mode using the router ospf <process id> command. Then
configure MD5 authentication of OSPF packets for an area using this command:

 area <area−id> authentication message−digest

2. 

This time, Routers A and B will be configured to authenticate packets across the backbone using
the MD5 version of authentication. Listing 1.11 shows the configuration for Router A, and Listing
1.12 shows Router B's configuration.

Listing 1.11: Router A configured for MD5 authentication.

interface Loopback0
 ip address 10.10.10.1 255.255.255.0
!
interface Ethernet0/0
 ip address 10.10.11.1 255.255.255.0
!
interface Serial0/0
 ip address 192.168.10.1 255.255.255.252
 ip ospf message−digest−key 15 md5 miller
 clockrate 64000

router ospf 60
 area 0 authentication message−digest
 network 10.10.10.0 0.0.0.255 area 10
 network 10.10.11.0 0.0.0.255 area 11
 network 192.168.10.0 0.0.0.255 area 0

Listing 1.12: Router B configured for MD5 authentication.
interface Loopback0
 ip address 10.10.12.1 255.255.255.0
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!
interface Ethernet0/0
 ip address 10.10.13.1 255.255.255.0
!
interface Serial0/0
 ip address 192.168.10.2 255.255.255.252
 ip ospf message−digest−key 15 md5 miller

router ospf 50
 area 0 authentication message−digest
 network 10.10.12.0 0.0.0.255 area 12
 network 10.10.13.0 0.0.0.255 area 13
 network 192.168.10.0 0.0.0.255 area 0

When you use the ip ospf message−digest−key command, the key value allows the password to
be changed without having to disable authentication.

Note For OSPF, authentication passwords do not have to be the same throughout the area, but
the key id value and the password must be the same between neighbors.

Using the show ip ospf <process−id> command again, you can see that it now states that MD5
authentication is being used across area 0:

Router−A#sh ip ospf 60
 Routing Process "ospf 60" with ID 10.10.11.1
......
    Area BACKBONE(0)
        Number of interfaces in this area is 1
        Area has message digest authentication
        SPF algorithm executed 4 times

As noted earlier, the key id value and the passwords must be the same between neighbors. If you
change the key id value to a number other than 15 on Router A, authentication should not take
place and OSPF should get mad. Here is the changed configuration:

interface Serial0/0
 ip address 192.168.10.1 255.255.255.252
 ip ospf message−digest−key 30 md5 miller
 clockrate 64000

router ospf 60
 area 0 authentication message−digest
 network 10.10.10.0 0.0.0.255 area 10
 network 10.10.11.0 0.0.0.255 area 11
 network 192.168.10.0 0.0.0.255 area 0

Notice that it has been changed to a value of 30. The following lines show what OSPF has to say
about this:

Router−A#debug ip ospf events
OSPF events debugging is on
Router−A#
00:03:58: OSPF: Send with youngest Key 30 
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00:04:04: OSPF: Rcv pkt from 192.168.10.2, Ethernet0/0 :
Mismatch Authentication Key − No message digest key 15 on
Interface

OSPF is obviously not happy. If you change the key value back, everything should again be all right.
As mentioned earlier, the key id value allows passwords to be changed without having to disable
authentication. Listing 1.13 and Listing 1.14 display the configuration of Router A and Router B with
multiple keys and passwords configured.

Listing 1.13: Router A configured with multiple keys and passwords.

interface Loopback0
 ip address 10.10.10.1 255.255.255.0
!
interface Ethernet0/0
 ip address 10.10.11.1 255.255.255.0
!
interface Serial0/0
 ip address 192.168.10.1 255.255.255.252
 ip ospf message−digest−key 15 md5 miller
 ip ospf message−digest−key 20 md5 ampaq
 clockrate 64000

router ospf 60
 area 0 authentication message−digest
 network 10.10.10.0 0.0.0.255 area 10
 network 10.10.11.0 0.0.0.255 area 11
 network 192.168.10.0 0.0.0.255 area 0

Listing 1.14: Router B configured with multiple keys and passwords.
interface Loopback0
 ip address 10.10.12.1 255.255.255.0
!
interface Ethernet0/0
 ip address 10.10.13.1 255.255.255.0
!
interface Serial0/0
 ip address 192.168.10.2 255.255.255.252
 ip ospf message−digest−key 15 md5 miller
 ip ospf message−digest−key 20 md5 ampaq

router ospf 50
 area 0 authentication message−digest
 network 10.10.12.0 0.0.0.255 area 12
 network 10.10.13.0 0.0.0.255 area 13
 network 192.168.10.0 0.0.0.255 area 0

As a result of this configuration, Routers A and B will send duplicate copies of each OSPF packet
out of their serial interfaces; one will be authenticated using key number 15, and the other will be
authenticated using key number 20. After the routers each receive from each other OSPF packets
authenticated with key 20, they will stop sending packets with the key number 15 and use only key
number 20. At this point, you can delete key number 15, thus allowing you to change passwords
without disabling authentication.
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Configuring Route Filters

Route filters work by regulating what networks a router will advertise out of an interface to another
router or what networks a router will accept on an interface from another router. Route filtering can
be used by administrators to manually assure that only certain routes are announced from a specific
routing process or interface. This feature allows administrators to configure their routers to prevent
malicious routing attempts by intruders.

You can configure route filtering in one of two ways:

Inbound route filtering—The router can be configured to permit or deny routes advertised by
a neighbor from being installed to the routing process.

• 

Outbound route filtering—The route filter can be configured to permit or deny routes from
being advertised from the local routing process, preventing neighboring routers from learning
the routes.

• 

Configuring Inbound Route Filters

The steps for configuring inbound route filters are as follows:

Use the access list global configuration command to configure an access−list that permits
or denies the specific routes that are being filtered.

1. 

Under the routing protocol process, use the following command:

distribute−list <access−list−number> in [interface−name]

2. 

In this example, an inbound route filter will be configured on Router B to deny routes from being
installed into its routing process (refer to Figure 1.5). Listing 1.15 displays Router A's configuration
prior to applying the route filter, and Listing 1.16 displays Router B's.

Figure 1.5: Router B configured with an inbound route filter.
Listing 1.15: Router A configuration.
interface Loopback0
 ip address 10.10.10.1 255.255.255.0
!
interface Loopback1
 ip address 10.10.11.1 255.255.255.0
!
interface Ethernet0/0
 ip address 10.10.12.1 255.255.255.0
!
interface Serial0/0
 ip address 192.168.10.1 255.255.255.252
 clockrate 64000
!
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router rip
 version 2
 network 10.0.0.0
 network 192.168.10.0
 no auto−summary

Listing 1.16: Router B configuration.
interface Loopback0
 ip address 10.10.13.1 255.255.255.0
!
interface Loopback1
 ip address 10.10.14.1 255.255.255.0
!
interface FastEthernet0/0
 ip address 10.10.15.1 255.255.255.0
!
interface Serial0/0
 ip address 192.168.10.2 255.255.255.252
 !
router rip
 version 2
 network 10.0.0.0
 network 192.168.10.0
 no auto−summary

Taking a look at the route table of Router B, notice that it has learned of three networks from Router
A: 10.10.10.0, 10.10.11.0, and 10.10.12.0. Listing 1.17 displays Router B's route table.

Listing 1.17: Router B's route table.

Router−B#show ip route
......
C       10.10.13.0 is directly connected, Loopback0
C       10.10.14.0 is directly connected, Loopback1
C       10.10.15.0 is directly connected, FastEthernet0/0
R       10.10.10.0 [120/1] via 192.168.10.1, 00:00:16, Serial0/0
R       10.10.11.0 [120/1] via 192.168.10.1, 00:00:16, Serial0/0
R       10.10.12.0 [120/1] via 192.168.10.1, 00:00:16, Serial0/0

Router−B#

Now, a route filter will be configured on Router B to deny the 10.10.10.0 and 10.10.11.0 networks
from being installed into the route table. This will allow only the 10.10.12.0 network to be installed
into the route table from Router A. Use the access−list <number> command to configure the router
with a standard access list and use the distribute−list <list number> in <interface> command to
apply the access list under the routing process. Listing 1.18 displays Router B's new configuration.

Listing 1.18: Router B configured with an inbound route filter.

!
interface Serial0/0
 ip address 192.168.10.2 255.255.255.252
 !
router rip
 version 2
 network 10.0.0.0
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 network 192.168.10.0 
 distribute−list 1 in Serial0/0
 no auto−summary
!
access−list 1 permit 10.10.12.0

Looking back again at Router B's route table after applying the route filter, you can see that the
10.10.12.0 network is the only network that Router B is allowing to be installed into its route table.
Listing 1.19 displays Router B's route table.

Note Access lists have an implicit deny any as the last configuration line that is not displayed in
the output of the configuration. Therefore, there is no need to manually configure the access
list to deny the .10 and .11 networks.

Listing 1.19: Router B's route table with inbound route filter permitting only one network.

Router−B#show ip route
......
C       10.10.13.0 is directly connected, Loopback0
C       10.10.14.0 is directly connected, Loopback1
C       10.10.15.0 is directly connected, FastEthernet0/0
R       10.10.12.0 [120/1] via 192.168.10.1, 00:00:16, Serial0/0

Router−B#

Now, suppose Router A needs to learn only the 10.10.15.0 network from Router B and not the
10.10.13.0 and 10.10.14.0 networks. You can configure an inbound router filter on Router A to
permit the installation of only the 10.10.15.0 network into the route table. Listing 1.15 displays
Router A's configuration prior to the configuration change. Listing 1.20 displays the route table on
Router A prior to the configuration change.

Listing 1.20: Route table of Router A.

Router−A#show ip route
......
C       10.10.10.0 is directly connected, Loopback0
C       10.10.11.0 is directly connected, Loopback1
C       10.10.12.0 is directly connected, Ethernet0/0
R       10.10.13.0 [120/1] via 192.168.10.2, 00:00:17, Serial0/0
R       10.10.14.0 [120/1] via 192.168.10.2, 00:00:17, Serial0/0
R       10.10.15.0 [120/1] via 192.168.10.2, 00:00:17, Serial0/0
Router−A#

Listing 1.21 displays the configuration change needed on Router A.

Listing 1.21: Router A configured with an inbound route filter.

interface Serial0/0
 ip address 192.168.10.1 255.255.255.252
 !
router rip
 version 2
 network 10.0.0.0
 network 192.168.10.0
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 distribute−list 1 in Serial0/0
 no auto−summary
!
access−list 1 permit 10.10.15.0

Taking another look at Router A's route table, you can see that the only network that is permitted
into the route table is the 10.10.15.0 network. Listing 1.22 displays Router A's route table after the
inbound route filter had been applied.

Listing 1.22: Router A's route table with inbound route filter permitting only one network.

Router−A#show  ip route
......
C       10.10.10.0 is directly connected, Loopback0
C       10.10.11.0 is directly connected, Loopback1
C       10.10.12.0 is directly connected, Ethernet0/0
R       10.10.15.0 [120/1] via 192.168.10.2, 00:00:17, Serial0/0
Router−A#

Configuring Outbound Route Filters

In the preceding section, you learned how to configure a router to accept only routes that the
administrator deems necessary. However, Router A advertised the 10.10.10.0 and 10.10.11.0
networks all the way across the network only to have them dropped upon reaching Router B. Router
B did the same with networks 10.10.13.0 and 10.10.14.0. The same results can be accomplished by
configuring an outbound route filter. This filter will not allow the route to advertised across the
network and gives the administrator finer granularity of control for advertising networks to external
partners. The steps to configure outbound route filters are described here:

Use the access−list global configuration command to configure an access list that permits
or denies the specific routes that are being filtered.

1. 

Under the routing protocol process, use the following command:2. 

distribute−list access−list−number out [interface−name| −
routing − process|autonomous−system−number]

Continuing with the example, in the last section, you can configure Router A and Router B to
accomplish the same results, using the reverse logic of inbound route filters and configure an
outbound route filter. Router A, in Listing 1.22, was configured to accept only the 10.10.15.0
network into its routing process, and Router B was configured to accept only the 10.10.12.0 network
into its routing process. This was accomplished by configuring an inbound route filter on each
respective router. However, a kind of reverse logic will be used in this next example to achieve the
exact same result. Listing 1.23 and Listing 1.24 display Router A's and Router B's configuration
prior to making the necessary changes.

Listing 1.23: Router A's configuration.

interface Loopback0
 ip address 10.10.10.1 255.255.255.0
!
interface Loopback1
 ip address 10.10.11.1 255.255.255.0
!
interface Ethernet0/0
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 ip address 10.10.12.1 255.255.255.0
!
interface Serial0/0
 ip address 192.168.10.1 255.255.255.252
 clockrate 64000
!
router eigrp 50
 network 10.0.0.0
 network 192.168.10.0
 no auto−summary
 eigrp log−neighbor−changes

Listing 1.24: Router B's configuration.
interface Loopback0
 ip address 10.10.13.1 255.255.255.0
!
interface Loopback1
 ip address 10.10.14.1 255.255.255.0
!
interface FastEthernet0/0
 ip address 10.10.15.1 255.255.255.0 
!
interface Serial0/0
 ip address 192.168.10.2 255.255.255.252
 !
router eigrp 50
 network 10.0.0.0
 network 192.168.10.0
 no auto−summary
 eigrp log−neighbor−changes

Notice that both routers are now using a different routing protocol. This was done to demonstrate
that route filters work with any routing protocol. First, Router A will be configured such that it will
advertise only the 10.10.12.0 network to Router B. This can be accomplished using the commands
in Listing 1.25.

Listing 1.25: Router A configured with an outbound route filter.

interface Serial0/0
 ip address 192.168.10.1 255.255.255.252
 !
router eigrp 50
 network 10.0.0.0
 network 192.168.10.0
 distribute−list 3 out Serial0/0
 no auto−summary
!
access−list 3 permit 10.10.12.0

Router A is configured with access list 3, which permits only the 10.10.12.0 network and has an
outbound distribute−list applied to the EIGRP routing process. This should achieve the necessary
results. You can check to see if the results have been met by looking at the route table of Router B,
which is displayed in Listing 1.26.

Listing 1.26: Route table of Router B after applying an outbound route filter on Router A.
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Router−B#show ip route
......
D       10.10.12.0 [90/409600] via 192.168.10.1, Serial0/0
C       10.10.13.0 is directly connected, Loopback0
C       10.10.14.0 is directly connected, Loopback1
C       10.10.15.0 is directly connected, FastEthernet0/0
Router−B#

Router A is only advertising the 10.10.12.0 network to Router B; thus, Router B only knows about
the 10.10.12.0 network. Now Router B must be configured such that Router A only learns the
10.10.15.0 network. Listing 1.27 displays the configuration that is needed on Router B.

Listing 1.27: Router B configured with an outbound route filter.

interface Serial0/0
 ip address 192.168.10.2 255.255.255.252
 !
router eigrp 50
 network 10.0.0.0
 network 192.168.10.0
 distribute−list 3 out Serial0/0
 no auto−summary
!
access−list 4 permit 10.10.15.0

Router B is configured with access list 4, which permits only the 10.10.15.0 network and has an
outbound distribute−list applied to the EIGRP routing process. The next step is to check the route
table of Router A to determine if the required results have been met. Listing 1.28 displays the route
table of Router A.

Listing 1.28: Route table of Router A after applying an outbound route filter on Router B.

Router−A#sh ip route
......
C       10.10.10.0 is directly connected, Loopback0
C       10.10.11.0 is directly connected, Loopback1
C       10.10.12.0 is directly connected, Ethernet0/0
D       10.10.15.0 [90/409600] via 192.168.10.2, Serial0/0
Router−A#

After viewing the route table of Router A, you can determine that Router B is advertising only the
10.10.15.0 network to Router A; thus, Router A only knows about the 10.10.15.0 network.

Suppressing Route Advertisements

To prevent other routers on a network from learning about routes dynamically, you can prevent
routing update messages from being sent out a router interface. To accomplish this, use the
passive−interface <interface> routing process configuration command. This command can be
used on all IP−based routing protocols except for the Exterior Gateway Protocol (EGP) and Border
Gateway Protocol (BGP). When an interface is configured to be in a passive state, the router
disables the passing of routing protocol advertisements out of the interface; however, the interface
still listens and accepts any route advertisement that is received into the interface. Configuring this
on a router essentially makes the router a silent host over the interfaces that were specified. To
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configure an interface as passive, use the passive−interface <interface> command under routing
protocol configuration mode; this command is all that is needed to make an interface no longer
advertise networks.

Here is an example of configuring an interface as passive:

interface FastEthernet0/0
 ip address 10.10.15.1 255.255.255.0
 !
interface Serial0/0
 ip address 192.168.10.2 255.255.255.252
!
router eigrp 50
 passive−interface FastEthernet0/0
 passive−interface Serial0/0
!

Configuring HTTP Access

Cisco routers include an HTTP server, which makes configuration and administration easier,
especially for someone who does not have a lot of experience with the command−line interface. The
HTTP server function is disabled by default and must be manually enabled. Follow these steps to
enable the HTTP server functionality (only the first step is mandatory):

To enable the HTTP server, use the ip http server global configuration command.1. 
You can specify the authentication method the router should use to authenticate users who
attempt a connection to the server with the following global configuration command:

ip http authentication {aaa|enable|local|tacacs}

2. 

You can control which hosts can access the HTTP server using this global configuration
command:

ip http access−class {access list number|access list name}

3. 

By default, the HTTP server listens for connection attempts on port 80. This can be changed
using the ip http port <number> global configuration command.

4. 

Figure 1.6 displays a host named Jeff at IP address 192.168.10.100 who uses his Web browser to
administer the router. Jeff accesses the HTTP server on the router on port 8080 and uses the local
method of authentication. The following example configuration displays the HTTP server
configuration that is needed so that Jeff can access the router.
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Figure 1.6: User Jeff needs HTTP access to the router.
SecureRouter#show running−config
......
username Jeff privilege 10 password 0 NewUser
!
interface FastEthernet0/0
 ip address 192.168.10.1 255.255.255.0
!
ip http server ip http port 8080 ip http access−class 20 ip http authentication local
!
access−list 20 permit 192.168.10.100
!

WarningIf the HTTP server is enabled and local authentication is used, it is possible, under some
circumstances, to bypass the authentication and execute any command on the device.
F o r  f u r t h e r  i n f o r m a t i o n ,  p l e a s e  s e e  t h e  f o l l o w i n g  W e b  p a g e :
http://www.cisco.com/warp/public/707/IOS−httplevel−pub.html.
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Chapter 2: AAA Security Technologies

In Brief

Chapter 1 covered security issues that are common to the infrastructure of a network and the
counter measures that are needed to mitigate the effects of these issues. This chapter addresses
the issues of unauthorized access and repudiation for enterprise environments, which both create a
potential for intruders to gain access to sensitive network equipment.

I'll begin with a detailed examination of Cisco's authentication, authorization, and accounting (AAA)
architecture and the technologies that not only use these features but also provide them. I'll discuss
both of the major protocols used to provide the AAA architecture: TACACS+ and RADIUS. The
focus will then shift to configuring network access servers and networking equipment to provide the
security features of the AAA architectures. Then, I'll also examine the Cisco Secure Access Control
Server (ACS) software. Cisco Secure Access Control Server is designed to ensure the security of
networks and maintain detailed records of the people connecting to your networking devices.

Access Control Security

Access control has long been an issue that has frustrated both administrators and users alike. As
networks continue to evolve into a state of convergence, administrators increasingly need flexibility
to determine and control access to resources under their care. Administrators are being faced with
new situations pertaining to remote access combined with strong security. For example, remote
users and telecommuters need to access their corporate networks; they need to be able to work in
the same network environment they would be working in if they were sitting at their desks at the
office. This creates a significant need for an administrator to effectively give those users flexible and
seamless access, yet at the same time, the administrator must have the ability to provide security
and resource accountability. Also, within most networks, different administrators have varying
responsibilities that require varying levels of access privileges.

There are three components to access control:

Determining who is allowed access to a network• 
Determining what services they are allowed to access• 
Providing detailed accounting records of the services that were accessed• 

Access control is based on a modular architecture known as authentication, authorization, and
accounting (AAA). The AAA network security services provide the framework through which you set
up access control on your router. As mentioned earlier, AAA is based on a modular architecture; as
such, each module will be discussed separately.

Authentication

Authentication is the process of determining whether someone or something is, in fact, who or what
it is declaring to be. In private and public computer networks, authentication is commonly
accomplished through the use of logon passwords. The assumption is that knowledge of the
password guarantees the authenticity of the user. Each user registers initially using an assigned or
self−declared password. On each subsequent use, the user must know and use the previously
declared password.
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Authentication provides a way of identifying a user, typically by having the user enter a valid
username and valid password before access is granted. The process of authentication is based on
each user having a unique set of criteria for gaining access. The AAA server compares a user's
authentication credentials with other user credentials stored in a database. If the supplied
credentials match, the user is granted access to the network. If the supplied credentials don't match,
authentication fails and network access is denied. The authentication database may be configured
either in a local security database, using the username <username>password <password>
command discussed in Chapter 1, or with a remote security database, such as a Cisco Secure ACS
server.

Authentication Methods

There are many forms of authentication; the most common is of course the use of usernames and
passwords. Username and password combinations can range from very weak to somewhat strong.
Other authentication methods provide far stronger security at an increased cost financially and
increased complexity from a manageability standpoint. The trade−off is that weaker methods of
authentication are often much easier to administer, whereas the stronger methods of authentication
involve a greater degree of difficulty to administer. The following list includes the advantages and
disadvantages of some of the popular current authentication methods:

Usernames and passwords—This method has been the predominant method of
authentication in the client/server environment. This is the least scalable method of
authentication because usernames and passwords need to be assigned for each user and
cannot be managed on a groupwide basis. Usernames and passwords may be assigned in a
static manner so that they do not change unless they are changed manually by the
administrator or user. Or they can be assigned so that after a certain period of time they age
out and must be changed by the administrator or user.

Advantages:

Inexpensive and easy to implement.♦ 
Can be implemented entirely within software, avoiding the need for extra hardware.♦ 
Username and password carried over hashed encryption.♦ 

Disadvantages:

Increasingly prone to "eavesdropping" as username and password travel over the
network.

♦ 

Subject to replay attacks.♦ 
Subject to password guessing.♦ 
Ineffective password management and controls.♦ 
Can be captured by Trojan horses under false pretences.♦ 
Susceptible to "Social Engineering."♦ 

• 

Token Cards/Smart Cards—These are typically small credit−card−sized devices that use a
hardware−based challenge−response authentication scheme in which the server challenges
the user to demonstrate that he possesses a specific hardware token and knows a PIN or
passphrase by combining them to generate a response that is valid. This method of
authentication has become very popular in recent years.

Advantages:

Ease of use for users; they only need to remember a single PIN to access the token.♦ 
Ease of management; there is only one token instead of multiple passwords.♦ 

• 
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Enhanced security; the attacker requires both the PIN and the token to masquerade
as the user.

♦ 

Better accountability.♦ 
Mobility; security is not machine specific.♦ 
No client−side software needed.♦ 

Disadvantages:

Client is required to carry a token card to use facilities.♦ 
Limited life span; tokens must be replaced about every four years.♦ 
Ongoing operations cost associated with keeping track of token cards.♦ 
Longer time to authenticate the identity of the user because numerous steps are
required to authenticate the client.

♦ 

Digital Certificates—Digital certificates are electronic documents that are generally issued by
a trusted third party called a Certificate Authority. The certificates contain information about
the user that the Certificate Authority has verified to be true. They consist of a public key
denoted by a series of characters, which reside on the user's computer. When an electronic
message is sent from the mobile client to the enterprise, it is signed using the digital
certificate. Digital certificates are an essential part of the public key infrastructure (PKI)
because PKI manages the process of issuing and verifying the certificates used to grant
people and systems access to other systems.

• 

Note Digital certificates will be discussed in detail in Chapter 6, "Internet Security Protocol
(IPSec)."

Advantages that Digital certificates provide are as follows:

Validation of file's creator. Recipients need to know that the sender created the file.• 
Nonrepudiation.• 
Confidentiality ensured.• 
Guaranteed integrity.• 
Personalization scalability features.• 
Industry momentum is growing for digital certificates.• 

Disadvantages:

Complicated for most users to install.• 
Must be installed on every computer.• 
Not feasible where users share machines.• 
Extensive integration.• 

PAP and CHAP Authentication

Remote access is an integral part of any corporate mission. Traveling salespeople, executives, and
telecommuters all need to communicate by connecting to the main office local area network. To
make these remote connections, remote users should have appropriate software, protocol stacks,
and link−layer drivers installed on their remote access device. Point−to−point links between local
area networks can provide sufficient physical connectivity in many application environments. Most
corporations provide access to the Internet over point−to−point links, thus providing an efficient way
to access their service provider locally. The Internet community has adopted the Point−to−Point
Protocol (PPP) scheme for the transmission of IP datagrams over serial point−to−point lines. PPP is
a Data Link layer protocol that provides router−to−router and host−to−network connections over
synchronous and asynchronous circuits. PPP has the following three main components:

It has a method for encapsulating datagrams over serial links.• 
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Link Control Protocols (LCPs) establish, configure, authenticate, and test datalink
connections.

• 

Network Control Protocols (NCPs) establish and configure different Network−layer protocols.• 

Link Control Protocols are used as a security measure for authentication with PPP and PPP
callback. This method of authentication allows the dial−up destination to determine if the dial−up
client is correctly authenticated based on a preassigned username and password combination.
Point−to−Point Protocol (PPP) currently supports two authentication protocols: Password
Authentication Protocol (PAP) and Challenge Handshake Authentication Protocol (CHAP). Both
PAP and CHAP are specified in RFC 1334. The dial−up destination uses either PAP or CHAP to
determine if the dial−up client is authenticated.

PAP provides a simple method for the remote client to establish its identity using a one−way
authentication handshake when communication is taking place between a host and an access
server; this is detailed in Figure 2.1.

Figure 2.1: One−way PAP authentication.
The PAP authentication process occurs as follows:

Incoming client establishes PPP negotiation on the interface configured with PPP
encapsulation and informs the access server to use PPP.

1. 

The network access server determines which authentication method to use. In this case, the
network access server tells the remote client to use PAP.

2. 

The client sends the username and password in cleartext PAP format to the network access
server.

3. 

The network access server compares the values passed to it from the remote client against
the values configured within its local database or queries a security server to accept or reject
the remote client.

4. 

When communication is taking place between two routers, PAP uses a two−way authentication
handshake; a username/password pair is repeatedly sent by the peer to the authenticator until the
authentication is acknowledged or the connection is terminated. For PAP, this process proves to be
an insecure authentication method because the password is passed over the link in cleartext. With
PAP, there is no protection from playback.

With CHAP authentication, the access server sends a challenge message to the remote node after
the PPP link is established. The access server checks the response against its own calculation of
the expected hash value. If the values match, the authentication is accepted. This is detailed in
Figure 2.2.
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Figure 2.2: Three−way CHAP authentication.
The following list explains the CHAP authentication process:

The incoming client establishes PPP negotiation on the interface configured with PPP
encapsulation.

1. 

LCP negotiates CHAP and Message Digest 5 (MD5), and the network access informs the
remote client to use CHAP.

2. 

The remote client acknowledges the request.3. 
A CHAP packet is built and sent to the remote client. The CHAP packet contains the
following items:

Packet type identifier♦ 
Sequential identification number♦ 
Random number♦ 
Authentication name♦ 

4. 

The remote client processes the CHAP challenge packet as follows:

Sequential id is run through a MD5 hash generator.♦ 
Random number is run through a MD5 hash generator.♦ 
Authentication name is used to determine the password.♦ 
Password is run through the MD5 hash generator.♦ 

The result is a one−way hash CHAP challenge that will be sent back to the network access
server in a CHAP response packet.

5. 

The CHAP response packet is received by the network access server and the following
occurs:

The sequential id number identifies the original challenge.♦ 
The sequential id number is run through a MD5 hash generator.♦ 
The original random number is run through a MD5 hash generator.♦ 
The authentication name is used to look up a password.♦ 
The password is run through the MD5 hash generator.♦ 
The hash value that was received is then compared against the value the network
access server calculated.

♦ 

6. 

If authentication was successful, a CHAP success packet is built and sent to the remote
client. Likewise, if authentication is unsuccessful, a CHAP failure packet is built and sent to
the remote client.

7. 

CHAP provides protection against playback attacks through the use of a variable challenge value
that is unique and unpredictable. The use of repeated challenges every two minutes during any
CHAP session is intended to limit the time of exposure of any single attack. The access server
controls the frequency and timing of the challenges.
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Authorization

After authentication, a user must be authorized to do certain tasks. Simply put, authorization is the
process of enforcing policies (or giving someone permission to do or have something)—determining
what types or qualities of activities, resources, or services a user is permitted. After authenticating
into a system, for instance, the user may try to issue commands. The authorization process
determines whether the user has the authority to do so. Sometimes, authorization can occur within
the context of authentication. After you have authenticated a user, she needs to be authorized for
different types of access or activity. You configure the network device to control user access to the
network so that users can perform only functions that are deemed to be within the context of their
authentication credentials.

When authorization takes place, a set of attributes describing what actions a user is authorized to
perform is compiled. After a user attempts to gain access to a system, the network device
determines and enforces the permissions of the user based on the authorization information
contained within the database and the user's authentication credentials. The assembled attributes
may be configured in either a local security database or a remote security database, such as a
Cisco Secure ACS server.

Accounting

Accounting, which is the third major requirement in the AAA security system, is the process of
recording what the user does in addition to what the user accesses and for how long. You can also
use accounting to measure the resources users consume during their sessions. This can include
the amount of system time or the amount of data a user has sent and/or received during a session.
Accounting is accomplished through logging of session statistics and usage information, and it's
used for authorization control, billing, trend analysis, resource utilization, and capacity planning
activities, which form an audit trail when combined. All of the information that is gathered during the
accounting phase can be used to provide audit documentation to customers or clients.

An accounting record typically contains the following information:

Username• 
Network address• 
Service accessed• 
Start time, stop time, and date• 
Log origination date and time• 

AAA Protocols

Many protocols require authentication verification before providing authorization and access rights
to the user or device. Each of the protocols that will be discussed in detail in the following sections
is an example of such protocols. TACACS+ and RADIUS are the two predominant protocols
implemented with security servers and used by networking devices. A third protocol, Kerberos, is
used in some enterprise environments to first verify that users and the network services they use
are really who and what they claim to be before granting access privileges. These protocols forward
information between the network device and the security server.

TACACS+

Terminal Access Controller Access Control Plus (TACACS+) is a security server protocol that
enables central control of users attempting to gain access into networking devices. TACACS+ is the
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latest generation of the TACACS protocol, which was developed by the BBN for MILNET. At that
time, TACACS was primarily a User Datagram Protocol (UDP) access−based protocol that
orchestrated user access. There are three versions of TACACS:

TACACS—An industry−standard protocol that forwards usernames and passwords to a
central security server. TACACS is specified in RFC 1492. The original version of TACACS
combined authentication and authorization and was based on the UDP protocol.

• 

XTACACS—An enhanced version of TACACS with extensions that Cisco added (thus, the
"X" for "extension") to support advanced features. The most notable advanced feature is the
added functionality for multiprotocol support and authorization of multifunction connections
with syslog exporting. XTACACS separated authentication, authorization, and accounting. It
has been superseded by TACACS+.

• 

TACACS+—Supported by the Cisco family of routers and access servers beginning in Cisco
IOS release 10.3. TACACS+ is the third generation of Terminal Access Control, which is a
Cisco proprietary client/server protocol. TACACS+ uses TCP as its transport protocol, and
the server daemon usually listens on port 49. Its use originates from the need to manage
and control terminal access. Its functions are based on the classic server/client relationship,
using request and response to determine, in an algorithm format, whether or not users are
authenticated, authorized, and accounted for. This protocol is a completely new version of
the TACACS protocol referenced by RFC 1492.

• 

TACACS+ surpasses TACACS and XTACACS, and furthermore, it's not compatible with its
predecessors, which are considered end of life (EOL) by Cisco and should probably not be
considered for implementation.

TACACS+ Benefits

TACACS+ uses TCP as the communication protocol to communicate between the network device
and the security server on reserved port number 49. TCP, as opposed to UDP, was chosen in part
because of its inherent capability to reliably retransmit data packets. Using MD5, TACACS+ also
encrypts the data payload of the packet. However, the 12−byte header of a TACACS+ packet is
sent in cleartext. Figure 2.3 shows the header of a TACACS+ packet.

Figure 2.3: TACACS+ packet header.
TACACS+ Authentication Process

The TACACS+ protocol forwards many types of username/password information. The information is
encrypted over the network with the MD5 encryption algorithm. TACACS+ authentication also
supports multiple challenge and response demands from the TACACS+ server.

A TACACS+ server can authenticate a user based on its own internal username and password
database, or it can act as a client to authenticate the user based on various other authentication
systems, such as a Windows NT domain controller. The TACACS+ authentication process typically
begins with the network access server sending a START message to the TACACS+ server. The
START packet is always sent only as the first packet in the authentication process or following a
reset.
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Upon receipt of the START packet from the network access server, the TACACS+ server sends a
REPLY packet with the value set to GET USER. This will present the client with a username
prompt. The access server gets the requested information and returns it to the TACACS+ server in
a CONTINUE packet. If the username is found either in the local database on the TACACS+ server
or in an external database, the server sends another REPLY packet with the value set to GET
PASS. This will present the client with a password prompt. The access server again gets the
requested information and returns it to the TACACS+ server in a CONTINUE packet. If the
password is found either in the local database on the TACACS+ server or in an external database
and it creates a match with the corresponding username, the server sends another REPLY
message with the value set to ACCEPT or REJECT. The authentication process is detailed in
Figure 2.4.

Figure 2.4: TACACS+ authentication.
Note One other TACACS+ packet can be returned to the network access server from the security

server. The ERROR packet is sent in the event of an error due to a failed daemon or network
congestion problem during the authentication phase. If the network access server receives an
ERROR packet from the security server, it will attempt to authenticate the client using the next
configured method in the method list.

TACACS+ Authorization Process

Unlike the authentication process, the TACACS+ authorization process defines only two types of
messages, REQUEST and RESPONSE. The authorization process begins with the network access
server sending to the TACACS+ server a REQUEST packet requesting authorization. The
REQUEST packet contains certain values that it sends to the TACACS+ server to distinguish the
user. These values include the following:

Authentication method• 
Privilege level• 
Authentication type• 
Authentication service• 

After receipt of the REQUEST packet from the network access server, the TACACS+ server
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determines the permissions the user has and sends back a RESPONSE packet with bundled
attributes to the network access server. The TACACS+ authorization process can be seen in Figure
2.5.

Figure 2.5: TACACS+ authorization.
TACACS+ Accounting Process

Accounting is usually the final phase of the AAA architecture. The TACACS+ accounting phase and
authorization phase are similar. The accounting process begins with the network access server
sending an accounting REQUEST packet to the TACACS+ server. The REQUEST packet contains
many of the same values that the authorization packet contained. After receiving the REQUEST
packet, the TACACS+ server acknowledges the request with a RESPONSE packet indicating that
all accounting took place correctly.

RADIUS

RADIUS (Remote Access Dial In User Service) is an Internet security protocol originally developed
by Livingston Enterprises. It is defined in RFC 2138 and RFC 2139. RADIUS uses UDP as its
transport protocol and is generally considered to be a connectionless service. RADIUS clients run
on routers and send authentication requests to a central RADIUS server, which contains all the user
authentication credentials. The following list includes some key aspects of RADIUS that have led to
its success:

Open protocol• 
Based on client/server architecture• 
Support for many authentication mechanisms• 
Encrypted transactions between client and server• 
Centralized authentication• 
Interoperability with other protocols• 

RADIUS is a fully open protocol, which means that the source code is freely available and can be
modified to work with any security system on the market. This allows RADIUS to be tailored to suit
the particular needs of a particular environment. RADIUS is based on a client/server model. The
remote machine acts as the client, and the security RADIUS server at the other end handles
authentication.

RADIUS supports the AAA model just as TACACS+ does; however, RADIUS combines
authentication and authorization and separates only accounting. RADIUS is able to interact with
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other authentication protocols, such as TACACS, XTACACS, and TACACS+.

RADIUS Authentication Process

RADIUS supports a variety of methods for authenticating users, in part, because it is an open
protocol. A RADIUS server can authenticate a user based on its own internal username or
password list, or it can act as a client to authenticate the user based on various other authentication
systems, such as a Windows NT domain controller. The method used, of course, depends on a
specific vendor's implementation of RADIUS. Typically, a user login is queried from the network
access server to the RADIUS server and a response is sent from the RADIUS server. The user
login consists of what is commonly referred to as an Access−Request, and the server response is
commonly referred to as an Access−Accept or an Access−Reject. The Access−Request packet
contains the username, encrypted password, IP address, and port. After the RADIUS server
receives the Access−Request packet, it begins to query its database for a matching username and
password pair. If it cannot find a match, the server sends an Access−Reject packet back to the
network access server. If it finds a match, the server sends an Access−Accept packet back to the
network access server. This is detailed in Figure 2.6.

Figure 2.6: RADIUS authentication process.
Note There is a third response a RADIUS server can use: Access−Challenge. A

challenge packet sent from the RADIUS server simply asks the network access
server to gather additional data from the client. Challenge packets are typically
sent during an established session.

RADIUS Authorization Process

As mentioned earlier, RADIUS combines authentication and authorization. But to a small degree,
they are separate. The RADIUS authentication process must be complete before the authorization
process can begin. After the RADIUS server has found within its database a matching pair for the
credentials that were supplied to it from the network access server during the authentication phase,
the RADIUS server returns an Access−Accept response to the network access server. It is at this
point that the RADIUS server bundles within the Access−Accept packet a list of attribute−value
pairs that determine the parameters to be used for this session. (Refer to Figure 2.6 earlier in this
chapter.)
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RADIUS Accounting Process

The network access server and RADIUS server communicate accounting information between one
another on UDP port 1646. It is the network access server's responsibility to send accounting
information to the RADIUS server after initial authentication and authorization is complete, and it
does so by sending an Accounting−Request packet to the server. This is considered the
Accounting−Start packet. Because RADIUS implements services using the UDP protocol (which is
connectionless oriented), the RADIUS server has the responsibility of acknowledging the
Accounting−Request packet with an Accounting−Response packet. When the session is complete,
the network access server sends another Accounting−Request packet to the RADIUS security
server, detailing the delivered service. This is considered the Accounting−Stop packet. Finally, the
RADIUS security server sends an Accounting−Response packet back to the network access server,
acknowledging the receipt of the stop packet. This is detailed in Figure 2.7.

Figure 2.7: RADIUS accounting process.
Cisco Secure Access Control Server

Cisco Secure Access Control Server (ACS) is a scalable, centralized user access control software
package for both Unix and Windows NT. Cisco Secure ACS offers centralized command and control
of all user authentication, authorization, and accounting services via a Web−based, graphical
interface. With Cisco Secure ACS, an enterprise can quickly administer accounts and globally
change levels of security for entire groups of users. The Cisco Secure security server is designed to
ensure the security of your network by providing authentication and authorization services and to
track the activity of the people who connect to the network by providing feature−rich accounting
services. The Cisco Secure security server software supports these features by using either the
TACACS+ or RADIUS protocols. As mentioned, the Cisco Secure ACS software can run on either a
Windows NT server or a Unix server; I'll discuss the Windows NT version.

Cisco Secure ACS for Windows

Cisco Secure ACS supports any network access servers that can be configured with the TACACS+
or RADIUS protocol. Cisco Secure ACS helps to centralize access control and accounting for
dial−up access servers and firewalls and makes it easier to manage access to routers and switches.
Cisco Secure ACS uses the TACACS+ and RADIUS protocols to provide AAA services to ensure a
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secure environment.

Cisco Secure ACS can authenticate users against any of the following user databases:

Windows NT• 
Windows 2000 Active Directory• 
Cisco Secure ACS• 
Novell NetWare Directory Services (NDS), version 4.6 or greater• 
Generic Lightweight Directory Access Protocol (LDAP)• 
Microsoft Commercial Internet System (MCIS)• 
Relational databases fully compliant with Microsoft Open Database Connectivity (ODBC)• 

Cisco Secure ACS Requirements

To install Cisco Secure ACS, you must ensure that the system on which you are installing the
software package meets the minimum system requirements, which are as follows:

Pentium II, 300MHz processor or faster• 
Windows NT Server 4 (with service pack 6a) or Windows 2000 Server• 
128MB RAM; recommended 256MB• 
At least 250MB of free disk space; more if you're using the Cisco Secure local database• 
Minimum resolution of 256 colors for 800×600• 
Microsoft Internet Explorer 4.x or higher or Netscape Communicator 4.x or higher• 
JavaScript enabled• 
Microsoft Internet Information Server for User Changeable Passwords utility (optional)• 

Cisco Secure ACS Architecture

Cisco Secure ACS is designed to be both flexible and modular. Within the context of Cisco Secure
ACS, modular refers to the seven modules that make up the architecture of the AAA server. These
modules are installed as services within Windows NT and can be stopped and started by using the
settings accessed by clicking the Services icon within Control Panel in Windows NT Server. The
modules are described in the following list:

CSAdmin—Cisco Secure is equipped with its own internal Web server and, as such, does
not require the presence of a third−party Web server. CSAdmin is the service that controls
the operation of the internal Web server, allowing users to remotely manage the server via
the Web interface.

• 

CSAuth—CSAuth is the database manager that acts as the authentication and authorization
service. The primary purpose of the CSAuth service is to authenticate and authorize
requests to permit or deny access to users. CSAuth determines if access should be granted
and, if access is granted, defines the privileges for a particular user.

• 

CSTacacs and CSRadius—The CSTacacs and CSRadius services communicate with the
CSAuth module and the network access device that is requesting authentication and
authorization services. CSTacacs is used to communicate with TACACS+ devices and
CSRadius is used to communicate with RADIUS devices. The CSTacacs and CSRadius
services can run at the same time. When only one protocol is used, only the corresponding
service needs to be running; however, the other service will not interfere with normal
operation and does not need to be disabled.

• 

CSLog—CSLog is the service used to capture logging information. It gathers data from the
TACACS+ or RADIUS packet and the CSAuth service and then manipulates the data to be
placed into the comma−separated value (CSV) files for exporting.

• 
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CSMon—CSMon is a service that provides monitoring, recording, notification, and response
for both TACACS+ and RADIUS protocols. The monitoring function monitors the general
health of the machine the application is running on, as well as the application and the
resources that Cisco Secure ACS is using on the server. Recording records all exception
events within the server logs. Notification can be configured to send an email in the event of
an error state on the server, and Response responds to the error by logging the event,
sending notifications, and, if the event is a failure, carrying out a pre−defined or
user−configured response.

• 

CSDBSync—CSDBSync is the service used to synchronize the Cisco Secure ACS database
with third−party relational database management system (RDBMS) system.

• 

Cisco Secure ACS Database

You can configure the Cisco Secure ACS server to use a user−defined database that is local to the
server or you can configure an external user database, such as a Windows NT Server. There are
advantages and disadvantages to each.

When the Cisco Secure ACS server is configured to use the local database for authentication of
usernames and passwords and it receives a request from the network access server, it searches its
local database for the credentials that were supplied in the REPLY packet of the GETUSER packet.
If it finds a match for the GETUSER packet, it compares the values that it receives from the REPLY
packet of the GETPASS packet to the locally configured password for the account. The Cisco
Secure ACS server then returns a pass or fail response to the network access server. After the user
has been authenticated, the Cisco Secure ACS server sends the attributes of authorization to the
network access server. The advantage to using the locally configured database is ease of
administration and speed. The disadvantage is that manual configuration is needed to populate the
database.

You can also configure the Cisco Secure ACS server to authenticate usernames and passwords
credentials against those already defined within a Windows NT or 2000 user database. If the Cisco
Secure ACS server receives a request from the network access server, it searches its local
database to find a match. If it does not find a match and the server is configured to forward requests
to an external user database, the username and password are forwarded to the external database
for authentication. The external database forwards back to the Cisco Secure ACS server a pass or
fail response. If a match is confirmed, the username is stored in the Cisco Secure user database for
future authentication requests; however, the password is not stored. This allows the user to
authenticate much faster for subsequent requests.

In enterprises that have a substantial Windows NT network already installed, Cisco Secure ACS
can leverage the work already invested in building the database without any additional input. This
eliminates the need for separate databases. An added benefit of using an external user database is
that the username and password used for authentication are also used to log into the network. This
allows you to configure the Cisco Secure ACS so that users need to enter their usernames and
passwords only once, thus providing a single login. One of the major disadvantages of using an
external database for authentication is that the Cisco Secure server cannot store any third−party
passwords such as PAP and CHAP passwords. Also, in the event of a network issue that prevents
the Cisco Secure ACS server from receiving a response from the external database for an
authentication request, you could potentially lock yourself out of the network access server because
the user never gets authenticated.
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Immediate Solutions

Configuring TACACS+ Globally

The process for configuring a Cisco router to support the TACACS+ protocol is fairly uniform. The
basic configuration to enable the TACACS+ protocol always includes the following steps; however,
the steps can be accomplished using two different methods. The first method configures TACACS+
globally on the network access server. This method is generally used in environments that use only
one TACACS+ server or in environments in which all TACACS+ servers within the network are
configured to use the same security values. This configuration method is outlined in the following
steps:

Use the aaa new−model global configuration command to enable AAA. This command
establishes a new AAA configuration. The command must be configured if you plan to
support the TACACS+ protocol.

1. 

Use the tacacs−server host <ip address> command to specify the IP address of one or
more TACACS+ servers.

2. 

Set the global TACACS+ authentication key and encryption key using the tacacs−server
key <key> command. The key string configured on the network access server must match
the key string configured on the TACACS+ server or all communication between the devices
will fail.

3. 

The preceding steps include the basic configuration commands needed to enable TACACS+
globally on the network access server. Figure 2.8 illustrates how to configure the network access
server named Seminole to provide TACACS+ services for user James. James is an administrator
who must access the network access server Seminole remotely and perform administrative
functions. The access server Seminole is configured to communicate with the Cisco Secure ACS
server at IP address 192.168.10.4.

Figure 2.8: Single TACACS+ server.
The following configuration commands are needed to configure the router based on the
requirements:

Seminole#config t
Enter configuration commands, one per line. End with CNTL/Z.
Seminole(config)#aaa new−model
Seminole(config)#tacacs−server host 192.168.10.4
Seminole(config)#tacacs−server key 1Cisco9
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In this configuration, the key 1Cisco9 is the encryption key that is shared between router Seminole
and the Cisco Secure server at IP address 192.168.10.4. The encryption key should be kept secret
for privacy reasons because it is encrypted only after it is sent across the network to the Cisco
Secure server but it's not stored in encrypted format on the local device. Issuing the show
running−config command allows you see the results of the preceding configuration:

Seminole#show running−config
!
hostname Seminole
!
aaa new−model
tacacs−server host 192.168.10.4
tacacs−server key 1Cisco9
!

Issuing the show running−config command allows you to review the configuration changes that
were made to the local device; however, a few more commands are needed to verify that the
network access server and TACACS+ server are communicating properly. After you verify that the
configuration changes are correct, the next command you should issue is the show tacacs
command. The output of this command verifies that the network access server and the TACACS+
server are communicating properly. Issuing the show tacacs command will verify that network
access server Seminole in Figure 2.8 is communicating with the TACACS+ server.

Seminole#sh tacacs

Server: 192.168.10.4/49: opens=215 closes=214 aborts=79 errors=4
        packets in=1637 packets out=1930 expected replies=0
        connection 62524500 state=ESTAB

The output of the show tacacs command first lists the TACACS+ server's IP address and the port
number that the router and the TACACS+ server are communicating on; port 49 is the default port
number. The port number may be changed in instances in which the TACACS+ server has been
configured to communicate on a different port number. The values for opens and closes are the
number of times the router opened or closed a session with the TACACS+ server. The most
important output that is displayed by the show tacacs command is the state of the connection. In
the preceding example, the state equals Established. If, for instance, the router and TACACS+
server could not communicate, the following output listed would be seen:

Server: 192.168.10.4/49: opens=0 closes=0 aborts=0 errors=227
        packets in=0 packets out=0 expected replies=0
        no connection

Notice the high number of errors. The number is high because there is no connection between the
router and the TACACS+ server after a determination has been made that the router and the
TACACS+ server are communicating. The command debug tacacs events is needed to make sure
the session communication is functioning properly. The debug tacacs events command displays
the opening and closing of TCP connections to the TACACS+ server and also displays the bytes
written and read during the connection. This output can be seen in Listing 2.1.

Listing 2.1: Debugging TACACS+ events output.

Seminole#debug tacacs events
TACACS+ events debugging is on
Seminole#
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: TAC+: Opening TCP/IP to 192.168.10.4/49 timeout=5
: TAC+: Opened TCP/IP handle 0x47B76A to 192.168.10.4/49
: TAC+: req=6257CD64 Qd id=3392702625 ver=192 handle=0x0 –
  : TAC+: (NONE) expire=4
  AUTHEN/START/LOGIN/ASCII processed
: TAC+: periodic timer stopped (queue empty)
: TAC+: periodic timer started
: TAC+: 192.168.10.4 req=6257CD64 Qd id=3392702625 ver=192 –
  : TAC+: handle=0x0 (NONE) expire=5
  AUTHEN/START/LOGIN/ASCII queued
: TAC+: 192.168.10.4 ESTAB id=3392702625 wrote 37 of 37 bytes
: TAC+: 192.168.10.4 req=6257CD64 Qd id=3392702625 ver=192 –
  : TAC+: handle=0x0 (NONE)expire=4
  AUTHEN/START/LOGIN/ASCII sent
: TAC+: 192.168.10.4 ESTAB read=12 wanted=12 alloc=55 got=12
: TAC+: 192.168.10.4 ESTAB read=28 wanted=28 alloc=55 got=16
: TAC+: 192.168.10.4 received 28 byte reply for 6257CD64 –
  : TAC+: id=3392702625
: TAC+: req=6257CD64 Tx id=3392702625 ver=192 handle=0x0 –
  : TAC+: (NONE) expire=4
  AUTHEN/START/LOGIN/ASCII processed
: TAC+: periodic timer stopped (queue empty)
: TAC+: periodic timer started
: TAC+: 192.168.10.4 req=6252CD78 Qd id=3392702625 ver=192 –
  : TAC+: handle=0x0 (NONE)expire=5AUTHEN/CONT queued
: TAC+: 192.168.10.4 ESTAB id=3392702625 wrote 24 of 24 bytes
: TAC+: 192.168.10.4 req=6252CD78 Qd id=3392702625 ver=192 –
  : TAC+: handle=0x0 (NONE)expire=4
  AUTHEN/CONT sent
: TAC+: 192.168.10.4 ESTAB read=12 wanted=12 alloc=55 got=12
: TAC+: 192.168.10.4 ESTAB read=28 wanted=28 alloc=55 got=16
: TAC+: 192.168.10.4 received 28 byte reply for 6252CD78 –
  : TAC+: id=3392702625
: TAC+: req=6252CD78 Tx id=3392702625 ver=192 handle=0x0 –
  : TAC+: (NONE) expire=4
  AUTHEN/CONT processed
: TAC+: periodic timer stopped (queue empty)
: TAC+: periodic timer started
: TAC+: 192.168.10.4 req=6257CD64 Qd id=3392702625 ver=192 –
  : TAC+: handle=0x0 (NONE)expire=5
  AUTHEN/CONT queued
: TAC+: 192.168.10.4 ESTAB id=3392702625 wrote 27 of 27 bytes
: TAC+: 192.168.10.4 req=6257CD64 Qd id=3392702625 ver=192 –
  : TAC+: handle=0x0 (NONE)expire=4
  AUTHEN/CONT sent
: TAC+: 192.168.10.4 ESTAB read=12 wanted=12 alloc=55 got=12
: TAC+: 192.168.10.4 ESTAB read=18 wanted=18 alloc=55 got=6
: TAC+: 192.168.10.4 received 18 byte reply for 6257CD64 –
  : TAC+: id=3392702625
: TAC+: req=6257CD64 Tx id=3392702625 ver=192 –
  : TAC+: handle=0x0 (NONE) expire=3
  AUTHEN/CONT processed
: TAC+: periodic timer stopped (queue empty)

Configuring TACACS+ Individually

The second method used to enable TACACS+ allows a finer granularity of control in specifying
features on a per−security−server basis. This method is generally used in environments that use
multiple TACACS+ servers, and each server is configured to use separate values. Use the following
steps to enable this method of TACACS+ configuration:
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Use the aaa new−model global configuration command to enable AAA. This command
establishes a new AAA configuration. The command must be configured if you plan to
support the TACACS+ protocol.

1. 

Use the following command to specify the IP address of one or more TACACS+ servers:

tacacs−server host hostname <single−connection> <port integer>
<timeout <integer> <key string>

The network access server searches for the hosts in the order specified; this feature allows
you to set up a list of preferred servers.

2. 

The optional single−connection argument specifies that the network access server should
maintain a single connection to the TACACS+ server as opposed to having the network access
server open and close a TCP connection to the daemon process on the TACACS+ server each time
it needs to communicate with the server. This allows the daemon process on the TACACS+ server
to handle a higher number of TACACS+ operations. The default TCP port the network access
server uses to communicate with the TACACS+ server may be changed using the portinteger
argument. If this argument is not specified, the default TCP port 49 is used. The timeout integer
argument allows the network access server to specify the period of time it will wait for a response
from the TACACS+ server daemon before it times out and declares an error; the default is set to 5
seconds. The key string argument allows for specification of an encryption key for encrypting and
decrypting all traffic between the network access server and the TACACS+ daemon. The key string
configured on the network access server must match the key string configured on the TACACS+
server or all communication between the devices will fail.

As mentioned, there are two different methods used to enable the TACACS+ process on a Cisco
router. The Cisco IOS allows you to configure many values at a global level, which affects all other
related values configured on the router. The method detailed in this section allows you to enhance
security on your network by uniquely configuring individual TACACS+ connections for multiple
servers and applying separate values for each server. Use the preceding configuration in instances
in which your network has many independent TACACS+ servers and each server has different
values configured.

Note Some of the parameters of the tacacs−server host command override other globally
configured TACACS+ commands.

Figure 2.9 shows another TACACS+ server added to the local network. The new TACACS+ server
has an IP address of 192.168.10.5. This server is configured to use a different key value and
timeout value than the server located at IP address 192.168.10.4:

config t

aaa new−model
tacacs−server host 192.168.10.4 single−connection key 1Cisco9
tacacs−server host 192.168.10.5 single−connection timeout 15 –
  key 2Systems8
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Figure 2.9: Multiple TACACS+ servers.
This configuration names two TACACS+ servers: 192.168.10.4 and 192.168.10.5. TACACS+ server
192.168.10.4 is configured as it was in the global configuration; only the single−connection option
has been added to the configuration. However, the 192.168.10.5 server has been added to the
network and the values that the network access server needs to have configured are different for
this server. Notice the timeout value—the network access waits for a response from the security
server according to the timeout value, which has been changed from the default value of 5 seconds
to a value of 15 seconds. The encryption key and authentication that is used to communicate with
this server has been changed as well. Issuing the show running−config command allows you to
view the results of the configuration:

Seminole#show running−config
!
hostname Seminole
!
aaa new−model
tacacs−server host 192.168.10.4 single−connection key 1Cisco9
tacacs−server host 192.168.10.5 single−connection timeout –
  15 key 2Systems8
!

After you verify that the configuration changes are correct, the next command you should issue is
the show tacacs command. The output of this command verifies that the network access server
and the TACACS+ server are communicating properly. Here is the output of the sh tacacs
command:

Seminole#sh tacacs

Server: 192.168.10.4/49: opens=127 closes=126 aborts=24 errors=1
        packets in=1083 packets out=1233 expected replies=0
        connection 623F8098 state=ESTAB

Server: 192.168.10.5/49: opens=1 closes=0 aborts=0 errors=0
        packets in=14 packets out=14 expected replies=0
        connection 623FFC28 state=CLOSEWAIT
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Configuring RADIUS Globally

The configuration of RADIUS is almost identical to the configuration of TACACS+. RADIUS can be
configured on a global basis, which is generally used in environments that use one RADIUS server
or in environments in which all RADIUS servers within the network are configured to use the same
security values. To configure RADIUS on the network access server, you must perform the following
steps (note Steps 4 through 6 are optional):

Use the aaa new−model global configuration command to enable AAA. This command
establishes a new AAA configuration. The command must be configured if you plan to
support the RADIUS protocol.

1. 

Use the following command to configure the IP address or hostname of the RADIUS server:

radius−server host <hostname|ip−address>

2. 

Use this command to define the secret encryption key that is shared between the network
access server and the RADIUS server:

radius−server key <0 string|7 string|string>

3. 

Use the radius−server retransmit <retries> command to specify how many times the router
transmits each RADIUS request to the server before giving up.

4. 

Use the radius−server timeout <second> command to specify how many seconds a router
waits for a reply to a RADIUS request before retransmitting the request.

5. 

Use the radius−server deadtime <minutes> command to specify how many minutes should
pass before a RADIUS server that is not responding to authentication requests is passed
over by requests for RADIUS authentication.

6. 

The preceding steps include the basic configuration commands needed to enable RADIUS globally
on the network access server. Continuing with the example in Figure 2.8, the network access server
named Seminole should now be configured to provide RADIUS services for user James. The
access server Seminole is configured to communicate with the Cisco Secure ACS server at IP
address 192.168.10.4.

The following configuration commands are needed to configure the router based on the
requirements:

Seminole#config t
Enter configuration commands, one per line. End with CNTL/Z.
Seminole(config)#aaa new−model
Seminole(config)#radius−server host 192.168.10.4
Seminole(config)#radius−server key 1Cisco9

Notice the similarities between the global configuration of TACACS+ and the global configuration of
RADIUS. In the preceding configuration, the key 1Cisco9 is the encryption key that is shared
between router Seminole and the Cisco Secure server at IP address 192.168.10.4. Issuing the
show running−config command allows you to see the results of the preceding configuration:

Seminole#show running−config
!
hostname Seminole
!
aaa new−model
radius−server host 192.168.10.4
radius−server key 1Cisco9
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!

By issuing the show running−config command, you can review the configuration changes that
were made to the local device; however, a few more commands are needed to verify that the
network access server and the RADIUS server are communicating properly. After you verify that the
configuration changes are correct, the next command you should issue is the debug radius
command. The output of this command verifies that the network access server and the RADIUS
server are communicating properly. The output of the debug radius command verifies that the
network access server and the RADIUS server are communicating properly; the following lines
show that the network access server Seminole in Figure 2.8 is communicating with the RADIUS
server:

Seminole#debug radius
: Radius:  IPC send 0.0.0.0/1645, Access−Request, id 0xB, len 52
: Attribute 4 6 AB187D5B
: Attribute 5 6 0000000B
: Attribute 2 6 0212D3C2
: Attribute 2 18 D21512AC
: Radius: Received from 192.168.10.4:1645, Access−Accept,
  : id 0xB, len 24

The output of the debug radius command displays the attribute values that are carried in the
RADIUS Access−Request packet and the length of the packet. The last line in the output displays
the packet that is received from the RADIUS server and the Access−Accept value being returned to
the network access server. If, however, the RADIUS server and the network access server could
not communicate properly, the output from the debug radius would resemble this output:

: Radius:  IPC Send 0.0.0.0:1645, Access−Request, id 0xA, len 57
: Attribute 4 6 AC150E5A
: Attribute 5 6 0000000A
: Attribute 1 7 62696C6C
: Attribute 2 18 49C28F6C
: Radius: Received from 192.168.10.4:1645, Access−Reject,
  : id 0xA, len 20
: Radius: Reply for 4 fails decrypt

Configuring RADIUS Individually

As with TACACS+, RADIUS allows a finer granularity of control in specifying features on a
per−security−server basis. This method of RADIUS configuration is generally used in environments
that utilize multiple RADIUS servers and each server is configured to use separate values. Follow
these steps to enable this method of RADIUS configuration:

Use the aaa new−model global configuration command to enable AAA. This command
establishes a new AAA configuration. The command must be configured if you plan to
support the RADIUS protocol.

1. 

Use the following command to specify the IP address of one or more RADIUS servers:

radius−server host {hostname|ip−address} <auth−port –

2. 
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port−number> <acct−port port−number> <timeout seconds> −
  <retransmit retries> <key string> <alias –
  {hostname|ip address}>

The network access server searches for the hosts in the order specified; this feature allows
you to set up a list of preferred servers.

The IP address parameter above specifies the IP address or hostname of the remote RADIUS
server host and assigns authentication and accounting destination port numbers. The auth−port
port−number option allows the administrator to configure on this RADIUS server a specific UDP port
to be used solely for authentication. This port number defaults to 1645 if it is not explicitly
configured. The acct−port port−number option allows the administrator to configure on this
RADIUS server a specific UDP port to be used solely for accounting. This port number defaults to
1646 if it is not explicitly configured. Use the alias keyword to configure up to eight multiple IP
addresses for use when referring to RADIUS servers. Set the timeout, retransmit, and encryption
key values to use with the specific RADIUS host.

The Cisco IOS allows you to configure many values at a global level; these values affect all other
related values configured on the router. The method detailed in the preceding steps allows you to
enhance security on your network by uniquely configuring individual RADIUS connections for
multiple servers and applying separate values for each server. Use the preceding configuration
steps in instances in which your network has many independent RADIUS servers and each server
has different values configured.

The following example configures two servers with separate values (refer back to Figure 2.9); the
servers should now be configured to support RADIUS as opposed to TACACS+:

#config t
#aaa new−model
#radius−server host 192.168.10.4 timeout 20 key 1Cisco9
#radius−server host 192.168.10.5 timeout 45 key 2Systems8

The server with the IP address 192.168.10.4 is configured with a timeout value of 20 and a key
value of 1Cisco9. However, the server with the IP address 192.168.10.5 is configured with different
values. It is configured with a higher timeout value of 45 and a separate key value of 2Systems8.
Issuing the show running−config command allows you to view the results of the preceding
configuration:

Seminole#show running−config
!
hostname Seminole
!
aaa new−model
radius−server host 192.168.10.4 auth−port 1645 acct−port 1646 –
  timeout 20 key 1Cisco9
!
radius−server host 192.168.10.5 auth−port 1645 acct−port 1646 –
  timeout 45 key 2Systems8
!
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After verifying that the configuration changes are correct, you should issue the debug radius
command. The output of this command verifies that the network access server and the TACACS+
server are communicating properly:

Note Use debug commands with great care. In general, it is recommended that these commands
only be used under the direction of a technical support representative when troubleshooting
specific problems. Enabling debugging can disrupt operation of the router when networks are
experiencing high load conditions.

Seminole#debug radius
: Radius:  IPC send 0.0.0.0/1645, Access−Request, id 0xB, len 52
: Attribute 4 6 AB187D5B
: Attribute 5 6 0000000B
: Attribute 2 6 0212D3C2
: Attribute 2 18 D21512AC
: Radius: Received from 192.168.10.4:1645, Access−Accept,
  : id 0xB, len 24
!
: Radius:  IPC Send 0.0.0.0:1645, Access−Request, id 0xB, len 56
: Attribute 4 6 AB246E4C
: Attribute 5 6 0000000A
: Attribute 1 6 62696C6C
: Attribute 2 18 C22631BD
: Radius: Received from 192.168.10.5:1645, Access−Accept,
  : id 0xB, len 26
!

Configuring Authentication

After you enable TACACS+ or RADIUS globally on the network device, you must define the
authentication methods used to verify users before they are allowed access to the network and
network services. To configure AAA authentication, first define a named list of authentication
methods and then apply that list to the correct interfaces. The method list defines the types of
authentication to be performed and the sequence in which they will be performed; it must be applied
to a specific interface before any of the defined authentication methods will be performed. The
default method list, however, is an exception; it is automatically applied to all interfaces except
those that have a named method list explicitly defined on them. A defined method list overrides the
default method list.

A method list is a sequential list that describes the authentication methods to be used to
authenticate a user. Cisco IOS software uses the first configured method listed to authenticate
users. If that method fails to respond or returns an error, it selects the next authentication method
listed in the method list. This process continues until there is successful communication with a listed
authentication method or until all methods defined in the method list are exhausted.

Note The Cisco IOS software attempts authentication with the next configured
authentication method only when there is no response from the preceding method
or the method returns an error.

To configure AAA authentication, perform the following steps:

Enable AAA by using the aaa new−model global configuration command and configuring
any security protocol parameters, such as the key value. This step was outlined earlier in the
sections on configuring TACACS+ and RADIUS.

1. 

Define the method lists for authentication by using the following command:2. 
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aaa authentication <arap|login|enable|ppp|nasi> <default| −
list−name> group <method1> <method2> <method3> −

  <method4>

Apply the method lists to a particular interface or line, using the following command:

login authentication {default|list name}

3. 

