
CD-ROM
Included

The Non-Programmer’s Guide to Maximum Flash
The Non-Programmer’s Guide to Maximum Flash

Doug Sahlin

Sahlin

Step-by-Step Tutorials and Projects
Show You How to Create:

About
the Author
Doug Sahlin is an

author, graphic artist,

and Web site designer.

His books include

Macromedia Flash

MX ActionScript For

Dummies, Flash 5

Virtual Classroom,

Fireworks 4 For

Dummies, Carrara 1

Bible, and How to Do

Everything with

Adobe Acrobat 5.0.

He has also written

numerous magazine

articles, product

reviews, and Web

tutorials on image-

editing and Web

design software.

CD-ROM
Contents
CD-ROM
Contents
• Source files and artwork

for chapter projects

• SWfX and Swift 3D

demo versions

• Plus Macromedia

Dreamweaver MX, Fireworks

MX and FreeHand trial

versions

Source files
and artwork for
chapter projects

From user interactivity and eye candy effects to automated

content management, ActionScript gives you the power to take

your Flash movies to the next level. But what if you’re not

comfortable with objects, variables, and all that other

programming stuff? Relax! Using plenty of easy-to-understand

tutorials and an absolute minimum of geek-speak, Doug Sahlin

takes the mystery out of ActionScript — and shows you step by

step how to put it to work in real-world Web design.

• Flash forms

• Animated preloaders

• Printable frames

• User-customizable

e-commerce products

• Dynamic backgrounds

• Custom cursors

• Motion trails

• Starburst backdrops

• Slide shows

• Pop-up windows

• Banner ads

• Flash intros

• Animated banners

*85555-BAJIHc ,!7IA7G4-fdgihi!:p;M;t;t;T
ISBN 0-7645-3687-7

www.wiley.com/compbooks

$29.99 USA

$44.99 CANADA

£24.99 UK incl. VAT

Reader Level

Beginning to Advanced

Shelving Category

Internet/Web Site Design

CD-ROM
Included

3687-7_FlashMXActionscr_F.qxd 6/5/02 3:59 PM Page 1

Flash™ MX
ActionScript™ For

Designers

Doug Sahlin

Best-Selling Books • Digital Downloads • e-Books • Answer Networks • e-Newsletters • Branded Web Sites • e-Learning

a3687-7 FM.F 6/12/02 9:03 AM Page i

Flash™ MX ActionScript™ For Designers

Published by
Wiley Publishing, Inc.
909 Third Avenue

New York, NY 10022

www.wiley.com
Copyright © 2002 by Wiley Publishing, Inc., Indianapolis, Indiana

Library of Congress Control Number: 2002106038

ISBN: 0-7645-3687-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/QR/QX/QS/IN

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-Mail:
permcoordinator@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO
THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A
PROFESSIONAL WHERE APPROPRIATE. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS
OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Library of Congress Cataloging-in-Publication Data

Trademarks: Wiley and related trade dress are registered trademarks of Wiley Publishing, Inc., in the United States and
other countries, and may not be used without written permission. FreeHand 10 Copyright © 1995-2000. Macromedia, Inc.
600 Townsend Street, San Francisco, CA 94103 USA. All Rights Reserved. Macromedia, FreeHand, Flash and ActionScript
are trademarks or registered trademarks of Macromedia, Inc. in the United States and/or other countries. All other
trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

is a trademark of Wiley Publishing, Inc.

a3687-7 FM.F 6/12/02 9:03 AM Page ii

About the Author
Doug Sahlin is an author, graphic designer, and Web site designer living in Central

Florida. He is the author of Carrara 1 Bible, Carrara 1 For Dummies, Fireworks For
Dummies, Macromedia Flash MX ActionScript For Dummies, and several other books

about graphics and Web design. His articles and tutorials have appeared in national

publications and have been featured at Web sites devoted to graphics and Web

design. Doug developed and authored an online Flash 4 course. When he’s busy

writing, his steadfast companion Niki the cat occupies a sliver of sunlight within

arm’s reach of the author. When he’s not writing books, he designs Web sites for his

clients. When he manages to find a spare moment or two, Doug enjoys photography,

playing his guitar, or curling up with a good mystery novel.

For Emily, I know you’re out there somewhere.

a3687-7 FM.F 6/12/02 9:03 AM Page iii

Credits
Acquisitions Editor

Tom Heine

Project Editor

Andrea C. Boucher

Technical Editor

Kyle Bowen

Editorial Manager

Rev Mengle

Vice President and Executive Group

Publisher

Richard Swadley

Vice President and Executive

Publisher

Bob Ipsen

Executive Editorial Director

Mary Bednarek

Project Coordinator

Regina Snyder

Graphics and Production Specialists

Beth Brooks, Joyce Haughey,

Gabriele McCann, Jeremey Unger

Quality Control Technicians

Laura Albert, Andy Hollandbeck,

Susan Mortiz, Carl Pierce,

Charles Spencer

Permissions Editor

Laura Moss

Media Development Specialist

Marisa Pearman, Travis Silvers

Proofreading and Indexing

TECHBOOKS Production Services

a3687-7 FM.F 6/12/02 9:03 AM Page iv

Preface

Flash MX is the predominant choice for Web designers who want to create inter-

active designs for their clients. With more features than ever before, Flash is

a total Web publishing solution. With Flash MX, you can now include video in your

designs. The total number of available actions has more than doubled with this

major Flash upgrade.

The Flash Player is included with every computer operating system and the most

popular Web browsers. With a user base of 442,692,972 installed Flash Players as of

May 2, 2002, it’s no wonder Web designers and developers using Flash practice the

fine art of one-upmanship for their clients. With such a large a user-base, all Web

designers need to know how to use Flash if they are to get their fair share of this

immense pie.

Flash MX ActionScript For Designers will show you how to harness the power of

ActionScript. If you’ve wanted to come up to speed with ActionScript but the sheer

volume of available actions caused you to stick with the tried-and-true Flash anima-

tion methods, you’ll find the answers to many of your questions in this book. I show

you how to use the basic actions to control the flow of your design. Even though

ActionScript can be daunting, the basics of ActionScript’s Object Oriented

Programming are presented in easy-to-understand layman’s terms.

The primary focus of this book is to show you how to use ActionScript to add

excitement and diversity to your designs. If you’ve wanted to take the next step

and push the envelope with ActionScript, you have the right book in your hands.

Throughout this book you’ll find concise examples of ActionScript at work —

examples that you can put to use in your daily work. In addition, many chapters

feature a project that shows you how to use the material to create a finished object

with ActionScript.

Who Should Read This Book
This book was written with the designer in mind. Even if you already know a bit of

basic ActionScript, the techniques and material presented in this book will help you

take your work to the next level.

As a rule, designers are right-brained people who shy away from the cold hard logic

of programming and code. If you fall into that category, you’ll be pleased to know

that ActionScript is approachable, even for the code-challenged. In this book you’ll

a3687-7 FM.F 6/12/02 9:03 AM Page v

vi Flash MX ActionScript For Designers

be exposed to concepts and theory that give you a firm background of what you

can and cannot do with ActionScript. And as you will find out, the cannots are

limited largely by your imagination.

If you’re ready to combine your artistic talent and imagination with the power of

ActionScript, you’ll find many things to whet your appetite in this book. If you’ve

ever wondered how the hotshot designers make their magic with Flash, you’ll find

some of the answers in this book.

How This Book Is Organized
This book is organized into four parts, plus three appendixes.

Part I: Comprehending the Mechanics of ActionScript
This first part of the book discusses the theory behind ActionScript. When you

started out designing Web pages, you had to learn all about pixels and resolution.

This part of the book is no different than your basic graphic design information.

It shows you the ActionScript equivalent of pixels and resolution, the actions

themselves, and the tools you use to turn them into a little bit of magic. In this

section, you’ll get a formal introduction to the main tool you use to create

ActionScript: the Actions panel. You’ll also get a brief tour of the Actions panel

and learn some techniques for planning an ActionScript design.

Part II: Using Basic ActionScript in Your Movie
In this part of the book, you walk down the steps into the shallow end of the pool.

You’ll take your first foray into ActionScript by learning to use the basic actions

to control the flow of your designs. You’ll also learn how to divide a potential

bandwidth breaking design into byte-sized pieces.

Part III: Creating ActionScript Elements
for Your Movie
The third part of this book focuses on creating the elements you can use to make

the objects in your designs jump through the virtual hoop, so to speak. If you’ve

ever wondered how to create a button that’s animated, yet the animation is not

predictable, you’ll learn how in this section. If you’ve seen pop-up menus and

thought they were okay but not the bee’s knees, wait until you see the flyout

menu project in this section. And if you need more, there’s part four.

a3687-7 FM.F 6/12/02 9:03 AM Page vi

viiPreface

Part IV: Building Additional Design Elements
for Your Movie
In this fourth part, you’ll start using some of the theory and logic from the earlier

sections to create elements you can use in your own work. You’ll learn how to

create a background full of sparkling stars that won’t break the bandwidth barrier

of your user’s connection. You’ll also learn to create eye candy such as a moving

slide show that stops when the users move their cursors over the moving images

and motion trails that fade off into the background. You’ll also learn how to inte-

grate Flash with your HTML work.

Appendixes
The final section of the book is devoted to three appendixes:

✦ Appendix A: What’s on the CD-ROM details the contents of the CD, from the

author-created materials to the applications and software available for your

use as you work your way through the book.

✦ Appendix B: Flash Resources is a roadmap to sources of Flash information on

the Internet. In this section you’ll find the URLs to sites where you can find

additional tutorials and examples of ActionScript at work.

✦ Appendix C: Flash Inspiration is a list of Web sites designed by ActionScript

gurus. If you’ve ever been at a loss for a new idea, a quick trip to one of the

sites in this section will get your creative juices flowing.

How to Approach This Book
If you’re completely new to ActionScript, read this book from cover to cover.

The theory parts of the book may not be awe inspiring, but in order to create

awe-inspiring designs with ActionScript, it is often necessary to crawl before you

walk.

If you’ve got some experience with ActionScript, but need to hone your skills, feel

free to jump to the sections that interest you the most. If you’re interested in learning

new concepts, try out some of the chapter projects. Here you’ll find full-fledged

projects that guide you from start to finish. Much of the work has already been done

for you, but the ActionScript has been left in your creative hands, with a little help

from the author.

If you want cookbook recipes you can use immediately in your work, check out

the various chapter projects. The projects presented are clear-cut examples of

ActionScript at work. Modify them with your own artistic touch and make them

your own.

a3687-7 FM.F 6/12/02 9:03 AM Page vii

viii Flash MX ActionScript For Designers

Conventions Used in This Book
Each chapter in this book begins with a heads-up of the topics covered in the

chapter and ends with a section called Designer Notes that summarizes the

information you should have learned by reading the chapter and gives you an

idea of what to expect next.

Throughout this book, you will find icons in the margins that highlight special or

important information. Keep an eye out for the following:

Cross-Reference icons point to additional information about a topic, which you
can find in other sections of the book.

A Note icon contains additional information about the topic of discussion. In fact,
you can use notes and tips to locate sections of interest if you’re in a hurry.

The On the CD-ROM icon is your signpost to the raw materials for a chapter
project. When you see this icon, you’ll be directed to a folder and a file that
contains the raw material for the project you’ll finish.

When you see a Tip icon, you’ll find information that will streamline your work
with ActionScript, as well as handy shortcuts to speed up your production.

In addition to the icons listed previously, the following typographical conventions

are used throughout the book:

✦ Code examples appear in a courier font.

✦ Actions are designated as follows: goto.

✦ When you are required to enter code in an ActionScript text box, the required

entry will be designated as bold text.

✦ You’ll see many examples of ActionScript code shown in a listing.

✦ The Actions panel’s got lots of books. And some of these books have books

within a book. To add some actions to your scripts, you have to click this

book icon, then click that book icon, then click another book icon, and so on.

Rather than bore you with a lot of words, I’m going to show the path to each

action as shown in the following example: Click Actions➪Movie Control and

then double-click goto.

Tip

On the
CD-ROM

Note

Cross-
Reference

a3687-7 FM.F 6/12/02 9:03 AM Page viii

Acknowledgments

Even though one person’s name appears on the cover of this book, a project of

this magnitude would not be possible without the concerted effort of many.

Thanks to the fine folks at Wiley Publishing for giving me the opportunity to bring

this project to fruition. Special thanks to Acquisitions Editor Tom Heine for working

out the fine points of the concept and content.

As always, thanks to the lovely and talented Margot Maley Hutchinson for ironing

out the fine print in the contract. You’re a gem, Margot. Speaking of gems, another

young lady played a large part in this production. Kudos to the effervescent and

ebullient Andrea Boucher, Project Editor extraordinaire, and just another example

of why blonde-haired people will soon rule the universe. Thank you for your stead-

fast, guiding hand and kind words of encouragement when the going got tough.

Thanks to Marisa Pearman, Wiley Media Development Specialist, for employing

her magic on the creation of this book’s CD-ROM. Many thanks to the vendors who

contributed software for this CD-ROM.

Special thanks to the Macromedia Flash MX development team and all of the

creative people at Macromedia. Thank you for your continued support of authors

and for producing the best Web design software on the planet. Special thanks to the

wild and wacky members of the Flash community, people who survive on but a few

hours sleep and offer support beyond measure to fellow Flash users and authors.

You people are truly amazing.

As always, thanks to my mentors, friends, and family, especially you, Ted and

Karen. Congratulations to Karen and Shel on their recent marriage. And thank you

Karen and Shel for the wonderful memories of St. John. Special thanks to a lovely

lady who will live on always in my memory: my dear mother Inez. She provided the

wind in my sails when I was a young boy and used her gentle wisdom to guide me,

and yet at the same time allowed me to become the individual that I am. I wish you

were here to share this with me.

a3687-7 FM.F 6/12/02 9:03 AM Page ix

Contents at a Glance
Preface . v

Acknowledgments . ix

Part I: Comprehending the Mechanics of ActionScript 1
CHAPTER 1: Introducing ActionScript for Designers 3

CHAPTER 2: Delving into Your ActionScript Toolkit 19

CHAPTER 3: Planning Your ActionScript Movie . 51

Part II: Using Basic ActionScript in Your Movie 63
CHAPTER 4: Charting the Timeline of Your Movie 65

CHAPTER 5: Creating Basic Interactivity . 81

CHAPTER 6: Creating Elements for Your Movie . 97

CHAPTER 7: Taking Control of Your Movie . 119

CHAPTER 8: Creating Variables to Store and Dispense Information 141

Part III: Creating ActionScript Elements for Your Movie 165
CHAPTER 9: Generating ActionScript to Modify Objects 167

CHAPTER 10: Designing Interactive Navigation 189

CHAPTER 11: Composing Dynamic Text . 209

CHAPTER 12: Building Interactive Interfaces . 231

CHAPTER 13: Creating ActionScript Sound Objects 257

CHAPTER 14: Debugging an ActionScript . 283

Part IV: Building Additional Design Elements for Your Movie 295
CHAPTER 15: Building Web Site Elements with ActionScript 297

CHAPTER 16: Creating Flash Eye Candy . 315

CHAPTER 17: Integrating Flash with HTML . 339

Appendix A: What’s on the CD-ROM . 357

Appendix B: Flash Resources . 363

Appendix C: Flash Inspiration . 369

Index . 375

End-User License Agreement . 389

a3687-7 FM.F 6/12/02 9:03 AM Page x

Contents
Preface . v

Acknowledgments . ix

Part I: Comprehending the Mechanics of ActionScript 1

Chapter 1: Introducing ActionScript for Designers 3
Why Designers Need ActionScript . 4

Managing movie content with ActionScript 4

Storing and dispensing information with variables 5

Creating visual effects with ActionScript 6

Modifying design elements with ActionScript 6

Other uses for ActionScript . 7

Decoding Object-Oriented Scripting . 7

Understanding How ActionScript Works . 8

Using ActionScript as a Design Element . 12

When to Use ActionScript . 16

Chapter 2: Delving into Your ActionScript Toolkit 19
Surveying the Actions Panel . 20

Essential Actions for Designers . 21

Exploring the Actions book . 21

Exploring the Operators book . 24

Delving into the Functions book . 25

Exploring the Constants book . 25

Modifying objects with the Properties book 25

Exploring the Objects book . 25

Dealing with Deprecated actions . 26

Using actions from the Flash UI Components book 26

Using actions from the Index book . 26

Adding Actions to Your Documents . 27

Working in modes . 28

Adding an action to your script . 29

Using the parameter text boxes . 30

Deleting an action from your script . 31

Changing the hierarchy of actions . 31

Navigating to scripts with the Script window 31

Pinning a script . 32

Finding and replacing text in a script 32

Using the ActionScript Reference panel 33

a3687-7 FM.F 6/12/02 9:03 AM Page xi

xii Flash MX ActionScript For Designers

Changing your viewing options . 35

Using the Actions panel Options menu 35

Creating ActionScript in expert mode 36

Using the Actions panel context menu 37

Understanding ActionScript conventions 37

Understanding Symbol Types . 42

About the button symbol . 42

About the graphics symbol . 42

About the movie clip symbol . 43

About the component symbol . 43

About the Document Library . 43

Chapter Project: Creating Your First ActionScript 44

Chapter 3: Planning Your ActionScript Movie 51
The Evolution of an ActionScript . 52

Planning Your Design . 55

Getting inspired . 55

Drafting your design . 56

Mapping your ActionScript . 57

Fleshing Out Your Idea . 58

Gathering your assets . 58

Saving time with extensions . 59

Chapter Project: Drawing Outside the Lines 60

Part II: Using Basic ActionScript in Your Movie 63

Chapter 4: Charting the Timeline of Your Movie 65
Controlling the Timeline . 66

Working with frames . 66

Creating an Actions layer . 69

Adding comments to keyframes . 70

Allocating Actions to a Frame . 70

Creating Buttons . 72

Adding a button to your document . 72

About button states . 73

Creating an invisible button . 74

Assigning actions to a button . 74

Navigating with ActionScript . 76

Using the stop action . 76

Using the play action . 76

Using the goto action . 77

Using the getURL action . 77

Using JavaScript to open an HTML page in a

different size window . 79

a3687-7 FM.F 6/12/02 9:03 AM Page xii

xiiiContents

Chapter 5: Creating Basic Interactivity 81
Creating Movie Clips . 81

Using movie clips for interactive content 82

Importing a video file into a movie clip 84

Creating instances of movie clips . 86

Labeling the movie clip with the Property inspector 86

Assigning Actions to an Object . 87

About clip events . 87

Using the with action . 89

Assigning Actions to a Button . 91

About mouse events . 92

Using the Key Press mouse event . 93

Using the on action . 94

Using buttons for navigation . 95

Using buttons for interactivity . 95

Chapter 6: Creating Elements for Your Movie 97
Working with Symbols . 98

Converting a graphic to a symbol . 98

Converting a timeline animation to a movie clip 98

Nesting symbols . 99

Swapping symbols . 101

Swapping bitmaps . 101

Creating Loops . 102

Looping frames . 103

Creating ActionScript loops . 103

Generating Random Numbers . 107

Using the random method of the Math object 107

Rounding numbers . 109

Saving Time with Functions . 110

Creating a function . 110

Calling a function . 112

Creating Modular ActionScript . 113

Chapter Project: Navigating to a Random Frame 114

Creating a function to generate a random frame number 114

Putting the function to work . 116

Chapter 7: Taking Control of Your Movie 119
Breaking Movies into Segments . 119

Dividing a Flash site into individual movies 120

Understanding levels . 121

Creating movies for site sections . 121

Using the loadMovie and unloadMovie Actions 123

Loading a movie . 123

Unloading a movie . 124

a3687-7 FM.F 6/12/02 9:03 AM Page xiii

xiv Flash MX ActionScript For Designers

Loading a Different-Sized Movie into a Target 125

Creating a target movie clip . 125

Loading a movie into a target . 127

Communicating between Timelines . 129

Demystifying Targets and Paths . 130

Using Absolute mode . 131

Using Relative mode . 131

Introducing the User-Defined Component 132

Chapter Project: Creating an Organizational Chart 135

Beginning the design . 136

Creating the ActionScript . 137

Chapter 8: Creating Variables to Store and
Dispense Information . 141

Understanding Variable Types . 142

About string data . 143

About expressions . 144

Creating mathematical expressions 145

About operator precedence . 146

Creating a Variable . 147

Naming a variable . 147

Declaring a variable . 148

Creating a local variable . 149

Passing a variable’s value to other objects 150

Storing Data with an Array . 151

Creating an array . 152

Creating elements for an array . 153

Creating an associative array . 154

Working with Conditional Statements . 155

Creating conditional statements . 156

Working with conditional statements that have

multiple outcomes . 156

Using Logical Operators . 158

Working with Boolean Expressions . 159

Chapter Project: Generating Random Quotes 160

Generating the random number . 161

Adding a timer and accessing the array 161

Finishing the project . 163

Part III: Creating ActionScript Elements
for Your Movie 165

Chapter 9: Generating ActionScript to Modify Objects 167
Modifying an Object’s Properties . 168

Setting an object’s properties . 168

Using the setProperty action . 170

a3687-7 FM.F 6/12/02 9:03 AM Page xiv

xvContents

Modifying an object by addressing its target path 171

Getting an object’s properties . 173

Using the Color Object . 175

Creating a Color object . 175

Modifying an object’s color . 175

Using the Key Object . 180

Duplicating an Object Using the duplicateMovieClip Action 182

Chapter Project: Creating an Interactive Animation 183

Chapter 10: Designing Interactive Navigation 189
Navigating to Scenes . 189

Adding a scene . 190

Naming a scene . 190

Navigating to a scene . 191

Deleting a scene . 191

Duplicating a scene . 192

Rearranging scene order . 192

Using Named Anchors . 193

Creating a named anchor . 193

Publishing a document with named anchors 193

Creating an On When Pressed Button . 194

Creating a Navigation Bar . 196

Creating a label template . 197

Creating a button template . 197

Building the navigation bar . 199

Creating an Animated Button . 199

Creating the movie clip . 200

Creating the ActionScript to animate the label 200

Nesting the movie clip in a button symbol 203

Chapter Project: Creating a Flyout Menu 204

Chapter 11: Composing Dynamic Text 209
Creating Flashy Text with the Property Inspector 209

Creating input text boxes . 210

Creating dynamic text boxes . 211

Setting character options . 212

Creating rich formatted text . 213

Loading Text from External Sources . 215

Creating text data . 216

Using the loadVariables action . 216

Creating an E-Mail Link . 216

Chapter Project: Creating a Scrolling Text Box 217

Programming the down arrow . 218

Deciphering the rest of the code . 221

Creating a Text Hyperlink . 223

Populating Dynamic Text with Array Elements 224

Chapter Project: Creating a Ticker Text Marquee 225

a3687-7 FM.F 6/12/02 9:03 AM Page xv

xvi Flash MX ActionScript For Designers

Chapter 12: Building Interactive Interfaces 231
Building Tooltips . 231

Creating the tooltips . 232

Creating the tooltip functions . 235

Programming the buttons . 237

Creating Drag-and-Drop Elements . 238

Creating a drag-and-drop window . 239

Closing a window . 240

Creating a User Customizable Interface . 241

Telling Time with ActionScript . 245

Creating a Date object . 245

Displaying the current date . 246

Displaying the current time . 247

Using the ScrollBar Component . 249

Chapter Project: Creating a Moving Navigation Bar 251

Chapter 13: Creating ActionScript Sound Objects 257
Creating a Soundtrack . 257

Importing a sound . 258

Creating a custom effect . 260

Modifying export settings . 263

Creating a Movie with Interactive Sound 266

Creating a soundtrack movie . 266

Loading the soundtrack into your design 267

Using the Sound Object . 268

Creating an instance of the Sound object 268

Working with sound from the document Library 268

Attaching a sound . 269

Starting a sound . 270

Stopping a sound . 271

Changing a sound’s volume . 272

Panning a sound . 273

Triggering an event with the onSoundComplete event 273

Chapter Project: Creating a Sound Controller 274

Adding the sliders . 275

Programming the movie clip . 277

Chapter 14: Debugging an ActionScript 283
Testing Your Design . 284

Using the Debugger . 285

Watching a variable . 286

Displaying a list of movie objects . 287

Displaying a list of variables in the movie 288

a3687-7 FM.F 6/12/02 9:03 AM Page xvi

xviiContents

Using the Trace Action . 288

Stopping the Movie with Breakpoints . 290

Setting a breakpoint . 290

Debugging a movie with breakpoints 290

Tracking ActionScript with Comments . 292

Using the Movie Explorer . 293

Part IV: Building Additional Design Elements
for Your Movie 295

Chapter 15: Building Web Site Elements with ActionScript 297
Creating an Animated Preloader . 298

Analyzing your movie . 299

Creating the preloader . 302

Creating a Flash Form . 306

Creating the form elements . 306

Creating ActionScript for the Reset button 308

Creating ActionScript for the Submit button 308

Creating a Printable Frame . 310

Chapter Project: Create an E-Commerce Catalog 312

Chapter 16: Creating Flash Eye Candy 315
Creating a Mouse Chaser . 315

Creating an ActionScript Mouse Chaser . 318

Creating a Mask with ActionScript . 321

Using the Mouse Object . 324

Creating a Custom Cursor . 325

Creating Motion Trails . 326

Creating a Starburst Backdrop . 330

Chapter Project: Creating a Flash Slide Show 334

Chapter 17: Integrating Flash with HTML 339
Creating a Pop-Up Window with JavaScript 339

Creating Banner Ads . 341

Detecting the Flash Player . 345

Creating a Flash Introduction . 346

Integrating Flash with Dreamweaver . 348

Chapter Project: Creating an Animated Flash Banner 352

Where to Go from Here . 355

a3687-7 FM.F 6/12/02 9:03 AM Page xvii

xviii Flash MX ActionScript For Designers

Appendix A: What’s on the CD-ROM 357

Appendix B: Flash Resources . 363

Appendix C: Flash Inspiration . 369

Index . 375

End-User License Agreement . 389

a3687-7 FM.F 6/12/02 9:03 AM Page xviii

Comprehending
the Mechanics of
ActionScript

✦ ✦ ✦ ✦

In This Part

Chapter 1
Introducing
ActionScript for
Designers

Chapter 2
Delving into Your
ActionScript Toolkit

Chapter 3
Planning Your
ActionScript Movie

✦ ✦ ✦ ✦

P A R T

II

b3687-7 Pt01.F 6/12/02 9:03 AM Page 1

b3687-7 Pt01.F 6/12/02 9:03 AM Page 2

Introducing
ActionScript for
Designers

Web site designers tend to avoid like the plague any-

thing resembling programming code. Web site devel-

opers, on the other hand, like the cold, hard logic of code with

names like JavaScript, PERL, and CGI. When Web site design-

ers use Flash as a tool for animation, they also have a ten-

dency to shy away from Flash’s programming language,

ActionScript, using only the most basic actions to add mini-

mum interactivity to their designs. Designers using Flash tend

to populate their designs with pretty graphics, a text effect or

two, and tweened animations. However, by not stretching the

ActionScript envelope, many designers are missing the gusto

and impact that can be part of a Flash Web design.

Web designers tend to be visually oriented, right-brained

folks. They can visualize a tastefully designed page and exe-

cute it quickly within a graphics program like Macromedia

Fireworks that supports HTML export. Designers are also able

to integrate JavaScript automatically with many Web author-

ing programs. Using programs that automatically generate

JavaScript, Web designers can also add sophisticated effects

like image swapping and button rollovers without having to

learn complicated code.

With Flash ActionScript, you can choose to have code gener-

ated automatically. However, the designer can’t just point and

click to create the compelling effects you see at premier Web

sites created by designers like Hillman Curtis or Juxt

Interactive. In order to create the effects, you have to know

which actions to include in your script and how to implement

them. This is where many Web designers give up on all but

the simplest actions. The programmers who designed Flash

did an excellent job of creating an easy-to-use tool for script-

ing (the Actions panel), but let’s face it, even a quick tour of

this tool, with its dozens of books brimming with Actions, is

enough to strike fear into the heart of a right-brained creative.

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding why
designers need
ActionScript

Decoding object-
oriented scripting

Understanding how
ActionScript works

Using ActionScript as
a design element

Figuring out when to
use ActionScript

✦ ✦ ✦ ✦

c3687-7 ch01.F 6/12/02 9:03 AM Page 3

4 Part I ✦ Comprehending the Mechanics of ActionScript

In this chapter, you learn the benefits of using ActionScript and when you should

use ActionScript, as well as how ActionScript works both as a scripting language

and a design element.

In Flash MX, there is an additional Actions book called Index. Instead of blindly
plodding through each book searching for the right action, the Index book orga-
nizes every action alphabetically. In addition, there is also a Reference panel within
the Actions panel that tells you what each action does and shows you the correct
syntax for every action.