The aaa authentication command authenticates arap, login, enable, ppp, and nasi connections. As
an example of how to configure these connections, router Seminole in Figure 2.8 will be configured
to authenticate user James for Telnet access via the security server at IP address 192.168.10.4. All
other lines will use the default list. Listing 2.2 displays the configuration commands needed to
enable Seminole to authenticate James for Telnet access via the TACACS+ server.

Listing 2.2: Router Seminole authentication configuration.

#aaa new−model
#tacacs−server host 192.168.10.4
#tacacs−server key 1Cisco9
#aaa authentication login TELNET group tacacs −
  local enable none
#aaa authentication login ADMIN none
#line con 0
#login authentication ADMIN
#line vty 0 4
#login authentication TELNET
#end

The configuration in Listing 2.2 creates a list named TELNET and defines four methods that should
be used to authenticate the virtual terminal lines that are configured to use the list. The console port
will use the method list named ADMIN, which specifies that no authentication is to take place.
Listing 2.3 is part of the output from the command debug aaa authentication, which is used to
verify whether the login attempt from user James was successful. This output also indicates that
TACACS+ is the authentication method used by the router.

Listing 2.3: Successful login authentication output.

Seminole#debug aaa authen
AAA Authentication debugging is on
Seminole#
: AAA: parse name=tty2 idb type=−1 tty=−1
: AAA: name=tty2 flags=0x11 type=5 shelf=0 slot=0 adapter=0 –
: port=2 channel=0
: AAA/MEMORY: create_user (0x62527B28) user='' ruser='' –
    port='tty2' rem_addr='192.168.11.45' authen_type=ASCII –
    service=LOGIN priv=1

: AAA/AUTHEN/START (3898654566): port='tty2' list='TELNET' –
    action=LOGINservice=LOGIN: AAA/AUTHEN/START : found list –
    TELNET
: AAA/AUTHEN/START (3898654566): Method=tacacs+ (tacacs+)
: TAC+: send AUTHEN/START packet ver=192 id=3898654566
: TAC+: ver=192 id=3898654566 received AUTHEN status = GETUSER
: AAA/AUTHEN (3898654566): status = GETUSER
: AAA/AUTHEN/CONT (3898654566): continue_login (user='(undef)')
: AAA/AUTHEN (3898654566): status = GETUSER
: AAA/AUTHEN (3898654566): Method=tacacs+ (tacacs+)
: TAC+: send AUTHEN/CONT packet id=3898654566
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: TAC+: ver=192 id=3898654566 received AUTHEN status = GETPASS
: AAA/AUTHEN (3898654566): status = GETPASS
: AAA/AUTHEN/CONT (3898654566): continue_login (user='James')
: AAA/AUTHEN (3898654566): status = GETPASS
: AAA/AUTHEN (3898654566): Method=tacacs+ (tacacs+)
: TAC+: send AUTHEN/CONT packet id=3898654566
: TAC+: ver=192 id=3898654566 received AUTHEN status = PASS
: AAA/AUTHEN (3898654566): status = PASS
: TAC+: (4047621580): received author response status = PASS_ADD

Notice that the first few lines of the output determine that a connection has been requested on port
tty2 and the authentication list named TELNET is defined on the line for LOGIN services. The router
then begins to read through its configured lists to find a match for TELNET. Upon finding the list
named TELNET, the router determines that the authentication method that should be used to
authenticate the user is method TACACS+. The router then receives a request from the security
server to retrieve the username from the user requesting access with the GETUSER request. The
process continues with the security server, and then the router is asked to supply a password for
the user. After verifying the supplied credentials, the security server responds with a PASS status
packet and the user has been authenticated.

If, for instance, user James fails the authentication process, the response that is generated by the
router would resemble the output in Listing 2.4

Listing 2.4: Failed login authentication output.

: AAA: parse name=tty2 idb type=−1 tty=−1
: AAA: name=tty2 flags=0x11 type=5 shelf=0 slot=0 adapter=0 –
  port=2 channel=0
: AAA/MEMORY: create_user (0x6257E6A8) user='' ruser='' –
  port='tty2'
  rem_addr='192.168.11.45' authen_type=ASCII service=LOGIN –
  priv=1
: AAA/AUTHEN/START (2841923342): port='tty2' list='TELNET' –
  action=LOGINservice=LOGIN: AAA/AUTHEN/START : found list –
  TELNET
: AAA/AUTHEN/START (2841923342): Method=tacacs+ (tacacs+)
: TAC+: send AUTHEN/START packet ver=192 id=2841923342
: TAC+: ver=192 id=2841923342 received AUTHEN status = GETUSER
: AAA/AUTHEN (2841923342): status = GETUSER
: AAA/AUTHEN/CONT (2841923342): continue_login (user='(undef)')
: AAA/AUTHEN (2841923342): status = GETUSER
: AAA/AUTHEN (2841923342): Method=tacacs+ (tacacs+)
: TAC+: send AUTHEN/CONT packet id=2841923342
: TAC+: ver=192 id=2841923342 received AUTHEN status = GETPASS
: AAA/AUTHEN (2841923342): status = GETPASS
: AAA/AUTHEN/CONT (2841923342): continue_login (user='James')
: AAA/AUTHEN (2841923342): status = GETPASS
: AAA/AUTHEN (2841923342): Method=tacacs+ (tacacs+)
: TAC+: send AUTHEN/CONT packet id=2841923342
: TAC+: ver=192 id=2841923342 received AUTHEN status = FAIL
: AAA/AUTHEN (2841923342): status = FAIL
: AAA/MEMORY: free_user (0x6257E6A8) user='James' ruser='' –
  port='tty2' rem_addr='192.168.11.45' authen_type=ASCII –
  service=LOGIN priv=1

As explained in Chapter 1, Cisco routers have different modes of operation. These modes are
generally protected with passwords so that certain users cannot just walk up and gain access to the

66



router. The enable password and enable secret password are frequently configured to secure
privileged mode access into a Cisco router. Although it's a good start, there are some limitations to
using this method alone. This method of security is burdensome to administer in enterprises that
contain hundreds of routers. For instance, if the password needs to be changed for any reason,
someone either has to physically go to each router and plug into it to change the password or has to
telnet to each router. The point is that this could become an administrative nightmare. Another
drawback to using this method is that the password must be known by all users who need access
into the router. Fortunately, Cisco routers can be configured to authenticate a user via a security
server for privileged mode access. This allows administrators to change the password in one place,
giving them centralized control. In environments that use an external Windows NT/2000 database
for authentication, each user has control of his or her own enable password.

Continuing with the authentication example, the router Seminole should be configured to
authenticate users via the security server for privileged mode access. This can be accomplished
using the following configuration commands:

#config t
#aaa authentication enable default group tacacs+ enable none
#end
#

The configuration commands in Listing 2.4 configure the router to authenticate privileged mode
access using the TACACS+ method; if the security server returns an error, then authenticate the
user using the configured enable password. After initiating a Telnet session to the router, James
now must enter enable mode. Listing 2.5 shows the output when James accesses privileged mode
is shown in.

Listing 2.5: Authentication debug output.

Seminole>en
Password:
Seminole#
: AAA/MEMORY: dup_user (0x6255EA00) user='James' ruser='' –
  port='tty2' rem_addr='192.168.11.45' authen_type=ASCII –
  service=ENABLE priv=15 source='AAA dup enable'
: AAA/AUTHEN/START (757557072): port='tty2' list='' −
  action=LOGIN service=ENABLE
: AAA/AUTHEN/START (757557072): using "default" list
: AAA/AUTHEN/START (757557072): Method=tacacs+ (tacacs+)
: TAC+: send AUTHEN/START packet ver=192 id=757557072
: TAC+: ver=192 id=757557072 received AUTHEN status = GETPASS
: AAA/AUTHEN (757557072): status = GETPASS
: AAA/AUTHEN/CONT (757557072): continue_login (user='James')
: AAA/AUTHEN (757557072): status = GETPASS
: AAA/AUTHEN (757557072): Method=tacacs+ (tacacs+)
: TAC+: send AUTHEN/CONT packet id=757557072
: TAC+: ver=192 id=757557072 received AUTHEN status = PASS
: AAA/AUTHEN (757557072): status = PASS
: AAA/MEMORY: free_user (0x6255EA00) user='James' ruser='' –
  port='tty2' rem_addr='10.191.150.45' authen_type=ASCII –
  service=ENABLE priv=15

In the first line, the router determines that the user logging in is a duplicate user who is requesting
enable mode access. The router knows that the user is a duplicate user because after the user is
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successfully authenticated, the router caches the supplied username credential. After receiving the
GETPASS from the security server, the router prompts James to enter his password and passes
the value back to the security server. The security server then sends the Pass or Fail status to the
router.

Prior to Cisco IOS 12.0, there were instances when an administrator could accidentally lock himself
out of his network access server with an incorrect AAA configuration. In order to remedy this
problem, Cisco developed the aaa authentication local−override command. This command
proved to be very useful when you wanted to configure an override to the normal authentication
method list processing the network access server performed for certain personnel, such as system
administrators. With the override command configured, the user was always prompted for his
username. The system then checked to see if the username that was entered corresponded to a
local account configured with the following command:

username name privilege level password password

If the username does not correspond to one in the local database, login proceeds with the methods
configured with other aaa commands (such as aaa authentication login). An example of
configuring the local−override feature is shown here:

Seminole# config t
Enter configuration commands, one per line. End with CNTL/Z.
Seminole(config)#aaa authentication local−override
Seminole(config)#end
Seminole#

The result of configuring the local−override command can be viewed by using the show
running−config command:

Seminole#show running−config
Building configuration...
!
Current configuration:
!
version 11.2
aaa new−model
aaa authentication local−override
!

However, with newer 12.0+ code, the aaa authentication local−over−ride is no longer a
configuration option. This can be verified using the following method.

Seminole#config t
Enter configuration commands, one per line. End with CNTL/Z.
Seminole(config)#aaa authen
Seminole(config)#aaa authentication ?
  arap             Set authentication lists for arap.
  banner           Message to use when starting login.
  enable           Set authentication list for enable.
  fail−message     Message to use for failed authentication.
  login            Set authentication lists for logins.
  nasi             Set authentication lists for NASI.
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  password−prompt  Text to use when prompting for a password.
  ppp              Set authentication lists for ppp.
  username−prompt  Text to use when prompting for a username.

With 12.0+ code, when access to the network access devices is critical at all times and
administrators need the same functionality they get when they use the local−override command,
you can configure a default method of access into the network access device. This can be
accomplished using the following command:

#config t
#aaa authentication login default local group tacacs enable line
Seminole#

This example provides the same features that the aaa authentication local−override command
provided. For login authentication, the network access server will first check the default method that
is configured to authenticate the remote user (in this case, it's the local database). Then, if the
username is not found in the local database, the network access server will attempt to authenticate
the user using the first method configured in the method list—in this case, TACACS+. If the
TACACS+ server returns an error to the network access server, the network access server will then
try the next method configured—in this case, the enable password—in an attempt to authenticate
the user.

Configuring PAP and CHAP Authentication

The CHAP and PAP protocols are supported on synchronous and asynchronous serial interfaces.
When using CHAP or PAP authentication, each router or access server uses a name to identify
itself. This identification process prevents a router from placing another call to a router it's already
connected to, and it also prevents unauthorized access. Access control using CHAP or PAP is
available on all serial interfaces that use PPP encapsulation. To use the features of PAP and
CHAP, perform the following steps:

Enable PPP encapsulation on an interface using the interface configuration mode
encapsulation ppp command.

1. 

Enable CHAP or PAP authentication on the interface configured for PPP encapsulation by
using the following command in interface configuration mode:

ppp authentication {chap|chap pap|pap chap|pap} [if−needed]
  [list−name|default] [callin]

2. 

Configure the appropriate usernames and passwords using this command:

username name <user−maxlinks link−number> password <secret>

The passwords are case sensitive and must be identical at both ends.

3. 

Figure 2.10 lists three users who need secure remote access to the corporate office. The users
remotely connect to the corporate network and are authenticated via CHAP. The configuration of
the network access server is shown in Listing 2.6.
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Figure 2.10: Remote client PPP connection.
Listing 2.6: PPP network access server.
!
hostname Seminole
!
username james password letmein
username admin password admin
username john password cto
!
interface Ethernet0
 ip address 192.168.10.1 255.255.255.0
!
interface Group−Async1
 encapsulation ppp
 async mode interactive
 peer default ip address pool remote−users
 ppp authentication pap
 group−range 1 16
!
ip local pool remote−users 192.168.39.239 192.168.39.254

!
line 1 16
 login local
 autoselect during−login
 autoselect ppp
 modem InOut
 transport input all

The configuration in Listing 2.6 defines three users with separate passwords. Interface
group−assync1 is configured for PPP as the encapsulation protocol, and the method of
authentication is PAP. The group−range command under interface group−async1 defines the
lines that are part of the group−async1 interface. Notice that PAP was chosen as the
authentication protocol; CHAP could have been specified instead using the ppp authentication
chap command. In environments that support both PAP and CHAP, the access server attempts to
authenticate a user with the first configured authentication method; if that method fails or if the client
device does not support the first authentication method, the access server will attempt to use the
next configured method. This is accomplished using the following command:

ppp authentication chap pap
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However, the example in Listing 2.6 can sometimes become a burden because of the overhead of
maintaining a local security database on the network access server. In environments in which there
is the potential to have hundreds, maybe even thousands of remote clients connecting to the access
server, the local security database method is not feasible because of scalability issues. Fortunately,
in environments that use the services of a central security database, like the Cisco Secure ACS
server, the authentication process can be offloaded to the Cisco Secure ACS server. As an
example, the network access server in Figure 2.10 will be configured to authenticate the users via
the AAA security server. Listing 2.7 details the configuration needed to enable authentication via the
AAA security server.

Listing 2.7: Remote authentication using TACACS+.

!
hostname Seminole
!
aaa new−model
aaa authentication login default group tacacs+ enable local none
aaa authentication login ADMIN none
aaa authentication ppp default if−needed group tacacs+ −
  local enable
!
username admin password admin
!
interface Ethernet0
ip address 192.168.10.1 255.255.255.0
!
interface Serial0:23
no ip address
encapsulation ppp
!
interface Group−Async1
ip unnumbered Ethernet0
encapsulation ppp
ip tcp header−compression passive
async mode interactive
peer default ip address pool IP
ppp callback accept
ppp authentication chap
group−range 1 16
!
ip local pool IP 192.168.10.239 192.168.10.254
!

tacacs−server host 192.168.10.4 single−connection timeout 10 –
key 1Cisco9
!
line con 0
login authentication ADMIN
line 1 16
modem InOut
autoselect during−login
autoselect ppp

This configuration authenticates the remote clients via the TACACS+ server prior to authorizing and
accounting the users.

Related solution: Found on page:
Configuring Console Security 13
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Configuring Authorization

AAA authorization provides administrators with the power to limit the services that are available to
users. After authorization is enabled, the network access server uses the authorization information
that was supplied to it by the security server based on the user's profile. This allows the network
access server to limit the access granted to the user based on the information in the user's profile.

Just as with authentication method lists are used to define the ways and the sequence in which
authorization will be performed. Method lists enable you to designate one or more security protocols
to be used for authorization, thus ensuring a backup system in case the initial method fails. Cisco
IOS software uses the first method listed to authorize users for specific network services; if that
method fails to respond, the Cisco IOS software selects the next method listed in the method list.
This process continues until there is successful communication with a listed authorization method or
until all methods defined are exhausted.

Use the aaa authorization global configuration command to define the parameters that determine
what clients are allowed to do. To configure authorization, perform the following steps (Steps 4 and
5 are optional):

Enable AAA by using the aaa new−model global configuration command and configuring
any security protocol parameters, such as the key value. This step and the steps used to
configure the key value were outlined in the sections on configuring TACACS+ and RADIUS.

1. 

Configure AAA authentication as described in the "Configuring Authentication" section.
Authorization generally takes place after authentication and relies on authentication to work
properly.

2. 

Use the following command to enable authorization:

aaa authorization <auth−proxy|network|exec|commands> −
  <level|reverse−access|configuration|ipmobile>
  <default|list−name> group <if−
authen|none|local|tacacs+|radius>

3. 

Define the rights associated with specific users by using the username command if you are
using local authorization.

4. 

Use the no aaa authorization config−commands command to stop the network access
server from attempting configuration command authorization. There are some configuration
commands that are identical to some EXEC−level commands; this can cause some
confusion in the authorization process because the aaa authorization command with the
keyword commands attempts authorization for all EXEC−level commands; this includes
global configuration commands associated with a specific privilege level.

5. 

The command parameters listed in Step 3 are described in Table 2.1.

Table 2.1: Authorization command parameters.

Command Description

Author−proxy Used to apply policies to specific users
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Network Used for network services, such as PPP

Exec Used for starting the EXEC process

Commands Used for EXEC mode commands

Reverse−access Used for reverse Telnet sessions, such as on a terminal server

Configuration Used for downloading configurations from the security server

Ipmobile Used for IP mobile services

If−authenticated Allows user to access function if the user is already authenticated

None No authorization performed

Local Uses the local database for authorization

tacacs+ Uses the TACACS+ database for authorization

radius Uses the RADIUS database for authorization

Figure 2.10 displays a network in which multiple users are connected to the corporate office via
dial−up and the Internet. After the initial authentication phase, limitations must be placed on each
user's session for security purposes. Some users should be allowed full access to the network and
networking devices; such is the case with administrators. Other remote users need to be provided
with the services that are deemed necessary to perform their job functions. This is done through the
use of authorization. Continuing with the examples that were discussed in the section on configuring
authentication, the network access server should be configured so that all users connecting to the
network are authorized for the proper services via the security server. This can be accomplished
using the configuration in Listing 2.8.

Listing 2.8: Authorization configuration.

#config t
#username James privilege 15 password letmein
#username admin privilege 15 password adim
#username John privilege 15 password cto
#aaa authorization exec default if−authenticated tacacs+ local
#aaa authorization exec ADMIN_ONLY none
#aaa authorization commands 15 ADMIN if−authenticated tacacs+
#aaa authorization commands 8 Associate tacacs+ local none
#aaa authorization network default tacacs+ local none
# line con 0
#authorization exec ADMIN_ONLY
#end
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The configuration in Listing 2.8 defines three users within the local security database of the network
access server. The first authorization command uses the default method list to authorize the EXEC
process for all interfaces and lines if the user has already been authenticated during the
authentication phase. The second authorization command is applied to the console port of the
network access server and overrides the default method list. It creates a named method list called
ADMIN_ONLY and specifies that no authorization is to take place. The third authorization command
creates a method list named ADMIN and authorizes all level 15 commands if the remote client has
already authenticated. If the remote client has not already authenticated, the access server will
attempt to authorize the remote client via the TACACS+ security server. If the access server does
not receive a response from the security server, it will attempt to authorize the remote client using
the locally configured database. The fourth authorization command is similar to the second, only it is
authorizing all commands associated with level 8 privileges. The final authorization command that is
configured uses the default method list to authorize all network services the remote client attempts
to use. It accomplishes this by authorizing the remote client using the configured TACACS+ security
server, and if there is no response from the security server, it will attempt to authorize the client by
looking into its locally configured security database.

Consider this scenario: James is at home one night watching a really close football game on the
television (it's a two−point game in the fourth quarter with two minutes to go), and all at once, the
phone rings—it is someone from his network operations center calling to inform him that she is
having an issue with a couple of devices on the network. James dials into the network to have a
look around. After he connects to the network access server and it uses the configured methods of
authentication to authenticate him, James enters privileged mode on the network access server.
The process the network access server used to authorize James can be seen in the output of
Listing 2.9, using the debug aaa authorization command.

Listing 2.9: Authorization process.

Seminole#debug aaa authorization
AAA Authorization debugging is on\
Seminole#
: AAA: parse name=tty2 idb type=−1 tty=−1
: AAA: name=tty2 flags=0x11 type=5 shelf=0 slot=0 adapter=0 −
  port=2 channel=0
: AAA/MEMORY: create_user (0x6251D064) user='' ruser='' −
  port='tty2' rem_addr='192.168.11.45' authen_type=ASCII −
  service=LOGIN priv=1
: tty2 AAA/AUTHOR/EXEC (2897440801): Port='tty2' list='' −
  service=EXEC
: AAA/AUTHOR/EXEC: tty2 (2897440801) user='James'
: tty2 AAA/AUTHOR/EXEC (2897440801): send AV service=shell
: tty2 AAA/AUTHOR/EXEC (2897440801): send AV cmd*
: tty2 AAA/AUTHOR/EXEC (2897440801): found list ''default''
: tty2 AAA/AUTHOR/EXEC (2897440801): Method=tacacs+ (tacacs+)
: AAA/AUTHOR/TAC+: (2897440801): user=James
: AAA/AUTHOR/TAC+: (2897440801): send AV service=shell
: AAA/AUTHOR/TAC+: (2897440801): send AV cmd*
: AAA/AUTHOR (2897440801): Post authorization status = PASS_ADD
: AAA/AUTHOR/EXEC: Authorization successful
: AAA/MEMORY: free_user (0x62558A94) user='James' ruser='' −
  port='tty2' rem_addr='192.168.11.45' authen_type=ASCII −
  service=ENABLE priv=15

Notice that the access server first allocates a portion of memory in order to create the user. The
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network access server then determines that the user is attempting to access privileged exec mode.
This can be determined by the output service=EXEC. The access server then determines that the
user has a name that equals James. At this point, the network access server determines that
method list default is configured and the first configured viable authorization method is to authorize
James using the method TACACS+. The network access server passes the TACACS+ security
server all of James's information, and the security server sends back a response of PASS.

Configuring Accounting

The accounting portion of the AAA security architecture enables you to track the services users are
accessing as well as the amount of network resources they are consuming. When accounting is
enabled, the network access server reports user activity to the TACACS+ or RADIUS security
server. The accounting service reports to the security server using accounting records. Each
accounting record contains accounting attribute−value (AV) pairs and is stored on the security
server. This combined data can be analyzed for network management, client billing, and auditing
purposes.

Just as authentication and authorization support method lists, accounting uses method lists to
define the ways that authorization will be performed and the order in which the methods will be
used. Method lists enable you to designate one or more security protocols to be used for
accounting, thus ensuring a backup system in case the initial method fails. Cisco IOS software uses
the first method listed to account for the network services a client accesses; if that method fails to
respond, the Cisco IOS software selects the next method listed in the method list. This process
continues until there is successful communication with a listed accounting method or until all
methods defined are exhausted.

Use the aaa accounting global configuration command to define the parameters that record what
services clients have accessed. To configure accounting, perform the following steps:

Enable AAA by using the aaa new−model global configuration command and configuring
any security protocol parameters, such as the key value. This step and the steps used to
configure the key value were outlined in the sections on configuring TACACS+ and RADIUS.

1. 

Configure AAA authentication and authorization as described in the "Configuring
Authentication" and "Configuring Authorization" sections. Accounting generally takes place
during and after authentication and authorization.

2. 

Use the following command to enable the accounting process:

aaa accounting <system|network|exec|connection|commands> level
<default| list−name> <start−stop|stop−only|wait−start|none>
<tacacs+| radius>

3. 

The command parameters listed in Step 3 are described in Table 2.2.

Table 2.2: Accounting command parameters.

Command Description

system Audits all system−level events
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network Audits network service requests, such as PPP

exec Audits EXEC process

connection Audits outbound connections

commands
level

Audits all commands for the specified privilege level

default Default method list that is applied to all lines

list name Creates a named method list

start−stop Sends start notice at start of the process and stop notice at the end of the process

wait−start Specifies accounting process does not begin until the start accounting notice is
acknowledged

stop−only Sends accounting notice at the end of the process

none Specifies no accounting service takes place

tacacs+ Accounts the client services using the TACACS+ protocol

radius Accounts the client services using the RADIUS protocol

Continuing with the example in Figure 2.10, the network access server should be configured to
account for all activity that takes place on the access server. This requirement can be met using the
configuration in Listing 2.10.

Listing 2.10: Accounting configuration.

!
aaa accounting exec default start−stop group tacacs+
aaa accounting commands 15 default start−stop group tacacs+
aaa accounting system default wait−start group tacacs+
aaa accounting network default stop−only group tacacs+
!
username admin password admin
!
interface Ethernet0
ip address 192.168.10.1 255.255.255.0
!
interface Serial0:23
no ip address
encapsulation ppp
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!
interface Group−Async1
ip unnumbered Ethernet0
encapsulation ppp
ip tcp header−compression passive
async mode interactive
peer default ip address pool IP
ppp callback accept
ppp authentication chap
group−range 1 16
!
ip local pool IP 192.168.10.239 192.168.10.254
!
tacacs−server host 192.168.10.4 single−connection timeout 10 −
  key 1Cisco9
!
line con 0
login authentication ADMIN
line 1 16
modem InOut
autoselect during−login
autoselect ppp

The configuration in Listing 2.10 sets up accounting on the network access server. Each method list
defined uses the default method list, which applies the configured method to all interfaces and lines.
Each method list is also configured to use the TACACS+ protocol to perform the accounting
function. After James dials into the network and begins his troubleshooting efforts, the accounting
process on the network access server starts. The details of the accounting process can be seen in
Listing 2.11.

Listing 2.11: Accounting process.

Seminole#debug aaa account
AAA Accounting debugging is on Seminole#
: AAA/ACCT/ACCT_DISC: Found list ''default''
: tty2 AAA/DISC: 1/''User Request''
: AAA/ACCT/EXEC/STOP User James, Port tty2: −
  task_id=273 start_time=1004308320 timezone=CST −
  service=shell disc−cause=1 disc−cause−ext=1020
  elapsed_time=40
  nas−rx−speed=0 nas−tx−speed=0
!
: AAA/ACCT: user James, acct type 0 (3132070800):
  Method=tacacs+ (tacacs+)
: TAC+: (3132070800): received acct response status = SUCCESS
: AAA/MEMORY: free_user (0x62527B28) user='James' ruser=''
  port='tty2' rem_addr='192.168.11.45'
  authen_type=ASC II service=LOGIN priv=1
: AAA: parse name=tty2 idb type=−1 tty=−1
: AAA: name=tty2 flags=0x11 type=5 shelf=0 slot=0 adapter=0
  port=2 channel=0
: AAA/MEMORY: create_user (0x625249DC) user='' ruser='' −
  port='tty2' rem_addr='192.168.11.45' authen_type=ASCII −
  service=LOGIN priv=1
!
: AAA/ACCT/EXEC/START User James, port tty2
: AAA/ACCT/EXEC: Found list ''default''
: AAA/ACCT/EXEC/START User James, Port tty2,task_id=276\
  start_time=1004308382
  timezone=CST service=shell
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!
: AAA/ACCT: user James, acct type 0 (2103966373):\
  Method=tacacs+ (tacacs+)
: TAC+: (2103966373): received acct response status = SUCCESS
: AAA/MEMORY: free_user (0x62527B28) user='James' ruser='' −
  port='tty2' rem_addr='192.168.11.45'
  authen_type=ASCII service=ENABLE priv=15
!
: AAA/ACCT/CMD: User James, Port tty2, Priv 15:''show run−config''
: AAA/ACCT/CMD: Found list ''default''
: AAA/ACCT: user James, acct type 3 (3950182121): Method=tacacs+
: TAC+: (3950182121): received acct response status = SUCCESS
: AAA/ACCT/ACCT_DISC: Found list ''default''
: tty2 AAA/DISC: 1/''User Request''
: AAA/ACCT/EXEC/STOP User James, Port tty2:task_id=276 −
  start_time=1004308382 timezone=CST service=shell −
  disc−cause=1 disc−cause−ext=1020 elapsed_time=29
!
: AAA/ACCT: user James, acct type 0 (1600314757): −
  Method=tacacs+ (tacacs+)
: TAC+: (1600314757): received acct response status = SUCCESS
: AAA/MEMORY: free_user (0x625249DC) user='James' ruser='' −
  port='tty2' rem_addr='192.168.11.45' authen_type=ASCII −
  service=LOGIN priv=1
: AAA/ACCT/CMD: User James, Port tty1, Priv 15: ''sh ip route''
: AAA/ACCT/CMD: Found list ''default''
: AAA/ACCT: user James, acct type 3 (668218192): Method=tacacs+
: TAC+: (668218192): received acct response status = SUCCESS

Notice that the access server first determines that method list "default" is configured to provide
accounting services for user James. The access server then determines that in order to account for
the users' actions, it should use the tacacs+ method. You should notice the following key aspects of
the accounting feature:

: AAA/ACCT/CMD: User James, Port tty2, Priv 15:''show run−config''
: AAA/ACCT/CMD: User James, Port tty1, Priv 15: ''sh ip route''

The access server will account for every command that is entered during the session in which
James is connected. This feature provides the nonrepudiation aspect of the AAA architecture.

Installing and Configuring Cisco Secure NT

It's somewhat easy to install and configure the Cisco Secure ACS server. This section presents a
brief overview of the installation steps.

For the AAA security architecture to function as designed, there are a few requirements that must
be met prior to configuring the Cisco Secure ACS software on the server. First, the administrator
must ensure that the following items are configured:

Make sure your network access server is running IOS 11.2 or higher or you are using a
third−party device that can be configured with TACACS+ and/or RADIUS.

• 

Make sure remote clients can successfully connect to your network access server.• 
Use the ping command to ensure that the network access server can successfully establish
logical communication to the server that the Cisco Secure ACS software will be installed on.

• 
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Ensure that the server has a compatible Internet Web browser installed and that Java and
JavaScript are enabled.

• 

Identify the security that will be used, identify the network access server's name and IP
address, and validate the encryption and authentication key.

• 

Cisco Secure ACS server installs from a CD−ROM, and the process is similar to any other
Windows−based application. Although the installation steps are somewhat detailed, the installation
process is quite easy. You should be aware that there are some major decisions that should be
made during the installation process, and they will be mentioned.

During the installation process, the first major decision is to determine if Cisco Secure ACS software
is already installed on the system. If it is, you are asked if you would like to remove the previous
version and save the existing database information. If you want to keep the existing data, select the
Yes, Keep Existing Database checkbox. If you want to create a new database, click to clear the
checkbox and click the Next button. You're then asked to choose a destination location folder in
which to install the software. If you choose to install the software into the default location, click the
Next button to proceed to the next section. To use a different directory, click the Browse button and
enter the name of the directory to use. If the directory does not exist, Setup asks if you want to
create it. Click the Yes button to proceed. At this point, the Authentication Database Configuration
window opens.

In the Authentication Database Configuration window, you will choose the database that is to be
used to verify all authentication requests. The choices are as follows:

Cisco Secure ACS Database—Choosing this option configures the Cisco Secure ACS to
use only the locally populated Cisco Secure ACS database for authentication. Using the
Cisco Secure ACS database is the default method.

• 

Windows NT User Database—Choosing this option configures the Cisco Secure ACS to
authenticate clients using the Windows NT/2000 user database.

• 

This step requires some planning ahead because, in order for the Cisco Secure ACS server to use
the local database on the server, the database must first be populated. To populate the database,
you must manually enter the information for each and every client. The advantage of using the
Cisco Secure ACS database is speed of response time to the network access server. Also, note
that if the administrator chooses to use the Windows NT/2000 database option, the Cisco Secure
ACS server will still attempt to authenticate the client using the local Cisco Secure ACS database.
However, most enterprises do not configure the local database if they elect to use the external
Windows NT/2000 database. When you've chosen the database, click the Next button.

The next few abbreviated configuration windows are very critical for ensuring communication
between the Cisco Secure ACS server and the network access server:

Authenticate Users—This window determines the security protocol to be used for
communication between the Cisco Secure ACS server and the access server. The
TACACS+ protocol is the default choice.

• 

Access Server Name—This window allows the administrator to configure the name of the
network access server that will use the services of the Cisco Secure ACS server.

• 

Access Server IP Address—This window allows the administrator to configure the IP
address of the network access server that was defined in the preceding step.

• 

Windows NT Server IP Address—This window defines the IP address of this Windows
NT/2000 server.

• 

TACACS+ or RADIUS Key—This is one of the most important configuration windows in the• 
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configuration process. It allows the administrator to configure the shared secret encryption
key exchanged between the network access server and the Cisco Secure ACS. These
passwords must be identical to ensure proper function and communication between the NAS
and Cisco Secure ACS. Shared secrets are case sensitive.

After you successfully install the Cisco Secure ACS software and reload the server, an icon will be
displayed on the desktop of the server. You can double−click this icon to continue configuring the
Cisco Secure ACS server. Because the Cisco Secure ACS server is an HTML−only software
package, you will need a Web browser to continue. Double−clicking the icon will open the default
Web browser, and the screen in Figure 2.11 will appear. The Cisco Secure ACS server is also
accessible from any workstation with a functioning Web browser and logical connectivity to the
server by entering the following URL: http:// <ip address of the server>:2002 or http://<hostname
of the server>:2002. Figure 2.11 is the interface that is displayed after the server is accessed.

Figure 2.11: Cisco Secure ACS server interface
Upon initially accessing the Cisco Secure ACS server, the administrator will be prompted to enter a
username and password. By default, the username and password are set to admin and admin. After
the correct username and password pair is entered, the server logs the user into the console and
the interface displays the output screen shown in Figure 2.12.

Figure 2.12: Console of the Cisco Secure ACS server
Notice the navigation bar (the column of buttons) on the left side of the screen in Figure 2.12. Each
button represents a particular area that you can configure. Depending on your requirements, you
might not need to configure all areas. Click one of the buttons on the navigation bar to begin
configuring the ACS server:
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User Setup—View a list of all users contained within the Cisco Secure ACS database, find
or add a user, assign a user to a group, edit a user's account, and disable or delete a user
account.

• 

Group Setup—Create, rename, edit, and assign users to a group.• 
Network Configuration—Edit network access server parameters. You can also add or delete
network access servers from the Cisco Secure ACS server.

• 

System Configuration—Configure service control parameters that stop or restart the Cisco
Secure ACS services, configure logging, set password validation, and control database
replication.

• 

Interface Configuration—Configure TACACS+ and RADIUS options and control what options
are displayed in the user interface.

• 

Administration Control—Configure the parameters that pertain to the administration of the
Cisco Secure ACS server.

• 

External User Databases—Configure the unknown user policy, database group mappings,
and the external user database, such as Windows NT/2000 Server database.

• 

Reports and Activities—View or export the reports that the ACS server generates.• 

The Cisco Secure ACS server comes with a Command−line Database Utility that lets administrators
use the CSUtil.exe utility to import or export usernames, passwords, and group information all at
once from a standard text file, allowing for backup and maintenance of the database. The utility can
be run while the server is online or offline; the only disadvantage to running the utility while the
server is online is a degradation of performance. To import the text file database into the Cisco
Secure ACS server user database, add new users into the database, or modify users' authentication
information, you must first open a DOS window and change the directory as follows:

C:\Program Files\CiscoSecure ACS v2.6\Utils

This is the location of the utility directory if you elected to install the Cisco Secure ACS software to
the default location. The CSUtil.exe uses text files to perform the import and export functions. To
configure the text file to add, update, or delete users, enter the following information of each field
listed below on a single line and separate the fields with a colon:

Username field:

add—Add user information to the Cisco Secure user database. If the username already
exists, no information is changed.

• 

update—Update the information associated with the existing username in the Cisco Secure
user database.

• 

delete—Remove the user information from the Cisco Secure user database.• 

Authentication field:

csdb—Authenticate the username against the Cisco Secure user database.• 
ext_ldap—Authenticate the username against a generic LDAP database.• 
ext_nt—Authenticate the username against a Windows NT/2000 database.• 
ext_nds—Authenticate the username against a Novell NDS database.• 
ext_sdi—Authenticate the username against an SDI database.• 
ext_anpi—Authenticate the username against an AXENT database.• 
ext_eniga—Authenticate the username against a SafeWord database.• 
chap—Use a CHAP password for authentication.• 
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User Group:

profile—Group number between 0 and 99 that the user is assigned.• 

The following is a sample import text file:

ADD:James:CSDB:letmein:PROFILE:1
ADD:admin:CSDB:admin:PROFILE:1
ADD:John:CSDB:cto:PROFILE:
ADD:joe:EXT_NT:CHAP:dialuppassword
ADD:jeff:CSDB:iloveunix
ADD:steve:EXT_NT:unixpassword

The CSUtil.exe utility supports the following arguments for importing and exporting the database
files. Use the following arguments to import and/or export the database information:

CSUtil <−q> <−c> <−d> <−g> <−i filename> −
  <−e errornumber> <−b filename> <−r filename> <−f> <−n> −
  <−s> <−y> <−u> <−x>

Each argument has the following meaning:

q—Runs the import or export in quiet mode and does not prompt for other options.• 
b—Runs a complete system backup.• 
c—Recalculates the database CRC values.• 
d—Exports the complete database to a dump.txt file.• 
e—Decodes error numbers to an ASCII message.• 
f—Fixes group assignments.• 
g—Exports all group information to the group.txt file.• 
i—Imports or merges a named user file.• 
n—Creates a new database.• 
r—Restores a database from a named file.• 
s—Removes deleted users from the database.• 
x—Displays the help options.• 
y—Dumps the server Registry information to a named file.• 
u—Creates a file of all users within each group.• 

To create the backup of user information for each group, you will need to run a command like the
following example from the DOS prompt of the Cisco Secure ACS server:

C:\Program Files\CiscoSecure ACS v2.6\Utils>CSUtil −u users.txt

This command creates a text file with the names of the group's members displayed under the group
name. The output of this file is shown in Listing 2.12.

Listing 2.12: Output of the Users.txt file.

#Users listed on TACACS−SERVER01 at 08:50 November 01 2001
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#SW version 2.6(1.10)
Group 'Network Engineers' (20 users):
nsa
nsanat
cw2000
TAC
<clipped>
Group 'Cable Engineers' (3 users):
testuser
CableGuy
FlukeMan

The file first lists the name of the Cisco Secure ACS server and the date on which the file was
generated. The second line displays the current software version of the Cisco Secure ACS server.
The lines following the first two display all the users in the Cisco Secure ACS server database and
each group's members. This command is a useful backup command you can run quite often to
maintain a current list of all users contained within the database. The preceding file only exported
the users and the groups the users that are associated with. In many instances, the information
contained in the file is not sufficient. Using the CSUtil command with the –d option, you can create
a complete database backup that is exported to a file named dump.txt. The abridged output the
dump.txt file creates is displayed in Listing 2.13.

Listing 2.13: Output of the dump.txt file.

#DB dumped on TACACS−SERVER01 at 08:51 November 01 2001
#DB version 8.0
#SW version 2.6(1.10)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Name          :nsa
Password      :      0x0020 ca 64 ad 2c c0 13 8d 21 85 7f 0b −
  a5 75 63 11 9e 1f a5 f6 15 e3 96 2c d8 39 86 9c 4a 5f 53 e0 6c
Chap password :     0x0020 23 a6 08 39 d4 88 db 10 8e f7 ba −
  5d cf 5f 8d 21 ff c4 e4 63 86 c3 d6 27 c4 be 24 4a b1 ae 9a fe
State         :     0
S_flags       :     1
Aging policy  :     group0
Good count    :     0
Warning count :     0
Change count  :     0
Last change Lo:     334080752
Last change Hi:     29445163
Last auth Lo  :     0
Last auth Hi  :     0
Rights        :     1
Type          :     4
EnableType    :     4
Status        :     1
Reset         :     1
Expiry        :     209   100   4294937589   638   0   5
MaxSession    :     0
MaxSess2      :     0
Profile       :     0
LogonHrs      :     0x0016 00 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
Alias         :     0
Value Flags   :     524324
CounterVals_00:     161     161     689     1888
CounterRst_00 :     2667b8401c16164
CounterVals_01:     1       3     60    137
CounterRst_01 :     49391a60     1c161f7
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##− User End
App00  EXTRN_PASSWD  ESTRING  0x0020 ca 64 2c c0 13 8d 21 58 73
f3 9c c0 5c bf 8d 12 d9 9a d8 b5 2e 61 3f b1 d8 91 f3 df d7 18
App00  USER_DEFINED_FIELD_0   STRING   Cisco NSA
App00  USER_DEFINED_FIELD_1   STRING   National Service
App00  IP_ACS_POOLS_LENGTH    INTEGER  2
App00  IP_ACS_POOLS           STRING
App00  IP_ALLOCATION_METHOD   INTEGER  5
App00  IP_STATIC_ADDR_LENGTH  INTEGER  1
App00  IP_STATIC_ADDR         STRING
App00  IP_NAS_POOL_LENGTH     INTEGER  1
App00  IP_NAS_POOL            STRING
App00  user_callback_type     INTEGER  0
App00  user_callback          STRING
App00  disp_callback          STRING
App01  Filters\NAS\records    MSTRING
App01  Filters\NAS\enabled    STRING   0
App01  Filters\NAS\option     STRING   PERMIT
App01  Filters\Dialup\records MSTRING
App01  Filters\Dialup\enabled STRING   0
App01  Filters\Dialup\option  STRING   PERMIT
App01  max_priv               STRING   15,1
App01  max_priv_LENGTH        INTEGER  4
App01  enable_passwd  ESTRING  0x0020 ca 64 ad 2c 13 8d 21 0c −
  13 ab e0 2d e1 60 ab 1f c1 c5 c7 33 07 ce ee c2 13 b2 22 a9 3a
ba
−−−−−−−−−−−−−−−−−−−−−−−−−−−
#End Of Dump

The most useful function of the CSUtil.exe utility is that it gives you the ability to back up the entire
system, export it to secure location, and restore the server from the backup in the event of a
catastrophic failure. To create the backup of the Cisco Secure ACS server, perform the following
step:

1. From the command prompt of the Utility directory, use the csutil –b filename command. This
command will create four compressed files in the Utils\SysBackup\directory\: folder:

Registry.dat• 
User.dat• 
User.idx• 
Varsdb.mdb• 

A fifth file is also created and stored in the Utils\dbcheckpoint directory. This file is stored in
yyyymmddhhmm.zip format.

Each time a backup is initiated, separate files are created, mean ing the server does not overwrite
the existing files in the direc tory. Performing the backup procedure on a regular basis is al ways
recommended.
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Chapter 3: Perimeter Router Security

In Brief

To say that the Internet is the single−most amazing technological achievement of the "Information
Age" is a gross understatement. This massive network has changed the way the world conducts
business and approaches education, and it has even changed the way in which people spend their
leisure time. At the same time, the Internet has presented a new, complex set of challenges that not
even the most sophisticated technical experts have been able to adequately solve. The Internet is
only in its infancy, and its growth is measured exponentially on a yearly basis.

With the rapid growth of the Internet, network security has become a major concern for companies
throughout the world, and although protecting an enterprise's informational assets may be the
security administrator's highest priority, protecting the integrity of the enterprise's network is critical
to protecting the information it contains. A breach in the integrity of an enterprise's network can be
extremely costly in time and effort, and it can open multiple avenues for continued attacks.

When you connect your enterprise network to the Internet, you are connecting your network to
thousands of unknown networks, thus giving millions of people the opportunity to access your
enterprise's assets. Although such connections open the door to many useful applications and
provide great opportunities for information sharing, most enterprises contain some information that
should not be shared with outside users on the Internet.

This chapter describes many of the security issues that arise when connecting an enterprise
network to the Internet and details the technologies that can be used to minimize the threat of
potential intruders to the enterprise and its assets. In this chapter, I'll discuss the Unicast Reverse
Path Forwarding (Unicast RPF) feature, which helps to mitigate problems that are caused by forged
IP source addresses that the perimeter router receives. I'll also discuss Committed Access Rate
(CAR) and the features it provides to rate−limit traffic, thus providing mitigation services for DoS
attacks. In addition, I'll discuss TCP SYN− flooding attacks and the features of TCP Intercept, which
protect your network from this method of attack. This chapter covers Network Address Translation
(NAT) and Port Address Translation (PAT), which were developed to address the depletion of global
IP addresses and the security features that each provide. Finally, there is a discussion on logging of
events that take place on the perimeter routers.

Defining Networks

This chapter classifies three different types of networks:

Trusted• 
Untrusted• 
Unknown• 

Trusted Networks

Trusted networks are the networks inside your network's security perimeter. These are the networks
you are trying to protect. Often, someone in your organization's IT department administers the
computers that these networks comprise, and your enterprise's security policy determines their
security controls. Usually, trusted networks are within the security perimeter.
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Untrusted Networks

Untrusted networks are the networks that are known to be outside your security perimeter. They are
untrusted because they are outside of your control. You have no control over the administration or
security policies for these networks. They are the private, shared networks from which you are
trying to protect your network. However, you still need and want to communicate with these
networks even though they are untrusted. Untrusted networks are outside the security perimeter
and external to the security perimeter.

Unknown Networks

Unknown networks are networks that are neither trusted nor untrusted. They are unknown to the
security router because you cannot explicitly tell the router that the network is a trusted or an
untrusted network. Unknown networks exist outside your security perimeter.

Cisco Express Forwarding

Cisco Express Forwarding (CEF) is an advanced layer 3 topology− based forwarding mechanism
that optimizes network performance and accommodates the traffic characteristics of the Internet for
the IP protocol. The topology−based forwarding method builds a forwarding table that exactly
matches the topology of the routing table; thus, there is a one−to−one correlation between the
entries in the CEF table and the prefixes in the route table. CEF offers improved performance over
other router switching mechanisms by avoiding the overhead associated with other cache−driven
switching mechanisms. CEF uses a Forwarding Information Base (FIB) to make destination prefix−
based switching decisions. The FIB is very similar to the routing table. It maintains an identical copy
of the forwarding information contained in the routing table. When topology changes occur in the
network, the IP routing table will be updated, and the updated changes are reflected in the FIB. The
FIB maintains next−hop address information based on the information in the routing table. Because
there is a correlation between FIB entries and the routing table entries, the FIB contains all known
routes.

CEF also builds an adjacency table, which maintains layer 2 next−hop addresses for all Forwarding
Information Base entries, is kept separate from the CEF table, and can be populated by any
protocol that can discover an adjacency. The adjacency table is built by first discovering the
adjacency. Each time an adjacency entry is created through a dynamic process, the adjacent node's
link−layer header is precomputed and stored in the adjacency table. After a route is resolved, its
CEF entry points to a next−hop and corresponding adjacency entry. The entry is subsequently used
for encapsulation during CEF switching of packets.

CEF can operate in two different modes: central and distributed. In central mode, the FIB and
adjacency tables reside on the route processor and the route processor performs the forwarding.

CEF can act in a distributed mode on routers that support interface line cards, which have their own
built−in processors, allowing CEF to take advantage of distributed architecture routers. When CEF
is operating in distributed mode, the CEF table is copied down to the router line cards so that
switching decisions can be made on the line cards instead of being made by the router processor.
Distributed CEF uses a reliable Inter Process Communication mechanism that guarantees a
synchronized FIB.
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Unicast Reverse Path Forwarding

Unicast Reverse Path Forwarding (Unicast RPF) is a feature used to prevent problems caused by
packets with forged IP sources addresses passing through a router. Unicast RPF helps to prevent
denial−of−ser− vice (DoS) attacks based on source IP address spoofing. Unicast RPF requires the
CEF switching mechanism to be enabled globally on the router. The router does not have to have
each input interface configured for CEF switching because Unicast RPF searches through the FIB
using the packet's source IP address. As long as CEF is running globally on the router, each
individual interface can be configured to use other switching modes. The effect of Unicast RPF is
that packets with forged source IP addresses will be dropped by the router and will not be forwarded
beyond the router's ingress interface.

Note Cisco Express Forwarding must be enabled for Unicast Reverse Path Forwarding to
operate.

When Unicast RPF is enabled on an interface, the router will verify that all packets received from
that interface have a verifiable source address, which is reachable via that same interface or the
best return path to the source of the packet via the ingress interface. The backward lookup ability
used by Unicast RPF is available only when CEF is enabled on the router because the lookup relies
on the presence of the FIB. If there is a reverse path route in the FIB, the packet is forwarded as
normal. If there is no reverse path route via the interface from which the packet was received, the
router may interpret that packet as being forged, meaning that the source address was modified. If
Unicast RPF does not find a reverse path for the packet, the packet is dropped or forwarded,
depending on whether an access control list is specified in the configuration. If an access list is
specified in the command, then when a packet fails the Unicast RPF check, the access list is
checked to see if the packet should be dropped or forwarded. The decision is made based on the
presence of a permit or deny statement within the access list. Unicast RPF events can also be
logged by specifying the logging option within the ACL entries used by the Unicast RPF command.
The log information can be used to gather information about an attack.

Unicast RPF can be used in any enterprise environment that is single− homed to the Internet
service provider (ISP), where there is only one access point out of the network; that is, one
upstream connection. This would provide ingress filtering to protect the enterprise from receiving
forged packets from the Internet. Networks having one entrance and exit point provide symmetric
routing, which means that the interface where a packet enters the network is also the interface the
return packet takes to the source of the packet. Unicast RPF is best used at the network perimeter
for Internet connections. It will also work in environments in which customers are multihomed to
separate ISPs, where the enterprise has multiple access points out of the network. With Unicast
RPF configured on the enterprise's perimeter router, all equal−cost return paths are considered
valid.

Unicast RPF's advantage, when used for IP address spoof prevention, is that it dynamically adapts
to changes in the routing tables, including static routes. Unicast RPF has minimal CPU overhead
and has a far lower performance impact as an antispoofing tool compared to the traditional access
list configuration approach. Unicast RPF should not be used on interfaces that are internal to the
network because these interfaces are likely to have routing asymmetry.

TCP Intercept

Management's major misconception is that the firewall is the first, and in many cases the last, line of
defense for security−related issues. In fact the external perimeter router should provide the first line
of defense for external security−related issues from the enterprises perspective.
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Note The enterprise should develop a positive working relationship with its ISP. If this relationship
is established, the enterprise can request that the ISP provide many of the first−line defense
mechanisms.

TCP Intercept is a software feature designed to combat the denial−of− service (DoS) attack known
as SYN flooding. The TCP protocol uses a three−way handshake to set up an end−to−end
connection before data is allowed to flow. This handshake is detailed in Figure 3.1.

Figure 3.1: ICP three−way handshake.
Referring to Figure 3.1, assume that Host B would like to open a connection to Host A. The
connection must take place via Router C. Host B sends a SYN packet (a TCP packet with the SYN
bit set) to Host A, requesting a connection. Host A then replies with a SYN/ACK packet with both
the SYN and ACK bits set, allowing Host B to complete the three−way handshake with a TCP ACK
packet. At this point, a connection is established and data is permitted to flow.

A TCP SYN attack occurs when an attacker exploits the buffer space a networked device uses
during a TCP session initialization handshake. The attacker sends a large amount of packets with
the SYN bit set to the target host, and the target host's in−process queue buffers the request and
responds to it with a packet that has the SYN and ACK bits set within it. However, because these
packets have an invalid return address, the connections can never be established and remain in a
state known as half−open. As these half−open requests begin to build, buffer space is exhausted,
which causes the machine to deny service for valid requests because all resources are exhausted
waiting for a response. The target host eventually times out while waiting for the proper response.

Many TCP implementations are able to handle only a small number of outstanding connections per
port; therefore, the ports become unavailable until the half−open connections time out. Additionally,
this attack may also cause the server to exhaust its memory or waste processor cycles in
maintaining state information for these connections.

TCP Intercept is designed to prevent a SYN flooding DoS attack by tracking, intercepting, and
validating TCP connection requests. Intercept can run in one of two configurable modes: intercept
mode and watch mode. In intercept mode, the software actively intercepts each incoming (SYN)
request, responds on behalf of the server with a SYN/ ACK, and then waits for an ACK from the
client. When that ACK is received, the original SYN is sent to the server and the software performs
a three−way handshake with the server. When this is complete, the two connections are joined by
the router in a source−destination session.

In watch mode, connection requests are allowed to pass through the router to the server but are
watched passively until they become established. If they fail to become established within 30
seconds or a software configurable timeout, the software sends a reset packet to the server to clear
the in−process buffer, allowing the server to reallocate the buffer to legitimate requests.
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After a device comes under attack from SYN floods, TCP Intercept will transition to a mode known
as aggressive mode. Aggressive mode is triggered if the number of incomplete connections
exceeds 1,100 or the number of connections arriving in one minute exceeds 1,100; after aggressive
mode has triggered, each new arriving connection causes the oldest half− open connection to be
deleted. TCP Intercept will also lower its initial retransmission timeout of 1 second by half, to 0.5
seconds. This allows the router to cut in half the time allotted to establish a connection.

When TCP Intercept is in aggressive mode, the following occurs:

Each newest connection request causes the oldest half−open connection to be deleted.• 
The initial retransmission timeout is reduced by half, to 0.5 seconds.• 
If TCP Intercept is configured for watch mode, the watch timeout is reduced by half.• 

Network Address Translation

IP address depletion is one of the key problems that faces the Internet today. To address the IP
address depletion problem Cisco has implemented a feature known as Network Address
Translation (NAT). NAT, described in RFC 1631, provides a way to use IP addresses in multiple
Internetworks by replacing the original source or destination IP address in an IP packet. The
functionality of NAT allows privately addressed networks to connect to public networks such as the
Internet. When the host on the private inside network sends a packet through the NAT router, the
private addresses are converted to registered globally routable IP addresses.

NAT helps to solve other problems aside from the rapid depletion of global network address space
and provides an enterprise with many advantages, some of which are listed here:

NAT reduces the instances in which addressing schemes overlap. If an IP scheme was
originally set up within a private network and the network was connected to the public
network, such as the Internet, or merges with another company that may use the same
address, space communication could not take place because of overlapping IP address
schemes. Without NAT, overlapping of address schemes could potentially take place on a
global scale.

• 

Implementing NAT automatically creates a makeshift firewall between the internal trusted
network and the outside untrusted networks or the Internet. NAT allows only connections
that originate inside the trusted network. Essentially, this means that a computer on an
external untrusted network cannot connect to a computer on the inside trusted network
unless the inside computer has initiated the contact.

• 

NAT increases the flexibility of connecting to a public network and provides network
designers with greater flexibility when designing an organization's addressing plan. This
flexibility allows for multiple pools and loadsharing/balancing features. NAT also saves on
the cost of renumbering a private network address space with a unique global address
space.

• 

Although most networking devices support NAT because of its many beneficial features, NAT does
have a few disadvantages that should be weighed against the benefits when determining if it is a
viable solution for the enterprise:

NAT increases the overall switching delay of the packet, which is caused by the translation
that must take place, but also because NAT is performed using process switching. The
router must examine every packet to determine if a header rewrite is required.

• 

NAT causes the loss of end−to−end traceability and forces some applications that use IP
addressing to stop functioning because of NAT's inherent functionality of hiding IP

• 
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addresses.

At a high level, NAT has two types of networks: internal and external. Internal networks, also
referred to as stub domains, are networks that have been assigned IP addresses that are
considered to be private or not routable. Likewise, external networks are networks that are
considered to be public and routable. NAT also has its own terminology for types of IP addresses:

Inside local IP address—The IP address assigned to a host on the inside trusted network.
These addresses are typically allocated from the private IP address ranges.

• 

Inside global IP address—A legitimate IP address that represents one or more inside local
addresses to the outside network(s). These are the IP addresses that the inside local IP
addresses are translated to. They are advertised outside the inside local address space.

• 

Outside global IP address—The IP address that is assigned to a host on the outside network
by its owner. These addresses are allocated from legitimate globally routable address
space.

• 

Outside local IP address—The IP address of an outside host as it appears to the inside
network. This address is allocated from IP address space that is routable on the inside
network.

• 

NAT creates two types of address translations: simple and extended. A simple translation entry is
an entry that simply maps one IP address to another IP address. An extended translation entry is a
translation entry that maps one IP address and port pair information to another IP address and port
pair.

Port Address Translation (PAT) is a variant of Network Address Translation (NAT). NAT creates a
one−to−one address translation at the network layer and does not maintain port parameters per
translation. PAT, on the other hand, creates a many−to−one address translation and maintains port
parameters per translation. PAT allows many inside local IP address packets to be translated to one
outside global address. It allows enterprises to conserve public IP addresses by translating the
source of all inside addresses or all inside addresses matched by an access list to one global public
IP address. When PAT is enabled on a perimeter router, the translation process chooses a unique
source port number for each outbound connection request.

PAT can allow for translation of one IP address for up to 64,000 hosts. However, in most cases, a
more realistic number of translations is in the vicinity of 4,000 hosts. PAT does not use well−known
port numbers in its address translation, nor are any destination fields translated— only source
information is translated.

Committed Access Rate

Committed Access Rate (CAR) is a software feature that implements both classification of services
and policing of traffic through rate−limiting, which, in effect, limits the input or output transmission
rate of an interface based on a configurable set of criteria. Network administrators can use CAR to
designate traffic−handling policies when traffic either conforms to or exceeds a specified rate limit.
CAR's rate−limiting feature manages the bandwidth policy for a network by ensuring that traffic
falling within the specified rate parameters is sent while dropping packets that exceed the
acceptable amount of traffic. CAR also specifies an exceed action, which can be set to drop
packets.

CAR uses a token bucket measuring system. Tokens are inserted into the bucket at the committed
rate, and the number of tokens in the bucket is limited by the configured burst size. Traffic arriving at
the bucket when tokens are available is traffic that matches a configured conform action. If tokens
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are available when the traffic arrives, the appropriate number of tokens are removed from the
bucket and the specified conform action is executed. If there is not an adequate number of tokens
available, the traffic matches a configured exceed action. The token bucket is a culmination of three
components: a Mean Rate (CIR), a Burst Size (Bc), and a Time Interval (Tc). Each of these
components is further detailed in the following list:

Mean Rate (CIR)—The average rate at which you would like to transmit. The rate is
averaged over an increment of time (Tc), and traffic that is under this rate will always
conform. This is measured in bits/second.

• 

Burst Size (Bc)—The amount of data sent per time interval (Tc). When used with CAR, this
is measured in bytes per burst interval.

• 

Time Interval (Tc)—A measurement of Bc/CIR.• 

The token bucket formula for determining the Mean Rate of transfer is as follows:

Mean Rate (CIR) = Burst Size (Bc) / Time Interval (Tc)

The equation solves for Mean Rate (CIR) by dividing the Time Interval (Tc) by the Burst Size
(Bc)eqn0 One other formula that relates to the token bucket measuring system solves for the Time
Interval (Tc):

Time Interval (Tc) = Burst Size (Bc) / Mean Rate (Cir)

Each action, conform and exceed, can be configured to provide another action based on the
available tokens:

Transmit—The packet is forwarded accordingly.• 
Drop—The packet is dropped and no further processing takes place on it.• 
Set precedence then transmit—The IP Precedence bit in the packet is rewritten. The packet
is then transmitted.

• 

Continue—The packet is compared to the next policy that is configured in the list of rate
limits. If no other policy is configured, the packet is sent.

• 

Set precedence and continue—The IP Precedence bits are rewritten to a specified value,
and the packet is then compared to the next policy configured in the list of rate limits.

• 

A security administrator can use CAR's rate−limiting feature to control the maximum rate at which
traffic is sent or received during times the router is receiving a stream of DoS attack packets. To
define a rate limit, three values must be specified:

Average rate—The average rate at which you want to transmit. All traffic that is transmitted
at or below the average rate meets the conform action. Traffic that is transmitted above the
average rate meets the exceed action, depending on the values configured for normal burst
and excess burst. This value is specified in bits per second.

• 

Normal burst—The amount of traffic, specified in bytes per second, that is allowed to burst
before partial amounts of traffic are subjected to the excess burst action.

• 

Excess burst—The amount of traffic, specified in bytes per second, that is allowed in a burst
before all traffic is subjected to the excess burst action. Setting this value to zero disables
bursting.

• 
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When CAR rate−limiting is applied to a packet, CAR removes from the bucket tokens that are
equivalent in number to the byte size of the packet. If a packet arrives and its byte size is greater
than the number of tokens available in the standard token bucket, extended burst capability is
engaged if it is configured. Extended burst is configured by setting the extended burst so it's greater
than the normal burst value. Setting the extended burst value equal to the normal burst value, in
effect, disables extended burst.

Logging

Routers are a mainstay of most network−connected organizations. Over the past few years, they
have become increasingly sophisticated and moved beyond the realm of simply connecting different
subnets. Although routers provide a high degree of network security, it can sometimes be
challenging to security administrators to answer questions such as the following:

Who's on my network and where are they spending their time?• 
Are my network security and usage policies being adhered to?• 
Is my router secure?• 
Have there been any attempts to breach it?• 
Are there any system failures or configuration issues to attend to?• 

Logging of events that take place on the perimeter routers provides a security administrator with a
clear audit trail of each and every bit of information that traverses the router. This information is
needed in order to assess network activity and find out if security and network usage policies are
functioning as designed. Accomplishing complete network security is an investigative process that
requires ongoing analysis of network device activity. Because of this investigative process, security
administrators should log every event that takes place on the perimeter router to a syslog server
daemon to aid in analyzing attacks that take place from a trusted or untrusted network.

Cisco routers define certain levels of message logging, and each level is based upon the severity of
the event. Table 3.1 lists each event error message and its corresponding severity level.

Table 3.1: Logging messages and severity level.

Level keyword Level Description
debugging 7 Debug message
informational 6 Informational message
notifications 5 Significant informational message
warnings 4 Warning condition message
errors 3 Error condition message
critical 2 Critical condition error message
alerts 1 Action needed message
mergency 0 System down message
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Immediate Solutions

Configuring Cisco Express Forwarding

On most platforms, CEF is not enabled by default, so security administrators must remember to
enable the feature.

Note Cisco Express Forwarding (CEF) is not a security feature; therefore, CEF will not be covered
in detail. However, the majority of the security features discussed in this chapter must have
CEF enabled to function.

Use the ip cef global configuration command to enable CEF switching or enable the use of
distributed CEF by using the ip cef distributed global configuration command. Distributed CEF
functions only on platforms that support a distributed architecture.

To give you an idea about how CEF works, Figure 3.2 shows Router C with multiple connections to
other networks. The configuration of Router C to support CEF switching is shown here:

#config t
#ip cef distributed
#end
#

Figure 3.2: Example of CEF network.
The ip cef distributed global configuration command was used to enable CEF on Router C. After it
is enabled on Router C, CEF should create an adjacency table listing each connected device. CEF
can create an adjacency by using Address Resolution Protocol (ARP); if Router B is using a routing
protocol, an adjacency can be created by using the routing protocol B, and an adjacency can be can
be created from a static mapping, using a layer 2 protocol. To verify that CEF created the table, use
the show adjacency detail command. Listing 3.1 shows the output of the show adjacency detail
command issued on Router B after enabling CEF.

Listing 3.1: The adjacency table of Router B.

Router−B#show adjacency detail
Protocol     Interface         Address
IP           Serial5/0/0       point2point(5)
                               61528 packets, 5684464 bytes
                               0F000800
                               CEF    expires: 00:02:17
                                      refresh: 00:00:17
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IP           GigEthernet1/0/0  192.168.15.73(2425)
                               1281569464 packets,
                               310581090467 bytes
                               0030962EB2E800307B6AC0200800
                               ARP        02:04:24
IP           ATM8/0/0          192.168.14.253(73)
                               6276628796 packets,
                               6720323814548 bytes
                               00010000AAAA030000000800
                               ATM−PVC    never
Router−B

In Listing 3.1, you can see that Router B has created an adjacency with each of the routers it is
connected to. Each of the fields details specifics related to the CEF adjacency. The protocol field
lists the routed protocol with which the adjacency is related. The interface field lists the outgoing
interface used to reach the adjacency neighbor. The address field is the address of the adjacency
and can contain either the adjacency's next−hop address or a point−to−point address. The numbers
that are in parentheses in the address field are used only by the local router and as a reference to
the adjacency. The next field is an encapsulation string, which is prepended to each packet. And the
last field is a timer, which is periodically refreshed for each neighbor. The adjacency table will
periodically refresh each of these neighbors with the exception of the neighbor connected via the
ATM interface. Because this entry is a permanent circuit, CEF will not refresh the neighbor.

As mentioned in the section "In Brief" earlier in this chapter, CEF builds its table based on
information within the route table, and as such, a one−to−one correlation between the CEF table
and the route table is maintained. The CEF table is stable as long as the topology of the route table
is stable. The CEF table of Router B can be viewed using the show ip cef command. Listing 3.2
shows the output of the command show ip cef entered on Router B.

Listing 3.2: An example CEF table for Router B.

Router−B#show ip cef
Prefix             Next Hop          Interface
0.0.0.0/0          192.168.15.73     GigabitEthernet1/0/0
0.0.0.0/32         receive
4.18.103.0/24      192.168.15.73     GigabitEthernet1/0/0
4.24.104.92/30     192.168.14.253    ATM8/0/0
192.168.200.0/24   192.168.15.73     GigabitEthernet1/0/0
192.168.200.1/32   192.168.15.73     GigabitEthernet1/0/0
192.168.200.2/32   192.168.15.73     GigabitEthernet1/0/0
192.168.200.3/32   192.168.15.73     GigabitEthernet1/0/0
192.168.1.40/30    attached          Serial5/0/0
192.168.1.40/32    receive
192.168.1.42/32    receive
192.168.1.43/32    receive
192.168.15.73/32   192.168.15.73     GigabitEthernet1/0/0
192.168.15.75/32   receive
192.168.15.79/32   receive
192.168.15.80/29   192.168.15.73     GigabitEthernet1/0/0
192.168.14.252/30  attached          ATM8/0/0
192.168.14.253/32  receive
192.168.14.254/32  receive

Further information for each CEF table entry can be seen by issuing the sh ip cef network
command. The following information is returned:
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Router−B#sh ip cef 4.24.104.92
4.24.104.92/30, version 1046593, cached adjacency 10.191.150.242
0 packets, 0 bytes
  via 192.168.241.2, ATM8/0/0, 0 dependencies
    next hop 192.168.14.253, ATM8/0/0
    valid cached adjacency

The routing table entry for 4.24.104.92 has a next−hop address of 192.168.241.2, which is not
directly connected. This entry requires a recursive lookup for the next hop for 192.168.241.2 to
determine that 192.168.241.2 can be reached using the next hop of 192.168.14.253, which is
reachable sending the packet out interface ATM8/0/0.

Configuring Unicast Reverse Path Forwarding

Enterprise networks should use Unicast RPF as an ingress filter to protect themselves from
untrusted networks. Although most enterprises use access lists for ingress filtering, Unicast RPF
provides many advantages over the traditional access list approach. The following section will
provide some examples of how Unicast RPF can provide valuable protection options for networks
connected to the Internet.

Note Unicast RPF should not be configured on any internal network device where
asymmetric routing is taking place. This will cause Unicast RPF to drop legitimate
return traffic.

When Unicast RPF is enabled on an interface, the router examines all packets received on that
interface. The router checks to make sure that the source address appears in the routing table and
matches the interface on which the packet was received. To configure Unicast RPF for ingress
filtering, follow these steps:

Use the ip cef or ip cef distributed command to enable CEF switching or distributed CEF
switching.

1. 

Use the following command to select the input interface on which to apply Unicast RPF:

interface <interface name> <interface number>

The input interface is the receiving interface, which allows Unicast RPF to verify the best
return path before forwarding the packet to the destination.

2. 

Use the following command to enable Unicast RPF on the interface:

ip verify unicast reverse−path <access list number>

The access list number option identifies an optional access list. If the access list denies
network access, packets with changed headers are dropped at the interface. If the access
list permits network access, packets with changed headers are forwarded to the destination
address.

3. 

Use the following command to define an extended access list and its parameters:

access−list <access−list−number> {deny|permit} <protocol> −
  <source> <source−wildcard> <destination> <destination>−
wildcard>

4. 
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A deny statement configures the router to drop the packet and a permit statement allows the
packet to forward out the egress interface toward its destination.

Figure 3.3 displays a network in which Unicast RPF is enabled on both interfaces of Router 1.

Figure 3.3: Unicast RPF.
The objective is to use Unicast RPF for filtering traffic at the ingress interfaces of Router 1 to
provide protection from malformed packets arriving from the Internet or from the internal network.
The following commands configure Router 1 for Unicast RPF:

Router−1
!
ip cef distributed
!
interface Serial1/0
ip verify unicast reverse−path
!
interface Ethernet0/0
ip verify unicast reverse−path
!

The preceding configuration is all that is needed to have Unicast RPF running on the router. It is
very important to remember that CEF must be enabled on the router prior to configuring Unicast
RPF. In fact, the router will not allow Unicast RPF to be configured until CEF is enabled, as shown
in the following display:

Router−1(config−if)#ip verify unicast reverse−path
% CEF not enabled. Enable first

As you can see, the router will display a prompt that demands that you enable CEF on the router
prior to configuring Unicast RPF. To verify that Unicast is operational, use the show cef interface
<interface name> <interface number> command. The output should verify that Unicast RPF is in
fact operational. Listing 3.3 displays the output.

Listing 3.3: An example of the show cef interface command.

Router−1#sh cef interface serial1/0 detail
Serial1/0 is up (if_number 3)
  Internet address is 172.16.10.1/24
  ICMP redirects are always sent
  Per packet loadbalancing is disabled
  IP unicast RPF check is enabled
  Inbound access list is not set
  Outbound access list is not set
  IP policy routing is disabled
  Hardware idb is serial1/0
  Fast switching type 1, interface type 18
  IP CEF switching enabled
  IP CEF Feature Fast switching turbo vector
  Input fast flags 0x4000, Output fast flags 0x0
  ifindex 2(2)
  Slot 1 Slot unit 0 VC −1
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  Transmit limit accumulator 0x0 (0x0)
  IP MTU 1500
Router−1#

Unicast RPF also allows for the configuration of an optional access list to control the exact behavior
when the received packet fails the source IP address check. The access list can be defined as a
standard access list or as an extended access list. If an access list is defined, then after a packet
fails a Unicast RPF check, the access list is checked to see if the packet should be dropped or
forwarded. Unicast RPF events can also be logged by specifying the logging option for the access
list entries used by Unicast RPF.

The following example configures Router 1 in Figure 3.3 to use access lists and logging with
Unicast RPF. In the example in Listing 3.4, the extended access list 114 contains entries that should
permit or deny network traffic for specific address ranges received on interface serial1/0. Unicast
RPF is configured on interface serial1/0 to check packets arriving at that interface.

Listing 3.4: An example Unicast RPF logging configuration.

ip cef distributed
!
int serial1/0
ip verify unicast reverse−path 114
!
int ethernet0/0
ip verify unicast reverse−path
!
access−list 114 deny ip 192.168.10.0 0.0.0.255 any log−input
access−list 114 deny ip 192.168.20.0 0.0.0.255 any log−input
access−list 114 deny ip 192.168.30.0 0.0.0.255 any log−input
access−list 114 permit ip 192.168.9.0 0.0.0.255 any log−input

The configuration in Listing 3.4 denies packets with a source address of 192.168.10.0,
192.168.20.0, or 192.168.30.0 from arriving at interface serial1/0 because of the deny statement in
access list 114. The access lists also logs any packet that is matched by the access list. Packets
with a source address within the 192.168.9.0 subnet arriving at interface serial1/0 are forwarded if
the source cannot be verified against interface serial1/0 because of the permit statement in access
list 114. To verify that logging of the access list entries are taking place, use the show access−lists
command:

Router−1# show access−lists
Extended IP access list 114\
deny ip 192.168.10.0 0.0.0.255 any log−input (87 match)
deny ip 192.168.20.0 0.0.0.255 any log−input (32 match)
deny ip 192.168.30.0 0.0.0.255 any log−input (76 match)
permit ip 192.168.9.0 0.0.0.255 any log−input (63 match)

Each time a packet is dropped at an interface, information is not only logging globally on the router
but also at each interface configured for Unicast RPF. Global statistics about packets that have
been dropped provide information about potential attacks. To view the global drop statistics, use the
show ip traffic command. Here is the output:

Router−1#show ip traffic
IP statistics:
  Rcvd: 1290449399 total, 75488293 local destination
        0 format errors, 183 checksum errors, 8684 bad hop count
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        62 unknown protocol, 0 not a gateway
        0 security failures, 0 bad options, 1147 with options
.....
 Drop:  1468583 encap failed, 325 unresolved, 0 no adjacency
        7805049 no route, 41 unicast RPF, 1428682 forced drop
Router−1#

Interface statistics help to provide information about which interface is the source of the attack.
Statistics for each interface can be viewed using the show ip interface command. Interface
statistics display two separate types of RPF drops: Unicast RPF drops and Unicast RPF
suppressed drops. The display for Unicast RPF drops shows the number of drops at the interface,
and the display for Unicast suppressed drops shows the number of packets that failed the Unicast
RPF reverse lookup check but were forwarded because of a permit statement configured within the
access list that is applied to Unicast RPF. The following output is from the show ip interface
command:

Router−1#show ip interface serial1/0
...
Unicast RPF ACL 114
37 unicast RPF drops
12 unicast RPF suppressed drops
Router−1#

Configuring TCP Intercept

The configuration of TCP Intercept is based on access lists, which are bound within TCP Intercept
commands. Thus, access lists bound within TCP Intercept are not bound to an interface, as in most
access list configurations.

Use the following steps to configure TCP Intercept (Steps 4, 5 and 6 are optional):

Use the following global configuration command to define an extended IP access list:

access−list access−list number [deny|permit] tcp any =
  <destination> <destination−wildcard mask>

The access list can be configured to intercept either all TCP requests or only those coming
from specific networks or destined for specific servers. The access list should define the
source as any and define specific destination networks or servers; do not attempt to filter on
the source addresses because you may not know which source address to intercept packets
from. Identify the destination to protect destination servers.

1. 

Use the following command to enable TCP Intercept:

ip tcp intercept list access−list number

2. 

Use this command to configure the mode in which TCP Intercept should operate:

ip tcp intercept mode <watch|intercept>

3. 

If Intercept is configured to run in watch mode, configure the amount of time it will wait for a
watched connection to an established state before terminating the connection. Use this
command to do so:

4. 
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ip tcp intercept watch−timeout <seconds>

Configure the mode that Intercept should use to drop connections when under attack and
running in aggressive mode by using this command:

ip tcp intercept drop−mode <random\oldest>

5. 

Configure the amount of time that a connection will be managed by Intercept by using the
following command:

ip tcp intercept connection−timeout <seconds>

6. 

TCP Intercept has a number of other command arguments, which will be discussed in detail
throughout this section. It should be noted that only the first three steps in the preceding list are
required to take advantage of the features that TCP Intercept provides. The other steps, as well as
the commands that will be discussed later, are considered commands that are used to fine−tune the
operation of TCP Intercept.

Note Do not configure TCP Intercept on the perimeter router if the router is configured
for Context−Based Access Control (CBAC).

In Figure 3.4, Router B is the perimeter router for the enterprise and is configured for TCP Intercept.
Router B has been configured to intercept requests to a Web server that has an IP address of
192.168.20.20 and to intercept requests to an FTP server with an IP address of 192.168.20.21.

Figure 3.4: An example TCP Intercept network.
Listing 3.5 details the configuration commands needed to configure Router B to intercept requests
to the Web server and FTP server. Router B is configured for TCP Intercept in watch mode.

Listing 3.5: TCP Intercept configuration of Router B.

#config t
#access−list 100 permit tcp any host 192.168.20.20
#access−list 100 permit tcp any host 192.168.20.21
#ip tcp intercept list 100
#ip tcp intercept mode intercept
#end
#

The configuration in Listing 3.5 defines access list 100 and permits any TCP traffic with a
destination of 192.168.20.20 and 192.168.20.21 to be intercepted by Router B. TCP Intercept is
configured on Router B and access list 100 is bound to the TCP Intercept configuration and the
mode is configured for watch mode. TCP Intercept has a limited number of verification and
debugging tools. One of the most useful verification commands is the show tcp intercept
statistics command. Listing 3.6 lists the output of this command.
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Listing 3.6: The output of show tcp intercept statistics.

Router−B#show tcp intercept statistics
Intercepting new connections using access−list 100
148 incomplete, 851 established connections (total 999)
1 minute connection request rate 49 requests/sec
Router−B#

The output of the show tcp intercept statistics command demonstrates that TCP Intercept is
using access list 100 to compare against all new connections. The output of the command displays
the number of incomplete connections and established connections.

The connection requests for each server can be monitored in realtime using the sh tcp intercept
connections command. Issuing the command on Router B displays the output shown in Listing 3.7.

Listing 3.7: Example of show TCP intercept connections output.

Router−B# show tcp intercept connections
Incomplete:
Client              Server            State   Create   Timeout M
208.19.121.12:58190 192.168.20.20:80 SYNRCVD 00:00:06 00:00:02 I
208.19.121.12:57934 192.168.20.20:80 SYNRCVD 00:00:06 00:00:02 I
168.41.18.4:59274   192.168.20.21:23 SYNRCVD 00:00:06 00:00:02 I
168.41.18.4:56196   192.168.20.21:23 SYNRCVD 00:00:06 00:00:02 I
...
Established:
Client              Server            State  Create   Timeout  M
17.96.23.23:1045    192.168.20.20:80  ESTAB  00:01:10 23:58:52 I
...

Note The "M" in the 3rd and 10th lines in Listing 3.7 represents the word "Mode."
In Listing 3.7, the Incomplete section displays information related to connections that are not yet
established. The Client field displays the source IP address of the client requesting service from the
server and also lists the randomly generated source port number the source is using to
communicate on. The Server field displays the destination server IP address and port number that
is being protected by TCP Intercept. As discussed earlier, TCP Intercept will intercept each
incoming connection request from the source and respond to the source on behalf of the server.
After the source responds back to the router, the router will send the original SYN request packet to
the server and merge the connections. The state of each of the connection requests is listed in the
State field. The State field can contain one of three values:

SYNRCVD—When the connection is in this state, the router is attempting to establish a
connection with the source of the connection request. It is during this phase that the router
sends a SYN−ACK to the source and is awaiting an ACK from the source.

• 

SYNSENT—When the connection is in this state, the router is attempting to establish a
connection with the destination of the connection request. It is during this phase that the
router has received an ACK from the source and is sending the original SYN request to the
server in an attempt to perform the three−way handshake.

• 

ESTAB—In order for the connection to reach this state, the two separate connections have
been joined and communication between the source and destination is established.

• 

The Create field details the amount of time since the connection was created. The Timeout field lists
the amount of time remaining until the retransmission timeout is reached. The Mode field displays
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the mode under which TCP Intercept is running; the values can be either I (for intercept mode) or W
(for watch mode). The Established section displays information related to connections that have
become established. All fields in the Established section maintain the same values they have in the
Incomplete section with the exception of the Timeout field, which displays the time remaining until
the connection timeout is reached and the connection is dropped.

In Listing 3.5, Router B was configured to operate in intercept mode in the earlier configuration;
however, this can be changed using the ip tcp intercept mode command. Below, Router B is
configured to operate in watch mode, and the ip tcp intercept watch−timeout command is used to
lower the watch timeout from the default 30 seconds to a value of 16 seconds. Changing the watch
timeout will define how long Intercept will wait for a watched TCP connection to reach an
established state before it sends a reset to the server. The following configuration reflects the
changes:

#config t
#ip tcp intercept mode watch
#ip tcp intercept watch−timeout 16\
#end

The default timeout value for an established session with no activity is 24 hours, or one day. Notice
in Listing 3.7 that there is one established session between the client and server. The timeout value
for the connection still has 23 hours, 58 minutes, and 52 seconds left before it times out. This
means the connection will still be managed by the router for that amount of time, even if there is no
activity between the client and server. In some environments, such as those with a large amount of
connection requests, the default connection timeout value should be lowered so that the router does
not have to use resources managing connections that are not being used. The connection timeout
value can be changed using the ip tcp intercept connection−timeout command. Router B will
now be configured to lower the default connection timeout value to 6 hours:

#config t
#ip tcp intercept connection−timeout 21600
#end

The connection−timeout command accepts the timeout value in seconds. The timeout value can
be configured as low as 1 second and as high as 2147483 seconds.

Another method of viewing TCP Intercept statistics is to use the debug ip tcp intercept command.
Using the debug command allows administrators to view a connections request in realtime. Using
Listing 3.7 as a reference, the debug ip tcp intercept command was issued to monitor each
connection request. Listing 3.8 details the output of the debug command; only the first and second
connection requests are recorded in the output.

Listing 3.8: Example output from debug ip tcp intercept.

!1st connection attempt\
: new connection (208.19.121.12:58190) => (192.168.20.20:80)
: (208.19.121.12:58190) <− ACK+SYN (192.168.20.20:58190)

!2nd connection attempt
: new connection (168.41.18.4:59274) => (192.168.20.21:23)
: (168.41.18.4:59274) <− ACK+SYN (192.168.20.21:59274)
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!Router B retransmits to the 1st client
: retransmit 4 (208.19.121.12:58190) <− (192.168.20.20:80)
: SYNRCVD

!Router B establishes a connection to the second client
: 1st half of conn is established
: (168.41.18.4:59274)=>(192.168.20.21:23)
: (168.41.18.4:59274) SYN −> (192.168.20.21:23) SYNSENT

!Server responds and the connection is established
: 2nd half of conn established
: (168.41.18.4:59274)=>(192.168.20.21:23)
: (168.41.18.4:59274) ACK −> (192.168.20.21:23)

!The router tries to establish a connection to the 1st client,
!then times the connection out and sends a reset to the server.
: retransmit 16 (208.19.121.12:58190)>−(192.168.20.20:80)
: SYNRCVD
: retransmit expire
: (208.19.121.12:58190)=>(192.168.20.20:80) SYNRCVD
: (208.19.121.12:58190) <− RST (192.168.20.20:80)

The debug output in Listing 3.8 details the steps that TCP Intercept takes after it's configured, and a
new connection request to a device that is matched by the configured access list is initiated.

After a device comes under attack from SYN floods, TCP Intercept will transition to a mode known
as aggressive mode. Whether or not Intercept transitions to aggressive mode is determined by two
values: the total number of incomplete connections and the total number of connection requests
during Intercept's last 60−second sampling period. If either of these values is exceeded, TCP
Intercept assumes that the device is under attack and transitions to aggressive mode. After both of
the values fall below the configured minimum, the aggressive behavior ends.

When TCP Intercept is in aggressive mode, it will begin to drop the oldest partial connection request
for each new connection that is requested when under attack; however, this action can be changed
using the ip tcp intercept drop−mode global configuration command. The drop mode can be
changed, so that TCP Intercept will drop any connection request regardless of age, instead of
dropping the oldest partial connection request. TCP Intercept will also change the watch timeout if it
is configured to run in watch mode. If Intercept is running in watch mode, the watch mode timeout
value is reduced by half when TCP Intercept transitions to aggressive mode. The threshold for
triggering aggressive mode is based on the total number of incomplete connections and can be
configured using the following commands:

ip tcp intercept max−incomplete low number
ip tcp intercept max−incomplete high number

The default for the low value is 900 incomplete connections, and the default for the high value is
1100 incomplete connections. The threshold for triggering aggressive mode based on the number of
connection requests received in the last 60−second sample period can be configured using the
following commands:

ip tcp intercept one−minute low number
ip tcp intercept one−minute high number
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The default for the 60−second low value is the same as the max−in− complete low value, 900.
The default value for the 60−second high value is the same as the max−incomplete high value,
1100.

Router B should be configured to trigger TCP Intercept aggressive mode sooner than normal, and
the drop mode should be configured such that it will randomly drop partial connections regardless of
the age time for each connection request. This can be accomplished using the configuration in
Listing 3.9.

Listing 3.9: Example Intercept aggressive mode configuration.

#config t
#ip tcp intercept drop−mode random
#ip tcp intercept max−incomplete low 400
#ip tcp intercept max−incomplete high 600
#ip tcp intercept one−minute low 400
#ip tcp intercept one−minute high 600
#end

The drop mode for router B has been changed from the default of dropping the oldest partial
connection to dropping any connection regardless of the age value. The configuration also lowered
the values that TCP Intercept uses to trigger aggressive mode behavior. The final TCP configuration
of Router B can be seen in Listing 3.10.

Listing 3.10: Final TCP Intercept configuration.

#ip tcp intercept list 100
#ip tcp intercept mode watch
#ip tcp intercept watch−timeout 16
#ip tcp intercept connection−timeout 21600
#ip tcp intercept drop−mode random
#ip tcp intercept max−incomplete low 400
#ip tcp intercept max−incomplete high 600
#ip tcp intercept one−minute low 400
#ip tcp intercept one−minute high 600
#access−list 100 permit tcp any host 192.168.20.20
#access−list 100 permit tcp any host 192.168.20.21

Configuring Network Address Translation (NAT)

Perimeter routers help enterprises to solve IP address space depletion problems; they can also hide
internal IP addresses from outside networks. To provide these functions as well as many others,
perimeter routers use Network Address Translation (NAT) and Port Address Translation (PAT). The
following sections provide guidelines for configuring the various types of NAT and PAT on Cisco
routers.

Configuring Static NAT Translations

Static Network Address Translation (NAT) allows security administrators to configure their routers
such that individual inside local IP addresses can be translated to individual global inside IP
addresses.
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Static NAT is particularly useful when hosts on the outside network need the capability to access a
host or hosts on the inside network. NAT compares the packets that are destined to a global outside
address against the inside local address that is configured on the NAT translation entries. If the
source of the packet has a valid entry in the translation table, the packet source address is rewritten
with the matching inside global IP address.

NAT maintains a table of translated IP addresses. To the outside network, the inside network
appears to have a certain range of IP addresses. These addresses are mapped to the actual IP
addresses that are used inside the enterprise. Static NAT is referred to as a simple translation entry.

Use the following steps to configure static NAT translation for inside IP addresses:

Use the following command to establish a static translation between an inside local address
and an inside global address:

ip nat inside source static <inside local address> <inside
global address>

The inside local address is the address that is to be translated, and the inside global address
is the address that the inside local address is to be translated to.

1. 

Use this command to move into interface configuration mode:

interface <interface type> <interface number>

2. 

Use the ip nat inside interface configuration command to apply NAT to the interface that is
connected to the networks with the local addresses.

3. 

Use this command to move into interface configuration mode:

interface <interface type> <interface number>

4. 

Use the ip nat outside interface configuration command to apply NAT to the interface that is
connected to the networks with the inside global addresses.

5. 

The preceding steps included the minimum commands needed to configure static NAT translation.
Figure 3.5 displays a network that must use NAT to communicate with outside networks.
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Figure 3.5: Static NAT.
The networks that are behind Router 1 are all allocated from RFC 1918 nonroutable address space.
The Web server has an inside local address of 10.10.10.30 and must be accessible to outside
networks via the address 192.168.10.30. The other server is an email server that has an IP address
of 10.10.10.53 and must be accessible to outside networks via the address 192.168.10.53. The
commands used to configure static NAT translations on Router 1 are shown in Listing 3.11.

Listing 3.11: Static NAT configuration.

#config t
#ip nat inside source static 10.10.10.30 192.168.10.30
#ip nat inside source static 10.10.10.53 192.168.10.53
!
#interface FastEthernet0/0
#ip address 10.10.10.2 255.255.255.0
#ip nat inside
!
#interface Serial1/0
#ip address 192.168.10.2 255.255.255.0
#ip nat outside

In Listing 3.11, Router 1 has been configured with two static translation entries.

Note Although the 192.168.0.0 range is allocated from RFC 1918 private address space, it is being
used in these examples as a registered IP address block.

The Fast Ethernet interface is designated as the inside interface with the ip nat inside command,
and interface Serial1/0 is designated as the outside interface with the ip nat outside command. To
verify that the configuration is correct, issue the sh ip nat translation command. The following
output lists the information related to the simple translation entry:

Router−1#sh ip nat trans
Pro Inside global Inside local  Outside local  Outside global
− 192.168.10.30 10.10.10.30   −              −
− 192.168.10.53 10.10.10.53   −              −

The show ip nat translations command lists the protocol field, the inside global address, the inside
local address, the outside local address, and the outside global address. The outside local and
outside global fields will be discussed later in this chapter when you learn more about extended
entries. Another command that can be used to monitor and verify the operation of NAT is the show
ip nat translations verbose command. Issuing this command on Router 1 displays the following
output:

Router−1#sh ip nat trans ver
Pro Inside global  Inside local  Outside local  Outside global
− 192.168.10.30  10.10.10.30       −              −
    create 00:49:01, use 00:00:01,
    flags: static,  use_count: 74
− 192.168.10.53       10.10.10.53  −              −
    create 00:49:12, use 00:00:7,
    flags: static, use_count: 50
Router−1#

105



The verbose argument of the show ip nat translations command produces more detailed
information regarding the status of the NAT translations. As you can see in the preceding output,
the fields that are listed with the verbose argument are the same as the fields that were listed
without it. The output when the verbose argument is used includes a create field that lists how long
ago the entry was created. The use field lists how long ago the translation entry was last used. The
times in the create and use fields are listed in the hours:minutes:seconds format. The flag field
indicates the type of translation entry, and there are a total of five possible flags:

static—States that the entry was created by a static translation entry• 
extended—States that the entry was created by an extended translation entry• 
outside—States that the entry was created by an outside translation entry• 
destination—States that the entry was created by an outside translation entry• 
time out—States that the entry will no longer be used and is being torn down• 

The use count field lists the total number of times the entry has been used. One last command used
to monitor and verify the operation of NAT is the show ip nat statistics command. The following
output is displayed when the show ip nat statistics command is issued on Router 1:

Router−1#sh ip nat stat
Total active translations: 2 (2 static, 0 dynamic; 0 extended)
Outside interfaces:
  Serial1/0
Inside interfaces:
  FastEthernet0/0
Hits: 124 Misses: 0
Expired translations: 0
Dynamic mappings:
Router−1#

The total active translations field lists the total number of active NAT translations on the router. This
field is populated in realtime; each time a translation entry is created, the field is incremented
accordingly, and each time a translation entry is dropped or times out, the field is decremented
accordingly. The outside interface is then listed and is determined based on the ip nat outside
command. The inside interface is listed next and is determined based on the ip nat inside
command. The hits field lists the total number of times NAT does a translation table lookup and
finds a match. The misses field list the total number of times NAT does a translation table lookup,
fails to find an entry, and attempts to create one. The expired translations field lists the total number
of entries that have expired. The dynamic mapping field lists information that pertains to a NAT
entry that was created by a dynamic translation entry. This field will be discussed later in this
chapter.

Configuring Static NAT Translations Using Route Maps

Static NAT supports the use of route maps, which give enterprises the opportunity to take
advantage of multihoming without having to lose the features that static NAT provides. To configure
static NAT with route maps, use the following steps:

Use this command to enable static NAT with route maps configured on the inside interface:

ip nat inside source list {acl−number|acl−name} pool pool−name
[overload]|static local−ip global−ip route−map map−name}

1. 
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Use the following command to define an extended access list and the parameters of the
access list:

access−list <acl−number> {deny|permit} <protocol> −
  <source> <source−wildcard> <destination> <destination−
wildcard>

The access list should specify which traffic arriving at the inside interface and destined to the
outside interface is eligible to create a translation entry.

2. 

Use this command to move into interface configuration mode:

interface <interface type> <interface number>

3. 

Use the ip nat inside interface configuration command to apply NAT to the interface that is
connected to the networks with the local addresses.

4. 

Use the following command to move into interface configuration mode:

interface <interface type> <interface number>

5. 

Use the ip nat outside interface configuration command to apply NAT to the interface that is
connected to the networks with the inside global addresses.

6. 

Use this command to enter route map configuration mode and define the parameters of the
route map:

route−map <name> {permit|deny} <sequence number>}

7. 

Figure 3.6 shows a network in which the use of static NAT and route maps would be beneficial.
Router 1 has a connection to Router 2 and another connection to Router 3. The hosts behind
Router 1 have varying requirements: When a connection is established to hosts within Network 2
behind Router 2, their IP address should appear to be sourced from one subnet. Yet, when
connections are established to hosts within Network 3 behind Router 3, their IP address should
appear to be sourced from a different subnet. To meet the requirements, the configuration in Listing
3.12 can be used.

Listing 3.12: Router 1 static NAT with route map configuration.

hostname Router−1
!
interface Serial2/0
 ip address 192.168.20.1 255.255.255.0
 ip nat outside
!
interface Serial3/0
 ip address 192.168.30.1 255.255.255.0
 ip nat outside
!
interface Ethernet1/0
 ip address 10.10.10.1 255.255.255.0
 ip nat inside
 duplex full
 speed 100
!
ip route 20.20.20.0 255.255.255.0 192.168.20.2
ip route 30.30.30.0 255.255.255.0 192.168.30.2
!
ip nat inside source static 10.10.10.43 192.168.20.2 −
  route−map network2
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!
ip nat inside source static 10.10.10.43 192.168.30.2 −
  route−map network3
!
ip nat inside source static 10.10.10.65 192.168.20.3 −
  route−map network2
!
ip nat inside source static 10.10.10.65 192.168.30.3 −
  route−map network3
!
access−list 101 permit ip 10.10.10.0 0.0.0.255 −
  20.20.20.0 0.0.0.255
!
access−list 102 permit ip 10.10.10.0 0.0.0.255 −
  30.30.30.0 0.0.0.255
!
route−map network2 permit 10
 match ip address 101
 set ip next−hop 192.168.20.2
!
route−map network3 permit 10
 match ip address 102
 set ip next−hop 192.168.30.2

Figure 3.6: Example static NAT and route map network.
Note Because of the format limitations of this book, some lines of code listed above have been

broken with a hyphen.
The configurations in Listing 3.11 and Listing 3.12 are very similar; in Listing 3.12 the route−map
option is at the end of the ip nat inside source command. The inside and outside NAT interfaces
are defined for Router 1. Each of the ip nat inside source static commands creates a static NAT
translation entry and defines a route map that should be applied for each of the entries. The route
map is configured to match addresses sourced from an inside subnet and destined for an outside
subnet. The next hop to send the packet to is then defined.
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Configuring Dynamic NAT Translations

Dynamic NAT translation of addresses is one of many types of NAT configurations. The difference
in the configuration of dynamic NAT translations and static NAT translations is minimal. However,
the manner in which the translation table is populated is vastly different. With static NAT, you need
to manually enter the pairs of translation addresses. Using dynamic NAT, the table is populated
dynamically after a packet is received on the inside interface and the packet matches parameters
defined within an access list. Packets that are to be translated by NAT should match a permit
statement within the access list. A deny statement in the access list tells NAT not to perform
translation on the packet.

To perform translation on packets moving between interfaces labeled as "inside" and interfaces
labeled as "outside," NAT must be told what address to change the packet to. With static NAT, the
address is manually entered so NAT doesn't have to decide which address to allocate to a certain
flow. With dynamic NAT, a pool of inside global addresses is configured, and NAT chooses the next
available address to allocate to every new flow. NAT chooses addresses from the configured pool,
starting with the lowest IP address first and then continuing to translate each new flow with the next
available address. After all of the addresses in the pool are in use and allocated, NAT translates a
new flow until a translation times out or is cleared and released back into the pool. To configure
basic dynamic NAT, use the following steps:

Use the following global configuration command to define a pool of inside global addresses
to be allocated as needed:

ip nat pool <name> <start−ip address> <end−ip address> −
  {netmask netmask|prefix−length prefix−length}

The start IP address is the address that NAT will begin with when creating a dynamic
translation entry. The end IP address is the last IP address that NAT will be able to use
when creating a dynamic translation entry.

1. 

Use this command to define an extended access list and its parameters:

access−list <access−list−number> {deny|permit} <protocol> −
  <source> <source−wildcard> <destination> <destination−
wildcard>

The access list should specify which traffic arriving at the inside interface and destined to the
outside interface is eligible to create a translation entry.

2. 

Use the following command to establish an association between the local inside addresses
and the pool of global addresses:

ip nat inside source list <access−list−number> pool <name>

3. 

Use the following command to move into interface configuration mode:

interface <interface type> <interface number>

4. 

Use the ip nat inside interface configuration command to apply NAT to the interface that is
connected to the networks with the local addresses.

5. 

Use this command to move into interface configuration mode:

interface <interface type> <interface number>

6. 
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Use the ip nat outside interface configuration command to apply NAT to the interface that is
connected to the networks with the inside global addresses.

7. 

The preceding steps contain all the commands needed to configure dynamic NAT translation.
Figure 3.7 displays a network that must use NAT to communicate with outside networks. The
networks that are behind Router 1 are all allocated from RFC 1918 nonroutable address space. The
clients located behind Router 1 have inside local addresses allocated from the 10.10.10.0 subnet.
The configuration of Router 1 is shown in Listing 3.13.

Listing 3.13: Dynamic NAT configuration.

ip subnet−zero
!
ip nat pool INTERNET 192.168.10.129 192.168.10.254 −
netmask 255.255.255.128
!
ip nat inside source list 1 pool INTERNET
!
interface Serial0/0
 ip address 192.168.10.1 255.255.255.128
 ip nat outside
!
int FastEthernet0/0
ip address 10.10.10.1 255.255.255.0
 ip nat inside
!
access−list 1 permit 10.10.10.0 0.0.0.255

Figure 3.7: Dynamic NAT network example.
The configuration in Listing 3.13 defines an inside global pool of addresses named INTERNET with
126 inside global addresses. The access list command is used to tell NAT which inside local
addresses are eligible for translation. The ip nat inside source command is used to bound the
access list and the pool of addresses together. Interface serial0/0 is defined as the outside
interface, and interface fastethernet0/0 is defined as the inside interface.

When hosts on the 10.10.10.0 network need to connect to networks outside of their local network,
NAT will perform a translation table lookup and determine if a translation entry already exists. If a
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translation is present in the translation table, the router performs no other function. If no translation
exists in the translation table, NAT performs a translation and allocates the next lowest available IP
address for the packet. To view the translation table of Router 1, use the sh ip nat translations
command. Listing 3.14 displays the output when the command is issued on Router 1.

Listing 3.14: Display of NAT translations.

Router−1#show ip nat translations
Pro  Inside global   Inside local  Outside local  Outside global
−  192.168.10.129  10.10.10.1    −         −
−  192.168.10.130  10.10.10.35   −         −
−  192.168.10.131  10.10.10.47   −         −
−  192.168.10.132  10.10.10.68   −         −
...
Router−1#

The output from Listing 3.14 confirms that NAT is allocating IP addresses from the inside global
pool of addresses and translating the inside local address to an inside global address. After an entry
is created, all connections from hosts on the inside network to hosts on the outside network should
be successful.

Another command used to monitor and verify the operation of NAT is the show ip nat statistics
command. This command was used earlier to monitor and verify the operation of static NAT;
however, when it was used with static NAT, no information regarding the dynamic mappings was
listed. When the command is issued on Router 1, information specific to the dynamic mappings is
included. Listing 3.15 displays the output of issuing the command on Router 1 with dynamic
mapping.

Listing 3.15: Display of NAT statistics.

Router−1#sh ip nat stat
Total active translations: 11 (0 static, 11 dynamic; 0 extended)
Outside interfaces:
  Serial0/0
Inside interfaces:
  FastEthernet0/0
Hits: 63 Misses: 5
Expired translations: 0
Dynamic mappings:
−− Inside Source
access−list 1 pool INTERNET refcount 11
pool INTERNET: netmask 255.255.255.128
start 192.168.10.129 end 192.168.10.254
type generic, total addresses 126, allocated 11 (8%), misses 0
Router−1#

Configuring Dynamic NAT Translations Using Route Maps

As discussed earlier, NAT supports the use of static translations using route maps; it also supports
the use of dynamic translation using route maps. To configure dynamic NAT translations using route
maps, use the following steps:

Use the following command to establish an association between the configured route map
and the pool of global addresses:

1. 
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ip nat inside source route−map <route map name> pool <pool −
name>

Use this command to define a pool of addresses to be allocated for translation as needed:

ip nat pool <pool name> <start−ip address> <end−ip address> −
  {netmask netmask | prefix−length prefix−length}

The start IP address is the address that NAT will begin with when creating a dynamic
translation entry. The end IP address is the last IP address that NAT will be able to use
when creating a dynamic translation entry.

2. 

Use the following command to define an extended access list and its parameters:

access−list <access−list−number> {deny|permit} <protocol> −
  <source> <source−wildcard> <destination> <destination −
wildcard>

The access list should specify which traffic arriving at the inside interface and destined to the
outside interface is eligible to create a translation entry.

3. 

Use this command to enter route map configuration mode and define the parameters of the
route map:

route−map <name> {permit|deny} <sequence number>}

4. 

Use the following command to move into interface configuration mode:

interface <interface type> <interface number>

5. 

Use the ip nat inside interface configuration command to apply NAT to the interface that is
connected to the networks with the local addresses.

6. 

Use the following command to move into interface configuration mode:

interface <interface type> <interface number>

7. 

Use the ip nat outside interface configuration command to apply NAT to the interface that is
connected to the networks with the inside global addresses.

8. 

Referring to Figure 3.8, you can see that Router 1 is multihomed to two different routers. It has a
connection to Router 2 and another to Router 3. When the hosts behind Router 1 in network
10.10.10.0 establish a connection to hosts within Network 2 behind Router 2 with IP addresses of
20.20.20.0, their IP addresses should appear to be sourced from one subnet; yet, when establishing
connections to hosts within Network 3 behind Router 3 with a network of 30.30.30.0, their IP
addresses should appear to be sourced from a different subnet. To meet the requirements using
dynamic NAT and route maps, the configuration in Listing 3.16 can be used.

Listing 3.16: Router 1 Dynamic NAT with route map configuration.

hostname Router−1
!
interface Serial2/0
 ip addres  192.168.20.1.255.255.255.0
 ip nat outside
!
interface Serial3/0
 ip addres  192.168.30.1.255.255.255.0
 ip nat outside
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!
interface Serial1/0
 ip addres  10.10.10.1.255.255.255.0
 ip nat inside
 duplex full
 speed 100
!
ip route 20.20.20.0.255.255.255.0 192.168.20.2
ip route 30.30.30.0 255.255.255.0 192.168.30.2
!
ip nat pool network−20 192.168.20.20 192.168.20.254 −
  prefix−length 24
!
ip nat pool network−30 192.168.30.20 192.168.30.254 −
  prefix−length 24
!
ip nat inside source route−map network2 pool network−20
ip nat inside source route−map network3 pool network−30
!
access−list 101 permit ip 10.10.10.0 0.0.0.255 −
  20.20.20.0 0.0.0.255
!
access−list 102 permit ip 10.10.10.0 0.0.0.255 −
  30.30.30.0 0.0.0.255
!
route−map network2 permit 10
 match ip address 101
 set ip next−hop 192.168.20.2
!
route−map network3 permit 10
 match ip address 102
 set ip next−hop 192.168.30.2
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Figure 3.8: Router 1 Dynamic NAT with route map.
Note Because of the format limitations of this book, some lines of code in Listing 3.16 have

been broken with a hyphen.
If you compare the configurations in Listing 3.12 and Listing 3.16, you'll notice that there are slight
differences between the two. The configuration in Listing 3.16 does not include any static mappings
and the ip nat pool command has been added. When a route map is used by NAT to match the
inside traffic to be translated, NAT will create a fully extended translation entry that can be viewed
using the show ip nat translations command. The translation entry created by NAT will contain
both the inside and outside local and global address entries and also contain any TCP or UDP port
information. Issuing the show ip nat translations command on Router 1 displays the following
output:

Router−1#show ip nat translations
...

Pro  Inside global       Inside local     ...
TCP  192.168.20.20:1134  10.10.10.43:1134 ...
TCP  192.168.30.20:1135  10.10.10.43:1135 ...
TCP  192.168.20.21:1026  10.10.10.65:1026 ...
TCP  192.168.30.21:1027  10.10.10.65:1027 ...
                         ... Outside local Outside global
                         ... 20.20.20.20:21 20.20.20.20:21
                         ... 30.30.30.30:23 30.30.30.30:23
                         ... 20.20.20.21:23 20.20.20.21:23
                         ... 30.30.30.31:21 30.30.30.31:21

Note Because of the format limitations of this book, lines of code have been broken with ellipsis
points.

Configuring Port Address Translation (PAT)

Because of the rapid depletion of public IP version 4 address space and the limited number of
public IP addresses that can be used on the Internet, enterprises may not be able to purchase
blocks of public addresses that contain the number of private addresses being used on the inside
network to perform Network Address Translation. A solution to working with the limited number of
addresses being allocated to enterprises is the use Port Address Translation (PAT). PAT allows
multiple hosts on the inside local network to access hosts located on outside networks using a
single inside global address. PAT utilizes a NAT feature known as overloading. When overloading is
configured on the router, the router maintains enough information from the higher−layer protocols
like TCP or UDP port numbers, which allows the router to translate the global address back to the
originating local address. More than one inside local address can be mapped to an inside global
address, and when multiple inside local addresses map to one global address, the TCP or UDP port
numbers of each inside host distinguish between the local addresses.

To configure PAT, perform the following steps (these steps are similar to the steps for configuring
dynamic NAT translations):

Use the following global configuration command to define a pool of inside global addresses
to be allocated as needed:

ip nat pool <name> <start−ip address> <end−ip address> −
  {netmask netmask|prefix−length prefix−length}

1. 
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The start IP address is the address that NAT will begin with when creating a dynamic
translation entry. The end IP address is the same IP address used for the start IP address.
Use this command to define an extended access list and its parameters:

access−list <access−list−number> {deny|permit}<protocol> −
  <source> <source−wildcard> <destination> <destination−
wildcard>

The access list should specify which traffic arriving at the inside interface and destined to the
outside interface is eligible to create a translation entry.

2. 

Use this command to establish an association between the local inside addresses and the
pool of global addresses (notice the use of the overload keyword):

ip nat inside source list <access−list−number> pool <name> −
  overload

3. 

Use the following command to move into interface configuration mode:

interface <interface type> <interface number>

4. 

Use the ip nat inside interface configuration command to apply NAT to the interface that is
connected to the networks with the local addresses.

5. 

Use this command to move into interface configuration mode:

interface <interface type> <interface number>

6. 

Use the ip nat outside interface configuration command to apply NAT to the interface that is
connected to the networks with the inside global addresses.

7. 

Using Figure 3.7 as a reference, you can see that Router 1 must now be configured to support PAT.
The figure displays a network that must use PAT to communicate with outside networks. The
networks that are behind Router 1 are all allocated from RFC 1918 nonroutable address space. The
clients located behind Router 1 have inside local addresses allocated from the 10.10.10.0 subnet;
however, the enterprise has been allocated only one public IP address. Listing 3.17 shows the
configuration needed to configure Router 1 for PAT.

Listing 3.17: PAT configuration example.

ip subnet−zero
!
ip nat pool INTERNET 192.168.10.254 192.168.10.254 −
  netmask 255.255.255.128
!
ip nat inside source list 1 pool INTERNET overload
!
interface Serial0/0
 ip address 192.168.10.1 255.255.255.128
 ip nat outside
!
int FastEthernet0/0
ip address 10.10.10.1 255.255.255.0
 ip nat inside
!
access−list 1 permit 10.10.10.0 0.0.0.255
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Here is the NAT table of Router 1; notice that PAT creates an extended entry and all fields of the
output are populated:

Router−1#show ip nat translations
...

Pro  Inside global        Inside local      ...
TCP  192.168.10.254:1036  10.10.10.3:1036   ...
TCP  192.168.10.254:1037  10.10.10.162:1037 ...
TCP  192.168.10.254:1056  10.10.10.15:1056  ...
                               ... Outside local   Outside global
                               ... 20.20.20.184:23
20.20.20.184:23
                               ... 20.20.20.200:23 20.20.20.20:23
                               ... 20.20.20.21:23  20.20.20.21:23

Note Because of the format limitations of this book, lines of code have been broken with
ellipses points.

Configuring Committed Access Rate (CAR)

The process for configuring CAR to rate−limit traffic is fairly straightforward. To configure a CAR
policy for IP traffic, use the following steps beginning in global configuration mode:

Enter interface configuration using the following command:

interface interface−type interface−number

1. 

Use this command to specify a CAR policy:

rate−limit {input|output} [access−group [rate−limit] −
access−list−number] <bps><burst−normal><burst−max> −

  conform−action action exceed−action action

2. 

Use this command to define a CAR policy based on the contents of the access list:

access−list access−list−number {deny|permit} [protocol] −
  [source] [source−wildcard] [destination] [destination−
wildcard] −

  [precedence precedence][tos tos] [log]

3. 

The preceding commands are all that are needed to define a policy to rate−limit traffic. Cisco
Express Forwarding (CEF) must also be enabled for CAR to operate. Figure 3.9 shows a network in
which Router A and Router B are neighbors. Router A is the customer edge perimeter router for
Company A and provides Internet access for the company. Router B is the provider edge router for
ISP B, which provides Internet access to Company A. Company A would like to configure Router A
such that it will rate−limit DoS packets during an attack. Listing 3.18 details the configuration
commands needed to enable CAR on each router.

Listing 3.18: Router A configured for rate−limiting.

#config t
#ip cef
#access−list 110 permit icmp any any echo
#access−list 110 permit icmp any any echo−reply
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#interface serial3/0
#rate−limit input access−group 110 32000 8000 8000 −
  conform−action transmit exceed−action drop

Figure 3.9: Rate−limiting Denial of Service.
The steps shown earlier include the basic configuration commands needed to enable CAR for
rate−limiting traffic. The configuration shown in Listing 3.18, enables CEF on a global basis for the
router. CEF must be enabled for CAR to provide rate−limiting services. Access list 110 matches
ICMP traffic. The access list is applied to CAR under the serial interface for inbound traffic. Notice
that the rate− limit command defines the extended burst limit as being the same as the normal limit,
which effectively disables the extended burst capability. Use the show running−config command
to see the output of the configuration, which is shown in Listing 3.19.

Listing 3.19: Rate limit configuration of Router A.

Router−A#sh ru
Building configuration...
!
ip cef
!
interface Serial3/0
 ip address 192.168.10.9 255.255.255.252
 rate−limit input access−group 110 32000 8000 8000 −
   conform−action transmit exceed−action drop

!
access−list 110 permit icmp any any echo
access−list 110 permit icmp any any echo−reply
!

When you issue the show running−config command, you can review the configuration changes
that were made to the local device; however, a few more commands are needed in order to verify
the operation of CAR. After you verify that the configuration changes are correct, you should issue
the show interface rate−limit command. The output of this command verifies the configuration of
CAR and allows you to monitor CAR statistics. The output of the command is shown in Listing 3.20.

Listing 3.20: Verifying the operation of CAR.

Router−A# sh int ser3/0 rate−limit
Serial3/0 Internet Connection (Network Engineering)
  Input
   matches: access−group 110
     params: 32000 bps, 8000 limit, 8000 extended limit
     conformed 445884 packets, 128442746 bytes; action: transmit
     exceeded 22272 packets, 15068096 bytes; action: drop
     last packet: 3176ms ago, current burst: 0 bytes
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     last cleared 1w5d ago, conformed 0 bps, exceeded 0 bps
Router−A#

The output of the show interface rate−limit command first lists the direction that rate−limiting is
applied, inbound or outbound. The next line defines the access list for traffic that CAR is using to
apply its policy. And the next line defines the parameters that CAR applies to traffic matching the
defined access list. The output then shows the number of packets that CAR defined as conforming
to or exceeding the defined limits.

In the configuration in Listing 3.20, Company A defined its rate−limiting policy for ICMP traffic. The
configuration effectively polices the traffic; however, the traffic is policed after traveling across
Company A's upstream connection from ISP B. Enterprises traditionally connect to their ISP via
smaller links, and their ISP connects to neighboring peers on the Internet via much larger links. In
situations in which the attack takes on a distributed form that uses hundreds or thousands of zombie
machines running preconfigured bots, the traffic that is generated can consume the enterprise's link
to its service provider. The example in Figure 3.9 depicted Company A connected to ISP B via one
single T1 connection running at 1.544 megabits. With the configuration in Listing 3.18, ICMP travels
across the T1 only to be dropped at Router A. Although Router A performs the rate−limiting
function, the configuration in Listing 3.20 does nothing to deny traffic from traveling across the link.

In these instances, ISP B should configure Router B to deny ICMP traffic from traveling across the
T1, thus allowing legitimate traffic while denying nonlegitimate traffic. The configuration for Router B
is shown in Listing 3.21; the configuration for Router B is similar to the configuration for Router A
except that the rate−limiting feature is applied in an outbound direction.

Listing 3.21: Router B configuration.

#config t
#ip cef
#access−list 110 permit icmp any any echo
#access−list 110 permit icmp any any echo−reply
#interface serial2/1
#rate−limit output access−group 110 32000 8000 8000 −
  conform−action transmit exceed−action drop

In both configurations, Listing 3.20 and Listing 3.21, each router has been configured to rate−limit
ICMP traffic, or what is commonly referred to as the Ping of Death and Smurf attacks.

Note Smurf attacks use a combination of IP spoofing and ICMP traffic to saturate a target
network by sending a spoofed Ping packet to the broadcast address of a large
network. The packet contains the source address of the actual target machine.

There are other forms of DoS attacks. Another common attack is the SYN attack, in which an
attacker exploits the use of buffer space used during the TCP session initialization handshake. CAR
can be used to rate−limit this type of traffic. Refer again to Figure 3.9; Router A should be
configured to rate−limit all ICMP traffic and traffic that contains characteristics of a SYN attack. This
configuration defines multiple rate−limiting policies and is detailed in Listing 3.22.

Listing 3.22: Multiple rate−limiting policies configuration.

#config t
#ip cef
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#access−list 110 permit icmp any any echo
#access−list 110 permit icmp any any echo−reply
#access−list 111 deny tcp any any established
#access−list 111 permit tcp any any
#interface serial3/0
#rate−limit input access−group 110 32000 8000 8000 −
  conform−action transmit exceed−action drop
!
# rate−limit input access−group 111 64000 4000 4000 −
  conform−action transmit exceed−action drop

In this example, two access lists, as well as two rate−limiting policies, have been defined. Access
list 110 rate−limits ICMP traffic to defend against Ping attacks, and access list 111 defends against
SYN floods. When you issue the following command, established sessions won't be considered in
the rate−limiting policy:

access−list 111 deny tcp any any established

This command rate−limits all initial SYN packets the router receives; the remaining packets in the
flow will conform to the deny statement in access list 111 and not be rate−limited:

access−list 111 permit tcp any any

Configuring Logging

The process for configuring a router to log events is fairly straightforward and simple, yet it's one of
the most important security configuration changes that security administrators will make on their
routers. To enable logging, follow these steps:

Use the logging on global configuration command to enable logging of messages. This
command is enabled by default and will be needed only if message logging has been
disabled.

1. 

Use the following command to configure all logging messages to contain the same IP
address:

logging source−interface <interface type interface number>

By default the logging message contains the IP address of the interface it uses to leave the
router.

2. 

Use this command to define a logging server that should receive the logging messages
(more than one host may be defined):

logging <buffered|monitor|console|ip address>

3. 

Use the logging trap <level> command to define the level of detail for logged messages.
Table 3.1 earlier in this chapter lists event error messages and their corresponding severity
levels.

4. 

Use the following command to enable time stamping of log messages:5. 
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service timestamps log <datetime|uptime> [msec] [localtime]
  [show timezone]

The logging buffered command copies logging messages to an internal buffer within the router.
This buffer is circular in nature, meaning newer messages overwrite older messages when the
buffer becomes full. The logging ip address command identifies a server to receive logging
messages. The logging monitor command logs messages to the nonconsole terminal. The
logging console command copies logging messages to the console port of the router.

Router B in Figure 3.10 is configured to send warning level logging messages to the syslog server
at IP address 192.168.10.250. Router B is configured with a loopback interface that has an IP
address of 192.168.11.1, and this interface is to be the source of all logging messages that Router
B sends. Listing 3.23 details the configuration commands needed to enable Router B for message
logging to host 192.168.10.250.

Figure 3.10: A network design with logging defined.
Listing 3.23: Router B's logging configuration.
#config t
#service timestamps log uptime
#service timestamps log datetime msec
#no logging console
#logging 192.168.11.1
#logging source−interface loopback1
#logging trap 4
#end
#

In Listing 3.23, Router B has been configured to log warning level messages to the system logging
server with an IP address of 192.168.11.1. To verify that logging has been properly configured,
issue the show logging command. Listing 3.24 displays the output.
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Listing 3.24: Show logging output.

Router−B#show logging
Syslog logging: enabled (0 messages dropped,
0 flushes, 0 overruns)
    Console logging: disabled
    Monitor logging: level debugging, 0 messages logged
    Buffer logging: level debugging, 146 messages logged
    Trap logging: level warning, 151 message lines logged
        Logging to 192.168.11.1, 151 message lines loggedxs
Log Buffer (8192 bytes):
: %SONET−4−ALARM: POS0/1/0: B3 BER exceeds threshold
: %SONET−4−ALARM: POS0/1/0: B3 BER below threshold
: %WCCP−5−CACHEFOUND: Web Cache 192.168.31.32 acquired
: %WCCP−5−CACHEFOUND: Web Cache 192.168.31.31 acquired
: %STANDBY−6−STATECHANGE: Standby: 1: Vlan1 state Standby
: %STANDBY−6−STATECHANGE: Standby: 1: Vlan1 state Active
: %STANDBY−6−STATECHANGE: Standby: 1: Vlan1 state Speak

The output in Listing 3.24 shows that console logging has been disabled. Monitor and buffer logging
are logged at the default debugging level. Notice that the trap logging has been changed from the
default informational logging level to the warning level and the server the trap messages are sent to
is displayed as well. The show logging command also displays the number of messages logged by
each method.

Another command that can be used to view logging information is the show logging history
command. The output of the show logging history command displays information in the system
logging history table, such as the table size, the status of messages, and the text of the messages
stored in the table. If the logging of message traps to a Simple Network Management Protocol
(SNMP) management station, be sure network management station traps has been enabled with
the snmp−server enable trap command.

The level of messages sent and stored in a history table on the router can be changed. The number
of messages that get stored in the history table can be changed as well. Messages are stored in the
history table because SNMP traps are not guaranteed to reach their destination. By default, one
message of the level warning is stored in the history table even if log traps are not enabled. The
output of the show logging history command is shown in Listing 3.25.

Listing 3.25: Show logging history output.

Router−B#sh logging history
Syslog History Table:1 maximum table entries,
saving level warnings or higher
 73 messages ignored, 0 dropped, 0 recursion drops
 72 table entries flushed
 SNMP notifications not enabled
 entry number 73 : SYS−4−SNMP_WRITENET
 SNMP WriteNet request. Writing current config to 192.168.11.1
    timestamp: 313923920
Router−B#

As mentioned earlier, the logging history level can be changed; notice in Listing 3.25 that the
logging history table lists 1 maximum table entry. The table history size can be changed as well.
You can change the history level as well as the size of the history table by using the following
commands:
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Use the logging history <level> command, where the level equals the values detailed in
Table 3.1, to change the default level of log messages stored in the history file and sent to
the SNMP server.

1. 

Use the logging history size <size> command, where the size is a number between 0 and
500, to change the number of log messages that can be stored in the history table.

2. 

The following commands add the logging history and logging history size commands to the
configuration of Router B. The arguments of these commands should be reflected in the show
logging history command:

#config t
#logging history 3
#logging history size 400
#end
#

The configuration changes that were made can be seen in the output of the show logging history
command. Listing 3.26 reflects the changes that were made.

Listing 3.26: Show logging history.

Router−B#sh logging history
Syslog History Table:400 maximum table entries,
saving level errors or higher
 73 messages ignored, 0 dropped, 0 recursion drops
 72 table entries flushed
 SNMP notifications not enabled
 entry number 74 : SYS−5−CONFIG_I
 SNMP WriteNet request. Writing current config to 192.168.11.1
    timestamp: 176910958

Related solution: Found on page:
Configuring SNMP Security 26
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Chapter 4: IOS Firewall Feature Set

In Brief

The IOS Firewall feature set available for Cisco routers is an add−on component to the Cisco IOS
that provides routers with many of the features available to the PIX firewall, thus extending to
routers functionality similar to the functionality a separate firewall device provides. When a Cisco
router is configured with the Cisco IOS Firewall feature set, it is transformed into an effective, robust
featured firewall. The IOS Firewall feature set software has been designed with security services
that include access controls, strong authentication, and encryption services, and it maintains all
fundamental routing features. It is a value−added option for Cisco IOS software that enforces
security policies while maintaining vital traffic flow requirements within the enterprise. The Firewall
feature set is currently available for the Cisco 1600, 1720, 2500, 2600, 3600, and 7200 series router
platforms.

Some of the key features of the IOS Firewall feature set are listed here:

Context−Based Access Control (CBAC) provides secure IP traffic filtering for each unique
session for many applications.

• 

Java blocking protects against malicious Java applets, allowing only applets from identified
and trusted sources.

• 

Denial−of−service (DoS) detection and prevention protects resources against common
attacks.

• 

Realtime alerts notify administrators during DoS attacks and certain other conditions.• 
Audit trail mechanisms track sessions by time, source and destination address, ports, and
total number of bytes transmitted.

• 

Intrusion detection provides realtime monitoring, interception, and response to network
misuse with a set of common attack and probing intrusion detection signatures.

• 

Provides multiservice integration, advanced security for dialup connections, and integrated
routing and security at the Internet gateway.

• 

As you can see, the IOS Firewall feature set has an extensive set of features that are designed to
help secure an enterprise's network with robust firewall functionality. This chapter aims to discuss
many of the enhanced features the IOS Firewall feature set encompasses. I ' l l  discuss
Context−Based Access Control (CBAC), which examines not only Network layer and Transport
layer information, but also the Application layer protocol information to learn about the state of TCP
and UDP connections. CBAC maintains connection state information for individual connections.
This state information is used to make intelligent decisions about whether packets should be
permitted or denied and dynamically creates and deletes temporary openings in the firewall. I'll
discuss Port Application Mapping (PAM), which allows enterprises to customize TCP or UDP port
numbers to support network environments that run services using ports that are different from the
registered or well−known ports associated with an application. The information in the PAM table
enables CBAC−supported services to run on nonstandard ports. I'll also discuss the IOS Firewall
Intrusion Detection System (IDS), which acts as an inline intrusion detection sensor, watching
packets and sessions as they flow through the router and scanning each to match any of the IDS
signatures.

Context−Based Access Control

Context−Based Access Control was designed for use with multiple protocols that are unable to be
processed with access lists. During many types of network attacks, packets that are not part of an
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existing session are sent to a target machine, or there may be an attempt to inject packets within an
existing session. Additionally, devices that are not properly configured can cause interruptions in
service by sending inappropriate packets. The CBAC process will stop these types of attacks and
problems by inspecting the TCP and UDP sessions. Only packets within sessions that meet certain
criteria will be allowed to pass. Packets that are not within recognized sessions or that do not meet
the security policy will be dropped.

More often than not, a router will make every attempt to forward a packet toward its destination in
the most efficient manner. CBAC changes the forwarding nature by investigating aspects of each
packet within the context of its session to determine if the packet or session meets the policy. If the
packet or session meets the policy, it will be forwarded. If it does not, it will be discarded, and in
some cases, the session will be terminated. To determine this, CBAC adds processes to a router so
it will be able to perform the following:

Watch for the start of new sessions and ensure they meet the policy.• 
Maintain the state information of each session flowing through it by watching flags,
sequence numbers, and acknowledgment numbers.

• 

Set up and install dynamic access control lists for permitted sessions.• 
Close out sessions and remove temporary access control lists that have been terminated.• 
Closely examine SMTP sessions to allow only a minimum set of permitted commands.• 
Watch the permitted control sessions (such as FTPcontrol) and allow associated data
sessions (such as FTPdata) to pass.

• 

Watch for Java applets within HTTP sessions and block them if the router is configured to do
so.

• 

Examine each packet within each session to ensure that it conforms to the current session
state.

• 

Maintain a timer after each session's packet is forwarded and terminate any sessions that
have exceeded the session timeout policy.

• 

Watch for signs that a SYN attack is in progress, and if so, reset excessive session
requests.

• 

Send out alerts of unexpected events and packets that have been dropped because they
don't meet the policy.

• 

Optionally record time, source, and destination addresses; ports; and the total number of
bytes transmitted by each participant at the end of the session.

• 

Each of these security elements uses memory and processing cycles that will decrease normal
packet forwarding efficiency of the Cisco IOS software on the router. CBAC uses 600 bytes of
memory per connection and CPU resources during the access list inspection process.

Context−Based Access Control Protocol Support

CBAC can be configured to inspect the following protocols:

TCP sessions• 
UDP sessions• 

CBAC can also be configured to specifically inspect certain Application layer protocols. The
following Application layer protocols can all be configured for CBAC:

CU−SeeMe• 
FTP• 
H.323• 
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HTTP• 
Java• 
Microsoft NetShow• 
Unix R−commands• 
RealAudio• 
RPC, specifically Sun RPC and Microsoft RPC• 
SMTP• 
SQLNet• 
StreamWorks• 
TFTP• 
VDOLive• 

When a protocol is configured for CBAC that protocol's traffic is inspected and all state information
is updated and maintained in the state table. Return traffic will be permitted back only through the
firewall if the state table contains information indicating that the packet belongs to a permissible
session. CBAC controls the traffic that belongs to a valid session. When return traffic is inspected,
the state table information is updated as necessary.

Note UDP is a connectionless protocol; therefore, there are no actual "sessions," so the CBAC
process examines particular information within the UDP packet and keeps track of that
information. To determine if the packet is part of UDP "session," the CBAC process compares
the information gathered against similar packets received within the idle timeout.

Operation of Context−Based Access Control

CBAC inspects traffic traveling through a router to discover and manage information about the state
of the TCP or UDP sessions. This state information is used to create a temporary opening in access
lists, which allows the returning traffic from the same session to enter the internal network through
the firewall. To illustrate the operation of CBAC, Figure 4.1 shows an example CBAC network.
When the router in Figure 4.1 initializes after a power−up or reload, it begins with an empty table to
maintain state information for every session. When the host on the inside network of the router
initiates a connection to a host on the outside network of the router, the router receives the first
packet and will match the packet against any inbound access lists on the interface. If the packet is
permitted by the inbound access list, CBAC will set up a table entry to record information about
thesession. CBAC will also set up temporary access lists to permit returning packets that are part of
the same session. This setup is handled through process−switching the first packet, and the
information gathered is used as a reference so that all subsequent packets in the session may be
fast−switched. The TCP and UDP sessions are identified through the IP addresses and the port
numbers. To protect the session, the firewall feature set will inspect the TCP sequence and
acknowledgment values as well as the flags, which must correspond to the transmitted data. For
UDP and TCP, the subsequent packets must arrive within a timeout period. After the session has
completed, the opened session entry is torn down and the connection is closed.
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Figure 4.1: Basic operation of CBAC.
When using CBAC, the protocols that are to be inspected must be specified, and the interface and
interface direction where inspection originates should be configured. Only protocols that have been
specified will be inspected by CBAC. Packets that enter the IOS firewall are inspected by CBAC
only if they first pass the inbound access list at the input interface, and the outbound access list at
the output interface will be serviced by the router. If a packet is denied by the access list, the packet
is simply dropped and not inspected by CBAC. CBAC inspection tracks sequence numbers in all
TCP packets and drops those packets with sequence numbers that are not within expected ranges.

There are some protocols, such as Telnet or SMTP, that will have only one connection between
client and server. These are called singlechannel sessions. All packets are identified as conforming
to the session by acknowledging the receipt of bytes from the other device. After the session ends,
one side or the other can start the termination process by setting the FIN flag. CBAC monitors this,
and when the returning ACK is seen, CBAC will remove the temporary access control list.
Removing the temporary access list will deny packets from the outside network from entering the
inside network after the two devices in the session have agreed to terminate. During a session,
CBAC will drop packets that violate its policy, such as packets with sequence/acknowledgment
values outside of the acceptable window or with incorrectly set flags.

In addition to the single−channel sessions, several applications also use a control channel and
create one or more additional data channels to carry information. These are called multichannel
sessions, such as FTP and H.323. When the control channel forms, CBAC watches for an indication
that a subsequent data channel will be needed. When this occurs, CBAC will add the access control
list elements to accommodate the data channels. When the data channels are terminated, CBAC
will remove the temporary access control list elements.

Two special cases also need to be mentioned: SMTP and Java processing. If SMTP inspection is
enabled, only a set of the SMTP commands will be permitted through the firewall feature set. If
some other command is seen coming from the untrusted network, CBAC will send a TCP/IP packet
within the session to each participant with the RST flag set. This will terminate the session.

A Web browser request may return an HTML document that will initiate more than one TCP session
from the client to the server to retrieve additional parts of the page. These can include text and
graphics and may also include Java applets. If HTTP inspection is enabled and Java applets are
being filtered, CBAC will inspect the leading parts of each HTTP session to match the Java applet
signature. If CBAC finds this signature, it will terminate the session with a TCP packet, with the RST
flag set sent to both client and server. When CBAC terminates a session like this, the temporary
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access control list is also removed, but the remainder of the page, text, and graphics will continue to
load through each TCP session as they normally would.

These data channels are inspected for properly incrementing sequence and acknowledgment
numbers as well as proper flag use. They will also be terminated in the way described earlier if they
exceed the idle timeout values. However, to speed processing, the contents of the data channel
packets are not inspected for commands as the control channel packets are.