Why Designers Need ActionScript
The Internet is in a constant state of flux. What was new and exciting three months

ago quickly becomes blasé as new tools and techniques are introduced. Pioneering

Web developers — and some adventurous designers — embrace these new tools

and techniques, learning and then applying them to their latest designs. These are

the designers who get the high-paying assignments from prestigious clients such as

major car manufacturers, fashion designers, and movie production companies. It’s

no secret that Flash is featured on most of the top Internet sites.

When a Flash movie is designed correctly, the file loads quickly into the user’s

browser and provides more entertainment than a static HTML Web page. In addi-

tion, a Flash movie is often a seamless experience for the user, flowing from one

scene to the next without having to wait for another HTML page to download.

Another advantage of a well-designed Flash movie is that it’s a dynamic experience

for the user. HTML pages can have embedded movies and animated graphics (but

pages like these are not for the faint of bandwidth).

Managing movie content with ActionScript
If you’ve dabbled at all in Flash, you know that you can create a fair amount of

action without taxing the bandwidth bank. Your Flash designs can entertain Web

surfers with background music, sounds that play when buttons are clicked, and

compelling animations. The extension for a published Flash movie is SWF, which

stands for Small Web File. Indeed, a properly designed Flash production, when pub-

lished, produces a small file that downloads quickly into the user’s browser.

However, many Flash designers go overboard and add so many bells and whistles

that the published file — while impressively smaller than conventional HTML pages

attempting to add the same bells and whistles — can become so large, most users

are clicking the browser’s Back button before the file fully loads.

This is where ActionScript can help you. You can break a large Flash production

into multiple movies that the user can download on demand. This is a technique

often used by prominent Web developers and designers to create a primo site for

their client that keeps Web visitors coming back time and again.

Note

c3687-7 ch01.F 6/12/02 9:03 AM Page 4

5Chapter 1 ✦ Introducing ActionScript for Designers

You learn to take advantage of the multiple-movies technique in Chapter 7.

If any of your clients have a need for a Flash movie that needs frequent updating, you

can use ActionScript to load text, images, and movies externally. When the site needs

updating, you don’t need to create a new movie — just refresh the text, image, or

movies, upload the new content to the Web site, and your client is good to go. Your

client need not know you used ActionScript to take the drudgery out of this task.

Your client will appreciate the quick turnaround and pay you what you’re worth.

You can write your ActionScript in a manner that makes it possible for you to reuse

your best effects in another Flash movie. You create a movie clip with the effects

you want to replicate in another movie. Then all you need to do is use the Flash

Open As Library command, drag the movie clip into the current document, and

you’re ready to go.

I show you how to create modular ActionScript in Chapter 6.

Flash ActionScript also has an item you can use to create programmable objects. If

you’re familiar with Flash 5, you may recall the smart clip, which in essence is a

movie clip with programmable parameters. In Flash MX, you have more versatility

with the next generation of the smart clip known as a user-defined component. User-

defined components are another item you can use to streamline your work. If you

work with other designers, all they need to do is modify the parameters of your

component to use it. You can also use this little gem for a movie that needs fre-

quent updating. If, for example, you create an e-commerce site, you can create a

component to store variables that change often, such as the price of an object.

When it comes time to update the product, you merely modify the parameters in

your component and republish the document.

See Chapter 7 for more on the powerful user-defined component.

Storing and dispensing information with variables
Another advantage of ActionScript is that you can design a movie to interact with

the user. Through the use of variables, Flash ActionScript can store information

from the user and dispense information on demand. You can use variables to create

a personalized experience for the user by asking the user to enter a name and then

displaying the user’s name with a welcome message or with a congratulatory mes-

sage upon achieving a high score after taking a quiz designed with Flash. You can

also use variables to score games, keep track of an object’s position on Stage, and

send information.

You learn how to make the most of ActionScript variables in Chapter 8.Cross-
Reference

Cross-
Reference

Cross-
Reference

Cross-
Reference

c3687-7 ch01.F 6/12/02 9:03 AM Page 5

6 Part I ✦ Comprehending the Mechanics of ActionScript

ActionScript also has an object called an array. An array is like a file cabinet filled

with information. You can think of an array as a super-charged variable; instead of

creating 20 variables to store product names, you create one array with 20 elements

that stores this information. Then instead of having to remember the names of

twenty variables, you remember the name of one array and the element number

that houses the information. You can use arrays to store items like product names,

prices, and descriptions to name a few.

Creating visual effects with ActionScript
In addition to managing large productions and storing and dispensing information,

you can also use ActionScript to create exciting visual effects. If you’ve ever been to

a Flash site and watched a small constellation of stars follow your mouse’s every

move, you’ve seen ActionScript at work. Special effects can be used to good effect

when creating preloaders.

Find out more about preloaders in Chapter 15.

Modifying design elements with ActionScript
When you add ActionScript to your designs, you have the ability to modify certain

elements used in your design and add others. For example, you can use

ActionScript to modify the color of an object in your design, alter a sound used in

your design, or add the time and date to your productions.

For information on working with the Color object, refer to Chapter 9. To learn how
to work with the Date object, see Chapter 12.

One ActionScript element designers find invaluable is the TextField object. If you’ve

ever designed a static HTML document with lots of text, you have two choices: a

standard page where the menu disappears as user scrolls through the text, or a

frames site where the menu stays in place as the text is scrolled, but when the user

clicks another menu button, a new page must load, disrupting the flow of informa-

tion. Using the TextField object, you can create a seamless experience for the user

by constraining the text to a small box and providing buttons for the user to scroll

forwards or backwards while all of the navigation elements stay in place.

You learn how to create scrolling text in Chapter 11.

One of Flash’s strong suits has always been the ability to add sound to a produc-

tion. With ActionScript, you can take sound to the next level. You can design a

movie that gives the user the ability to choose which sound plays while viewing

your production. Add the ActionScript Sound object to the mix, and you give the

user the ability to control the volume of the sound and control the balance of the

sound between speakers.

Cross-
Reference

Cross-
Reference

Cross-
Reference

c3687-7 ch01.F 6/12/02 9:03 AM Page 6

7Chapter 1 ✦ Introducing ActionScript for Designers

Chapter 13 offers more information on using the Sound object.

Other uses for ActionScript
Multimedia is another area where Flash shines. In Flash MX, you can import video

clips and export them as Flash movies. Add a bit of ActionScript to the equation

and you give the movie viewer the option to load a video clip on demand.

You learn how to create movie clips and import video files in Chapter 5.

When you put your mind to it, the uses of ActionScript are potentially limitless.

Instead of worrying about the lines and lines of code used to create some effects,

follow the various tutorials in this book and use them in your own productions. As

you become more conversant with ActionScript, let your right brain ramble, day-

dream, and come up with ideas you’d like to incorporate in your designs. After your

inspiration strikes, use ActionScript to bring it to life on the Word Wide Web or

within a CD-ROM production. By stretching the ActionScript envelope, you can

expand your creativity in ways you never thought possible.

Decoding Object-Oriented Scripting
ActionScript is a programming language, make no mistake about it. As with most

programming languages you have certain procedures you must follow in order for

your scripts to execute properly. The types of scripts you create with ActionScript

are object oriented, meaning that in ActionScript, you can apply your code only to

these objects: a keyframe, a button, a movie clip, or a user-defined component.

✦ When you assign an action to a keyframe, the Flash Player executes the action

when the frame is reached.

✦ When you assign an action to a button, you can choose to have the action exe-

cute based on the user’s interaction with the button. For example, you may

want the button to play a sound when the user’s mouse rolls over the button

and advance to a keyframe after the user clicks and releases the mouse but-

ton. Each of these actions occurs based on a different event, one being a

rollover, the other being the release of a button.

✦ When you create an ActionScript for a movie clip, you also have control over

when the code executes. You can also create your ActionScript in such a man-

ner that different actions execute based on the event that occurs. You can

have one set of actions occur when the movie clip loads and another set

occur when the user clicks the mouse button within the movie clip’s target

area. The button and movie clip triggers for actions are known as events. For

example, when you program code to occur when a user rolls a mouse over a

button, the event is rollover. If you program an action with a movie clip and

want it to execute when the user clicks a mouse over the clip’s target area, the

event is mouseDown.

Cross-
Reference

Cross-
Reference

c3687-7 ch01.F 6/12/02 9:03 AM Page 7

8 Part I ✦ Comprehending the Mechanics of ActionScript

You apply ActionScript to the aforementioned objects, and you also use

ActionScript objects to get the job done. This may sound redundant, but it isn’t.

The ActionScript objects you use and the ensuing code you create make certain

things happen. For example, if you want to modify a sound, you use the Sound

object. If you want to retrieve the date and time from the host computer playing the

published Flash movie, you use the Date object. Each object has methods that

achieve certain results. For example, the Sound object has a method called

setVolume, which, as the title suggests, is used to control the volume of a sound.

Some objects also have properties. The Sound object has a property called duration
that returns the amount of milliseconds the sound has been playing. You also find

objects that have events, which you can use as a trigger for another action. The

Sound object has an event called onSoundComplete. An example of a use for this

property would be advancing to another frame once a descriptive narration has fin-

ished playing.

Understanding How ActionScript Works
If you’ve ever looked at a bit of JavaScript, you know that it often takes many lines

of linear code to create an effect such as an image swap. With Flash ActionScript,

you don’t create a long linear script. Instead, you apply bits of code to each object

you want to modify. For example, if you want to program a button to load external

text, you apply a few lines of code to the button.

Listing 1-1 shows the JavaScript necessary to create an image swap. Fortunately,

this code was generated automatically by a HTML authoring program. Complicated

code like this is more than most designers are willing to learn. Compare the

JavaScript code with the ActionScript in Listing 1-2. This script loads variables from

an external text file when the user’s mouse button interacts with the button; in this

case, when the mouse button is released. You can quickly create ActionScript like

this in the Actions panel.

Listing 1-1: JavaScript Used to Create an Image Swap

<script language=”JavaScript”>
<!--
function MM_findObj(n, d) { //v3.0

var p,i,x; if(!d) d=document;
if((p=n.indexOf(“?”))>0&&parent.frames.length) {
d=parent.frames[n.substring(p+1)].document;
n=n.substring(0,p);}
if(!(x=d[n])&&d.all) x=d.all[n];
for (i=0;!x&&i<d.forms.length;i++) x=d.forms[i][n];
for(i=0;!x&&d.layers&&i<d.layers.length;i++)
x=MM_findObj(n,d.layers[i].document); return x;

c3687-7 ch01.F 6/12/02 9:03 AM Page 8

9Chapter 1 ✦ Introducing ActionScript for Designers

}
function MM_swapImage() { //v3.0
var i,j=0,x,a=MM_swapImage.arguments; document.MM_sr=new Array;
for(i=0;i<(a.length-2);i+=3)
if ((x=MM_findObj(a[i]))!=null){document.MM_sr[j++]=x;
if(!x.oSrc) x.oSrc=x.src; x.src=a[i+2];}

}
function MM_preloadImages() { //v3.0
var d=document; if(d.images){ if(!d.MM_p) d.MM_p=new Array();
var i,j=d.MM_p.length,a=MM_preloadImages.arguments; for(i=0;
i<a.length; i++)
if (a[i].indexOf(“#”)!=0){ d.MM_p[j]=new Image;
d.MM_p[j++].src=a[i];}}

}
//-->
</script>

Listing 1-2: ActionScript Used to Load Variables

on (release) {
loadVariablesNum(“intro.txt”, 0);

}

If you examine the ActionScript in Listing 1-2, you see another important

ActionScript element: the event. The first line of code in Listing 1-2 reads

on(Release). The code following the Release event occurs when the user releases

the mouse button. Events for buttons are known as mouse events; events for movie

clips are called clip events. An event is known as a code handler. In other words, the

code is handled (executed) when the event occurs. For example, the code

on(Release) gotoAndPlay (2) instructs Flash to go to frame 2 and play the

frame when the user releases the mouse button.

When you create a movie clip, you are creating an object that has its own timeline. A

movie clip is a symbol stored in the document Library. When you create an instance

of a symbol on Stage, you are creating an entity with its own timeline. When you cre-

ate an action from the base timeline to transform the movie clip instance, you need

to specify a path so that Flash knows where to find the movie clip. A path is similar

to a URL address that instructs a Web browser where a linked page is located. An

ActionScript path references the timeline, the instance name of the movie clip, and

the individual part of the movie clip you want Flash to access when an event occurs,

for example, an individual frame in the movie clip. In essence, you are supplying

Flash with a path to the target, which is the named instance of a movie clip.

You learn how to assign paths to an action in Chapter 7.Cross-
Reference

c3687-7 ch01.F 6/12/02 9:03 AM Page 9

10 Part I ✦ Comprehending the Mechanics of ActionScript

You also need to reference the path to a variable you want Flash to read when an

event occurs. For example, you may have a variable stored in a movie clip or per-

haps in a user-defined component. Again, you must supply the proper path in order

for Flash to know where the variable you want read is stored. You can also think of

a path as the Flash equivalent of a Zip code. Fortunately, you don’t have to type in

each and every path when creating ActionScript. Flash stores the path to every

named instance of a movie clip in a document within the Insert Target Path dialog

box shown in Figure 1-1.

Figure 1-1: You insert target paths in
your ActionScript from this dialog box.

With the most basic actions, you can control the flow of a movie, telling Flash which

frame to go to when a user interacts with the movie. You can also use basic actions

to load content upon demand. You can specify to load a movie, load variables, or

load a JPEG image with ActionScript. You structure your ActionScript in a manner

that Flash executes the desired action when the event triggered by the user occurs.

You can use other actions to change the properties of an object. For example, you

can change the color of an object, move an object to a different position, change an

object’s opacity, and much more depending upon the actions you add to your

script. Figure 1-2 shows an example of ActionScript at work. The figure in the left

pane is the movie clip as originally created; the figure in the right pane has under-

gone a makeover through the magic of ActionScript.

Figure 1-2: You can modify the physical characteristics
of an object with ActionScript.

c3687-7 ch01.F 6/12/02 9:03 AM Page 10

11Chapter 1 ✦ Introducing ActionScript for Designers

You learn how to change the properties of an object in Chapter 9.

Another powerful feature of ActionScript you can use is decision making. That’s

right, you can create ActionScript that determines what happens next based on

user input or a change in one or more of an object’s properties. A line of

ActionScript that makes a decision based on an outcome is known in programmer

speak as a conditional statement. The crux of a conditional statement can be

summed up as follows: If these conditions are present, then this event happens. You

can use a conditional statement to determine what happens next in your movie.

Listing 1-3 shows an ActionScript that adds a zero in front of a variable named sec-

onds if the variable’s value is less than 10.

Listing 1-3: An ActionScript Conditional Statement

if (seconds<10) {
seconds = “0”+seconds;

}

Another powerful element you can use in your ActionScript designs is the loop.

With a loop, you can repeat an action a given number of times. Instead of rewriting

the code you want to occur over and over, you simply create a loop that tells Flash

how many times you want to code within the loop to execute. You can use loops to

duplicate and move a movie clip. You can also use a loop to display the elements in

an array. Figure 1-3 shows the result of a loop used to create a background of a mov-

ing starfields.

Figure 1-3: You use an ActionScript loop to repeat code a given number of times.

Cross-
Reference

c3687-7 ch01.F 6/12/02 9:03 AM Page 11

12 Part I ✦ Comprehending the Mechanics of ActionScript

You learn how to create loops in Chapter 6.

Using ActionScript as a Design Element
When you have a spare moment, log on to the Internet, go to Macromedia’s Web

site (www.macromedia.com) and click the Showcase button. Click the Site of the

Day link, and if the site was created with Flash, you’ll probably see an example of

ActionScript used as a design element.

You can use ActionScript to create a pop-up menu similar to the one shown in

Figure 1-4. When you create a pop-up menu, you use tweening to create the motion

and ActionScript to expand and contract the menu. You also use ActionScript to

program the buttons within the menu. With a bit of additional code, you can create

a menu that users can drag to a different part of the Stage.

Figure 1-4: You can use ActionScript to create a pop-up menu.

Another great use for ActionScript is creating interactive buttons. You’ve probably

created rollover buttons for your HTML designs. However, with ActionScript, you

can take a rollover button to the next level. You can create ActionScript that makes a

tooltip appear when a user lingers over a button, as shown in Figure 1-5. You can cre-

ate ActionScript to play a small movie when the user rolls a mouse over the button.

In Chapter 12, I show you how to write ActionScript code for tooltips.Cross-
Reference

Cross-
Reference

c3687-7 ch01.F 6/12/02 9:03 AM Page 12

13Chapter 1 ✦ Introducing ActionScript for Designers

Figure 1-5: With a bit of ActionScript code, you can create useful elements for your
designs.

You can also use ActionScript to create a modular interface. By creating a base movie

with a few navigation buttons and a pop-up menu, you have the basis for many Flash

productions. Using ActionScript components such as the user-defined component,

you can change the button text when using the menu for a different production.

If you’re really adventurous, you can use ActionScript to add eye candy to your

designs. With a few lines of code, you can achieve stunning effects like mouse trails,

motion trails, and animated backgrounds. If your design calls for an animated back-

ground, it’s fairly easy to achieve with ActionScript. Figure 1-6 shows a motion trail

effect you learn to create in Chapter 16.

Figure 1-6: If you need eye candy for your Flash design,
ActionScript is the answer.

c3687-7 ch01.F 6/12/02 9:03 AM Page 13

14 Part I ✦ Comprehending the Mechanics of ActionScript

ActionScript is also useful when you want to add bells and whistles to your design.

Using the Date object, it’s possible to incorporate the date and time to any movie

you design. If you create all the code for your online clock in an individual movie

clip, your Flash timepiece is modular; you can use it in other movies. You learn how

to create modular ActionScript in Chapter 6.

If you design Flash movies for online merchants, you can use ActionScript to

change the properties of the objects they sell. For example, you can use the Color

object to modify the color of a ball cap, giving the user the ability to preview the

product in available colors before purchase. You can also use ActionScript to create

online forms and transmit the results of the form to the merchant. Figure 1-7 shows

an example of an online Flash form. By combining Flash design elements with

ActionScript and your own creativity, you can escape the humdrum forms that per-

meate HTML pages.

You learn how to create a Flash form in Chapter 15.

Figure 1-7: A form created with Flash can be a
thing of beauty.

You can also integrate Flash movies with your HTML designs. If you have a client

who wants a bit of Flash magic but isn’t willing to cough up the coin for a full-

fledged Flash design, you can create a compelling Flash intro that links to the site’s

home page. You can also create animated banners with Flash. A banner animated

with Flash packs more punch than a traditional Animated GIF. With Flash you can

create realistic motion instead of frame based animation, and you can add

ActionScript elements such as programmable buttons to link the banner to another

URL, or another part of the site. Figure 1-8 shows an animated Flash banner inte-

grated with a static HTML page.

Cross-
Reference

c3687-7 ch01.F 6/12/02 9:03 AM Page 14

15Chapter 1 ✦ Introducing ActionScript for Designers

Figure 1-8: Banners animated with Flash add interest to static HTML sites.

3 4

1 2

Surfing for inspiration

Designers are creative people by nature, but sometimes the well runs dry. If you ever find
yourself at a loss for a fresh idea, log on to the Internet and start surfing. You can make a
first stop at the Macromedia Showcase (www.macromedia.com/showcase). If the site of
the day is done in Flash, check it out. As a rule, these sites represent the latest effects pos-
sible with Flash. If the designer’s site is also listed, take a look at it for further inspiration. If
something catches your eye, do a thumbnail sketch of the effect and then try to figure out
how it was done. If you don’t find inspiration there, visit the Web sites of major manufac-
turers such as Nike Shoes, Ford, or Porsche, and you’re sure to find some parts of the site
were created with Flash. Remember that a Flash movie can be embedded with other HTML
elements. Right-click (Windows) or Ctrl+click (Macintosh) while your cursor is over an
effect. If you see the words “About Macromedia Flash Player . . .” the effect was done in
Flash. After you finish surfing for inspiration, put your own creative twist on an effect you
like and you’ve got something unique you can add to your own designs.

c3687-7 ch01.F 6/12/02 9:03 AM Page 15

16 Part I ✦ Comprehending the Mechanics of ActionScript

When to Use ActionScript
After you make the decision to create a Web site using Flash, you must then decide

which Flash elements you are going to use when designing the site. As you are

already aware, you can create an intriguing Flash site by using the standard timeline

animation features. Whether or not you need to include ActionScript depends on a

number of factors. Before you create the first graphic object for your design, pro-

vide the answers for the following questions:

✦ Do the elements in your design frequently change one or more properties,

such as size, color, and opacity?

If the answer to this question is yes, you need ActionScript to modify the

object’s properties. You have limited control over properties such as an

object’s tint and opacity without using ActionScript; however, using these

non-ActionScript techniques may bloat the file size of the finished movie.

✦ Does your client require that you frequently update text elements such as

product descriptions?

If you answer yes to this question, you can create all of your text in an exter-

nal .txt file and use the loadVariables action to enter the text data in a

dynamic text box, a technique you learn in Chapter 11.

✦ Does your client require images used in the design to be updated frequently?

If so, you can use the loadMovie action to load a jpeg file into the movie. When

the content needs to be updated, you merely replace the JPEG file with a differ-

ent image but use the same file name, a technique you learn in Chapter 7.

✦ Does the movie you’re creating contain a lot of bitmap images or embedded

videos?

Flash movies with a lot of bitmap images and embedded videos can become

very large. If the content needed for your movie prevents it from loading

quickly, you’ll need to break the movie down into sections. You learn how to

use the loadMovie action to load additional content into the base movie in

Chapter 7.

✦ Does your client require input from a user?

If the answer to this question is yes, you need to create variables as place-

holders for the data that will be dispensed, and then use input text boxes to

receive the data from the user. If the data is a form, you need to send the vari-

ables from the form to your client’s site administrator.

✦ Does your client require a choice of background music for viewers of the fin-

ished movie?

If you answered yes, you need the loadMovie action. Without ActionScript,

you can add looping background music to any Flash design. However, when

you need to change selection based on user input, you need to create the nec-

essary ActionScript to load a different background sound into the movie.

c3687-7 ch01.F 6/12/02 9:03 AM Page 16

17Chapter 1 ✦ Introducing ActionScript for Designers

✦ Does your design involve a spoken narrative that must be coordinated with

other content?

If the answer to this question is yes, you need the onSoundComplete method

of the Sound object to trigger the next event upon termination of the narrative.

✦ After you decide to create an ActionScript movie, which items or keyframes

will you need to create code for?

After you’ve answered these questions (and any you may have come up with

on your own), you’re ready to begin planning your ActionScript movie. Every

designer has a different way of planning. In Chapter 3, I offer a few suggestions

that have worked for me.

This list of questions is not all inclusive. You need to consider your specific situa-
tion, the actual content for your movie, and your client’s requirements. After you’ve
worked with ActionScript for a while, you know what other questions you need
answered before beginning a new design project.

After you answer these questions, you may find that you don’t know each and

every action required to create the design. That’s one of the beauties of

ActionScript — you don’t need to know it all, just enough to get the job done. When

you run across an action you don’t know or understand, refer to this book for the

answer. Unfortunately, a detailed treatise and tutorial for each and every action in

the Actions panel (there are approximately 800 actions in all, but who’s counting) is

beyond the scope of this book. If you need an action not covered in this book, refer

to the Flash MX ActionScript Reference Guide that was shipped with your software.

If you need to use an action you’re not familiar with, you can also refer to the
Reference panel from within Flash. Open the Actions panel and then click the icon
that looks like a book with a question mark on its cover. After clicking the icon,
Flash opens the Reference panel, which is a duplicate of every book in the Actions
panel. Open a book, click the action you need to know about and Flash displays a
description of the action along with required formatting syntax.

Designer Notes
In this chapter, you received your first taste of what ActionScript is and the power

it can add to your designs. You also learned why designers need to know how to

create ActionScript. In addition, you got a preview of the type of effects you can cre-

ate with ActionScript as well as when you need to add ActionScript to your design.

You also obtained an understanding of how ActionScript works. In the next chapter,

you get your first look at the building blocks of ActionScript and also create your

first ActionScript.

✦ ✦ ✦

Tip

Note

c3687-7 ch01.F 6/12/02 9:03 AM Page 17

c3687-7 ch01.F 6/12/02 9:03 AM Page 18

Delving
into Your
ActionScript
Toolkit

The painter has canvas and palette; the poet has a quill pen

and parchment; the guitarist has six or twelve strings and

a sculpted wooden sound box. Every artist must have tools

with which to ply their trade. It’s no different for the designer

who uses ActionScript. In order to create the underlying code

that brings your Flash vision to life, you must adhere to cer-

tain rules, using the tools provided by the Flash programmers

to flesh out your idea and bring it to your viewing audience.

Fortunately, the process of creating code is forgiving, not at all

what you may expect. Instead of having to write line after line

of laborious code with symbols that look like something from

a foreign alphabet, you simply choose the item to which you

want to apply the script, open the Actions panel, choose the

action, and Flash does the rest. Well, almost.

In this chapter, you learn how to use the Actions panel. You’ll

learn how to navigate through the many books of actions and

then add actions to your documents. You explore creating

code through Flash’s automated normal mode, and are intro-

duced to creating your own code in expert mode. You also

learn how to finish Flash’s automation by adding instructions

in the parameter text boxes. In latter parts of the chapter, you

learn how the different Flash symbol types work with

ActionScript and how to add them to the document library.

The Actions panel’s got lots of books. And some of these
books have books within a book. To add some actions to
your scripts, you have to click this book icon, then click that
book icon, then click another book icon, and so on. Rather
than bore you with a lot of words, I’m going to show the

Note

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Exploring the
Actions panel

Essential actions
for designers

Adding actions to
your documents

Deciphering
symbol types

Adding symbols to
the document Library

Chapter project:
Creating your first
ActionScript

✦ ✦ ✦ ✦

c3687-7 ch02.F 6/12/02 9:03 AM Page 19

20 Part I ✦ Comprehending the Mechanics of ActionScript

path to each action as shown in the following example: Click Actions➪Movie
Control and then double-click goto.

Surveying the Actions Panel
When you create a document and decide to add interactivity with ActionScript, you

assign actions to keyframes, buttons, movie clips, and user-defined components.

The tool through which you add interactivity is the Actions panel shown in Figure

2-1. Please note the panel has been expanded in order to give you a detailed view of

the Actions books.

Figure 2-1: You add actions to a document with the Actions panel.

The Actions panel is divided into two panes. The pane on the left houses all the

action books. Each book is a group of similar actions that perform like tasks. For

example, the Movie Control book contains actions you use to control the flow of a

movie: stopping on a frame when desired, going to a frame, playing a frame, and so

on. As the title so aptly describes, the actions in this book control the flow of a movie.

An open Actions book

Actions book icon Script pane

c3687-7 ch02.F 6/12/02 9:03 AM Page 20

21Chapter 2 ✦ Delving into Your ActionScript Toolkit

The right pane of the Actions panel is called the Script pane. When you add an

action to a keyframe or object, the code appears in this pane. As you push the

ActionScript envelope, you often end up with several lines of code in the Script

pane, more than can be viewed within the window. When this happens, you can

use the up and down arrows to navigate to a specific line of code.

You also have several icons scattered about the perimeter of the Actions panel. You

use these to access various features of the Actions panel. In upcoming sections you

learn what each of these icons is used for and how they’ll simplify your life as an

ActionScript designer.

Essential Actions for Designers
The sheer volume of actions in the Actions panel may seem daunting to you at first.

Many designers feel similar emotions upon opening the panel for the first time. The

Actions panel is like a superstore. When you visit the store for the first time, you

walk down aisles and aisles of merchandise until you find the item you’re looking

for. As you walk down the aisle, you notice other items you’d like but don’t need

right now, other items you’d love to own but can’t afford, and still other items that

you have absolutely no need for. And you end up going back to the store for some

of these items you spotted on your first trip, just as you’ll go back to the Actions

panel for actions you spotted along the way.

If you’ve been dabbling in Flash for any amount of time, no doubt you’ve already

had a visit to the Actions panel. Perhaps you needed a single action to navigate

from one frame to the next, one scene to the next, or to stop the movie. After you

assigned the action to your document, you quickly closed the panel and went back

to what you like to do best: design.

In the sections to follow, you learn about various actions that you can use to con-

trol the flow of your movie, to change the properties of objects, add variables to

your scripts, create conditional statements, and much more.

The beauty of ActionScript is that you don’t have to know each and every action in

order to add some interesting effects to your design. What I say next may sound

very Zen, but here goes: All you need to know is what you need to know. In other

words, learn the actions that apply to the particular effect you need; don’t clutter

your mind with the rest.

Exploring the Actions book
The first action book is named Actions, which in a way is vague, especially consid-

ering that the entire panel is named Actions. Upon exploration, however, you find

that indeed this is an apt name for this book because within this book are other

books that add action to your published documents. The expanded Actions book is

shown in Figure 2-2.

c3687-7 ch02.F 6/12/02 9:03 AM Page 21

22 Part I ✦ Comprehending the Mechanics of ActionScript

You begin learning to use the Actions book’s actions in Chapter 4.