Context−Based Access Control and IPSec

Because CBAC is configured on perimeter devices that protect internal devices, one question
always arises: Is CBAC compatible with IPSec? And the answer is, in a limited fashion. If the router
is running both CBAC and IPSec, it must be configured as an IPSec endpoint. For CBAC to function
properly, the data within the packets must be examined, and if this data is encrypted, CBAC cannot
examine the payload, which causes CBAC to cease functioning.

As mentioned in the preceding paragraph, when CBAC and IPSec are enabled on the same router,
that router must be an IPSec end point. CBAC cannot accurately inspect the payload of packets that
have been encrypted with IPSec because the protocol number in the IP header of the packet is not
TCP or UDP and CBAC inspects only TCP and UDP packets. This should, however, be expected;
the purpose of encryption is to prevent unauthorized deciphering of the packets in the first place.

Port Application Mapping

Port Application Mapping (PAM) allows security administrators to customize or change TCP and
UDP port numbers for services or applications used with CBAC. This gives networks the flexibility to
support services that use ports that are different from the registered and wellknown port numbers
commonly associated with certain applications. Port Application Mapping should be used under
these conditions:

To apply a nonstandard port number to a service or application• 
When host or subnets use a port number for an application that is different from the default
port number associated with the application in the PAM table

• 

When different hosts or subnets use the same port number for different applications• 

Port Application Mapping creates and maintains a table of default port−to−application mapping
information on the router. The table that is created is populated with system−defined maps by
default at boot time; however, the table can be modified to include host−defined mappings as well
as user−defined mappings. PAM supports host− or subnet−based port mapping, which allows you
to apply PAM to a single host or subnet using standard access control lists. The PAM table
information enables Context−Based Access Control services to run on nonstandard ports.
Previously, CBAC was limited to inspecting traffic that was using only the well−known ports
associated with an application.PAM entries can consist of three different types of mappings:
system−defined mapping entries, user−defined mapping entries, and host−specific mapping entries.
Each of these mapping entries will be discussed in greater detail in the following sections.

System−Defined Mapping

After the router loads, PAM populates a table of system−defined mapping entries with the
well−known or registered port mapping information. The PAM table entries contain all the services
that are supported by CBAC and needed to function properly. The system−defined mapping
information cannot be deleted or changed, but you can create host−defined mappings, which in
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effect would override the system−defined parameters. Table 4.1 details each of the system−defined
services.

Table 4.1: System−defined port application services.

Application Port Number Protocol
http 80 Hypertext Transfer

Protocol

ftp 21 File Transfer Protocol

exec 512 Remote Process
Execution

cuseeme 7648 Cu−SeeMe Protocol

h.323 1720 H.323 Protocol

msrpc 135 Microsoft Remote
Procedure Call

netshow 1755 Microsoft NetShow

real audio 7070 RealAudio

real video 707 RealVideo

sqlnet 1521 SQLNet

smtp 25 Simple Mail Transport
Protocol

streamworks 1558 StreamWorks Protocol

sunrpc 111 Sun Remote Procedure
Call

tftp 69 Trivial File Transfer
Protocol

vdolive 7000 VDOLive
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User−Defined Mapping

When the network includes applications that use nonstandard ports, the security administrator must
configure user−defined mapping entries into the PAM table. Each user−defined mapping entry
requires a table entry for the application. User−defined mapping entries can also specify a range of
ports for an application to use by configuring a separate entry in the PAM table for each port
number of the range in succession. If a user−defined mapping entry is entered multiple times, it
overwrites the previous entry in the table. An example of a user−defined mapping entry would be if
HTTP services ran on the nonstandard port of 4010 instead of the system−defined port 80. In this
case, PAM would be used to map port 4010 with HTTP services. You are not allowed to map a
user−defined entry over a system−defined entry, and the router will complain with an error
message.

Host−Specific Mapping

Host−specific port mapping entries create port application mapping on a per−host or per−subnet
basis. User−defined mapping entries cannot overwrite system−defined mapping entries in the PAM
table; however, host−specific port mapping allows you to override a system−defined entry in the
PAM table. Using host−specific port mapping, you can use the same port number for different
services on different hosts. For example, a security administrator can assign port 1717 to FTP for
one host while assigning port 1717 to Telnet for another host. Host−specific port mapping also lets
you configure mapping entries on a per−subnet basis. This allows security administrators to apply
PAM to a specific subnet when that subnet runs a service that uses a port number that is different
from the port number defined in the default mapping information. This is similar to host−specific port
mapping, but it works on a per−subnet basis and not a per−host basis.

IOS Firewall Intrusion Detection

The IOS Firewall Intrusion Detection System (IDS) feature extends the features of intrusion
detection to Cisco routers and provides a cost−effective method for extending security services
across network boundaries. Intrusion detection systems provide a level of protection beyond the
firewall by protecting the network from internal and external attacks and threats caused by routers
forwarding traffic from one network to another network. By leveraging the features of intrusion
detection, the router can act as an inline probe examining packets and flows to match against
current IDS signatures, thus providing the same features that a dedicated probe or sensor device
can provide without adding additional hardware onto the network. Intrusion detection should be
deployed within all parts of the network with the exception of the core layer elements in the network
design; it should especially be deployed within the perimeter of the enterprise network and
distribution layer of the network or in locations where a router is being deployed and additional
security between different network segments is required.

Typically, intrusion detection consists of three components:

Sensor—A network device—in this case, a router with the IDS Firewall feature set
loaded—that uses a rules−based engine to interpret large volumes of IP network traffic into
meaningful security events. The Sensor can also log security data and close TCP sessions.
The Sensor reports the events to an IDS Director or a syslog server.

• 

Director—A device that provides centralized management and reporting for security issues.
Sensors are managed through a graphical user interface, and the Director can provide a
multitude of other services outside of centralized reporting.

• 
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Post Office—A protocol that provides the backbone by which all IDS devices communicate
among one another.

• 

The IOS Firewall IDS uses realtime monitoring of network packets to detect intrusions or malicious
network activity through the use of attack signatures. The IOS Firewall IDS searches for patterns of
misuse by examining either the data portion or the header portion of network packets. Currently, the
IOS Firewall IDS identifies 59 attack signatures.

A signature detects patterns of misuse in network traffic. In the Cisco IOS Firewall IDS, signatures
are categorized into four types:

Info Atomic—Info signatures detect information−gathering activity, such as a port probe.
These attacks can be classified as either atomic or compound signatures.

• 

Info Compound—Attack signatures detect attacks attempted with the protected network as
the intended target. These attacks can be classified as either atomic or compound
signatures.

• 

Attack Atomic—Can detect simple patterns of misuse.• 
Attack Compound—Can detect complex patterns of misuse.• 

When the IOS Firewall IDS detects suspicious network traffic, and before the traffic causes a breech
in the security policy of the network, the IDS responds and logs all activity to a syslog server or to
an IDS Director using the Post Office Protocol (POP).

Security administrators have the ability with the IOS Firewall IDS software to configure the method
of response to packets that match one of the attack signatures just mentioned. The IOS Firewall
IDS software can be configured to use four different methods to respond to an attack when it
matches a signature:

Generate alarms—Alarms are generated by the Sensor and sent to one or more Directors.
The Director displays the alarm and logs the event.

• 

Generate logs—Event logs can be sent to separate syslog server in order analyze the event.• 
Reset TCP connections—The Sensor will reset individual TCP connection requests during
and after an attack to minimize the threat yet will allow all other valid requests to continue.

• 

Shun the attack—Upon matching a signature the Sensor can be configured to deny request
attempts to a host or subnet by dropping the packets. Shunning should be carefully thought
out before being deployed in the production network.

• 

If there are multiple signature matches in a session, only the first match triggers an action from the
IOS Firewall IDS. Other matches in other modules trigger additional alarms, but only one per
session. This process is different than on the dedicated IDS Sensor device, which identifies all
signature matches for each packet. The IOS Firewall IDS capabilities provide additional security
visibility at the enterprise network perimeters. Security administrators enjoy more robust protection
against attacks on the network and can automatically respond to threats from internal or external
hosts.

The only significant disadvantage to using the features of the IOS Firewall IDS is that the overall
performance of the router will be slightly degraded and end−to−end propagation delay will be
added.
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Immediate Solutions

Configuring Context−Based Access Control

Many steps must be followed to configure CBAC to function properly. The first major step is to
decide whether to configure CBAC on the inside or outside interface of your firewall router. The
inside interface is the interface that originates the sessions and allows traffic back through the
firewall. The outside interface refers to the interface where sessions cannot originate. This step is a
mental step and requires no configuration command at this point. To configure CBAC, perform the
tasks described in the following steps:

Use the following command to define an extended access list and the parameters that
CBAC will use to inspect traffic or deny traffic:

access−list <access−list−number> <deny | permit> <protocol> −
  <source source−wildcard> <destination destination−wildcard>

1. 

Use the following command to configure CBAC for generic TCP or UDP packet inspection:

ip inspect name <inspection−name> <tcp | udp> <alert on | off> −
  <audit−trail on | off> <timeout seconds>

2. 

Use the following command to define an inspection rule on a per−Application−layer−traffic
basis:

ip inspect name <inspection−name> <protocol> <alert on | off> −
  <audit−trail <on | off> <timeout seconds>

This command can be used for all CBAC inspection protocols except for RPC and Java.
Per−protocol inspection takes precedence over generic TCP or UDP inspection.

3. 

Use the following command to enable CBAC for RPC inspection:

ip inspect name <inspection−name> <rpc program−number number> −
  <wait−time minutes> <alert on | off> <audit−trail on |
off> <timeout seconds>

Use of this command is optional, but it must be used to support blocking of RPC protocols.

4. 

Use the following command to enable CBAC for Java applet blocking:

ip inspect name <inspection−name> http <java−list access−
  list> −
  <alert on | off> <audit−trail on | off> <timeout seconds>

This command specifies the use of the HTTP protocol and a standard numbered access list
to use to determine if a site's Java applets should be allowed. Use of this command is
optional; however, it must be used to support blocking of Java applets.

5. 

Use the following command to configure the router for inspection of fragmented packets:

ip inspect name <inspection−name> <fragment −
 max number> <timeout seconds>

6. 
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Use of this command is optional, but it is always recommended because it specifies the
maximum number of packets that can arrive at the router interface before the initial packet
for a session, for which state information is allocated.
Use the ip inspect audit−trail command to turn on audit trail logging for CBAC messages.
Use of this command is optional.

The next few steps configure the timeouts and thresholds that CBAC uses to determine how
long to manage the state information for each session and to determine when to drop a
session if the session does not become established. The timeouts and thresholds apply
globally to all sessions, and the default timeout and threshold values may be used or you
can change them to the values that are determined by the enterprise's security policy. To
configure specific CBAC timeout and threshold values, use the commands in the following
steps:

7. 

Use this command to determine the length of time the software waits for a TCP session to
reach the established state before dropping the session:

ip inspect tcp synwait−time seconds

The session has reached the established state after the session's first SYN bit is detected.

8. 

Use this command to determine the length of time a TCP session will still be managed after
the firewall detects a FIN−exchange, which determines that a session is about to close:

ip inspect tcp finwait−time seconds

9. 

Use the following command to determine the length of time a TCP session will still be
managed after no activity:

ip inspect tcp idle−time seconds

CBAC will not continue to maintain state information for a session that violates the idle time.

10. 

Use this command to determine the length of time a UDP session will still be managed after
no activity:

ip inspect udp idle−time seconds

Because UDP is a connectionless service, there are no actual sessions, so CBAC will
approximate sessions by examining the information in the packet and determining if the
packet is similar to other UDP packets and if the packet was detected soon after another
similar UDP packet. CBAC will not continue to maintain state information for a session that
violates the idle time.

11. 

Use this command to determine the length of time a DNS name lookup session will still be
managed after no activity:

ip inspect dns−timeout seconds

12. 
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CBAC applies the DNS timeout to all DNS name lookup sessions, and the DNS timeout
overrides the timeout value specified by the UDP timeout.
Because CBAC measures both the total number of existing half−open sessions and the rate
of session establishment attempts for both TDP and UDP, use this command to determine
the number of existing half−open sessions that will cause the software to start deleting them:

ip inspect max−incomplete high number

A high number of half−open sessions could indicate a denial−of−service attack.

13. 

If the total max−incomplete high session threshold is reached, CBAC will begin dropping
half−open sessions and continue to do so until the total number of half−open sessions falls
below the value configured using this command:

ip inspect max−incomplete low number

14. 

Use this command to set the rate of thresholds that are measured as the number of new
session connection attempts are detected in the last one−minute sample period:

ip inspect one−minute high number

When new connection attempts rise above the configured threshold within the sample
period, CBAC will begin to drop new connection requests.

15. 

If the total one−minute high session threshold is reached, CBAC will begin dropping
half−open sessions and continue to do so until the total number of half−open sessions fall
below the value configured using this command:

ip inspect one−minute low number

16. 

Use the following command to set the number of existing half−open TCP sessions with the
same destination host address that will cause the software to start dropping half−open
sessions to the same destination host address:

ip inspect tcp max−incomplete host number block−time minutes

17. 

Some very important rules relate to Step 1, configuring the access lists for CBAC operation on the
internal and external interfaces. These rules will be referred to over and over again within this
section, and it is highly recommended that you refer back to these rules for clarity if you are
planning to implement CBAC within your organization, and you are having trouble implementing
CBAC within your network. If you are configuring CBAC on the internal interface, follow these rules:

If an inbound IP access list is configured on the internal interface, the access list can be
either a standard or extended access list. The access lists should permit traffic that should
be inspected by CBAC. If traffic is not permitted, it will not be inspected by CBAC and will be
dropped.

• 

An outbound IP access list at the internal interface must be an extended access list. The
outbound access list should deny traffic that you want to be inspected by CBAC. CBAC will
create temporary openings in the outbound access list as needed to permit only return traffic
that is part of an existing session.

• 

If you are configuring CBAC on the external interface, follow these rules:
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If an outbound IP access list is configured on the external interface, the access list can be a
standard or extended access list. The access list should permit traffic that should be
inspected by CBAC. If traffic is not permitted, it will not be inspected by CBAC and will be
dropped.

• 

If an inbound IP access list is configured on the external interface, the access list must be an
extended access list. The inbound access list should deny traffic that should be inspected by
CBAC. CBAC will create temporary openings in the inbound access list as needed to permit
only return traffic that is part of an existing session.

• 

Note If you are planning to implement CBAC within your organization, refer to the access list rules
listed above for help in understanding how to configure your access lists to define your rules
of inspection.

Well, think about it; are there enough commands for CBAC? At first glance the configuration for
CBAC may seem overwhelming, but I shall take a slow approach into explaining the configuration
power that CBAC provides. I will start with a simple network that is shown in Figure 4.2. In this
network, Router 3 has two interfaces and is the router that provides CBAC functionality for the
inside trusted network. Router 3's inside trusted network uses address space within the private
192.168.10.0 address space. Router 3 is also connected to the outside untrusted network using its
Serial interface and using the public address space 192.168.20.0.

Figure 4.2: Sample CBAC network.
Note The 192.168.20.0 network is actually private address space as

a l l o c a t e d  f r o m  R F C  1 9 1 8 ,  w h i c h  c a n  b e  f o u n d  a t
http://www.ietf.org/rfc/rfc1918.txt?number=1918. It is only used
here for the benefit of protecting the innocent.

In Figure 4.2, you can see that Router 3 is connected to an inside and outside network. The security
administrators for Router 3 want to provide CBAC security for the hosts displayed in Figure 4.2. The
first host is a mail server, at IP address 192.168.10.10, which needs to have the Simple Mail
Transport Protocol opened for its use. The other host is a host on the network, at IP address
192.168.10.20; the security administrators have decided it would also benefit from the security
functionality that CBAC provides.
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CBAC actively inspects the activity behind a firewall. CBAC specifies what traffic should be let in
and what traffic should be let out by using access lists. However, CBAC access lists include ip
inspect statements that allow the inspection of the protocol to make sure that it has not been
tampered with before the protocol goes to the systems behind the firewall. Listing 4.1 displays
Router 3's configuration for CBAC, which meets the security requirements of the network displayed
in Figure 4.2.

Listing 4.1: Example configuration of Router 3 for CBAC.

access−list 110 permit tcp 192.168.10.0 0.0.0.255 any
access−list 110 permit udp 192.168.10.0 0.0.0.255 any
access−list 110 permit icmp 192.168.10.0 0.0.0.255 any
access−list 110 deny ip any any
access−list 120 permit icmp any 192.168.10.0 0.0.0.255 −
 echo−reply
access−list 120 permit icmp any 192.168.10.0 0.0.0.255 −
 unreachable
access−list 120 permit icmp any 192.168.10.0 0.0.0.255
 admin−prohibited
access−list 120 permit icmp any 192.168.10.0 0.0.0.255 −
 packet−too−big
access−list 120 permit icmp any 192.168.10.0 0.0.0.255 −
 echo
access−list 120 permit icmp any 192.168.10.0 0.0.0.255 −
 time−exceeded
access−list 120 deny ip any any
!
ip inspect name samplecbac ftp
ip inspect name samplecbac smtp
ip inspect name samplecbac tcp
ip inspect name samplecbac fragment max 6000 timeout 8
!
interface FastEthernet0/0
ip address 192.168.10.1 255.255.255.0
ip access−group 110 in
ip inspect samplecbac in
ip inspect samplecbac out
!
interface Serial0/0
ip address 192.168.20.1 255.255.255.0
ip access−group 120 in
!
ip route 0.0.0.0 0.0.0.0 192.168.20.2

Notice that CBAC is performing a more generic TCP and UDP inspection. The access list that
permits ICMP traffic, access list 110, is there to permit outbound ICMP traffic that arrives inbound
on interface FastEthernet0/0. CBAC does not inspect ICMP traffic but it has to be listed in order to
permit the outbound ICMP traffic because of the deny any any statement at the end of the access
list. The ip inspect name command configures Router 3 to perform CBAC inspection. At first
glance, the CBAC configuration combined with the access lists that are configured on each interface
may not seem correct, but remember that CBAC creates temporary access list openings. Referring
back to the rules for creating an inbound access list on an interface, the rule states that the access
lists should permit traffic that should be inspected by CBAC. If traffic is not permitted, it will not be
inspected by CBAC and will be dropped. The temporary openings will be created in access list 120,
which is applied to the outside Serial interface.

135



Looking now at access list 120, you can see that the access list is applied as an inbound access list
on interface Serial0/0. Still doesn't look correct though, does it? Look again at the rules for creating
an inbound access list on the external interface. The rule states that an inbound access list applied
to the external interface should deny traffic that should be inspected by CBAC. CBAC will create
temporary openings in the inbound access list as needed to permit only return traffic that is part of
an existing session. Notice that access list 120 permits only ICMP traffic inbound on the Serial
interface and denies all other traffic; all traffic that is denied by an access list will be inspected by
CBAC, and an opening was created within this access list by the originating traffic.

To view the complete CBAC inspection configuration, you must issue the sh ip inspect config
command. The output of this command displays the protocols that should be inspected by CBAC
and the associated timeout values for each protocol. Issuing the show ip inspect config command
on Router 3 lists the output displayed in Listing 4.2.

Listing 4.2: Output of the show ip inspect command.

Router−3#sh ip inspect config
Session audit trail is disabled Session alert is enabled
one−minute (sampling period) thresholds are [400:500] −
 connections
max−incomplete sessions thresholds are [400:500]
max−incomplete tcp connections per host is 50. Block−time 0 −
 minute.
tcp synwait−time is 30 sec — tcp finwait−time is 5 sec
tcp idle−time is 3600 sec — udp idle−time is 30 sec
dns−timeout is 5 sec
Inspection Rule Configuration
Inspection name samplecbac
ftp alert is on audit−trail is off timeout 3600
smtp alert is on audit−trail is off timeout 3600
tcp alert is on audit−trail is off timeout 3600
fragment Max 6000 In Use 0 alert is on audit−trail is off timeout −
 8
Router−3#

The output of the show ip inspect config command displays many of the configured timeout and
threshold values for the CBAC configuration. The first line of the output tells you that CBAC audit
trail messages are disabled. The second line shows that session alerting is enabled; use of the
show ip inspect config command displays alert messages to the console port of the router. The
next six lines display output that pertain to timeout values for CBAC. The inspection rules section is
the major output section within the show ip inspect config command and details the inspection
name and the protocols that are configured for CBAC operation, the audit trail information, and the
configured timeout values for each inspection rule.

You can use the ip inspect audit−trail global configuration command to configure CBAC audit trail
messages and display them on the console after each session closes. Audit trail messages help in
analyzing problems that are occurring during CBAC operation. The following shows the command
issued on Router 3:

Router−3#config t
Router−3(config)#ip inspect audit−trail
Router−3(config)#end
Router−3#
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Immediately after the command is issued on Router 3, audit trail information begins to appear on
the console. The output of the audit trail messages is shown in Listing 4.3.

Listing 4.3: Audit trail messages on Router 3.

: tcp session initiator (192.168.10.13:38992)sent 22 bytes −
  responder (192.168.40.11:25) sent 198 bytes
: ftp session initiator 192.168.10.18:32294) sent 336 bytes −
  responder (192.168.129.11:21) sent 495 bytes

After enabling audit trail output and taking a quick glance back at the inspection configuration, you
can see that audit trail messages are now enabled. Listing 4.4 shows the updated listing.

Listing 4.4: Updated output from the show ip inspect command.

Router−3#show ip inspect config
Session audit trail is enabled
Session alert is enabled
one−minute (sampling period) thresholds are [400:500] −
  connections
max−incomplete sessions thresholds are [400:500] max−incomplete tcp
  connections per host is 50. Block−time 0 −  minute.
tcp synwait−time is 30 sec – tcp finwait−time is 5 sec
tcp idle−time is 3600 sec – udp idle−time is 30 sec
dns−timeout is 5 sec
Inspection Rule Configuration
Inspection name samplecbac
ftp alert is on audit−trail is on timeout 3600
smtp alert is on audit−trail is on timeout 3600
tcp alert is on audit−trail is on timeout 3600
fragment Maximum 6000 In Use 0 alert is on audit−trail is off −
  timeout 8
Router−3#

Changes to any of the global timeout and threshold values described earlier can be made to the
configuration, and the change will be reflected in the output of the show ip inspect config.

CBAC can also be configured to perform Java blocking, which will allow into the network Java
applets from specified sites on the Internet and deny all others. This type of blocking denies access
to Java applets that are not embedded in an archived or compressed file. Referring to Figure 4.3, I
will continue with the example from above and configure Router 3 for Java blocking. In Figure 4.3,
you can see that three different Web servers have been added to the outside network of Router 3.
The IP addresses of  the Web servers are 192.168.100.100,  192.168.200.200,  and
192.168.300.300. The security policy of the company is to configure Router 3 such that any Java
applet from the Web servers at IP addresses 192.168.100.100 and 192.168.200.200 are permitted
and inspected by CBAC, yet the Java applets from the server at IP address 192.168.300.300 are
denied. Listing 4.5 shows the configuration needed to configure Router 3 for Java blocking.
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Figure 4.3: Network configured for Java blocking.
Listing 4.5: Configuring Router 3 for Java blocking.
access−list 30 permit 192.168.100.100
access−list 30 permit 192.168.200.200
access−list 110 permit tcp 192.168.10.0 0.0.0.255 any
access−list 110 permit udp 192.168.10.0 0.0.0.255 any
access−list 110 permit icmp 192.168.10.0 0.0.0.255 any
access−list 150 permit icmp any 192.168.10.0 0.0.0.255 −
 echo−reply
access−list 150 permit icmp any 192.168.10.0 0.0.0.255 −
 unreachable
access−list 150 permit icmp any 192.168.10.0 0.0.0.255
 admin−prohibited
access−list 150 permit icmp any 192.168.10.0 0.0.0.255 −
 packet−too−big
access−list 150 permit icmp any 192.168.10.0 0.0.0.255 −
 echo
access−list 150 permit icmp any 192.168.10.0 0.0.0.255 −
 time−exceeded
access−list 150 deny ip any any
!
ip inspect name mytest tcp
ip inspect name mytest udp
ip inspect name mytest http java−list 30
ip inspect name mytest fragment max 6000 timeout 8
ip inspect audit−trial
!
interface FastEthernet0/0
ip address 192.168.10.1 255.255.255.0
ip access−group 110 in
!
interface Serial0/0
ip address 192.168.20.1 255.255.255.0
ip access−group 150 in
ip inspect mytest out
ip inspect mytest in

In this example, access−list 30 allows Java from friendly sites at IP addresses 192.168.100.100 and
192.168.200.200 while implicitly denying Java from other sites. The output displayed in Listing 4.6 is
sample debug output from the debug ip inspect detail command after attempting to connect to the
Web servers on 192.168.100.100, 192.168.200.200, and 192.168.300.300. The debug ip inspect
detail displays the output of connection requests from friendly Java Web servers, and it also shows
Java being blocked from a nonfriendly Web server. Friendly Web servers are servers that are listed
with a permit statement within the access list configuration.
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Listing 4.6: Debug output of Java blocking.

Router−3#debug ip inspect detail
...
: http session initiator (192.168.10.37:3271) sent 215 bytes −
  responder (192.168.100.100:80) sent 3162 bytes
: http session initiator (192.168.10.28:4972) sent 143 bytes −
  responder (192.168.200.200:80) sent 254 bytes
: http session initiator (192.168.10.37:3272) sent 324 bytes −
  responder (192.168.100.10:80) sent 234 bytes
: http session initiator (192.168.10.28:4973) sent 343 bytes −
  responder (192.168.200.200:80) sent 314 bytes
: http session initiator (192.168.10.37:3274) sent 344 bytes −
  responder (192.168.100.100:80) sent 8 bytes
: http session initiator (192.168.10.28:4974) sent 360 bytes −
  responder (192.168.200.200:80) sent 206 bytes
: http session initiator (192.168.10.37:3275) sent 345 bytes −
  responder (192.168.100.100:80) sent 12276 bytes
: http session initiator (192.168.10.28:4975) sent 369 bytes −
  responder (192.168.200.200:80) sent 206 bytes
: http session initiator (192.168.10.37:3276) sent 354 bytes −
  responder (192.168.100.100:80) sent 278 bytes
: JAVA applet is blocked from (192.168.300.300:80) to
 (192.168.10.28:8394).
: JAVA applet is blocked from (192.168.300.300:80) to −
 (192.168.10.28:8395).
: http session initiator (192.168.10.37:1298) sent 215 bytes −
  responder (192.168.100.100:80) sent 302 bytes
: JAVA applet is blocked from (192.168.300.300:80) to −
 (192.168.10.37:1422).
: http session initiator (192.168.10.28:1203) sent 362 bytes −
  responder (192.168.100.100:80) sent 162 bytes
: JAVA applet is blocked from (192.168.300.300:80) to −
 (192.168.10.37:1723).

The CBAC configurations have been fairly basic so far. In the next example, Router 3 will be
configured for CBAC, but this time, another interface has been added to the Router (see Figure
4.4). This interface, interface Ethernet1/0, will be used for providing Web, FTP, and mail services to
the outside external Internet. Ethernet1/0 is connected to the "DMZ" network and has a single host
within the network used to provide the services mentioned earlier to the outside world. Ethernet0/0
is connected to the internal local network. Router 3's configuration is shown in Listing 4.7.

Figure 4.4: Router 3 configured for CBAC with three interfaces.
Listing 4.7: CBAC configuration of Router 3 with three interfaces.
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ip inspect audit−trail
ip inspect tcp idle−time 14400
ip inspect udp idle−time 1800
ip inspect dns−timeout 7
!
ip inspect name cbactest cuseeme
ip inspect name cbactest ftp
ip inspect name cbactest h323
ip inspect name cbactest http
ip inspect name cbactest rcmd
ip inspect name cbactest realaudio
ip inspect name cbactest smtp
ip inspect name cbactest sqlnet
ip inspect name cbactest streamworks
ip inspect name cbactest tcp
ip inspect name cbactest tftp
ip inspect name cbactest udp
ip inspect name cbactest vdolive
ip inspect name cbactest fragment max 6000 timeout 8

!
interface ethernet0/0
ip address 192.168.10.1 255.255.255.0
ip access−group 100 in
ip access−group 101 out
ip inspect cbactest in
!
interface ethernet1/0
ip address 192.168.20.1 255.255.255.0
ip access−group 102 in
ip access−group 103 out
!
interface serial0/0
ip address 192.168.30.1 255.255.255.0
ip access−group 104 in
ip access−group 105 out
ip inspect cbactest in
!
access−list 100 permit ip 192.168.10.0 0.0.0.255 any
access−list 100 deny ip any any
!
access−list 101 permit icmp any 192.168.10.0 0.0.0.255 −
 admin−prohibited
access−list 101 permit icmp any 192.168.10.0 0.0.0.255 −
 echo
access−list 101 permit icmp any 192.168.10.0 0.0.0.255 −
 echo−reply
access−list 101 permit icmp any 192.168.10.0 0.0.0.255 −
 packet−too−big
access−list 101 permit icmp any 192.168.10.0 0.0.0.255 −
 time−exceeded
access−list 101 permit icmp any 192.168.10.0 0.0.0.255 −
 traceroute
access−list 101 permit icmp any 192.168.10.0 0.0.0.255 −
 unreachable
access−list 101 deny ip any any
!
access−list 102 permit ip 192.168.20.0 0.0.0.255 any
access−list 102 deny ip any any
!
access−list 103 permit udp any host 192.168.20.20 eq domain
access−list 103 permit tcp any host 192.168.20.20 eq domain
access−list 103 permit tcp any host 192.168.20.20 eq www
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access−list 103 permit tcp any host 192.168.20.20 eq ftp
access−list 103 permit tcp any host 192.168.20.20 eq smtp
access−list 103 permit tcp 192.168.10.0 0.0.0.255 host −
 192.168.20.20 eq pop3
access−list 103 permit tcp 192.168.10.0 0.0.0.255 any eq telnet
access−list 103 permit icmp any 192.168.20.0 0.0.0.255 −
 admin−prohibited
access−list 103 permit icmp any 192.168.20.0 0.0.0.255 echo
access−list 103 permit icmp any 192.168.20.0 0.0.0.255 echo−reply
access−list 103 permit icmp any 192.168.20.0 0.0.0.255 −
 packet−too−big
access−list 103 permit icmp any 192.169.20.0 0.0.0.255 −
 time−exceeded
access−list 103 permit icmp any 192.168.20.0 0.0.0.255 traceroute
access−list 103 permit icmp any 192.168.20.0 0.0.0.255 unreachable
access−list 103 deny ip any any
!
access−list 104 deny ip 192.168.10.0 0.0.0.255 any
access−list 104 deny ip 192.168.20.0 0.0.0.255 any
access−list 104 permit ip any any
!
access−list 105 permit icmp 192.168.10.0 0.0.0.255 any echo−reply
access−list 105 permit icmp 192.168.20.0 0.0.0.255 any echo−reply
access−list 105 permit icmp 192.168.10.0 0.0.0.255 any −
 time−exceeded
access−list 105 permit icmp 192.168.20.0 0.0.0.255 any −
 time−exceeded
access−list 105 deny ip 192.168.20.0 0.0.0.255 any
access−list 105 permit ip 192.168.10.0 0.0.0.255 any

In the configuration in Listing 4.7, the first command line enables audit trail logging of session
information, the second and third lines set the length of time a TCP and UDP session is managed
after no activity is received, and the fourth line sets the length of time a DNS name lookup session
is still managed after no activity is received. The next set of configuration lines sets up an inspection
list that is named cbactest; this CBAC inspection list will be used for inspection of inbound traffic on
Ethernet0/0 and inbound return traffic on Serial0/0. Under interface Ethernet0/0, access list 100 is
applied to allow all legitimate traffic from the inside network. Access list 101 is also applied to allow
some ICMP traffic and deny everything else. The inspection list cbactest will add entries to this list
to permit return traffic for connections established from the inside. Finally, under interface
Ethernet0/0, the inspection list cbactest is applied to inspect inbound traffic on Ethernet0/0.

Under interface Ethernet1/0, access list 102 is applied to permit inbound traffic initiated from hosts
within the DMZ. Access list 103 is also applied, which allows only certain services to establish a
connection with the hosts within the DMZ network. The inspection rules that are configured on other
interfaces will add temporary entries to this list. Under interface Serial0/0, access list 104 is applied;
it is configured to prevent any spoofing of packets that are inbound on Serial0/0 and contain a
source address in the header of the packet such that the packet appears to have originated from
within the "inside" network. Access list 105 is also configured; it allows Ping replies from the inside
network or the DMZ network and permits inside traffic back out.

CBAC can also function on a router that also has Network Address Translation (NAT) or Port
Address Translation (PAT) configured. The configuration in the next example works well for any
office connected directly to the Internet and utilizing the functionality of NAT.

In the sample network shown in Figure 4.5, no services are run on the inside network behind Router
3. Ethernet1/0 is the "inside" network. Serial0/0 is the outside interface. Users on the inside local
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network of 192.168.10.0 must have their IP addresses translated to public routable addresses within
the 192.168.20.0 address space. Also, CBAC services must be provided for users on the inside
network. The configuration for Router 3 that is shown in Listing 4.8 meets these requirements.

Figure 4.5: CBAC and NAT network design.
Note The 192.168.20.0 network is actually private address space as allocated from RFC 1918,

which can be found at http://www.ietf.org/rfc/rfc1918. It is only used here for the benefit of
protecting the innocent.

Listing 4.8: Router 3 configured for CBAC and NAT.
ip inspect name cbacnat cuseeme timeout 3600
ip inspect name cbacnat ftp audit−trail on timeout 3600
ip inspect name cbacnat h323 timeout 3600
ip inspect name cbacnat http timeout 3600
ip inspect name cbacnat realaudio timeout 3600
ip inspect name cbacnat smtp timeout 3600
ip inspect name cbacnat sqlnet timeout 3600
ip inspect name cbacnat streamworks timeout 3600
ip inspect name cbacnat tcp timeout 3600
ip inspect name cbacnat tftp timeout 30
ip inspect name cbacnat udp timeout 15
!
ip inspect tcp synwait−time 15
ip inspect tcp idle−time 1800
ip inspect udp idle−time 60
ip inspect max−incomplete high 250
ip inspect max−incomplete low 150
ip inspect one−minute high 250
ip inspect one−minute low 150
!
interface Ethernet0
ip address 192.168.10.1 255.255.255.0
ip access−group 101 in
no ip directed−broadcast
ip nat inside
ip inspect cbacnat in
!
interface Serial0
ip address 192.168.20.1.1 255.255.255.0
ip access−group 112 in
no ip directed−broadcast
ip nat outside
!
ip nat pool natpool 192.168.20.3 192.168.20.254 −
 netmask 255.255.255.0
ip nat inside source list 1 pool natpool
ip classless
ip route 0.0.0.0 0.0.0.0 192.168.20.2
ip route 192.168.10.0 255.255.255.0 192.168.10.2
!
access−list 1 permit 192.168.10.0 0.0.0.255
access−list 101 permit tcp 192.168.10.0 0.0.0.255 any
access−list 101 permit udp 192.168.10.0 0.0.0.255 any
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access−list 101 permit icmp 192.168.10.0 0.0.0.255 any
access−list 112 permit icmp any 192.168.20.0 0.0.0.255 −
 unreachable
access−list 112 permit icmp any 192.168.20.0 0.0.0.255 −
 echo−reply
access−list 112 permit icmp any 192.168.20.0 0.0.0.255 −
 packet−too−big
access−list 112 permit icmp any 192.168.20.0 0.0.0.255 −
 time−exceeded
access−list 112 permit icmp any 192.168.20.0 0.0.0.255 −
 traceroute
access−list 112 permit icmp any 192.168.20.0 0.0.0.255 −
 admin−prohibited
access−list 112 permit icmp any 192.168.20.0 0.0.0.255 echo
access−list 112 deny ip 127.0.0.0 0.255.255.255 any
access−list 112 deny ip any any

Related solution: Found on page:
Configuring Dynamic NAT Translations 145
Configuring Port Application Mapping

The configuration of Port Application Mapping (PAM) is relatively straightforward and simple, but the
power of PAM is really the way in which CBAC uses the information in the PAM table to identify a
service or application from traffic flowing through the firewall. With PAM, CBAC can associate
nonstandard port numbers with specific protocols. To configure PAM, use the commands in the
following steps:

Use this global configuration command to establish a port mapping entry using TCP or UDP
port number and application name:

ip port−map <application−name> port <port−number> −
 list <list−number>

The list argument is optional and is used to specify a standard access list that matches
specific hosts or subnets that have an application that uses a specific port number.

1. 

Optionally, configure a standard access list that specifies the specific hosts or subnets that
should be configured for host−specific port application mapping.

2. 

Looking at the network detailed in Figure 4.6, you can see that Router 3 is the perimeter router,
which provides Internet access for Company A. Router 3 has a connection to its ISP via its
Serial1/1/0 outside interface. Router 3 also has a connection to its local inside network with
FastEthernet0/1/0 interface. Router 3 is configured for PAM. Users on the local inside network use
their Web browsers to access Web servers on the outside network using the nonstandard HTTP
ports of 6100 through 6105. For Router 3 to map HTTP traffic to port 6100 through 6105, use the
configuration shown in Listing 4.9.
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Figure 4.6: Network layout for PAM.
Listing 4.9: PAM configuration for Router 3.
#ip port−map http port 6100
#ip port−map http port 6101
#ip port−map http port 6102
#ip port−map http port 6103
#ip port−map http port 6104
#ip port−map http port 6105
#end

Notice in Listing 4.9 that Router 3 has been configured to map six sequential port numbers to HTTP
traffic. You can view port map table information on the router by issuing the following command:

show ip port−map {application−name | port port−number}

To view the port mapping table of Router 3, issue the show ip port−map http command. The port
mapping of Router 3 is displayed in Listing 4.10.

Listing 4.10: Port mapping table on Router 3.

Router−3#show ip port−map http
Default mapping: http port 6100 user defined
Default mapping: http port 6101 user defined
Default mapping: http port 6102 user defined
Default mapping: http port 6103 user defined
Default mapping: http port 6104 user defined
Default mapping: http port 6105 user defined
Default mapping: http port 80 system defined
Router−3#

I issued the show ip port−map command above in Listing 4.10 with the application−name
argument to specify that I wanted to display only information related to HTTP traffic. Each of the
ports that were configured earlier is displayed in Listing 4.10; notice that they are configured as a
user−defined table entry. Also, note that the final line specifies a system−defined entry for HTTP.
Table 4.1 earlier in this chapter stated that HTTP was a system−defined entry on the default port 80.

While on the subject of system−defined entries, I'll remove the configuration that created the
user−defined entries and display the default PAM table. First I'll remove the prior configuration:

Router−3#config 
t Router−3(config)#no ip port−map http port 6100
Router−3(config)#no ip port−map http port 6101
Router−#(config)#no ip port−map http port 6102
Router−3(config)#no ip port−map http port 6103
Router−3(config)#no ip port−map http port 6104
Router−3(config)#no ip port−map http port 6105
Router−3(config)#end
Router−3#

I can now issue the show ip port−map command without using any argument to display the entire
PAM table. Issuing the command on Router 3 should now display the default PAM table. Listing
4.11 displays Router 3's default PAM table.
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Listing 4.11: Default PAM table of Router 3.

Router−3#show ip port−map
...
Default mapping: vdolive port 7000 system defined
Default mapping: sunrpc port 111 system defined
Default mapping: netshow port 1755 system defined
Default mapping: cuseeme port 7648 system defined
Default mapping: tftp port 69 system defined
Default mapping: rtsp port 8554 system defined
Default mapping: realmedia port 7070 system defined
Default mapping: streamworks port 1558 system defined
Default mapping: ftp port 21 system defined
Default mapping: telnet port 23 system defined
Default mapping: rtsp port 554 system defined
Default mapping: h323 port 1720 system defined
Default mapping: sip port 5060 system defined
Default mapping: smtp port 25 system defined
Default mapping: http port 80 system defined
Default mapping: msrpc port 135 system defined
Default mapping: exec port 512 system defined
Default mapping: login port 513 system defined
Default mapping: sql−net port 1521 system defined
Default mapping: shell port 514 system defined
Default mapping: mgcp port 2427 system defined
Router−3#

System−defined table entries are important to the port application process, and as mentioned
earlier, any attempt to map a user−defined entry over a system−defined entry is not permitted.
Attempting to configure HTTP to run on the system−defined port of 21, which maps to FTP, is not
allowed. An example of this type of attempt is shown in Listing 4.12.

Listing 4.12: Attempt to map over a system−defined entry.

Router−3#config t
Router−3(config)#ip port−map http port 21
Command fail: the port 21 has already been defined for ftp by − 
              the system.
              No change can be made to the system defined port − mappings.
Router−3(config)#end
Router−3#

Host−defined entries are actually user−defined entries that have a finer granularity of configuration
on a per−host or per−subnet basis. In Figure 4.7, three hosts on the internal inside network need
FTP access to a host on the external outside network of Router 3. The host on the external outside
network of Router 3 only uses FTP on port 7142. To configure Router 3 to map the host−defined
entries for FTP on Router 3, you must configure an access list to specify which hosts need the
mapping created. Listing 4.13 shows the configuration needed to accomplish this.
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Figure 4.7: Host that needs PAM configuration.
Listing 4.13: Creating host−defined entries on Router 3.
Router−3#config t
Router−3(config)#access−list 1 permit 192.168.10.240
Router−3(config)#access−list 1 permit 192.168.11.16
Router−3(config)#access−list 1 permit 192.168.11.112
Router−3(config)#ip port−map ftp port 7142 list 1
Router−3(config)#end

If you examine the output of the show ip port−map command, you can see that Router 3 has
created the host−defined entry and bound it to access list 1. Listing 4.14 shows the output from the
show ip portmap command with the newly created host−defined entries in the PAM table.

Listing 4.14: Display of the host−defined PAM table entries.

Router−3#show ip port−map
...
Default mapping: http port 80 system
Host specific: ftp port 7142 in list 1 user
Default mapping: ftp port 21 system
Default mapping: msrpc port 135 system
Default mapping: exec port 512 system
Default mapping: login port 513 system
Default mapping: sql−net port 1521 system
Default mapping: shell port 514 system
Default mapping: mgcp port 2427 system
Router−3#

Just as host−specific entries can populate the PAM table (which was demonstrated in the
configuration above), so can subnets. The three hosts on the internal network in the configuration in
Listing 4.13 all need FTP access to a host on the external network using port 7142; however, all
hosts on each of the 192.168.10.0 and 192.168.11.0 subnets need to access a RealVideo server on
the outside network using port number 5050 as opposed to the default 7070. To configure
subnetdefined entries, I will create a new access list and bind it to the ip port−map command.
Listing 4.15 shows the configuration.

Listing 4.15: Subnet−defined PAM configuration.

Router−3#config t
...
Router−3(config)#access−list 2 permit 192.168.10.0
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Router−3(config)#access−list 2 permit 192.168.11.0
Router−3(config)#ip port−map realmedia port 5050 list 2
Router−3(config)#end
Router−3#

Pay particular attention to the last octet of the IP addresses configured in Listing 4.15; this octet
allows the router to determine whether the access list is a host−specific entry or a subnet−specific
entry. Notice that the number 0 is specified and not a number between 1 and 254 for the class C
subnet. Issuing the show ip port−map command again displays the PAM table for Router 3. Listing
4.16 shows the output of the PAM table.

Listing 4.16: Output of the PAM table on Router 3.

Router−3#sh ip port−map
Default mapping: netshow port 1755 system
Host specific: realmedia port 5050 in list 2 userDefault −
  mapping:  realmedia port 7070 system
Default mapping: ftp port 21 system
Host specific: ftp port 7142 in list 1 user
Default mapping: mgcp port 2427 system
Router−3#

Listing 4.12 showed that a system−defined entry could not be overwritten; however, a host−specific
entry or a subnet−specific entry can change the default system entry on a per−host or per−subnet
basis for any or all system entries. Referring again to Listing 4.13, Router 3 was configured to
create a port table mapping for each of the three hosts listed so that the hosts could access an FTP
server on the outside network using port 7142. The three hosts now have a requirement to access a
Web server on the outside network, and they need to access the Web server using the port that is
normally used by FTP, port 21. So Router 3 needs to create a PAM table entry such that HTTP
traffic maps to port 21, FTP's standard port. To configure Router 3 to meet the new requirements of
the three hosts and override the system−defined entries, use the configuration shown in Listing
4.17.

Listing 4.17: Router 3 configured to override system−defined entries.

Router−3#config t
Router−3(config)#access−list 1 permit 192.168.10.240
Router−3(config)#access−list 1 permit 192.168.11.16
Router−3(config)#access−list 1 permit 192.168.11.112
Router−3(config)#ip port−map http port 21 list 1
Router−3(config)#end

First, notice that the router did not prompt with any error message as a result of the configuration
change. If you examine the output of the show ip port−map command, you can see that HTTP is
indeed a userdefined map that is mapped to port 21. Listing 4.18 displays the output.

Listing 4.18: Display of PAM table on Router 3.

Router−3#sh ip port−map
...
Default mapping: vdolive      port 7000                system
Host specific:   realmedia    port 5050   in list 2    user
Default mapping: realmedia    port 7070                system
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Default mapping: ftp          port 21                  system
Host specific:   http         port 21     in list 1    user
Default mapping: http         port 80                  system
Default mapping: exec         port 512                 system
Default mapping: login        port 513                 system
Default mapping: sql−net      port 1521                system
Default mapping: shell        port 514                 system
Host specific:   ftp          port 7142   in list 1    user
Default mapping: mgcp         port 2427                system
Router−3#

Finally, two new inside hosts need to access two different outside hosts using different services;
however, both hosts need to use the same port number. The host with the IP address of
192.168.10.118 needs the Telnet service to be an external host and the Telnet service needs to run
over port 6200. The host with the IP address of 192.168.11.205 needs to access the Microsoft
NetShow service of a host on the external network and also needs the Microsoft NetShow service to
run over port 6200. The configuration for Router 3 in Listing 4.19 accomplishes the hosts'
requirements.

Listing 4.19: Configuration of mapping different hosts to the same port.

Router−3#config t
Router−3(config)#access−list 12 permit 192.168.10.118
Router−3(config)#access−list 13 permit 192.168.11.205
Router−3(config)#ip port−map telnet port 6200 list 12
Router−3(config)#ip port−map netshow port 6200 list 13
Router−3(config)#end

The final configuration of Router 3 can be displayed using the show running−config command
(see Listing 4.20).

Listing 4.20: Final configuration of Router 3.

Router−3#sh ru
Building configuration...
!
ip port−map http port 6100
ip port−map http port 6101
ip port−map http port 6102
ip port−map http port 6103
ip port−map http port 6104
ip port−map http port 6105
ip port−map realmedia port 5050 list 2
ip port−map http port 21 list 1
ip port−map ftp port 7142 list 1
ip port−map netshow port 6200 list 13
ip port−map telnet port 6200 list 12
!
access−list 1 permit 192.168.11.112
access−list 1 permit 192.168.11.16
access−list 1 permit 192.168.10.240
access−list 2 permit 192.168.10.0
access−list 2 permit 192.168.11.0
access−list 12 permit 192.168.10.118
access−list 13 permit 192.168.11.205
!
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After viewing the final PAM configuration, you can view the final PAM table on Router 3 by issuing
the show ip port−map command. Listing 4.21 displays the complete PAM table for Router 3,
including the system−defined entries, userdefined entries, and host−defined entries.

Listing 4.21: Complete PAM table for Router 3.

Router−3#sh ip port−map
Default mapping: vdolive      port 7000                system
Default mapping: http         port 6100                user
Default mapping: sunrpc       port 111                 system
Default mapping: http         port 6101                user
Default mapping: netshow      port 1755                system
Default mapping: http         port 6102                user
Default mapping: http         port 6103                user
Default mapping: http         port 6104                user
Default mapping: http         port 6105                user
Host specific:   realmedia    port 5050   in list 2    user
Default mapping: cuseeme      port 7648                system
Default mapping: tftp         port 69                  system
Default mapping: rtsp         port 8554                system
Default mapping: realmedia    port 7070                system
Default mapping: streamworks  port 1558                system
Default mapping: ftp          port 21                  system
Host specific:   http         port 21     in list 1    user
Default mapping: telnet       port 23                  system
Default mapping: rtsp         port 554                 system
Default mapping: h323         port 1720                system
Default mapping: sip          port 5060                system
Default mapping: smtp         port 25                  system
Default mapping: http         port 80                  system
Default mapping: msrpc        port 135                 system
Default mapping: exec         port 512                 system
Default mapping: login        port 513                 system
Default mapping: sql−net      port 1521                system
Default mapping: shell        port 514                 system
Host specific:   ftp          port 7142   in list 1    user
Default mapping: mgcp         port 2427                system
Host specific:   netshow      port 6200   in list 13   user
Host specific:   telnet       port 6200   in list 12   user
Router−3#

Configuring IOS Firewall Intrusion Detection

The process used to configure the IOS Firewall IDS is far more detailed and complex than the
process used to configure most technologies. However, if you take one step at a time, the task
becomes a bit easier. If the router IDS is configured to log messages to a syslog server and not a
CiscoSecure IDS Director, the configuration can be made even simpler. To enable the IOS Firewall
IDS, follow these steps:

Use this Director command to send event notifications to a CiscoSecure IDS Director or to a
syslog server:

ip audit notify <nr−Director | log>

1. 
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The nr−Director argument specifies a CiscoSecure IDS Director and the log argument
specifies a syslog server.
Use the following command to configure the Post Office parameters for the local router:

ip audit po local <hostid host−id> <orgid org−id>

The host−id is a unique number between 1 and 65535 that identifies the router, and org−id is
a unique number between 1 and 65535 that identifies the organization to which the router
and Director both belong. Use this command if events are being sent to a CiscoSecure IDS
Director.

2. 

If alarms are being sent to a CiscoSecure IDS Director, the Post Office parameters for the
CiscoSecure IDS Director must be configured on the router by using this command:

ip audit <po> remote <hostid host−id> <orgid org−id> <rmtaddress −
ip−address> <localaddress ip−address> <port port−number> −
 <preference preference−number> <timeout seconds> <application −
application−type>

The host−id is a unique number between 1 and 65535 that identifies the Director. The org−id
is a unique number between 1 and 65535 that identifies the organization to which the router
and Director both belong. The rmtaddress ip−address is the Director's IP address. The
localaddress ip−address is the router's interface IP address. The port−number identifies the
UDP port on which the Director is listening for alarms; port 45000 is the default. The
preference−number is the priority of the route to the Director. The seconds is the number of
seconds the Post Office will wait before it determines that a connection has timed out. The
options for the application−type can be either Director or logger.

3. 

Use the following command to define the audit rules used by the IOS Firewall IDS:

ip audit name audit−name <info | attack> <list standard−acl> −
 <action alarm | drop | <reset>

4. 

Optionally, use the following command to specify the default action the IOS Firewall IDS
should take for info and attack signatures (if this command is not used, the default action is
to send an alarm):

ip audit <info | attack> action <alarm | drop | reset>

5. 

Optionally, use this command to configure a threshold that once reached, spamming in
email messages is suspected:

ip audit smtp spam <recipients>

The recipients option is the maximum number of recipients in an email message; the default
is 250 recipients.

6. 

Optionally, use this command to set the threshold that, once reached, will cause cued
events that are to be sent to the CiscoSecure IDS Director to be dropped from the cue:

ip audit po max−events <events>

7. 

Use the following command to disable the signatures that should not be included in the audit
rule:

8. 
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ip audit signature signature−id <disable | list acl−list>

Use this command to apply the audit rule to an interface:

ip audit audit−name <in | out.

Other commands can be used with the IOS Firewall IDS and they will be addressed as
needed throughout the explanations that follow. Figure 4.8 displays a simple network design
with a router that will be used to enable the IOS Firewall IDS. I will begin with a basic
configurationof the IOS Firewall IDS. In this configuration, the audit rule testrule is created
and is applied inbound on Router 3's Ethernet interface. Listing 4.22 outlines the
configuration of Router 3.

9. 

Figure 4.8: Simple firewall IDS network design.
Listing 4.22: IDS configuration of Router 3.
ip audit smtp spam 42
ip audit notify nr−Director
ip audit notify log
ip audit po local hostid 1 orgid 34
ip audit po remote hostid 5 orgid 34 rmtaddress 192.168.10.8 −
 localaddress 192.168.10.1
!
ip audit name testrule info action alarm
ip audit name testrule attack action alarm drop reset
!
interface FastEthernet0/0
ip address 192.168.10.1 255.255.255.0
ip audit testrule in

In Listing 4.22, Router 3 is configured to perform the IOS Firewall IDS functions. The first line of the
configuration uses the ip audit smtp command to specify the number of recipients in a certain mail
message the intrusion detection system considers a spam attack after the threshold is reached or
exceeded. The next line configures the IOS Firewall IDS to send messages to a CiscoSecure IDS
Director. The next line configures the IOS Firewall IDS to send messages to a syslog server, which
can also be the local logging service of the router. The ip audit po local command specifies the
local Post Office parameters used when event notifications are sent to the CiscoSecure Director. A
router can report to more than one CiscoSecure Director. In the event that two or more Directors are
configured, you must give each Director a preference number that establishes its relative priority
among the Directors. You can do this by using the hosted values. In Listing 4.22 above, only one
remote Director has been configured, and it has been given a hosted value of 5; if you add another
Director to the network and the router is supposed to prefer this Director over the previously
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configured Director, it would need to be configured with a lower hosted value. The router will always
attempt to use the Director with the lowest number, switching automatically to Director with the next
higher number when a Director fails and then switching back when the Director begins functioning
again.

The next two lines configure audit rules for info and attack signature types using the name testrule
and specifies that, for matched info signatures, the action the router should take is to send an
alarm—the default action. For attack signatures, the action the router should take is to send an
alarm and drop the packets and reset the session. The audit rule is then applied inbound on the
Ethernet interface of Router 3. The IOS Firewall IDS software keeps detailed statistics that display
the number of packets audited and the number of alarms sent. To view the statistics that the
software has gathered, use the show ip audit statistics command. Listing 4.23 displays the output
of this command.

Listing 4.23: Output of the show ip audit statistics command.

Router−3#show ip audit statistics
Signature audit statistics [process switch:fast switch]
 signature 2000 packets audited: [0:2]
 signature 2001 packets audited: [9:9]
 signature 2004 packets audited: [0:2]
 signature 6103 packets audited: [0:42]
 signature 6151 packets audited: [0:23]
 signature 6152 packets audited: [0:18]
 signature 6153 packets audited: [0:31]
 signature 6154 packets audited: [0:29]
 signature 6155 packets audited: [3:47]
 signature 6180 packets audited: [0:8]
Interfaces configured for audit 1
Session creations since subsystem startup or last reset 19
Current session counts (estab/half−open/terminating) [16:3:1]
Maxever session counts (estab/half−open/terminating) [52:8:0]
Last session created 09:12:29
Last statistic reset never
Router−3#

Listing 4.23 displays the statistics for each signature matched and lists the switching method used
for each. The output also provides other information related to the auditing process the router uses.
One other useful command that can be issued to verify the operation of the auditing process is the
sh ip audit config command. Listing 4.24 shows the output of the show ip audit config command.

Listing 4.24: Router 3 audit configuration.

Router−3#show ip audit config
Event notification through syslog is enabled
Event notification through Net Director is enabled
Default action(s) for info signatures is alarm
Default action(s) for attack signatures is alarm
Default threshold of recipients for spam signature is 42
PostOffice:HostID:5 OrgID:34 Msg dropped:0
          :Curr Event Buf Size:100 Configured:100
HID:13 OID:34 S:1 A:2 H:82 HA:49 DA:0 R:0 Q:0
 ID:1 Dest:192.168.10.8:45000 Loc:1192.168.10.1:45000 T:5 −
   S:ESTAB
Audit Rule Configuration
 Audit name testrule
    info actions alarm
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    attack actions alarm drop reset
Router−3#

In the next configuration, the security administrator of a small business has a machine with many
security software packages installed and preconfigured to automatically kick off at various times
during the day. After software applications begin running, the IDS software begins to send alarms to
the Director and the Director continuously sends email and page notifications to the security
administrator. As a result, the security administrator would like to configure the IOS Firewall so that
any packets originating from his machine and the owner's machine will not be subjected to
inspection by the IDS software. Listing 4.25 details the configuration of Router 3 that is needed so
that packets from the security administrator's machine and the owner's machine are not subject to
auditing.

Listing 4.25: Denying devices from inspection.

ip audit smtp spam 42
ip audit notify nr−Director
ip audit notify log
ip audit po local hostid 1 orgid 34
ip audit po remote hostid 5 orgid 34 rmtaddress 192.168.10.8 −
 localaddress 192.168.10.1
!
ip audit name testrule info list 10 action alarm
ip audit name testrule attack list 10 action alarm drop reset
!
interface FastEthernet0/0
ip address 192.168.10.1 255.255.255.0
ip audit testrule in
!
access−list 10 deny 192.168.10.50
access−list 10 deny 192.168.10.30
access−list 10 permit any

The configuration in Listing 4.25 is very similar to the configuration that was displayed in Listing
4.22. The only significant changes to this configuration are the addition of the access list. The
access list is bound to the audit rule named testrule. The access list in Listing 4.25 is not denying
traffic from the hosts with IP addresses of 192.168.10.50 and 192.168.10.30. Instead, the two hosts
are not filtered through the signatures because they are considered to be trusted hosts; all other
hosts as defined by the permit any command are subjected to filtering through the signatures.

Viewing the output of the show ip audit interface command, you can see that access list 10 is
bound to audit rule testrule for info signatures and attack signatures and the rule is bound to
interface FastEthernet0/0. Listing 4.26 displays the output of the show ip audit interface
command.

Listing 4.26: Access list configuration.

Router−3# show ip audit interface
Interface Configuration
 Interface FastEthernet0/0
  Inbound IDS audit rule is testrule
    info acl list 10 actions alarm
    attack acl list 10 actions alarm drop reset
  Outgoing IDS audit rule is not set
Router−3#
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Attack signatures can also be disabled if a device is using a legitimate program on the network and
generating false positive results to the IOS Firewall IDS. To disable attack signatures, use the ip
audit signature command and specify the specific attack signature that needs to be disabled.
Continuing with the example in Listing 4.26, the security administrator would like to disable attack
signatures with values in the range of 1000 to 1004 and the signature with the value of 3040. To
disable these signatures use the following commands:

ip audit signature 1000 disable
ip audit signature 1001 disable
ip audit signature 1002 disable
ip audit signature 1003 disable
ip audit signature 1004 disable
ip audit signature 3040 disable

To verify that the attack signatures listed above have indeed been disabled, you must issue the
show ip audit config command. Listing 4.27 displays the output of issuing the command after
disabling the signatures.

Listing 4.27: Verification of disabled attack signatures.

Router−3#show ip audit config
Event notification through syslog is enabled
Event notification through Net Director is enabled
Default action(s) for info signatures is alarm
Default action(s) for attack signatures is alarm
Default threshold of recipients for spam signature is 42
Signature 1000 disable
Signature 1001 disable
Signature 1002 disable
Signature 1003 disable
Signature 1004 disable
Signature 3040 disable
PostOffice:HostID:5 OrgID:34 Msg dropped:0
          :Curr Event Buf Size:100 Configured:100
HID:13 OID:34 S:1 A:2 H:82 HA:49 DA:0 R:0 Q:0
 ID:1 Dest:192.168.10.8:45000 Loc:1192.168.10.1:45000 T:5 −
   S:ESTAB
Audit Rule Configuration
 Audit name testrule
    info actions alarm
    attack actions alarm drop reset
Router−3#

It can be risky to disable the signature globally on the router because in the event another device
begins to create traffic that is not legitimate and that matches the characteristics of the signature(s)
that have been disabled, there will no way to detect the attack signature. So the IOS Firewall IDS
gives you the power to disable attack signatures on a per−host basis with the use of a standard
access list. To disable attack signatures, use the configuration displayed in Listing 4.28.

Listing 4.28: Disabling attack signatures on a per−host basis.

access−list 20 deny 192.168.10.51
access−list 20 deny 192.168.10.66
access−list 20 deny 192.168.10.212
access−list 20 permit any
!
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ip audit signature 2150 list 20
ip audit signature 2151 list 20
ip audit signature 3150 list 20

Listing 4.28 configures an access list, which matches according to the source address listed within
the access list. The access list is then bound to each attack signature. The access list logic for this
configuration does not deny the host access as in a typical access list configuration, but the
configuration states that the hosts that are in the access list configuration with a deny statement are
not subject to filtering through the audit process for the attack signature in which the access list is
applied. The complete intrusion detection configuration of Router 3 is shown in Listing 4.29.

Listing 4.29: Complete intrusion detection configuration.

ip audit smtp spam 42
ip audit notify nr−Director
ip audit notify log
ip audit po local hostid 1 orgid 34
ip audit po remote hostid 5 orgid 34 rmtaddress 192.168.10.8
 localaddress 192.168.10.1
!
ip audit name testrule info list 10 action alarm
ip audit name testrule attack list 10 action alarm drop reset
ip audit signature 1000 disable
ip audit signature 1001 disable
ip audit signature 1002 disable
ip audit signature 1003 disable
ip audit signature 1004 disable
ip audit signature 3040 disable
ip audit signature 2150 list 20
ip audit signature 2151 list 20
ip audit signature 3150 list 20
!
interface FastEthernet0/0
ip address 192.168.10.1 255.255.255.0
ip audit testrule in
!
access−list 10 deny 192.168.10.50
access−list 10 deny 192.168.10.30
access−list 10 permit any
access−list 20 deny 192.168.10.51
access−list 20 deny 192.168.10.66
access−list 20 deny 192.168.10.212
access−list 20 permit any

Related solution: See page:
Attack Signatures 368
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Chapter 5: Cisco Encryption Technology

In Brief

Many organizations are wary about transmitting sensitive data over networks. Hospitals transmit
sensitive patient information to insurance companies. Banks and stock exchange companies
transfer vital financial information over networks. There is a valid fear that the data could be viewed,
altered in transit, or used by malicious people to harm patients, cause lawsuits, or defraud
corporations. People want this kind of data communication to remain private. Almost every company
has transactions that need to be protected from eavesdroppers. Companies want to ensure that
when sensitive data passes over a medium susceptible to eavesdropping, it cannot be altered or
observed. Data encryption is designed to protect sensitive data.

Cisco's implementation of Network−layer encryption allows security administrators to smoothly
integrate the security of encryption into a network. The integration is transparent to end users and
their applications. Encryption must happen only at the edge of the network on the LAN where the
sensitive data originates, and decryption is not necessary until the data reaches the router on the far
LAN where the destination host resides. Network managers retain the option of encrypting
anywhere in the data path. By encrypting after the User Datagram Protocol (UDP) or TCP headers,
so that only the IP pay−load is encrypted, Cisco IOS network−layer encryption allows all
intermediate routers and switches to forward the traffic as they would any other IP packets. This
payload−only encryption allows flow switching and all access list features to work with the encrypted
traffic, just as they would with plain text traffic, thereby preserving desired Quality of Service (QoS)
for all data. Users can send encrypted data over the Internet transparently.

This chapter examines Cisco's proprietary encryption solution known as Cisco Encryption
Technology. I will present introductions to many of the components that are used to provide
encryption services for Cisco Encryption Technology, as well as services for IPSec, which will be
discussed in the next chapter. In this chapter, I will explain what encryption is, its history, how it
works, and the security issues it solves. Symmetric and asymmetric keys will be discussed, and the
Diffie−Hellman key algorithm and message−digest will be explained in detail. Finally, the Cisco
proprietary encryption solution will be discussed, and I will present the methods that are used to
configure it.

Cryptography

Cryptography, also known as encryption, is a method of transforming original data, called plaintext
or cleartext, into a form that appears to be random and unreadable, which is called ciphertext. A
simpler definition would be that cryptography is the method of storing and transmitting data in a form
that only the intended recipient can read or process. Cryptography is the science of secure and
secret communications. Security allows the sender to transform information into a coded message
by using a secret key, a piece of information known only to the sender and the authorized receiver.
The authorized receiver can decode the cipher to recover hidden information. If unauthorized
individuals somehow receive the coded message, they should be unable to decode it without
knowledge of the key. The key, which is usually a variable−length series of bits, works with the
encryption algorithm to encrypt or decrypt messages. The algorithm, the set of mathematical rules,
dictates how enciphering and deciphering take place. Many algorithms are publicly known and are
not the secret part of the encryption process.

The way that encryption algorithms work can be kept secret from the public, but many of them are
publicly known and well understood. If the internal mechanisms of the algorithm are not a secret,
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then something must be. The secret behind the use of a well−known encryption algorithm is the key.
The key can be any value made up of a large sequence of random bits. Is it just any random
number of bits crammed together? Not really. An algorithm contains a keyspace, which is a range of
values that can be used to construct a key. The key is made up of random values within the
keyspace range. The larger the keyspace, the more available values can be used to represent
different keys, and the more random the keys are, the harder it is for intruders to figure them out. A
large keyspace allows for more possible keys. The encryption algorithm should use the entire
keyspace and choose the values to make up the keys as randomly as possible. If a smaller
keyspace were used, there would be fewer values to choose from when forming a key. This would
increase an attacker's chance of figuring out the key value and deciphering the protected
information.

After a message is transformed into ciphertext, neither human nor machine should be able to
properly process it until it is decrypted. This enables the transmission of confidential information
over insecure channels without unauthorized disclosure. When data is stored on a computer, it is
usually protected by logical and physical access controls. When this same sensitive information is
sent over a network, you can no longer take these controls for granted, and the information is in a
much more vulnerable state. If an eavesdropper captures a message as it passes between two
people, the eavesdropper will be able to view the message, but it appears in its encrypted form and
is therefore unusable. Even if the eavesdropper knows the algorithm that the two people are using
to encrypt and decrypt the information, without the key, the information remains useless to the
eavesdropper.

Modern day cryptography is a science that has one goal: to protect sensitive information by
encoding it in a format that is unreadable. However, most modern cryptographic algorithms can be
broken and the information can be revealed if the attacker is given enough time and resources to
find the key.

History of Cryptography

Cryptography dates back as early as 4000 B.C. when hieroglyphics were used by the Egyptians to
decorate tombs to tell the story of the life of the deceased person. This practice was not as much to
hide the messages as it was to make them more majestic and ceremonial. Encryption methods
began to evolve from ceremonial to more practical applications for war, crisis, and espionage.
Throughout history, individuals and governments alike have worked to protect communication
between trusted sources through the use of encryption. The first known use of encryption by a
government for military purposes was around 400 B.C. It was used by the Spartans in the form of a
thin strip of papyrus wrapped around a staff. Messages were written down or up the length of the
staff and then the papyrus was unwrapped. For the message to be read, the papyrus had to be
wrapped around a staff equal in diameter to the first staff. This system is called a skytale cipher, and
it was used to send secret messages between Greek warriors. Without a staff of equal diameter (d)
and minimum length (1), it would be difficult to decode the message because the message would
appear to be random characters written on the unwrapped papyrus. The keys you need to decipher
the skytale cipher are d and l. Figure 5.1 displays an example of the Scytale cipher, and the
following versions of the alphabet demonstrate the technique. First you see the wrapped version:

ADGJMPSVY
BEHKNQTWZ
CFILORUX
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Figure 5.1: An Example of the Scytale cipher.
Then you see the unwrapped version:

ADGJMPSVYBEHKNQTWZCFILORUX

At or around 50 B.C., Julius Caesar used a system of cryptography known as the Caesar Cipher, or
C3. It shifted each letter three places forward in the alphabet (for example, "A" shifts to "D," "K"
shifts to "N," etc.). In the following example, the first row is plaintext and the second row is the
equivalent ciphertext. The distance of the letter placement within the algorithm is not important to
the scheme, and in fact, neither is the order of the letters that are chosen. Because only one
alphabet is used with this sort of cipher, the Caesar Cipher is referred to as a monoalphabetic
substitution cipher, wherein each letter is mapped into another letter in a one−to−one fashion.

ABCDEFGHIJKLMNOPQRSTUVWXYZ−Plaintext
DEFGHIJKLMNOPQRSTUVWXYZABC−Ciphertext

During the Middle Ages, cryptography started to progress. All of the governments of western Europe
used cryptography in one form or another, and codes started to become more popular. Ciphers
were commonly used to keep in touch with ambassadors. The first major advances in cryptography
were made in Italy. In the middle of the 1400s, an elaborate organization was created in Venice with
the sole purpose of dealing with cryptography. There were three cipher secretaries who solved and
created ciphers used by the government.

Around the same time Leon Battista Alberti developed the polyalphabetic substitution. A
polyalphabetic substitution is a technique in which different ciphertext symbols can represent the
same plaintext symbol. This makes it more difficult to use frequency analysis to interpret ciphertext.
To develop this technique, Alberti analyzed all of the available methods used for breaking ciphers
and devised a cipher he hoped would render these techniques invalid. What he designed were two
copper disks that fit into each other, and each had an alphabet inscribed upon it. To start the
enciphering, a predetermined letter on the inner disk is lined up with any letter on the outer disk,
which is written as the first character of the ciphertext. The disks are kept stationary, with each
plaintext letter on the inner disk aligned with a ciphertext letter on the outer disk. After a few words
of ciphertext, the disks are rotated so that the index letter on the inner disk is aligned with a new
letter on the outer disk, and in this manner, the message is enciphered. Because the disk was
rotated every few words, this allowed the cipher to change enough to limit the effectiveness of
frequency analysis. This technique is very weak; however, it was the ingenious idea of rotating the
disks, which therefore changed the cipher many times within a message, that became a major
breakthrough in cryptography.

Thomas Jefferson, around 1795, invented the wheel cipher. Although he never did much with it. The
wheel cipher consists of a set of 26 wheels, each with the letters of the alphabet in random order.
The key to the system is the order in which the wheels where placed on an axle. The message is
encoded by aligning the letters along the rotational axis of the axle such that the desired message is
formed. Any other row of aligned letters can then be used as the ciphertext for transmission. The
decryption requires the recipient to align the letters of the ciphertext along the rotational axis and
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find a set of aligned letters that makes linguistic sense as plaintext. This is the message. There is a
small probability that there will be two sensible messages from the decryption process, but this can
be checked easily by the originator.

In 1844, the development of cryptography was dramatically altered by the invention of the telegraph.
Communication with the telegraph was by no means secure, so ciphers were needed to transmit
secret information. The public's interest in cryptography blossomed, and many individuals attempted
to formulate their own cipher systems. The advent of the telegraph provided the first instance in
which a base commander could be in instant communication with his field commanders during
battle. Thus, a field cipher was needed. At first, the military used a Vigenere cipher with a short
repeating keyword, but in 1863, a solution was discovered by Friedrich W. Kasiski for all periodic
polyalphabetic ciphers, which until this time were considered unbreakable, so the military had to
search for a new cipher to replace the Vigenere.

In the 1920s, Herbert Yardley, known as the "Father of American Cryptography," was in charge of
the top−secret U.S. MI−8 organization. This organization has come to be known as the Black
Chamber. MI−8 cracked the codes of a number of different countries. In 1929, the U.S. State
Department, acting upon the orders of then President Herbert Hoover, closed MI−8, much to the
disagreement of Yardley.

To feed his family, Yardley, hard−pressed to find work during the depression, wrote a book
describing the secret workings of MI−8. It was called The American Black Chamber and became a
best seller. Many people criticized him for divulging secrets and glorifying his own actions during the
war.

Up to 1917, transmissions sent over telegraph wires were encoded in Baudot code for use with
teletypes. The American Telephone and Telegraph company was very concerned about how easily
the teletypes could be read, so Gilbert S. Vernam developed a system that added together the
plaintext electronic pulses with a key to produce ciphertext pulses. It was difficult to use at times
because keys were cumbersome. Vernam developed a machine to encipher messages, but the
system was never widely used.

The use of cryptographic machines dramatically changed the nature of cryptography and
cryptanalysis. Cryptography became intimately related to machine design, and security personnel
became involved with the protection of these machines. The basic systems remained the same, but
the method of encryption became reliable and electromechanical.

As computers came to be, the possibilities for encryption methods and devices advanced, and
cryptography efforts expanded exponentially. This era brought unprecedented opportunity for
cryptographic designers and encryption techniques. The most well−known and successful project
was Lucifer, which was developed at IBM. Lucifer introduced complex mathematical equations and
functions that were later adopted and modified by the U.S. National Security Agency (NSA) to come
up with the U.S. Data Encryption Standard (DES). DES has been adopted as a federal government
standard, is used worldwide for financial transactions, and is imbedded into numerous commercial
applications. DES has had a rich history in computer−oriented encryption and has been in use for
more than 20 years.

A majority of the protocols developed at the dawn of the computing age have been upgraded to
include cryptography to add the necessary layers of protection. Encryption is used in hardware
devices and software to protect data, banking transactions, corporate extranets, email, Web
transactions, wireless communication, storing of confidential information, faxes, and phone calls.
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Note For more information on the history of cryptography, please visit
t h e  N a t i o n a l  C r y p t o l o g i c  M u s e u m  a t
http://www.nsa.gov/museum/index.html.

Benefits of Encryption

Modern encryption can be accomplished through the use of software or hardware. Hardware
encryption is usually the preferred method, in part because of specialized Application Specific
Integrated Circuits (ASICs) and advanced signal processors that do not rely on the central
processing unit (CPU) of the device, which is usually busy performing many other functions, to
provide intensive encryption services. Encryption provides many services, four of which are
included in the following list (however, encryption can never provide availability of data or systems):

Confidentiality• 
Authenticity• 
Integrity• 
Nonrepudiation• 

Confidentiality means that unauthorized parties cannot access information. Authenticity refers to
validating the source of the message to ensure that the sender is properly identified; that is, that the
peer device you are communicating with is legitimate and is not part of a hijacked session. Integrity
means assurance that the message was not modified during transmission, accidentally or
intentionally. Nonrepudiation means that a sender cannot deny sending the message at a later date,
and the receiver cannot deny receiving it. With nonrepudiation, you are provided with proof that a
message was sent and that it was received. A digital signature that provides proof of the identity of
the sender is attached to the message that was sent, and in many instances, the time the message
was sent is also included.

Different types of messages and transactions require a higher degree of one or all of the services
that encryption methods can supply. Financial institutions care about confidentiality, but they care
more about the integrity of the data being transmitted, so the encryption mechanism they would
choose may differ from a professional sports coach's encryption methods. If messages that had a
misplaced decimal point or zero were accepted, the ramifications could be far reaching to the
financial institution. Legal agencies care more about the authenticity of messages they receive. If
information that was received needed to be presented in a court of law, its authenticity would
certainly be questioned; therefore, the encryption method used should ensure authenticity to
confirm who sent the information.

Symmetric and Asymmetric Key Encryption

Encryption algorithms can use one of two different keying methods: symmetric keys, also known as
private keys, or asymmetric keys, also known as public keys.

Symmetric Key Encryption

Symmetric key encryption is the most popular type of encryption and understood by most people. In
symmetric key encryption, both the sender and receiver know a secret key and will use this key for
both encryption and decryption. Obviously, the challenge with symmetric encryption is to make the
secret key available to both the sender and receiver without compromise. Thus, is can be stated
that the security of the symmetric encryption method is completely dependent on how well users
protect the key.
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Each pair of peers who want to exchange data in encrypted format using symmetric key encryption
must posses their own identical set of keys. For example, in Figure 5.2, Host A needs to
communicate to Host B using symmetric key encryption. Notice that both Host A and Host B have
obtained a copy of the same private key.

Figure 5.2: Example of symmetric key encryption.
If Host A wants to communicate with another host, say Host C, using symmetric key encryption,
Host A will need to possess two keys, one for Host B and another for Host C. Now this does not
sound like a big deal at this point, but if Host A has to begin communicating to hundreds of other
hosts using symmetric key encryption, Host A must possess a separate key for each host that it
must communicate with and use the correct key with the correct host, which can become a
burdensome task.

Because both users use the same key to encrypt and decrypt messages, symmetric key encryption
can provide confidentiality, but it cannot provide authentication or nonrepudiation. There is no way
to prove who actually sent a message if two people are using the exact same key.

Symmetric key encryption has a few advantages over asymmetric key encryption. If a large key size
is used (greater than 128 bits), symmetric key encryption is very difficult to break. When comparing
symmetric key encryption to asymmetric key encryption, you'll find that symmetric key encryption is
also extremely faster and can be used to encrypt large volumes of data.

Symmetric key encryption also has a few disadvantages. It provides no secure mechanisms to
ensure proper delivery of keys and each pair of encryption peers must maintain a unique pair of
keys. Symmetric key encryption also can only provide confidentiality and cannot provide
authentication or nonrepudiation.

Symmetric key encryption can use several different types of symmetric key algorithms. Each uses a
different method of providing encryption and decryption functionality, and two symmetric key
algorithm will be discussed in detail in the following sections, "DES" and "Triple DES."

Data Encryption Standard (DES)

The Data Encryption Standard is a symmetric key algorithm that was devised in 1972 as a deviation
of the Lucifer algorithm developed by IBM. DES is used for commercial and nonclassified purposes.
DES defines a 64−bit block size and uses a 56−bit key. It begins with a 64−bit key and strips off 8
bits. Using a 56−bit key means that an attacker would have to try 256, or 70 quadrillion, possible
keys in order to find the private key using a brute force attack. This may at first seem like a
tremendous amount of possible combinations, but given today's distributed computing
environments, DES can and has been broken. In fact, the Electronic Frontier Foundation built a
distributed computer network system that broke DES in 22 hours and 15 minutes. The system
contained a supercomputer known as Deep Crack and a distributed network of almost 100,000
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worldwide PCs connected to the Internet. For further information on the breaking of DES, see
http://www.rsasecurity.com/news/pr/990119−1.html. Because of vulnerabilities like these, the U.S.
government has not used DES since November of 1998.

There are four defined modes of operation for DES: cipher block chaining (CBC), Electronic Code
Book (ECB), cipher feedback (CFB), and Output Feedback (OFB). Electronic Code Book is the
most commonly used.

Cipher block chaining (CBC) operates with plaintext blocks of 64 bits. It uses what is known as an
initialization vector (IV) of 64 bits. In cipher block chaining, each plaintext block is XORed with the
previous ciphertext block and the result is encrypted using the DES key. Identical ciphertext blocks
can be the result, only if the same plaintext block is encrypted using both the same key and the
initialization vector and if the ciphertext block order is not changed. Ideally, the initialization vector
should be different for any two messages encrypted with the same key. One of the cipher block
chaining major characteristics is that it uses a chaining mechanism that makes the decryption of a
block of ciphertext dependant upon all the preceding ciphertext blocks. As a result, the entire validity
of all preceding blocks is contained in the previous ciphertext block. A single bit error in a ciphertext
block affects the decryption of all subsequent blocks. Rearrangement of the order of the ciphertext
blocks causes decryption to become corrupted. It has the advantage over the ECB mode in that the
XORing process hides plaintext patterns.

Electronic Code Book (ECB) is the default native mode of DES and is a block cipher. In other
words, the same plaintext value will always result in the same ciphertext value. ECB is used when a
volume of plaintext is separated into several blocks of data, each of which is then encrypted
independently of other blocks. In fact, ECB has the capability to support a separate encryption key
for each block type. ECB is applied to 64−bit blocks of plaintext, and it produces corresponding
64−bit blocks of ciphertext. It operates by dividing the 64−bit input vector into two 32−bit blocks that
are referred to as the right block and the left block. The bits are then recopied to produce two 48−bit
blocks. Then, each of these 48−bit blocks is XORed with a 48−bit encryption key.

ECB is not the preferred system to use with small block sizes and identical encryption modes. Some
words and phrases may be reused often enough so that the same repetitive blocks of ciphertext can
emerge, laying the groundwork for a codebook attack because the plaintext patterns would become
fairly obvious. However, security may be improved if random pad bits are added to each block. On
the other hand, 64−bit or larger blocks should contain enough unique characteristics to make a
codebook attack unlikely to succeed. In terms of error correction, any bit errors in a ciphertext block
affect decryption of that block only. Chaining dependency is not an issue in that reordering of the
ciphertext blocks will only reorder the corresponding plaintext blocks but not affect them.

Cipher feedback (CFB) is a stream cipher in which the DES is used to generate pseudorandom bits,
which are exclusively−ORed with binary plain text to form cipher text. The cipher text is fed back to
form the next DES input block. Identical messages that are encrypted using the CFB mode and
different initialization vectors will have different cipher texts. Initialization vectors that are shorter
than 64 bits should be put in the least significant bits of the first DES input block and the unused,
most significant bits initialized to 0s. In the CFB mode, errors in any K−bit unit of cipher text will
affect the decryption of the garbled cipher text and also the decryption of succeeding cipher text
until the bits in error have been shifted out of the CFB input block. The first affected K−bit unit of
plain text will be garbled in exactly those places where the cipher text is in error. Succeeding
decrypted plain text will have an average error rate of 50 percent until all errors have been shifted
out of the DES input block. Assuming no additional errors are encountered during this time, the
correct plain text will then be obtained.
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Output feedback (OFB) is a stream cipher and has some similarities to the ciphertext feedback
mode in that it permits encryption of differing block sizes; the key difference is that the output of the
encryption block function is the feedback. It functions by generating a stream of random binary bits
to be combined with the plaintext to create ciphertext. The XOR value of each plaintext block is
created independently of both the plaintext and ciphertext. Because there are no chaining
dependencies, it is this mode that is used when there can be no tolerance for error propagation.
Like the ciphertext feedback mode, it uses an initialization vector (IV). Changing the IV in the same
plaintext block results in different ciphertext. In this mode, output feedback can tolerate ciphertext bit
errors but is incapable of self−synchronization after losing ciphertext bits because it disturbs the
synchronization of the aligning keystream.

Triple DES

Triple DES currently enjoys a much wider use than DES because DES is relatively easy to break
with today's rapidly advancing technology. Triple DES was the answer to many of the shortcomings
of DES. Because it is based on the DES algorithm, it is very easy to modify existing software to use
Triple DES. It also has the advantage of proven reliability and a longer key length that eliminates
many of the shortcut attacks that can be used to reduce the amount of time it takes to break DES.
However, even this more powerful version of DES may not be strong enough to protect data for very
much longer. The DES algorithm itself has become obsolete and is in need of replacement. The
Advanced Encryption Standard (AES) is a replacement for DES. The AES will be at least as strong
as Triple DES, and probably much faster. Many security systems will probably use both Triple DES
and AES for at least the next five years. After that, AES may supplant Triple DES as the default
algorithm on most systems if it lives up to its expectations. But Triple DES will be kept around for
compatibility reasons for many years after that. So the useful lifetime of Triple DES is far from over,
even with the AES near completion. For the foreseeable future, Triple DES is an excellent and
reliable choice for the security needs of highly sensitive information.

Triple DES is simply another mode of DES operation. It takes three 64−bit keys for an overall key
length of 192 bits. You simply type in the entire 192−bit (24−character) key rather than entering
each of the three keys individually. Triple DES then breaks the user−provided key into three
subkeys, padding the keys if necessary so they are each 64 bits long. The procedure for encryption
is exactly the same as it is for regular DES, but it is repeated three times; hence the name Triple
DES. The data is encrypted with the first key, decrypted with the second key, and finally encrypted
again with the third key. Consequently, Triple DES runs much slower than standard DES because
of the processing power needed to perform the multiple permutations, but it is much more secure if
used properly. The procedure for decrypting something is the same as the procedure for encryption
except it is executed in reverse. As with DES, data is encrypted and decrypted in 64−bit chunks.
Unfortunately, there are some weak keys that one should be aware of: If all three keys, the first and
second keys, or the second and third keys are the same, the encryption procedure is essentially the
same as it is with standard DES. This situation should be avoided because it is the same as using a
really slow version of regular DES.

Note again that, although the input key for DES is 64 bits long, the actual key used by DES is only
56 bits in length. The least significant (rightmost) bit in each byte is a parity bit and should be set so
that there is always an odd number of 1s in every byte. These parity bits are ignored, so only the
seven most significant bits of each byte are used, resulting in a key length of 56 bits. This means
that the effective key strength for Triple DES is actually 168 bits because each of the three keys
contains 8 parity bits that are not used during the encryption process.

163



Asymmetric Key Encryption

Whereas symmetric key encryption makes use of a single key that is known to a sender and a
receiver, asymmetric key encryption, also known as public key encryption, makes use of two keys, a
public key and a private key. If a message is encrypted by one key, the other key is required to
decrypt the message. The public key can be known by anyone, but the private key must be known
only by the owner.

Both the public and private keys are related from a mathematical point of view; however, if one of
the keys is compromised, it is also mathematically infeasible to determine the contents of the other
key based on the contents of the key that was compromised. In Figure 5.3, Host A needs to
communicate to Host B using asymmetric key encryption. Notice that both Host A and Host B are
using copies of different keys.

Figure 5.3: Example of asymmetric key encryption.
If Host A encrypts a message with its private key, Host B must have a copy of Host A's public key to
decrypt it. Host B can decrypt Host A's message and decide to reply back to Host A in an encrypted
form. All Host B needs to do is encrypt its reply with Host A's public key and then Host A can
decrypt the message with its private key. It is not possible to encrypt and decrypt using the exact
same key when using an asymmetric key encryption technology.

Host A can encrypt a message with its private key, and the receiver can then decrypt it with Host A's
public key. By decrypting the message with Host A's public key, the receiver can be sure that the
message really came from Host A. A message can only be decrypted with a public key if the
message was encrypted with the corresponding private key. This provides authentication because
Host A is the only one who is supposed to have his private key. When the receiver wants to make
sure Host A is the only one that can read her reply, she will encrypt the response with her public
key. Only Host A will be able to decrypt the message because it is the only one who has the
necessary private key. Now the receiver can also encrypt her response with her private key instead
of using Host A's public key. Why would she do that? She wants Host A to know that the message
came from her and no one else. If she encrypted the response with Host A's public key, it does not
provide authenticity because anyone can get a hold of Host A's public key. If she uses her private
key to encrypt the message, then Host A can be sure that the message came from her and no one
else.

Symmetric keys do not provide authenticity because the same key is used on both ends. Using one
of the secret keys does not ensure that the message originated from a specific entity. If
confidentiality is the most important aspect of security to a sender, the sender would encrypt the file
with the receiver's public key. This is called a secure message format because it can be decrypted
only by the person who has the corresponding private key. If authentication is the most important
security service to the sender, the sender would encrypt the message with her private key. This
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provides assurance to the receiver that the only person who could have encrypted the message is
the individual who has possession of that private key. If the sender encrypted the message with the
receiver's public key, authentication is not provided because this public key is available to anyone.
Encrypting a message with the sender's private key is called an open message format because
anyone with a copy of the corresponding public key can decrypt the message; thus, confidentiality is
not ensured. For a message to be in a secure and signed format, the sender would encrypt the
message with his private key and then encrypt it again with the receiver's public key. The receiver
would then need to decrypt the message with her own private key and then decrypt it again with the
sender's public key. This provides confidentiality and authentication for that delivered message.

Each key type can be used to encrypt and decrypt, so do not get confused and think the public key
is used only for encryption and the private key is used only for decryption. They both have the
capability to encrypt and decrypt data. However, if data is encrypted with a private key, it cannot be
decrypted with a private key. If data is encrypted with a private key, it must be decrypted with the
corresponding public key. If data is encrypted with a public key, it must be decrypted with the
corresponding private key.

Asymmetric key encryption has a few advantages over symmetric key encryption. Asymmetric key
encryption enhances the ability to distribute keys between peers, which in turn, provides another
advantage, which is increased scalability when compared to symmetric key encryption. Asymmetric
key encryption also can provide confidentiality, authenticity, and nonrepudiation.

Asymmetric key encryption's major disadvantage when compared to symmetric key encryption is
that it is slower than symmetric key encryption.

Asymmetric key encryption can use several different types of asymmetric key algorithms. Each has
a different method of providing encryption and decryption functionality, and two will be discussed in
detail in the following sections.

RSA

"RSA" stands for Rivest, Shamir, and Addleman, the names of its inventors. RSA is the asymmetric
key algorithm that is easiest to implement, and it's the best understood. The RSA cryptosystem is a
public−key cryptosystem that offers both encryption and digital signatures, which provides
authentication. The RSA algorithm is based on the difficulty of factoring a number, x, that is the
product of two large prime numbers. The two large prime numbers may include up to 200 digits
each. Here is how it works:

Take two large primes numbers of equal length, p and q, and compute their product x=pq; x
is called the modulus.

1. 

Choose a random public number, e, which is the public key that is less than x and relatively
prime to (p−1)(q−1). This will mean that e and (p−1)(q−1) have no common factors except 1.

2. 

Then find another number, d, which is the private key and such that (ed−1) is divisible by
(p−1)(q−1).

3. 

This equates to d=e‘  modulus (p−1)(q−1).4. 

Given the preceding calculations, you can determine that (d,x) is the private key and (e,x) is the
public key. So to calculate encryption for plaintext, P, such that it is generated into ciphertext, C, you
use the following formula:

C=Pe modulus x
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And then, to calculate decryption for ciphertext, C, such that is generated into plaintext, P, you can
use the following formula:

P=Cd modulus x

It is extremely difficult to obtain the private key d from the public key (x,e). However, if someone or
something could factor x into p and q, then they could obtain the private key d. The security of the
RSA system is based on the assumption that factoring is difficult.

Using the network displayed in Figure 5.3, Host A would like to send a message to Host B using
RSA encryption. The message will be denoted by m. Host A creates the ciphertext, c, by using the
exponentiation of c=me modulus x; both e and x are Host B's public key. Host A then sends
ciphertext, c, to Host B. Host B then attempts decryption by using the exponentiation of m=cd

modulus x. There is a one−to−one relationship between e and d that ensures that Host B can
recover the message, m.

RSA encryption can also provide authentication services, something that symmetric key encryption
cannot do. To provide authentication services between Host A and Host B, such that the message,
m, can be verified to be authentic and not tampered with, Host A creates a digital signature, s, by
using the exponentiation of s=md modulus x. Both d and x in this example are Host A's private key.
Host A then sends both the message, m, and the signature, s, to Host B. Host B then must verify
the signature, s, by using the exponentiation of the message, m=se modulus x. Both values of e and
x at Host B are Host A's public key.

Using RSA encryption means that encryption and decryption take place between two hosts without
the exchange of each host's private keys. Each host only uses the other host's public key, or it uses
its own private key. This means that any host can send an encrypted message or verify the
signature of an authenticated message, but only a host that has possession of the correct private
key can decrypt or sign a message.

Diffie−Hellman Key Exchange

Diffie−Hellman was developed by Diffie and Hellman in 1976 and published in the paper "New
Directions in Cryptography" (citeseer. nj.nec.com/diffie76new.html). The protocol allows two
users to exchange a secret key over an insecure medium without any prior secrets.

Diffie−Hellman is primarily used to provide a secure mechanism for exchanging public keys so that
shared secret keys can be securely generated for DES keys. It provides a means for two parties to
agree upon a shared secret in such a way that the secret will be unavailable to eavesdroppers.
Diffie−Hellman key agreement requires that both the sender and recipient of a message have key
pairs. By combining one's private key and the other party's public key, both parties can compute the
same shared secret number. This number can then be converted into cryptographic keying material.

Note The functional operation of the Diffie−Hellman key exchange is explained in detail in Chapter
6.

Digital Signature Standard

Digital Signature Standard (DSS) is defined by the Federal Information Processing Standards
Publication 186. Cisco implements DSS, which is used for peer router authentication and to protect
data from undetected change. This standard specifies a Digital Signature Algorithm (DSA) for
applications that require a digital signature as opposed to a written signature. The DSA signature is
a pair of large numbers represented in a computer as strings of binary digits. The digital signature is

166



computed using a set of rules and a set of parameters such that the identity of the signature and
integrity of the data can be verified. The DSA provides the capability to generate and verify
signatures. Signature generation makes use of a private key. Signature verification makes use of a
public key that corresponds to, but is not the same as, the private key. Each user possesses a
private and public key pair. Public keys can be known by anyone and shared with anyone, but
private keys are never shared. Anyone can verify the signature of a user by employing that user's
public key. Signature generation can be performed only by the possessor of the user's private key.

The algorithm relies on the MD5 hash function to verify the authenticity of the data sent. The hash
function is equivalent to taking a "fingerprint" of the message. If two fingerprints match, the message
has not been altered in transit, and if the two fingerprints do not match, the message has been
altered in transit. The hash is run through a function that uses the private key to sign the message
and is reversible only if you have the public key. The peer runs the same hash and verifies the
signature to determine the identity and content of the message.

Cisco Encryption Technology Overview

Cisco Encryption Technology (CET) is a proprietary Network layer encryption process that encrypts
the data payload of an IP packet. Special portions of the IP header, for instance the UDP and TCP
portions, are not encrypted. This allows the packet to be successfully routed through the
internetwork. Only IP packets can be encrypted. The actual encryption and decryption of IP packets
occur only at routers that you configure for CET. Such routers are considered to be peer routers.
Intermediate routers do not participate in the encryption or decryption process. CET features include
the following:

CET allows for granularity in the specification of which packets are encrypted. Packets
needing to be encrypted can be defined with the configuration of an extended access list.

• 

DSS is used to provide authentication.• 
Diffie−Hellman is used to manage each session's key.• 
DES is used to provide confidentiality (encryption).• 

Peer router authentication occurs during the setup of each encrypted session. Prior to peer router
authentication, DSS public and private keys must be generated for each peer and the DSS public
keys must be exchanged with each peer. This allows peer routers to authenticate each other at the
start of encrypted communication sessions. The generation and exchange of DSS keys occurs only
once on a per−peer basis, and afterward, these DSS keys will be used each time an encrypted
session occurs. To be successfully exchanged, DSS public keys must be verified via a trusted
source at the location of each encryption peer. This usually occurs via a phone call and is called
"voice authentication." During the exchange process, one peer is configured to be the "passive" and
the other peer is configured to be the "active" peer.

Each peer router's DSS keys are unique: a unique DSS public key and a unique DSS private key.
DSS private keys are stored in a private portion of the router's NVRAM, which cannot be viewed. If
you have a router with an Encryption Service Adapter (ESA), DSS keys are stored in the
tamper−resistant memory of the ESA. The DSS private key is not shared with any other device.
However, the DSS public key is distributed to all other peer routers. You must cooperate with the
peer router's administrator to exchange public keys between the two peer routers, and you and the
other administrator must verbally verify to each other the public key of the other router. When an
encrypted session is being established, each router uses the peer's DSS public key to authenticate
the peer.

Prior to a router passing encrypted data to a remote peer, an encrypted session needs to be
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established. This is determined when the router receives a packet that matches a permit statement,
which determines whether or not encryption should take place for this packet. To establish a
session, peer encryption routers must exchange connection messages. This allows each router to
authenticate each other. Authentication is accomplished by attaching "signatures" to the connection
messages: A signature is a character string that is created by each local router using its own DSS
private key and verified by the remote router using the local router's DSS public key. A signature is
always unique to the sending router and cannot be forged by any other device. When a signature is
verified, the router that sent the signature is authenticated. A temporary session key is also
generated during the exchange of connection messages; it is the key that will be used to actually
encrypt data during the encrypted session. To generate the session key, Diffie−Hellman numbers
must be exchanged in the connection messages. Then, the Diffie−Hellman numbers are used to
compute a common DES session key that is shared by both routers.

After both peer routers are authenticated and the session key has been generated, data can be
encrypted and transmitted. The DES encryption algorithm is used with the DES key to encrypt and
decrypt IP packets during the encrypted session. After the session times out, because no packets
match a permit statement within the configured access list, the encrypted session is terminated.
When the session terminates, both the DH numbers and the DES key are discarded. When another
encrypted session is required, new DH numbers and DES keys will be generated.

The process for configuring Cisco's proprietary encryption technology on routers consists of four
major tasks:

Prepare for Cisco Encryption by identifying the peer routers and choosing an encryption
policy between both peers. The network topology should also be taken into consideration
during this stage. The typical network topology used for encryption is a hub−and−spoke
arrangement between an enterprise router and branch routers. Other things to consider
during this stage are frequent route changes between pairs of peer encrypting routers and
load−balancing, which will cause excessive numbers of connections to be set up and very
few data packets to be delivered.

1. 

Each router involved in the process of encrypting packets between one another must be
prepared to perform encryption. This is done through a series of configuration commands
that will be discussed later.

2. 

After preparing each router to perform encryption, you much establish an encrypted session
between each peer to pass encrypted packets.

3. 

The final task is to test and verify the configuration and operation of CET. This is done
through the use of certain show and debug commands. These same commands are also
used during troubleshooting of CET.

4. 

Immediate Solutions

Configuring Cisco Encryption Technology

Configuring CET involves prior coordination between the local security administrator and the remote
encryption peer's security administrator. After that is accomplished, perform the following
configuration tasks:

Use the following command to generate DSS keys for each crypto engine you will use:

crypto key generate dss key−name

1. 
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The DSS key pair that is generated is used by peer routers to authenticate each other before
each encrypted session. The same DSS key pair is used by a crypto engine with all its
encrypted sessions.
Use this command to save the DSS keys that are generated to private NVRAM on the router
(this command is only needed if the router is using a software−based crypto engine):

copy running−config startup−config

2. 

Next, the exchange of DSS public keys with all participating peer routers must be
configured, which allows peer routers to authenticate each other at the start of encrypted
communication sessions. Use this command to enable a DSS key exchange on the passive
peer router:

crypto key exchange dss passive <tcp−port>

The passive router will wait to exchange keys until after the active router has exchanged
keys with the passive router.

3. 

Use this command to define the active peer, which initiates a connection to the passive peer
and exchanges keys:

crypto key exchange dss <ip−address> <key−name> <tcp−port>

4. 

Tasks 3 and 4 need a little further explanation. Prior to configuring a peer router for DSS key
exchange in Step 3, "voice authentication" must take place between the security administrator of the
local peer router and the security administrator of the remote peer router. You and the other
administrator decide which of you will be what is referred to as the "passive" peer and which of you
will be what is referred to as the "active" peer. The passive router enables a DSS exchange
connection using the command listed in Step 3. The active router then initiates a DSS exchange
connection with the passive peer router and sends a DSS public key to it. The serial number and
fingerprint of the active router's DSS public key will then be displayed on screen of each security
administrator's machine. The serial number and fingerprint that are displayed are numeric values
that are generated from the active router's DSS public key. Each security administrator should
verbally verify that the serial number and fingerprint are the same on both screens. If the displayed
serial numbers and fingerprints match and the security administrators are in agreement that the
serial numbers and fingerprints are valid, the administrator of the passive router should agree to
accept the active router's DSS key by typing "yes" at the prompt. The passive router's security
administrator then sends the active router's security administrator its DSS public key by pressing
Return at the screen prompt and selecting a crypto engine at the next prompt. The passive router's
DSS serial number and fingerprint are then displayed on each of the security administrators'
screens. Each security administrator should verbally verify that the serial number and fingerprint are
the same on both screens. If the displayed serial numbers and fingerprints match, and the security
administrators are in agreement that the serial numbers and fingerprints are valid, the administrator
of the active router should agree to accept the passive router's DSS key by typing "yes" at the
prompt. At this point, both routers have been "verbally authenticated." This process can be seen in
Figure 5.4.
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Figure 5.4: Verbal authentication process.

Use the following command to enable 56−bit DES with 8−bit or 64−bit cipher feedback:

crypto cisco algorithm des <cfb−8 | cfb−64>

Or use this command to enable 40−bit DES with 8−bit or 64−bit cipher feedback to configure
the global encryption policy of the router:

crypto cisco algorithm 40−bit−des <cfb−8 | cfb−64>

The 56−bit DES option is the default.

5. 

Use one of the following commands to define an extended access list that will signify which
IP packets will be encrypted and which IP packets will not be encrypted:

access−list <access−list−number> <deny | permit><protocol>
 <source—source−wildcard><destination destination−
 wildcard><precedence − precedence>

When defined for encryption of traffic, access lists function differently than when they
function when they're used as a packet filter. Using a permit keyword will cause the selected
traffic that is passed between the specified source and destination addresses to be
encrypted/decrypted by peer routers. Using a deny keyword prevents that traffic from being
encrypted/decrypted by peer routers. The encryption access list you define at the local
router must have a "mirror−image" encryption access list defined at the remote router so that
traffic that is encrypted locally is decrypted at the remote peer.

6. 

Use this command to define a crypto map name:

crypto map <map−name> <seq−num> {cisco}

Use of this command moves you into the crypto map configuration mode.

7. 

Under crypto map configuration mode, use this command to define the remote peer with
which an encrypted session will take place:

set peer <key−name>

8. 
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Under crypto map configuration mode, use the following command to assign the previously
configured access list to the crypto map:

match address <access−list−id | name>

9. 

Under crypto map configuration mode, use the command to define the encryption algorithms
that the router can negotiate for the session:

set algorithm des <cfb−8 | cfb−64> command or −
 the set algorithm − 40−bit−des <cfb−8 | cfb−64>

Any encryption algorithms that have been previously defined at the global level can be
defined in the crypto map. If an encryption algorithm has not been defined at the global level,
it cannot be defined in the crypto map.

10. 

Use this command to move into interface configuration mode:

interface <interface type> <interface number>

11. 

In interface configuration mode, use this command to apply the previously configured crypto
map to an interface:

crypto map <map−name>

Only one crypto map set can be applied to each interface that will encrypt outbound data
and decrypt inbound data. This interface provides the encrypted connection to a peer
encrypting router.

12. 

Figure 5.5 illustrates the network topology and components of the fictitious company that will be
used throughout the configuration example of CET. This network displays two routers; Router A is
defined as the active router and Router B is defined as the passive router.

Figure 5.5: CET network topology.
One key step that should always be performed prior to the configuration of encryption on any
network device is to ensure that the network functions properly; this means that basic connectivity
between peer routers has been tested and is functioning before encryption is configured on the
routers. The ping command can be used to test basic connectivity between encrypting peer routers.
Also, although a successful ping will verify basic connectivity between peers, you should ensure that
the network operates with other protocols or ports you want to encrypt before beginning the CET
configuration. After CET is configured and activated, basic troubleshooting can become difficult to
perform because the security configuration could mask a more fundamental network problem.
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Note This configuration example in this chapter will not follow the same structure as examples in
other chapters have followed. In this example, I will present the beginning configuration of the
routers involved, then walk you through each step of configuring Cisco Encryption
Technology, and finally, present to you the final completed configuration.

To verify that Router A and Router B in Figure 5.5 function properly prior to configuring CET on the
routers, Listing 5.1 and Listing 5.2 display the basic configurations of the routers. Listing 5.3 and
Listing 5.4 verify that basic connectivity between each peer functions properly without encryption
configured. This will allow the routers to be baselined prior to the CET configuration.

Listing 5.1: Initial configuration of Router A.

version 12.1
service timestamps debug uptime
service timestamps log uptime
no service password−encryption
!
hostname Router−A
!
username routera privilege 15 password 0 routera
!
memory−size iomem 10
ip subnet−zero
no ip finger
ip tcp synwait−time 10
no ip domain−lookup
!
interface Ethernet1/1
ip address 192.168.10.1 255.255.255.0
no ip directed−broadcast
duplex auto
speed auto
!
interface Serial0/0
ip address 192.168.12.1 255.255.255.0
no ip directed−broadcast
no fair−queue
!
ip classless
no ip http server
!
ip route 0.0.0.0 0.0.0.0 serial0/0
!
line con 0
 session−timeout 30
 exec−timeout 30 0
 login local
 transport input none
line aux 0
line vty 0 4
session−timeout 30
 exec−timeout 30 0
 login local
!
end

Listing 5.2: Initial configuration of Router B.
version 12.1
service timestamps debug uptime
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service timestamps log uptime
no service password−encryption
!
hostname Router−B
!
username routerb privilege 15 password 0 routerb
!
memory−size iomem 10
ip subnet−zero
no ip finger
ip tcp synwait−time 10
no ip domain−lookup
!
interface Ethernet0/1
ip address 192.168.11.1 255.255.255.0
no ip directed−broadcast
duplex auto
>speed auto
!
interface Serial0/0
ip address 192.168.12.2 255.255.255.0
no ip directed−broadcast
no fair−queue!
ip classless
no ip http server
!
ip route 0.0.0.0 0.0.0.0 serial0/0
!
line con
0
 session−timeout 30
 exec−timeout 30 0
 login local
 transport input none
line aux 0
line vty 0 4
session−timeout 30
 exec−timeout 30 0
 login local
!
end

Both routers in Listing 5.1 and Listing 5.2 provide access to the Internet and act as the single entry
and exit point from the local network to the outside world, which is why they each have a static
default route pointing out their serial interface. Prior to configuring CET on your routers, you must
ensure that each router that needs to perform encryption can communicate with each peer. For CET
to function properly and for encryption to take place, Layer 3 communication must be established
between each peer. In Listing 5.3 and Listing 5.4, the ping command will be used to verify Layer 3
connectivity between Router A and Router B.

Listing 5.3: Layer 3 connectivity verified on Router A.

Router−A#ping 192.168.12.2

Type escape sequence to abort.
Sending 5, 100−byte ICMP Echos to 192.168.12.2, timeout −
 is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round−trip −
 min/avg/max = 1/2/4 ms
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Router−A#

Listing 5.4: Layer 3 communication verified on Router B.
Router−B#ping 192.168.12.1

Type escape sequence to abort.
Sending 5, 100−byte ICMP Echos to 192.168.12.1, timeout −
 is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round−trip −
 min/avg/max = 1/2/4 ms

Router−B#

The output in Listing 5.3 and Listing 5.4 confirms that communication between each peer is working
properly because each peer can ping the serial interface of the other router.

The first task that must be performed to configure CET is to generate each peer router's public and
private key and save them to NVRAM.

Listing 5.5 displays an example of generating Router A's public and private keys. Listing 5.6
displays an example of generating Router B's public and private keys.

Listing 5.5: Generating Router A's key.

Router−A(config)#crypto key generate dss routera
Generating DSS keys ....
 [OK]

Listing 5.6: Generating Router B's key.
Router−B(config)#crypto key generat dss routerb
Generating DSS keys ....
 [OK]

After each router's key pair is generated, the keys need to be saved into a private portion of NVRAM
on the routers. To save the each router's key to NVRAM on the routers, the copy running−config
startup−config command is used. Listing 5.7, shows Router A saving its private key to NVRAM.
Listing 5.8 shows Router B saving its private key to NVRAM.

Listing 5.7: Router A saving private key to NVRAM.

Router−A#copy running−config startup−config
Destination filename [startup−config]?
Building configuration...
[OK]
Router−A#

Listing 5.8: Router B saving private key to NVRAM.
Router−B#copy running−config startup−config
Destination filename [startup−config]?
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Building configuration...
[OK]
Router−B#

As mentioned previously, the command used in Listing 5.5 and Listing 5.6 generate a public key
and a private key. The private keys that generated on each router are saved into NVRAM and are
inaccessible for viewing because if anyone were to gain access to the private key, she could
masquerade as the owner of the private key and all data secured using the private key could be
compromised. Cisco routers have been designed so that the private keys that are generated and
saved to NVRAM cannot be accessed or tampered with. The public key can be viewed, however,
because it is shared with its encryption peers. To view the public keys that were generated as a
result of issuing the crypto key generate dss command, issue the show crypto key mypubkey
dss command. Listing 5.9 shows an example of issuing the show crypto key mypubkey dss
command on Router A. Listing 5.10 displays an example of issuing the show crypto key
mypubkey dss command on Router B.

Listing 5.9: Viewing Router A's public key.

Router−A#show crypto key mypubkey dss
Key name: routera
 Serial number: 6B86ECF4
 Usage: Signature Key
 Key Data:
  CC0438CE 125C2C5E DAE47A2C B47B44EE 4737C1D9 9FDF3164
  69CAACA7 82D25416 8CA218AC 644BE782 36966277 BBF437DF
  1347FFAA F2E3C04E 94CE60E5 5485C539
Router−A#

Listing 5.10: Viewing Router B's public key.
Router−B#sh crypto key mypubkey dss
Key name: routerb
 Serial number: 0615EC60
 Usage: Signature Key
 Key Data:
  4B013A5D DB942F8F 556B6F67 13110723 A05F17F9 D7BA15BF
  74B1C17B D2E5C4A5 ABC0A7DE D1188289 A54C80EC 5BB3B9AE
  F4366FB1 D5DBB125 C44F904A 62209467
Router−B#

Now each router must exchange its public keys. According to Figure 5.5, Router B has been
determined to be the passive router and Router A has been determined to be the active router.
Router B must now be configured to initiate a key exchange connection; to do so, use the crypto
key exchange dss passive command. Listing 5.11 displays an example of configuring Router B to
be passive.

Listing 5.11: Router B enabling DSS key exchange.

Router−B(config)#crypto key exchange dss passive
Enter escape character to abort if connection does not complete.
Wait for connection from peer[confirm]
Waiting ....
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Router B is now waiting for a connection from the active router, Router A. In order for the public
keys to be exchanged, Router A must now be configured to initiate a key exchange connection; this
is done by using the cypto key exchange dss command. Listing 5.12 displays an example of
configuring Router A to be active and send its public DSS keys to Router B.

Listing 5.12: Router A enabling DSS key exchange.

Router−A(config)#crypto key exchange dss 192.168.12.2 routera
Public key for routera:
   Serial Number 6B86ECF4
   Fingerprint 6974 475B 3FB7 F64B B40A

Wait for peer to send a key[confirm]
Waiting ....

In Listing 5.12, Router A defines the IP address of Router B as the peer with which it would like to
exchange public keys. After configuring the crypto key exchange dss command, Router A
displays the public key that it intends to send to Router B and sends its public key to Router B.
Notice that after sending its public key to Router B, Router A transitions to a state of waiting. It is
now waiting for a public key in return from Router B. When Router B receives the key, it displays the
output in Listing 5.13.

Listing 5.13: Router B asking to accept Router A's public key.

Public key for routera:
   Serial Number 6B86ECF4
   Fingerprint 6974 475B 3FB7 F64B B40A

Add this public key to the configuration? [yes/no]: yes

The public key that Router B receives from Router A in Listing 5.13 includes the serial number for
the key and the fingerprint of the key. The serial number and the fingerprint of the key Router B
receives should be verbally compared against the key that Router A generated and displayed in
Listing 5.5 and 5.9 and displayed in Listing 5.12 as the key that it was to send to Router B. Router B
at this point must send Router A its public key, and Router B prompts you to send Router A its
public key. In the next line of code (following the last line in Listing 5.13), Router B asks to send to
Router A its public key. This can be seen in Listing 5.14

Listing 5.14: Router B asks to send Router A its public key.

Send peer a key in return[confirm]
Which one?

routerb? [yes]:
Public key for routerb:
   Serial Number 0615EC60
   Fingerprint 9C98 0488 7058 AF43 D4FC

Router B now sends Router A it public key. Router A should receive the key and prompt you to
accept it. This can be seen in Listing 5.15.

Listing 5.15: Router A receives Router B's public key.
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Public key for routerb:
   Serial Number 0615EC60
   Fingerprint 9C98 0488 7058 AF43 D4FC

Add this public key to the configuration? [yes/no]: yes

The public key that Router A receives from Router B in Listing 5.15 includes the serial number for
the key and the fingerprint of the key. The serial number and the fingerprint of the key Router A
receives should be verbally compared against the key that Router B generated and displayed in
Listings 5.6 and 5.10 and displayed in Listing 5.14 as the key that it was to send to Router B.

At this point, the key exchange process is complete. To view the key that each peer receives, issue
the show crypto key pubkey−chain dss command. Listing 5.16 displays an example of viewing
Router B's public key from Router A. Compare the output of Listing 5.16 on Router A with the output
of Listing 5.10 on Router B. The value of the serial number and data fields should be equal.

Listing 5.16: Router A viewing Router B's public key.

Router−A#sh crypto key pubkey−chain dss serial 0615EC60
Key name:
 Serial number: 0615EC60
 Usage: Signature Key
 Source: Manually entered
 Data:
  4B013A5D DB942F8F 556B6F67 13110723 A05F17F9 D7BA15BF
  74B1C17B D2E5C4A5 ABC0A7DE D1188289 A54C80EC 5BB3B9AE
  F4366FB1 D5DBB125 C44F904A 62209467
Router−A#

Listing 5.17 displays an example of viewing Router A's public key from Router B. Compare the
output of Listing 5.17 on Router B with the output of Listing 5.9 on Router A. The value of the serial
number and data fields should be equal.

Listing 5.17: Router B viewing Router A's public key.

Router−B#sh crypto key pubkey−chain dss serial 6B86ECF4
Key name:
 Serial number: 6B86ECF4
 Usage: Signature Key
 Source: Manually entered
 Data:
  CC0438CE 125C2C5E DAE47A2C B47B44EE 4737C1D9 9FDF3164
  69CAACA7 82D25416 8CA218AC 644BE782 36966277 BBF437DF
  1347FFAA F2E3C04E 94CE60E5 5485C539
Router−B#

To summarize what has happened up to this point, each router has generated a public and a private
key and successfully exchanged its public key with its encrypting peer router. Listing 5.18 displays a
partial output of Router A's configuration after generating and exchanging keys. Listing 5.19
displays a partial output of Router B's configuration after generating and exchanging keys.

Listing 5.18: Router A's configuration after exchanging keys.
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Building configuration...
!
version 12.1
service timestamps debug uptime
service timestamps log uptime
no service password−encryption
!
hostname Router−A
!
username routera privilege 15 password 0 routera
!
memory−size iomem 10
ip subnet−zero
no ip finger
ip tcp synwait−time 10
no ip domain−lookup
!
crypto key pubkey−chain dss
 named−key routerb signature
  serial−number 0615EC60
  key−string
   4B013A5D DB942F8F 556B6F67 13110723 A05F17F9 D7BA15BF −
    74B1C17B D2E5C4A5
   ABC0A7DE D1188289 A54C80EC 5BB3B9AE −
    F4366FB1 D5DBB125 C44F904A 62209467
  quit
!

Listing 5.19: Router B's configuration after exchanging keys.
Building configuration...
!
version 12.1
service timestamps debug uptime
service timestamps log uptime
no service password−encryption
!
hostname Router−B
!
username routerb privilege 15 password 0 routerb
!
memory−size iomem 10
ip subnet−zero
no ip finger
ip tcp synwait−time 10
no ip domain−lookup
!
crypto key pubkey−chain dss
 named−key routera signature
  serial−number 6B86ECF4
  key−string
   CC0438CE 125C2C5E DAE47A2C B47B44EE 4737C1D9 9FDF3164 69CAACA7
−
    82D25416
   8CA218AC 644BE782 36966277 BBF437DF 1347FFAA F2E3C04E 94CE60E5
−
    5485C539
  quit
!
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Now that each router has generated a private and a public key pair and exchanged its public key
with its peer router, the next step is to configure and enable a global encryption algorithm for use in
encrypting traffic between each peer. Cisco Encryption Technology makes use of the DES algorithm
for encrypted communication between peers. All encryption algorithms that your router will use
during an encrypted session must be enabled globally on the router. To have an encrypted session,
each peer router must have at least one DES algorithm enabled that is the same as the algorithm
used by the peer router. Cisco routers support the following four types of DES encryption
algorithms:

56−bit DES with 8−bit cipher feedback• 
56−bit DES with 64−bit cipher feedback• 
40−bit DES with 8−bit cipher feedback• 
40−bit DES with 64−bit cipher feedback• 

Listing 5.20 displays an example of configuring a global encryption policy on Router A, and Listing
5.21 displays an example of configuring a global encryption policy on Router B.

Listing 5.20: Configuring a global encryption policy on Router A.

Router−A#config t
Router−A(config)#crypto cisco algorithm des cfb−8
Router−A(config)#crypto cisco algorithm des cfb−64
Router−A(config)#crypto cisco algorithm 40−bit−des cfb−64
Router−A(config)#end

Listing 5.21: Configuring a global encryption policy on Router B.
Router−B#config t
Router−B(config)#crypto cisco algorithm des cfb−64
Router−B(config)#crypto cisco algorithm des cfb−8
Router−B(config)#crypto cisco algorithm 40−bit−des cfb−8
Router−B(config)#end

Notice in the configurations in Listing 5.20 and Listing 5.21 that each router encryption policy is
configured to use the 56−bit DES algorithm with both cipher feedback 64 and 8. However, the third
encryption policy on each router is configured differently. Router A is configured to use the 40−bit
DES encryption algorithm using cipher feedback 64, and Router B is configured to use the 40−bit
DES encryption algorithm using cipher feedback 8. Because the third encryption policy on each
router is different, it will not be used to provide encryption services between each of these peer
routers; however, it could be used with another router that has a similar encryption policy.

To display and verify the global encryption algorithms currently in use on each router, issue the
show crypto cisco algorithms command. Listing 5.22 displays an example of issuing the show
crypto cisco algorithms command on Router A, and Listing 5.23 displays an example of issuing
the same command on Router B.

Listing 5.22: Viewing encryption algorithms in use on Router A.

Router−A#show crypto cisco algorithms
  des cfb−64
  des cfb−8
  40−bit−des cfb−64

Router−A#
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Listing 5.23: Viewing encryption algorithms in use on Router B.
Router−B#show crypto cisco algorithms
  des cfb−64
  des cfb−8
  40−bit−des cfb−8

Router−B#

The next task to configuring Cisco Encryption Technology is to configure access lists to define
which packets are to be protected by encryption and which packets should not be. Access lists that
are used for encryption function a little differently than normal access lists used for packet filtering.
When an access list is defined for encryption and the rule specifies a permit statement, if a packet
matches the permit rule, the router performs encryption on the packet. If a packet matches a deny
statement within an access list, the packet is not encrypted and is forwarded as normal via the
routing process. IP extended access lists are used to define which packets are encrypted. Listing
5.24 displays an example of configuring Router A to provide encryption on packets with a source
address within the range of 192.168.10.0 and a destination address of 192.168.11.0. Listing 5.25
displays an example of configuring Router B to provide encryption on packets with a source address
within the range of 192.168.11.0 and a destination address of 192.168.10.0. It is recommended that
each encrypting peer router maintain mirror copies of each other's access lists.

Listing 5.24: Encryption access list configuration on Router A.

Router−A#config t
access−list 100 permit ip 192.168.10.0 0.0.0.255 −
 192.168.11.0 0.0.0.255
access−list 100 permit icmp 192.168.10.0 0.0.0.255 −
 192.168.11.0 0.0.0.255
access−list 100 deny ip 192.168.10.0 0.0.0.255 any
!

Listing 5.25: Encryption access list configuration on Router B.
Router−B#config t
access−list 100 permit ip 192.168.11.0 0.0.0.255 −
 192.168.10.0 0.0.0.255
access−list 100 permit icmp 192.168.11.0 0.0.0.255 −
 192.168.10.0 0.0.0.255
access−list 100 deny ip 192.168.11.0 0.0.0.255 any
!

The configurations in Listing 5.24 and Listing 5.25 define on each router an access list in which the
rules state that any IP or ICMP traffic between the router with a source address local to the router
and a destination address of behind the peer encrypting router should be protected by encryption.
The third match rule of each access list is a deny statement, and it can be interpreted as any packet
with a source address local to the router that as a destination address of any address, does not
provide encryption for the packet and forward the packet as usual. At first, the access list rules
might not seem correct because a packet with a source address local to the router and with any
destination could be a packet that is local to the router with a destination address that is local to the
peer encrypting router. However, access list rules are read in sequential order by the router, and
once a packet matches a rule within the access list, the router breaks out of the access list
comparison. A packet that matches one of the first two configured rules on Router A or Router B will
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never be compared against the third rule of the access list and will always be encrypted.

To display the access list configuration of each router, issue the show access−list command. The
result of issuing the show access−lists command on Router can be seen in Listing 5.26, and in
Listing 5.27 shows the result of issuing it on Router B.

Listing 5.26: Access list configuration of Router A.

Router−A#show access−lists
Extended IP access list 100
    permit ip 192.168.10.0 0.0.0.255 192.168.11.0 0.0.0.255
    permit icmp 192.168.10.0 0.0.0.255 192.168.11.0 0.0.0.255
    deny ip 192.168.10.0 0.0.0.255 any
Router−A#

Listing 5.27: Access list configuration of Router B.
Router−B#show access−lists
Extended IP access list 101
    permit ip 192.168.11.0 0.0.0.255 192.168.10.0 0.0.0.255
    permit icmp 192.168.11.0 0.0.0.255 192.168.10.0 0.0.0.255
    deny ip 192.168.11.0 0.0.0.255 any
Router−B#

The next major step in the configuration of Cisco Encryption Technology is to define crypto maps on
each router. Crypto maps define a control policy for Cisco Encryption Technology by linking the
traffic selection criteria of the access lists, defines the peer routers and defines the DES algorithm to
use. To define a crypto map on Router A and Router B, you must use the crypto map command
and define a name and a sequence number. After the crypto map is defined, the Cisco IOS
command parser will move you into crypto map configuration mode. In crypto map configuration
mode, you will need to define the peer router that encryption is to take place between, define the
access list that will be used for determining which packets are to be encrypted, and define the
encryption algorithm to use.

Listing 5.28 shows an example of defining a crypto map and the parameters of the crypto map on
Router A, and Listing 5.29 shows an example for Router B.

Listing 5.28: Crypto map configuration of Router A.

Router−A#config t
Router−A(config)#crypto map routeramap 10 cisco
% NOTE: This new crypto map will remain disabled until a peer
        and a valid access list have been configured.
Router−A(config−crypto−map)#set peer routerb
Router−A(config−crypto−map)#match address 100
Router−A(config−crypto−map)#set algorithm des
Router−A(config−crypto−map)#end
Router−A#

Listing 5.29: Crypto map configuration of Router B.
Router−B#config t
Router−B(config)#crypto map routerbmap 10 cisco
% NOTE: This new crypto map will remain disabled until a peer
        and a valid access list have been configured.
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Router−B(config−crypto−map)#set peer routera
Router−B(config−crypto−map)#match address 101
Router−B(config−crypto−map)#set algorithm des
Router−B(config−crypto−map)#end
Router−B#

After configuring each router's crypto map, use the show crypto map command to view the
parameters of the crypto map. Verifying the crypto map configuration on each router is crucial to the
operation of encryption because no encryption session can be established between peer routers if
the encryption policy that is configured on each router is different from the other peer. Listing 5.30
displays the output of issuing the show crypto map command on Router A. Listing 5.31 shows the
output on Router B.

Listing 5.30: Viewing the crypto map configuration of Router A.

Router−A#sh crypto map
Crypto Map "routeramap" 10 cisco
 Peer = routerb
 PE = 192.168.10.0
 UPE = 192.168.11.0
 Extended IP access list 100
 access−list 100 permit ip 192.168.10.0 0.0.0.255 −
  192.168.11.0 0.0.0.255
 access−list 100 permit icmp 192.168.10.0 0.0.0.255 −
  192.168.11.0 0.0.0.255
 access−list 100 deny ip 192.168.10.0 0.0.0.255 any
 Connection Id = UNSET (0 established, 0 failed)
 Interfaces using crypto map routeramap:
Router−A#

Listing 5.31: Viewing the crypto map configuration of Router B.
Router−B#sh crypto map
Crypto Map "routerbmap" 10 cisco
 Peer = routera
 PE = 192.168.11.0
 UPE = 192.168.10.0
 Extended IP access list 101
 access−list 101 permit ip 192.168.11.0 0.0.0.255 −
  192.168.10.0 0.0.0.255
 access−list 101 permit icmp 192.168.11.0 0.0.0.255 −
  192.168.10.0 0.0.0.255
 access−list 101 deny ip 192.168.11.0 0.0.0.255 any
 Connection Id = UNSET (0 established, 0 failed)
 Interfaces using crypto map routerbmap:

Router−B#

After configuring the crypto map and verifying that the parameters of the crypto map are correct
between each peer, the final step in the configuration of Cisco Encryption Technology is to apply the
crypto map to an encryption−terminating interface. To do so, use the crypto map command in
interface configuration mode. Only one crypto map set can be applied to an interface. If multiple
crypto map entries have the same crypto map name but have different sequence numbers, they are
considered part of the same crypto set and each one is sequentially assigned to the interface.
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Listing 5.32 displays an example of applying the defined crypto map on Router A to its serial
interface. Listing 5.33 displays an example of applying the defined crypto map on Router B to its
serial interface.

Listing 5.32: Applying the crypto map to Router A.

Router−A#config t
Enter configuration commands, one per line. End with CNTL/Z.
Router−A(config)#int serial0/0
Router−A(config−if)#crypto map routeramap
Router−A(config−if)#end
Router−A#

Listing 5.33: Applying the crypto map to Router B.
Router−B#config t
Enter configuration commands, one per line. End with CNTL/Z.
Router−B(config)#int serial0/0
Router−B(config−if)#crypto map routerbmap
Router−B(config−if)#end
Router−B#

To test the configurations of Router A and Router B, an extended ping will be used on Router A to
ping local Ethernet interface of Router B. An extended ping is used so that the source address of
the IP packet can be specified. In this case the source of the packet will be Router A's local Ethernet
interface. Although the ping command is running, the debug crypto sessmgmt command is
issued to display the connection setup messages. Listing 5.34 displays the output of the ping
command.

Listing 5.34: The ping command issued on Router A.

Router−A#debug crypto sessmgmt
Crypto Session Management debugging is on
Router−A#
Router−A#ping ip
Target IP address: 192.168.11.1
Repeat count [5]: 30
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]: y
Source address or interface: 192.168.10.1
Type of service [0]:
Set DF bit in IP header? [no]:
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 30, 100−byte ICMP Echos to 192.168.11.1, timeout is 2 −
 seconds:

After the ping has started, the output listed in Listing 5.35 is displayed on the console of Router A.

Listing 5.35: DEBUG output from the ping command on Router A.
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CRYPTO−SDU: get_pet: PET node created
CRYPTO−SDU:Adding new CIB for ACL: 100
CRYPTO−SDU: get_cot: New COT node allocated
CRYPTO: Pending connection = −1
CRYPTO: Dequeued a message: Inititate_Connection
CRYPTO: Allocated conn_id 1 slot 0, swidb 0x0,
CRYPTO: Next connection id = 1
CRYPTO: DH gen phase 1 status for conn_id 1 slot 0:OK
CRYPTO: Sign done. Status=OK
CRYPTO_SM: sending CET message to FastEthernet0/0:192.168.11.1
CRYPTO: ICMP message sent: s=192.168.10.1, d=192.168.11.1
CRYPTO−SDU: send_nnc_req: NNC Echo Request sent
CRYPTO: Sign done. Status=OK
CRYPTO: Retransmitting a connection message
CRYPTO: ICMP message sent: s=192.168.10.1, d=192.168.11.1
CRYPTO: Dequeued a message: CRM
CRYPTO: CRM from 192.168.10.0 to 192.168.11.0
CRYPTO: Peer has serial number: 0615EC60
CRYPTO: DH gen phase 2 status for conn_id 1 slot 0:OK
CRYPTO: Syndrome gen status for conn_id 1 slot 0:OK
CRYPTO: Verify done. Status=OK
CRYPTO: Sign done. Status=OK
CRYPTO: ICMP message sent: s=192.168.12.1, d=192.168.12.2
CRYPTO−SDU: recv_nnc_rpy: NNC Echo Confirm sent.
CRYPTO: Create encryption key for conn_id 1 slot 0:OK
CRYPTO: Replacing −1 in crypto maps with 1 (slot 0)
CRYPTO:old_conn_id=−1, new_conn_id=1, orig_conn_id=1
CRYPTO: Crypto Engine clear dh conn_id 1 slot 0: OK

Notice the final highlighted line in the output of Listing 5.35. This line states that the encryption keys
are being created because each of the other highlighted lines returned a status message of OK.

At this point, the status of the connections can be viewed on Router A by using the commands
show crypto cisco connections and show crypto engine connections active. Listing 5.36
displays the output of the show commands.

Listing 5.36: Output of show commands on Router A.

Router−A#show crypto engine connections active
ID Interface  IP−Address    State Algorithm     Encrypt Decrypt
1 Serial0/0   192.168.12.1   set  DES_56_CFB64    358     312
!
Router−A#show crypto cisco connections
Connection Table
PE           UPE         Conn_id New_id Algorithm
192.168.10.0 192.168.11.0 1   0       DES_56_CFB64
flags: TIME_KEYS ACL: 100

Router−A#

The show crypto engine connections active command is used to view the current active
encrypted session connections for all crypto engines. The ID field identifies a connection by using a
connection ID value, which is 1 in Listing 5.36. The interface field identifies the interface involved in
the encrypted session connection, and the IP address field identifies the IP address of the interface.
The state field is the most important field in the output of the show crypto engine connections
active command in Listing 5.36; it specifies the current state of the connection, and a set state
indicates an established session. The algorithm field indicates the DES algorithm that is used to
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encrypt and decrypt packets. The final two fields display the number of packets that have been
encrypted and decrypted by connection ID number 1.

The show crypto cisco connections command displays the connection ID value that is assigned
by the Cisco IOS when a new connection is initiated. In Listing 5.36, the connection ID is 1. The PE
field represents a protected entity and displays a source IP address as specified in the crypto map's
encryption access list, which is access list 100. The UPE field represents an unprotected entity and
displays a destination IP address as specified in the crypto map's encryption access list, which
again is access list 100. The flag field can display one of five different status messages. Table 5.1
includes each of the flag messages and provides a description of each.