Figure 2-2: You use actions from the Actions book to create ActionScript.

When you open an individual book, each action in the book is designated by a cir-

cular icon with an angled arrow and the action’s title. Shown in Figure 2-3 are all the

actions in the Movie Control book.

The following sections details the individual books within the Actions book.

Using actions from the Movie Control book
Within the Movie Control book, you find the most elementary Flash Actions. Use

the actions from this book to navigate to frames, play frames, stop action when a

frame is reached, and stop sounds. By mastering these rudimentary actions, you

can add a lot of interest to your designs.

In Chapter 4 you find detailed coverage of actions from this book.Cross-
Reference

Actions book

Cross-
Reference

c3687-7 ch02.F 6/12/02 9:03 AM Page 22

23Chapter 2 ✦ Delving into Your ActionScript Toolkit

Figure 2-3: Expand a book to display all of its actions.

Using actions from the Browser/Network book
As you explore the depths of the Actions panel, each book contains actions that

can add more interactivity to your movie; however, they’re not quite as easy to use.

In the Browser/Network book, you find actions you can add to your script that

transport your viewer to other URLs, load other movies, and control the Flash

Player.

In Chapter 7 you learn to use actions from this book to break large productions
into manageable pieces that load quickly into the user’s browser.

Using actions from the Movie Clip Control book
If your design calls for control of individual movie clips, the actions in this book are

what you need. You can add actions that make it possible for you to modify one or

more properties of a movie clip, enable you to clone a movie clip, allow the user to

drag a movie clip, and more.

Cross-
Reference

Movie Control actions

Movie Control book

c3687-7 ch02.F 6/12/02 9:04 AM Page 23

24 Part I ✦ Comprehending the Mechanics of ActionScript

In Chapter 12 you learn how to use actions from this book to create interactive
elements for interfaces.

Using actions from the Variables book
When you add variables to your documents, you give the Flash Player the capabil-

ity to store and dispense information. Variables are an important building block for

interactive movies. You can use variables to store information from the viewer and

store information within the movie that is displayed upon user demand. Variables

are discussed as needed throughout the course of this book.

Using actions from the Conditions/Loops book
When you add a conditional statement to your document, you create a fork in the

road. What happens next depends upon the outcome of the statement. The main

part of a conditional statement starts with the if action. If the statement is true,

the next action in your script is executed. In other words, if this happens, do this.

For example, you can create a conditional statement that evaluates a user ID and

loads additional content based on the information received.

You learn to work with conditional statements in Chapter 8.

You use other actions from this book to repeat selected lines of code, or as pro-

grammers would say, loop them. Depending on the effect you want to achieve, or

the task you’re asking Flash to accomplish, you can create loops that last for a pre-

determined number of cycles or loops that continue while a certain condition is

true.

You find detailed coverage of loops in Chapter 6.

Using other actions from the Actions book
There are three other books within the Actions book: Printing, User Defined

Functions, and Miscellaneous. As a designer, you won’t find yourself dipping into

these books very often; however, it’s a good idea to do a bit of exploring so you

know what’s there. Selected actions from these books are covered in later chapters.

Exploring the Operators book
The Operators book is also divided into other books. The operators most fre-

quently used by designers are found in the Arithmetic Operators book, the

Comparison Operators book, and the Logical Operators book. As a designer, you

may wonder why you have to use the cold hard logic of math in your designs.

Arithmetic operators make it possible for you to create mathematical expressions

that modify the position and size of an object as well as other object properties.

The comparison operators make it possible for you to compare two sides of an

Cross-
Reference

Cross-
Reference

Cross-
Reference

c3687-7 ch02.F 6/12/02 9:04 AM Page 24

25Chapter 2 ✦ Delving into Your ActionScript Toolkit

equation to see if a condition is true or false. For example, if you want to keep a

moving object within the boundaries of the Stage, you compare the current position

of the object with the boundaries of the Stage. You can use the logical operators to

compare text objects, affectionately known to programmers as strings. You can use

logical operators to in a quiz to compare a user’s answer with the correct answer.

You find information about the Logical, Comparison, and Arithmetic Operators in
Chapter 8.

Delving into the Functions book
The items found in the Functions book contain various functions that you can use

when creating expressions. You can make good use of all the functions, but the

functions you’ll find yourself using most are those that evaluate the contents of a

variable, get the property of an object (for example, its position on Stage), and

determine the version of the Flash Player the person viewing your production is

using.

For more information on selected actions from the Functions book, see
Chapter 8.

Exploring the Constants book
Constants are values that are the same all the time. You can use a constant to define

whether an expression is true or false or to define a new variable that has yet to be

filled. The actions in this book are used infrequently. You will be using constants

from this book while writing a Boolean expression, but you will manually enter the

constant into the ActionScript.

Modifying objects with the Properties book
As a designer, the ability to change the properties of an object is invaluable. Using

the actions from the Properties book, you can make objects appear or disappear,

change the opacity of objects, change the height and width of an object, and much

more. With actions from this book, you can change a static presentation into some-

thing visually exciting. Actions from the Properties book are covered throughout

the course of this book. You’ll find yourself frequently opening the Properties book.

Exploring the Objects book
The Objects book is a treasure trove of objects. But they’re not the type of Flash

objects you’re already familiar with — buttons and movie clips. You use the objects

in this book to accomplish other tasks, such as modifying the color of an object,

changing the characteristics of a sound, or retrieving the current date and time

from the computer playing your Flash movie. An ActionScript object has methods.

Cross-
Reference

Cross-
Reference

c3687-7 ch02.F 6/12/02 9:04 AM Page 25

26 Part I ✦ Comprehending the Mechanics of ActionScript

For example, the Color object has a method for changing the color of an object; the

Sound object has a method for controlling the volume of a sound. Other objects

have properties; the Sound object has properties for measuring the length of a

sound clip and for how long a sound clip has been playing. Other objects have

events that can be used in your ActionScript. The Sound object has an event called

onSoundComplete that you use to trigger other actions in your movie when a

sound stops playing. The different objects in this book are referred to in various

projects and tutorials throughout the course of this book.

Dealing with Deprecated actions
Macromedia has created several different versions of Flash, each one more power-

ful than the previous. As Flash grew in capabilities, new actions were added that

have greater functionality than some of the actions introduced in earlier versions

of Flash. The older actions are still available, but Flash programmers refer to these

actions as deprecated; avoid using them when creating movies for the Flash 6

Player. These deprecated actions are all nestled within the Deprecated book.

The Internet sometimes lags behind designers and programmers; therefore, you
may find that many potential viewers don’t have the latest Flash Player. If you pub-
lish a movie with the latest actions from Flash MX, it may not play properly on ear-
lier Flash Players. To avoid this problem, publish the movie for the version of the
Flash Player that you anticipate is in use by the majority of your intended audi-
ence. Before you create the movie, adjust the publish settings for the desired ver-
sion of Flash. After you do this, any actions that will not work with your publish
settings are highlighted in yellow and should not be used.

Using actions from the Flash UI Components book
Flash MX has a Components panel with preset components such as checkboxes,

scroll bars, and scroll panes you can add to your documents. The actions in

the Flash UI Components book are used to create UI components with ActionScript

or to modify existing UI components added to your document from the

Components panel.

You’ll learn to use the Scroll Bar UI component in Chapter 12.

Using actions from the Index book
Since the release of Flash 4, the available actions have increased exponentially. In

Flash MX, there are so many actions, it’s easy to forget which book or sub-book of a

book a particular action is in. Fortunately, the Index book is comprised of every

Flash action, conveniently arranged in alphabetical order. As you gain more famil-

iarity with ActionScript, using the Index book is the quickest way to find the action

you need.

Cross-
Reference

Tip

c3687-7 ch02.F 6/12/02 9:04 AM Page 26

27Chapter 2 ✦ Delving into Your ActionScript Toolkit

Adding Actions to Your Documents
When you decide to add interactivity to your movies with ActionScript, you use

the Actions panel. As I state earlier in the chapter, the Actions panel is divided into

sections — actions on one side and a Script pane on the other side that displays

your code as you create it. Figure 2-4 shows the Actions panel with several lines of

code in it.

Figure 2-4: As you create ActionScript it is displayed in the Script pane.

The first step in creating any ActionScript is to open the Actions panel. The default

position of the Actions panel is directly below the Stage. You open the panel by

clicking the right pointing arrow or by clicking the panel’s title.

If, as a designer, you decided to use the Designer panel layout as supplied by

Macromedia, you can do so by choosing Window➪Panel Sets and then choosing the

set for your desktop size. However, when you use one of the Designer panel sets,

the Actions panel is hidden. Choose Window➪Actions, and Flash opens the panel,

displaying it as a floating window (see Figure 2-5).

Why the Flash programmers decided to hide the Actions panel for designers is a

mystery. Perhaps they realize what a powerful combination a creative designer and

the Actions panel is and decided to protect their left-brained developer brethren by

hiding the panel.

c3687-7 ch02.F 6/12/02 9:04 AM Page 27

28 Part I ✦ Comprehending the Mechanics of ActionScript

Figure 2-5: The Actions panel is displayed in a floating window with the Designer
panel layout.

If you use ActionScript a lot, it’s convenient to have the Actions panel available at
all times. You may find that there are other panels you use frequently in conjunc-
tion with the Actions panel. You can begin with the default panel set or one of the
Developer panel sets if you prefer to have the Actions panel docked at the bottom
of the workspace with the Property inspector and Reference panel. You can then
open and dock the panels you use frequently to create a panel layout that suits
your working preference. When you have the workspace just the way you want it,
choose Window➪Save Panel Layout to open the Save Panel Layout dialog box.
Enter a name for your layout, click OK, and your panel layout is added to the Panel
Sets menu.

Working in modes
You have two methods of working in the Actions panel: normal mode and expert

mode. In normal mode, Flash takes care of all of your formatting — you can be

assured that the code you create will be formatted correctly and in the right syntax.

Tip

Actions panel

c3687-7 ch02.F 6/12/02 9:04 AM Page 28

29Chapter 2 ✦ Delving into Your ActionScript Toolkit

When you work in expert mode, Flash turns off all the warning messages and you

can enter code by typing in the Script pane, just like you’d enter text into a word

processing program. (More on syntax and expert mode in the upcoming section

“Creating ActionScript in expert mode.”)

Adding an action to your script
When you decide to add interactivity to your design by applying code to a keyframe

or an object, you must first select the object, or keyframe, and then open the

Actions panel as discussed previously. After opening the Actions panel, the type of

object you have selected is displayed after the panel’s title. For example, if you are

assigning an action to a button, the panel reads: Actions – Button. Before proceed-

ing any further, make sure you have the right object selected. The next step is to

navigate to the book that contains the desired action and open it. After opening a

book, you add an action to your script by doing one of the following:

✦ Double-click an action’s title.

✦ Select an action and then drag and drop it into the Script pane.

✦ Click the plus sign (+) icon above the Script pane to reveal a drop-down menu

of all action groups, as shown in Figure 2-6. Navigate to the desired action and

click it.

Figure 2-6: The drop-down menu of actions.

Actions drop-down menu

c3687-7 ch02.F 6/12/02 9:04 AM Page 29

30 Part I ✦ Comprehending the Mechanics of ActionScript

Using the parameter text boxes
Some of the actions you add to your script have parameters. Parameters are addi-

tional information needed by Flash to properly execute an action. For example, if

you need to navigate to a different part of your movie when a button is clicked, you

choose the goto action. When you choose this action, you must tell the Flash

Player which frame in which scene to advance to, as well as whether to play the

movie from that frame or stop. Each action has different parameters, which deter-

mines the number of parameter text boxes Flash displays in the Script pane after an

action is added to a script. Figure 2-7 shows the parameter text boxes you need to

when you add the goto action to a script.

Figure 2-7: You choose the parameters for an action using parameter text boxes.

As you can see, you can choose the parameters for this action by clicking radio

boxes or making choices from drop-down menus. Other actions require you to add

information to a parameter text box, such as the contents of a variable or array.

Parameter text boxes are discussed in detail as they relate to specific actions

throughout this book.

Many of the actions you use are simple instructions to the Flash Player, such as

stop or play. When you add an action like this to your script, the Flash Player

knows exactly what to do and no further instructions are needed. When you add

an action of this type to your script, parameter text boxes are not needed or

displayed.

Parameter text boxes and options

c3687-7 ch02.F 6/12/02 9:04 AM Page 30

31Chapter 2 ✦ Delving into Your ActionScript Toolkit

Deleting an action from your script
After you add a few lines of code to a script and test it, you may find that you need

to delete a line of code or two. You can delete a single line of code, or contiguous

lines of code, by doing the following:

1. Select the object or keyframe that contains the code you want to delete.

2. Open the Actions panel.

3. Within the Script pane, select the line of code you want to delete. When you

click a line of code in normal mode, Flash selects the entire line of code for

you. To select contiguous lines of code, Shift+click additional code.

4. Click the Delete Selected Lines of Code button that looks like a minus sign (–)

to complete the operation. Or you can simply press Delete.

Changing the hierarchy of actions
When you create an ActionScript, the lines of code execute in numerical order. After

you add several lines of code to a keyframe or an object, you may find the actions

don’t execute in the order you want. For example, if you create a script that

instructs the Flash Player to play a sound, and the action appears after another

instruction that advances the movie to a different frame, the sound will never play.

You can easily rearrange the hierarchy (order) of actions in a script by doing the

following:

1. Select the keyframe or object the code is applied to.

2. Open the Actions panel.

3. Select the line of code you need to move up or down in the order. Shift+click

to select additional lines of contiguous code.

4. To move the selected line(s) of code up, click the Move the Selected Actions

Up button; to move the selected code down the order, click the Move the

Selected Actions Down button. Each click moves the selected code up or

down one line.

Navigating to scripts with the Script window
At the top of the Actions panel is a narrow window called the Script window. The

Script window shows the currently selected object. Click the button to the right of

the window to reveal a drop-down menu of all objects in the selected keyframe that

have ActionScript applied to them. Click a selection and Flash displays the

ActionScript for the selected object in the Script pane (see Figure 2-8).

c3687-7 ch02.F 6/12/02 9:04 AM Page 31

32 Part I ✦ Comprehending the Mechanics of ActionScript

Figure 2-8: You use the Script window to navigate to other scripts in the same
keyframe.

Pinning a script
When you fine-tune and work the bugs out of your ActionScript, it’s often necessary

to view the properties of other objects while using an ActionScript in a different

keyframe for reference. Click the Pin Current Script button, and Flash locks the cur-

rent script in the Script window while you navigate to other frames or view different

objects. Click the Pin Current Script button again to unlock the script.

Finding and replacing text in a script
Your ActionScript is displayed in the Script pane, which is also used to edit your

scripts. After you create a script, you often need to find certain text and replace it

with something else. You cannot find text that is part of an action; however, you can

find any text used to describe a variable, a variable’s value, or an object. The Find

and Find and Replace commands work like the similar commands in a word pro-

cessing program.

Script drop-down menu

Script window Pin Current Script button

Find and Replace buttonFind button

c3687-7 ch02.F 6/12/02 9:04 AM Page 32

33Chapter 2 ✦ Delving into Your ActionScript Toolkit

To find text in a script:

1. Select the keyframe or object the containing the script that contains the text

you want to find and open the Actions panel.

2. Click the Find button to open the Find dialog box. Alternately, choose

Options➪Find.

3. In the Find What field, enter the text you want to locate. To match the case

you enter, click the Match Case checkbox.

4. Click the Find Next button, and Flash locates the first instance of the text and

highlights the line of code it appears in.

5. To find the next instance of your query, click Find Next; otherwise, click Close

to exit the dialog box.

The Actions panel has another useful tool that allows you to find and replace text.

This feature comes in handy when you copy code from another object, keyframe, or

movie and just need to make minor modifications, such as changing the name of a

variable.

To find and replace text in a script:

1. Select the keyframe or object containing the script with the text you want to

replace and open the Actions panel.

2. Click the Find and Replace button to open the Replace dialog box. Alternately,

choose Options➪Find and Replace.

3. In the Find What field, enter the text you want to replace.

4. In the Replace field, enter the new text and do one of the following:

• To review each instance of your query, click the Find Next button. If you

want to replace the text Flash locates, click Replace.

• To replace all instances of your query without review, click Replace All.

5. Click Close to exit the dialog box.

Using the ActionScript Reference panel
ActionScript can be complicated and at times downright quirky. Sometimes the

action you have in mind is the right answer; other times it is not. When you think

you have the right action in mind but aren’t sure, use the built-in dictionary sup-

plied with Flash MX. This online dictionary known as the Reference panel gives you

a description of every action along with examples of proper usage and syntax.

c3687-7 ch02.F 6/12/02 9:04 AM Page 33

34 Part I ✦ Comprehending the Mechanics of ActionScript

To look up an action in the Reference panel, do the following:

1. To open the Reference panel, click the Reference icon in that looks like a book

with a question mark on it located in the right corner above the Script pane.

The left pane of the Reference panel is a carbon copy of the left pane of the

Actions panel.

2. Navigate to the action you want to know more about.

As you click the title of each book, a description of the type of actions found

in that book is displayed in the right pane.

3. Click an action to display information about it in the right pane of the

Reference panel, as shown in Figure 2-9.

Figure 2-9: To find out more about any action, open the Reference panel.

Opens ActionScript description window

Reference panel icon

c3687-7 ch02.F 6/12/02 9:04 AM Page 34

35Chapter 2 ✦ Delving into Your ActionScript Toolkit

To the right of the Reference icon is an inverted triangle. Click the triangle to open
another window that displays a brief description of a selected action. This window
also displays information about the action used to create a selected line of code in
the Script pane.

Changing your viewing options
The ability to change from normal mode to expert mode comes in handy when

you’re working with script that references different timelines. When you need to

add an identifier for the path, it’s convenient to switch to expert mode and manu-

ally enter the identifier where needed rather than navigating through the different

lines of code and then modifying the parameter text boxes. To switch from normal

to expert mode, click the Viewing options icon and choose the desired option from

the drop-down menu shown in Figure 2-10. Notice you can also use this menu to

view line numbers in your scripts.

Figure 2-10: Click this icon to change your viewing options.

Using the Actions panel Options menu
At the upper-right corner of the Actions panel, you find an icon that looks like three

squares, three dashes, and an inverted triangle. Click the icon to reveal the Actions

panel Options menu shown in Figure 2-11.

Many of the commands on this menu achieve the same results as commands dis-

cussed in previous section while other commands are self-explanatory. The remain-

ing commands are covered in upcoming sections.

Viewing options icon

Viewing options menu

Tip

c3687-7 ch02.F 6/12/02 9:04 AM Page 35

36 Part I ✦ Comprehending the Mechanics of ActionScript

Figure 2-11: You use the commands in this menu to change ActionScript modes and
much more.

Creating ActionScript in expert mode
When you switch to expert mode, the Script pane functions exactly like a text edi-

tor. You create ActionScript by placing your cursor inside the pane and typing.

When you create a script in this mode, you no longer have the benefit of the

parameter text boxes. When you switch to expert mode, Flash assumes you

know ActionScript intimately, including the proper parameters for a chosen action.

Also when you switch to expert mode, the Delete Selected Actions button disap-

pears. Instead of deleting an entire line of code with a button, you are now free to

select desired parts of your code and drag and drop them to another part of your

script in the same way you drag and drop text in your favorite word processor, or

delete them entirely by pressing Delete. You can also cut, copy, and paste selected

text within the Script pane.

In addition to losing the Delete Selected Actions button, you lose the buttons that

move selected lines of code up or down within a script. After selecting an entire line

of code, you can now drag it anywhere within the Script pane.

Options menu iconActions panel Options menu

c3687-7 ch02.F 6/12/02 9:04 AM Page 36

37Chapter 2 ✦ Delving into Your ActionScript Toolkit

Using the Actions panel context menu
The Actions panel has its own context menu, a feature you can use to quickly

access pertinent menu commands. You can use the context menu in Normal and

Expert mode. To open the context menu shown in Figure 2-12, right-click (Windows)

or Ctrl+click (Macintosh).

Figure 2-12: With the Action panel context menu, frequently used commands are just a
mouse click away.

Understanding ActionScript conventions
Like any language, ActionScript has certain conventions you must follow. In

ActionScript there is also a feature called syntax coloring, which highlights parts of

your script so you can readily identify each element. This feature is handy when you

try to decipher code created by other designers and will come in very handy when

you’re trying to unravel some particularly intense code created by a programmer or

developer. Finally, there are certain words that Flash reserves for itself. In the sec-

tions that follow, you learn about the different ActionScript conventions. If you’re

like most designers, this may seem pretty droll — in fact, it may be borderline bore-

dom. But these are essential facts you need to know in order for your design scripts

to execute properly. After all, you had to learn about pixels, resolution, and resam-

pling before you could manipulate photos in your image-editing software.

Actions panel Context menu

c3687-7 ch02.F 6/12/02 9:04 AM Page 37

38 Part I ✦ Comprehending the Mechanics of ActionScript

Formatting your code
Just as you add a period at the end of each sentence when creating documents in

your word processor, you must also add an identifier to signify the end of a line of

ActionScript code. You must also format the other elements in your scripts to sepa-

rate them and tell Flash which group of actions work as a group. When you work in

normal mode, Flash adds these identifiers automatically. When you work in expert

mode, you must supply these identifiers (it may help to think of them as punctua-

tion marks) manually. Table 2-1 shows the punctuation used with ActionScript.

Table 2-1
ActionScript Formatting

Identifier Description Usage

; Semicolon Used to end a line of code

() Parentheses Used delineate or group parameters

{ } Curly braces Used to group a set of statements

. Dot Separates a property, variable name, or target path
from a named instance

// Forward slashes Used to begin a comment

The formatting identifiers may seem a bit foreign until you see them used in con-

text. Listing 2-1 shows some ActionScript code that uses all of the identifiers.

Listing 2-1: ActionScript Identifiers

on (Release) {
// loads a jpeg image and defines the variables
loadMovie(“CEO.jpg”, “_root.Target”);
_root.Name = “James Walker”;
_root.Title = “Chief Executive Officer”;

}

The code in Listing 2-1 was assigned to a button that, when clicked, loads an image

and defines two variables. The curly brace in line 1 instructs Flash that this is the

beginning of the actions that will execute upon release of the mouse button. In the

second line of code, the two forward slashes designate a comment. It may help if

you think of comments as memory joggers. You can use comments to remind your-

self, or another designer working on the project, what the lines of code following

the comment actually do. In this case, they load a JPEG image and define the names

c3687-7 ch02.F 6/12/02 9:04 AM Page 38

39Chapter 2 ✦ Delving into Your ActionScript Toolkit

of two variables. The parentheses in the second line group the image with the tar-

get the image will be loaded into. The semi-colons at the end of the lines 3 through

4 signify the end of a statement. Semi-colons are added automatically when you

work in normal mode. If you forget to add one in expert mode, don’t worry;

the carriage return also lets Flash know you’re ending a statement. The dot in

_root.Target separates the path from the named instance of a movie clip. If the

script was referencing a variable in the movie clip, an additional dot would appear

before the variables name, for example _root.Target.xPos, where _root refers to

the main timeline, Target is the instance name of a movie clip and xPos is the vari-

able name. The dot in _root.Name is used to refer to a variable called Name on the

root timeline. The solitary curly brace at the end of the code tells Flash to end the

actions associated with the on (Release) event in the first line of code.

Using syntax coloring
By default, the objects in ActionScript are color coded, or as the Flash program-

mers call it, syntax coloring. You can use syntax coloring to debug your code. If a

word is the wrong color, it’s a dead giveaway the code will not execute as you

planned. Table 2-2 shows the default syntax coloring.

Table 2-2
Syntax Coloring

Color Used to identify

Blue Identifies keywords, actions, paths, and object properties

Black Identifies punctuation and other items as variable names

Light gray Identifies comments

Green Identifies strings (text objects used in variables)

After entering a line of code into the Script pane, examine the color Flash assigns to

each word. For example, if you enter gotoandplay, the syntax is in error and Flash

highlights the words with black. When you change the code to gotoAndPlay, the

highlight changes to blue, indicating Flash recognizes it as an action.

Syntax coloring helps you construct correct code when working in expert mode,

but you still have to be concerned with the parameters.

If you don’t want syntax coloring, would like to change the colors currently used
to highlight syntax, or would like to change any other part of the Actions panel,
you can modify certain features and functions by choosing Actions➪Options➪

Preferences or by choosing Preferences from the Actions panel’s Options menu.
For more information on changing ActionScript preferences, refer to the manuals
that shipped with the software.

Tip

c3687-7 ch02.F 6/12/02 9:04 AM Page 39

40 Part I ✦ Comprehending the Mechanics of ActionScript

Code hints
When you work in expert mode, Flash takes away the parameter text boxes, but

fortunately provides you with a second line of defense: code hints. Code hints are

enabled by default. When you enter code in the Script pane and Flash recognizes

the code as the beginning of an Action, it posts a code hint. The code hint provides

information you can use to properly format the line of code you are creating. The

actual hint varies depending on the action you are using. For example, if you enter

gotoAndPlay (, Flash displays the dialog box shown in Figure 2-13. In this case,

you have two possible sets of parameters. The first parameter tells you the frame

number (or label) you want the Flash Player to go to and play must be included

between parentheses. The second parameter is accessed by clicking the arrow to

the right of the number 2, which tells you that you can also supply the scene fol-

lowed by the frame number separated by a comma, and the scene and frame must

be surrounded by parentheses. Parameters are discussed in detail as they pertain

to certain actions. For now it’s helpful to know that you can get help when you need

it with code hints.

Figure 2-13: Code hints help you format script correctly.

About reserved keywords
Flash has certain keywords that are reserved for actions and functions. You cannot

use these keywords when creating variables, functions, or label names. You can,

however, use these words as part of a variable’s contents. When you use a reserved

keyword, Flash highlights the reserved word in red and displays this warning: The
variable name you have entered contains an error. Table 2-3 is a list of all

reserved keywords.

c3687-7 ch02.F 6/12/02 9:04 AM Page 40

41Chapter 2 ✦ Delving into Your ActionScript Toolkit

Table 2-3
Reserved Keywords

break for new var

continue function return void

delete if this while

else in typeof With

instance of case default switch

Exporting a script
As you gain expertise in ActionScript, you find yourself creating some fairly lengthy

scripts. The Script pane, while a good text editor, is not exceptionally large, and it

doesn’t have a spell check. If you prefer the luxury of editing your scripts in a word

processor, you can do so by exporting a script and then opening it in a word pro-

cessor. You can also export scripts to share with other designers or store in a folder

for use with another project. To export a script:

1. Select the object or keyframe the script is assigned to.

2. Open the Actions panel.

3. Open the Action panel Options menu as discussed previously, and choose

Export as File to open the Save As dialog box.

4. In the Save As dialog box, navigate to the folder where you want to store the

script and enter a name in the File Name field, click Save, and Flash saves the

file with the AS (ActionScript) extension.

Importing a script
You can export any script saved in the AS format. Importing a script is useful when

you want to use a previously saved script in a new movie, use another designer’s

script, or used a saved script on another frame or object in the same document.

When you import a script, all other code assigned to the keyframe or object is
overwritten.

To import a script:

1. Select the keyframe or object you want to use the imported script with.

2. Click the Actions panel and then open the Actions panel Options menu.

3. Choose Import from File, and the Open dialog box appears.

4. Navigate to the folder where you store your scripts, select the desired script,

and click Open.

Note

c3687-7 ch02.F 6/12/02 9:04 AM Page 41

42 Part I ✦ Comprehending the Mechanics of ActionScript

If you inadvertently overwrite or delete a desired bit of code, you can restore it by
choosing Edit➪Undo, choosing Undo from the ActionScript context menu, or by
pressing Ctrl+Z (Windows) or Ô +C (Macintosh).

Understanding Symbol Types
Symbols are the building blocks of any Flash document. Most designers realize the

value of the repetitive use of symbols. In addition to creating a movie with a smaller

file size, it also makes it easier to edit a document. By editing one symbol, you

update all instances of it used within the document. When it comes to ActionScript,

you can only use ActionScript with certain objects. The sections offer a brief

overview of each symbol.

About the button symbol
When you create a button symbol, you create an interactive object with four states:

Up, Over, Down, and Hit, each state having a keyframe. You can choose to use one

or all of the states, creating as many layers as you need to add sound, text, and

other graphic elements to the symbol. Although the actual button itself has up to

four keyframes, you cannot assign an action to any of these frames. You can assign

an action only to an instance of the finished button symbol. A button symbol has an

event handler known as the mouse event. When you add an action to a button sym-

bol, it is preceded by the on(Release) event by default. The actions following the

on(Release) event occur when the user releases the mouse button. You can

choose a different mouse event or use multiple events for a button symbol.