Table 5.1: Flag field messages.

Flag Explanation

PEND_CONN Indicates a pending connection

XCHG_KEYS Indicates that a connection has timed out and the router must first
exchange Diffie−Hellman numbers and generate a new session (DES) key
before encrypted communication can take place again

TIME_KEYS Indicates a session that is in progress and is counting down to key timeout

BAD_CONN Indicates that no existing or pending connection exists for this entry

UNK_STATUS Indicates an error condition

Because the flag field in Listing 5.36 displays TIME_KEYS, you can assume that the session is
established. The ACL field in Listing 5.36 indicates that the session is using access list 100 for the
duration of the connection in order to determine what should and should not be encrypted. The final
configurations for Router A and Router B can be seen by issuing the show running−config
command; they are displayed in Listings 5.37 and Listing 5.38.

Listing 5.37: Final CET configuration of Router A.

Router−A#show running−config
Building configuration...
!
version 12.1
service timestamps debug uptime
service timestamps log uptime
no service password−encryption
!
hostname Router−A
!
username routera privilege 15 password 0 routera
!
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memory−size iomem 10
ip subnet−zero
no ip finger
ip tcp synwait−time 10
no ip domain−lookup
!
!
crypto cisco algorithm des
crypto cisco algorithm des cfb−8
crypto cisco algorithm 40−bit−des
!
!
crypto key pubkey−chain dss
 named−key routerb signature
 serial−number 0615EC60
 key−string
 4B013A5D DB942F8F 556B6F67 13110723 A05F17F9 D7BA15BF −
  74B1C17B D2E5C4A5 ABC0A7DE D1188289 A54C80EC 5BB3B9AE −
  F4366FB1 D5DBB125 C44F904A 62209467
 quit
!
 crypto map routeramap 10 cisco
 set peer routerb
 set algorithm des
 match address 100
!
interface Ethernet1/1
 ip address 192.168.10.1 255.255.255.0
 no ip directed−broadcast
!
interface Serial0/0
 ip address 192.168.12.1 255.255.255.0
 crypto map routeramap
!
ip classless
ip route 0.0.0.0 0.0.0.0 Serial0/0
no ip http server
!
access−list 100 permit ip 192.168.10.0 0.0.0.255 −
 192.168.11.0 0.0.0.255
access−list 100 permit icmp 192.168.10.0 0.0.0.255 −
 192.168.11.0 0.0.0.255
access−list 100 deny ip 192.168.10.0 0.0.0.255 any
!
line con 0
 session−timeout 30
 exec−timeout 30 0
 login local
 transport input none
 line aux 0
 line vty 0 4
 session−timeout 30
 exec−timeout 30 0
 login local
!
no scheduler allocate
end

Listing 5.38: Final CET configuration of Router B.
Router−B#show running−config
Building configuration...
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!
version 12.1
service timestamps debug uptime
service timestamps log uptime
no service password−encryption
!
hostname Router−B
!
username routerb privilege 15 password 0 routerb
!
memory−size iomem 10
ip subnet−zero
no ip finger
ip tcp synwait−time 10
no ip domain−lookup
!
crypto cisco algorithm des
crypto cisco algorithm des cfb−8
crypto cisco algorithm 40−bit−des cfb−8
!
!
crypto key pubkey−chain dss
 named−key routera signature
 serial−number 6B86ECF4
 key−string
 CC0438CE 125C2C5E DAE47A2C B47B44EE 4737C1D9 9FDF3164 −
  69CAACA7 82D25416 8CA218AC 644BE782 36966277 BBF437DF −
  1347FFAA F2E3C04E 94CE60E5 5485C539
quit
!
!
crypto map routerbmap 10 cisco
set peer routera
set algorithm des
match address 101 !
!
!
!
!
!
interface Ethernet0/1
 ip address 192.168.11.1 255.255.255.0
no ip directed−broadcast
!
interface Serial0/0
 ip address 192.168.12.2 255.255.255.0
 crypto map routerbmap
!
ip classless
ip route 0.0.0.0 0.0.0.0 Serial0/0
no ip http server
!
access−list 101 permit ip 192.168.11.0 0.0.0.255 −
 192.168.10.0 0.0.0.255
access−list 101 permit icmp 192.168.11.0 0.0.0.255 −
 192.168.10.0 0.0.0.255
access−list 101 deny ip 192.168.11.0 0.0.0.255 any
!
!
line con 0
 session−timeout 30
 exec−timeout 30 0
 login local
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 transport input none
line aux 0
line vty 0 4
 session−timeout 30
 exec−timeout 30 0
 login local
!
end
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Chapter 6: Internet Protocol Security

In Brief

Internet Protocol Security (IPSec) is a framework of open standards for ensuring secure private
communications over IP networks. Based on standards developed by the Internet Engineering Task
Force (IETF), IPSec ensures confidentiality, integrity, and authenticity of data communications
across a public IP network. IPSec provides a necessary component for a standards−based, flexible
solution for deploying a networkwide security policy.

The IPSec initiative proposed to offer a standard way of establishing authentication and encryption
services between end points. This means not only standard algorithms and transforms, but also
standard key negotiation and management mechanisms to promote interoperability between
devices by allowing for the negotiation of services between them.

IPSec provides Network layer encryption, and the standards provide several new packet formats.
Authentication Header (AH) provides data integrity, and Encapsulating Security Payload (ESP)
provides data integrity and confidentiality. The Diffie−Hellman protocol is used to create a shared
secret key between two IPSec peers, and Internet Key Exchange (IKE), based on Internet Security
Association Key Management Protocol (ISAKMP)/Oakley, is the protocol used to manage the
generation and handling of keys. It is also the protocol by which potential peer devices form security
associations.

A security association (SA) is a negotiated policy or agreed−upon way of handling the data that will
be exchanged between two peer devices; the transform used to encrypt data is an example of a
policy item. The active SA parameters are stored in the Security Association Database (SAD).

SAs for both IKE and IPSec are negotiated by IKE over various phases and modes. During Phase
1, IKE negotiates IPSec security associations. Two modes can be used for Phase 1:

Main mode, which is used the majority of the time.• 
Aggressive mode, which is used under rare circumstances.• 

The user cannot control which mode is chosen because the router automatically chooses a mode.
The mode chosen depends on the configuration parameters used between each peer.

During Phase 2, IKE negotiates IPSec security associations. The only Phase 2 exchange is quick
mode:

Phase 1—During Phase 1, IKE negotiates IPSec security associations. Two modes can be
used for Phase 1:

Main mode, which is used the majority of the time.1. 
Aggressive mode, which is used under rare circumstances.2. 

The user cannot control which mode is chosen, because the router automatically chooses a
mode. The mode chosen depends on the configuration parameters used between each
peer:

• 

Phase 2—During Phase 2, IKE negotiates IPSec security associations and the only Phase 2
exchange is quick mode.

• 

IPSec SAs terminate through deletion or by timing out. When the SAs terminate, the keys are also
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discarded. When subsequent IPSec SAs are needed for a flow, IKE performs a new Phase 2 and, if
necessary, a new Phase 1 negotiation. A successful negotiation results in new SAs and new keys.
New SAs can be established before the existing SAs expire so that a given flow can continue
uninterrupted.

Security associations are unidirectional, meaning that for each pair of communicating systems there
are at least two security connections. The security association is uniquely identified by a randomly
chosen unique number called the security parameter index (SPI) and the destination IP address of
the IPSec peer. When a system sends a packet that requires IPSec protection, it looks up the
security association in its database, applies the specified processing, and then inserts the SPI from
the security association into the IPSec header. When the IPSec peer receives the packet, it looks
up the security association in its database by destination address and SPI and then processes the
packet as required. In summary, the security association is simply a statement of the negotiated
security policy between two devices.

IPSec Packet Types

IPSec defines a set of headers that are added to IP packets. These new headers are placed after
the IP header and before the Layer 4 protocol. They provide information for securing the payload of
the IP packet. The security services are provided by the Authentication Header (AH) and the
Encapsulating Security Payload (ESP) protocols. AH and ESP can be used independently or
together, although for most applications, just one of them is sufficient. For both of these protocols,
IPSec does not define the specific security algorithms to use; instead it provides an open framework
for implementing industry−standard algorithms.

Authentication Header

Authentication Header (AH), described in RFC 2402, ensures the integrity and authenticity of the
data, including the invariant fields in the outer IP header. It does not provide confidentiality
protection, meaning it does not provide encryption. When an AH mode header is added to an IP
packet, it provides authentication for as much of the IP header as possible, as well as for all the
upper−layer protocols of an IP packet. However, some of the IP header fields may change in transit,
and the value of these fields, when the packet arrives at the receiver, may not be predictable by the
sender. These fields are known as mutable fields, and their values cannot be protected by AH.
Predictable fields are also known as immutable fields.

AH provides authentication and integrity to packets by performing an integrity check, which is a
keyed hash using a shared secret value that creates a message digest, when used together they
are known as the integrity check value (ICV). The ICV is computed on the following:

IP header fields that are either immutable in transit or predictable in value upon arrival at the
end point for the Authentication Header security association.

• 

The Authenticated Header, payload length, reserved fields, SPI, sequence number,
authentication data, and padding bytes.

• 

The upper−layer protocol data.• 

The result of the integrity check value helps the remote peer to determine if the packet has changed
in transit. Upon receipt of the packet, the remote peer performs the same integrity check on the
packet and compares the integrity check value that it has computed against the value of the integrity
check value that the sender provided. The following are immutable fields and are included in the
Authentication Header integrity check value computation:
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Version• 
Internet header length• 
Total length• 
Identification• 
Protocol• 
Source address• 
Destination address• 

AH cannot include in the integrity check any mutable field of the packet that might be modified by
other routers within the transmission path of the packet from the source to the destination. The
following are mutable fields and are not included in the computation of the AH ICV:

Type of Service (ToS)• 
Flags• 
Fragment offset• 

Encapsulating Security Payload

Encapsulating Security Payload (ESP), described in RFC 2406, ensures the confidentiality, integrity,
and optional authenticity of the data, yet ESP does not use the invariant fields in the IP header to
validate data integrity. ESP has an optional field used for authentication. It contains an ICV that is
computed over the remaining part of the ESP, minus the authentication field. The length of the
optional field varies depending on the authentication algorithm that is chosen. If authentication is not
chosen, the ICV is omitted. Authentication is always calculated after the encryption is done.

ESP performs encryption at the IP packet layer. It supports a variety of symmetric encryption
algorithms. The default algorithm for IPSec is the 56−bit Data Encryption Standard using the cipher
block chaining mode transform (DES−CBC). This cipher must be implemented to guarantee
interoperability with other IPSec products.

The services that are provided by ESP depend on the options that are configured during the IPSec
implementation and after an IPSec SA is established.

IPSec Modes of Operation

The format of the AH and ESP headers and the values contained within each packet vary according
to the mode in which each is used. IPSec operates in either tunnel or transport mode.

Transport Mode

Transport mode is used when both peers are hosts. It may also be used when one peer is a host
and the other is a gateway if that gateway is acting as a host. Transport mode has an advantage of
adding only a few bytes to the header of each packet. When transport mode is used, the original
header is not protected. This setup allows the true source and destination addresses to be viewed
by intermediate devices implemented based on the contents of the IP header. One advantage of not
changing the original header is that Quality of Service (QoS), can be processed from the information
in the IP header. One disadvantage is that it is possible to do traffic analysis on the packets.
Transport mode can be used only if the two end devices are the ones providing IPSec protection.
Transport mode cannot be used if an intermediate device, such as a router or firewall, is providing
the IPSec protection. Figure 6.1 displays an example of a normal IP packet.
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Figure 6.1: IP packet.
When Authentication Header (AH) is used in transport mode, the AH services protect the external IP
header along with the data payload. It protects all the fields in the header that do not change in
transport. The AH header goes after the IP header and, if present before the ESP header, if
present, and other higher−layer protocols, like TCP. Figure 6.2 shows an example of using AH in
transport mode.

Figure 6.2: AH in transport mode.
When ESP is used in transport mode, the IP payload is encrypted; however, the original headders
are not encrypted. The ESP header is inserted after the IP header and before the upper−layer
protocol header, like TCP. The upper−layer protocols are encrypted and authenticated along with
the ESP header. ESP does not authenticate the IP header or the higher−layer information, such as
TCP port numbers in the Layer 4 header. Figure 6.3 shows an example of using ESP in transport
mode.

Figure 6.3: ESP in transport mode.
Tunnel Mode

Tunnel mode is used between two gateway devices, such as two PIX firewalls, or between a host
and a gateway. In tunnel mode, the entire original IP packet is encrypted and becomes the payload
of a new IP packet. The new IP header has the destination address of its IPSec peer. This allows
for tunneling of IP packets from a protected host through a router or firewall usually to another
router or firewall, which can both be acting as security gateways. One of the advantages of tunnel
mode is that intermediate devices, such as routers, can do encryption without any modification to
the end system. All the information from the original packet, including the headers, is protected.
Tunnel mode protects against traffic analysis because, although the IPSec tunnel end points can be
determined, the true source and destination end points cannot be determined because the
information in the original IP header has been encrypted.

When Authentication Header (AH) is used in tunnel mode, the original header is authenticated and
the new IP header is protected in exactly the same manner it was protected when used in transport
mode. Figure 6.4 shows an example of using AH in tunnel mode.
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Figure 6.4: AH in tunnel mode.
When ESP is used in tunnel mode, the original IP header is protected because the entire original IP
packet is encrypted. When both authentication and encryption are configured, encryption is
performed first, before authentication. The reason for this process to take place in this order is that it
facilitates rapid detection and rejection of replayed or bogus packets by the receiving node. Prior to
decrypting the packet, the receiver can detect the problem and potentially reduce the impact of an
attack. Figure 6.5 shows an example of using ESP in tunnel mode.

Figure 6.5: ESP in tunnel mode.
When you want to make sure that certain data from a known and trusted source gets transferred
with integrity and the data does not need confidentiality, use the AH protocol. AH protects the
upper−layer protocols and the IP header fields that do not change in transit, such as the source and
destination addresses. AH cannot protect those fields that change in transit, such as the Type of
Service (TOS) field. When the fields are protected, the values cannot be changed without detection,
so the IPSec node will reject any altered IP packet. In summary, AH does not protect against
someone sniffing the wire and seeing the headers and data. However, because headers and data
cannot be changed without the change being detected, changed packets would get rejected.

If data confidentiality is needed, use ESP. ESP will encrypt the upper−layer protocols in transport
mode and the entire original IP packet in tunnel mode so that neither is readable. ESP can also
provide authentication for the packets. However, when you use ESP in transport mode, the outer IP
original header is not protected; in tunnel mode, the new IP header is not protected. You will
probably implement tunnel mode more than transport mode during initial IPSec usage. This mode
allows a network device, such as a router to act as an IPSec proxy.

Key Management

I'll now discuss Internet Security Association Key Management.

Internet Key Exchange

Internet Key Exchange (IKE) is the facilitator and manager of IPSec−based conversations and is a
derivative of Internet Security Association Key Management Protocol/Oakley (ISAKMP/Oakley),
specifically for IPSec. IPSec uses the services of IKE to authenticate peers, manage the generation
and handling of the keys used by the encryption algorithm, as well as the hashing algorithms
between peers. It also negotiates IPSec security associations.

IKE provides three modes for exchanging key information and setting up IKE SAs. The first two
modes are Phase 1 exchanges, which are used to set up the initial secure channel; the other mode
is the Phase 2 exchange, which negotiates IPSec SAs. The two modes in Phase 1 are main mode
and aggressive mode, and the Phase 2 mode is called quick mode. An IKE SA is used to provide a

193



protected pipe for subsequent protected IKE exchanges between the IKE peers and then use Phase
2 quick mode with the IKE SA to negotiate the IPSec SAs.

Main mode has three two−way exchanges between the initiator and receiver. In the first exchange,
the algorithms and hashes are agreed upon. The second exchange uses Diffie−Hellman to agree
on a shared secret and to pass nonces. (Nonces are random numbers sent to the other party and
signed and returned to prove their identity. The third exchange verifies the identity of the other peer.

In aggressive mode, fewer exchanges are done using fewer packets than with main mode. On the
first exchange, almost everything is squeezed in—the proposed SA. The receiver sends back
everything that is needed to complete the exchange. The only thing left is for the initiator to confirm
the exchange. The disadvantage of using the aggressive mode is that both sides have exchanged
information before there is a secure channel. Therefore, it is possible to snoop the wire and discover
who formed the new SA. However, aggressive mode is faster than main mode.

Quick mode occurs after IKE has established the secure tunnel. Every packet is encrypted using
quick mode. Both negotiation of the IPSec SA and derivation of the key material needed by IPSec
are accomplished in quick mode. Before IKE will proceed, the potential parties are required to agree
upon a way to authenticate themselves to each other. This authentication method is negotiated
during the IKE Phase 1 main mode exchange.

Before any traffic can be passed using IPSec, each router/firewall/ host must be able to verify the
identity of its peer. This is accomplished by authenticating each peer, and IKE supports multiple
authentication methods as part of the Phase 1 exchange. The two entities must agree on a common
authentication protocol through a negotiation process. IPSec supports the following negotiation
processes:

Pre−shared keys• 
Public key cryptography (nonces)• 
Digital signatures• 

When pre−shared keys are used, identical keys are configured on each host. IKE peers
authenticate each other by computing and sending a keyed hash of data that includes the
pre−shared key. If the receiving peer is able to create the same hash using its pre−shared key, then
it knows that both parties share the same secret key, thus authenticating the other party.
Pre−shared keys do not scale well because each IPSec peer must be configured with the key of
every other peer with which the router needs to establish a session.

When using public key cryptography, each party generates a pseudo−random number (a nonce)
and encrypts it in the other party's public key. The ability for each party to compute a keyed hash
containing the other peer's nonce, decrypted with the local private key as well as other publicly and
privately available information, authenticates the parties to each other. This system provides for
deniable transactions. That is, either side of the exchange can plausibly deny that it took part in the
exchange. Currently, only the RSA public key algorithm is supported.

When digital signatures are used, each device digitally signs a set of data and sends it to the other
party. This method is similar to public key cryptography, except that it provides nonrepudiation.

Sharing keys does not scale well for a large network. One method that does scale is encapsulation
of the public key in a digital certificate authenticated by a Certificate Authority (CA). A CA is a
trusted third party who can bind a public key to an identity. In this case, that includes the identity of
devices, especially router and firewall devices.
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In summary, when the IKE negotiation begins, IKE looks for an IKE policy that is the same on both
peers. The peer that initiates the negotiation will send all its configured policies to the remote peer,
and the remote peer will try to find a match. The remote peer looks for a match by comparing its
own highest priority policy against the other peer's received policies. The remote peer checks each
of its configured policies in the order of its highest priority first until a match is found.

A match is made when both policies from the two peers contain the same encryption, hash,
authentication, and Diffie−Hellman parameter values and when the remote peer's policy specifies a
lifetime less than or equal to the lifetime in the policy being compared. If no acceptable match is
found, IKE refuses negotiation and IPSec will not be established. If a match is found, IKE will
complete negotiation and IPSec security associations will be created

Diffie−Hellman Key Agreement

Diffie−Hellman provides a means for two parties to agree upon a shared secret in such a way that
the secret will be unavailable to eavesdroppers. Diffie−Hellman key agreement requires that both
the sender and recipient of a message have key pairs. By combining your private key and the other
party's public key, both parties can compute the same shared secret number. This number can then
be converted into cryptographic keying material.

Each peer generates a public key and private key pair. The private key that is generated by each
peer is never shared; the public key is calculated from the private key by each peer and the result is
exchanged with the other peer. Each peer combines the other peer's public key with its own private
key and each peer computes the same shared secret number. The shared secret number is then
converted into a shared secret key, which is used for encrypting data using the encryption algorithm
specified during the security association setup.

The Diffie−Hellman key agreement has two system parameters, p and g. They are both public and
may be used by all the users in a system. Parameter p is a prime number and parameter g (usually
called a generator) is an integer less than p with the following properties: for every number n
between 1 and p ‘ inclusive, there is a power k, of g k such that n = gk modulus p. The
Diffie−Hellman key agreement can be explained further using the following example:

The Diffie−Hellman process begins with each host creating a prime number, p (which is
larger than 2) and a base number, g, an integer that is smaller than p.

1. 

Next, the hosts each secretly generate a private number called x, which is less than p � 1.2. 
The hosts next generate the public keys, y. They are created with the following function:

y = gx % p

3. 

The two hosts now exchange the public keys (y) and the exchanged numbers are converted
into a secret key, z:

z = yx % p

4. 

The value z can now be used as the key for the IPSec encryption method used to transfer
information between the two hosts. Mathematically, the two hosts should have generated the
same value for z.

5. 

This yields the following:

z = (gx % p)x' % p = (gx' % p)x % p

6. 

On Cisco devices, Diffie−Hellman can be configured to support one of two different group modes on
a per−IKE−policy basis: 768−bit groups or 1024−bit groups. The 1024−bit groups are more
challenging to break, but they come with the added expense of being more CPU intensive.
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Encryption

I'll now discuss encryption.

Data Encryption Standard

IPSec can use either the 56−bit Data Encryption Standard (DES) algorithm or the 168−bit 3DES
algorithm for encryption. After two IPSec peers obtain their shared secret key, they can use the key
to communicate with each other using the DES encryption algorithm. The 56−bit DES system
consists of an algorithm and a key. The key has a length of 64 bits, of which 56 are used as the key.
The remaining 8 bits are parity bits used in checking for errors. Even with just 56 bits, there are
more than 70 quadrillion possible keys (simply, 2�56). The digits in the key must be independently
determined to take full advantage of 70 quadrillion possible keys.

The mechanics of DES are relatively simple. DES enciphers data in blocks of 64 bits of binary data.
Given a message that needs to be encrypted, one must first pick a 64−bit key and then convert the
plaintext into binary form. It takes a string of only 5 bits to describe our alphabet, because 2Ø5�32
and the alphabet is 26 letters long. This is relatively easy to do. Now within the blocks or strings of
64 bits, order is very important. The leftmost bit is known as the 1st bit or is in the first position. The
rightmost bit is the 64th bit.

The first step in the DES procedure is to change the order within each block. For example, the 52nd
bit in the original string becomes the 1st bit in this new block. Bit 40 becomes bit 2 and so forth, as
specified by a table. This step is called the initial permutation. Permutation is used in the strict
mathematical sense that only order is changed. The results of this initial permutation are broken
down into two halves. The first 32 bits become L0. The last 32 bits are called R0. Now the data is
subjected to the following transformation 16 times:

Ln = Rn−1 where R0 occurs at n=1
Rn = Ln−1 ( ((Rn−1, Kn) where L0 occurs at n=1

After the first iteration, we are presented with the following:

Ln+1 = Rn     in essence Ln+1 = Ln−1 ( ((Rn, K0)
Rn+1 = Ln ( ((Rn, K0) in essence Rn+1 = Rn−1 ( ((Rn, K0)

Cisco's encryption algorithm incorporates cipher feedback (CFB), which further guarantees the
integrity of the data received by using feedback. This is the essence of DES. The key and the
message become interwoven and inseparable, which makes it difficult to break apart the cipher text
into its constituent parts. This procedure is performed 16 times. The expression Rn = Ln‘ (((Rn+1,
Kn) is simply saying, "Add L, bit by bit in modulo 2, from one iteration ago to the term ((Rn‘, Kn)."
This function is determined by R, one iteration ago and Kn, which is based on the key. Kn is, in
turn, given by another formula, Kn= KS(n, KEY). Because this algorithm goes through 16 iterations,
Kn will be of length 48. The calculation of Kn is another operation in which DES looks in a table.
The calculation of the function ((Rn+1,Kn) is likewise simple. First, however, notice that R is of
32−bit length and K is 48 bits long. R is expanded to 48 bits using another table. The resulting R is
added to K (using bit−by−bit addition in mod base 2). The result of this addition is broken into eight
6−bit strings. One enters into another table that gives the primitive function Sn. There is one S
function for each 6−bit block. The result of entering into these S functions is a 32−bit string. After 16
iterations, the result should be, L16 and R16. These two strings are united where R forms the first
32 bits and L forms the last 32. The 64−bit result is entered into the inverse of the initial permutation
function. The result of this last step is cipher text. Decoding is accomplished by simply running the
process backwards.
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Triple DES

When the encryption services provided by the 56−bit DES algorithm are not deemed as being
strong enough from a mathematical standpoint for encryption of data, the Triple DES (3DES)
symmetrical encryption algorithm can be used. Cisco products support the use of the 168−bit 3DES
encryption algorithm with IPSec implementations. 3DES has been standardized by the National
Institute of Standards and Technology (NIST) and is a variant of 56−bit DES. 3DES takes data and
breaks it into 64−bit blocks just as DES does, yet 3DES processes each block three times. Each
time 3DES uses an independent 56−bit key, the encryption strength over 56−bit DES is tripled.

MD5 Message Digest

The MD5 algorithm, an extension to the MD4 message digest, can be used to ensure that a
message has not been altered. The MD5 algorithm takes as input a message of arbitrary
length—for example, a username and password—and after running the message through the
algorithm, MD5 produces as output a 128−bit message digest of the input. It is considered
computationally infeasible to produce two messages having the same message digest or to produce
a message that has a predefined message digest.

IPSec Implementations

Generally, there are two accepted schemes for implementing IPSec. The first is for each end station
to perform IPSec directly. This provides the advantage of not having an impact on the network
design, topology, or any routing decisions. The disadvantage is that each end station usually must
possess special software or needs an upgrade in addition to the added configuration. Complicating
the issue is that the user must be aware of when encryption is required. Because users make the
decisions, they potentially must make a change to the configuration. When using this scheme,
encryption is not transparent to the end user.

The second is for the network devices to provide the service of IPSec. An advantage to this scheme
is that the end stations and users are not directly involved. Another consideration is that, when you
design a network to use encryption and the end stations won't be doing the encryption, the
enrypting end points impose a very simple constraint. All traffic that has security services applied to
it must go through the two peering crypto end points. This setup places some limits on asymmetric
traffic paths. After a packet is processed by one enrypting end point (one end of the SA), the
packets may take any route between the two encrypting end points; however, the route must bring
the packet back to the peer encrypting end point for processing. This requirement means that there
are single points in a network where IPSec traffic must traverse. For enterprises with multiple
access points onto the Internet, care must be taken in how network addresses are advertised to
enforce the symmetric relationship between IPSec peers.

The security associations are unique between the two peering encrypting end points and are not
shared with other possible encrypting devices. When applying security, make sure that it is indeed
secure; that is, make sure that the "state" of any particular data flow in the SAD is restricted to the
two peers.

Immediate Solutions
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Configuring IPSec Using Pre−Shared Keys

This section details how to configure IPSec on Cisco routers using pre−shared keys. Configuring
IPSec encryption can be difficult and complicated. However, with a well−thought−out plan, the
challenges associated with configuring IPSec can be overcome. Because IPSec can be configured
without IKE (manual key configuration) or with IKE (pre−shared keys, public keys, or digital
certificates), and the configuration of each is different, I will begin by configuring IPSec using IKE
with pre−shared keys for authentication of IPSec sessions.

To configure IKE, perform the tasks in the following list. The first two tasks are required; the
remaining tasks are optional:

The first step is to use the crypto isakmp enable command to enable IKE globally for the
router. If you do not want IKE to be used with your IPSec implementation, use the no crypto
isakmp enable command. IKE is enabled by default globally on the router and does not
need to be enabled on a per−inter−faces basis.

1. 

The next step is to define a suite of IKE policies on the router. The IKE policies define the
parameters to be used during IKE negotiation. Use the crypto isakmp policy <priority>
command to uniquely identify and define the policy. The priority parameter assigns a priority
to the policy and can accept any integer from 1 to 10,000, with 1 being the highest priority
and 10,000 being the lowest priority. Multiple IKE policies can be configured for each peer
participating in IPSec. Use of this command takes you into IKE policy configuration
command mode (config−isakmp).

2. 

In IKE policy configuration command mode, use the encryption <des | 3des> command to
define the encryption algorithm to be used for encryption of packets between IPSec peers. If
this command is not defined within the IKE policy, the encryption algorithm defaults to 56−bit
DES.

3. 

In IKE policy configuration command mode, use the hash <sha| md5> command to define
the hash algorithm used within the IKE policy. If this command is not defined within the IKE
policy, the hash algorithm defaults to SHA1.

4. 

To specify the authentication method used in the IKE policy, use this command in IKE policy
configuration command mode:

   authentication <rsa−sig | rsa−encr | pre−share>

If this command is not defined within the IKE policy, the authentication method defaults to
RSA signatures.

5. 

To specify the Diffie−Hellman identifier used for the IKE policy, use the group <1 | 2>
command in IKE policy configuration command mode. The group 1 command specifies that
the policy should use the 768−bit Diffie−Hellman group. The group 2 command specifies
that the policy should use the 1024−bit Diffie−Hellman group. If this command is not defined
within the IKE policy, the 768−bit Diffie−Hellman group will be used.

6. 

To specify how long the IKE established security association should exist before expiring,
use the lifetime <seconds> command in IKE policy configuration mode. If this command is
not defined within the IKE policy, the security associations expire after 86,400 seconds or 1
day.

7. 

Note The default values for configured policies do not show up in the configuration when
you issue a show running command. To view the default IKE values within the
configured policies, use the show crypto isakmp policy command.

The configuration commands in the preceding list are all that are needed to enable and define the
IKE policy. Next, you should define the ISAKMP identity for each peer that uses pre−shared keys in
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an IKE policy. When two peers use IKE to establish IPSec security associations, each peer sends
its identity to the remote peer. To configure the ISAKMP identity mode used between peers, use the
commands in the following steps:

Use this command to define the identity used by the router:

crypto isakmp identity <address|hostname>

The address parameter is used when there is only one interface and only one IP address
that is used by the peer for IKE negotiations and the IP address is known. The hostname
parameter is used if there is more than one interface that might be used for IKE negotiations
or if the IP address is unknown. If this command is not specified, the identity parameter will
be used by the router.

1. 

If the crypto identity was configured to use the hostname of the remote peer, the hostname
of the remote peer must be defined using the ip host <name> <address> command to
define a static hostname−to−address mapping in the host cache.

2. 

After configuring the ISAKMP identity used between peers, you must specify the pre−shared keys to
use between each peer. The keys must be configured anytime pre−shared authentication is
specified in an IKE policy. The same pre−shared key must be configured on each pair of IPSec
peers when you're using pre−shared keys for IKE authentication. Configuration of the pre−shared
key can be accomplished by two separate commands and is dependant upon the identity configured
in the previous command. Configure the pre−shared key using the following commands. To
configure a pre−shared authentication key, use this command:

   crypto isamkmp key key−string address <peer−address> −
    <peer−mask>

This command is used if the ISAKMP identity was configured to use the address
parameter or if the identity was not configured, because the default is to use the peer
routers address. If the ISAKMP identity was configured to use the hostname
parameter, then use this command:

   crypto isakmp key key−string hostname <peer−hostname>

The next task that needs to be performed is to configure the router for IPSec. The first step in
configuring IPSec is to define the transform set the router should use. A transform set is an
acceptable combination of security protocols, algorithms, and other settings to apply to
IPSec−protected traffic. The transform set is agreed upon between peers during the IPSec security
association negotiation. It tells the router how to protect data within a particular data flow. During
IPSec security association negotiations with IKE, the peers search for a transform set that is the
same at both peers. When such a transform set is found, it is selected and will be applied to the
protected traffic as part of both peers' IPSec security associations.

To define a transform set, use the following commands starting in global configuration mode (only
the first command is required):

Define the transform set using the following command:1. 
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  crypto ipsec transform−set transform−set−name <transform1>−
    <transform2> <transform3>

Rules exist that define an acceptable combination of security protocols and algorithms that
can be used as transforms. Table 6.1 defines the acceptable combinations.

Table 6.1: Transform combinations.

Type Transform Description

AH Authentication
Transform

ah−md5−hmac Authentication Header with Message Digest 5
authentication

ah−sha−hmac Authentication Header with SHA1
authentication

ESP Encryption
Transform

esp−des ESP with 56−bit DES encryption

esp−3des ESP with 168−bit DES encryption

esp−null Null encryption

ESP Authentication
Transform

esp−md5−hmac ESP with Message Digest 5 authentication

esp−sha−hmac ESP with SHA1 authentication

To change the mode associated with the transform set, use the mode <tunnel | transport>
command in crypto transport configuration mode. If this command is omitted, the mode will
default to tunnel mode.

2. 

Note The IOS command parser will deny you from entering invalid combinations. There is one
other possible transform, comp−lzs; however, it will not be discussed within this book.

After defining the transform set that IPSec should use, you must configure an access list. Access
lists defined for IPSec are different than regular access lists, which permit or deny traffic from
entering into or exiting out of an interface. Access lists are used with IPSec to define which IP traffic
will be protected by encryption and which will not. To create access lists that define which traffic
should be encrypted, use the following command in global configuration mode. To determine which
IP packets will be encrypted by IPSec, use this command:

   access−list access−list−number {deny | permit} <protocol> −
     <source> <source−wildcard> <destination> <destination− −

wildcard> <log>
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Cisco recommends that the access list keyword any be avoided when specifying the source
address or destination address within the access list. It is not recommended because it causes the
router to encrypt all outbound or all inbound traffic. Try to be as precise as possible when defining
which packets to protect with an access list. It is also recommended that mirrored copies of the
access list be configured between each host that is to perform IPSec.

After configuration of the access list(s), you must define IPSec crypto maps to allow the setup of
security associations for traffic flows to be encrypted. Crypto map entries contain information for
IPSec. When IKE is used to establish security associations, the IPSec peers can negotiate the
settings they will use for the new security associations. This allows you to specify the parameters of
the crypto map on a per−peer basis. To configure the crypto maps and define the appropriate
parameters, use the commands in the following steps (only the first four steps are required):

To create the crypto map entry and enter the crypto map configuration mode, use this
command:

 crypto map map−name seq−num ipsec−isakmp

The map−name parameter defines the name that identifies the crypto map set. The
seq−num parameter is the number that is assigned to this crypto map; it should not be
chosen arbitrarily because this number is used to rank multiple crypto map entries within a
crypto map set, and a crypto map entry with a lower seq−num is evaluated before a map
entry with a higher seq−num. Use of this command moves you into crypto map configuration
mode. The ipsec−isakmp parameter specifies that IKE will be used to establish the security
associations for protecting the traffic matched by this crypto map entry.

1. 

In crypto map configuration mode, use this command to specify an extended access list for a
crypto map entry that matches packets that should be protected by encryption:

 match address <access−list number | name>

2. 

To specify an IPSec peer, use the following command in crypto map configuration mode:

 set peer <ip address| hostname>

You can specify the remote IPSec peer by its hostname if the hostname is mapped to the
peer's IP address in a domain name server (DNS) or if you manually map the hostname to
the IP address with the ip host command that was discussed earlier. When using IKE to set
up security associations, you can specify multiple peers per crypto map.

3. 

To specify which transform sets can be used with the crypto map entry, use this command:

 set transform set <transform−set−name1> <transform−set− −
name2...transform−set−name6>

List multiple transform sets in order of priority with the highest−priority transform set listed
first. When using IKE to set up security associations, you can specify multiple transform sets
per crypto map.

4. 
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Use the set pfs <group1 | group2> command to specify that IPSec should ask for perfect
forward secrecy when requesting a new sa or should demand PFS in requests received from
the IPSec peer.

5. 

To specify that separate IPSec security associations should be requested for each
source/destination host pair, use the set security−association level per−host command.
This command should be omitted if one security association should be requested for each
crypto map access list permit entry.

6. 

To override the global lifetime value on a per−crypto−map−list basis, which is used when
negotiating IPSec security associations, use this command:

 set security−association lifetime <seconds seconds | −
   kilobytes kilobytes>

7. 

After configuring the router for IPSec, the last step in IPSec configuration is to apply the configured
crypto map to an interface. As soon as the crypto map is applied to an interface, the security
associations are set up in the Security Association Database (SAD). Only one crypto map can be
applied to an interface, and multiple crypto map entries with the same crypto name and different
sequence numbers are permitted. To apply a previously defined crypto map set to an interface, use
the commands in these steps:

To apply a previously defined crypto map to an interface, use the following command to
move into interface configuration mode:

 interface <interface type> <interface number>

1. 

To apply a previously defined crypto map set to an interface, use the crypto map
map−name command. A crypto map set must be applied to an interface before that interface
can provide IPSec services.

2. 

I'll begin with the network shown in Figure 6.6. This network contains two routers, which must
communicate with one another via the use of IPSec. Router A is the corporate gateway router and
Router B is the branch office router for the remote location. Remote users communicate with the
corporate office via the wide area network (WAN), and when users at the branch office
communicate with the corporate office, their traffic should be protected with IPSec. This
configuration will use all the security services provided by both IKE and IPSec, and Router A and
Router B will be configured to exchange pre−shared keys.

Figure 6.6: Basic network using IPSec.
Listing 6.1 displays the configuration of Router A, and Listing 6.2 displays the configuration of
Router B.

Listing 6.1: IPSec configuration of Router A.

hostname Router−A
!
username ipsec privilege 15 password 0 ipsec
memory−size iomem 10
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ip subnet−zero ip tcp synwait−time 10
no ip domain−lookup
!
crypto isakmp policy 11
 hash md5
 encryption des
 group 2
 authentication pre−share
!
crypto isakmp key ouripseckey address 10.0.30.201
!
crypto ipsec transform−set remote esp−des esp−md5−hmac
!
crypto map encrypt 11 ipsec−isakmp
 set peer 10.0.30.201
 set transform−set remote
 match address 120
!
interface Ethernet0/0
description Internet Connection
 ip address 10.0.30.200 255.255.255.0
 no ip directed−broadcast
 ip nat outside
 no ip route−cache
 no ip mroute−cache
crypto map encrypt
!
interface Ethernet0/1
 ip address 192.168.10.1 255.255.255.0
 no ip directed−broadcast
 ip nat inside
!
ip nat pool pat 10.0.30.203 10.0.30.203 network 255.255.255.0
ip nat inside source route−map donotnat pool pat overload
!
ip classless 
ip route 0.0.0.0 0.0.0.0 Ethernet0/0
!
access−list 120 permit ip 192.168.10.0 0.0.0.255 −
  192.168.11.0 0.0.255.255
access−list 130 deny ip 192.168.10.0 0.0.0.255 −
  192.168.11.0 0.0.255.255
access−list 130 permit ip 192.168.10.0 0.0.0.255 any
!
route−map donotnat permit 10
 match ip address 130
!

Listing 6.2: IPSec configuration of Router B.
hostname Router−B
!
username ipsec privilege 15 password 0 ipsec
memory−size iomem 10
ip subnet−zero 
ip tcp synwait−time 10
no ip domain−lookup
!
crypto isakmp policy 10
 hash md5
 encryption des
 group 2
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 authentication pre−share
!
crypto isakmp key ouripseckey address 10.0.30.200
!
crypto ipsec transform−set remote esp−des esp−md5−hmac
!
crypto map encrypt 10 ipsec−isakmp
 set peer 10.0.30.200
 set transform−set remote
 match address 120
!
interface Ethernet1/0
 description Internet Connection
 ip address 10.0.30.201 255.255.255.0
 no ip directed−broadcast
 ip nat outside
 crypto map encrypt
!
interface Ethernet0/1
 ip address 192.168.11.1 255.255.255.0
 no ip directed−broadcast
 ip nat inside
!
ip nat pool pat 10.0.30.204 10.0.30.204 network 255.255.255.0
ip nat inside source route−map donotnat pool pat overload
!
ip classless ip route 0.0.0.0 0.0.0.0 Ethernet1/0 !
access−list 120 permit ip 192.168.11.0 0.0.0.255 −
  192.168.10.0 0.0.255.255
access−list 130 deny ip 192.168.11.0 0.0.0.255 −
  192.168.10.0 0.0.255.255
access−list 130 permit ip 192.168.11.0 0.0.0.255 any
!
route−map donotnat permit 10
match ip address 130
!

The configurations in Listing 6.1 and Listing 6.2 configure each router to use the benefits of IPSec,
but the configurations utilize the services of PAT.

PAT (NAT could have been configured in place of PAT) makes use of a route map within this
configuration. The route map is needed to discriminate between packets that have a destination
address that matches an address within the enterprise's IP address space or packets that could be
destined to the Internet. Each router has been configured with an IKE policy using the crypto
isakmp policy command. Within each IKE policy, the encryption algorithm is set at the default
56−bit DES.

Note Default commands used for configuring IPSec and IKE are not displayed in the configuration
output of the show running command. The default commands used to configure IPSec and
IKE are listed in this chapter for completeness.

Each router's Diffie−Hellman group has been changed from the default 768−bit group 1 to the
stronger 1024−bit group 2, and the IKE authentication method has been defined to use pre−shared
keys. Each router is then configured with the pre−shared key used for authentication; the
pre−shared key is specified by using the crypto isakmp key command. In Listing 6.1 and Listing
6.2, the key is defined as ouripeckey. This concludes the configuration of IKE on Router A and
Router B.
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Next, IPSec support must be configured on Router A and Router B. The first step used in Listing 6.1
and Listing 6.2 to configure IPSec support is to define a transform set that defines the security
protocols and algorithms used between the two peers; this was done using the crypto ipsec
transform−set command, which is named remote.

A crypto map is then defined that indicates that IKE will be used to establish the IPSec security
associations for protecting the traffic specified by this crypto map entry, using the ipsec−isakmp
parameter. The IPSec peer is identified and the transform set is defined for communication between
the peers. An access list is defined, which specifies whether or not IPSec should provide encryption
services for packets that are matched by access list entry.

To begin testing the configurations of Router A and Router B, an extended Ping will be issued with
the packet sourced from the Ethernet0/1 interface of Router B; the packet's destination is the
Ethernet0/1 interface of Router A. On Router B, I have issued the debug crypto ipsec, debug
crypto isakmp, and debug crypto engine commands. Each of these commands can be used to
view event messages for IPSec and IKE. The packets from the Ping request will match the access
list entry and require the encryption services of IPSec. Listing 6.3 displays the Ping request and the
debug commands.

Listing 6.3: Enabling the debug commands and the Ping request.

#debug crypto ipsec
Crypto IPSEC debugging is on
#debug crypto isakmp
Crypto ISAKMP debugging is on
#debug crypto engine
Crypto Engine debugging is on
#ping ip 
Target IP address: 192.168.10.1
Repeat count [5]: 100
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]: y
Source address or interface: 192.168.11.1
Type of service [0]:
Set DF bit in IP header? [no]:
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 100, 100−byte ICMP Echos to 192.168.10.1, −
 timeout is 2 seconds:

After the Ping request sends the first packet, Router B determines that the packet matches the
access list—in this case, access list 120, configured under the IPSec crypto map—and begins the
security association setup by offering to Router A all of its configured transform sets. This can be
verified by displaying the output of the debug crypto ipsec command. Listing 6.4 shows the
security association request.

Listing 6.4: Security association request.

: IPSEC(sa_request): ,
   (key eng. msg.) src= 10.0.30.201, dest= 10.0.30.200,
   src_proxy= 192.168.11.0/255.255.255.0/0/0 (type=4),
   dest_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4),
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   protocol= ESP, transform= esp−des esp−md5−hmac,
   lifedur= 120s and 4608000kb,
   spi= 0x0(0), conn_id= 0, keysize= 0, flags= 0x4004

The debug output in Listing 6.4 shows that, upon security association setup, Router B offers to
Router A all of its configured transform sets. It is at this point that the final verification of the IKE
security association takes place. The IKE security association verification messages can be seen by
displaying the output of the debug crypto isakmp command. Listing 6.5 shows the IKE verification
process.

Listing 6.5: IKE verification process.

!
: ISAKMP (6): beginning Main Mode exchange
: ISAKMP (6): sending packet to 10.0.30.200 (I) MM_NO_STATE
: ISAKMP (6): received packet from 10.0.30.200 (I) MM_NO_STATE
: ISAKMP (6): processing SA payload. message ID = 0
: ISAKMP (6): Checking ISAKMP transform 1 against priority 10 −
               policy
: ISAKMP:      encryption DES−CBC 
: ISAKMP:      hash MD5
: ISAKMP:      default group 2
: ISAKMP:      auth pre−share
: ISAKMP:      Open
: ISAKMP:      life duration (basic) of 120
: ISAKMP (6): atts are acceptable. Next payload is 0
: ISAKMP (6): SA is doing pre−shared key authentication using
              id type ID_IPV4_ADDR
: ISAKMP (6): sending packet to 10.0.30.200 (I) MM_SA_SETUP
: ISAKMP (6): received packet from 10.0.30.200 (I) MM_SA_SETUP
: ISAKMP (6): processing KE payload. message ID = 0
: ISAKMP (6): processing NONCE payload. message ID = 0
: ISAKMP (6): SKEYID state generated
: ISAKMP (6): processing vendor id payload
: ISAKMP (6): speaking to another IOS box!
: ISAKMP (6): ID payload
        next−payload : 8
        type         : 1
        protocol     : 17
        port         : 500
        length       : 8
: ISAKMP (6): Total payload length: 12
: ISAKMP (6): sending packet to 10.0.30.200 (I) MM_KEY_EXCH
: ISAKMP (6): received packet from 10.0.30.200 (I) MM_KEY_EXCH
: ISAKMP (6): processing ID payload. message ID = 0
: ISAKMP (6): processing HASH payload. message ID = 0
: ISAKMP (6): SA has been authenticated with 10.0.30.200
!

After the security associations are set up, IKE begins IPSec negotiation. You can see the process of
IKE negotiation of IPSec by again viewing the output of the debug crypto ipsec and debug crypto
isakmp commands. Listing 6.6 displays the IKE negotiation.

Listing 6.6: IKE negotiation.

!
: IPSEC(key_engine): got a queue event...
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: IPSEC(spi_response): getting spi 559422693 for SA
     from 10.0.30.200 to 10.0.30.201 for prot 3
!
: ISAKMP (6): beginning Quick Mode exchange, M−ID of 121737022
: ISAKMP (6): sending packet to 10.0.30.200 (I) QM_IDLE
: ISAKMP (6): received packet from 10.0.30.200 (I) QM_IDLE
: ISAKMP (6): processing SA payload. message ID = 121737022
: ISAKMP (6): Checking IPSec proposal 1
: ISAKMP: transform 1, ESP_DES
: ISAKMP:   attributes in transform:
: ISAKMP:      encaps is 1
: ISAKMP:      SA life type in seconds
: ISAKMP:      SA life duration (basic) of 120
: ISAKMP:      SA life type in kilobytes
: ISAKMP:      SA life duration (VPI) of 0x0 0x46 0x50 0x0
: ISAKMP:      authenticator is HMAC−MD5
: ISAKMP (6): atts are acceptable.
!

The final display shows the security association completing the setup process. When the security
association setup process is complete, traffic can begin to flow from source to destination using the
security services of IPSec. Listing 6.7 displays the completion of the security association setup
process.

Listing 6.7: Completion of security association setup process.

: IPSEC(validate_proposal_request): proposal part #1,
  (key eng. msg.) dest= 10.0.30.200, src= 10.0.30.201,    
    dest_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4),
    src_proxy= 192.168.11.0/255.255.255.0/0/0 (type=4),
    protocol= ESP, transform= esp−des esp−md5−hmac,
    lifedur= 0s and 0kb,
    spi= 0x0(0), conn_id= 0, keysize= 0, flags= 0x4
: IPSEC(key_engine): got a queue event...
: IPSEC(initialize_sas): ,
  (key eng. msg.) dest= 10.0.30.201, src= 10.0.30.200,
    dest_proxy= 192.168.11.0/255.255.255.0/0/0 (type=4),
    src_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4),
    protocol= ESP, transform= esp−des esp−md5−hmac,
    lifedur= 120s and 4608000kb,
    spi= 0x21581CE5(559422693), conn_id= 2, keysize= 0, −
    flags= 0x4
: IPSEC(initialize_sas): ,
  (key eng. msg.) src= 10.0.30.201, dest= 10.0.30.200,
: ISAKMP (6): processing NONCE payload. message ID = 121737022
: ISAKMP (6): processing ID payload. message ID = 121737022
: ISAKMP (6): unknown error extracting ID
: ISAKMP (6): processing ID payload. message ID = 121737022
: ISAKMP (6): unknown error extracting ID
: ISAKMP (6): Creating IPSec SAs
:         inbound SA from 10.0.30.200 to 10.0.30.201 −
          (proxy 192.168.10.0 to 192.168.11.0)
:         has spi 331813658 and conn_id 7 and flags 4
:         lifetime of 120 seconds
:         lifetime of 4608000 kilobytes
:         outbound SA from 10.0.30.201 to 10.0.30.200 −
          (proxy 192.168.11.0 to 192.168.10.0)
:         has spi 306250407 and conn_id 8 and flags 4
:         lifetime of 120 seconds
:         lifetime of 4608000 kilobytes
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: ISAKMP (6): sending packet to 10.0.30.200 (I) QM_IDLE
: src_proxy= 192.168.11.0/255.255.255.0/0/0 (type=4),
    dest_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4),
    protocol= ESP, transform= esp−des esp−md5−hmac,
    lifedur= 120s and 4608000kb,
    spi= 0x1472092E(343017774), conn_id= 3, keysize= 0, −
    flags= 0x4
: IPSEC(create_sa): sa created,
  (sa) sa_dest= 10.0.30.201, sa_prot= 50,
    sa_spi= 0x21581CE5(559422693),
    sa_trans= esp−des esp−md5−hmac, sa_conn_id= 2
: IPSEC(create_sa): sa created,
  (sa) sa_dest= 10.0.30.200, sa_prot= 50,
    sa_spi= 0x1472092E(343017774),
    sa_trans= esp−des esp−md5−hmac , sa_conn_id= 3

After the security association is set up and complete, you can view the settings of each security
association within the database (SAD) by issuing the show crypto ipsec sa command. Listing 6.8
displays the output of the security association database of Router B.

Listing 6.8: Security association database on Router B.

Router−B#sh crypto ipsec sa
interface: Ethernet0/0
   Crypto map tag: encrypt, local addr. 10.0.30.201
   local ident (addr/mask/prot/port): −
   (192.168.11.0/255.255.255.0/0/0)
   remote ident (addr/mask/prot/port): −
   (192.168.10.0/255.255.255.0/0/0)
   current_peer: 10.0.30.200
     PERMIT, flags={origin_is_acl,}
    #pkts encaps: 5, #pkts encrypt: 5, #pkts digest 5
    #pkts decaps: 4, #pkts decrypt: 4, #pkts verify 4
    #send errors 5, #recv errors 0
     local crypto endpt.: 10.0.30.201, remote crypto endpt.: −
     10.0.30.200
     path mtu 1500, media mtu 1500
     current outbound spi: 20DB2311
!
    inbound esp sas:
      spi: 0x22900598(579863960)
        transform: esp−des esp−md5−hmac,
        in use settings ={Tunnel, }
        slot: 0, conn id: 2, crypto map: encrypt
        sa timing: remaining key lifetime (k/sec): (4607999/71)
        IV size: 8 bytes
        replay detection support: Y
!
     inbound ah sas:
!
     outbound esp sas:
      spi: 0x20DB2311(551232273)
        transform: esp−des esp−md5−hmac,
        in use settings ={Tunnel, }
        slot: 0, conn id: 3, crypto map: encrypt
        sa timing: remaining key lifetime (k/sec): (4607999/71)
        IV size: 8 bytes
        replay detection support: Y
!
     outbound ah sas:
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Router−B#

It appears that Router B has two security associations; however, in "In Brief" earlier in this chapter,
it was mentioned that security associations are unidirectional. This causes Router B to set up two
security associations, one for inbound ESP packets and one for outbound ESP packets. The
Security Association Database (SAD) for IKE can be viewed as well by issuing the show crypto
isakmp sa command. Issuing the command on Router B displays the output seen in Listing 6.9.

Listing 6.9: IKE security association database.

#show crypto isakmp sa
    dst           src          state     conn−id    slot
10.0.30.200    10.0.30.201    QM_IDLE       16       0
!

The connection state of an IKE security association, displayed in state field, can vary depending on
which Phase and mode the security association was negotiated over. All security association states
for each entry contained within the database are listed in Table 6.2.

Table 6.2: Security association states.

Phase Mode State Description

Phase 1 Main MM_NO_STATE The IKE SA has been created, yet nothing else
has happened.

MM_SA_SETUP Parameters of the IKE SA have been agreed
upon by each peer.

MM_KEY_EXCH Each peer has exchanged Diffie−Hellman public
keys and have generated a shared secret.

MM_KEY_AUTH The IKE SA has been authenticated. If this router
initiated the exchange, the state transitions
immediately to QM_IDLE and a quick mode
exchange begins.

Aggressive AG_NO_STATE The IKE SA has been created, yet nothing else
has happened.

AG_INIT_EXCH Peers have completed first aggressive mode
exchange.

AG_AUTH
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The IKE SA has been authenticated. If this router
initiated the exchange, the state transitions
immediately to QM_IDLE and a quick mode
exchange begins.

Phase 2 Quick QM_IDLE The IKE SA is in a quiescent state; it will remain
authenticated with its peer and may be used for
subsequent quick mode exchanges.

The entire security association setup can take up to a minute or longer to complete, which caused
the Ping request in Listing 6.3 fail. After the security associations are complete, the Ping, or any
traffic that matched an entry in the access list, would flow as normal.

The network in Figure 6.7 displays three routers connected to each other using a WAN connection.
The layer 2 media of exchange is configured as a full mesh, allowing full communication between
each host within each network. Hosts in the 192.168.10.0 network behind Router A are configured
to communicate with the hosts in both the 192.168.11.0 network behind Router B and the
192.168.12.0 network behind Router C. Hosts within the 192.168.11.0 and 192.168.12.0 networks
are configured in the same manner. The company that owns these routers has determined that all
traffic between hosts that is exchanged via the WAN is to be protected by the services of IKE and
IPSec. To meet the requirements of the company, a creative configuration of IPSec must be used.

Figure 6.7: Full mesh IPSec network
Both IPSec and IKE permit the configuration of multiple crypto policies and maps. This is
accomplished through the effective use of the sequence−number parameter. Listing 6.10 through
Listing 6.12 display the configuration of each router to the requirements outlined earlier.

Listing 6.10: IPSec configuration of Router A.

hostname Router−A
!
username ipsec privilege 15 password 0 ipsec
memory−size iomem 10
ip subnet−zero
ip tcp synwait−time 10

210



no ip domain−lookup
!
crypto isakmp policy 10
hash md5
encryption des
groups 2
authentication pre−share
!
crypto isakmp key AandBkey address 10.0.30.201
crypto isakmp key AandCkey address 10.0.30.202
!
crypto ipsec transform−set routerb esp−des esp−md5−hmac
crypto ipsec transform−set routerc esp−des esp−md5−hmac
!
crypto map mesh 10 ipsec−isakmp
set peer 10.0.30.201
set transform−set routerb
match address 100
!
crypto map mesh 11 ipsec−isakmp
set peer 10.0.30.202
set transform−set routerc
match address 101
!
interface Ethernet0/1
ip address 192.168.10.1 255.255.255.0
no ip directed−broadcast
ip nat inside
!
interface Serial0
ip address 10.0.30.200 255.255.255.0
no ip directed−broadcast
ip nat outside
no ip mroute−cache
no fair−queue
crypto map mesh
!
ip nat inside source route−map donotnat interface Serial0 −
 overload
ip classless ip route 192.168.11.0 255.255.255.0 10.0.30.201
ip route 192.168.12.0 255.255.255.0 10.0.30.202
no ip http server
!
access−list 100 permit ip 192.168.10.0 0.0.0.255 192.168.11.0 −
 0.0.0.255
access−list 101 permit ip 192.168.10.0 0.0.0.255 192.168.12.0 −
 0.0.0.255
access−list 102 deny ip 192.168.10.0 0.0.0.255 192.168.11.0 −
 0.0.0.255
access−list 102 deny ip 192.168.10.0 0.0.0.255 192.168.12.0 −
 0.0.0.255
access−list 102 permit ip 192.168.10.0 0.0.0.255 any
!
route−map donotnat permit 10
  match ip address 102

Listing 6.11: IPSec configuration of Router B.
hostname Router−B
!
username ipsec privilege 15 password 0 ipsec
ip subnet−zero

211



ip tcp synwait−time 10
no ip domain−lookup
!
crypto isakmp policy 11
hash md5
encryption des
groups 2
authentication pre−share
!
crypto isakmp key AandBkey address 10.0.30.200
crypto isakmp key BandCkey address 10.0.30.202
!
crypto ipsec transform−set routera esp−des esp−md5−hmac
crypto ipsec transform−set routerc esp−des esp−md5−hmac
!
crypto map mesh 11 ipsec−isakmp
set peer 10.0.30.200
set transform−set routera
match address 100
!
crypto map mesh 12 ipsec−isakmp
set peer 10.0.30.202
set transform−set routerc 
match address 101
!
interface Ethernet0/1
ip address 192.168.11.1 255.255.255.0
no ip directed−broadcast
ip nat inside
!
interface Serial0/0
ip address 10.0.30.201 255.255.255.0
no ip directed−broadcast
ip nat outside
no ip mroute−cache
no fair−queue
crypto map mesh
!
ip nat inside source route−map donotnat interface Serial0/0 –
 overload
ip classless
ip route 192.168.10.0 255.255.255.0 10.0.30.200
ip route 192.168.12.0 255.255.255.0 10.0.30.202
no ip http server
!
access−list 100 permit ip 192.168.11.0 0.0.0.255 192.168.10.0 –
 0.0.0.255
access−list 101 permit ip 192.168.11.0 0.0.0.255 192.168.12.0 –
 0.0.0.255
access−list 102 deny ip 192.168.11.0 0.0.0.255 192.168.10.0 –
 0.0.0.255
access−list 102 deny ip 192.168.11.0 0.0.0.255 192.168.12.0 –
 0.0.0.255
access−list 102 permit ip 192.168.11.0 0.0.0.255 any
!
route−map donotnat permit 11
 match ip address 102

Listing 6.12: IPSec configuration of Router C.
hostname Router−C
!
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username ipsec privilege 15 password 0 ipsec
memory−size iomem 10
ip subnet−zero
ip tcp synwait−time 10
no ip domain−lookup
!
crypto isakmp policy 12
hash md5
encryption des
groups 2
authentication pre−share
!
crypto isakmp key BandCkey address 10.0.30.201
crypto isakmp key AandCkey address 10.0.30.200
!
crypto ipsec transform−set routera esp−des esp−md5−hmac
crypto ipsec transform−set routerb esp−des esp−md5−hmac
!
crypto map mesh 12 ipsec−isakmp
set peer 10.0.30.200
set transform−set routera
match address 110
!
crypto map mesh 13 ipsec−isakmp
set peer 10.0.30.201
set transform−set routerb
match address 111
!
interface Ethernet1
ip address 192.168.12.1 255.255.255.0
no ip directed−broadcast
ip nat inside
!
interface Serial1/0
ip address 10.0.30.202 255.255.255.0
no ip directed−broadcast
ip nat outside no ip mroute−cache
no fair−queue
crypto map mesh
!
ip nat inside source route−map donotnat interface Serial1/0 –
 overload
ip classless
ip route 192.168.10.0 255.255.255.0 10.0.30.200
ip route 192.168.11.0 255.255.255.0 10.0.30.201
no ip http server
!
access−list 110 permit ip 192.168.12.0 0.0.0.255 192.168.10.0 −
 0.0.0.255
access−list 111 permit ip 192.168.12.0 0.0.0.255 192.168.11.0 −
 0.0.0.255
access−list 112 deny ip 192.168.12.0 0.0.0.255 192.168.10.0 −
 0.0.0.255
access−list 112 deny ip 192.168.12.0 0.0.0.255 192.168.11.0 −
 0.0.0.255
access−list 112 permit ip 192.168.12.0 0.0.0.255 any
!
route−map donotnat permit 12
 match ip address 112

These configurations define multiple crypto maps with different sequence numbers defined for each
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crypto map. This allows each router to configure IPSec parameters accordingly on a per−host basis.
To view the security associations that IKE has set up for each router, issue the show crypto
isakmp sa command on each router. Issuing the command on Router B displays the following
output.

#show crypto isakmp sa
    dst            src            state         conn−id         slot
10.0.30.200     10.0.30.201      QM_IDLE          16             0
10.0.30.202     10.0.30.201      QM_IDLE          17             0
!

Related solution:
Found on

page:
Configuring Network Address Translation (NAT) 138
Configuring IPSec Using Manual Keys

The use of IKE enhances IPSec by providing additional features, flexibility, and ease of
configuration for IPSec standards. Some network equipment may not support IKE, and in these
instances, IPSec can be configured without IKE. If IKE is not used for establishing the security
associations, there is no negotiation of security associations, so the configuration information in
both systems must be the same in order for traffic to be processed successfully by IPSec.

IKE provides for the dynamic creation of SAs and is the preferred method to use with IPSec. This
section covers manual configuration. Manual keying involves a direct exchange of keys between
IPSec peers, and this method of key exchange is not a very scalable solution for IPSec. A benefit of
manual keying is that it allows Cisco networking equipment to work with other vendors’ networking
equipment when the services of IPSec are needed and IKE cannot be used. The process of
configuring manual IPSec involves the configuration of remote keys during the initial IPSec
configuration of the routers. Each crypto map requires multiple keys. For AH authentication, there is
a key for both the outbound and inbound sessions. For ESP, there is a cipher and authentication
key for both the outbound and inbound sessions.

To configure manual IPSec keys between IPSec peers, follow these steps:

To create the crypto map entry and enter the crypto map configuration mode, use the
following command:

crypto map map−name seq−num ipsec−manual

The map−name defines the name that identifies the crypto map set. The seq−num
parameter is the number that is assigned to this crypto map; it should not be chosen
arbitrarily because this number is used to rank multiple crypto map entries within a crypto
map set, and a crypto map entry with a lower seq−num is evaluated before a map entry with
a higher seq−num. The ipsec−manual parameter specifies that IKE will not be used to
establish the security associations for traffic that is matched by this crypto map and the
security associations will be created by a manual process. Use of this command moves you
into crypto map configuration mode.

1. 

In crypto map configuration mode, use the following command to specify an extended
access list for a crypto map entry that matches packets for which encryption should be

2. 
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performed:

match address <access−list number | name>

To specify an IPSec peer, use this command in crypto map configuration mode:

set peer <ip address | hostname>

You can specify the remote IPSec peer by its hostname if the hostname is mapped to the
peer’s IP address in a domain name server (DNS) or you manually map the hostname to the
IP address with the ip host command that was discussed earlier. When configuring manual
IPSec to set up security associations, you can specify only one peer per crypto map.

3. 

To specify which transform sets can be used with the crypto map entry, use the following
command:

set transform set <transform−set−name1> −
  <transform−set−name2....transform−set−name6>

List multiple transform sets in order of priority with the highest−priority transform set listed
first. When configuring manual IPSec to set up security associations, you can specify one
transform set per crypto map.

4. 

Use one of the following commands to manually specify the session keys for AH or ESP.
The ah parameter sets the session key for the Authentication Header protocol:

set session−key <inbound | outbound> ah <spi> <hex−key−string>

5. 

The esp parameter sets the session key for the Encapsulating Security Protocol:

set session−key <inbound | outbound> esp <spi> cipher −
 <hex−key−string> authenticator <hex−key−string>

When defining the session key for either the AH protocol or the ESP protocol, both an inbound and
outbound key must be configured for each peer. Figure 6.8 displays a network with two routers
separated by a WAN that must protect data via the use of IPSec. The routers will be configured to
use IPSec with manual keys.

Because the configuration of manual IPSec is different when using the Authentication Header
protocol as opposed to the Encapsulating Security Payload within a transform set, each
configuration will be discussed separately. Listing 6.13 and Listing 6.14 display the manual IPSec
configurations of Router 1 and Router 2 in Figure 6.8 using AH transform sets.

Listing 6.13: Manual AH configuration of Router 1.

hostname Router−1
!
username ipsec privilege 15 password 0 ipsec
memory−size iomem 10
ip subnet−zero
ip tcp synwait−time 10
no ip domain−lookup
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!
crypto ipsec transform−set manual ah−sha−hmac

!
crypto map toR2 10 ipsec−manual
set peer 192.168.200.2
set transform−set manual
match address 110 set session−key inbound ah 3073 −
 CCCC1234567890CCCC1234567890CCCC1234567890CCCC
set session−key outbound ah 3072 −
 DDDD1234567890DDDD1234567890DDDD1234567890DDD1

!
interface Ethernet1
ip address 192.168.10.1 255.255.255.128
no ip directed−broadcast

!
interface Serial1/0 
ip address 192.168.200.1 255.255.255.0
no ip directed−broadcast

no ip mroute−cache
no fair−queue crypto map mesh
!
ip classless
!
access−list 110 permit ip 192.168.10.0 0.0.0.255 192.168.11.0 –
 0.0.0.255
!

Listing 6.14: Manual AH configuration of Router 2.
hostname Router−2
!
username ipsec privilege 15 password 0 ipsec
memory−size iomem 10
ip subnet−zero ip tcp synwait−time 10
no ip domain−lookup
!
crypto ipsec transform−set manual ah−sha−hmac
!
crypto map toR1 10 ipsec−manual
set peer 192.168.200.1 
set transform−set manual
match address 101
set session−key inbound ah 3072 −
  DDDD1234567890DDDD1234567890DDDD1234567890DDD1
set session−key outbound ah 3073 −
  CCCC1234567890CCCC1234567890CCCC1234567890CCCC
!
interface Ethernet1/0
ip address 192.168.11.1 255.255.255.128
no ip directed−broadcast

!
interface Serial0/0
ip address 192.168.200.2 255.255.255.0
no ip directed−broadcast

no ip mroute−cache
no fair−queue
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crypto map mesh
! 
ip classless
!
access−list 101 permit ip 192.168.11.0 0.0.0.255 192.168.10.0 −
 0.0.0.255
!

Figure 6.8: Network using manual IPSec Keys
Note The configurations in Listing 6.13 and Listing 6.14 are not recommended for a

production environment because each configuration provides authentication
services only for the IP packet.

Access lists are read in sequential order by a router; as such, any packet in Listing 6.14 that has a
source IP address that is within the 192.168.11.0 subnet with a destination IP address within the
192.168.10.0 subnet will match access list 101 (which is defined under crypto map toR1) and
create a match rule for IPSec, thus allowing IPSec to provide authentication services on the packet.
Any other packet that does not match the permit statement within access list 101 will not be
protected by IPSec because of the implicit deny any at the end of the access list. Security
associations established via the use of manual IPSec do not expire (whereas security associations
established via IKE do), and an inbound session key configured on one IPSec peer must match the
outbound session key configured on the remote IPSec peer. To view the manual security
associations established on each router, you must issue the show crypto ipsec sa command.
Issuing the show crypto ipsec sa command on Router 2 displays the output in Listing 6.15.

Listing 6.15: Manual security associations on Router 2.

Router−2#sh crypto ipsec sa

interface: Serial0/0
Crypto map tag: toR1, local addr. 192.168.200.2
!
local ident: (192.168.11.0/255.255.255.0/0/0)
remote ident: (192.168.10.0/255.255.255.0/0/0)
current_peer: 192.168.200.1
PERMIT, flags={origin_is_acl,}
pkts encaps: 117, pkts encrypt: 49, pkts digest 117
pkts decaps: 116, pkts decrypt: 48, pkts verify 116
pkts compressed: 0, pkts decompressed: 0
pkts not compressed: 0, pkts compr. failed: 0, −
  pkts decompress failed: 0
send errors 1, recv errors 0
!
local crypto endpt.: 192.168.200.2, −
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  remote crypto endpt.: 192.168.200.1
path mtu 1500, media mtu 1500
current outbound spi: C01
!
inbound esp sas:
!
inbound ah sas:
spi: 0xC00(3072)
transform: ah−sha−hmac ,
in use settings ={Tunnel,}
slot: 0, conn id: 2001, flow_id: 1, crypto map: toR1
no sa timing
replay detection support: Y
!
inbound pcp sas:
!
outbound esp sas:
!
outbound ah sas:
spi: 0xC01(3073)
transform: ah−sha−hmac,
in use settings ={Tunnel,}
slot: 0, conn id: 2000, flow_id: 2, crypto map: toR1
no sa timing
replay detection support: Y
!
outbound pcp sas:
!
Router−2#
!

Notice the highlighted lines in Listing 6.15; each of these lines state that the security association for
inbound and outbound traffic do not timeout, unlike security associations created using IKE. During
the configuration of Router 2 in Listing 6.14, the debug crypto ipsec, debug crypto engine, and
debug crypto key−exchange commands were used to verify that both routers were configured
correctly. The output from those commands can be seen in Listing 6.16.

Listing 6.16: Security association process on Router 2.

Router−2#debug crypto ipsec
Crypto IPSEC debugging is on
Router−2#debug crypto engine
Crypto Engine debugging is on
Router−2#debug crypto key−exchange
Crypto Key Exchange debugging is on
!
: IPSEC(sa_request): ,
  (key eng. msg.) src= 192.168.200.2, dest= 192.168.200.1,
  src_proxy= 192.168.11.0/255.255.255.0/0/0 (type=4), 
  dest_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4),
  protocol= AH, transform= ah−sha−hmac,
  lifedur= 3600s and 4608000kb,
  spi= 0x173715C3(389486019), conn_id= 0, keysize= 0,
  flags= 0x4004
: IPSEC(key_engine): got a queue event...
: IPSEC(initialize_sas):,
  (key eng. msg.) src= 192.168.200.2, dest= 192.168.200.1,
  src_proxy= 192.168.11.0/255.255.255.0/0/0 (type=4),
  dest_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4),
  protocol= AH, transform= ah−sha−hmac,
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  lifedur= 3600s and 4608000kb,
  spi= 0xC01(3073), conn_id= 2000, keysize= 0, flags= 0x4
: IPSEC(initialize_sas):,
  (key eng. msg.) dest= 192.168.200.2, src= 192.168.200.1,
  dest_proxy= 192.168.11.0/255.255.255.0/0/0 (type=4),
  src_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4),
  protocol= AH, transform= ah−sha−hmac,
  lifedur= 3600s and 4608000kb,
  spi= 0xC00(3072), conn_id= 2001, keysize= 0, flags= 0x4
: IPSEC(create_sa): sa created,
  (sa) sa_dest= 192.168.200.1, sa_prot= 51,
  sa_spi= 0xC01(3073),
  sa_trans= ah−sha−hmac, sa_conn_id= 2000
: IPSEC(create_sa): sa created,
  (sa) sa_dest= 192.168.200.2, sa_prot= 51,
  sa_spi= 0xC00(3072),
  sa_trans= ah−sha−hmac, sa_conn_id= 2001

The manual IPSec configurations of Router 1 and Router 2 in Listings 6.13 and 6.14, which used
AH only to provide authentication services, do not provide the strongest form of encryption services.
In fact, the configurations did not provide any encryption services; they provided only authentication.
To provide the encryption services, the use of ESP is needed.

Router 1 and Router 2 in Figure 6.8 will be configured to provide the security services of both AH
and ESP. The crypto map that is defined for each router will make use of a transform set that
includes an ESP encryption protocol, and as such, each router will define IPSec keys for ESP
encryption for both inbound and outbound traffic. The transform set will also include an ESP
authentication protocol, so an IPSec key for ESP authentication for inbound and outbound traffic
must be defined as well. The configuration of the AH protocol will remain the same as they are in
Listing 6.13 and 6.14. The manual AH and ESP configuration of Router 1 and Router 2 are
displayed in Listing 6.17 and Listing 6.18.

Listing 6.17: Manual AH and ESP configuration of Router 1.

hostname Router−1
!
username ipsec privilege 15 password 0 ipsec
memory−size iomem 10
ip subnet−zero
ip tcp synwait−time 10
no ip domain−lookup
!
crypto ipsec transform−set manual ah−sha−hmac esp−des −
esp−sha−hmac

!
crypto map toR2 10 ipsec−manual
set peer 192.168.200.2
set transform−set manual
match address 110
set session−key inbound esp 4096 cipher −
 BBBB1234567890BBBB1234567890BBBB1234567890BBB0 authenticator −
 1234567890BBBB1234567890BBBB1234567890BBBB1234
set session−key outbound esp 4098 cipher −
 AAAA1234567890AAAA1234567890AAAA1234567890AAA0 authenticator −
 1234567890AAAA1234567890AAAA1234567890AAAA1234
set session−key inbound ah 3073 −
 CCCC1234567890CCCC1234567890CCCC1234567890CCCC
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set session−key outbound ah 3072 −
 DDDD1234567890DDDD1234567890DDDD1234567890DDD1
!
interface Ethernet1 
ip address 192.168.10.1 255.255.255.128
no ip directed−broadcast
ip nat inside
!
interface Serial1/0
ip address 192.168.200.1 255.255.255.0
no ip directed−broadcast 
ip nat outside
no ip mroute−cache
no fair−queue
crypto map mesh
!
ip nat inside source route−map donotnat interface Serial1/0 −
 overload
ip classless
!
access−list 110 permit ip 192.168.10.0 0.0.0.255 192.168.11.0 −
 0.0.0.255
access−list 112 deny ip 192.168.10.0 0.0.0.255 192.168.11.0 −
 0.0.0.255
access−list 112 permit ip 192.168.10.0 0.0.0.255 any
!
route−map donotnat permit 10
 match ip address 112

Listing 6.18: Manual AH and ESP configuration of Router 2.
hostname Router−2
!
username ipsec privilege 15 password 0 ipsec
memory−size iomem 10
ip subnet−zero
ip tcp synwait−time 10
no ip domain−lookup
!
crypto ipsec transform−set manual ah−sha−hmac esp−des
 esp−sha−hma
!
crypto map toR1 10 ipsec−manual
set peer 192.168.200.1
set transform−set manual
match address 101
set session−key inbound esp 4098 cipher −
 AAAA1234567890AAAA1234567890AAAA1234567890AAA0 authenticator −
 1234567890AAAA1234567890AAAA1234567890AAAA1234
set session−key outbound esp 4096 cipher −
 BB1234567890BBBB1234567890BBBB1234567890BBB0 authenticator −
 1234567890BBBB1234567890BBBB1234567890BBBB1234
set session−key inbound ah 3072 −
 DDDD1234567890DDDD1234567890DDDD1234567890DDD1
set session−key outbound ah 3073 −
 CCCC1234567890CCCC1234567890CCCC1234567890CCCC
!
interface Ethernet1/0
ip address 192.168.11.1 255.255.255.128
no ip directed−broadcast 
ip nat inside
!
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interface Serial0/0
ip address 192.168.200.2 255.255.255.0
no ip directed−broadcast 
ip nat outside
no ip mroute−cache
no fair−queue
crypto map mesh
!
ip nat inside source route−map donotnat interface Serial0/0 −
 overload
ip classless
!
access−list 101 permit ip 192.168.11.0 0.0.0.255 192.168.10.0 −
 0.0.0.255
access−list 102 deny ip 192.168.10.0 0.0.0.255 192.168.11.0 −
 0.0.0.255
access−list 102 permit ip 192.168.10.0 0.0.0.255 any
!
route−map donotnat permit 10
 match ip address 102

Again, security associations established via the use of manual IPSec do not expire (whereas
security associations established via IKE do) and an inbound session key configured on one IPSec
peer must match the outbound session key configured on the remote IPSec peer. To view the
manual security associations established on each router, you must issue the show crypto ipsec sa
command. Issuing the show crypto ipsec sa command on Router 1 displays the output in Listing
6.19.

Listing 6.19: Manual security associations on Router 1.

Router−1#sh crypto ipsec sa

interface: Ethernet0/0
    Crypto map tag: toR2, local addr. 192.168.200.1
local ident: (192.168.10.0/255.255.255.0/0/0)
remote ident: (192.168.11.0/255.255.255.0/0/0)
current_peer: 192.168.200.2
PERMIT, flags={origin_is_acl,}
pkts encaps: 705, pkts encrypt: 705, pkts digest 705
pkts decaps: 699, pkts decrypt: 699, pkts verify 699
pkts compressed: 0, pkts decompressed: 0
pkts not compressed: 0, pkts compr. failed: 0,
pkts decompress failed: 0
send errors 0, #recv errors 0
!
local crypto endpt.: 192.168.200.1,
remote crypto endpt.: 192.168.200.2
path mtu 1500, media mtu 1500
current outbound spi: 1002
!
inbound esp sas:
spi: 0x1000(4096)
transform: esp−des esp−sha−hmac,
in use settings ={Tunnel,}
slot: 0, conn id: 2003, flow_id: 1, crypto map: toR2
no sa timing
IV size: 8 bytes
replay detection support: Y
!
inbound ah sas:
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spi: 0xC01(3073)
transform: ah−sha−hmac,
in use settings ={Tunnel,}
slot: 0, conn id: 2002, flow_id: 1, crypto map: toR2
no sa timing
replay detection support: Y
inbound pcp sas:
!
outbound esp sas:
spi: 0x1002(4098)
transform: esp−des esp−sha−hmac,
in use settings ={Tunnel,}
slot: 0, conn id: 2001, flow_id: 2, crypto map: toR2
no sa timing
IV size: 8 bytes
replay detection support: Y
!
outbound ah sas:
spi: 0xC00(3072)
transform: ah−sha−hmac,
in use settings ={Tunnel,}
slot: 0, conn id: 2000, flow_id: 2, crypto map: toR2
no sa timing
replay detection support: Y
!
outbound pcp sas:
Router−1#

One other useful command that can be used to verify that all security associations are configured
properly and that each one is active is the show crypto engine connection active command. This
command will display the current active encrypted session connections. Issuing the command on
Router 2 displays the following output:

Router−2#sh crypto en conn ac
!
ID   Interface    IP−Address    State   Algorithm          Enc  Dec
2000 Serial0/0   192.168.200.2   set    HMAC_SHA           612   0
2001 Serial0/0   192.168.200.2   set    HMAC_SHA+DES_56_CB 612   0
2002 Serial0/0   192.168.200.2   set    HMAC_SHA            0  612
2003 Serial0/0   192.168.200.2   set    MAC_SHA+DES_56_CB   0  612

The ID field is the connection ID number, and each active encrypted session connection is identified
by an ID number. The Interface field identifies the interface that is involved in the encrypted session
connection. The IP−Address field identifies the IP address of the interface involved in the encrypted
session. The State field identifies the state of the connection. The Algorithm field identifies the
algorithm that is used to encrypt or to decrypt the packets. The Enc field displays the total number
of outbound encrypted packets, and the Dec field displays the total number of inbound encrypted
packets.

Although manual IPSec configurations allow a security administrator to have strict control over the
implementation of IPSec VPNs, as well provide interoperability with any device that does not
support the IPSec utility services of IKE, these advantages come with an added cost. The overhead
associated with maintaining strict control over the IPSec VPNs can become burdensome as the
number of VPNs the company has begins to grow. Security administrators should always be aware
that when configuring manual IPSec, each router should contain a mirror copy IPSec configuration
of its peer router. One of the problems associated with manual IPSec configurations is incorrectly
configured keys between peers.
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For instance, changing the keys on Router 2 in Listing 6.18 will result in encryption not taking place
and error messages being displayed on Router 2. Listing 6.20 displays the new, incorrectly
configured keys on Router 2.

Listing 6.20: Changing keys on Router 2.

crypto map toR1 10 ipsec−manual
no set session−key inbound esp 4098 cipher −
 AAA1234567890AAAA1234567890AAAA1234567890AAA0 authenticator −
 1234567890AAAA1234567890AAAA1234567890AAAA1234
no set session−key outbound esp 4096 cipher −
 BBBB1234567890BBBB1234567890BBBB1234567890BBB0 authenticator −
 1234567890BBBB1234567890BBBB1234567890BBBB1234
no set session−key inbound ah 3072 −
 DDD1234567890DDDD1234567890DDDD1234567890DDD1
no set session−key outbound ah 3073−
 CCCC1234567890CCCC1234567890CCCC1234567890CCCC
!
set session−key inbound esp 4098 cipher −
 11111111111111111111111111111111111111111111111 authenticator −
 1111111111111111111111111111111111111111111111
set session−key outbound esp 4096 cipher −
 2222222222222222222222222222222222222222222222 authenticator −
 2222222222222222222222222222222222222222222222
set session−key inbound ah 3072 − 
3333333333333333333333333333333333333333333333
set session−key outbound ah 3073 −
 4444444444444444444444444444444444444444444444

First, the original keys were deleted using the no form the set session−key command, and then
the new keys were added into the configuration. As the keys are being changed, Router 2 begins to
delete each security association it had configured. This can be seen in Listing 6.21 by issuing the
debug crypto ipsec and debug crypto engine commands.

Listing 6.21: Router 2 deleting security associations.

: IPSEC(delete_sa): deleting SA,
 (sa) sa_dest= 192.168.200.1, sa_prot= 51,
   sa_spi= 0xC01(3073),
   sa_trans= ah−sha−hmac, sa_conn_id= 2000
: IPSEC(delete_sa): deleting SA,
 (sa) sa_dest= 192.168.200.1, sa_prot= 50,
   sa_spi= 0x1000(4096),
   sa_trans= esp−des esp−sha−hmac, sa_conn_id= 2001
: IPSEC(delete_sa): deleting SA,
 (sa) sa_dest= 192.168.200.2, sa_prot= 51,
   sa_spi= 0xC00(3072),
   sa_trans= ah−sha−hmac , sa_conn_id= 2002
: IPSEC(delete_sa): deleting SA,
 (sa) sa_dest= 192.168.200.2, sa_prot= 50,
   sa_spi= 0x1002(4098),
   sa_trans=esp−des esp−sha−hmac, sa_conn_id=2003

Router 2 at this point has deleted each of the existing security associations it had configured for its
peer IPSec router. After the new keys (which are incorrect) are configured on Router 2 under the
crypto map and a packet that matches the encryption access list is received on the router, Router 2
should attempt to set a security association with Router 1. However, the security association
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attempt should fail because of incorrectly configured keys between the routers. This process can be
seen in the output in Listing 6.22.

Listing 6.22: Router 2’s failed attempt to set a security association.

: IPSEC(sa_request): ,
  (key eng. msg.) src= 192.168.200.2, dest= 192.168.200.1,
    src_proxy= 192.168.11.0/255.255.255.0/0/0 (type=4),
    dest_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4),
    protocol= AH, transform= ah−sha−hmac,
    lifedur= 3600s and 4608000kb,
    spi= 0x1028254B(271066443), conn_id= 0, keysize= 0,
    flags= 0x4004
: IPSEC(sa_request):,
  (key eng. msg.) src= 192.168.200.2, dest= 192.168.200.1,
    src_proxy= 192.168.11.0/255.255.255.0/0/0 (type=4),
    dest_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4),
    protocol= ESP, transform= esp−des esp−sha−hmac,
    lifedur= 3600s and 4608000kb,
    spi= 0x2360B83(37096323), conn_id= 0, keysize= 0,
    flags= 0x4004
: IPSEC(manual_key_stuffing): keys missing for −
  addr 192.168.200.2/prot 50/spi 0.
: IPSEC(sa_request):,
  (key eng. msg.) src= 192.168.200.2, dest= 192.168.200.1,
    src_proxy= 192.168.11.0/255.255.255.0/0/0 (type=4),
    dest_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4),
    protocol= AH, transform= ah−sha−hmac,
    lifedur= 3600s and 4608000kb,
    spi= 0xB2C0887(187435143), conn_id= 0, keysize= 0,
    flags= 0x4004
: IPSEC(sa_request):,
  (key eng. msg.) src= 192.168.200.2, dest= 192.168.200.1,
    src_proxy= 192.168.11.0/255.255.255.0/0/0 (type=4),
    dest_proxy= 192.168.10.0/255.255.255.0/0/0 (type=4),
    protocol= ESP, transform= esp−des esp−sha−hmac,
    lifedur= 3600s and 4608000kb,
    spi= 0x4AD1EE4(78454500), conn_id= 0, keysize= 0,
    flags= 0x4004
: IPSEC(manual_key_stuffing): keys missing for −
    addr 192.168.200.2/prot 50/spi 0.

Configuring Tunnel EndPoint Discovery

The ability to automate as much of the configuration and maintenance of IPSec VPNs as possible is
important for administrators who are challenged to minimize their administrative and operations
costs and at the same time layer sophisticated IP services, such as IPSec. One IPSec
enhancement that helps simplify VPN configuration is Tunnel EndPoint Discovery (TED), which was
available beginning in Cisco IOS software version 12.0(5)T. Tunnel EndPoint Discovery allows
IPSec to scale to large networks by reducing multiple encryption schemes, reducing the setup time,
and allowing for simple configurations on participating peer routers. Each IPSec−enabled router has
a simple configuration that defines the local network that the router is protecting and the IPSec
transforms that are required. Tunnel

EndPoint Discovery is recommended for use with networks in which the IPSec peers are not always
predetermined.
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To understand how Tunnel EndPoint Discovery works, I will use Figure 6.9 as an example for the
rest of this discussion. In Figure 6.9, Host A behind Router A attempts to establish a session with
Host B behind Router B. If Router A has not initiated encryption services before with Router B
(meaning no security association is set up), it compares the IP address of the destination host, Host
B in this case, to an access list that defines a range of IP addresses that determine which network
devices are members of the IPSec VPN group. This is accomplished via the use of a permit
statement within the access list. Upon receipt of the packet from Host A that is destined to Host B,
Router A drops the packet and then sends a TED probe packet to Router B. Upon receipt, Router B
drops the TED packet and sends a TED reply packet to Router A with its own IP address in the
payload of the packet. When Router A receives the TED reply packet, it initiates dynamic Internet
Key Exchange (IKE), which enables Router A to establish a secure network session.

Figure 6.9: Tunnel EndPoint Discovery
To configure Tunnel EndPoint Discovery, use the following commands:

Configure the IKE process as explained in "Configuring IPSec using Pre−Shared Keys"
earlier in this chapter.

1. 

Use the following command to create a dynamic crypto map entry:

 crypto dynamic−map <dynamic−map−name> <seq−num>

Use of this command places you in dynamic crypto map configuration command mode.

2. 

To specify which transform sets can be used with the dynamic crypto map entry, use the
following command:

 set transform set <transform−set−name1>−
 <transform−set−name2....transform−set−name6>

List multiple transform sets in order of priority with the highest−priority transform set listed
first.

3. 

In dynamic crypto map configuration mode, use this command to specify an extended
access list for a crypto map entry that matches packets that should be protected by
encryption:

 match address <access−list number | name>

4. 

Use the following command to add one or more dynamic crypto map sets into a crypto map
set via crypto map entries that reference the dynamic crypto map sets:

 crypto map <map−name> <seq−num> ipsec−isakmp −
 dynamic <dynamic−map−name> discover

5. 
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The discover parameter defined on the dynamic crypto map enables peer discovery.
Apply the crypto map to an interface using the crypto map<map−name> command. The
map name specified with this command is the name of the crypto map that was created in
Step 5.

6. 

Listing 6.23 and Listing 6.24 display the configuration needed to enable TED on both Router A and
Router B (use Figure 6.9 as a reference).

Listing 6.23: Tunnel EndPoint Discovery configuration of Router A.

hostname Router−A
!
username ipsec privilege 15 password 0 ipsec
ip subnet−zero
ip tcp synwait−time 10
no ip domain−lookup
!
crypto isakmp policy 10
 authentication pre−share
 group 2
 hash sha
!
crypto isakmp key aandbkey address 0.0.0.0
!
crypto ipsec transform−set discovery esp−des esp−md5−hmac
!
crypto dynamic−map discovery−map 10
 set transform−set ted−transforms
 match address 100
!
crypto map tunnelend 10 ipsec−isakmp dynamic discovery−map −
 discover
!
interface Ethernet1
 ip address 192.168.11.1 255.255.255.0
 no ip directed−broadcast
!
interface Serial0/0
 ip address 192.168.10.1 255.255.255.0
 no ip directed−broadcast
 crypto map tunnelend
!
ip classless ip route 0.0.0.0 0.0.0.0 192.168.10.2
no ip http server
!
access−list 100 permit ip 192.168.11.0 0.0.0.255 192.168.12.0 −
 0.0.0.255
access−list 100 permit icmp 192.168.11.0 0.0.0.255 192.168.12.0 −
 0.0.0.255
!
line con 0
login local
transport input none
line aux 0
line vty 0 4
login local

Listing 6.24: Tunnel EndPoint Discovery configuration of Router B.
hostname Router−B
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!
username ipsec privilege 15 password 0 ipsec
ip subnet−zero
ip tcp synwait−time 10
no ip domain−lookup
!
crypto isakmp policy 10
 authentication pre−share
 group 2
 hash sha
!
crypto isakmp key aandbkey address 0.0.0.0
!
crypto ipsec transform−set discovery esp−des esp−md5−hmac
!
crypto dynamic−map discovery−map 10
 set transform−set discovery
 match address 110
!
crypto map tunnelend 10 ipsec−isakmp dynamic discovery−map −
 discover
!
interface Ethernet1/0
 ip address 192.168.12.1 255.255.255.0
 no ip directed−broadcast
!
interface Serial0/0
 ip address 192.168.10.2 255.255.255.0
 no ip directed−broadcast
 crypto map tunnelend
!
ip classless ip route 0.0.0.0 0.0.0.0 192.168.10.1
no ip http server
!
access−list 100 permit ip 192.168.12.0 0.0.0.255 192.168.11.0 −
 0.0.0.255
access−list 100 permit icmp 192.168.12.0 0.0.0.255 192.168.11.0 –
 0.0.0.255
!
line con 0
login local
transport input none
line aux 0
line vty 0 4
login local

After Host A behind Router A attempts to initiate a connection to Host B behind Router B, dynamic
IPSec security association takes place. Because Router A has not initiated encryption services
before with Router B (meaning no security association is set up), Router A compares the IP address
of the destination host, Host B in this case, against access list 100, which defines a range of IP
addresses that determine which network devices are members of the IPSec VPN group. Upon
receipt of the packet from Host A that is destined to Host B, Router A drops the packet and then
sends a TED probe packet to Router B. Upon receipt, Router B drops the TED packet and sends a
TED reply packet to Router A with its own IP address in the payload of the packet. When Router A
receives the TED reply packet, it initiates dynamic Internet Key Exchange (IKE), which enables
Router A to establish a secure network session. You can verify that a secure session has been set
up by issuing the debug crypto ipsec, debug crypto isakmp, and debug crypto engine
commands on Router A and having Host A attempt to connect Host B. Listing 6.25 displays the
complete output of the Tunnel EndPoint Discovery process.
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Listing 6.25: Complete Tunnel EndPoint process for Router A.

: IPSEC(tunnel discover request):,
(key eng. msg.) src= 192.168.11.1, dest= 192.168.12.1,
 src_proxy= 192.168.11.0/255.255.255.0/0/0 (type=4),
 dest_proxy= 192.168.10.1/255.255.255.255/0/0 (type=1),
 protocol= ESP, transform= esp−des esp−md5−hmac,
 lifedur= 3600s and 4608000kb,
 spi= 0x0(0), conn_id= 0, keysize= 0, flags= 0x4004
dest=Ethernet0/0:192.168.10.2
: ISAKMP: received ke message (1/1)
: ISAKMP: GOT A PEER DISCOVERY MESSAGE FROM THE SA MANAGER!!!
: src = 192.168.11.1 to 192.168.12.1, protocol 3, transform 2,
  hmac 1
: proxy source is 192.168.11.0/255.255.255.0 and my address
  (not used now) is 192.168.10.1
: ISAKMP: local port 500, remote port 500
: ISAKMP (2): ID payload
        next−payload : 5
        type : 1
        protocol : 17
        port : 500
        length : 8
: ISAKMP (2): Total payload length: 12
: 1st ID is 192.168.10.1
: 2nd ID is 192.168.11.0 /255.255.255.0
: ISAKMP (0:2): beginning peer discovery exchange
: ISAKMP (2): sending packet to 192.168.12.1 (I) PEER_DISCOVERY
  via Ethernet0/0:192.168.10.2
: ISAKMP (2): received packet from 192.168.10.2(I)PEER_DISCOVERY
: ISAKMP (0:2): processing vendor id payload
: ISAKMP (0:2): speaking to another IOS box!
: ISAKMP (0:2): processing ID payload. message ID = 0
: ISAKMP (0:2): processing ID payload. message ID = −1594735024
: ISAKMP (2): ID_IPV4_ADDR_SUBNET dst 192.168.12.0/255.255.255.0
  prot 0 port 0
: ISAKMP (2): received response to my peer discovery probe!
: ISAKMP: initiating IKE to 192.168.10.2 in response to probe.
: ISAKMP: local port 500, remote port 500
: ISAKMP (0:2): created new SA after peer−discovery
  with 192.168.10.2
: ISAKMP (3): sending packet to 192.168.10.2 (I) MM_NO_STATE
: ISAKMP (0:2): deleting SA reason "delete_me flag/throw" state
  (I) PEER_DISCOVERY (peer 192.168.12.1) input queue 0
: ISAKMP (3): received packet from 192.168.10.2 (I) MM_NO_STATE
: ISAKMP (0:3): processing SA payload. message ID = 0
: ISAKMP (0:3): Checking ISAKMP transform 1 against priority
  10 policy
: ISAKMP:      encryption DES−CBC
: ISAKMP:      hash SHA
: ISAKMP:      default group 2
: ISAKMP:      auth pre−share
: ISAKMP (0:3): atts are acceptable. Next payload is 0
: CryptoEngine0: generate alg parameter
: CRYPTO_ENGINE: Dh Phase 1 status: 0
: CRYPTO_ENGINE: Dh Phase 1 status: 0
: ISAKMP (0:3): SA is doing pre−shared key authentication
: ISAKMP (3): SA is doing pre−shared key authentication
  using id type ID_IPV4_ADDR
: ISAKMP (3): sending packet to 192.168.10.2 (I) MM_SA_SETUP
: ISAKMP (3): received packet from 192.168.10.2 (I) MM_SA_SETUP
: ISAKMP (0:3): processing KE payload. message ID = 0
: CryptoEngine0: generate alg parameter
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: ISAKMP (0:3): processing NONCE payload. message ID = 0
: CryptoEngine0: create ISAKMP SKEYID for conn id 3
: ISAKMP (0:3): SKEYID state generated
: ISAKMP (0:3): processing vendor id payload
: ISAKMP (0:3): speaking to another IOS box!
: ISAKMP (3): ID payload
        next−payload : 8
        type : 1
        protocol : 17
        port : 500
        length : 8
: ISAKMP (3): Total payload length: 12
: CryptoEngine0: generate hmac context for conn id 3
: ISAKMP (3): sending packet to 192.168.10.2 (I) MM_KEY_EXCH
: ISAKMP (0:2): purging SA.
: CryptoEngine0: delete connection 2
: ISAKMP (3): received packet from 192.168.10.2 (I) MM_KEY_EXCH
: ISAKMP (0:3): processing ID payload. message ID = 0
: ISAKMP (0:3): processing HASH payload. message ID = 0
: CryptoEngine0: generate hmac context for conn id 3
: ISAKMP (0:3): SA has been authenticated with 192.168.10.2
: ISAKMP (0:3): beginning Quick Mode exchange, M−ID of 699308944
: ISAKMP (0:3): asking for 1 spis from ipsec
: ISAKMP (0:3): had to get SPI's from ipsec.
: CryptoEngine0: clear dh number for conn id 1
: IPSEC(key_engine): got a queue event...
: IPSEC(spi_response): getting spi 560995998 for SA
  from 192.168.10.2 to 192.168.10.1 for prot 3
: ISAKMP: received ke message (2/1)
: CryptoEngine0: generate hmac context for conn id 3
: ISAKMP (3): sending packet to 192.168.10.2 (I) QM_IDLE
: ISAKMP (3): received packet from 192.168.10.2 (I) QM_IDLE
: CryptoEngine0: generate hmac context for conn id 3
: ISAKMP (0:3): processing SA payload. message ID = 699308944
: ISAKMP (0:3): Checking IPSec proposal 1
: ISAKMP: transform 1, ESP_DES
: ISAKMP: attributes in transform:
: ISAKMP:    encaps is 1
: ISAKMP:    SA life type in seconds
: ISAKMP:    SA life duration (basic) of 3600
: ISAKMP:    SA life type in kilobytes
: ISAKMP:    SA life duration (VPI) of 0x0 0x46 0x50 0x0
: ISAKMP:    authenticator is HMAC−MD5 : validate proposal 0
: ISAKMP (0:3): atts are acceptable.
: IPSEC(validate_proposal_request): proposal part #1,
  (key eng. msg.) dest= 192.168.10.2, src= 192.168.10.1,
    dest_proxy= 192.168.12.0/255.255.255.0/0/0 (type=4),
    src_proxy= 192.168.11.0/255.255.255.0/0/0 (type=4),
    protocol= ESP, transform= esp−des esp−md5−hmac,
    lifedur= 0s and 0kb,
    spi= 0x0(0), conn_id= 0, keysize= 0, flags= 0x4
: validate proposal request 0
: ISAKMP (0:3): processing NONCE payload. message ID = 699308944
: ISAKMP (0:3): processing ID payload. message ID = 699308944
: ISAKMP (0:3): processing ID payload. message ID = 699308944
: CryptoEngine0: generate hmac context for conn id 3
: ipsec allocate flow 0
: ipsec allocate flow 0
: ISAKMP (0:3): Creating IPSec SAs
: inbound SA from 192.168.10.2 to 192.168.10.1
  (proxy 192.168.12.0 to 192.168.11.0)
: has spi 560995998 and conn_id 2000 and flags 4
:         lifetime of 3600 seconds
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:         lifetime of 4608000 kilobytes
:         outbound SA from 192.168.10.1 to 192.168.10.2
         (proxy 192.168.11.0 to 192.168.12.0)
:         has spi 104538836 and conn_id 2001 and flags 4
:         lifetime of 3600 seconds : lifetime of 4608000 kilobytes
: ISAKMP (3): sending packet to 192.168.10.2 (I) QM_IDLE
: ISAKMP (0:3): deleting node 699308944 error FALSE reason ""
: IPSEC(key_engine): got a queue event...
: IPSEC(initialize_sas):,
  (key eng. msg.) dest= 192.168.10.1, src= 192.168.10.2,
    dest_proxy= 192.168.11.0/255.255.255.0/0/0 (type=4),
    src_proxy= 192.168.12.0/255.255.255.0/0/0 (type=4),
    protocol= ESP, transform= esp−des esp−md5−hmac,
    lifedur= 3600s and 4608000kb,
    spi= 0x21701E9E(560995998), conn_id= 2000,
    keysize= 0, flags= 0x4
: IPSEC(initialize_sas):,
  (key eng. msg.) src= 192.168.10.1, dest= 192.168.10.2,
    src_proxy= 192.168.11.0/255.255.255.0/0/0 (type=4),
    dest_proxy= 192.168.12.0/255.255.255.0/0/0 (type=4),
    protocol= ESP, transform= esp−des esp−md5−hmac,
    lifedur= 3600s and 4608000kb,
    spi= 0x63B22D4(104538836), conn_id= 2001, keysize= 0,
    flags= 0x4
: IPSEC(create_sa): sa created,
  (sa) sa_dest= 192.168.10.1, sa_prot= 50,
    sa_spi= 0x21701E9E(560995998),
    sa_trans= esp−des esp−md5−hmac, sa_conn_id= 2000
: IPSEC(create_sa): sa created,
  (sa) sa_dest= 192.168.10.2, sa_prot= 50,
    sa_spi= 0x63B22D4(104538836),
    sa_trans= esp−des esp−md5−hmac, sa_conn_id= 2001
Router−A#
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Chapter 7: Additional Access List Features

In Brief

In this chapter, I'll discuss IP access list security features. Two are slight deviations of the commonly
used numbered access lists and will be discussed in detail: session filtering using reflexive access
lists and lock and key security using dynamic access lists. I'll also address enhancements to access
list configurations using named access lists, access list comments, and time−based access lists.

An access list is a sequential series of filters. Each filter is made up of some sort of matching criteria
and action. The action within the filter is always either a permit or a deny. The criteria by which the
access list matches upon can be as simple as a source address or as complex as a source
address, a destination address, a protocol, a port, and flags. When access lists are configured, a
packet is compared against the filter rules contained within the access list. At the first filter rule, a
matching criteria is applied. If a match occurs at this rule, the packet is permitted or denied based
on the configured action of the filter rule. If a match does not occur, the packet is compared against
the second rule configured within the filter and the matching process is again applied. If a packet is
compared against all the rules configured within the filter and a match does not occur, the router
must have some default action method of determining what should happen to the packet. The
configured default action for the Cisco implementation of access lists is to deny any packet that is
subjected to each filter rule contained within an access list and does not match any of them. This
filter rule does not display in any configured access list and is the default action for an access list.
This is referred to as an implicit deny any.

Note Routers compare addresses against the access list conditions one by one. The order
of the conditions is critical for proper operation of the access list because the first
match in an access list is used. If the router does not find a match, the packet is
denied because of the implicit deny any at the end of each access list.

The two primary uses of access lists in security−related implementations are for packet filtering and
traffic selection. Packet filtering helps to control a packet or flow of packets through an internetwork.
This allows the router to limit network traffic, thus providing a finer granularity of control for
restricting network access. Traffic selection is used to determine what traffic the router should
consider "interesting" in order to invoke a certain feature or security operation.

Access list types may be identified by either a number or a name. Table 7.1 shows the access list
types and the number range available for each.

Table 7.1: Access list type and numbers.

Access List Type Range

Standard IP access list, Standard Vines 1–99

Extended IP access list, Extended Vines 100–199
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Ethernet Type Code, Transparent Bridging Protocol Type, Source Route Bridging
Protocol Type, Simple Vines

200–299

DECnet and Extended DECnet 300–399

XNS 400–499

Extended XNS 500–599

AppleTalk 600–699

Transparent Bridging Vendor Code, Source Route Bridging Vendor Code, Ethernet
Address

700–799

Standard IPX 800–899

Extended IPX 900–999

IPX SAP 1000–1099

Extended Transparent Bridging 1100–1199

NLSP Route Summary 1200–1299

When determining whether or not to configure access lists on a production router, take the following
rules into consideration prior to applying the configuration change to the router:

Organization—Organization of your access lists should be such that the more specific
access entries are configured first and the more general entries are listed toward the bottom
of the list.

• 

Precedence—Configure your access list such that the more frequently matched conditions
are placed before less frequently matched conditions. This alleviates load on the router's
CPU.

• 

Implicit action—If the purpose of your access list is to deny a few devices and permit all
others, you must remember to add the permit any statement because the access list has at
the end an implicit deny any that will not appear in the configuration.

• 

Additions—New access list entries are always added to the end of the existing access list.
When you're using numbered access, it is best to copy the access list configuration to a text
editor, make the necessary changes to the access list, and then reapply the access list to
the router. Access list entries cannot be selectively deleted with numbered access lists;
however, they can be selectively deleted with named access lists.

• 
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Wildcard Masks

To fully understand access lists, you must first understand inverse masks, known more commonly
as wildcard masks. A wildcard mask specifies which bits in an IP address should be ignored when
that address is compared with another IP address. Normal IP masks that are used for subnetting
use a Boolean AND operation to derive a network mask or a subnet address. To perform the
Boolean AND operation, you AND a value of 0 to another value of 0 or 1, and the result is a value of
0. Only a value of 1 ANDed with another value of 1 will result in a value of 1, resulting in a value of 1
if and only if both bits are 1. A Boolean OR operation, which is used for wildcard masks, is the exact
opposite of the AND operation. To perform a Boolean OR operation, you OR a value of 1 to another
value of 1 or 0 and the result is a value of 1. Only a 0 ORed with another 0 value will result in a 0
value, resulting in a value of 0 if and only if both bits are 0. Wildcard masks set a 0 for each bit of
the address that should be matched exactly and a 1 for each bit where anything will match; the 1
bits are frequently referred to as don't care bits and the 0 bits are referred to as do care bits.

In order to define the difference between the Boolean AND operation and the Boolean OR
operation, we will create a truth table. Figure 7.1 displays a truth table for the Boolean AND
operation and the Boolean OR operation.

Boolean AND (used for subnet masks)
192.168.10.10 = 11000000101010000000101000001010
255.255.255.0 = 11111111111111111111111100000000
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
192.168.10.0 = 11000000101010000000101000000000
Boolean OR (used for wildcard masks)
192.168.10.10 = 11000000101010000000101000001010
   0.0.0.255 = 00000000000000000000000011111111
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
192.168.10.255 = 11000000101010000000101011111111

Figure 7.1: Truth table for Boolean operations.
Subnet masks make use of the Boolean AND operation to derive a network or subnet. Access lists
make use of the Boolean OR operation, which is the inverse of the AND operation, to come to the
same conclusion. The AND operation derives a network or subnet address from the host address
and mask. A 1 is set in the mask to correspond to each bit of the network address, and a 0 is set for
each bit of the host address. The Boolean AND operation is performed on each bit, and the result is
the network or subnet number. The OR operation derives a network from the host address and
inverse mask. A 0 is set in the mask to correspond to each bit of the network address, and a 1 is set
for each bit of the host address. The Boolean OR operation is performed on each bit, and the result
is the network or subnet number. In IP terms, the result of using the inverse mask is that all hosts
within the 192.168.10.0 subnet are matched. Any address within the range of 192.168.10.1 through
192.168.10.254 will match that particular wildcard mask combination.
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Standard Access Lists

An access list defined with a number ranging from 1 to 99 is a standard access list. A standard
access list is used to permit or deny packets based solely on the source IP address. The source
address is the number of the network or host from which the packet is being sent. The source
address is followed by a wildcard mask, which is used to specify the bit positions that must match.
Standard access lists can be used as either an inbound or outbound filter, or as both. When a
standard access list is used as an inbound filter, the router checks the source address of the packet
and compares that address with each entry within the access list. If the access list is configured with
a permit statement for that source IP address, the router breaks out of the access list and processes
the packet accordingly. If the access list is configured with a deny statement or does not match any
other filter rule defined within the access list, the packet is dropped. When a standard access list is
used as an outbound packet filter, the packet is received by the router and switched to the proper
outbound interface. At this point the router will compare the source address against the filter rules
contained within the access list. If the access list permits that packet, the router forwards the packet
out to the interface toward its final destination, and if the packet matches a deny statement or does
not match any other filter rule defined within the access list, the packet is dropped.

Standard access lists also support a feature known as implicit masks. Implicit masks can be used
by not issuing a wildcard mask after the IP address specified within the access list. Implicit masks
use a mask of 0.0.0.0, and as mentioned earlier in the section "Wildcard Masks," a mask of all 0s
instructs the router to match all bits within the address in order to permit or deny the packet.

One more thing you should know about standard access lists is that they should be placed as close
to the intended destination as possible.

Extended Access Lists

Extended access lists provide more flexibility in the specification of what is to be filtered. An access
list defined with a number ranging from 100 to 199 is an extended IP access list. An extended
access list can be configured to be static or dynamic; the default is static. An extended access list is
used to permit or deny packets based on multiple factors such as protocol, source IP address,
destination IP address, precedence, Type−of−Service (TOS), and port. An extended access list also
supports the use of logging, which creates an informational logging message about any packet that
matches a filter rule within the list.

Extended access lists can filter according to protocol and protocol features. When configuring an
extended access list for different protocols, you will notice the command syntax for the extended
access list for each protocol is different; these changes must be taken into consideration prior to
configuring the access list or you could inadvertently open a security hole. Different IP protocol
configurations will be discussed in "Immediate Solutions" later in this chapter. Protocols that can be
matched upon when configuring extended access lists are listed in Table 7.2.

Table 7.2: Protocols available with extended access lists.

Name Description

0–255 Any IP protocol number

234



ahp Authentication Header Protocol

eigrp Cisco Systems Enhanced Interior Gateway Routing Protocol

esp Encapsulated Security Payload

gre Cisco Systems Generic Route Encapsulation Tunneling

icmp Internet Control Message Protocol

igmp Internet Gateway Message Protocol

igrp Cisco Systems Interior Gateway Routing Protocol

ip Any Internet Protocol

ipinip IP in IP Tunneling

nos KA9Q NOS Compatible IP over IP Tunneling

ospf Open Shortest Path First Routing Protocol

pcp Payload Compression Protocol

pim Protocol Independent Multicast

tcp Transmission Control Protocol

udp User Datagram Protocol

Extended access lists should be placed as close to the source as possible, in part because of their
capability to filter packets using a finer granularity of controls. This also prevents wasting
unnecessary bandwidth and processing power on packets that are to be dropped anyway.

Reflexive Access Lists

For another form of security, you can use reflexive access lists. Based on session parameters, they
permit IP packets for sessions that originate from within a network but deny packets that originate
from outside your network.

Using reflexive access lists is commonly referred to as session filtering. Reflexive access lists are
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most often configured on routers, which border between two different networks. They provide a
certain level of security against spoofing and denial−of−service (DoS) attacks. You would typically
implement reflexive access lists on a customer edge Internet router or firewall router.

Reflexive access lists share many of the features that normal access lists possess. Rules are
created and evaluated in a sequential order until a match occurs, at which time no further entry
evaluation takes place. There are also some differences between a reflexive access list and a
normal access list. Reflexive access lists use a feature referred to as "nesting," meaning you can
place them within another named extended access list. Reflexive access lists do not have an
implicit deny any statement at the end of the list configuration, and the access list entries are
created on a temporary basis.

Fundamentals of Reflexive Access Lists

Reflexive access lists are triggered when an IP packet is sent from within the inside secure network
to an external destination network. If this packet is the first in the session, a temporary access list
entry is created. This entry will permit or deny traffic to enter back into the network if the traffic
received on the interface is deemed to be part of the original session created from within the inside
network; it will deny all other traffic that is not part of the original session. Figure 7.2 details the
operation of reflexive access lists.

Figure 7.2: Example of traffic initiated on an internal network with reflexive access lists configured.
After the session has completed, the temporary access list entry is removed. If the session was
opened with a TCP packet, two methods are used to tear it down. The first method will tear down
the session 5 seconds after two set FIN bits are detected within the packet or the detection of a
RST bit being set within the packet. The second method tears down the session if no packets for
that session have been detected within a configurable timeout period. Because UDP is a
connectionless−oriented protocol that does not maintain session services, if the session was
opened with a UDP packet or other protocols with similar characteristics, the session is torn down
when no packets for the session have been detected within a configurable timeout period. Reflexive
access lists can be configured on internal interfaces or external interfaces.

Dynamic Access Lists

Dynamic access lists, commonly referred to as Lock and Key security, are a form of traffic filtering
that can dynamically allow external users IP traffic that would normally be blocked by a router, to
gain temporary access through the router such that it can reach its final destination. In order for this
to happen, a user must first telnet to the router. The dynamic access list will then attempt to
authenticate the user. If the credentials the user supplies during the authentication phase are
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correct, the user will be disconnected from her Telnet session and the access list will dynamically
reconfigure the existing access list on the interface such that the user is allowed temporary access
through the router. After a specified timeout period—either an idle timeout period or an absolute
timeout period—the access list reconfigures the interface such that it returns to its original state.

Note After the user passes the authentication phase, the dynamic access list creates a
temporary opening in the router by reconfiguring the interface to allow access
through the router. This can potentially allow a user to spoof the source address of
the legitimate user and gain unauthorized access into the internal network. IPSec
termination at the router performing Lock and Key security is recommended.

Typically, you would configure dynamic access lists when you want a specific remote host or a
subset of remote hosts to be allowed access to a host or a subset of hosts within your network. This
can take place via the Internet or through dedicated circuits between your network and the remote
network. Dynamic access lists are also configured when you want a host or a subset of hosts within
your network to gain access to a remote host or subset of remote hosts protected with a firewall.

As mentioned earlier, in order for the user to gain access through the router, she first must pass the
authentication phase. Authentication can take many forms, but the most commonly used are
maintaining a local user database within the router or performing authentication from a central
security server such as a TACACS+ or RADIUS server. The central security server method of
authentication is recommended. Dynamic access lists make use of the autocommand and the
access−enable commands; these commands allow the creation of the temporary access list. There
are some caveats to configuring dynamic access lists:

You can configure only one dynamic access list for each access list.• 
You cannot associate a dynamic access list to more than one access list.• 
An idle timeout or an absolute timeout must be configured. The idle timeout is defined within
the autocommand command, and the absolute timeout is configured within the access−list
command. If neither is configured, the temporary access entry will remain indefinitely and
must be cleared manually. The idle timeout value must be less than the absolute timeout
value.

• 

Fundamentals of Lock and Key Security

Figure 7.3 details the steps involved when a host on an outside network would like to gain
authorized access to a host behind a router configured with Lock and Key security. Host B would
like to access Host A behind the perimeter router, Router A, but first must be authenticated using
Lock and Key Security. The steps are as follows:
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Figure 7.3: Example of Host B accessing Host A through Router A configured with dynamic access
lists.

Host B opens a Telnet session to the virtual terminal port of Router A.1. 
Router A receives the Telnet request and opens a Telnet session with Host B.2. 
Depending on the authentication method Router A is configured to perform, Router A asks
Host B to provide the proper authentication credentials (configured on a security access
server or within the local authentication database).

3. 

After Host B passes the authentication phase, Router A logs Host B out of the Telnet
session. At this time Router A creates a temporary access list entry within the dynamic
access list.

4. 

Host B now has a dynamic access list entry within Router A, allowing access to Host A.5. 
Finally, Router A will delete the temporary access entry after the configured idle timeout
period or absolute timeout period is reached.

6. 

Additional Access List Features

Prior to Cisco IOS 11.2 code, IP access list configuration was somewhat limited. However, many
enhancements have since been added within the IOS. Named access lists, time−based access lists,
and access lists comments are just a few.

Named Access Lists

Typical numbered access lists have a finite number of lists that can be created. As of Cisco IOS
11.2 you can identify IP access lists with an alphanumeric string rather than a number. When you
use named access lists, you can configure more IP access lists in a router than you could if you
were to use numbered access lists. Another advantage to using a named access list is that
descriptive names can make large numbers of access lists more manageable. If you identify your
access list with a name rather than a number, the mode and command syntax is slightly different.
Keep a few things in mind when configuring named access lists: Not all access lists that accept a
number will accept a name, and a standard access list and an extended access list cannot have the
same name.

Time−Based Access Lists

Cisco IOS 12.0(1) introduced timed−based access lists, which are implemented based on the time
range specified within the list configuration. Prior to the introduction of this feature, access lists that
were defined were in effect for an infinite period of time or until they were deleted by the
administrator. With time−based access list configured, administrators can control traffic according to
service provider rates (which might vary during certain times of the day) and have finer granularity
of control when permitting or denying certain traffic within their network.

Note The time−based access list feature is dependant on a reliable clock source. It is
therefore recommended that the router be configured to utilize the features of the
Network Time Protocol (NTP).

Commented Access Lists

Commented access lists give security administrators the opportunity to configure a remark within
the access list. This feature allows for ease of identification when defining an access list. The
commented access list feature is configurable within both named and numbered access lists.
Commented remarks within the access list are limited to 100 characters.
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Immediate Solutions

Configuring Standard IP Access Lists

Standard IP access lists provide selection of packets only according to the source IP address
contained within the header of the IP packet. To configure a standard IP access list to filter user
traffic, use the following steps:

Use the following command to define the subnets or host addresses that should either be
permitted or denied:

access−list <access−list number> <permit | deny> <source
<source wildcard mask> | any> log

The <access−list number> parameter is the identification number of the access list; the
number for a standard IP access list can be any number from 1 to 99. The <source>
identifies the source IP address of the packet. The <source wildcard> is an optional
parameter that indicates the wildcard bits that should be applied to the source; if this
parameter is omitted, a mask of 0.0.0.0 is assumed. The parameter any can be used as an
abbreviation for the source, which represents 0.0.0.0 255.255.255.255 in dotted decimal
notation. The optional log parameter will generate an informational syslog message about a
packet that matches the filter rule.

1. 

Use this command to select the input interface under which the access list will be applied:

interface <interface name> <interface number>

2. 

Use the following command to apply the access list to the interface:

ip access−group <access−list−number> <in | out>

When the in parameter is defined and the router receives a packet, the router checks the
source address of the packet against the access list. If the access list permits the address,
the router will continue to process the packet. If the access list rejects the address, the
router discards the packet and returns an "ICMP host unreachable" message. When the
access list is using the out parameter, after receiving and routing a packet to a controlled
interface, the router checks the source address of the packet against the access list. If the
access list permits the address, the router forwards the packet out the interface to its final
destination. If the access list rejects the address, the router discards the packet and returns
an "ICMP host unreachable" message.

3. 

Note Any access list defined under an interface without a matching access list entry is interpreted
by the router as a permit. This is sometimes called an undefined access list.

Figure 7.4 displays a network with two routers, Router Raul and Router Chris. The routers will be
configured to provide packet filtering using standard access lists. Router Raul should be configured
to permit only traffic from the 192.168.20.0 network and deny traffic from all other networks. Router
Chris will be configured to permit traffic only from 192.168.40.0 and deny traffic from all other
networks.
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Figure 7.4: Standard access list network.
An inbound access list filter will be applied to the FastEthernet interfaces of each router that permit
packets from only the networks mentioned in the preceding paragraph and deny all other packets.
The configuration of each router is shown in the following listings: Router Raul's configuration is
shown in Listing 7.1 followed by Router Chris's configuration in Listing 7.2.

Listing 7.1: Raul's numbered access list configuration.

hostname Raul
!
interface FastEthernet1/0
ip address 192.168.10.2 255.255.255.0
no ip directed−broadcast
ip access−group 20 in
!
interface FastEthernet2/0
ip address 192.168.40.1 255.255.255.0
no ip directed−broadcast
!
interface FastEthernet3/0
ip address 192.168.50.1 255.255.255.0
no ip directed−broadcast
!
ip route 192.168.20.0 255.255.255.0 192.168.10.1
ip route 192.168.30.0 255.255.255.0 192.168.10.1
!
access−list 20 permit 192.168.20.0 0.0.0.255

Listing 7.2: Chris's numbered access list configuration.
hostname Chris
!
interface FastEthernet0
ip address 192.168.10.1 255.255.255.0
no ip directed−broadcast
ip access−group 40 in
!
interface Ethernet1
ip address 192.168.20.1 255.255.255.0
no ip directed−broadcast
!
interface FastEthernet1
ip address 192.168.30.1 255.255.255.0
no ip directed−broadcast
!
ip route 192.168.40.0 255.255.255.0 192.168.10.2
ip route 192.168.50.0 255.255.255.0 192.168.10.2
!
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access−list 40 permit 192.168.40.0 0.0.0.255

To test the configuration, you can issue the ping IP global command. Raul is configured to accept
only inbound packets with a source address within the 192.168.20.0 subnet, and Chris is configured
to accept only inbound packets with a source address of 192.168.40.1. From Raul you can issue the
ping IP command to test the configuration. First, the configuration will be tested by using an
extended ping to verify connectivity to Chris's FastEthernet1 interface. The packet will be sourced
on Raul from its FastEthernet2/0 interface. Because Chris is configured to accept packets from
Raul's 192.168.40.0 network, one would think that configuration would work. To verify this, the
debug IP packet command has been issued to display the results of each packet. The output from
the ping is shown in Listing 7.3.

Listing 7.3: Issuing the ping command on Raul.

Raul#debug ip packet
ip packet debugging is on
Raul#ping ip
Target ip address: 192.168.30.1
Repeat count [5]:
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]: y
Source address or interface: 192.168.40.1
Type of service [0]:
Set DF bit in ip header? [no]:
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 5,100−byte ICMP Echo to 192.168.30.1, −
  timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)

The output in Listing 7.3 shows that the ping command was not successful. To see why, you can
examine the results that are returned by the debug IP packet command. Listing 7.4 displays the
results of the command for the ping attempt in Listing 7.3.

Listing 7.4: Results of the debug IP packet command.

ip: s=192.168.40.1, d=192.168.30.1, len 100, sending
ip: s=192.168.30.1, d=192.168.40.1, len 100, access denied
ip: s=192.168.10.2, d=192.168.30.1, len 56, sending.
!
ip: s=192.168.40.1, d=192.168.30.1, len 100, sending
ip: s=192.168.30.1, d=192.168.40.1, len 100, access denied
ip: s=192.168.10.2, d=192.168.30.1, len 56, sending.
!
ip: s=192.168.40.1, d=192.168.30.1, len 100, sending
ip: s=192.168.30.1, d=192.168.40.1, len 100, access denied
ip: s=192.168.10.2, d=192.168.30.1, len 56, sending.

In the first line of the output, the packet is sourced from IP address 192.168.40.1, and its destination
is 192.168.30.1; the router tells you that it is sending the packet. The second line of the output
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displays the problem. The return packet is sourced from 192.168.30.1 and its destination is to IP
address 192.168.40.1, but the router denies the packet. If you look back at Raul's configuration in
Listing 7.1. you'll see that its access list only allows packets from the 192.168.20.0 subnet and not
the 192.168.30.0 subnet.

If you were to try the ping command again and time source the packet from the 192.168.40.1
interface with a destination of Chris's 192.168.20.1 interface, everything should work. Listing 7.5
displays the output of issuing the ping command again on router Raul.

Listing 7.5: Issuing the ping command again on Raul.

Raul#ping ip
Target ip address: 192.168.20.1
Repeat count [5]:
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]: y
Source address or interface: 192.168.40.1
Type of service [0]:
Set DF bit in ip header? [no]:
Validate reply data? [no]:
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 5,100−byte ICMP Echo to 192.168.20.1, −
  timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5)

This time the ping worked. Listing 7.6 displays the results of the debug IP packet command on
Raul.

Listing 7.6: Results of the debug IP packet command on Raul.

ip: s=192.168.40.1, d=192.168.20.1, len 100, sending
ip: s=192.168.20.1, d=192.168.40.1, len 100, rcvd 4
!
ip: s=192.168.40.1, d=192.168.20.1, len 100, sending
ip: s=192.168.20.1, d=192.168.40.1, len 100, rcvd 4
!
ip: s=192.168.40.1, d=192.168.20.1, len 100, sending
ip: s=192.168.20.1, d=192.168.40.1, len 100, rcvd 4

Just as expected, the router sourced the ping packet from the 192.168.40.1 interface (which is the
IP address that Chris is configured to accept), and the return traffic was sourced from the
192.168.20.1 interface on Chris.

Configuring Extended IP Access Lists

Extended IP access lists match a packet according to the source and destination addresses, and
optional protocol type information for finer granularity of control as opposed to standard access lists,
which are only matched by the source IP address. This allows for greater flexibility in terms of
packet−matching characteristics for deciding whether or not to forward a packet.
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Except for configuring the packet−matching features of the access list, the process used to
configure an extended IP access list is the same process used to configure a standard IP access
list. To configure an extended access list, follow these steps:

Use the following command to define the extended access list:

access−list <access−list−number> <deny | permit> protocol −
 <source source−wildcard> <destination destination−wildcard>−
 <precedence precedence−value> <tos tos−value> −
 <log | log−input>

1. 

Use this command to select the input interface under which the access list will be applied:

interface <interface name> <interface number>

2. 

Use the following command to apply the access list to the interface:

ip access−group <access−list−number> <in | out>

When applied inbound or outbound, the access list functions the same as it does in a
standard access list configuration (see Step 3 in the section "Configuring Standard IP
Access Lists").

3. 

Note Any access list defined under an interface without a matching access list entry is interpreted
by the router as a permit. This is sometimes called an undefined access list.

In Step 1, the access−list number parameter is the identification number of the access list; the
number range for an extended IP access list can be any number from 100 to 199. The protocol
specifies either the name or number of an IP protocol that is passed in the header of the packet.
The values that can be used for this field are listed in Table 7.2. The source and destination fields
specify the number of the network or host in a 32−bit format. The keywords any and host may be
used to simplify the configuration. The source−wildcard and the destination−wildcard fields
specify the number of wildcard bits that should be applied to the source or destination. The wildcard
field can be populated by specifying a 32−bit value, where the value of 1 is not counted. If the
keyword any is used for specification of the source or destination, a wildcard mask of all 1s is
assumed. If the keyword host is used for specification of the source or destination, a wildcard
mask of all 0s is assumed.

Specification of the precedence value is optional and allows for filtering based on the configured
precedence value of the packet. The precedence−value field may be populated by either a name
or a number. The values that can be used to specify the precedence are listed in Table 7.3.

Table 7.3: Precedence values for extended access lists.

Name Number

routine 0

priority 1

immediate 2
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flash 3

flash−override 4

critical 5

internet 6

network 7

Specification of the type−of−service (tos) value configures the router to filter packets based on the
type−of−service level configured. The tos−value field may be populated by either a name or
number as well, and each of the values may be used in combination. The values that can be used
to specify the type−of−service are listed in Table 7.4.

Table 7.4: Type−of−service values for extended access lists.

Name Number

normal 0

min−monetary−cost 1

max−reliability 2

max−throughput 4

min−delay 8

The optional log parameter will generate an informational syslog message about a packet that
matches the filter. Figure 7.5 displays a network in which packet filtering using extended access lists
may be used. Raul should be configured to allow only connection requests to 192.168.50.50 from
192.168.30.30 and to allow only connection request from 192.168.20.21 to 192.168.40.41. Listing
7.7 shows the configuration for Raul, and Listing 7.8 shows the configuration for Chris.
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Figure 7.5: Two routers configured for extended access lists.
Listing 7.7: Extended access list configuration of Raul.
!
interface FastEthernet1/0
ip address 192.168.10.2 255.255.255.0
no ip directed−broadcast
ip access−group 101 in
!
interface FastEthernet2/0
ip address 192.168.40.1 255.255.255.0
no ip directed−broadcast
!
interface FastEthernet3/0
ip address 192.168.50.1 255.255.255.0
no ip directed−broadcast
!
ip route 192.168.20.0 255.255.255.0 192.168.10.1
ip route 192.168.30.0 255.255.255.0 192.168.10.1
!
access−list 101 permit ip host 192.168.30.30 host 192.168.50.50 −
 log
access−list 101 permit ip host 192.168.20.21 host 192.168.40.41 −
 log
!

Listing 7.8: Extended access list configuration of Chris.
hostname Chris
!
interface FastEthernet0
ip address 192.168.10.1 255.255.255.0
no ip directed−broadcast
!
interface Ethernet1
ip address 192.168.20.1 255.255.255.0
no ip directed−broadcast
!
interface FastEthernet1
ip address 192.168.30.1 255.255.255.0
no ip directed−broadcast
!
ip route 192.168.40.0 255.255.255.0 192.168.10.2
ip route 192.168.50.0 255.255.255.0 192.168.10.2
!

The configuration of Raul in Listing 7.7 makes use of the keyword host in the access list
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configuration. When the host parameter is used, there is no need to specify a wildcard mask
because an all 0s mask is assumed by the router. To make sure the configuration is correct and that
Raul is allowing only the connections the access list is configured for, you must do some testing.
Using the debug IP packet command on Raul will help you to determine the effects of the access
list. If you try to ping host 192.168.50.50 from the workstation with the IP address 192.168.30.31,
the ping should fail. Listing 7.9 shows an attempt to ping from 192.168.30.31 to 192.168.50.50.

Listing 7.9: Ping attempt to 192.168.50.50 from 192.168.30.31.

C:\>ping 192.168.50.50

Pinging 192.168.50.50 with 32 bytes of data:

Reply from 192.168.10.2: Destination net unreachable
Reply from 192.168.10.2: Destination net unreachable
Reply from 192.168.10.2: Destination net unreachable
Reply from 192.168.10.2: Destination net unreachable

When you look at Raul, which has the debug IP packet command running, you will note that it is
denying the ping packet request. In the output in Listing 7.10. you can see the ping packet being
denied.

Listing 7.10: Output of the debug IP packet command on Raul.

ip: s=192.168.10.2, d=192.168.30.31, len 56, sending
ip: s=192.168.30.31, d=192.168.50.50, len 100, access denied
!
ip: s=192.168.10.2, d=192.168.30.31, len 56, sending
ip: s=192.168.30.31, d=192.168.50.50, len 100, access denied
!
ip: s=192.168.10.2, d=192.168.30.31, len 56, sending
ip: s=192.168.30.31, d=192.168.50.50, len 100, access denied
!
ip: s=192.168.10.2, d=192.168.30.31, len 56, sending
ip: s=192.168.30.31, d=192.168.50.50, len 100, access denied

The connection request to 192.168.50.50 was denied at Raul because the source of the packet was
not configured with a permit statement in the access list. However, if you try to access
192.168.50.50 from 192.168.30.30 using the ping command, everything should work. Listing 7.11
displays the output of the ping command issued on 192.168.30.30.

Listing 7.11: Ping attempt to 192.168.50.50 from 192.168.30.30.