Buttons and mouse events are covered in detail in Chapter 5.

About the graphics symbol
The graphic symbol is simply artwork or text that you designed as a symbol or

have converted to a symbol. As with all symbols, you can use multiple instances of

it within your documents. You can edit the graphics symbol and instantly update all

instances of it used within your document. You cannot assign actions to a graphic

symbol. If you need interactivity for a graphics symbol, you need to nest it in a

movie clip.

Cross-
Reference

Tip

c3687-7 ch02.F 6/12/02 9:04 AM Page 42

43Chapter 2 ✦ Delving into Your ActionScript Toolkit

About the movie clip symbol
The movie clip symbol is the heart of ActionScript interactivity. Movie clips have

their own timeline. You can use them for reusable animations, or you can nest

objects within them such as graphic symbols, sounds or video clips. After you

add an instance of a movie clip symbol to a document and assign a name to it, you

can then use ActionScript to play the contents of the movie clip on demand. If

you’ve nested a graphic symbol in the movie clip, you can modify the object’s prop-

erties, such as color, size, position or opacity with ActionScript. You can also use

movie clips as containers for code. Movie clips are also the basis of user-defined

components.

When you create ActionScript inside a movie clip, you use a clip event to determine

when the ActionScript within the movie clip executes. By default, the ActionScript

assigned to a movie clip executes when the movie clip loads. You can, however,

choose a different clip event. For example, you can have the ActionScript execute

when users move their mouse.

For more information on clip events, refer to Chapter 5.

About the component symbol
The component is a powerful new addition to Flash MX. Flash has preset compo-

nents such as radio buttons, checkboxes, and push buttons. Each component has

parameters that you can modify. For example, with the Push Button component,

you can modify the label. When you create your own components from movie clips,

you can assign your own parameters — in essence, program the component for

what you need it to do.

User-defined components are covered in Chapter 7.

About the Document Library
If you’ve used Flash for some time, no doubt you’re familiar with the document

library. Whenever you create an object or import an object, it is added to the

document. Whenever you need to use a symbol from the library choose

Window➪Library. Figure 2-14 shows a typical document library.

Notice that each symbol and imported object is represented by an icon. A selected

symbol is displayed in the window at the top of the library. Symbols with timelines

have a play and stop buttons you can use to preview the symbol. You can edit and

update the symbols from within the library.

Cross-
Reference

Cross-
Reference

c3687-7 ch02.F 6/12/02 9:04 AM Page 43

44 Part I ✦ Comprehending the Mechanics of ActionScript

Figure 2-14: Symbols you create are stored in the document library.

Chapter Project: Creating Your First
ActionScript

Now that you’ve suffered through a bit of ActionScript theory, it’s time for some

hands-on experience. In this tutorial, you program a button to change the opacity

and size of an image. The image is embedded in a movie clip symbol. In essence,

what you’re programming the button to do is change three properties of the object:

alpha (the object’s opacity), the scale of the object’s x dimension, and the scale of

the object’s y dimension. Most of the ActionScript has already been created for you.

Your mission is to program the button to apply the changes when clicked.

Library folders

Button symbol icon Library preview window

Movie clip symbol icon

Graphic symbol icon

c3687-7 ch02.F 6/12/02 9:04 AM Page 44

45Chapter 2 ✦ Delving into Your ActionScript Toolkit

Navigate to this chapter’s folder on the CD-ROM and copy the AS-02Start.fla file to
your hard drive. Use your computer’s operating system to disable the read-only
attributes of the file.

To begin creating your first ActionScript, launch Flash and then choose File➪Open,

navigate to the AS_02Start.fla, and open it. Figure 2-15 shows the partially com-

pleted document.

Figure 2-15: All you need to do is program the button.

Before you get down to brass tacks and begin adding code to the button, take a

look at the elements you already have in place. First and foremost is the image

you’ll be manipulating with ActionScript. The image is a JPEG file embedded in a

movie clip. An instance of the movie clip has already been created on Stage and

labeled myClip. Whenever you create a movie clip and want to manipulate it with

ActionScript, you must give it a unique name.

I show you how to create movie clips and name them in Chapter 6.

Below the movie clip is text to instruct the user what to do and two input text

boxes. The text boxes have been assigned variable names: opacity and scale.

Variables are used to store and dispense information.

Cross-
Reference

On the
CD-ROM

c3687-7 ch02.F 6/12/02 9:04 AM Page 45

46 Part I ✦ Comprehending the Mechanics of ActionScript

On the timeline are two keyframes. Notice the lower-case a in each frame. This des-

ignates that ActionScript has been applied to the frames. Listing 2-2 shows the code

assigned to the first keyframe.

Listing 2-2: ActionScript Assigned to the First Keyframe

scale = “ “;
opacity = “ “;
_root.myClip._alpha = 100;
_root.myClip._yscale = 100;
_root.myClip._xscale = 100;

If you’re fairly new to ActionScript, the last listing may seem a bit daunting. The

first two lines of code define two new variables, the same variables used for the

input text boxes. The initial value of the variables is nothing, or null in programmer

speak. The last three lines of code are defining the initial state for the three proper-

ties that will be manipulated with ActionScript. The properties are set to make the

movie clip fully visible at its original size.

The second keyframe contains a single action stop (). This is to keep the movie

clip from looping between the two keyframes. When the movie initially starts, the

first keyframe is used to initialize the variables, and then the movie advances to

frame 2 where it stops, awaiting input from the user. When the user clicks the but-

ton, the values entered in the text boxes are what change the opacity and size of

the image.

You may be wondering why it is necessary to set the initial state for each property.

In spite of the instructions to enter a value between 1 and 100 to re-scale the image,

the input text box will accept a value higher than 100. Every good designer knows

that when you scale an image larger than it’s original size, pixels must be redrawn,

resulting in image degradation. If the user enters a value larger than 100, the movie

will jump back to the first keyframe, no changes will be applied to the image, and

the values for the variables will be reset to null. This is the interactivity that will

occur in the published movie after you program the button by following these

steps:

1. Select the button and then open the Actions panel. Notice that the title of the

panel changes to Actions – Button.

2. Click Actions➪Conditions/Loops. The first line of code you create checks to

see if the user enters a value greater than 100.

3. Add the if action to the script.

Remember you can add the action by dragging and dropping it into the Script

pane or by double-clicking it. After you add the action to the script, Flash

c3687-7 ch02.F 6/12/02 9:04 AM Page 46

47Chapter 2 ✦ Delving into Your ActionScript Toolkit

displays a warning, <not set yet>, in bright red. This is Flash’s way of

telling you it needs more information — in this case, the condition the state-

ment will be evaluating.

4. Place your cursor inside the Condition parameter text box and type the fol-

lowing: _root.scale>100.

This is the condition you want Flash to check for. The name of the variable is

scale, but you need to add the path in order for Flash to find the variable. In

this case the variable resides on the root timeline, which is designated by

_root followed by a dot.

5. With the last line of code still selected, click the Movie Control book and then

add the goto action to the script.

Flash adds the action to the script, as shown in Figure 2-16. This is the action

that occurs if the user enters a value greater than 100. Notice the number of

parameter text boxes associated with this action.

You learn more about the goto action in Chapter 4.

Figure 2-16: This action executes if the condition is true.

6. Add the else action from the Conditions/Loops book to your script. The

information you supply with this action is what will occur if the conditional

statement evaluates as false; in other words, if the user enters a valid value of

100 or less.

Cross-
Reference

c3687-7 ch02.F 6/12/02 9:04 AM Page 47

48 Part I ✦ Comprehending the Mechanics of ActionScript

When you open an Actions book, it stays open. If you work with a lot of actions in
a single script, it can become cumbersome to scroll past all of the actions in the
open books. Close a book after adding an action to your script, or better yet, if you
know all the actions you’ll use in a script, open the Index book (an alphabetical
listing of every action) and scroll directly the needed action.

7. Click Actions➪Variables and then double-click set variable to add the

action to the script.

8. Place your cursor inside the Variable parameter text box and then click the

Insert a Target path icon the looks like a crosshair. After you click the icon,

Flash opens the Insert Target Path dialog box shown in Figure 2-17.

Figure 2-17: In this dialog box, you find
the path to every named instance of a
movie clip.

9. Click the button that says myClip and then click OK to add the path to the

script. After you click the button, the code _root.myClip appears in the

Variable parameter text box followed by a flashing cursor that looks like an

I-beam. This signifies that you can add text to the parameter box.

10. Type a dot (.) immediately following the word Clip and then click the

Properties book.

11. Double-click the _alpha property to add it to the script.

12. In the Value Parameter text box, enter the word opacity and then click the

Expression checkbox.

Your finished line of code should read: _root.myClip._alpha = opacity;.

Notice that Flash automatically added a semi-colon to designate the end of the

statement. The code you just created sets the alpha property of the movie

clip equal to the value the user enters in the Input Text box.

13. Now all you have to do is change the x and y dimensions of the movie clip to

the value users will enter in the input text box with the variable name scale.

Tip

c3687-7 ch02.F 6/12/02 9:04 AM Page 48

49Chapter 2 ✦ Delving into Your ActionScript Toolkit

14. To change the y dimension, repeat Steps 7 through 12, substituting the

_yscale property (found in the Properties book) for _alpha in Step 11, and

the word scale for opacity in Step 12. To change the x dimension, follow Steps

7-12, using the _xscale property instead of _apha in Step 11 and the word

scale in place of opacity in Step 12.

15. Scroll to the top of the top of the Actions panel and click the first line of code

that reads: on (release) {. Flash created this line of code automatically

when you added an action to the button. By default, Flash uses the release

mouse event when you add an action to a button. Upon release of the button,

the code following the statement is executed, which in this case is what you

want. However, you can use more than one event handler with a button. For

example, you can program the button so that it responds to the release of the

mouse button, as well as a keyboard entry.

16. Click the Key Press checkbox, place your cursor in Key Press text field and

then from your computer keyboard press Enter. Your finished code should be

identical to Listing 2-3.

Listing 2-3: ActionScript to Change an Object

on (release, keyPress “<Enter>”) {
if (_root.scale>100) {
gotoAndPlay(1);

} else {
_root.myClip._alpha = opacity;
_root.myClip._yscale = scale;
_root.myClip._xscale=scale;

}
}

To test your handiwork, choose Control➪Test Movie to make Flash publish the

movie and open it in another window. Enter a value in both text boxes and then

press the button to scale the image and change its opacity. Press the Reset button

and the movie goes to frame 1 and the initial values are restored. Enter a value

greater than 100 in the right text field and then press the Enter button, or press

Enter. If you followed the above steps exactly, the image didn’t change size and the

text fields were reset to null values.

Flash MX represents a considerable upgrade from Flash 5. If you’re not familiar
with how to use the new Flash tools to design and publish a movie, refer to
Flash MX Bible by Robert Reinhardt and Snow Dowd (published by Wiley
Publishing, Inc.).

Cross-
Reference

c3687-7 ch02.F 6/12/02 9:04 AM Page 49

50 Part I ✦ Comprehending the Mechanics of ActionScript

Designer Notes
In this chapter you learned how to use the Actions panel to create ActionScript.

You learned how to use the Actions panel in normal and expert mode. Now you

should have a good idea of how to format your code and check the syntax of

your code. You also received a brief overview of symbols as they relate to

ActionScript. At the end of the chapter, you used the Actions panel to create

your first ActionScript. In future chapters, you’ll expand on this knowledge and

use the building blocks from this chapter to create ActionScript elements for your

designs. In the next chapter, you are introduced to some techniques for planning

your ActionScript.

✦ ✦ ✦

c3687-7 ch02.F 6/12/02 9:04 AM Page 50

Planning Your
ActionScript
Movie

When you are presented with a challenge from a client

or yourself to create something special with Flash,

you can use ActionScript to boldly go where you’ve never

gone before. Making the decision to use ActionScript is the

first step. Creating a scintillating design with ActionScript can

be a long and arduous journey, and like any long journey, is

doomed to fail without some careful thought and planning.

Even the most competent Flash ActionScript gurus don’t take

a new project lightly. There’s so much that can go awry. If you

put any credence in Murphy’s Law, an ActionScript design

that is not planned will fall flat on its face when the project is

90 percent completed. And then there’s the client to consider.

Clients never change their minds, do they?

In this chapter, you learn how an ActionScript can evolve from

something very simple into something that takes your designs

to the next level. As ActionScript flows, one action precipitates

another. Some actions you create take the movie in a certain

direction depending on if a condition or set of conditions is

true. You also learn how ActionScript can be used to control

the flow of a movie. In addition, you discover some techniques

for planning your design and then fleshing it out. Finally, you

see how to use your inner child and experiment to put your

own unique spin on an existing ActionScript and make it your

own. After all, if you do the same thing the same way every

time, you’ll get the same results, a trait you definitely don’t

want associated with a fine designer such as yourself.

The Actions panel’s got lots of books. And some of these
books have books within a book. To add some actions to
your scripts, you have to click this book icon, then click that
book icon, then click another book icon, and so on. Rather
than bore you with a lot of words, I’m going to show the
path to each action as shown in the following example:
Click Actions➪Movie Control and then double-click goto.

Note

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The evolution of an
ActionScript

Fleshing out your
idea

Planning your Flash
movie

Getting it down on
paper

Creating new ideas

Chapter project:
Drawing outside the
lines

✦ ✦ ✦ ✦

c3687-7 ch03.F 6/12/02 9:04 AM Page 51

52 Part I ✦ Comprehending the Mechanics of ActionScript

The Evolution of an ActionScript
When you are presented with a request from a client to design a Web site or come up

with an idea of your own, the project starts out as a small thought, the genesis of

creation, if you will. Your job as a designer is to flesh out the idea and bring it to the

light of day. When you add ActionScript to the equation, your task becomes a bit

more difficult. You need to figure out what actions you’ll need to pull off the task and

how you’ll apply them. And of course there is more than one way to get from point

A to B. It behooves you to find the path of least resistance and create the simplest

ActionScript that gets the job done. This allows you more time to add the designerly

touches to your creation and end up with something similar to Figure 3-1.

Figure 3-1: Use ActionScript to evolve your idea into a finished
creation.

When you create a Flash movie and use ActionScript, you provide choices for your

viewer. The choices you provide determine the ebb and flow of your movie. And you

use ActionScript to direct this ebb and flow. For example, you can use ActionScript

to control what type of background music the viewer hears when viewing your

design or provide the user with the option of viewing your site in silence. A Flash

design with ActionScript can be compared to the organization of a traditional HTML

design. When the user makes a choice by clicking a button, another page loads. With

a bit of JavaScript, you can add some interactivity to the HTML page — that is, if

you’re willing to learn the JavaScript necessary to accomplish the task.

While a traditional HTML design — even a JavaScript-enriched design — limits the

amount of interactivity you can add to a design, ActionScript leaves you with a

multitude of options. In Chapter 1, you learned some of the effects you can achieve

with ActionScript. In Chapter 2, you popped the hood of the Actions panel and got a

little grease under your fingernails and experienced a bit of the power you have at

c3687-7 ch03.F 6/12/02 9:04 AM Page 52

53Chapter 3 ✦ Planning Your ActionScript Movie

your disposal when you learn how to utilize ActionScript. But before you go any

further and create your own designs from scratch, it’s important to understand

how a typical ActionScript gets the job done.

When you create a Flash movie, the Flash Player begins playing the first frame of the

movie and plays each frame in succession; that is, it plays each frame in succession

unless you use ActionScript to change the direction of your movie. For example, if

you’re creating a Flash design for a corporation and want to limit access to certain

parts of the movie, use ActionScript to stop the movie while the user enters a

password in an input text box, which is stored in a variable. You further direct the

flow of the movie by using a conditional statement to evaluate the user name, and

based on the result, determine whether a part of the movie will play or not.

You can create a similar scenario to create a password-protected site. This is also a

conditional statement that evaluates whether a password is valid, in which case the

condition is true, or invalid, in which case the condition is false. When you create a

statement that evaluates as either true or false, you create a Boolean expression.

The flow of an ActionScript that evaluates a Boolean expression is illustrated in

Figure 3-2.

Figure 3-2: You use ActionScript to control the flow of a movie.

if (conditional
statement)

else (conditional
statement)

if statement
is true

if statement
is false

if statement
is false

if statement
is true

ActionScript
Code executes

ActionScript
ends

Action Script
Code executes

c3687-7 ch03.F 6/12/02 9:04 AM Page 53

54 Part I ✦ Comprehending the Mechanics of ActionScript

Another way to control the flow of a movie is with a loop. Certain loops repeat a

given set of actions for a number of iterations before branching out to the next line of

script or branching out to another part of the movie after the loop is completed. This

type of control is useful when you have to duplicate an object in your production

x number of times. Another type of loop repeats a certain action while a set of

conditions evaluate as true. For example, if you use Flash to create a game, you

can create a script that supplies a new question while the number of incorrect

answers is less than the value you want to allow the player. When the player

exceeds the number of incorrect choices, the movie branches out in another

direction. GAME OVER! Figure 3-3 shows the flow of an ActionScript that loops

while a condition is true.

Figure 3-3: You can create an ActionScript where certain actions repeat
while a given set of conditions is true.

You can use even the most mundane ActionScript to control the flow in certain

parts of your production by instructing the Flash Player to go to a certain frame,

play the movie, or stop the movie. But no matter how you decide to control your

movie with ActionScript, your best ideas may all add up to naught without a bit of

prior thought and pre-planning.

Loop while
condition is true

TrueLoop

False

ActionScript
code

End
ActionScript

ActionScript
code

c3687-7 ch03.F 6/12/02 9:04 AM Page 54

55Chapter 3 ✦ Planning Your ActionScript Movie

Planning Your Design
Before you create the first graphic for your design, it’s imperative that you know

where you’re going. If you just begin recklessly splashing together graphics and

tacking on bits of ActionScript here and there, it’s like jumping in your car and going

for a Sunday drive. The drive may be pleasurable, but you have no idea where you’ll

end up. If you don’t know where you’re going, any old road will do. If you take this

“devil may care, forge ahead with reckless abandon” approach when attempting to

create a design under deadline, you’re usually doomed for failure. As some of the

self-help gurus are fond of saying, “Fail to plan. Plan to fail.”

Getting inspired
When a client entrusts you to take his or her corporate banner and display it on the

Internet, getting your facts together is part of the planning process. Be sure that

there is a good flow of communication between designer and client. Make sure

you know all your client’s expectations up front. That way neither your client nor

yourself will be disappointed when you initially present your finished production

for approval.

While you’re gathering your facts, ask the client for his or her competitor’s URLs.

Armed with your client’s expectations and his or her competitor’s URLs, you can

begin doing some research. Visit the Web sites supplied by your client to get an

idea of what your client is up against. Compare your client’s ideas to what his

competitors are doing and figure out what you need to do in order to build a better

mousetrap. Without this information, you’ll never be able to give you client a leg up

on his competitors. At this stage, it’s also import to ask yourself if your client’s

ideas are over the top or clash with the competitions. If this is the case, don’t be

afraid to diplomatically approach your client and seek the middle road between

expectation and reality. Remember, your reputation as a designer will be at stake

when you put the finished production out there for all the world to see.

In addition to the competitor URLs supplied by your client, you should also make it

a point to visit Web sites of other companies offering the same product or service

as your client. You can find these sites by typing a few keywords into your favorite

search engine. Many of these sites will supply additional inspiration and add fuel to

the creative fire your client first kindled when approaching you.

After you complete your research, you may begin to see a pattern for the type of

industry you’re creating the site for. Certain items may be staples for the industry

you are creating the site for. Armed with this information, your client’s expectation,

and your own vision, you are now ready to begin planning the design.

Tip

c3687-7 ch03.F 6/12/02 9:04 AM Page 55

56 Part I ✦ Comprehending the Mechanics of ActionScript

Drafting your design
You may have the ability — as many creative people do — to visualize the finished

production in your mind’s eye. However, when you add the intricacy of ActionScript

to the equation, you up the degree of difficulty. What looks so clear in your mind’s

eye may never see the light of day without putting your thoughts down on paper.

The first and most obvious weapon in your arsenal is the storyboard. Many

designers use storyboards to help visualize their ideas. Your storyboard can be

as primitive as a quick sketch on a notepad or as elaborate as a set of drawings.

Use whichever method you’re comfortable with, but by all means, create a concrete

visual image of the keyframes in your production.

If you have a copy of Macromedia FreeHand installed on your machine, you can use

this as a planning tool. With FreeHand, you have the capability to create a separate

page for each keyframe in your production. You can also add animation to each

page. As an added bonus, you can export the finished product as a Flash .SWF file

and import the file into Flash. Figure 3-4 shows a storyboard created in FreeHand.

Figure 3-4: You can create a storyboard in FreeHand and export it for use in Flash.

Document pages in FreeHand storyboard are used to show key events.

c3687-7 ch03.F 6/12/02 9:04 AM Page 56

57Chapter 3 ✦ Planning Your ActionScript Movie

Mapping your ActionScript
Armed with your storyboard, you can then begin to plan your ActionScript.

Creating both a storyboard and planning your ActionScript may seem like a lot of

work, but it’s minimal compared to the frustration you’ll experience when you hit a

roadblock. For example, your idea may not be possible with ActionScript, or you

may not have the necessary grasp of all the actions needed to pull off an effect in

your design. It’s better to see these things ahead of time than run up against them

down the road.

You don’t need to plan each and every ActionScript in your design. As you gain

experience with ActionScript, you’ll be able to script the simpler effects by rote.

Concern yourself with the more difficult effects you or your client want to create for

the production. For example, if your client wants you to create a Flash shopping

cart that tallies the customer’s final bill, your ActionScript not only has to calculate

the number of products purchased and their price, it also needs to include a

method for calculating tax based on the customer’s locale.

One of the easiest ways to plan your ActionScript is to write it out in plain English.

Create a single line for each event that will occur. For example, if you want the Flash

Player to load a movie clip into a target when a button is clicked, your planning may

look something like Listing 3-1.

Listing 3-1: Planning Your ActionScript

When the mouse button is released
Go to frame 2 of the target movie clip
Load the Web movie into the target
End of code

After you put the idea down on paper, you know what you need to get the job

done. If you’re not familiar with a needed action, you can learn how to use it by

referencing a chapter in this book, the online Flash Reference panel, or figure out

another way to achieve the same effect. If you create your plan line by line as you

do ActionScript, you can transfer your idea directly from paper to the Actions

panel. Listing 3-2 shows the ActionScript necessary to pull of the idea planned in

Listing 3-1.

Listing 3-2: Translating Your Plan into ActionScript

on (release) {
root.target.gotoAndStop(2);
loadMovie(“web.swf”, “_root.target”);
}

c3687-7 ch03.F 6/12/02 9:04 AM Page 57

58 Part I ✦ Comprehending the Mechanics of ActionScript

Another tool many designers like to use is a visual mind map. If you’re not familiar

with this concept, you start with a clean sheet of paper, and as the ideas pop into

your head, you create a circle and jot the idea inside it. Create additional circles for

each idea and draw a line to connect related ideas. For example, if you know the

effect you want to achieve with ActionScript, jot the effect down in one circle and

create additional circles for each action you need to pull off the effect.

Creative planners who are visually oriented take this technique one step farther.

They start with a clean sheet of paper and jot their ideas down on small sticky

notes. With ActionScript, you can use a different colored sticky note for different

elements of your script; for example, variables in pink, loops in yellow, and so on.

The advantage of this technique is that as your ideas for a script change or evolve,

you can reposition the sticky notes or add new ones. After you’ve done your mind

mapping, you can create a written plan or launch Flash and begin fleshing out

your idea.

Fleshing Out Your Idea
After completing the planning stage of your project, you are ready to do some

serious design work. But wait — you won’t want to jump straight into Flash until

you’ve got everything in order. First and foremost, you need access to everything

you need to complete the project. In other words, you need to have everything at

the ready before creating your production. There’s nothing more jarring than being

in the middle of a project where your creative juices are flowing only to discover

you’re missing an important piece needed to complete the puzzle.

While you’re creating your storyboard and planning your ActionScript, make a
shopping list. On your shopping list, include the assets you’ll need for the project:
client artwork, clipart, code you need to learn, and so on. Collect everything on
your shopping list before starting the project.

Gathering your assets
If you’ve created HTML pages with Dreamweaver, you’ve probably used the Assets

folder. This folder is a collection of all the items used to create your design including

JPEG images, buttons, scripts, and so forth. Flash doesn’t have an Assets folder, but

it does have a document Library.

After you know which items you need for your production, you can begin gathering

them and storing them in folders. For example, if your production uses a lot of JPEG

images, you can store them all in one folder as you gather the images from your

client or from your clipart collection. After you launch Flash, choose File➪Import

and navigate to the folder where you’ve stored your JPEG images. Select all the

images, click Open, and Flash imports all of the selected images at once. After Flash

Tip

c3687-7 ch03.F 6/12/02 9:04 AM Page 58

59Chapter 3 ✦ Planning Your ActionScript Movie

imports them, double-click the Eraser tool to clear the Stage. The imported images

are all in the document Library for future use, and you can create an images folder

to store all your bitmaps for the project in one place. You can use the same

technique to import sounds and video files.

As you gather the assets for your project, remember that you can always use such

as buttons and movie clips from your other Flash productions. Choose File➪Open as

Library and navigate to the *.FLA file that contains the assets you want to use. After

choosing this command, Flash opens the other document Library. Drag the needed

assets from one library and drop them into the current document Library. If you’ve

been a fastidious designer and used graphic symbols as the basis for your buttons

and clipart, you can modify the symbols to quickly update any instances of the

symbol used in buttons or movie clips. Remember, if you create your ActionScript

effects and store them in movie clips, you can use them in any production. For more

information on creating modular ActionScript, refer to Chapter 6.

If you don’t know how to create the needed ActionScript for a movie, you can
often find out how to achieve the effect by visiting one of the many Flash tutorial
Web sites. From many of these sites you can download a detailed tutorial, com-
plete with a working example. Open the example in Flash and then open the
Actions panel to see how the Flash author pieced together the ActionScript to pull
off the effect.

Saving time with extensions
Macromedia has a tool called the Extensions Manager. Extensions are pieces of code

or functions created for an application that take a lot of drudgery out of complex

tasks. If you’re familiar with Dreamweaver, you may have already used extensions

to embed QuickTime movies. Extensions are available for free download from

Macromedia’s Web site at www.macromedia.com/desdev/mx/flash/. There’s a

boatload of good information on the home page. After you’re done perusing that

page, click the Exchange link. In order to download extensions, you must first

register by clicking the Get a Macromedia ID link and following the prompts. The

second step is to download the latest version of the Macromedia Extension Manager.

This tool takes extensions and incorporates them with the proper program.

Before you go to the trouble of creating code for a complex effect, logon to

Macromedia’s site and check out the available extensions. When you find a useful

extension (or extensions — there are over a hundred for Flash as of this writing),

download it. After you download the extension, double-click it, and the Macromedia

Extension Manager integrates it with the proper software. After installing an

extension, you can use it by choosing Window➪Common Libraries and then

selecting it from the menu. Many of the extensions are user-defined components

that come with instructions on how to use them.

Tip

c3687-7 ch03.F 6/12/02 9:04 AM Page 59

60 Part I ✦ Comprehending the Mechanics of ActionScript

Chapter Project: Drawing Outside the Lines
After you get a bit of experience with ActionScript and have several successful

movies to your credit, you can let your inner child run amuck and experiment. One

of the easiest ways to learn new techniques in ActionScript is to modify a successful

effect you or another designer created. As long as you have access to the *.FLA file

used to create the movie, you can modify it to your heart’s content.

You can begin experimenting by opening an *.FLA file in Flash. Save the file under a

different name so you don’t accidentally destroy your original. You can begin by

changing the parameters of ActionScript applied to movie clip objects. If you have

graphic symbols embedded in the movie clip, create new graphic symbols and

swap them with the symbols nested in movie clips you’ve assigned ActionScript to.

The following tutorial gives you chance to see how you can fine-tune an effect by

modifying an existing file.

Locate the drawOutside.fla file, which you’ll find in this chapter’s folder on the
CD-ROM that accompanies this book. Copy the file to your hard drive and use your
computer’s operating system to disable the file’s read-only attribute.

1. Launch Flash and open the drawOutside.fla file. The file, as shown in Figure 3-5,

consists of two layers: Background and Mask. If you’ve created masks in Flash

before, you may notice that the mask layer doesn’t look like a Flash mask layer.

That’s because the object doing the actual masking is the circle that looks like

a compass. ActionScript has been used to convert this movie clip into a mask.

2. Choose Control➪Test Movie. After Flash opens the file in another window, you

notice the circle is rotating slowly and acts as a mask to an underlying image.

You also notice that the background image is darker. Click the circle, and it

increases in size so you can drag it to reveal other parts of the image. After

you’ve finished experimenting with the movie, close the window to return to

movie-editing mode.

3. Click the circle to select it and then open the Actions panel to view the code

applied to the movie clip (see Figure 3-6).

The code used to convert the movie clip to a mask may seem a bit foreign to

you. You learn how to create a mask with ActionScript in Chapter 16. The third

line of code modifies the movie clip’s rotation property. This is what sets the

mask spinning. Lines 7 and 8 change the size of the mask after the movie clip is

clicked. If you haven’t modified your Actions panel to view line numbers, doing

so will help you follow the rest of this tutorial. Click the View Options button

and select View Line Number from the menu.

On the
CD-ROM

c3687-7 ch03.F 6/12/02 9:04 AM Page 60

61Chapter 3 ✦ Planning Your ActionScript Movie

Figure 3-5: ActionScript has been used to convert the movie clip to a mask.

Figure 3-6: This ActionScript code converted the movie clip to a mask.

Mask layer Mask movie clip

c3687-7 ch03.F 6/12/02 9:04 AM Page 61

62 Part I ✦ Comprehending the Mechanics of ActionScript

4. Click the third line of code to select it and in the Expression field, change

+1 to –1. This sets the rotation of the circle in a counterclockwise direction.

If you’re feeling frivolous, change the value to a larger number. The rotation

won’t be as smooth, but it will give you an idea of the way ActionScript

animation works.

5. Select the seventh line of code and in the Expression field, change the value

from 200 to 150.

6. Select the eighth line of code and in the Expression field, change the value

from 200 to 50.

7. Select the Mask layer and then select the background image.

8. Open the Actions panel and you should see the following code:

onClipEvent (load) {
_root.MC2._alpha=25;

}
9. Select the second line of code and change the value from 25 to 50.

10. Choose Control➪Test Movie. As a result of your changes, the background

movie clip is now brighter and the mask is rotating counterclockwise. When

you click the mask, it becomes an ellipse.

After you’re done experimenting with the movie, examine the ActionScript used to

code the mask. This will give you a taste of what you’ll learn in upcoming chapters.

Designer Notes
In this chapter, you learned how an ActionScript flows and how a single idea

evolves into a finished production. You also learned some techniques to chart your

ActionScript course. I showed you time-saving techniques, and you learned a few

ways to plan your work. In the next chapter, you’ll learn how to use some basic

actions to navigate within a movie.

✦ ✦ ✦

Happy accidents

When you’re between projects and have some time on your hands, launch Flash, create a
new movie, and then create or import some objects. Embed the objects in movie clips and
have some fun. Begin experimenting with different properties to create an effect. Try the exact
opposite of something that’s worked for you before. Replace one action with a different one
or add additional actions to a script. There are no rules here— just try something, anything. If
your script falls flat on its face, so what? No pixels were damaged and you don’t have a client
breathing down your neck. But if your script does work and you create something truly
spectacular, or even moderately spectacular, jot down some notes (or add comments to your
script) to remind yourself how you achieved the effect and save the file.

c3687-7 ch03.F 6/12/02 9:04 AM Page 62

Using Basic
ActionScript in
Your Movie

✦ ✦ ✦ ✦

In This Part

Chapter 4
Charting the Timeline
of Your Movie

Chapter 5
Creating Basic
Interactivity

Chapter 6
Creating Elements
for Your Movie

Chapter 7
Taking Control
of Your Movie

Chapter 8
Creating Variables to
Store and Dispense
Information

✦ ✦ ✦ ✦

P A R T

IIII

d3687-7 Pt02.F 6/12/02 9:04 AM Page 63

d3687-7 Pt02.F 6/12/02 9:04 AM Page 64

Charting the
Timeline of
Your Movie

If you don’t use ActionScript in your Flash documents, your

published movies play in linear form, starting with frame 1.

Each frame plays in succession until the movie ends. As you

know, without ActionScript, when the movie reaches the last

frame, it loops back to the first and continues playing over

and over. This is fine if you’re creating a Flash banner for use

in an HTML document. However, if you want to give your

standalone Flash designs the kind of interactivity that keeps

viewers glued to their monitors, you need to take control of

the timeline.

When you take control of the timeline, you choreograph the

production, deciding what frame will play next when a

keyframe is reached and what movie clip or scene will play

when a button is clicked. When you use ActionScript to

control the flow of a movie, you give your viewers a choice of

what to view.

In this chapter, you learn how to use ActionScript to advance

a movie to a specific frame or scene. You also learn how to

assign actions to a button. In addition, you find out how to

open up a Web page when a keyframe is reached or a button

is clicked, a handy feature when you need to link to HTML

content or launch an HTML page after a Flash intro has

played.

The Actions panel’s got lots of books. And some of these
books have books within a book. To add some actions to
your scripts, you have to click this book icon, then click that
book icon, then click another book icon, and so on. Rather
than bore you with a lot of words, I’m going to show the
path to each action as shown in the following example:
Click Actions➪Movie Control and then double-click goto.

Note

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Controlling the
timeline

Adding actions to
keyframes

Adding actions to
objects

Working with buttons

Navigating with
ActionScript

✦ ✦ ✦ ✦

e3687-7 ch04.F 6/12/02 9:04 AM Page 65

66 Part II ✦ Using Basic ActionScript in Your Movie

Controlling the Timeline
The timeline of your movie is like a road map. A Flash movie without ActionScript

is a stretch of interstate highway — it goes from Point A to Point B with no stop-offs.

When you add ActionScript to the timeline, you give the viewer the choice of

stopping and getting to know the lay of the land or moving on. You can also structure

the timeline so the user can skip from Point A to Point D. You control the timeline by

creating scripts on individual frames that determines what happens when the frame

is reached. For example, if you have a large block of text displayed on a keyframe, you

can add a stop action, which allows the viewer to read the text before moving on.

You can also use buttons to control the timeline. In the previous scenario, the

viewer clicks a button with the play the action assigned to it and the movie

resumes. You can also use buttons to set up a navigation menu and use the goto
action to advance the movie to a specific keyframe when the button is clicked.

Working with frames
When you want action to occur when a frame on the timeline is reached, you create

a script for the frame. The action can be as simple as stopping the movie or as

complex as playing a movie clip that moves across the Stage. You can also add

script to a keyframe that loops it back to a previous keyframe until a certain

condition is met. A loop is an essential element in a preloader — it loops back to

the first frame, continuing to play the preloader until the rest of the movie loads.

In Flash there are three types of frames:

✦ A standard frame that is designated by a white background and no boundaries

✦ A keyframe that is designated by a filled dot on the timeline

✦ A blank keyframe that is designated by an unfilled dot on the timeline

A frame is used to extend content from the previous frame. You use keyframes for

significant event changes in your movie, such as an object changing size or position.

You also use keyframes to create timeline-based ActionScript. A blank keyframe is

used as a placeholder for content yet to be placed on Stage or ActionScript yet to be

created. Keyframes are designated by a filled dot, blank keyframes by an unfilled

dot. When you add ActionScript to a keyframe, it is still an unfilled dot; however, a

small lower case a appears above the dot. If an object and ActionScript reside in the

same keyframe, it is designated by a filled dot with a lower case a above it. Figure 4-1

shows a typical timeline.

Creating a frame
You create a frame when you need to copy content without making a change. This

is used primarily for graphic objects. However, when you create a keyframe on one

layer’s timeline and need to display the content from another layer timeline without

making a change, you also need to add a frame to carry the content forward.

e3687-7 ch04.F 6/12/02 9:04 AM Page 66

67Chapter 4 ✦ Charting the Timeline of Your Movie

Figure 4-1: You use keyframes to create major event changes in a movie.

To create a frame:

1. Click the frame where you want the content to advance to.

2. Choose Insert➪Frame. Alternately, you can press F5.

When you use this command, Flash adds a frame with a hollow rectangle to designate

the end of the frame range and copies the graphic content from the previous

keyframe to the frame you select when you invoke the command.

You can also add frames to a range of frames. This is often necessary to slow down

a sequence of action. To add frames, click one or more frames, choose Insert➪
Frame, and Flash inserts the number of frames you select when you invoke the

command.

Keyframe with objects Keyframe with motion tweening

Keyframe with objects and ActionScript

Timeline window Blank keyframe

End of frame sequenceStage

e3687-7 ch04.F 6/12/02 9:04 AM Page 67

68 Part II ✦ Using Basic ActionScript in Your Movie

To speed up the action, you may need to delete one or more frames. To do so, select

a frame or several frames, choose Insert➪Remove Frames (or press Shift + F5), and

Flash removes the number of frames you select when you invoke the command.

Creating a keyframe
You create a keyframe whenever you make a major change in your movie. The

change can be replacing one object on Stage with another, manually changing a

property of an object by moving it, changing the property of an object with

ActionScript, or using ActionScript to alter the movie in another way.

To create a keyframe:

1. Click the frame where you want the change to occur.

2. Choose Insert➪Keyframe. Alternately, you can press F6.

When you create a keyframe not adjacent to the previous keyframe, Flash fills in the

blanks with standard frames.

Creating a blank keyframe
When you need to stop displaying content and create a placeholder for new content,

or ActionScript yet to be written, you create a blank keyframe. If you plan the project

out ahead of time and know where your major event changes will occur, you can

create several blank keyframes and add graphic symbols or ActionScript as you

progress with your design.

To create a blank keyframe:

1. Select the frame where you want to create a blank keyframe.

2. Choose Insert➪Blank Keyframe or press F7.

After you choose this command, Flash adds a blank keyframe to the selected frame

and fills the timeline with standard frames between the last keyframe and the new

blank keyframe.

If you need to remove the content or ActionScript from a keyframe but still need the
frame for timing purposes, choose Insert➪Clear Keyframe. If you need to convert
several standard frames to keyframes, select the frames and then choose
Modify➪Frames➪Convert to Keyframes. To convert a selection of frames to blank
keyframes, choose Modify➪Frames➪Convert to Blank Keyframes.

Labeling a keyframe
When you create ActionScript, it is often necessary to reference a particular frame

in your code. Your ActionScript can refer to the frame by its number. However,

when you fine-tune a movie by adding or deleting frames, the action that once

occurred on frame 26 now occurs on a different frame, which causes a major

Tip

e3687-7 ch04.F 6/12/02 9:04 AM Page 68

69Chapter 4 ✦ Charting the Timeline of Your Movie

problem with your script as it’s still referring to frame 26. The solution is to label

your keyframes. When you label a keyframe, the label appears on certain parameter

text box drop-down menus. When you refer to a frame label in a script, the Flash

Player always searches for the label, no matter how many frames you’ve added or

subtracted from your design.

1. To label a keyframe:

2. Select the keyframe you want to label.

3. Open the Property inspector.

4. In the <frame label> field, enter a name for the frame and press Enter or Return.

When you enter a name for the keyframe, choose a label that reflects what happens.

This makes it easier for you to decipher the reason you created the keyframe after

working several hours on other parts of your production. It also makes it easier for

other designers on your team to figure out exactly what you’re doing. When you

label a frame, a red flag appears in the frame on the timeline, followed by the

frame’s label. If you have several contiguous keyframes, or the frame label is long,

it will be truncated. Hold your mouse over the labeled keyframe and a tooltip with

the frame’s name appears, as shown in Figure 4-2.

Figure 4-2: You can use a labeled keyframe to help foolproof your ActionScript.

Creating an Actions layer
When you create a Flash movie, you can create as many frames as you need to get

the job done. However, when you add ActionScript to several frames in a movie

comprised of dozens or perhaps hundreds of frames, locating an individual

keyframe with a specific script is downright difficult. When you create a movie with

ActionScript, it’s a good idea to set up a separate layer for your code. You use this

layer for any action you assign to a frame. You’ll still have to search for each

individual object you assigned actions to, but on your Actions layer, you’ll be able

to easily spot the frames you added ActionScript to — they’re the keyframes with a

lowercase a at the top.

To create an actions layer:

1. Select the uppermost layer.

Labeled keyframes

e3687-7 ch04.F 6/12/02 9:04 AM Page 69

70 Part II ✦ Using Basic ActionScript in Your Movie

2. Choose Insert➪Layer, or click the Insert Layer button that looks like a file

folder preceded by a plus sign (+).

3. After Flash creates the layer, click the default layer name, type Actions, and

then press Enter or Return.

After you create the Actions layer, remember to use this layer for any keyframes

you create that will have ActionScript.

Adding comments to keyframes
Even when you’re fastidious and create a layer for your keyframe actions, all you

see on the layer is a lowercase a where actions have been added. If you’re working

with a limited number of actions, you can probably figure out the code you created

on the keyframe. But when you’re dealing with a large production or working on a

project with other designers, you need a little more help in the form of a comment.

When you add a comment to a keyframe, it’s displayed on the timeline in the same

manner as a label, yet it doesn’t appear on any frame label drop-down menus.

To add a comment to a keyframe:

1. Select the keyframe to which you want to add the comment.

2. Open the Property inspector.

3. In the <frame label> field, enter two forward slashes (//) followed by the

comment and then press Enter or Return.

The forward slashes tell Flash this is a comment and not a frame label. You can

enter as much text as needed, however, it may be truncated if it encroaches on a

neighboring keyframe. You can read the full comment by holding your cursor over

the keyframe and a tooltip appears showing the full comment, as shown in Figure 4-3.

Figure 4-3: You use comments to keep tabs on your ActionScript.

Allocating Actions to a Frame
When you decide to add interactivity to your timeline, you first create a keyframe

and then assign ActionScript to it. You can assign simple single line code to a

Keyframe with comment

e3687-7 ch04.F 6/12/02 9:04 AM Page 70

71Chapter 4 ✦ Charting the Timeline of Your Movie

keyframe that tells the Flash Player to stop playing the movie or direct the movie to

another keyframe. You can also allocate multiple actions to a keyframe that define

variables, evaluate expressions, or check to see whether a set of conditions exists.

To create ActionScript for a keyframe:

1. Select the keyframe you want to create ActionScript for.

2. Open the Actions panel. When you select a keyframe and open the Actions

panel, the panel’s title bar reads, Actions – Frame. If the title bar reads

differently, you haven’t selected the keyframe — try again.

3. Navigate to the action by either opening the book it is stored in, or open the

Index book and select the appropriate action. Remember the Index book lists

every Flash action in alphabetical order.

4. After selecting an action, use your favorite method to add it to a script.

Remember you can double-click an action to add it to a script, or drag and

drop it directly into the Script pane. You can also click the plus sign (+) above

the Script pane and choose the desired action from a drop-down menu.

5. Continue adding actions as needed to complete your script. Figure 4-4 shows

a script with several actions assigned to a keyframe. Notice the parameter

text boxes above the Script pane. These boxes differ depending on the action

and will be discussed as needed.

Figure 4-4: You use the Actions panel to write a script for a keyframe.

It is possible to select a standard frame and create an ActionScript. However, the
code you create will be assigned to the previous keyframe on the timeline. Always
make sure you have a keyframe selected when attempting to create a script on the
timeline.

Caution

Parameter text boxes

e3687-7 ch04.F 6/12/02 9:04 AM Page 71

72 Part II ✦ Using Basic ActionScript in Your Movie

Creating Buttons
You also use buttons to add interactivity to your Flash productions. When you add

buttons to a movie, you give the viewer a choice: to click or not to click. You can

program a button to direct the viewer to another part of the movie when clicked,

load additional content when clicked, and much more. Buttons can play a large part

in any Flash movie you publish.

If you’ve worked with Flash for any length of time, you’ve probably already created

a button or two. However, many designers don’t take advantage of ActionScript and

use Flash for simple animations that are incorporated with their HTML designs.

If you fall into this category, this section will give you a brief overview on how to

create a button. If you’re an experienced pro at creating buttons, feel free to skip to

the next section.

Adding a button to your document
A button is a symbol with four frames. You can create a button with a single frame

or use all button frames. Each frame of the button can contain a different graphic

that is displayed when the user’s mouse interacts with the button’s target area.

When you create a button, you can add layers to segregate the various elements

used to create the button. Remember you can use a symbol from the document

Library to create your button. You should make it a point to use a symbol whenever

possible. By using symbols instead of creating new objects, you help to create a

smaller file.

To create a button, do the following:

1. Choose Insert➪New Symbol to open the New Symbol dialog box.

2. Enter a name for the symbol, choose Button for the symbol behavior, and

then click OK to enter symbol-editing mode.

3. Create the graphic needed for the Up state, or use an existing symbol from the

document Library. If necessary, create additional layers for additional objects

such as text or sound bytes. If your button only has one state, click the Back

button to return to movie editing mode; otherwise, proceed to Step 4.

4. To use one of the other button states, select the appropriate frame and then

press F6 to convert it to a keyframe. Create the graphic for the state or choose

a symbol from the document Library. Remember, you can have an animated

button. For example, you can have a small animation play when the user’s

mouse rolls over the button by adding a small movie clip to the Over state.

If you’re not familiar with individual button states, they’re covered in detail in

the next section.

5. Click the Back or current scene button to return to movie editing mode. To

use the button, drag it from the document Library to the desired position on

Stage. Figure 4-5 shows a multi-state button being created.

e3687-7 ch04.F 6/12/02 9:04 AM Page 72

73Chapter 4 ✦ Charting the Timeline of Your Movie

Figure 4-5: You can use as many layers as needed to create a button.

You can use any graphic for a button. However, if your design calls for a JPEG
image for a button face, it may increase the file size of the published movie. If the
image is being used exclusively for the button, you can use the Trace Bitmap
command with fairly high settings to convert the image into Flash vector objects.

About button states
When you create a new button symbol, you have four available states: Up, Over,

Down, and Hit. When you create a new button, by default you have a keyframe only

in the Up state. In order to use the other states, you need to select the frame and

then press F6 to convert it to a keyframe. Each state determines what the viewers

see when their mouse interacts with the button.

✦ Up: This is the default button state. The graphic you include in this state is

visible when the user’s mouse is not in the button target area.

✦ Over: The content in this button frame is visible when the user’s mouse rolls

over the button target area.

Tip

Button state frames

e3687-7 ch04.F 6/12/02 9:04 AM Page 73

74 Part II ✦ Using Basic ActionScript in Your Movie

✦ Down: The content in this keyframe is activated when the user’s mouse clicks

the button. This is the most logical state to add a sound. If you add a sound

to the down state, remember that it will continue playing until conclusion.

Use a sound less than a second in length, such as a single musical note or a

mechanical noise like a camera shutter button being clicked.

✦ Hit: The graphic you use in this keyframe defines the target area of the button

and is not visible. If you have a small button icon in the Up state, create a

shape for this frame that is slightly bigger than the icon, thus giving the

viewer a bigger target area.

Creating an invisible button
Invisible buttons may not be seen, but they can play a prominent role in your

Flash designs. You can use an invisible button to trigger drag and drop elements

such as interface pieces, dialog boxes, and elements in a game. You can also place

an invisible button behind a large block of text. The button isn’t seen, which makes

the text visible. After the viewers read the text block, a button click advances them

to the next part of your design.

To create an invisible button:

1. Choose Insert➪New Symbol.

2. Name the button, choose the Button behavior and click OK to enter symbol-

editing mode.

3. Select the Hit frame and press F6 to create a new keyframe.

4. Using one of the drawing tools, create a shape the desired size of the target

area. You can use any shape, or you can import a shape created in a drawing

program.

5. Click the Back button to exit symbol-editing mode. Your invisible button is in

the document Library, ready for use.

As a rule, you nest an invisible button with another symbol such as a movie clip

with a text block. You can also place an invisible object directly behind an object.

Using an invisible button in this manner, you don’t need to concern yourself with a

target path if you’re using it to navigate to a frame on the main timeline. Remember

that an invisible button is a symbol. When you use an instance of it in a movie clip,

or in any other part of your design, you can resize it to suit your needs and the

original symbol remains unaltered. Figure 4-6 shows an invisible button nested in a

movie clip. You can identify the button by its light aqua color. However, when the

movie is published, viewers are never aware of the button until the hand icon

appears when the mouse passes over the button.

Assigning actions to a button
After you create a button symbol and place an instance of it on Stage, you program

the button to achieve the desired effect when a viewer clicks it. You can use a

e3687-7 ch04.F 6/12/02 9:04 AM Page 74

75Chapter 4 ✦ Charting the Timeline of Your Movie

button to trigger a myriad of events. As previously mentioned, you can use a button

for interactive elements in your movie and navigation. You can also use a button to

modify objects on Stage. For example, you can program a button to change the size

or opacity of an object. You can also assign multiple actions to a button.

Figure 4-6: You use invisible buttons to add interactivity to
movie clips.

To program a button:

1. Select the button you want to program.

2. Open the Actions panel. When you open the Actions panel after selecting a

button, the title reads: Actions – Button. If you see anything else, reselect

the button.

3. In the left pane of the Actions panel, navigate to the desired action and add

the action to your script by double-clicking it or dragging and dropping it into

the Script pane. If you work in normal mode, Flash automatically adds

on(Release) to your code. This is the event that triggers the action you

selected. Release, the default mouse event, executes the action when users

release their mouse after clicking the button. (You learn how to use all the

mouse events in Chapter 5.) Figure 4-7 shows a button with the goto action

assigned to it.

Figure 4-7: You program a button to add interactivity to your designs.

Invisible buttons behind text objects

e3687-7 ch04.F 6/12/02 9:04 AM Page 75

76 Part II ✦ Using Basic ActionScript in Your Movie

Navigating with ActionScript
You can use ActionScript to create a plethora of effects. However, in the beginning,

you use ActionScript to navigate from one part of a movie to another or to go to

another Web page. You can also use basic ActionScript to stop a movie and then

resume it. If you’ve used Flash for a while, this may seem like old hat to you.

However, if you’re patient and read on, perhaps you’ll learn a new trick or two that

you can incorporate with your next Flash design.

Using the stop action
When you need to halt the action in a movie, the stop action will do it for you. The

stop action has no parameters. When the Flash Player sees this action in one of

your scripts, it stops the movie. As mentioned previously, you can use this action to

stop the movie while viewers read a large block of text. You also use this action as

part of a drop-down menu. You can use the stop action on a keyframe or button.

You find the stop action in the Movie Control book. To use the stop, navigate to the

action and use your favorite method to add it to your script. Listing 4-1 shows the

stop action assigned to a keyframe.

Listing 4-1: Using the Stop Action

stop ()

Using the play action
After you use the stop action to halt a movie, you use the play action to resume play.

In the aforementioned scenario of stopping the movie to display a large block of text,

you assign the stop action to a keyframe and assign the play action to an invisible

button behind the text. You also use the play action when creating a pop-up menu.

You find the play action in the Movie Control book or listed alphabetically in the

Index book. To use the play action, navigate to it and use your favorite method to

add it to a script. Listing 4-2 shows the play action assigned to a button. In this

case, the action occurs when the user releases the mouse button.

Listing 4-2: Using the Play Action

on (release) {
play();

}

e3687-7 ch04.F 6/12/02 9:04 AM Page 76

77Chapter 4 ✦ Charting the Timeline of Your Movie

Using the goto action
You use the goto action to navigate to a specific frame or scene. You can refer to

the frame or scene by number or by name. When you use this action, you can go to

a frame and play the movie or go to a frame and stop the movie pending further

interaction from the viewer.

You find the goto action in the Movie Control book. To add the goto action to your

script:

1. Select the button or keyframe to which you want to assign the action.

2. Navigate to the action and add it to your script. After you add the action to

your script, the parameter text boxes shown in Figure 4-8 appear above the

Script pane.

3. Choose the Go to and Play or Go to and Stop option.

4. In the Scene field, accept the default current scene parameter or click the but-

ton to the right of the field and choose a scene from the drop-down menu. If

you add a scene to a movie and give it a unique name, the name appears on

this menu.

5. In the Type field, accept the default of frame number or click the button to the

right of the field and choose one of the following:

• Frame Label: Choose this option if you’ve labeled keyframes in your

document.

• Expression: Choose this option to use an expression that, when evaluated,

directs the movie to another frame. If you choose this option, you create

the expression in the Frame field.

• Next Frame: Choose this option to advance the movie to the next frame

when the action executes. Choose this option and the Frame parameter

box is no longer available.

• Previous Frame: Choose this option to rewind the movie to the prior

frame when the action executes. Choose this option and the Frame

parameter box is no longer available.

6. In the Frame field, enter the number of the frame you want the movie to

advance to when the action executes. If you have labeled your keyframe and

choose the Frame Label parameter, click the button to the right of the field

and choose the desired frame label from the drop-down menu.

Using the getURL action
Like most designers, you probably shy away from opening another Web page from

one of your designs. And when you do, you probably open it up in another window to

keep your design open. With the getURL action, you can open another Web page from

your Flash design. You can assign the action to a button or keyframe. You assign the

getURL action to the final frame of a Flash intro to open a site’s home page.

e3687-7 ch04.F 6/12/02 9:04 AM Page 77

78 Part II ✦ Using Basic ActionScript in Your Movie

Figure 4-8: You supply the parameters that direct the movie to the
desired frame.

You find the getURL action in the Browser/Network Control book and also in the

Index book. To direct your movie to another Web page:

1. Select the button or keyframe you want to assign the action to.

2. Open the Actions panel.

3. Add the getURL action to your script. After you add the action to your script,

the parameter text boxes shown in Figure 4-9 appear above the Script pane.

4. In the URL field, enter the URL of the page you want to open when the

action executes. Enter the full path for the URL, for example: http://www.
dasdesigns.net/index.htm. Alternately, you can check the Expression

checkbox and enter an expression that, when evaluated, directs the movie to

the desired Web site.

5. Click the button to the right of the Window field and choose one of the

following:

• Self: Opens the URL in the same window as the link.

• Blank: Opens the specified URL in a new browser window. Choose this

option, and your Flash movie plays in the background.

• Parent: Loads the URL in the window of the frame that called the link.

If the frame isn’t nested, the URL opens in the full browser window.

• Top: Loads the URL in the full browser window, removing all frames.

6. In the Variables field, accept the default Do Not Send or click the button to the

right of the field and choose Send Using Get or Send Using Post. You use the

Send Using Get option to send variables to another Web page; Send Using Post

to send the variables to a CGI script at the URL’s server. Figure 4-9 shows the

getURL action as assigned to a button.

Parameter text boxes

e3687-7 ch04.F 6/12/02 9:04 AM Page 78

79Chapter 4 ✦ Charting the Timeline of Your Movie

Figure 4-9: You use the getURL action to direct the movie to a specified URL.

Using JavaScript to open an HTML page in a
different size window
When you use the getURL action to open a Web page from your Flash design, you

can open it in another window by choosing the blank option. However, by default,

most browser windows maximize when opened. You can use the getURL action and

a bit of JavaScript in your HTML page to open the link in a different size browser

window by doing the following:

1. Assign the getURL action to a button or keyframe as outlined in the preceding

section.

2. In the URL field, enter the following: Javascript:newwin1 (). This code tells

the Flash Player to use JavaScript from the HTML document the Flash movie

is embedded in. The URL for the site that opens when the action executes is

within the HTML JavaScript.

That’s all you need to do within Flash. When you publish the document, choose the

Flash and HTML tabs. If you have more than one Web page to open, follow the above

steps on another button or keyframe and in the URL field, enter Javscript:newwin2

(), Javscript:newwin3 (), and so on.

After the document is published, you’ll have two files: the .SWF movie and the

HTML page the movie is embedded in. Open the HTML document in your HTML

editor or a word processor and enter the script in Listing 4-3 between the

<head> </head> tags.

e3687-7 ch04.F 6/12/02 9:04 AM Page 79

80 Part II ✦ Using Basic ActionScript in Your Movie

Listing 4-3: JavaScript to Open a URL in a
Different Size Window

<script language=”Javascript”>
function newwin1() {

window.open(‘http://www.dasdesigns.net.contact.htm’, ‘links’
,’scrollbars=yes,width=640,height=480’)
}
</script>

The JavaScript in line 4 of the above code specifies whether scrollbars should be

included and specifies the width and height of the new window. Change these

values as needed to suit the page you are opening. Specify dimensions smaller than

the average Internet surfer’s desktop size of 800 x 600.

If your Flash movie references more than one new window, copy lines 2 through 4

of the above code and change the first line to newwin2, entering the URL for the

second URL on the second line.

Designer Notes
In this chapter, you learned how to take control of your movie’s timeline with

ActionScript. You learned how to apply ActionScript to keyframes and buttons as

well as how to use basic actions to direct the flow of your designs. In the next

chapter, you’ll take your knowledge one step further and learn how to create movie

clips. Mouse events and clip events are also covered.

✦ ✦ ✦

e3687-7 ch04.F 6/12/02 9:04 AM Page 80

Creating Basic
Interactivity

In the last chapter, you learned how to assign actions to

buttons and keyframes. Buttons can be used for many

things. One of the most obvious is navigating to another part

of your design: When the button is clicked, the movie

advances to a predetermined frame. Buttons can also be used

to trigger a change, for example, moving an object on Stage.

You can also use buttons to load additional content or open

up another Web page.