C:\>ping 192.168.50.50

Pinging 192.168.50.50 with 32 bytes of data:

Reply from 192.168.50.50: bytes=32 time=126ms TTL=233
Reply from 192.168.50.50: bytes=32 time=117ms TTL=233
Reply from 192.168.50.50: bytes=32 time=117ms TTL=233
Reply from 192.168.50.50: bytes=32 time=116ms TTL=233

The ping request worked, so now you can look again at the debug output on Raul, as displayed in
Listing 7.12.
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Listing 7.12: Output of the debug IP packet command on Raul.

ip: s=192.168.30.30, d=192.168.50.50, len 100, rcvd 4
ip: s=192.168.50.50, d=192.168.30.30, len 100, sending
!
ip: s=192.168.30.30, d=192.168.50.50, len 100, rcvd 4
ip: s=192.168.50.50, d=192.168.30.30, len 100, sending
!
ip: s=192.168.30.30, d=192.168.50.50, len 100, rcvd 4
ip: s=192.168.50.50, d=192.168.30.30, len 100, sending
!
ip: s=192.168.30.30, d=192.168.50.50, len 100, rcvd 4
ip: s=192.168.50.50, d=192.168.30.30, len 100, sending

Another troubleshooting command to issue is the show IP access−lists command, which will
display each access list configured on the router; if the optional log parameter is specified in the
configuration of the access list, the show IP access−lists command will display the number of
matches the access list has encountered. Issuing the show IP access−lists command on Raul
displays the number of packets that have matched access list 101:

Raul#sh access−lists
Extended ip access list 101
 permit ip host 192.168.30.0 host 192.168.50.0 log
 (13222 matches)
 permit ip host 192.168.20.0 host 192.168.40.0 log

Configuring Extended TCP Access Lists

In the preceding section, you learned how to configure IP−specific access lists. The Cisco IOS also
gives security administrators the ability to configure extended access lists using more specific
protocol−dependent options for filtering packets; for example, you can configure TCP access lists.
The steps for configuring extended TCP access lists are the same as the steps for configuring
extended IP access lists with the exception of the additional parameters that TCP extended access
lists permit:

Use the following command to define the extended TCP access list:

access−list <access−list−number> <deny | permit> tcp −
 <source source−wildcard> <operator port> <destination −
destination−wildcard> <operator port> <established> −
 <precedence precedence−value> <tos tos−value> <log>

1. 

Use this command to select the input interface under which the access list will be applied:

interface <interface name> <interface number>

2. 

Use the following command to apply the access list to the interface:

ip access−group <access−list−number> <in | out>

3. 

In the command in Step 1, the operator parameter specifies a condition of qualifications for packets
that match the source and destination of the access list. The possible values for the operator
include less than (lt), greater than (gt), equal (eq), not equal (nq), and an inclusive range (range).
The port parameter specifies a number from 0 to 65535 or a name that represents a TCP port
number. The established parameter is TCP−specific and indicates an established session if the
TCP packet has the ACK or RST bit set. The established option should be used if you have
implemented an inbound access list to prevent TCP sessions from being established into your
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network, but you must ensure that the access list will allow legitimate response packets back to your
inside hosts from hosts with which the inside network users have attempted to establish a session.

The simple network that is shown in Figure 7.6 will be used in this example. Router C should be
configured to deny all inbound connection requests to the 192.168.10.0 network. However, it should
also be configured to allow responses to connection requests that were initiated from the inside
network to pass through the access list. Listing 7.13 shows the configuration of Router C to
accomplish this.

Figure 7.6: TCP access list for Router C.
Listing 7.13: TCP established configuration of Router C.
hostname Router−C
!
interface FastEthernet0/0
ip address 192.168.10.1 255.255.255.0
no ip directed−broadcast
!
interface Serial/0
ip address 172.16.200.1 255.255.255.0
ip access−group 101 in
no ip directed−broadcast
!
ip route 0.0.0.0 0.0.0.0 172.116.200.2
!
access−list 101 permit tcp any 192.168.10.0 0.0.0.255 −
 established log
access−list 101 deny ip any any log

In Listing 7.13. Router C is configured to permit packets regardless of the source address if the
packets' destination is in the 192.168.40.0 subnet and the ACK or RST bit is set within the packet.
The next line of the configuration is not needed due to the implicit deny any, but it is included so
that any packet that fails to meet the requirements of the first access list statement can be logged.
Of note also is that the access list is bounded to the external Serial interface of Router C for packets
that are incoming on that interface.

To test the configuration, you can establish a Telnet session from a host on the 192.168.10.0
network to a host on the external network of Router C. On Router C, use the debug IP packet
detail command to monitor packets that are coming into or leaving Router C. Here is the Telnet
request from 192.168.10.212:

C:\>telnet 172.16.146.73
Connecting to 172.16.146.73...open
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Examining the debug output on Router C, you can see that the request is considered valid because
the flag fields the access list is configured to look for are set. Listing 7.14 shows the output of the
debug command on Router C.

Listing 7.14: Established TCP connection output.

Router−C#debug ip packet detail
 ip packet debugging is on (detailed)
.....
ip: s=192.168.10.212, d=172.16.146.73, len 44, sending
TCP src=11001, dst=23, seq=1697250670, ack=0, win=4128 SYN
IP: s=172.16.146.73, d=192.168.10.212, len 44, rcvd 4
TCP src=23, dst=11001, seq=1724867633, ack=1697250671, −
 win=4128 ACK SYN
!
ip: s=192.168.10.212, d=172.16.146.73, len 40, sending
TCP src=11001, dst=23, seq=1697250671, ack=1724867634, −
 win=4128 ACK
!
ip: s=192.168.10.212, d=172.16.146.73, len 52, sending
TCP src=11001, dst=23, seq=1697250671, ack=1724867634, −
 win=4128 ACK PSH
!
ip: s=192.168.10.212, d=172.16.146.73, len 40, sending
TCP src=11001, dst=23, seq=1697250683, ack=1724867634, −
 win=4128 ACK
!
IP: s=172.16.146.73, d=192.168.10.212, len 52, rcvd 4
TCP src=23, dst=11001, seq=1724867634, ack=1697250671, −
 win=4128 ACK PSH
!
ip: s=192.168.10.212, d=172.16.146.73, len 43, sending
TCP src=11001, dst=23, seq=1697250683, ack=1724867646, − 
 win=4116 ACK PSH
!

Note Because of the format limitations of this book, some lines of the code in Listing 7.14
have been broken with a hyphen.

The highlighted lines display that the ACK or RST bit is set on the packets from 172.16.146.73 to
192.168.10.212. The initial TCP access list configuration defined the log parameter to the end of
the access list. The following example shows the output from the log parameter, which generates
an informational log message regarding any packet that matches the parameters of the extended
TCP access list. Notice that the response packets from 172.16.146.73 match all parameters of
access list 101, and is therefore, permitted:

%SEC−6−IPACCESSLOGP: list 101 permitted tcp 172.16.146.73(23)−> −
 192.168.10.212(11001), 1 packet
!
%SEC−6−IPACCESSLOGP: list 101 permitted tcp 172.16.146.73(23)−> −
 192.168.10.212(11001), 24 packets

Note Because of the format limitations of this book, some lines of code listed above have been
broken with a hyphen.

The show IP access−lists command is another troubleshooting command you can issue. It will
display each access list configured on the router, and because the optional log parameter was
specified in the configuration of the access list, the command will display the number of matches
that the access list has encountered. Issuing the show IP access−lists command on Router C
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displays the number of packets that have matched access list 101:

Router−C#show access−lists

Extended ip access list 101
permit tcp any 192.168.10.0 0.0.0.255 established log(427 −
 matches)
deny ip any any log(11924 matches)
Router−C#

Configuring Named Access Lists

Because of the numeric limitations of numbered standard and extended access lists, in IOS release
11.2, Cisco included a feature known as named access lists, which extend the numeric limit of
numbered access lists. To configure a named access list, follow these steps:

Use the following configuration command to define a named access list:

ip access−list <standard | extended> name

The standard command option configures a standard access list and the extended
command option configures an extended access list. The name parameter defines the name
of the access list. The name of the access list cannot contain a space and must begin with a
letter, not a number.

1. 

Use this command to define the filter rules for a standard named access list:

<deny | permit> source source−wildcard

Use this command to define the filter rules for an extended access list:

<deny | permit> <protocol> <source source−wildcard> −
 <destination destination−wildcard> <precedence precedence> −
 <tos tos> log

2. 

Use the following command to select the input interface under which the access list will be
applied:

interface <interface name> <interface number>

3. 

Use this command to bind the access list to the interface and to apply the filter to packets
entering into or exiting the interface:

ip access−group name {in | out}

4. 

In the beginning of "Immediate Solutions," I began with a basic standard access list configuration. In
Listing 7.1 and Listing 7.2. Routers Raul and Chris were configured to provide packet filtering using
standard numbered access lists. You can also configure routers to use named access lists to
provide packet filtering. In Listing 7.15, Raul is configured to permit traffic from only the
192.168.20.0 network and deny traffic from all other networks. Router Chris will be configured in
Listing 7.16 to permit traffic from only 192.168.40.0 and deny traffic from all other networks. Instead
of using a standard numbered access list, this time I will use a standard named access list. Refer
back to Figure 7.4 for a description of the network that will be used to configure the routers.

Listing 7.15: Named access list configuration of Raul.

hostname Raul
!
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interface FastEthernet1/0
ip address 192.168.10.2 255.255.255.0
no ip directed−broadcast
ip access−group permit−20 in
!
interface FastEthernet2/0
ip address 192.168.40.1 255.255.255.0
no ip directed−broadcast
!
interface FastEthernet3/0
ip address 192.168.50.1 255.255.255.0
no ip directed−broadcast
!
ip route 192.168.20.0 255.255.255.0 192.168.10.1
ip route 192.168.30.0 255.255.255.0 192.168.10.1
!
ip access−list standard permit−20
 permit 192.168.20.0 0.0.0.255
 deny any

Listing 7.16: Named access list configuration of Chris.
hostname Chris
!
interface FastEthernet0
ip address 192.168.10.1 255.255.255.0
no ip directed−broadcast
ip access−group permit−40 in
!
interface Ethernet1
ip address 192.168.20.1 255.255.255.0
no ip directed−broadcast
!
interface FastEthernet1
ip address 192.168.30.1 255.255.255.0
no ip directed−broadcast
!
ip route 192.168.40.0 255.255.255.0 192.168.10.2
ip route 192.168.50.0 255.255.255.0 192.168.10.2
!
ip access−list standard permit−40
 permit 192.168.40.0 0.0.0.255
 deny any

You can issue the show access−lists command on Chris to verify the proper configuration of the
access list:

Chris#show access−lists
Standard ip access list permit−40
    permit 192.168.40.0, wildcard bits 0.0.0.255
    deny any

You can also use the show IP interface command to verify the access list. Issuing this command
displays any and all access lists that are configured on an interface. Issuing the command on Chris
displays the output listed in Listing 7.17.

Listing 7.17: Output of the show IP interface command on Chris.

Chris#sh ip int e0/0
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FastEthernet0 is up, line protocol is up
  Internet address is 192.168.10.1/24
  Broadcast address is 255.255.255.255
  Address determined by non−volatile memory
  MTU is 1500 bytes
  Helper address is not set
  Directed broadcast forwarding is disabled
  Outgoing access list is not set
  Inbound access list is permit−40
  Proxy ARP is enabled

Configuring Commented Access Lists

When you use named access lists, you are able to provide a small description of the access list
within the name, as shown in Listing 7.15 and Listing 7.16. Sometimes, though, the name of an
access list does not provide enough information about what the access list does or what function
each line within the access list provides. In 12.0.2 code, Cisco released a feature known as
commented access lists. In Listings 7.1 and Listing 7.15, Raul has an access list configured that
permits the 192.168.20.0 network and denies all others. In Listing 7.15, a name was used to define
the access list instead of a number; I attempted to give the access list a name that was relevant to
the function that it provided. In Listing 7.1, a standard numbered access list was used to define the
same access lists; however, no descriptive information about the access list could be made with the
numbered access list. You can add a comment to standard and extended access lists as well as to
numbered and named access lists. Follow these steps to configure comments within a name−based
access list:

Use the following configuration command to define a named access list:

ip access−list <standard | extended> name

1. 

Use the remark command to define the comment on an access list basis or on a
per−filter−rule basis. The remark parameter is limited to 100 characters, including spaces.

2. 

Use this command to select the input interface under which the access list will be applied:

interface <interface name> <interface number>

3. 

Use the following command to bind the access list to the interface and to apply the filter to
packets entering into or exiting the interface:

ip access−group name {in | out}

4. 

Follow these steps to configure comments within a numbered access:

Use the following configuration command to define the numbered access list and to define
the comment on an access list basis:

access−list access−list−number remark remark

1. 

Use this command to select the input interface under which the access list will be applied:

interface <interface name> <interface number>

2. 

Use this command to bind the access list to the interface and to apply the filter to packets
entering into or exiting the interface:

ip access−group access list number {in | out}

3. 
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Figure 7.7 displays a router with two networks directly attached to it. The router, Router C, has a
large access list configuration defined, and if remarks weren't used, the access list would be fairly
complicated to fully understand. To add clarity to the access list, remarks have been defined within
the list. Router C will be configured with a name−based access list and the appropriate remarks will
be added within the access list. Listing 7.18 displays the configuration of Router C.

Figure 7.7: Router C permitting and denying traffic.
Listing 7.18: Commented named access list on Router C.
hostname Router−C
!
interface FastEthernet0/0
ip address 172.16.15.1 255.255.255.0
no ip directed−broadcast
!
interface Serial1/0
ip address 10.10.10.1 255.255.255.0
ip access−group Commented in
no ip directed−broadcast
!
ip access−list extended Commented
 remark Deny any inbound request unless initiated from inside
 permit tcp any 172.16.0.0 0.0.255.255 established
 remark Permit mail traffic to this host
 permit tcp any host 172.16.15.83 eq smtp
 remark Permit telnet from XYZ company to our company
 permit tcp 10.10.10.0 0.0.0.255 172.16.0.0 0.0.255.255 −
        eq telnet
 remark Permit FTP from XYZ company to our company
 permit tcp 10.10.10.0 0.0.0.255 172.16.0.0 0.0.255.255 eq ftp
 remark Allow DNS traffic to the internal DNS server
 permit udp any host 172.16.15.84 eq domain
 remark Deny all other traffic
 deny ip any any

Router C has been configured with an extended name−based access list. Within the access list
remarks provide clarity on the function of each filter rule statement. As mentioned earlier, comments
can also be listed for numbered access lists. Using the same requirements that were listed with
Listing 7.18, Router C can now be configured with a numbered access list that contains remarks for
each filter rule. An extended numbered access list is used to accomplish the same thing Listing 7.18
accomplishes. Listing 7.19 displays the configuration of Router C using numbered access lists.

Listing 7.19: Commented numbered access list on Router C.

hostname Router−C
!
interface FastEthernet0/0
ip address 172.16.15.1 255.255.255.0
no ip directed−broadcast
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!
interface Serial1/0
ip address 10.10.10.1 255.255.255.0
ip access−group 121 in
no ip directed−broadcast
!
access−list 121 remark Deny any inbound request
access−list 121 permit tcp any 172.16.0.0 0.0.255.255 −
  established
access−list 121 remark Permit mail traffic to this host
access−list 121 permit tcp any host 172.16.15.83 eq smtp
access−list 121 remark Permit telnet from XYZ company
access−list 121 permit tcp 10.10.10.0 0.0.0.255 −
  172.16.0.0 0.0.255.255 eq telnet
access−list 121 remark Permit FTP from XYZ company to our −
  company
access−list 121 permit tcp 10.10.10.0 0.0.0.255 −
  172.16.0.0 0.0.255.255 eq ftp
access−list 121 Allow DNS traffic to the internal DNS server
access−list 121 permit udp any host 172.16.15.84 eq domain
access−list 121 remark Deny all other traffic 
access−list 121 deny ip any any

Note Because of the format limitations of this book, some lines of code listed above have been
broken with a hyphen.

Configuring Dynamic Access Lists

Dynamic access lists permit or deny traffic based on user credentials that are passed to the Lock
and Key router for user authentication. To be permitted access to a host behind a router configured
for Lock and Key security, a user must first telnet to the router and pass an authentication phase. If
authentication is successful, a temporary access list is created; it will enable the user to connect to
the intended destination. To configure a router to provide Lock and Key security services for hosts,
follow these steps:

Use the following global configuration command to define a dynamic access list:

access−list <access−list−number> <dynamic dynamic−name> −
 <timeout minutes> <deny | permit> telnet <source −
 source−wildcard> <destination destination−wildcard> −
 <precedence precedence> <tos tos> <established> <log> −

1. 

Optionally, use the access−list dynamic−extend command to extend the absolute timer of
the dynamic ACL by six minutes when another Telnet session is opened into the router.

2. 

Use this command to configure user authentication:

username name password secret

3. 

Use the following command to select the input interface under which the access list will be
applied:

interface <interface name> <interface number>

4. 

Use the following command to bind the access list to the interface and to apply the dynamic
filter to packets entering into the interface:

ip access−group name <in>

5. 

Use this command to define one or more virtual terminal (vty) ports:

line vty <line−number> <ending−line−number>

6. 
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Use the login local command to specify that user authentication should use the locally
configured security database.

7. 

Use the following command in line configuration mode to enable the creation of temporary
access list entries:

autocommand access−enable host [timeout minutes]

8. 

The network displayed in Figure 7.8 will demonstrate dynamic access list security. Router 1 and
Router 2 are each configured with two loopback interfaces. When Router 2 attempts to connect to
one of the loopback interfaces on Router 1, it must first telnet to Router 1 and will be asked to
authenticate via the local security database. If authentication takes place correctly, Router 2 will be
disconnected from Router 1 and then will be allowed to communicate with the host on the loopback
interface. The configuration of Router 1 is shown in Listing 7.20, and the configuration of Router 2 is
shown in Listing 7.21.

Figure 7.8: Dynamic access list security.
Listing 7.20: Configuration of Router 1 for dynamic access lists.
hostname Router−1
!
username R2 password 0 R2
!
interface Loopback0
 ip address 192.168.40.1 255.255.255.0
no ip directed−broadcast
!
interface Loopback1
 ip address 192.168.50.1 255.255.255.0
no ip directed−broadcast
!
interface FastEthernet0/0
 ip address 192.168.10.2 255.255.255.0
 ip access−group 101 in
no ip directed−broadcast
!
ip classless 
ip route 192.168.20.0 255.255.255.0 192.168.10.1
ip route 192.168.30.0 255.255.255.0 192.168.10.1
no ip http server
!
access−list 101 permit tcp any host 192.168.10.2 eq telnet
access−list 101 dynamic PermitR2 permit tcp −
  host 192.168.20.1 host 192.168.40.1
access−list 101 dynamic PermitR2 permit tcp −
  host 192.168.20.1 host 192.168.50.1
!
line con 0
 session−timeout 30
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 exec−timeout 30 0
 login local
 transport input none
line aux 0
line vty 0 4
 session−timeout 30
 exec−timeout 30 0
 login local
 autocommand access−enable timeout 5
!

Listing 7.21: Configuration of Router 2 for dynamic access lists.
hostname Router−2
!
username R1 password 0 R1
ip telnet source−interface Loopback1
!
interface Loopback1
 ip address 192.168.20.1 255.255.255.0
no ip directed−broadcast
!
interface Loopback2
 ip address 192.168.30.1 255.255.255.0
no ip directed−broadcast
!
interface Ethernet0/0
 ip address 192.168.10.1 255.255.255.0
no ip directed−broadcast
!
ip classless
ip route 192.168.40.0 255.255.255.0 192.168.10.2
ip route 192.168.50.0 255.255.255.0 192.168.10.2
!
line con 0
 session−timeout 30
 exec−timeout 30 0
 login local
 transport input none
line aux 0
line vty 0 4
 session−timeout 30
 exec−timeout 30 0
 login local
!

Note Because of the format limitations of this book, some lines of code listed above have been
broken with a hyphen.

As you can probably tell, there is nothing special about Router 2's configuration. It is Router 1's
configuration that matters. The only special command configured on Router 2 is the IP telnet
source−interface command, which is used to have Router 2 source the Telnet packet from the
specified loopback interface because, by default, the router will source the packet with the output
interface's IP address as the source of the packet.

You can first try to establish a Telnet connection to the 192.168.40.1 loopback interface of Router 1
from Router 2 to verify that the access list is not allowing access. The following code displays the
output of a Telnet connection request from Router 2 to the loopback interface of Router 1. To verify
that the access list is denying access, Router 1 is configured to debug packets using the debug IP
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packet detail command and is configured to log all events to the internal buffer using the logging
buffered command.

Router−2#telnet 192.168.40.1
Trying 192.168.40.1 ...
% Destination unreachable; gateway or host down

Router−2#

As you can see, Router 1 has denied Router 2 access to the 192.168.40.1 interface. Looking back
at the log information on Router 1 will in fact show that the packet request was made for access to
192.168.40.1 but was denied. The following output can be seen by issuing the show logging
command on Router 1:

Router−1#show logging
Syslog logging: enabled(1 messages dropped, 0 flushes, −
 0 overruns)
    Console logging: level debugging, 81 messages logged
    Monitor logging: level debugging, 0 messages logged
    Buffer logging: level debugging, 9 messages logged
    Trap logging: level informational, 24 message lines logged
Log Buffer (2000000 bytes):

IP: s=192.168.20.1, d=192.168.40.1, len 44, access denied
TCP src=11007, dst=23, seq=3683728902, ack=0, win=4128 SYN
ip: s=192.168.10.2, d=192.168.20.1, len 56, sending
ICMP type=3, code=13
Router−1#

Router 1 has in fact denied the connection request. Now I'll go back to Router 2 and attempt a
Telnet connection to the 192.168.10.2, Fast Ethernet0/0 interface of Router 1. The Telnet
connection request from Router 2 to Router 1 can be seen in the following output. Router 1 is still
configured with the debug IP packet detail command so that the connection request can be
verified:

Router−2#telnet 192.168.10.2
Trying 192.168.10.2 ... Open

User Access Verification

Username: R2
Password: R2
[Connection to 192.168.10.2 closed by foreign host] Router−2#

After Router 2 makes the connection request to Router 1 and is authenticated via the local security
database, Router 1 disconnects the Telnet session with Router 2 and creates the temporary access
list entries in access list 101, permitting traffic from 192.168.20.1 to 192.168.40.1. The output in
Listing 7.22 displays the creation of the temporary access lists on Router 1. To display the
information, issue the show IP access−lists command.

Listing 7.22: Temporary access list entries on Router 1.

Router−1#show ip access−lists
Extended ip access list 101
permit tcp any host 192.168.10.2 eq telnet log (38 matches)
Dynamic PermitR2 permit tcp host 192.168.20.1 host 192.168.40.1 −
  log
permit tcp host 192.168.20.1 host 192.168.40.1 log −
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(time left 293)
Dynamic PermitR2 permit tcp host 192.168.20.1 host 192.168.50.1 −
  log
permit tcp host 192.168.20.1 host 192.168.40.1 log −
  (time left 293)
Router−1#

It should also be helpful to take a look at the logging information. The output in Listing 7.23 displays
the output from the show logging command.

Listing 7.23: Show logging on Router 1.

Router−1#show logging
Syslog log: enabled (1 messages dropped, 0 flushes, 0 overruns)
    Console logging: level debugging, 679 messages logged
    Monitor logging: level debugging, 0 messages logged
    Buffer logging: level debugging, 607 messages logged
    Trap logging: level informational, 27 message lines logged

Log Buffer (2000000 bytes):

%SEC−6−IPACCESSLOGP: list 101 permitted tcp 192.168.20.1 −
  (11010) −> 192.168.10.2(23), 1 packet
ip: s=192.168.20.1, d=192.168.10.2, len 44, rcvd 3
TCP src=11010, dst=23, seq=1082833484, ack=0, win=4128 SYN
ip: s=192.168.10.2, d=192.168.20.1, len 44, sending
TCP src=23,dst=11010,seq=2196401629,ack=1082833485,win=4128 ACK
SYN
ip: s=192.168.20.1, d=192.168.10.2, len 40, rcvd 3
TCP src=11010,dst=23,seq=1082833485,ack=2196401630,win=4128 ACK
ip: s=192.168.20.1, d=192.168.10.2, len 52, rcvd 3
TCP src=11010, dst=23, seq=1082833485, ack=2196401630, win=4128 ACK PSH

At this point, I have been authenticated and Router 1 has created the temporary access list entries
to allow connectivity to Router 2. I should now be able to connect to the loopback interface of
Router 1 because the temporary access list entry has been created to allow for the connectivity
from 192.168.20.1 to 192.168.40.1. The following output details the connection request to Router
1's loopback interface:

Router−2#telnet 192.168.40.1
Trying 192.168.40.1 ... Open

User Access Verification

Username: R2
Password:
Router−1#

After the connection request is made to Router 1, you can look again at the access list configuration
and see that packets have matched the temporary access lists. The following output displays the
information from the show IP access−lists command:

Router−1#show ip access−lists
Extended ip access list 101
permit tcp any host 192.168.10.2 eq telnet (40 matches)
Dynamic PermitR2 permit tcp host 192.168.20.1 host 192.168.40.1
permit tcp host 192.168.20.1 host 192.168.40.1 (38 matches) −
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  (time left 275)
Dynamic PermitR2 permit tcp host 192.168.20.1 host 192.168.50.1
permit tcp host 192.168.20.1 host 192.168.40.1 (38 matches) −
  (time left 275)
Router−1#

Note Because of the format limitations of this book, some lines of code listed above have been
broken with a hyphen.

Of particular note in the preceding output is the time left 275 field; this field displays the amount of
idle time remaining before the timeout period is reached and the router tears down the temporary
access list entry. In Listing 7.20, the timeout period was configured to three minutes using the
autocommand access−enable command. This configured all dynamic access lists' idle timeout
period to five minutes. If the idle timeout value is reached and the dynamic entry is deleted, any
user that authenticated to Router 1 using the username R2 will have to reauthenticate before
gaining access again. Sometimes security administrators need a finer granularity of control on a
per−user basis. One user may need to have a longer idle timeout value than another user; however,
with the preceding configuration, all users have the same idle timeout value. Router 1's
configuration in Listing 7.20 can be altered to provide different timeout values on the basis of local
database users. Listing 7.24 displays Router 1's new configuration, which has defined multiple local
security database entries and configured a specific idle timeout value for each local database entry.

Listing 7.24: New configuration of Router 1.

hostname Router−1
!
username R2 password 0 R2
uername R2 autocommand access−enable timeout 3
username Cisco password 0 Cisco
username Cisco autocommand access−enable timeout 5
username Systems password 0 Systems
username Systems autocommand access−enable timeout 7
!
interface Loopback0
 ip address 192.168.40.1 255.255.255.0
no ip directed−broadcast
!
interface Loopback1
 ip address 192.168.50.1 255.255.255.0
no ip directed−broadcast
!
interface FastEthernet0/0
 ip address 192.168.10.2 255.255.255.0
 ip access−group 101 in
no ip directed−broadcast
!
ip classless ip route 192.168.20.0 255.255.255.0 192.168.10.1 
ip route 192.168.30.0 255.255.255.0 192.168.10.1 no ip http server
!
access−list 101 permit tcp any host 192.168.10.2 eq telnet log
access−list 101 dynamic PermitR2 permit tcp −
  host 192.168.20.1 host 192.168.40.1 log
access−list 101 dynamic PermitR2 permit tcp −
  host 192.168.20.1 host 192.168.50.1 log
!
line con 0
 session−timeout 30
 exec−timeout 30 0
 login local
 transport input none
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line aux 0
line vty 0 4
 session−timeout 30
 exec−timeout 30 0
 login local

Configuring Reflexive Access Lists

To define a reflexive access list, you must create an entry in an extended named IP access list. This
entry must use the reflect keyword and is nested inside of another access list. To define reflexive
access lists, follow these steps:

Use this command to define an extended named access list:

ip access−list extended name

If the reflexive access list is configured for an external interface, the extended named IP
access list should be one that is applied to outbound traffic, and if the reflexive access list is
configured for an internal interface, the extended named IP access list should be one that is
applied to inbound traffic. This command moves you into access list configuration mode.

1. 

In access list configuration mode, use this configuration command to define the reflexive
access list:

permit protocol any any reflect name <timeout timeout−seconds>

The protocol parameter should be specified for each upper−layer protocol that should be
permitted.

2. 

Use the IP access−list extended name command to define another extended named
access list. The name of this access list must be different from the name that was used to
create the access list in Step 1. If the access list that was created in Step 1 was for inbound
packets, then the access list that is created during this step is created for outbound packets.
This command moves you into access list configuration mode.

3. 

Use permit statements to permit any traffic that should not be subjected to the reflexive
access list, and then use the evaluate name command to create an entry that references
the reflect statement that was created in Step 2. The name parameter defined in this step
should match the name parameter that was created in Step 2 with the reflectname
parameter.

4. 

Apply the extended named IP access list to the interface, using this command:

ip access−group name {in | out}

When previous access lists were configured, this command was somewhat simple, but when
applying reflexive access lists, each in or out option must be used. This will be further
explained in the following paragraphs.

5. 

Optionally, use this command to change the default idle timeout for each temporary access
list entry (the default idle timeout period is 300 seconds):

ip reflexive−list timeout seconds

6. 

A brief discussion is needed in order to provide clarity to the preceding configuration steps.
Reflexive access lists are normally configured on external interfaces, which will prevent IP traffic
from entering the router and the internal network unless the traffic is part of a session already
established from within the internal network. If the reflexive access list is not configured on the
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external interface and more than two interfaces are in use, then more than likely it will be configured
on the internal interface, which prevents IP traffic from entering your internal network unless the
traffic is part of a session already established from within the internal network.

If reflexive access lists are being configured and applied to an external interface, the extended
named IP access list should be applied to outbound traffic. If reflexive access lists are being
configured and applied to an internal interface, the extended named IP access list should be applied
to inbound traffic. After the reflexive access list has been defined (Step 1), the access list must be
"nested" within the second access list that is created in Step 4. If reflexive access lists are being
configured and applied to an external interface, nest the reflexive access list within an extended
named IP access list applied to inbound traffic. If reflexive access lists are being configured and
applied to an internal interface, nest the reflexive access list within an extended named IP access
list applied to outbound traffic.

Figure 7.9 displays a network in which reflexive access lists may be used. In this example, reflexive
access lists are configured on the Ethernet0/0 interface of Router 2 for outbound traffic that is
originated from the internal networks. The reflexive access list configuration of Router 2 is shown in
Listing 7.25.

Figure 7.9: Reflexive access list network.
Listing 7.25: Reflexive access list configuration of Router 2.
hostname Router−2
!
ip reflexive−list timeout 100
!
interface Ethernet1/1
 ip address 192.168.20.1 255.255.255.0
no ip directed−broadcast
!
interface Ethernet1/0
 ip address 192.168.30.1 255.255.255.0
no ip directed−broadcast
!
interface Ethernet0/0
 ip address 192.168.10.1 255.255.255.0
 ip access−group in−filter in
 ip access−group out−filter out
 no ip directed−broadcast
!
ip classless
ip route 192.168.40.0 255.255.255.0 192.168.10.2
ip route 192.168.50.0 255.255.255.0 192.168.10.2
!
!
ip access−list extended out−filter
 permit icmp any any
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 evaluate protect
ip access−list extended in−filter
permit icmp any any
permit tcp any any reflect protect
permit udp any any reflect protect
!

The configuration in Listing 7.26 defines two access lists and each is applied to the Ethernet0/0
interface. The reflexive access list has been named "protect," and before there is any packet
movement through the router, you can view the access list by using the show IP access−lists
command. Using this command on Router 2 prior to any packet movement through the router
displays the output listed in Listing 7.27.

Listing 7.26: Display of the access lists defined on Router 2.

Router−2#show access−lists

Extended ip access list out−filter
    permit icmp any any (40008 matches)
    permit tcp any any reflect protect
    permit udp any any reflect protect
Extended ip access list in−filter
    permit icmp any any
    evaluate protect
Router−2#

Notice that no information regarding the reflexive access list is displayed in the output in Listing
7.27; no traffic has triggered the access list yet. There is, however, ping traffic moving through the
router, but ping traffic is not subjected to the reflexive access list filters. To trigger the reflexive
access list, initiate a Telnet session from Router 2 to Router 1. After the Telnet session has started,
you can issue the show access−lists command again to view the reflexive access list. Issuing the
command on Router 2 displays the output in Listing 7.28.

Listing 7.27: Displaying the reflexive access list on Router 2.

Router−2#sh access−lists

Extended ip access list out−filter
permit icmp any any (70006 matches)
permit tcp any any reflect protect
permit udp any any reflect protect
!
Extended ip access list in−filter
permit icmp any any
evaluate protect
!
Reflexive ip access list protect
permit tcp host 192.168.20.1 eq 11003 host 192.168.50.1
  eq telnet −
   (49 matches) (time left 95)
permit tcp host 192.168.30.1 eq 11002 host 192.168.40.1 −
  eq telnet −
   (49 matches) (time left 62)
permit tcp host 192.168.30.2 eq 11001 host 192.168.40.1 −
  eq telnet −
   (69 matches) (time left 18)
Router−2#
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The configuration that has been examined in this section so far has been for reflexive access lists
on an internal interface basis. Configuring reflexive access lists on an external interface basis is just
the opposite of the configuration in Listing 7.26. Figure 7.10 displays a network in Router 2 should
be configured for a reflexive access list that should be placed on an external interface. Listing 7.28
displays Router 2's configuration.

Figure 7.10: External reflexive access list.
Listing 7.28: External reflexive access list on Router 2.
hostname Router−2
!
ip reflexive−list timeout 100
!
interface Ethernet1
 ip address 192.168.20.1 255.255.255.0
no ip directed−broadcast
!
interface Serial0
 ip address 192.168.10.1 255.255.255.0
 ip access−group in−filter in
 ip access−group out−filter out
no ip directed−broadcast
!
ip classless 
ip route 0.0.0.0 0.0.0.0 serial0
!
ip access−list extended in−filter
 permit icmp any any
 evaluate protect
ip access−list extended out−filter
permit icmp any any
permit tcp any any reflect protect
permit udp any any reflect protect
!

Configuring Time−Based Access Lists

To configure time−based access lists, perform the following steps:

Use the time−range name command to define the name of the timed access list. Issuing
this command moves you into time−range configuration mode.

1. 

Use either of the following commands to specify when the timed access list should be in
effect:

absolute <start time date> <end time date>
periodic <days−of−the−week> hh:mm to <days−of−the−week> hh:mm

When using the periodic parameter, you may define multiple ranges. When using the
absolute parameter, only one range may be defined. The day(s)−of−the−week parameter
can be specified as any day of the week or a combination of days using the Monday,

2. 

263



Tuesday, Wednesday, Thursday, Friday, Saturday, or Sunday keyword. There are also three
other options that may be used: The daily keyword represents Monday through Sunday. The
weekend keyword specifies Saturday and Sunday, and the weekday keyword specifies
Monday through Friday.
Define an extended numbered access list as described earlier using the command and bind
the time range to the access list:

access−list <access−list−number> <deny | permit> protocol −
 <source source−wildcard> <destination destination−wildcard>−
 <precedence precedence−value> <tos tos−value> −
 <log | log−input>

3. 

Use this command to apply the access list to the interface:

ip access−group <access−list−number> <in | out>

4. 

In the first example, I will configure time−based access lists using only periodic statements with
extended numbered access lists. In this configuration, I would like to permit FTP traffic only on the
weekdays from 7:00 A.M. to 6:00 P.M., deny all HTTP traffic on the weekend, permit TFTP traffic
only on the weekend from noon to 8:00 P.M., and permit Telnet traffic only on Saturday from noon
to 8:00 P.M. Listing 7.29 displays the configuration needed to meet these requirements.

Listing 7.29: Timed access list using numbered access list.

time−range permit−ftp
periodic weekdays 07:00 to 18:00
!
time−range deny−http
periodic weekend 00:00 to 23:59
!
time−range permit−tftp
periodic weekend 12:00 to 20:00
!
time−range permit−telnet
periodic saturday 12:00 to 20:00
!
access−list 120 permit tcp any any eq 21 time−range permit−ftp
access−list 120 deny tcp any any eq 80 time−range deny−http
access−list 120 permit udp any any eq 69 time−range permit−tftp
access−list 120 permit tcp any any eq 23 time−range −
 permit−telnet
!
interface fast0/0
ip access−group 120 in

To monitor the access list, issue the show access−lists command. This will display results that tell
you whether the access list is active or inactive. An active state means the access list is currently in
use, and an inactive state means the access list is currently not in use. Here are the results of
issuing this command to monitor the access list configured in Listing 7.30:

ACL−Router#sh access−lists

Extended ip access list 120
    permit tcp any any eq 21 time−range permit−ftp (inactive)
    deny tcp any any eq 80 time−range deny−http (inactive)
    permit udp any any eq 69 time−range permit−tftp (inactive)
    permit tcp any any eq 23 time−range permit−telnet (inactive)
ACL−Router#
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Time−based access lists can also be configured using the absolute argument with extended
numbered access lists or with extended named access lists. The next example shows how to
configure a time−based access list using the absolute argument and binding the time range to an
extended named access list. This access list should deny HTTP traffic during a preplanned
Web−server outage within the year, and it should permit FTP traffic to a different server for the
entire year of 2004. It should also permit TFTP traffic from the time the access list applied until the
11th of February 2004 and permit Telnet traffic until the end of the year 2004. Listing 7.30 displays
the configuration needed to meet these requirements.

Listing 7.30: Timed access list using named access list.

time−range permit−ftp
absolute start 06:00 1 January 2004 end 23:59 31 December 2004
!
time−range deny−http
absolute start 00:00 24 November 2004 end 06:00 26 November 2004
!
time−range permit−tftp
absolute end 17:50 11 February 2004
!
time−range permit−telnet
absolute end 23:59 31 December 2004
!
ip access−list extended absolute−list
 permit tcp any host 192.168.10.234 eq 21 time−range permit−ftp
 deny tcp any host 192.168.10.233 eq 80 time−range deny−http
 permit udp any any eq 69 time−range permit−tftp
 permit tcp any any eq 23 time−range permit−telnet
!
interface fast0/0
ip access−group absolute−list in

As with the numbered access list, you can monitor the time−based named access list by issuing the
show access−lists command. This will display results that tell you whether the access list is active
or inactive. An active state means the access list is currently in use, and an inactive state means the
access list is currently not in use. Here are the results of issuing this command to monitor the
access list defined in Listing 7.30 :

ACL−Router#show access−lists
.....
Extended ip access list absolute−list
deny tcp any host 192.168.10.233 eq 80 time−range −
 deny−http (inactive)
permit udp any any eq 69 time−range permit−tftp (active)
permit tcp any any eq 23 time−range permit−telnet (active)
permit tcp any host 192.168.10.234 eq 21 time−range −
 permit−ftp (inactive)
ACL−Router#

Note Because of the format limitations of this book, some lines of code listed above have been
broken with a hyphen.
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Appendix A: IOS Firewall IDS Signature List
This appendix includes a complete list of Cisco IOS Firewall IDS signatures. A signature detects
patterns of misuse in network traffic. The 59 intrusion−detection signatures included in the Cisco
IOS Firewall software represent the most common network attacks and information−gathering scans
that should be considered intrusive activity in an operational network.

The signatures in Table A.1 are listed in numerical order by their signature number in the Cisco
Secure IDS Network Security Database (NSD).

Table A.1: IOS Firewall Network Security Database signatures.

NSD Number Description Type
1000 IP options−Bad
Option List

Signature is triggered by receipt of an IP datagram in which
the list of IP options in the IP datagram header is incomplete.

Info, Atomic

1001 IP
options−Record Packet
Route

Signature is triggered by receipt of an IP datagram with the
Record Packet Route chosen or option 7.

Info, Atomic

1002 IP
options−Timestamp

Signature is triggered by receipt of an IP datagram with the
timestamp option chosen.

Info, Atomic

1003 IP
options−Provide
s,c,h,tcc

Signature is triggered by receipt of an IP datagram in which
the IP option list for the datagram includes security options.

Info, Atomic

1004 IP options−Loose
Source Route

Signature is triggered by receipt of an IP datagram where the
IP option list for the datagram includes Loose Source Route.

Info, Atomic

1005 IP
options−SATNET ID

Signature is triggered by receipt of an IP datagram where the
IP option

Info, Atomic

1005 IP
options−SATNET ID
(continued)

list for the datagram includes SATNET stream identifier. Info, Atomic

1006 IP options−Strict
Source Route

Signature is triggered by receipt of an IP datagram in which
the IP option list for the datagram includes Strict Source
Route.

Info, Atomic

1100 IP Fragment
Attack

Signature is triggered when any IP datagram is received with
the "more fragments" flag set to 1 or if there is an offset
indicated in the offset field.

Attack,
Atomic
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1101 Unknown IP
Protocol

Signature is triggered when an IP datagram is received with
the protocol field set to 101 or greater, which are undefined
or reserved protocol types.

Attack,
Atomic

1102 Impossible IP
Packet

Signature is triggered when an IP packet arrives with the
source address equal to the destination address.

Attack,
Atomic

2000 ICMP Echo Reply Signature is triggered when an IP datagram is received with
the "protocol" field in the IP header set to 1 (ICMP) and the
type field in the ICMP header set to 0 (Echo Reply).

Info, Atomic

2001 ICMP Host
Unreachable

Signature is triggered when an IP datagram is received with
the "protocol" field in the IP header set to 1 (ICMP) and the
type field in the ICMP header set to 3 (Host Unreachable).

Info, Atomic

2002 ICMP Source
Quench

Signature is triggered when an IP datagram is received with
the "protocol" field in the IP header set to 1 (ICMP) and the
type field in the ICMP header set to 4 (Source Quench).

Info, Atomic

2003 ICMP Redirect Signature is triggered when an IP datagram is received with
the "protocol" field in the IP header set to 1 (ICMP) and the
type field in the ICMP header set to 5 (Redirect).

Info, Atomic

2004 ICMP Echo
Request

Signature is triggered when an IP datagram is received with
the "protocol" field in the IP header set to 1 (ICMP) and the
type field in the ICMP header set to 8 (Echo Request).

Info, Atomic

2005 ICMP Time
Exceeded for a
Datagram

Signature is triggered when an IP datagram is received with
the "protocol" field in the IP header set to 1 (ICMP) and the
type field in the ICMP header set to 11 (Time Exceeded for a
Datagram).

Info, Atomic

2006 ICMP Parameter
Problem on Datagram

Signature is triggered when an IP datagram is received with
the "protocol" field in the IP header set to 1 (ICMP) and the
type field in the ICMP header set to 12 (Parameter Problem
on Datagram).

Info, Atomic

2007 ICMP Timestamp
Request

Signature is triggered when an IP datagram is received with
the "protocol" field in the IP header set to 1 (ICMP) and the
type field in the ICMP header set to 13 (Timestamp
Request).

Info, Atomic

2008 ICMP Timestamp
Reply

Signature is triggered when an IP datagram is received with
the "protocol" field in the IP header set to 1 (ICMP) and the
type field in the ICMP header set to 14 (Timestamp Reply).

Info, Atomic
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2009 ICMP Information
Request

Signature is triggered when an IP datagram is received with
the "protocol" field in the IP header set to 1 (ICMP) and the
type field in the ICMP header set to 15 (Information
Request).

Info, Atomic

2010 ICMP Information
Reply

Signature is triggered when an IP datagram is received with
the "protocol" field in the IP header set to 1 (ICMP) and the
type field in the ICMP header set to 16 (Information Reply).

Info, Atomic

2011 ICMP Address
Mask Request

Signature is triggered when an IP datagram is received with
the "protocol" field in the IP header set to 1 (ICMP) and the
type field in the ICMP header set to 17 (Address Mask
Request).

Info, Atomic

2012 ICMP Address
Mask Reply

Signature is triggered when an IP datagram is received with
the "protocol" field in the IP header set to 1 (ICMP) and the
type field in the ICMP header set to 18 (Address Mask
Reply).

Info, Atomic

2150 Fragmented ICMP
Traffic

Signature is triggered when an IP datagram is received with
the "protocol" field in the IP header set to 1 (ICMP) and either
the More Fragments Flag set to 1 (ICMP) or an offset
indicated in the offset field.

Info, Atomic

2151 Large ICMP
Traffic

Signature is triggered when an IP datagram is received with
the "protocol" field in the IP header set to 1 (ICMP) and the
IP length greater than 1024.

Info, Atomic

2154 Ping of Death
Attack

Signature is triggered when an IP datagram is received with
the protocol field in the IP header set to 1 (ICMP), the Last
Fragment bit is set, and (IP offset * 8 ) + (IP data length) >
65535. Where the IP offset (which represents the starting
position of this fragment in the original packet, and which is
in 8−byte units) plus the rest of the packet is greater than the
maximum size for an IP packet.

Attack,
Atomic

3040 TCP−no bits set in
flags

Signature is triggered when a TCP packet is received with no
bits set in the flags field.

Attack,
Atomic

3041 TCP−SYN and
FIN bits set

Signature is triggered when a TCP packet is received with
both the SYN and FIN bits set in the flag field.

Attack,
Atomic

3042 TCP−FIN bit with
no ACK bit in flags

Signature is triggered when a TCP packet is received with
the FIN bit set but with no ACK bit set in the flags field.

Attack,
Atomic
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3050 Half−open SYN
Attack/ SYN Flood

Signature is triggered when multiple TCP sessions have
been improperly initiated on any of several well−known
service ports. Detection of this signature is currently limited
to FTP, Telnet, HTTP, and email servers.

Attack,
Compound

3100 Smail Attack Signature is triggered on the "smail" attack against
SMTP−compliant email servers.

Attack,
Compound

3101 Sendmail Invalid
Recipient

Signature is triggered on any mail message with a pipe
symbol (|) in the recipient field.

Attack,
Compound

3102 Sendmail Invalid
Sender

Signature is triggered on any mail message with a pipe
symbol (|) in the "From:" field.

Attack,
Compound

3103 Sendmail
Reconnaissance

Signature is triggered when expn or vrfy commands are
issued to the SMTP port.

Attack,
Compound

3104 Archaic Sendmail
Attacks

Signature is triggered when wiz or debug commands are
issued to the SMTP port.

Attack,
Compound

3105 Sendmail Decode
Alias

Signature is triggered on any mail message with ": decode@"
in the header.

Attack,
Compound

3106 Mail Spam Signature counts number of Rcpt to: lines in a single mail
message and sends an alarm after a user−definable
maximum has been exceeded (default is 250).

Attack,
Compound

3107 Majordomo
Execute Attack

Signature when a bug in the Majordomo program allows
remote users to execute arbitrary commands at the privilege
level of the server.

Attack,
Compound

3150 FTP Remote
Command Execution

Signature is triggered when someone tries to execute the
FTP SITE command.

Attack,
Compound

3151 FTP SYST
Command Attempt

Signature is triggered when someone tries to execute the
FTP SYST command.

Attack,
Compound

3152 FTP CWD <root Signature is triggered when someone tries to execute the
CWD <root command.

Attack,
Compound

3153 FTP Improper
Address Specified

Signature is triggered if a port command is issued with an
address that is not the same as the requesting host's
address.

Attack,
Atomic
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3154 FTP Improper
Port Specified

Signature is triggered if a port command is issued with a data
port specified that is less than 1024 or greater than 65535.

Attack,
Atomic

4050 UDP Bomb Signature is triggered when the UDP length specified is less
than the IP length specified.

Attack,
Atomic

4100 Tftp Passwd File Signature is triggered on an attempt to access the passwd
file via TFTP.

Attack,
Compound

6100 RPC Port
Registration

Signature is triggered when attempts are made to register
new RPC services on a target host.

Info, Atomic

6101 RPC Port
Unregistration

Signature is triggered when attempts are made to unregister
existing RPC services on a target host.

Info, Atomic

6102 RPC Dump Signature is triggered when an RPC dump request is issued
to a target host.

Info, Atomic

6103 Proxied RPC
Request

Signature is triggered when a proxied RPC request is sent to
the portmapper of a target host.

Attack,
Atomic

6150 ypserv Portmap
Request

Signature is triggered when a request is made to the
portmapper for the YP server daemon (ypserv) port.

Info, Atomic

6151 ypbind Portmap
Request

Signature is triggered when a request is made to the
portmapper for the YP bind daemon (ypbind) port.

Info, Atomic

6152 yppasswdd
Portmap Request

Signature is triggered when a request is made to the
portmapper for the YP password daemon (yppasswdd) port.

Info, Atomic

6153 ypupdated
Portmap Request

Signature is triggered when a request is made to the
portmapper for the YP update daemon (ypupdated) port.

Info, Atomic

6154 ypxfrd Portmap
Request

Signature is triggered when a request is made to the
portmapper for the YP transfer daemon (ypxfrd) port.

Info, Atomic

6155 mountd Portmap
Request

Signature is triggered when a request is made to the
portmapper for the mount daemon (mountd) port.

Info, Atomic

6175 rexd Portmap
Request

Signature is triggered when a request is made to the
portmapper for the remote execution daemon (rexd) port.

Info, Atomic

6180 rexd Attempt Signature is triggered when a call to the rexd program is
made.

Info, Atomic
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6190 statd Buffer
Overflow

Signature is triggered when a large statd request is sent.
This could be an attempt to overflow a buffer and gain
access to system resources.

Attack,
Atomic

8000 FTP Retrieve
Password File SubSig
ID: 2101

Signature is triggered on the string "passwd" issued during
an FTP session.

Attack,
Atomic
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Appendix B: Securing Ethernet Switches
This appendix covers security features that are available and can be used on the Catalyst series
Ethernet switches. Security topics for the Catalyst switches are configuring management access to
the switch, controlling Telnet, and Simple Network Management Protocol (SNMP) access,
configuring the switch to support the AAA architecture, and configuring private virtual local area
networks (VLANS) and port security.

The Catalyst line of Ethernet switches has multiple command−line interfaces (CLI); each has a
different look and feel depending on which model of switch you are working on. The two most
predominant versions of operating system code in use today are the CatOS XDI version and the
Native IOS mode version. An in−depth discussion of each of these versions is beyond the scope of
this book; however, configuration command examples for each version will be displayed where
applicable.

Configuring Management Access

When a Catalyst switch is first received from Cisco, it does not have any passwords configured.
This can present a major security risk because anyone with physical access to the switch can
establish a connection to it simply by plugging into the console port and pressing the Enter key.

Note The password configured on a switch by default is the Enter key. This is true for both
EXEC mode and privileged mode.

The first step any administrator should perform when configuring a Catalyst switch is to configure
passwords for both the EXEC mode and privileged mode access on the switch. This helps to
complement any other physical security measures that have been taken as a result of the
enterprise's security policy. To configure management passwords on the Catalyst switch using
CatOS XDI code, use the following commands:

Use the set password command to define a password for EXEC mode access into the
switch. The password that is configured using this command can be from 0 to 30 characters
in length.

1. 

Use the set enablepass command to define a password for privileged mode access on the
switch. The password that is configured using this command can be from 0 to 30 characters
in length.

2. 

The following listing displays an example of configuring the EXEC mode password and the
privileged mode password for a Catalyst switch using CatOS code:

Cat−6509> (enable) set password
Enter old password:
Enter new password:
Retype new password:
Password changed.
!
Cat−6509> (enable) set enablepass
Enter old password:
Enter new password:
Retype new password:
Password changed.
Cat−6509> (enable)
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The Native IOS mode code that runs on many newer switches is a blend of Layer 2 code and Layer
3 code all rolled up into one version. The Native IOS mode code creates an environment in which
Catalyst switches can be configured and managed through the familiar IOS user interface that runs
on most routers.

To configure a password on a Catalyst switch that is using Native IOS use the commands in the
following steps:

Use this command to enter into line configuration mode:

line <con | aux | vty> line−number

1. 

Use the password <password> command to define the password for each line on the
router.

2. 

To configure enable mode access you can use one of two commands, enable password
<password> or enable secret level <level> <password>. Both commands accomplish the
same thing; they allow access to enable mode. However, the enable secret password is
considered to be more secure because it uses a one−way encryption scheme based on the
MD5 hashing function.

3. 

The following listing displays an example of configuring the line password and enable passwords on
a Catalyst switch using Native IOS:

Cat−6509#config t
Cat−6509(config)#enable secret Secret@Password
Cat−6509(config)#line con 0
Cat−6509(config−line)#login
Cat−6509(config−line)#password thisissecure

Configuring Port Security

Port security is used to block input to an Ethernet, FastEthernet, or Gigabit Ethernet port when the
MAC address of the station attempting to access the port is different from any of the MAC
addresses specified for that port. When a packet is received on a port with port security enabled,
the source MAC address of the packet is compared with the secure MAC address configured for the
port. If the MAC address of the device attached to the port differs from the secure MAC address
configured for the port, a security violation occurs and the port can be configured to go into
shutdown mode or restrictive mode. If the security violation is configured to transition the port into
shutdown mode, the port is permanently disabled or disabled for only a specified time. The default
action of shutdown mode is for the port to shut down permanently. If the security violation is
configured to transition the port into restrictive mode, the port will remain enabled during the security
violation and only drop packets that are coming in from insecure hosts.

Warning If you configure a port in restrictive mode and the MAC address on a device that is
connected to the port is already configured as a secure MAC address on another port on
the switch, the port in restrictive mode shuts down instead of restricting traffic from that
device.

The secure MAC address of the port can be configured statically, or the port can be configured to
dynamically learn the MAC address of the device connected to the switch via the port. There are a
few restrictions to configuring port security. Certain rules exist that pertain to configuring port
security on a Cisco Catalyst switch:
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Port security cannot be enabled on a port that is performing trunking.• 
Port security cannot be enabled on a destination Switched Port Analyzer (SPAN) port.• 
Content−Addressable Memory (CAM) entries cannot be configured for a port on which port
security is enabled. Use the set cam <dynamic | static | permanent> command to enter
CAM entries into the switch.

• 

To configure port security for a switch using CatOS code, use the following commands:

Use this command to enable dynamic port security on the specified port:

set port security <mod_num/port_num> enable

1. 

Use this command to statically define the MAC address of the device connected via the
secure port:

set port security mod_num/port_num enable <mac_address>

2. 

Use this command to define the length of time a dynamically learned address on the port
specified within the command is secured:

set port security <mod_num/port_num> age <time>

3. 

Use this command to define the action a port should take when a security violation occurs:

set port security <mod_num/port_num> violation <shutdown | − restrict>

The shutdown parameter disables the port permanently or for a specified period time that is
configured with the next command. The restrict parameter drops all packets from an
insecure source but the port remains enabled.

4. 

Use this command to define the amount of time a port remains disabled as a result of a
security violation:

set port security <mod_num/port_num> shutdown <time>

If this command is not configured, the default time is set to permanent and the port must be
manually reenabled.

5. 

Here is an example of configuring port security on a switch that is using CatOS code:

Cat−6509 (enable) set port security 4/48 enable
Cat−6509 (enable) set port security 5/3 enable 00−d0−b7−53−40−bb
Cat−6509 (enable) set port security 4/48 age 360
Cat−6509 (enable) set port security 4/48 violation restrict
Cat−6509 (enable) set port security 5/3 violation shutdown
Cat−6509 (enable) set port security 5/3 shutdown 360

The commands used to enable port security for Catalyst switches that are using Native IOS code
are not as robust as the commands available via the CatOS code. To configure port security for a
switch that is using Native IOS code, use the following commands:

Use this command to select the interface on which port security should be configured:

interface <ethernet | fastethernet | gigEthernet> <slot/port>

1. 

Use this command to define the action the port should take in the event of a violation
condition:

port security action <shutdown | trap>

2. 

274



The shutdown parameter will disable the port in the event of a security violation. The trap
parameter will send an SNMP trap message in the event of a security violation.
Use this command to define the maximum MAC address count for the port:

port security max−mac−count <count>

3. 

The following code is an example of configuring port security on a switch that is using Native IOS
code:

Cat−6509#config t
Cat−6509(config)#interface fast0/42
Cat−6509(config−if)#port security action shutdown
Cat−6509(config−if)#port security max−mac−count 1
Cat−6509(config−if)#end

Configuring Permit Lists

The IP permit list is a feature of the CatOS that permits authorized Telnet and SNMP access to the
switch only from authorized source IP addresses. IP permit lists do not affect traffic that is transiting
the switch or that is locally originated by the switch. IP permit lists only affect inbound Telnet and
SNMP traffic with a destination address as that of the management address of the switch.

Each IP permit entry consists of an IP address and subnet mask pair that is permitted Telnet or
SNMP access. If a mask for an IP permit list entry is not specified, or if a hostname is entered
instead of an IP address, the mask has an implicit value equal to all 1s, which effectively means
match according to host address. There is a limit on the number of permit entries that can be
configured on the switch; the maximum is 100 entries.

To configure IP permit lists on a switch running CatOS code, use the following commands:

Use this command to enable the IP permit list for Telnet, SNMP, or SSH access:

set ip permit enable <telnet | snmp | ssh>

1. 

Use this command to specify the IP addresses that are added to the permit list:

set ip permit <ip_address> <mask> <telnet | snmp | ssh | all>

Figure B.1 displays a small network that has devices, which need network management
access to the switch. Telnet access into the switch should be allowed from any machine
within the network. The following code is an example of configuring an IP permit list for the
Catalyst switch in Figure B.1 using CatOS code:

2. 

set ip permit enable telnet
set ip permit enable snmp
set ip permit 192.168.0.0 255.255.0.0 telnet
set ip permit 192.168.24.12 snmp
set ip permit 192.168.24.15 snmp
set ip permit 192.168.24.16 snmp
set ip permit 192.168.40.250 snmp
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Figure B.1: Catalyst switch using IP permit lists.

Configuring AAA Support

Cisco Catalyst switches support the use of the AAA architecture that was discussed in Chapter 2.
Catalyst switches allow for the configuration of any combination of these authentication methods to
control access to the switch:

Local authentication—Uses the locally configured login and enable passwords to
authenticate login attempts.

• 

RADIUS authentication—Uses the AAA server to authenticate login attempts using the
RADIUS protocol.

• 

TACACS+ authentication—Uses the AAA server to authenticate login attempts using the
TACACS+ protocol.

• 

Kerberos authentication—Uses a trusted Kerberos server to authenticate login attempts.• 

Note All configurations in this section are related to switches that use the CatOS software. To
configure for AAA support a Catalyst that uses Native IOS software, please refer to Chapter
2.

Use the following commands to enable authorization for the Catalyst switch (local login and enable
authentication are enabled for both console and Telnet connections by default):

set authentication login tacacs disable console
set authentication login tacacs enable telnet primary

set authentication login tacacs enable http primary
set authentication enable tacacs disable console
set authentication enable tacacs enable telnet primary
set authentication enable tacacs disable http
set authentication login local enable console
set authentication login local enable telnet
set authentication login local enable http
set authentication enable local enable console
set authentication enable local enable telnet
set authentication enable local enable http

276



To view the results of enabling authorization on the switch, issue the show authentication
command. The following output is an example of issuing the show authentication command:

Cat−6509> (enable) sh authentication
Login :    Console           Telnet            Http
−−−−−−−    −−−−−−−           −−−−−−            −−−−
tacacs     disabled          enabled(primary)  enabled(primary)
radius     disabled          disabled          disabled
kerberos   disabled          disabled          disabled
local      enabled(primary)  enabled           enabled

Enable:    Console           Telnet            Http
−−−−−−−    −−−−−−−           −−−−−−            −−−−
tacacs     disabled          enabled(primary)  disabled
radius     disabled          disabled          disabled
kerberos   disabled          disabled          disabled
local      enabled(primary)  enabled           enabled(primary)

Authorization is also supported in the Catalyst model switches. It controls the functions that are
permitted by an authenticated user on the switch. Authorization is supported on the Catalyst
Ethernet switches for the following:

Commands—User must supply username and password that is verified by the AAA server to
EXECute certain commands. Authorization for all commands can be enabled only for enable
mode commands.

• 

EXEC mode—User must supply a valid username and password that is verified by the AAA
server to gain access to EXEC mode.

• 

Enable mode—User must supply a valid username and password that is verified by the AAA
server to gain access to enable mode.

• 

Authentication is supported for three different connections attempts; however, authorization is
supported for only two, Console and Telnet:

Console—Authorization is performed for all console sessions.• 
Telnet—Authorization is performed for all Telnet sessions.• 

Just as with routers, switches can be configured to support the use of methods to provide
authorization services. The methods are sometimes referred to as options, and the option
configured is known as the primary option. Any option configured after the primary option is known
as a fallback option. Fallback options are used only in the event of an error condition or failure of the
primary option. The Catalyst switches support the use the following options:

TACACS+—Uses a defined TACACS+ server to provide authorization services.• 
If−Authenticated—If authentication has already taken place for a session, authorization
succeeds.

• 

Deny—If the authentication server fails to respond to a request for authorization, the
authentication request fails.

• 

None—If the authentication server fails to respond, authentication succeeds.• 

Use the following commands to enable authorization for the Catalyst switch:

Use this command to enable authorization for EXEC mode access:

set authorization exec enable <option><fallbackoption>
  <console | telnet>

1. 
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Use this command to enable authorization for privileged mode access to the switch:

set authorization enable enable <option> <fallbackoption>
  <console | telnet>

2. 

Use this command to enable authorization of configuration commands:

set authorization commands enable <config | all> <option>
  <fallbackoption> <console | telnet>

3. 

The following output displays an example of enabling authorization on the Catalyst switch:

set authorization exec disable console
set authorization exec enable tacacs+ if−authenticated telnet
set authorization enable disable console
set authorization enable disable telnet
set authorization commands disable console
set authorization commands enable config tacacs+
if−authenticated telnet

To view the results of enabling authorization on the switch, issue the show authorization
command. The following output displays an example of issuing the show authorization command:

Cat−6509> (enable) sh authorization

Telnet:
−−−−−−−
            Primary         Fallback
            −−−−−−−         −−−−−−−−
exec:       tacacs+         if−authenticated
enable:     −               −
commands:
 config:    tacacs+         if−authenticated
 all:       −               −

Console:
−−−−−−−−
            Primary         Fallback
            −−−−−−−         −−−−−−−−
exec:       −               −
enable:     −               −
commands:
 config:    −               −
 all:       −               −

Accounting allows you to track user activity to a specified host, suspicious connection attempts in
the network, and unauthorized changes. The accounting information is sent to the accounting server
where it is saved in the form of a record. Accounting information typically consists of the user's
action and the duration for which the action lasted. You can use the accounting feature for security,
billing, and resource allocation purposes.

Accounting on the Catalyst switches can be configured for the following types of events:

EXEC mode—Accounting information about EXEC mode sessions on the switch is recorded
when this mode of accounting is configured.

• 

Connect—All outbound connection requests made from the switch are accounted for when
this mode of accounting is performed.

• 

System—Accounting information on system events that are not user related is recorded.
This information includes system reset, system boot, and user configuration of accounting.

• 
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Command—Accounting information for each command entered into the switch by a user is
recorded when this mode of accounting is configured.

• 

After the switch is configured for accounting of services on the switch, accounting records are
created. There are two types of accounting records: start records and stop records. Start records
include information that pertains to the beginning of an event and stop records include the complete
information of the event. To configure the switch for accounting, perform the following steps:

Use this command to enable accounting for connection events:

set accounting connect enable <start−stop | stop−only>
  <tacacs+ | radius>

1. 

Use this command to enable accounting for EXEC mode events:

set accounting exec enable <start−stop | stop−only>
  <tacacs+ | radius>

2. 

Use this command to enable accounting for system events:

set accounting system enable <start−stop | stop−only>
  <tacacs+ | radius>

3. 

Use this command to enable accounting of all configuration commands:

set accounting commands enable <config | all> <stop−only>
  <tacacs+>

4. 

Use this command to enable suppression of unknown user events:

set accounting suppress null−username enable

It is best to use the following command to disable this command so that information about
unknown user events is accounted for:

set accounting suppress null−username disable

5. 

An example of configuring a Catalyst switch for accounting service is shown here:

set accounting exec enable stop−only tacacs+
set accounting connect disable
set accounting system enable stop−only tacacs+
set accounting commands enable config stop−only tacacs+
set accounting suppress null−username disable

To view the results of enabling authorization on the switch, issue the show accounting command.
The following output is an example of issuing the show accounting command:

GC05−6509A> (enable) sh accounting
Event     Method     Mode
−−−−−     −−−−−−     −−−−
exec:     tacacs+    stop−only
connect:  −          −
system:   tacacs+    stop−only
commands:
config:   tacacs+    stop−only
all:      −          −

TACACS+ Suppress for no username: disabled
Update Frequency: new−info
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Accounting information:
−−−−−−−−−−−−−−−−−−−−−−−
Active Accounted actions on tty0, User (null) Priv 0
Active Accounted actions on tty−2106106732, −
User testuser Priv 15
 Task ID 807, exec Accounting record, 0,00:00:44 Elapsed
 task_id=807 start_time=1011372975 timezone=CST service=shell

Overall Accounting Traffic:
          Starts   Stops  Active
          −−−−−−   −−−−−  −−−−−−
Exec           0     489       1
Connect        0       0       0
Command        0       0       0
System         0       43      0
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