Actions can also be assigned to objects in your Flash movies.

However, you can’t just assign an action to a graphic symbol.

If you want to modify a graphic object, it must reside in a

movie clip. And in order for Flash to locate that movie clip, it

must have a name.

In this chapter, you learn how to create movie clips and label

them. You also learn how to assign multiple actions to a button

that does different things depending on how the user’s mouse

interacts with the button. When the mouse interacts with the

button, it is an event. The code you assign to an event deter-

mines what happens when the event occurs. Movie clips also

have events. As you progress through this chapter, you learn

how to use these ActionScript event handlers.

The Actions panel’s got lots of books. And some of these
books have books within a book. To add some actions to
your scripts, you have to click this book icon, then click that
book icon, then click another book icon, and so on. Rather
than bore you with a lot of words, I’m going to show the
path to each action as shown in the following example:
Click Actions➪Movie Control and then double-click goto.

Creating Movie Clips
You can use a movie clip symbol in numerous places in a

design — wherever you need animation on demand. A movie

Note

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating movie clips

Assigning actions to
an object

Embedding video
files

Understanding clip
events

Understanding mouse
events

Using buttons for
navigation

Using buttons for
interactivity

✦ ✦ ✦ ✦

e3687-7 ch05.F 6/12/02 9:04 AM Page 81

82 Part II ✦ Using Basic ActionScript in Your Movie

clip can consist of a single frame containing a single bitmap or graphic symbol you

need to modify, or it can contain several frames of animation or even a video clip.

When you create a named instance of a movie clip symbol, you can address it with

ActionScript.

To create a movie clip:

1. Choose Insert New Symbol to open the Create New Symbol dialog box shown

in Figure 5-1.

2. Enter a name for the symbol, choose the Movie Clip behavior, and click OK to

enter symbol-editing mode.

3. Create the keyframes and desired animation using either frame by frame

methods or tweening.

4. If the movie clip is to be a container for ActionScript, select the first frame,

open the Actions panel, and create the desired script.

5. Click the Back button to exit symbol-editing mode.

Figure 5-1: You define a symbol’s behavior
with this dialog box.

Using movie clips for interactive content
Many Flash authors create single frame movies and rely on movie clips to supply all

the action. You can do the same and rely on buttons or a navigation menu to play a

movie clip on demand. When you create a movie in this fashion, all of your movie

clips are on Stage. When your movie loads, you don’t want the movie clips to play

until summoned by the click of a button. Therefore, when you create the movie clip,

leave the first frame blank. The only ActionScript on the first frame is a stop action,

which prevents the movie clip from playing when it loads. Select the second frame

e3687-7 ch05.F 6/12/02 9:04 AM Page 82

83Chapter 5 ✦ Creating Basic Interactivity

and create a blank keyframe by pressing F7. Then you can begin adding your con-

tent. On the root timeline, create a separate layer for each movie clip. If you have

several movie clips in your movie, consider creating a layer folder. Figure 5-2 shows

a document with several movie clips housed in a layer folder.

Figure 5-2: You can create individual movie clips for your design’s content.

When you create a movie clip that will play on demand, you need the clip to cycle

back to the first frame when it’s finished playing. You do this by adding the goto
action to the last frame of the clip. Figure 5-3 shows the timeline of one of the movie

clips from Figure 5-2 with ActionScript on the last frame that returns the clip to the

first frame.

Figure 5-3: After a movie clip plays, this ActionScript returns it
to the first frame.

Layers inside folder

Layer folder

Layers outside folder

e3687-7 ch05.F 6/12/02 9:04 AM Page 83

84 Part II ✦ Using Basic ActionScript in Your Movie

Importing a video file into a movie clip
In prior versions of Flash, you could import QuickTime .MOV videos and incorpo-

rate them in your designs. However, you could only export the file from Flash in the

QuickTime .MOV format.

In you have QuickTime 4.0 or better installed on your machine (Windows or

Macintosh), you can import the following video file formats:

File Type Extension

Audio Visual Interleaved *.avi

Digital Video *.dv

Motion Picture Experts Group *.mpg, *.mpeg

QuickTime Movie *.mov

If you have DirectX 7.0 or greater installed on your machine (Windows only), you

can import the following video file formats:

File Type Extension

Audio Video Interleaved *.avi

Motion Picture Experts Group *.mpg,*.mpeg

Windows Media Video *.wmv,*.asf

If you work on the Windows platform and have both QuickTime and DirectX 7.0 or

better installed, you can import all of the formats listed above.

If you are importing a video to play in a movie clip, follow the preceding steps to
create a movie clip symbol with a stop action on the first frame. If the finished
movie clip will be on Stage at all times, create a blank keyframe on frame 2 and
select it prior to importing the video.

To import a video file into Flash:

1. Choose File➪Import.

2. Navigate to the file you want to import and click Open. The Import Video dia-

log box appears. Choose one of the following options:

• Embed video in document embeds the video file. Choose this option and

you can publish the file as a *.SWF movie.

Tip

e3687-7 ch05.F 6/12/02 9:04 AM Page 84

85Chapter 5 ✦ Creating Basic Interactivity

• Link to external file creates a link from the document to the external

video file. If you choose this option, you can only export the document

as a QuickTime *.MOV movie. This option is available only if you are

importing a QuickTime *.MOV movie.

3. If you choose to embed the video, the Import Video Settings dialog box

appears (see Figure 5-4).

4. Drag the Quality slider to set the level of compression for the imported video.

Alternately, you can enter a value between 0 and 100. Choose a high setting,

and little compression is applied to the video, resulting in a higher quality clip

at the expense of a larger file size. Lower settings result in higher compres-

sion, which yields a smaller file size with a tradeoff in image quality.

5. Drag the Keyframe slider to determine how often a keyframe is created. A

keyframe is a frame with complete data. The frames before and after the

keyframe only contain data that is changed from the keyframe. Enter a lower

value and the embedded video will have more keyframes, resulting in a faster

seek time at the expense of a larger file size.

6. Drag the Scale slider to reduce the image size of the embedded video.

Alternately, enter a value between 1 and 100. A setting of 50 percent effec-

tively halves the image size. If your published movie will be viewed by users

with slower processors, reducing the image size improves playback perfor-

mance.

7. Enable the Synchronize to Flash document frame rate option and the playback

of the embedded video will be synchronized to the document frame rate.

8. Click the button to the right of the Number of Frames to Encode per Number

of Flash Frames field and choose an option from the drop-down menu. The

default rate of 1 to 1 plays one video frame for each Flash frame. Choose a dif-

ferent setting to create a smaller file size at the expense of choppy motion. For

example, if you choose a rate of 2 to 1, the embedded video plays 1 frame for

every 2 Flash frames; in other words, 1 frame out of 2 is dropped resulting in

uneven motion.

9. If audio is present in the video you are importing, the Import Audio option is

enabled by default. Deselect this option to import the video without sound.

10. Click OK to import the video. If the file is large, Flash displays the Importing

dialog box, which gives you a visual representation of the operation’s

progress.

11. After the file finishes importing, Flash displays a dialog box telling you how

many frames must be created to play the video from beginning to end. Click

Yes, and Flash creates the necessary frames.

e3687-7 ch05.F 6/12/02 9:04 AM Page 85

86 Part II ✦ Using Basic ActionScript in Your Movie

Figure 5-4: You control the quality and size
of the embedded video by modifying import
settings.

After importing the video, you can add the necessary ActionScript to finalize your

movie clip. For example, you may want to create a new layer and a blank keyframe

at the last frame of the video and use the goto action to return to the first frame of

the movie clip, which if you’ve created it as outlined in the previous section, will be

a blank frame with a stop action. If you don’t add some type of control to the

embedded video, it will loop continuously.

If you have a large number of videos in your design, embedding them all in a sin-
gle movie results in a large file size and a lengthy download. Create separate doc-
uments for each video file and publish them as .SWF movies. Use the loadMovie
action to load each file on demand. (You learn to use the loadMovie action in
Chapter 7.)

Creating instances of movie clips
After you create a movie clip symbol, it’s added to the document Library. To use

the symbol in your design, select a keyframe and drag an instance of the symbol

from the document Library to the desired spot on Stage.

Labeling the movie clip with the Property inspector
In order to have interactive control of the movie clip with ActionScript, you must

create a name for the symbol instance. You use the Property inspector to label a

symbol.

To name a symbol:

1. Select the symbol.

2. Open the Property inspector (see Figure 5-5).

Tip

e3687-7 ch05.F 6/12/02 9:04 AM Page 86

87Chapter 5 ✦ Creating Basic Interactivity

3. In the <Instance Name> field, enter a name for the symbol. When you name an

instance, you create a target for your ActionScript. Remember to choose a

name that describes what the symbol does. This is especially import if you

have a document with several named instances in it. Every named instance

appears as a button in the Target Path dialog box. Without having a descrip-

tive name to go by, you can easily select the wrong target.

Figure 5-5: You name an instance to provide a target for your ActionScript.

Assigning Actions to an Object
After you create an instance of a movie clip, you can use ActionScript to modify it.

For example, you can use the duplicateMovieClip action to create several clones

of a movie clip and apply future actions to the clones of the parent movie clip. You

learn how to use the duplicateMovieClip action in Chapter 16 to create a back-

ground of sparkling stars. But before you can use ActionScript to create special

effects in your designs, you must first know how to write a script for an object.

To assign ActionScript to an object:

1. Select the movie clip object you want to modify with ActionScript.

2. Open the Actions panel. Notice that panel’s title reads Actions – Movie Clip.

3. Navigate to the action you want to assign to the object and use your favorite

method to add it to the script.

Figure 5-5 shows an ActionScript that changes the x and y scale properties of a

movie clip named placeHolder. Before the name of the movie clip is _root., which is

the target path to the movie clip. In this case, the movie clip resides on the main or

root timeline.

In Figure 5-6, the first line of code that reads onClipEvent (load). The code that

follows executes when the movie clip loads, which is known as a clip event.

About clip events
When you write ActionScript for an object, you control when the actions occur. By

default, code you assign to a movie clip executes when the movie clip loads.

However, you have several different events to choose from. When you create

ActionScript in normal mode, Flash automatically adds the default on load clip

e3687-7 ch05.F 6/12/02 9:04 AM Page 87

88 Part II ✦ Using Basic ActionScript in Your Movie

event before the selected action. You can modify the clip event by clicking the line

of code that lists the clip event. Doing so opens the text parameter boxes shown in

Figure 5-7.

Figure 5-6: You can use ActionScript to modify the properties of an object.

Figure 5-7: The clip event you choose determines when the ActionScript
executes.

When you create ActionScript for an object, you can choose any of the following

clip events:

✦ Load: The actions that follow this clip event execute when the movie clip

loads.

Clip events

e3687-7 ch05.F 6/12/02 9:04 AM Page 88

89Chapter 5 ✦ Creating Basic Interactivity

✦ EnterFrame: The actions that follow this clip event execute when entering a

frame of the movie clip. If the movie clip is a single frame, the actions that fol-

low are constantly evaluated and executed.

✦ Unload: The actions that follow this clip event are handled after the first

frame of the movie clip plays.

✦ Mouse down: The code that follows the Mouse down event occur after the

down stroke of the user’s mouse button.

✦ Mouse up: The actions that follow this clip event are handled after the user

releases the mouse; the upstroke of the mouse button.

✦ Mouse move: The code that follows this clip event occurs whenever the

user’s mouse is moved.

✦ Key down: The actions following this clip event occur when a key is pressed.

You use the getCode method of the Key object to tell Flash which key must be

pressed.

✦ Key up: The action associated with this clip event occurs when a key is

released. You use the getCode method of the Key object to tell Flash which

key must be pressed.

✦ Data: The script associated with this clip event occurs when data is loaded as

a result of the loadMovie action or loadVariable action.

If you prefer, you can specify the clip event before creating your code. To do this,

you add the onClipEvent action to your script before adding other actions. To

assign the event handler to a movie clip object:

1. Select the movie clip instance to which you want to apply the code.

2. Open the Actions panel.

3. Click Actions➪Movie Clip Control and then double-click the onClipEvent
action.

After you select the action, Flash opens the parameter text boxes previously

seen in Figure 5-7.

4. Accept the default Load event or select another event.

5. Select the action you want to occur after the clip event.

Using the with action
When you use ActionScript to address a movie clip object from a button or another

movie clip, you must supply a target path for the Flash Player to follow. You may

have seen Flash documents with many lines of code that begin _root. followed

by the name of a movie clip, a dot, and then an action or property. When several

actions or property changes are assigned to the same movie clip, you end up

e3687-7 ch05.F 6/12/02 9:04 AM Page 89

90 Part II ✦ Using Basic ActionScript in Your Movie

entering the target path every time you use a different action. You can alleviate

some of this repetitive action using the with action. When you use the with action,

you specify the target path to the movie clip once. The actions that follow occur

with the specified target. The with action is quite handy when you have a number

of actions that occur when a button is clicked.

To add the with action to a script:

1. Select the object you want to which you want to assign the action.

2. Open the Actions panel.

3. Click Actions➪Variables and then double-click the with action.

After you select the action, Flash displays it in the Script pane followed by

<not set yet>, which is highlighted in red (see Figure 5-8).

Figure 5-8: You use the with action to associate the code that follows with
a specific object.

4. Place your cursor inside the object field and then click the Insert a Target

Path icon that looks like a cross-hair to open the Insert Target Path dialog box

shown in Figure 5-9.

5. Click the button that matches the symbol you want to target. Flash adds the

target path to the script.

6. Add the actions that you want to occur with the targeted clip. Listing 5-1

shows code that changes the opacity, x scale, and y scale properties of a

movie clip named myGirl when the user release the mouse button.

e3687-7 ch05.F 6/12/02 9:04 AM Page 90

91Chapter 5 ✦ Creating Basic Interactivity

Figure 5-9: Every named instance of a
symbol appears in this dialog box.

Listing 5-1: Using the With Action

on (release) {
with (_root.myGirl) {
_alpha=75;
_yscale=50;
_xscale=50;

}
}

Assigning Actions to a Button
When you assign actions to a button, you can assign multiple actions. You can also

use more than one mouse event on a button. For example, you can program a but-

ton to display a tooltip when users move their mouse over the button’s target area,

play a sound when the button is clicked, and load additional content or go to a spe-

cific frame when the button is released. Here’s how to assign an action to a button:

1. Select the button that you want to program.

2. Open the Actions panel. The title of the Actions panel should read Actions –

Button. If it doesn’t, reselect the button.

3. Navigate to the action you want to assign to the button and double-click it to

add it to the script. When you assign an action to a button, Flash uses the

default on(Release) event handler.

Labeled movie clips

Indicates main (root) timelineIndicates main (root) timeline

e3687-7 ch05.F 6/12/02 9:04 AM Page 91

92 Part II ✦ Using Basic ActionScript in Your Movie

4. To change the mouse event, click the line of code that contains the event han-

dler and choose one of the events in the parameter text box area. Note that

you can use more than one event to trigger an action. Make sure that the only

events selected are the ones you want to trigger the actions that follow. Each

mouse event is covered in detail in the next section.

About mouse events
A mouse event describes how the viewer’s mouse interacts with a button in your

design. For example, when a viewer’s mouse passes over the button’s target area, it

rolls over the button — the mouse event is a rollover. You can make the button

interactive by creating ActionScript for the rollover event. You can program a but-

ton to be multi-functional by taking advantage of several mouse events. When you

program a button, you can use any of the following mouse events:

✦ Press: Triggers the action when the button is pressed (the down stroke of a

mouse click).

✦ Release: Executes the action when the button is released (the up stroke of a

mouse click).

✦ Release Outside: Triggers the action when the user clicks the mouse while in

the button’s target area, but releases the mouse button outside of the target

area.

✦ Key Press: Executes the action when the user presses a key.

✦ Roll Over: Triggers the action when the user’s mouse rolls over the button’s

target area.

✦ Roll Out: Executes the action when the user’s mouse moves outside of the

button’s target area.

✦ Drag Over: Triggers the action when the user’s mouse is clicked and then

dragged over the button’s target area.

✦ Drag Out: Executes the action when the user’s mouse button is clicked,

dragged over the button’s target area, and then moved beyond the button’s

target area.

When you create an interactive button, it is often necessary to use mouse events in

conjunction with each other. For example, you can create a design where you pro-

gram each button to display a an animated text movie clip that displays the title of

the section when a user’s mouse rolls over the button . However, if users quickly

roll over the buttons in succession, you’ll have several movie clips playing at once.

To prevent this, program each button to stop playing when a viewer’s mouse rolls

out of each button’s target area. Listing 5-2 shows a button programmed in this

manner.

e3687-7 ch05.F 6/12/02 9:04 AM Page 92

93Chapter 5 ✦ Creating Basic Interactivity

Listing 5-2: Assigning Multiple Events to a Button

on (rollOver) {
with (_root.sexysadie) {
gotoAndPlay(2);

}
}
on (rollOut) {
with (_root.sexysadie) {
gotoAndStop(1);

}
}

The movie clip associated with the ActionScript in Listing 5-2 has a stop action on

frame 1. When a user rolls over the button, frame 2 plays and the movie clip begins

playing. As soon as the user rolls past the button’s target area, the action associ-

ated with the rollOut event begins and the movie clip goes to frame 1 and stops.

Notice that the code for the rollOver and rollOut events are similar. When you
create lines of code that you know will be similar, you can save yourself a lot of
time using the Actions panel’s context menu’s Copy and Paste commands. Select
the lines of code that are similar and then right-click (Windows) or Ctrl+click
(Macintosh) and choose Copy. Click the last line of code in the Script pane, open
the context menu, and choose Paste. You can now select an individual line of the
code you just pasted and change parameters such as the mouse event that will be
used or frame that will play when the code is executed.

Using the Key Press mouse event
You can program a button so that an action is executed when users press a key on

their computer’s keyboard. Triggering ActionScript with a key press is quite a use-

ful feature. For example, you can create an object the moves in a certain direction

when a button is clicked and also have the action execute when a user presses one

of the arrow keys.

To use the Key Press event:

1. Assign an action to a button as discussed previously.

2. In the Actions panel, select the line of code that specifies the mouse event.

3. Select the Key Press event. After you select this event, a text field opens.

4. Using your computer keyboard, press the key you want to trigger the event.

After you press a key, it appears in the Key Press field. Certain keys such as

Ctrl, Shift, and Caps Lock are reserved for your computer’s operating system.

If you press one of these keys, the text field remains blank. Figure 5-10 shows a

script that executes when the Up arrow is pressed.

Tip

e3687-7 ch05.F 6/12/02 9:04 AM Page 93

94 Part II ✦ Using Basic ActionScript in Your Movie

Figure 5-10: You can specify a Key Press to trigger an action.

Using the on action
When you assign an action to a button while creating ActionScript in normal mode,

Flash automatically adds the on(Release) event to your script. If you know the

event you want to use to trigger the action, or if you work in expert mode, you can

use the on action to specify the mouse event you want to trigger the action.

To use the on action:

1. Select a button.

2. Open the Actions panel.

3. Click Actions➪Movie Control and then double-click the on action.

Flash displays the action in the Script pane, and the Release event is selected.

4. Select the event(s) you want to trigger the action.

5. From the left pane of the Actions panel, select the actions that you want to

execute with the event(s).

Key Press mouse event handler

Key Press field

e3687-7 ch05.F 6/12/02 9:04 AM Page 94

95Chapter 5 ✦ Creating Basic Interactivity

Using buttons for navigation
When you use Flash to create a full-fledged Web site, you can use buttons as naviga-

tion devices. You can program individual buttons to navigate to different frames on

your movie, play different movie clips, or load additional content on demand.

Interactive interface elements are discussed in greater detail in Chapter 12. In
Chapter 4 you learned to use some basic actions to navigate to different parts of a
movie.

You can quickly create navigation for a design by using the actions in the Movie

Control book in conjunction with a button symbol. Figure 5-11 shows a navigation

menu created for a photographer’s Web site.

Figure 5-11: You can use buttons to create
navigation for your designs.

If you study Figure 5-11, you notice the buttons are all the same size yet have a dif-

ferent look. Instead of creating a new symbol for each button, create one button,

open the Document Library, and duplicate the button. You can then edit the dupli-

cated button symbol to change the graphics and text displayed. Repeat this for the

other buttons, and you can quickly create a navigation menu.

Using buttons for interactivity
In addition to using buttons for navigation, you can also use them to affect changes

in your design. You can program buttons to open navigation menus, a feat you

learn in Chapter 12. You can also use buttons to accept data from viewers and

store the data in variables for future use. You can use buttons to change an object’s

properties. In Chapter 15 you learn to program a button to change the color of an

Buttons for graphic navigation menu

Cross-
Reference

e3687-7 ch05.F 6/12/02 9:04 AM Page 95

96 Part II ✦ Using Basic ActionScript in Your Movie

object displayed in an e-commerce design. As you gain more familiarity with

ActionScript, you’ll think of new and exciting ways to add interactivity to your

designs with buttons.

Navigate to this chapter’s folder and copy the file button.fla to your hard drive. Use
your operating system to disable the file’s read-only attributes. Open the file in
Flash and choose Control➪Test Movie. Click the various buttons to get an idea of
what you can create for your own designs. After you finish exploring the interactive
buttons, return to movie-editing mode to select a button and open the Actions
panel to find out what makes the button tick.

Designer Notes
In this chapter you learned how to create the basic elements for interactive Flash

designs. You learned how to create movie clips and how to choose a clip event to

trigger an action. You also learned to program buttons for use as navigation devices

and as triggers for interactivity in your designs. Finally, I showed you how to trigger

an action upon a key press. In the next chapter, you’ll learn to work with symbols,

create loops, and more.

✦ ✦ ✦

On the
CD-ROM

e3687-7 ch05.F 6/12/02 9:04 AM Page 96

Creating
Elements for
Your Movie

When you take you designs to the next level with

ActionScript, you modify garden variety graphic

symbols by incorporating them in movie clips. This technique

is known as nesting a symbol within a symbol. You address the

movie clip with ActionScript to make the symbols nested

within jump through the virtual hoop, so to speak.

You can also nest a movie clip within a movie clip. You use

nested movie clips to pull off all manner of effects, one being

the motion blur effect you learn to create in Chapter 16. One

movie clip has the animation, and the other movie clip houses

the ActionScript that causes the blur effect.

Prior to using ActionScript, you probably used the time-

honored motion-tween to create your animations, or perhaps

you used frame-by-frame animations to get the job done.

When you animate movie clips with ActionScript, you can add

a certain randomness to the equation by creating a script that

directs the movie towards a random frame. You do this by

creating ActionScript that generates a random number equal

to or less than the last frame in a movie clip. When the code

executes, the Flash Player jumps to a random frame in the

movie clip.

In this chapter, you learn how to work with symbols and

create frame-based loops and ActionScript loops. You also

learn how to create ActionScript to generate random numbers

and create your own functions. The latter part of the chapter

shows you how to create modular ActionScript that you can

use in any movie.

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Working with
symbols

Creating loops

Generating random
numbers

Creating functions

Creating modular
ActionScript

Chapter project:
Navigating to a
random frame

✦ ✦ ✦ ✦

e3687-7 ch06.F 6/12/02 9:05 AM Page 97

98 Part II ✦ Using Basic ActionScript in Your Movie

The Actions panel’s got lots of books. And some of these books have books within
a book. To add some actions to your scripts, you have to click this book icon, then
click that book icon, then click another book icon, and so on. Rather than bore you
with a lot of words, I’m going to show the path to each action as shown in the
following example: Click Actions➪Movie Control and then double-click goto.

Working with Symbols
As you know, symbols are key ingredients in any Flash design. When you create a

symbol, it’s reusable. When you create a movie clip symbol, you can create code to

modify the movie clip or communicate with it. When you begin to add movie clips

to your design, you plant the seeds for interactivity with ActionScript. When you

begin to nest other symbols within a movie clip, you take your production to a

higher level.

Converting a graphic to a symbol
There will be times during the heat of creation that you begin creating an object on

Stage for your design. After you finish creating the symbol, you may realize you’re

going to need it repeatedly throughout your production or that you’ll need the

ability to modify the symbol with ActionScript. You can quickly convert the object

to a symbol by doing the following:

1. Select the object.

2. Choose Insert➪Convert to Symbol or press F8. Flash opens the Convert to

Symbol dialog box shown in Figure 6-1.

3. Enter a name and choose the appropriate symbol behavior. Remember the

symbol behavior is not cast in stone; you can change it at any time by using

the Property inspector or by selecting the object in the document Library,

clicking the Properties icon, and then assigning a new behavior to the symbol.

4. Click OK. The object is converted to a symbol and is added to the document

Library.

Converting a timeline animation to a movie clip
You can also convert animations on the main timeline to movie clip symbols. You

can create the movie clip symbol with as many frames and layers from the main

timeline as needed. After you convert the animation to a movie clip symbol, you

can use ActionScript as needed on the movie clip. To convert a main timeline

animation to a movie clip symbol:

1. Select all of the frames and layers used to create the animation.

2. Choose Edit➪Copy Frames.

Note

e3687-7 ch06.F 6/12/02 9:05 AM Page 98

99Chapter 6 ✦ Creating Elements for Your Movie

3. Choose Insert➪New Symbol.

The Create New Symbol dialog box opens.

4. Enter a name for the symbol, choose the Movie Clip behavior, and click OK.

Flash enters symbol-editing mode.

5. Select the first frame and then choose Edit➪Paste Frames.

Flash pastes the frames and layers you copied from the main timeline.

If the movie clip is displayed on Stage at all times, you don’t want it to play

until called by the click of a button. To prevent the movie clip from playing

when it loads, follow Steps 6 through 8; otherwise, go to Step 9.

6. Select every frame in every layer by clicking the first frame on the first layer

and then dragging across and up.

7. With all the frames selected, click the first frame and drag it one frame to the

right to create a blank keyframe in the first frame.

8. Add the stop action to the first frame of the top layer. If the movie clip will have

actions on several keyframes, it’s advisable to insert a layer for your actions.

9. Click the Back button or click the current scene button to exit symbol-editing

mode. The new movie clip is added to the document Library for future use.

Figure 6-1: You can convert an object to a
symbol when needed.

Nesting symbols
When you need to include other graphics or movie clips within a shell movie clip

that contains your ActionScript, you create a new symbol and drag an instance of

e3687-7 ch06.F 6/12/02 9:05 AM Page 99

100 Part II ✦ Using Basic ActionScript in Your Movie

the symbol from the document Library into the newly created symbol. For example,

when you create drag-and-drop elements for your Flash designs, you nest an

invisible button in the movie clip and then assign the startDrag action to the

invisible button.

Remember you can also import objects such as bitmap images when you’re

modifying a symbol. Nesting a bitmap within another symbol keeps everything

compact and tidy. And if for any reason you need to change the bitmap currently

nested in the movie clip, you can use the Swap Bitmap command, which will be

discussed before the end of this chapter.

To nest one or more symbols within another movie clip:

1. Create a new movie clip as discussed previously.

2. Choose Window➪Library.

3. Select the Library item you want to nest in the symbol and position it on Stage.

4. If the nested symbol is a movie clip and you’re going to use ActionScript to

modify it, open the Property inspector and enter a name in the <Instance

Name> field.

5. At this point you can drag other symbols from the document Library and nest

them within the newly created movie clip. After you add the other graphics

needed for the symbol, click the Back button to exit symbol-editing mode.

Alternately, you can double-click anywhere on Stage. Figure 6-2 shows an

example of symbol nesting.

Figure 6-2: When you nest symbols, you can create a movie with a smaller
file size.

Nested graphic symbol

e3687-7 ch06.F 6/12/02 9:05 AM Page 100

101Chapter 6 ✦ Creating Elements for Your Movie

Swapping symbols
A Flash document is often a work in progress, especially when you’re creating a

design for a client. Clients have been known to change their minds more frequently

than politicians change their opinions. If your design is peppered with symbols

that are nested in other symbols, you can quickly change the look of a symbol by

swapping one symbol with another. If you design for clients who frequently change

artwork while the design is still in production, this feature is invaluable.

To swap one symbol with another:

1. Select the symbol you want to swap. If the symbol is nested within another

symbol, double-click the parent symbol to enter symbol-editing mode and

select the nested symbol.

2. Open the Property inspector and then click the Swap button. Alternately, you

can choose Modify➪Swap Symbol.

The Swap Symbol dialog box opens, as shown in Figure 6-3. Every symbol in

the document Library is listed in this dialog box.

3. Click a symbol to view it in the preview window.

4. Click OK to swap the symbol. Alternately you can double-click the

symbol’s name.

Figure 6-3: You can quickly swap one symbol for another to change
your document.

Swapping bitmaps
Designers are fond of using bitmaps in their work. Bitmaps liven up your design,

but you must use them judiciously to avoid bloating the file size of the published

movie. If you create a document with bitmaps and decide a bitmap in your

production isn’t quite right, you can easily swap it for another bitmap in the

document Library. The ability to swap bitmaps is new to Flash MX.

e3687-7 ch06.F 6/12/02 9:05 AM Page 101

102 Part II ✦ Using Basic ActionScript in Your Movie

To swap one bitmap for another:

1. Select the bitmap you want to swap. If the bitmap is nested in another symbol,

double-click the parent symbol to enter symbol-editing mode and then select

the bitmap.

2. Open the Property inspector and click the Swap button. Alternately, you can

choose Modify➪Swap Bitmap.

The Swap Bitmap dialog box (shown in Figure 6-4) opens displaying a thumbnail

of the currently selected bitmap and a list of other bitmaps in the document

Library.

3. Click a bitmap to view it in the preview window.

4. Click OK to swap the bitmap.

Figure 6-4: You can quickly update content by
swapping bitmaps.

If you work for a client who frequently changes bitmap content in a Flash design,
when it comes time to update the movie, open the *.FLA file you created the
document with. Import the new bitmaps and then swap them.

Creating Loops
You can create two kinds of loops in Flash: frame-based loops and ActionScript

loops. You create a frame-based loop when you want a certain number of frames to

continue playing. A frame-based loop is the basic ingredient in a preloader; the

same frames loop until the movie content is loaded. You use actions to create the

frame loop and then use ActionScript to launch the main movie when enough

content has loaded for the production to play without interruption.

When you have ActionScript code that is repeated several times, you can simplify

things by creating a loop. When you create a loop, you save the hassle of having

to write the same bit of code several times. For example, if you use the

duplicateMovieClip action to populate the movie with shimmering stars,

Tip

e3687-7 ch06.F 6/12/02 9:05 AM Page 102

103Chapter 6 ✦ Creating Elements for Your Movie

you have to create a new name for each new clip the action creates. Instead of

manually entering the code and naming the clips MC1, MC2, MC3, and so on,

you create a loop for the number of clips you want to create.

Looping frames
To create a frame loop, you use the goto action on the last frame of a movie clip.

If the movie clip is always on Stage, use the stop action on the clip’s first frame,

which is blank, and have the movie loop back to the second frame. A frame-based

loop is what keeps repeating the animation in a preloader.

Creating ActionScript loops
You use ActionScript loops to speed up your work. With an ActionScript loop, you

can repeat the same set of actions for a set number of times or create a loop that

occurs while a set of conditions are true. An ActionScript loop occupies a single

frame of the movie. Therefore, the loop must be capable of executing within a single

frame. If you use the default frame rate of 12 FPS, the loop must execute within

one-twelfth of a second. It is possible to create a loop so complex that it cannot

execute within a single frame. If you create such a loop, when you test the movie,

Flash displays the warning dialog box shown in Figure 6-5. When you see this

warning dialog box, click No; otherwise, Flash may crash and you’ll lose your

current work.

Figure 6-5: If you create a loop that can’t execute
in a single frame, Flash displays this warning.

You have three types of ActionScript loops:

✦ Do While: This ActionScript loop repeats while a given set of conditions is

true. When the condition is false, the loop terminates.

✦ For: This type of loop executes a specified number of times before termination.

When the loop finishes, the next action in the script occurs.

✦ While: This loop is similar to the do while loop, but the condition takes

precedence over the action being performed while the condition is true. When

you create a while loop, the loop terminates as soon as the condition is false.

With a do while loop, the action following the condition executes once more

after the condition is false.

e3687-7 ch06.F 6/12/02 9:05 AM Page 103

104 Part II ✦ Using Basic ActionScript in Your Movie

Creating a for loop
When you want to repeat an action for a given number of iterations, you create a for

loop. When you create a for loop, you specify three parameters: the initial value of

the variable, the condition that must be true for the loop to continue, and the

increment the loop increases by. You can use the for action to create several lines

of text on Stage that are stored as data in an array. Instead of writing several lines

of code to transfer the text from the array to the movie, you create a for loop.

Listing 6-1 shows a loop created with the for action.

Listing 6-1: Example of a For Loop

mc = new Array();
for (i=0; i<=5; ++i) {
mc[i] = eval(“mc”+i);
mc[i]._alpha = 75;
mc[i]._yscale = 80;
mc[i]._xscale = 80;

}

In the example above, the properties of six instances of a movie clip called mc0

through mc5 are being changed. Lines 4 through 6 change the properties of each

clip. Without the loop, you’d have to codes each property change for each clip,

resulting in a whopping 18 lines of code. When you use a for loop, you eliminate

many lines of code and free your time for more products tasks. The second line of

code initializes the loop. The parameters for the action appear between the paren-

theses. The first parameter sets the initial value of i equal to 0, which is identical to

the first element in an array. If you’re not familiar with using an array to store data,

you’ll be up to speed after reading Chapter 9. The second parameter of the for

action is the condition that must be true for the loop to continue. The loop in the

above example continues as long as i is less than or equal to 5. The third parameter

in the code determines the increment for each loop. In this case, the increment is 1.

The third parameter could have been written as i+1, but ++i is a code shortcut

that does the same thing. The lines of code between the curly braces execute as

long as the condition is true. In the above example, each movie clip’s opacity is

reduced by 25 percent and scaled to 80 percent of its original size.

There is also a post increment operator that would be written as i++. The post
increment operator is used when two variables are present. The post increment
operator increases the value of the first variable, but not the variable the operator
is attached to. If you use a post increment operator in a loop with a single variable,
the loop will fail because the value of the variable will never increase.

Note

e3687-7 ch06.F 6/12/02 9:05 AM Page 104

105Chapter 6 ✦ Creating Elements for Your Movie

You can use the for action on a keyframe, a movie clip, or a button. To add a for

loop to your script:

1. Select the object or keyframe where you want the loop to occur.

2. Open the Actions panel and then click Actions➪Conditions/Loops. Then

double-click for.

The action is added to your script, and three parameter text boxes appear

above the Script pane.

3. In the Init field, enter the beginning value for the loop.

You assign the beginning value to a variable. You can create any variable

name, but it’s easier to use a single letter. Standard programming practice

favors the letters i, j, or k for loop variables. Note that you do not have to

begin a loop with 0 or 1. In the example in Listing 6-1, you enter an initial value

of 3 to change the properties of the last three clips. Note that you can also

create a loop that counts down (decrements) by starting with a high value

and decreasing the value during each iteration of the loop. To begin the loop

with a variable named i with a value of 1, enter i=1.

4. In the Condition field, enter the condition that must remain true for the loop

to continue.

The condition is the number of iterations before the loop ends. If you set the

variable’s value less than or equal to a given value, the loop ends when that

value has been reached. For example, i<=10 stops the loop when the value of

i is equal to 10.

5. In the Next field, enter the value the loop will increment by.

You can use any applicable value in this field. For example, if you create a

loop to change the property of every other movie clip, you’d enter a value of

i+2, assuming your initial variable is i. To increase the initial loop value by a

value of 1, you can use the code shortcut ++i, to decrease the value of the

loop by 1 enter –i.

6. Enter the code that you want to occur during the loop. Figure 6-6 shows the

Actions panel with the for action selected.

The code in this figure uses the trace action to record the loop as it counts

down from 10 to 1. The trace action is used when you need to trace the

value of a variable when debugging a document. In Figure 6-6, it is used for

demonstration purposes. To gain a bit of experience with the for action,

launch Flash, duplicate the code in Figure 6-6, and choose Control➪Test

Movie. Flash publishes the movie in another window and the Output Window

displays the variable as the for loop counts down to 1. After you successfully

run the script, close the window. Open the Actions panel and modify the

script, entering different values and conditions to count up or count down by

different increments.

e3687-7 ch06.F 6/12/02 9:05 AM Page 105

106 Part II ✦ Using Basic ActionScript in Your Movie

Figure 6-6: This for loop counts down from 10 to 1.

Understanding the while loop
You use a while loop to repeat a set of actions while a condition is true. When you

create a while loop, the condition takes precedence over the action being performed.

In other words, the condition is evaluated before the action executes. When the

condition is false, the loop terminates. Listing 6-2 shows the syntax format of the

while loop.

Listing 6-2: Using a While Loop

while (this condition is true) {
these actions are executed

}

You find the while loop in the Loops/Conditions book. When you add it to a script,

you have only one parameter: Condition. Enter the condition that must occur for

the loop to continue and then enter the actions you want to execute while the

condition is true.

Understanding the do while loop
You use a do while loop when the actions take precedence over the condition being

evaluated. In other words, the actions are executed prior to the condition being

evaluated. The syntax for a do while loop is shown in Listing 6-3.

e3687-7 ch06.F 6/12/02 9:05 AM Page 106

107Chapter 6 ✦ Creating Elements for Your Movie

Listing 6-3: Syntax of the Do While Loop

do {
execute these actions

} while (this condition is true);

You also find the do while action in the Loop/Conditions book. When you add the

action to your script, you have only one parameter to specify, the condition. After

you specify the condition, select the first line of code and then add the action(s)

you want to execute before the condition is evaluated.

Generating Random Numbers
Another useful element you can use for your designs is the ability to generate

random numbers. You can use random numbers to create quiz games where a

question is drawn from an array of questions in a random manner. You can also use

random numbers to create random patterns, and patterns are something near and

dear to a designer’s heart. For example, you can generate a random number to

position a movie clip on Stage. Furthermore, you can create additional ActionScript

to duplicate the movie clip a random number of times. You learn how to use

random numbers and the duplicateMovieClip action to create a starburst

background in Chapter 16.

Using the random method of the Math object
When you need to generate a random number in one of your scripts, you use the

random method of the Math object. The random method generates a random

number between 0 and 1. To generate a random number within a specific range,

you multiply the number generated by the random method by the largest number

in the range of random numbers you want to generate. Listing 6-4 shows a script

that generates a random number of movie clips.

Listing 6-4: Using the Random Method to
Duplicate Movie Clips

k = 0;
i = Math.random()*50;
while (k<i) {
duplicateMovieClip(“myClip”, “myClip”+k, k);
k = ++k;

}

e3687-7 ch06.F 6/12/02 9:05 AM Page 107

108 Part II ✦ Using Basic ActionScript in Your Movie

In the above listing, the value of the variable i is set to a random number between

1 and 50. The next line of code is a while loop that creates duplicates of the movie

clip as long as the value of k is less than the value of i, which is a random number.

The fifth line of code increase the value of the variable by k by 1 with each loop.

The duplicateMovieClip action is discussed in detail in Chapter 9.

You can also generate random motion, change an object’s size to a random value,

and more. To achieve this, all you have to do is set a property of an object equal to

a random value. Listing 6-5 shows ActionScript that changes a movie clip’s position,

size, and alpha settings.

Listing 6-5: Using the Random Method to Change an
Object’s Properties

_root.myclip._x=Math.random()*540;
_root.myclip._y=Math.random()*280;
_root.myclip._xscale=Math.random()*100;
_root.myclip._yscale= Math.random()*100;
_root.myclip._alpha=Math.random()*100;

Each line of code in the above example is an expression that sets the object

property equal to a random number. The steps that follow show you how to create

a variable with a value equal to a random number. If you’ve used variables before,

you know they are placeholders for data. If you’re not familiar with variables,

consider this your baptism by fire.

Variables are covered in detail in Chapter 8.

To create a variable with a value equal to a random number using the Math object,

do the following:

1. Select the keyframe or object you where you want to declare the variable.

2. Open the Actions panel and then click Actions➪Variables.

3. Double-click the set variable action to add it to your script.

Two text parameters boxes appear above the script pane.

4. In the Variable field, enter a name. You can choose any name for a variable

except a reserved keyword. (Naming variables are covered in detail in

Chapter 8.) For the purpose of this demonstration, enter myRandomNum.

Cross-
Reference

Cross-
Reference

e3687-7 ch06.F 6/12/02 9:05 AM Page 108

109Chapter 6 ✦ Creating Elements for Your Movie

5. Place your cursor inside the Value field.

6. In the left pane of the Actions panel, click Objects➪Core➪Math➪Methods.

7. Double-click the random method to add it to your script. In the Value field, the

following code appears: Math.random(). This code is sufficient to generate a

random number between 0 and 1. To generate a random number within a

specific range, go to Step 8.

8. In the Value field, click to the right of the last parentheses and type * followed

by the highest number you want to generate.

9. Click the Expression checkbox to the right of the Value field. When you

generate create a variable equal to a number, it is a mathematical expression.

If you fail to check the Expression checkbox, Flash reads this as text data. The

code in Listing 6-6 creates a variable with a random value between 0 and 50.

Listing 6-6: Generating a Random Value

myRandomNum = Math.random()*50;

Rounding numbers
When you use the random method, Flash generates a random value between 0 and 1.

When you multiply this value by a whole number, Flash does not round the number

up or down. If you’re creating a random value to reference a frame or need a

randomly generated whole number for your script, you need to add additional code

to round the number up or down. To do this, you use the round method of the Math

object. The example below shows you how to create a variable that has a value

equal to a variable number that has been rounded off.

To round a random value:

1. Follow Steps 1-4 of the previous section to create a variable called

myRandomNum.

2. Place your cursor inside the Value field.

3. In the left pane of the Actions panel, click Objects➪Core➪Math➪Methods.

4. Double-click the round method to add it to your script. In the Value field the

following code is added: Math.round(). You enter the value you want Flash

to round between the parentheses.

5. Place your cursor between the parentheses and in the left pane of the Actions

panel, double-click random. The code in the Value field should now read:

Math.round(Math.random()).

e3687-7 ch06.F 6/12/02 9:05 AM Page 109

110 Part II ✦ Using Basic ActionScript in Your Movie

6. Place your cursor before the last parenthesis, type an asterisk (*) followed by

the highest number you want to randomly generate.

7. Click the Expression checkbox to the right of the Value field. Listing 6-7 shows

the code needed to generate a random value between 0 and 150 that is

rounded in accordance with mathematical principles.

Listing 6-7 Using the Round Method of the Math Object

myRandomNum = Math.round(Math.random()*150);

Saving Time with Functions
Flash has several built-in ActionScript functions that you use to perform certain

tasks. For example, there are functions to convert text data to numbers, functions

to get an object’s property, functions that return the amount of time a movie has

been running, and more. These functions are addressed as they apply to particular

tasks or operations. In addition to the built-in Flash functions, you can create your

own functions.

Creating a function
When you use several lines of code repeatedly in a design, assigning the same code

to different movie clips can become tedious. You can save a considerable amount of

time if you create a function for the repetitive code and then call the function when

you need it. You can specify the parameters of a function, the type of object the

function can be used with, or create a function with no parameters that you can use

with movie clips, and other programmable objects. If you use a function repeatedly

in a movie, it’s a good idea to create it on the movie’s first frame.

To create a function, do the following:

1. Select the object or keyframe where you want to create the function.

2. Open the Actions panel. Then in the left pane of the Actions panel, click

Actions➪User Defined Functions and then double-click function.

Flash adds the action to your script and opens two parameter text boxes,

as shown in Figure 6-7.

e3687-7 ch06.F 6/12/02 9:05 AM Page 110

111Chapter 6 ✦ Creating Elements for Your Movie

3. In the Name field, enter a name for the function.

When you choose a name, choose one that reflects what the function does.

This makes it easier for you to remember what the function does as well as

other designers working on the project. Don’t include any spaces in the

function name. If you must designate the difference between two words in a

function name, use an underscore or capitalize the first letter of the second

word, similar to the way the Flash programmers designate between words in

an action. Remember you can use a reserved keyword as part of a function

name, but you cannot use just a keyword.

4. In the Parameters field, enter the parameters for the function.

For example, if you are using the function exclusively with movie clips, mc is

the proper parameter. If you’re not sure which objects you’re going to use the

function with, leave this field blank.

5. After you enter the parameters, enter the actions you want the function to

perform. Listing 6-8 shows a function that sends the movie to a random frame

in a movie clip on the root timeline.

Listing 6-8: Creating a Function

function rndFrame(mc) {
frmLabel=Math.round(Math.random()*(_root[mc]._totalframes))
_root[mc].gotoAndPlay(frmLabel);
;

}

Figure 6-7: You create a function to streamline your work.

e3687-7 ch06.F 6/12/02 9:05 AM Page 111

112 Part II ✦ Using Basic ActionScript in Your Movie

Calling a function
When you need to use a function, you call it. You can call a function from a keyframe

in the movie or call it from a movie clip or button. When you call the function, you

associate it with a named instance of a movie clip in your production.

To call a function, do the following:

1. Select the keyframe or button you want to call the function from.

2. Open the Actions panel. Click Actions➪User Defined Functions and double-click

call function.

The action is added to your script and three parameter text boxes appear as

shown in Figure 6-8.

3. In the Object field, enter the path to the function.

If the function is declared in a keyframe before the function is called, you

can leave this parameter blank. If the function is in a keyframe on another

timeline, click the black Insert a Target Path button. In the Insert Target Path

dialog box that appears, click the button that represents the movie clip the

function is stored in.

4. In the Method field, enter the name of the function.

5. In the Parameters field, enter any parameters associated with the function.

For example, if the function parameters address a movie clip, enter the name

of the movie clip with quotation marks. Listing 6-9 shows the code used to call

the function rndFrame that is embedded in a movie clip called My Function.

The function is being used to send the movie to a random frame in a movie

clip called diva.

Figure 6-8: You call a function to use it.

e3687-7 ch06.F 6/12/02 9:05 AM Page 112

113Chapter 6 ✦ Creating Elements for Your Movie

Listing 6-9 Calling a Function

on (release) {
_root.myFunction.rndFrame(“diva”);

}

Creating Modular ActionScript
Creating ActionScript is tedious work. If you’re like most designers, you’d rather

spend your time creating artwork for your Flash designs than writing code. If you

end up creating a dazzling effect that involves several lines of code, you’ll be

further ahead if you create the effect in a movie clip instead of on the root timeline.

Creating the effect in a movie clip does two things for you: First, you can use the

effect in another part of your movie by just creating an instance of the movie clip

on the timeline. Second, you can use the effect in another production by choosing

File➪Open as Library and then dragging the movie clip with the effect you need

into the current document Library. If there are images or other graphic symbols in

the effect that aren’t suited to the document you’re creating, you can import or

create the objects you need and then swap them as outlined previously in this

chapter. Several of the projects in this book may be useful in your own design work;

for example, the moving navigation bar you’ll create in Chapter 12. By creating this

in a movie clip, you can use it in any other document; all you need to do is change

the color of the buttons and the text description.

You can even create your own custom library of effects. After you’ve created several

ActionScript effects that you’ve embedded in movie clips, do the following:

1. Create a new document.

2. Choose File➪Open as Library, locate the file one of your favorite effect movie

clips is stored in, and drag the effect into the document library.

3. Repeat Step 2 for the other effects you want to store as a custom library.

4. Choose File➪Save As.

Name the folder as you want it to appear in the Common Libraries menu,

navigate to the Libraries folder in the Flash MX directory, and then save

the file.

The next time you launch Flash, choose Window➪Common Libraries, and your

special effects library appears on the Common Libraries menu. Click your library to

open it and drag the movie clip on Stage or into the current document Library.

e3687-7 ch06.F 6/12/02 9:05 AM Page 113

114 Part II ✦ Using Basic ActionScript in Your Movie

Chapter Project: Navigating to a
Random Frame

Now that you’ve been exposed to some of the ActionScript elements you can add to

your designs, it’s time to put your knowledge to use in a real world application. In

this project, you’ll be creating a function that generates a random number that is

used to navigate to a different frame in a movie clip. To demonstrate the power of a

function, you’ll be using it on two different movie clips of different lengths.

Open this chapter’s folder on the CD-ROM and copy the buttonPhotography.fla file
to your hard drive. Use your operating system to disable the file’s read-only
attributes.

Creating a function to generate a
random frame number
To create a function that generates a random frame number, do the following:

1. Launch Flash and open the buttonPhotography.fla file.

Flash opens the document you see in Figure 6-9. The majority of the project

has been created for you. All you have to do is create the function and

program the buttons.

2. Click the first frame on the Actions layer and then open the Actions panel.

3. Click Actions➪User Defined Actions and then double-click function.

The action is added to your script and two parameter text boxes appear

above the Script pane.

4. In the Name field, type rndFrame.

You can enter any name for a function as long as it’s not a reserved keyword.

Refrain from using a function name with spaces.

5. In the Parameters field, type mc.

6. In the left pane of the Actions panel, click Actions➪Variables; then double-

click set variable.

The action is added to your script and two parameter text boxes open above

the Script pane.

7. In the Name field, type rndLabel.

On the
CD-ROM

e3687-7 ch06.F 6/12/02 9:05 AM Page 114

115Chapter 6 ✦ Creating Elements for Your Movie

Figure 6-9: You can use a function to go to a random frame when a button
is clicked.

8. Place your cursor inside the Value field, and in the left pane of the Actions

panel, click Objects➪Core➪Math➪Methods book and then double-click round.

The action is added to your script and your cursor is flashing between

parentheses.

A frame label is a whole number. Without the round method of the Math

object, Flash would never be able to equate the value generated by the

random method of the Math object with a frame and the script would fail.

9. From the Methods book, double-click random.

The random method of the math object is added to your script. This is where

you add the number that represents the upper limit of numbers you want

randomly generated with the function. In this case, you’re dealing with two

movie clips with a different number of frames. In order to generate a number

that represents the last frame of each movie, you use a movie clip property

called total frames that returns the total number of frames in an instance of

a movie clip.

e3687-7 ch06.F 6/12/02 9:05 AM Page 115

116 Part II ✦ Using Basic ActionScript in Your Movie

10. Place your cursor between the parentheses after the word random and

type _root[mc]..

You enter mc between the square brackets to reference the parameter you

declared in the function, mc for movie clip.

11. Open the Properties book and then double-click _totalframes. Click the

Expression checkbox. Your second line of code should now read:

rndLabel=Math.round(Math.random()*(_root[mc]._totalframes))

12. Click Actions➪Miscellaneous Actions and then double-click evaluate.

You have one parameter box to work with: Expression. The expression you

create will display a randomly generated frame when the function is applied

to a movie clip.

13. In the Expression field, type the following code:

_root[mc].gotoAndPlay(rndLabel).

This line of code instructs the Flash player to play the frame number generated

in the last line of code.

This looks quite a bit different than the lines of code you normally associate

with the goto action. In this case, you’re addressing a movie clip on the root

timeline, which is why you end up manually entering the expression rather

than selecting the goto action from the Actions panel.

Putting the function to work
Now that you’ve created the function, it’s time to put it to work in your movie.

You’ll be using the function with each button. Each button references a different

movie clip.

To use the function with a button:

1. Select the button on the left side of the Stage and open the Actions panel.

2. Click Actions➪User-Defined Functions and then double-click call function.

The action is added to your script and three parameter text boxes appear.

3. In the Function field, type rndFrame. If for any reason you used a different

name for the function, type that name.

4. In the Parameters field, enter “ss1”.

This is one of the few times you don’t refer to a movie clip by its path. Your

finished code for the button should read:

on (release) {
rndFrame(“ss1”);

}

e3687-7 ch06.F 6/12/02 9:05 AM Page 116

117Chapter 6 ✦ Creating Elements for Your Movie

The object field is left blank because the function resides on the root timeline.

If you make the function modular by creating it in a movie clip, you would

enter the movie clip’s path in the object field.

5. Select the button on the right side of the Stage and repeat Steps 2 through 4,

with the exception of typing “ss2” in the Parameters field this time around.

Test the movie and when you click the left button, the function directs your attention

to a random frame in the first movie clip. Continue clicking the button and the

function displays another frame. Click the right button and you see different frames

generated in the second movie clip.

When you tested the movie in the preceding project, you may notice that clicking

the button did not change the image. There are two reasons for this: The random

number generated may have been 0 and there is not a frame 0 on the timeline,

or the same number was generated twice in succession. You can add conditional

statements to your script that cause a different number to be generated if the

number is a duplicate or 0.

You learn how to create conditional statements in Chapter 8.

Designer Notes
In this chapter, you started delving into your ActionScript tool kit. You learned to

use symbols as ActionScript elements in your design and how to generate random

numbers. You were introduced to a powerful ActionScript tool, the loop, which

takes the drudgery out of writing repetitive code. Creating a user-defined function

was also covered in detail. In the next chapter, you learn how to manage the

content of your movies and keep the file size of your movies impressively small.

✦ ✦ ✦

Cross-
Reference

e3687-7 ch06.F 6/12/02 9:05 AM Page 117

e3687-7 ch06.F 6/12/02 9:05 AM Page 118

Taking Control
of Your Movie

Designers have a grand vision of their creations, often

before they begin creating them. Even though Flash’s

strong suit is giving designers the capability to create fast

loading, impressively small Web files (hence the acronym

SWF), it is possible to break the bandwidth barrier by using

every bit of eye candy known to Flash designers. If you’ve

ever visited a Flash Web site that takes a long time to

download, you have experienced the everything-but-the-

kitchen-sink Flash designer at work. That doesn’t mean that

you can’t include everything but the kitchen sink in your

Flash movie; you just need to take control of the process so

you don’t break the bandwidth barrier and lose visitors

because of lengthy downloads.

In this chapter, you learn a couple techniques to effectively

manage the size of your grand design. First and foremost, you

learn to break a Flash movie into logical segments. After all,

you may be the greatest designer in the world, but people

who view your Flash creation may not want to see all of it in

one sitting or be patient enough to wait for it all to download.

Then you’ll learn to load a movie into a target window.

The Actions panel’s got lots of books. And some of these
books have books within a book. To add some actions to
your scripts, you have to click this book icon, then click that
book icon, then click another book icon, and so on. Rather
than bore you with a lot of words, I’m going to show the
path to each action as shown in the following example:
Click Actions➪Movie Control and then double-click goto.

Breaking Movies into Segments
When creating a large Flash Web site, the first step in the design

process is to think of your movie as if it were a conventional

HTML Web site. HTML Web pages are broken down into

sections. You can do the same with your Flash movie. For

Note

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Breaking a movie
into segments

Using the loadMovie
and unloadMovie
actions

Loading a movie into
a target

Communicating
between timelines

Demystifying targets
and paths

Chapter project:
Creating an
organizational chart

✦ ✦ ✦ ✦

e3687-7 ch07.F 6/12/02 9:05 AM Page 119

120 Part II ✦ Using Basic ActionScript in Your Movie

example, if you are creating a site for a photographer, you can break the movie into

four sections: the photographer’s biography, the photographer’s portfolio, services

offered by the photographer, and the photographer’s contact information. Each of

these sections becomes an individual movie that is loaded when the visitor clicks a

button on the navigation menu.

Dividing a Flash site into individual movies
After you make the decision to break the Web site into individual movies, create the

base movie. Generally, the base movie includes the navigation menu for the site as

well as the Web site’s banner and other pertinent information. Figure 7-1 illustrates

a base movie for a large Flash Web site. Notice that the center area of the Stage is

blank. This is where the content of each section movie will appear.

Figure 7-1: The base movie for the Web site contains the navigation menu and banner.

When you plan the site, keep the overall size of each movie in mind. If you’ve

created a compelling introduction, visitors will wait several seconds for a section to

load, but not much longer than that. If you’re forced either by a client or by design

considerations to create section content that will take considerable time to load,

consider creating an animated preloader as discussed in Chapter 14.

e3687-7 ch07.F 6/12/02 9:05 AM Page 120

121Chapter 7 ✦ Taking Control of Your Movie

Understanding levels
When you load a movie you assign it a level, which determines how the content of

the new movie is displayed. The base movie is always level0 — in other words, the

bottom floor. If you load another movie into level0, the base movie is erased with

the new content. If, however, you load a movie into a higher level, the content is

displayed on top of the base movie. If you’re familiar with photo editing programs

such as PhotoShop, levels in Flash work the same way layers in Photoshop do. For

that matter, they work like the layers in Flash MX as content on a higher level

eclipses anything on the level below it.

Creating movies for site sections
The first step in the process is creating the base movie for the site. If you’ve

planned the site as described in Chapter 4, you’ll know exactly what size to create

the movie and which additional assets are needed to create the navigation menu,

site banner, and so on. Planning is especially important when creating a site that

you intend to break into sections. You can create a base movie as follows:

1. Create the base movie using the assets and navigation items that will remain

visible throughout the movie. Remember your movie will be smaller in file size

if you create symbols for any item that will be used more than once in the

production.

2. Leave a blank area on Stage where you want additional content to be dis-

played. You’ll have better control over the exact placement of your movie’s

assets if you enable rulers by choosing View➪Rulers.

3. Create the ActionScript for each button as described in the upcoming “Using

the loadMovie and unloadMovie Actions” section.

4. Choose File➪Publish Settings. Remember to publish the movie using the

version of Flash that your anticipated viewing audience is likely to have

available. If you publish the movie using version 6 and the majority of your

viewing audience only has the Flash 5 Player plug in, the version 5 player

may not display the movie correctly.

5. Choose File➪Save. Remember to choose a name that aptly describes your

movie.

6. Choose File➪Publish and Flash creates the base movie for your site.

After you create the base movie, your next task is to create the content that loads

when a visitor clicks a navigation button. When you load a movie into a base movie,

Flash resizes the loaded movie to the dimensions of the base movie. When you

produce the movies for each section, create each one with the same dimensions as

the base movie; otherwise, the graphics in the loaded movies distort when resized

to the dimensions of the base movie. Use an area equivalent to the blank section of

the base movie’s Stage to create the content for the other movies. You can create a

template to simplify the process of determining which part of the Stage is blank.

e3687-7 ch07.F 6/12/02 9:05 AM Page 121

122 Part II ✦ Using Basic ActionScript in Your Movie

To create a template for section movies, follow these steps:

1. Open the base movie and choose File➪Save As.

2. Name the file template.

3. Create a new layer and name the layer template. Remember that you can

create a layer by choosing Insert➪Layer or by clicking the Insert Layer icon

in the Timeline window.

4. Right-click (Windows) or Ctrl+click (Macintosh) and choose Guide from the

drop-down menu. Any object you create on a guide layer will not be visible

when the movie is published. You can also display objects on the guide layer

(or any layer, for that matter) as outlines by clicking the rectangular icon to

the left of the layer’s timeline.

5. Select the template layer and, using the Rectangle tool, create a rectangle that

encompasses the blank area of the Stage. This rectangle serves as a visible

guide to the area you use to create content for each movie you load into the

base movie. Leave yourself a margin for error. Remember you can use rulers

and the Property inspector to precisely size and place the template rectangle.

6. Delete all of the elements from the base movie.

7. Choose File➪Save and you’ll have a template that resembles Figure 7-2.

Figure 7-2: Create a template to accurately place objects on Stage in section movies.

e3687-7 ch07.F 6/12/02 9:05 AM Page 122

123Chapter 7 ✦ Taking Control of Your Movie

Notice the difference between this figure and Figure 7-1. The objects you create in

the white rectangle will fill the blank area in Figure 7-1 when movies you create from

the template are loaded into a higher level.

After you’ve created the template, you can use it to create content for each section’s

movie. After you create a section movie using the template, choose File➪Save As

and christen the movie to reflect the section content; for example, about.swf. This is

the name you’ll use in conjunction with the loadMovie action discussed in the next

section.

Using the loadMovie and unloadMovie Actions
After you create the content for your movie, use the loadMovie action to load

individual sections on demand. When a user clicks a button, the loadMovie action

takes over and loads the specified content into the level you specify. If you load

additional movie content into the same level, the previous movie is erased.

If, however, you load additional content into a higher or lower level, you can use

the unloadMovie command to remove unwanted content.

Loading a movie
You can use the loadMovie action in one of two ways. You can assign the action to

a button, which when clicked loads the desired movie, or you can assign the action

to a keyframe, whereupon the movie is loaded when the keyframe is reached.

To use the loadMovie action, follow these steps:

1. Select the button or keyframe that will trigger the loadMovie action.

2. Open the Actions panel and click Actions➪Browser/Network Control and then

double-click loadMovie to add it to the script. If you assign the action to a

button, choose the mouse event that will trigger the action. (For more

information on mouse events refer to Chapter 5.)

3. In the URL field, enter the path to the movie you’re loading. If the movie is in

the same Web site, you can enter the relative path to the movie, for example,

about.swf. If the movie is part of another Web site, enter the absolute path to

the movie, for example, http://www.dasdesigns.net/about.swf.

4. In the field to the right of Level, enter the level you want to load the movie

into. A Flash movie can have up to 99 levels.

5. If the movie you are loading contains variables and you want to load the

variables into the base movie, click the triangle to the right of the Variable

field and from the drop-down menu choose either Send Using Post or Send

Using Get.

6. Close the Actions panel.

e3687-7 ch07.F 6/12/02 9:05 AM Page 123

124 Part II ✦ Using Basic ActionScript in Your Movie

After you publish the movie, the specified movie will load when the keyframe is

reached or the mouse event assigned with the button occurs. Figure 7-3 shows a

typical ActionScript for the loadMovie action.

Figure 7-3: Use the loadMovie action to load additional content into your
base movie.

Unloading a movie
As discussed previously, when you load a movie into a level, the loaded movie

replaces the previous content of the level. If, however, you have movies loaded on

different levels and load a movie into a level not previously used, the movies on the

other levels continue to play and be visible. If this is not the effect you are after, you

need to unload the movie(s) you no longer want to play. The unloadMovie action

has one parameter: Location. To unload a movie, follow these steps:

1. Click the button or keyframe that will cause the movie to unload.

2. Open the Actions panel and click Actions➪Browser/Network Control and then

double-click unloadMovie. If you assign the action to a button, specify the

mouse event that must occur to initiate the action.

3. Click the triangle to the right of the Location field and from the pop-up menu,

choose either Target or Level.

4. If you choose Target, click the Insert a Target Path button and click the target

you want to unload the movie from. If you choose Level, enter the level the

movie you want to unload was loaded into.

5. Close the Actions panel.

e3687-7 ch07.F 6/12/02 9:05 AM Page 124

125Chapter 7 ✦ Taking Control of Your Movie

If you have more than one movie to unload, repeat Steps 2 and 3. By using the

loadMovie and unloadMovie actions, you can take control of your movies and

create an interactive experience for viewers of your Flash movies. You can also load

movies of different dimensions by loading a published Flash movie into a target

movie clip.

Loading a Different-Sized Movie into a Target
When you use the loadMovie action to load content into a Flash movie, by default

Flash sizes the new content to the same dimensions as the base movie. This works

well in most cases, except when you need to load content of a specific size onto a

specific area of the Stage. For example, you may want to change the movie’s header

when the user clicks a button. When this need arises, you can load a movie of a

specific size into a target movie clip that is the same size as the movie you are

loading. When you load a movie into a target, you load the movie into a named

instance of a movie clip symbol. The first step in the process is creating the target

movie clip.

Creating a target movie clip
When you create a target movie clip, in essence you are creating a placeholder for

the content you want loaded when either a keyframe is reached or a button is

clicked. When a designer creates a movie clip containing a graphic element, the

norm is to center the content to Stage. The designer then positions the movie clip

where desired when inserting an instance of it into the movie. However, when Flash

loads a movie, it loads it from the upper-left corner, Stage coordinates (X=0,Y=0).

If the target movie clip is centered to Stage, when you load a movie into the target,

it will be positioned incorrectly. To accommodate for this, you must position the

movie clip so that the uppermost left corner of the target is aligned to the center of

the Stage.

Another factor you must consider is the movie’s background. If you are loading the

content into a blank area of the Stage, you create a rectangle the same size as the

movie you are loading with no fill and a stroke color that matches the movie’s

background. However, if your design uses a bitmap background, the rectangle may

be visible on certain parts of the Stage. To create a target movie clip that is not

visible, follow these steps:

1. Choose Insert➪New Symbol and choose the Movie Clip behavior.

2. Name the movie clip and click OK to enter symbol-editing mode.

3. Select the Rectangle tool.

4. Drag the tool on Stage to create a rectangle the approximate dimensions of

the target movie.

5. Select the Arrow tool and double-click any part of the rectangle to select it.

e3687-7 ch07.F 6/12/02 9:05 AM Page 125

126 Part II ✦ Using Basic ActionScript in Your Movie

6. Open the Property inspector.

7. In the W and H fields, enter the width and height of the movies you’ll be loading

into the target clip.

8. In the X and Y fields, enter a value of exactly half the x dimension and half the

y dimension. This aligns the upper-left corner of the target movie clip for

proper loading. Your movie clip should resemble Figure 7-4.

9. If the target movie clip will reside on a Stage with the same background color,

open the Stroke panel, click the color swatch, and then click anywhere on

Stage to match the rectangle’s stroke to the background color. After changing

the rectangle’s stroke color, proceed to Step 13. If your background is a

bitmap image, proceed to Step 10.

10. On the timeline, click the first frame to select it and drag it to frame 2.

11. Select the first frame and choose Window➪Actions to open the Actions panel.

Then click Actions➪Movie Control and then double-click the stop action to

add it to your script. Assigning the stop action to the first keyframe prevents

the rectangle on frame 2 of the target movie clip from being visible when the

movie loads.

12. Select the second keyframe and assign the stop action to it.

13. Click the current scene button to exit symbol-editing mode.

14. Select the target movie clip from the document Library and drag an instance

of it on Stage.

15. Position the target movie clip where you want the content to appear when a

user summons it by clicking a button or when a keyframe on the timeline is

reached. If you create a movie clip with a blank first frame, the only clue you’ll

have to position the target is the movie clip’s registration point, a small filled

circle sign. Remember that this is the upper-left corner of the target movie

clip. If you created a storyboard and know the precise coordinates of the

target clip, you can use the Info panel to position it.

16. Open the Property inspector and in the <Instance Name> field, enter a name,

and then press Enter or Return.

When you create a complex movie with many elements, it’s good practice to first
create a storyboard, as described in Chapter 3. The storyboard serves as your
blueprint to precisely placing items such as target movie clips. Many designers
have the ability to think visually. However, what looked great in your mind’s eye
may not work when you try to do it in Flash. A few minutes with pencil, paper,
ruler, and calculator can save you hours of frustration when you’re under deadline
to get a project ready for a client.

Tip

e3687-7 ch07.F 6/12/02 9:05 AM Page 126

127Chapter 7 ✦ Taking Control of Your Movie

Figure 7-4: This target movie clip is properly aligned for loading a Flash movie.

Loading a movie into a target
After you create the target movie clip and position it on Stage, all that’s left to do is

create the ActionScript to load the desired movie into the target on command. If

your target movie clip is a single frame, you can use the loadMovie action to load

the content when a button is clicked or a keyframe is reached. If your movie clip

has a blank first frame, you must communicate directly with the movie clip as

outlined in the upcoming “Communicating between Timelines” section. If, however,

your target movie clip is a single frame placeholder, you load the movie into the

target clip by following these steps:

1. Select the button or keyframe that will trigger the loading of the movie.

2. Open the Actions panel.

3. Click Actions➪Movie/Browser Control and double-click the loadMovie action.

Alternately, you can drag and drop the action directly into the Script pane.

If you assign the action to a button, choose the proper mouse event.

e3687-7 ch07.F 6/12/02 9:05 AM Page 127

128 Part II ✦ Using Basic ActionScript in Your Movie

4. In the URL field, enter the name of the movie to be loaded. Remember to

include the .swf extension.

5. Click the triangle to the right of the Location field and choose Target from the

drop-down menu.

6. In the field to the right of Location, select the default entry of 0 and then click

the Insert a Target Path button to open the Insert Target Path dialog box and

choose the Absolute Mode. Within the dialog box you’ll find an icon for every

named movie clip instance in your movie, as shown in Figure 7-5.

7. Click the icon that corresponds to your target movie clip.

8. Click OK to close the Insert Target Path dialog box and within the Location

field Flash replaces the default value of 0 with the correct target path, as

shown in Figure 7-6. This figure shows the action applied to a button. Your

ActionScript will differ if you apply the action to a keyframe.

9. Close the Actions panel.

After you publish the movie, when the event that triggers the loadMovie action

occurs, Flash loads the movie into the specified target movie clip.

Whenever you complete a milestone such as programming a button, it’s a good
idea to test your handiwork. You can test the movie at its current stage of comple-
tion by choosing Control➪Test Movie, or you can test a scene’s current stage of
development by choosing Control➪Test Scene. If everything works as planned,
save the file. It’s always a good idea to periodically save a file in case a computer
glitch causes Flash to become unresponsive.

Figure 7-5: You specify the target movie
clip by selecting it in the Insert Target Path
dialog box.

Tip

e3687-7 ch07.F 6/12/02 9:05 AM Page 128

129Chapter 7 ✦ Taking Control of Your Movie

Figure 7-6: After you choose the target movie clip, Flash adds the path to your
ActionScript.

Communicating between Timelines
When you create a target movie clip or need to access any movie clip, you must

communicate between timelines. The base movie has its own timeline, and each

movie clip you create has a timeline. A movie clip’s timeline can be a single frame, or

in the case of an animated clip, several frames. Computer geeks and programmers

prefer the cold hard logic of code to get things done. Designers prefer a simpler

method of performing this task so they can get back to the job at hand — being

creative and designing unique content for their Flash movies. Designers prefer to do

things with objects. They edit images with photo-editing software. They design Web

pages with WYSIWYG (What You See Is What You Get) HTML editors. They create

interactive animations with Flash. When designers have to work with anything

resembling true code, they break out in a cold sweat and caress their digital tablets

for comfort. Fortunately, the Flash programmers created a way for designers to

communicate between timelines without having to write a single line of code.

Designers can communicate between a movie’s main timeline and the timeline of any

movie clip by using the with action. The with action targets a movie clip that an

action you specify occurs with (hence the name with).

When you communicate between the main timeline and one or more movie clips,

you unleash some of Flash’s interactive power. For example, you can create movie

clips with animated text that plays when a user’s mouse rolls over a button. You

can also create movie clips with sound bytes that play when the movie advances to

a specific keyframe.

e3687-7 ch07.F 6/12/02 9:05 AM Page 129

130 Part II ✦ Using Basic ActionScript in Your Movie

Use the with action with target movie clips when the first frame of the clip is blank.

Add the with action to the script and instruct Flash to go to and stop at frame 2.

You then use the loadMovie action to load a specific movie into the target.

For more information on the with action, refer to Chapter 5.

Demystifying Targets and Paths
As you may have noticed in Figure 7-6, Flash has two different modes for target

paths: Absolute and Relative. You can communicate from the base movie timeline

(also known as root) to any other movie clip’s timeline. You can also communicate

from a movie clip to the root timeline, from a movie clip to another movie clip,

or from a movie clip to itself.

You increase the amount of interactivity in your designs (and increase the indefinable

but instantly recognizable WOW factor) when you use movie clips. When you create

an action on a timeline and want it to affect another timeline, you must supply the

proper path so Flash can find the target. To insert a target path, open the Actions

panel and click the Insert a Target Path button (the black circle with a cross hair) just

above the Script pane as shown in Figure 7-7.

Figure 7-7: Click this button to open the Insert Target Path dialog box.

Insert a Target Path button

Cross-
Reference

e3687-7 ch07.F 6/12/02 9:05 AM Page 130

131Chapter 7 ✦ Taking Control of Your Movie

After you click the button, the Insert Target Path dialog box appears. Within

this dialog box, you’ll find an icon for every named movie clip instance in your

production. Click the desired icon, and the name of the target path appears in the

Target Path dialog box. You can now add an object to the target path, for example,

the name of a variable you need to address within the target timeline. After you

close the Insert Target Path dialog box, Flash adds the name of the target path to the

ActionScript. If you look at the Insert Target Path dialog box shown in Figure 7-8, you

see that it’s not quite as simple as point and click. You have a decision to make in

order to give Flash the information it needs to properly access the desired timeline.

In the lower-right corner of the dialog box are two modes to choose from: Absolute,
which uses the root timeline as the path starting point, and Relative, which uses the

current timeline as the path starting point.

Figure 7-8: The mode determines the
beginning point of the path.

Using absolute mode
When you use absolute mode, the path has its starting point on the movie’s root

timeline. You can easily spot a path in absolute mode as it begins with _root fol-

lowed by a dot, which is then followed by the named instance of the movie clip. If a

movie clip is nested within another movie clip, it is a child of the parent movie clip.

For example, a path with the name _root.myclip.clip refers to a movie clip

called “clip”, nested within a movie clip called “myclip”. You don’t have to bother

yourself with writing out extensive path names like this, Flash does it automatically

when you click the child movie clip’s icon within the Insert Target Path dialog box.

Using relative mode
When you use relative mode, you address the timeline of the movie clip that calls

the action. For example, if you want to get the x property of a movie clip named box
that is nested within a movie clip called bigbox, the path is _x.box. Whenever you

see a path that is not preceded by root, it’s a dead giveaway you’re dealing with a

path in Relative mode. Again, it is not necessary to enter the path when creating

ActionScript. Simply switch to relative mode, click the icon that corresponds to the

movie clip, and Flash creates the proper nomenclature.

e3687-7 ch07.F 6/12/02 9:05 AM Page 131

132 Part II ✦ Using Basic ActionScript in Your Movie

If you prefer to venture boldly into the world of the programmer, you can save
yourself some time by referencing a target path alias rather than using the Insert
Target Path dialog box. You have three aliases to work with: _root, _this, and
_parent. Use the _root alias to address the root timeline. Use the _this alias
when you want to address the timeline of the movie clip calling the action. Use the
_parent alias to address the parent movie clip from which the movie clip calling
the action is nested.

Introducing the User-Defined Component
Another excellent way to take control of your movies is by using the user-defined

component. The user-defined component is a movie clip with parameters that you

can update on the fly. For example, if you have a movie with variables such as

prices of objects in an e-commerce Flash movie, you can quickly change the prices

by modifying the variables within the user-defined component. The movie clip that

is the basis for the user-defined component need not have graphics. User-defined

components can house nothing more than variables or an array, the contents of

which are displayed in blocks of dynamic text. User-defined components are used

in an upcoming chapter project. To learn the mechanics of creating a user-defined

component, follow these steps:

1. Create a movie clip with variables or properties that you want to be able to

easily update.

2. Choose Window➪Library to open the document Library.

3. Select the movie clip you want to convert to a user-defined component and

then right-click (Windows) or Ctrl+click(Macintosh) and choose Component

Definition to open the dialog box shown in Figure 7-9.

4. Click the plus sign (+) to add an object to your component.

5. In the Name column, double-click varName and replace it with the name of the

object as you want it defined in the Property inspector.

6. Double-click inside the Variable column and enter the name of the variable as

it appears in your movie clip.

7. In the Type column, double-click Default, and a triangle appears to the right of

the field. Double-click the triangle and choose one of the following:

• Default: Use this option to specify a string literal or numeric literal

value. Choose this option for values such as an object’s name or price.

• Array: Use this option to create a blank array that you can populate with

several string or numeric values.

• Object: Use this option to create a group of objects. This is similar to

creating an array, but the number of objects can grow or shrink according

to your needs.

Tip

e3687-7 ch07.F 6/12/02 9:05 AM Page 132

133Chapter 7 ✦ Taking Control of Your Movie

• List: Use this option to create a list. This option is similar to an array, but

the list cannot be changed after an instance if the user-defined component

is in your movie. The user can choose only one item from the list.

• String: Use this option to create a string literal object. Add this object to

your component when you need the ability to frequently update text

within a dynamic text box.

• Number: Choose this option when you need to create numeric data. You

can use ActionScript to perform mathematical calculations on this type

of data whereas if you enter numbers into a string object, Flash reads

them as text objects.

• Boolean: Use this object type to define whether a particular object the

user-defined component refers to is enabled (true) or disabled (false).

• Font type: Use this object type to refer to the font in a text object.

• Color: Choose this data type to define a text object’s color. You can

also use this object type if your component contains ActionScript that

modifies and object’s color with the setRGB method of the Color object.

Figure 7-9: Use this dialog box to define a user-defined
component’s parameters.

8. In the Value field, double-click the default value to define it. If you define a

variable (the default option), enter the value. If you choose Array, List, or

Object, the dialog box shown in Figure 7-10 appears. Click the plus sign (+) to

add a value; click the minus sign (–) to delete a value. To rearrange the order

of a value, click the value and then click the Up arrow to move the value

higher in the list; click the Down arrow to move the value lower in the list.

e3687-7 ch07.F 6/12/02 9:05 AM Page 133

134 Part II ✦ Using Basic ActionScript in Your Movie

Figure 7-10: You can define the values of an array, list, or object
with this dialog box.

9. Repeat Steps 3 through 7 for any other values you need to define in the

user-defined component. You can mix different items within the rows of a

user-defined component. For example, you can include variables and an array

within the same user-defined component.

10. In the Description field, enter any notes that define what the user-defined

component does. Think of the Description field as a memory jogger for when

you modify the user-defined component as you update your client’s site. The

information you put in this field is also beneficial for other designers working

on the same project.

11. Choose the Lock In Instance option to prevent modification of the Type

parameters after an instance of the user-defined component is added to a

movie.

12. Click OK to assign the objects to the component and close the dialog box.

Figure 7-11 shows a user-defined component for a catalog item at an

e-commerce Web site. Whenever a product description or catalog number

changes, the designer updates the parameters of the user-defined component

without having to revise any ActionScript.

After you create a user-defined component, you create instances of the symbol on

Stage. You can then modify the value of each parameter to suit the movie you are

working on. After you create a user-defined component, you can use it in any

other movie. Use the Open As Library command to open the document Library

the user-defined component is stored in, drag it into the current document Library,

and modify the parameters to suit your current production. Create user-defined

e3687-7 ch07.F 6/12/02 9:05 AM Page 134

135Chapter 7 ✦ Taking Control of Your Movie

components for items you commonly use in your movies such as arrays and lists.

When you create a user-defined component, you eliminate the drudgery of creating

ActionScript and free your time up for adding more design elements to your

production.

Macromedia has an extensive library of user-defined components available as
extensions. You can download the free Macromedia Extension Manager, as well as
user-defined components and extensions, from this Web site: www.macromedia.
com/exchange/flash.

Figure 7-11: Update the parameters of a user-defined
component instead of writing new ActionScript.

Chapter Project: Creating an
Organizational Chart

Breaking a large site down into sections makes it easier for you to take control of

your production. As an added benefit, each section of the site loads quickly, which

ensures more people will view your Flash design instead of becoming impatient

during a lengthy download and clicking their browser’s Back button. This chapter’s

project shows you how to create an organizational chart. The base movie for the site

is a simple interface that lists each office in the organization. The label for each

office is a button. The pertinent information about each officer is stored in a variable

and is displayed in a dynamic text box when a button is clicked. In addition, an

officer’s picture loads into a target when a button is clicked.

Tip

e3687-7 ch07.F 6/12/02 9:05 AM Page 135

136 Part II ✦ Using Basic ActionScript in Your Movie

To follow along with this exercise, copy the Orgchart folder from this chapter’s
folder on the CD-ROM that accompanies this book to your hard drive. Use your
operating system to disable the read-only attributes of each asset in the folder.

Beginning the design
The majority of the organization chart project has already been created for you.

You’ll finish the project by publishing a movie for the mythical organization’s CEO

and then create ActionScript to load a JPEG image into a target movie clip. To begin

the project, launch Flash and then choose File➪Open and open the orgChart.fla file

shown in Figure 7-12.

Figure 7-12: The base movie consists of an organization chart and a target movie clip.

Take a few minutes to examine the design of the movie before beginning the next

section. Notice there is a blank placeholder at the top of the movie. An animated

Flash banner named banner.swf loads into the placeholder when the movie begins.

The ActionScript that loads the movie resides in the first frame of the movie on the

Actions layer. This ActionScript also loads the image logo.jpg into the target movie

clip on the right side of the Stage.

On the
CD-ROM

e3687-7 ch07.F 6/12/02 9:05 AM Page 136

137Chapter 7 ✦ Taking Control of Your Movie

Notice the guide layer in Figure 7-12. This is set up so you know where the target

movie clip resides. When you load a movie or image into a target movie clip that is

the same color as the background, all you see is the movie clip’s registration point.

On the guide layer, a circle has been created to highlight the movie clip’s registration

point, and the movie clip’s instance name is displayed beside it. For the purpose of

this project, the movie clip instance is called target. The guide layer will not be

visible when the movie is published, yet it serves as a handy reference to each

movie clip instance’s location and name. Create a guide layer whenever you have

more than one target movie clip to identify in a movie.

To view the movie at this stage of creation, choose Control➪Test Movie. After Flash

publishes the movie, you see the animated banner and corporate logo, as shown in

Figure 7-13. Click any button other than CEO (the button you’ll be programming in a

few minutes) and watch as the logo is replaced by the officer’s picture and name.

After you finish examining the movie, close the file.

Creating the ActionScript
After you create each movie for the site, you create the ActionScript that loads each

movie into the target movie clip. The ActionScript you create will load the ceo.jpg

into the target movie clip. The script executes when the user releases the mouse

button after clicking the CEO button.

Figure 7-13: Each button is programmed to load a published movie into the target
movie clip.

e3687-7 ch07.F 6/12/02 9:05 AM Page 137

138 Part II ✦ Using Basic ActionScript in Your Movie

To program the CEO button:

1. Choose File➪Open, navigate to the orgChart.fla file, and click Open.

2. Using the Arrow tool, select the CEO button.

3. Open the Actions panel.

4. Click Actions➪Browser/Network and then double-click loadMovie to add the

action to your script. Accept the default (on)Release mouse event.

5. In the URL field, type ceo.jpg.

The ability to load a JPEG image into a movie is a new and exciting feature of Flash
MX. Previously, you needed to create a separate movie and import a JPEG when
you wanted the ability to load a JPEG image from an external source.

6. Click the triangle to the right of the Location field and choose Target from the

drop-down menu.

7. Select the 0 in the window to the right of the Location field and then click the

Insert a Target Path button to open the Insert Target Path dialog box.

8. Click the button named target and then click OK to close the dialog box.

9. Click Actions➪Variables and then double-click set variable. Two parameter

text boxes appear above the Script pane.

10. In the Variable field, type Name and in the Value field, type John Walker.

Name is the variable assigned to the dynamic text box used to display the

officer’s name. When the button is clicked, text changes to reflect the new

value of the variable. If for any reason you don’t like the name John Walker,

feel free to change it. However, Name needs to remain the same.

11. Repeat Step 10 to create a new variable named Title with a value of Chief
Executive Officer. Your finished ActionScript should be identical to Figure 7-14.

12. Close the Actions panel and then choose Control➪Test Movie. When you click

the CEO button, the ceo.jpg file loads into the target movie clip.

13. Choose File➪Publish, and Flash republishes the file to reflect the added

ActionScript. Congratulations. Your movie is complete.

If you create a design or technique you’re especially proud of and don’t want the
rest of the world to know how you did it, create a base movie with no graphic
elements and one keyframe. Assign the loadMovie action to the keyframe and
use it to load the interface or intro movie. You can then use the loadMovie action
to load additional content when a button is clicked. Although you can choose
Protect From Import when you publish the movie to prevent other designers from
opening the movie in Flash, savvy designers will still be able to find a published
movie from their browser cache. When you create a movie in this fashion, other
Flash designers won’t be able to pull your design from their browser’s cache
because the base movie is blank.

Tip

Note

e3687-7 ch07.F 6/12/02 9:05 AM Page 138

139Chapter 7 ✦ Taking Control of Your Movie

Figure 7-14: The button is programmed to load the movie when clicked.

The techniques you used to finish the organizational chart movie can be used with

any movie. For example, you can create an effective movie for a client’s product

catalog by creating a main movie with an interface and banner and then creating a

movie for each product category the company represents. You then use the

loadMovie action to load each product category movie into the main movie on

demand. Within each section, create a text button for each product and a target

clip. Create an individual movie for each product that loads into the target movie

clip. When the client’s catalog needs to be updated, you simply modify the

appropriate movies rather than redesigning the whole site. You can streamline

the process even further by creating a user-defined component with an array of

product names. When the client decides to refresh the product offerings, you

update the array in the user-defined component.

Designer Notes
In this chapter, you added more ammunition to your ActionScript arsenal. You

learned to manage a movie by breaking it into logical sections and then learned to

program buttons to load content upon demand. Additionally, you learned to load

movies and JPEG images of different sizes into a target movie clip. You experienced

the power and flexibility you can add to your designs by creating user defined

components. In the next chapter, you learn to use variables to store and dispense

information.

✦ ✦ ✦

e3687-7 ch07.F 6/12/02 9:05 AM Page 139

e3687-7 ch07.F 6/12/02 9:05 AM Page 140

Creating
Variables to
Store and
Dispense
Information

Up to this point, you’ve learned to use some basic

ActionScript that you can use for navigation and to

control the flow of a movie. When you add variables to your

document, you add the capability to store information in the

published movie and retrieve information.

With variables you have a wealth of possibilities. You can

collect information from viewers of the published movie and

forward the information to a CGI (Common Gateway Interface)

mail forwarding script at a host site. When you create a

variable, the contents are not cast in stone. If you break the

word variable down, you have able and vary. Therein lies the

power of the variable — it’s an ActionScript object whose

content can vary. At the start of an ActionScript movie,

a variable’s content can be one thing and with input from a

user, or a few carefully crafted lines of code, the variable can

contain something else entirely.

This chameleon ability of a variable makes it possible for

you to create some interesting things in your design. In past

chapters, you received a brief taste of the power of variables

when used with functions. In this chapter, you learn about the

different data types you can store in a variable as well as how

to use them in your scripts. You also learn how to create an

array. Think of an array as a supercharged variable. It’s like a

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding the
different variable
types

Creating variables

Understanding data
types

Creating arrays

Evaluating conditions
with statements

Using logical
operators

Chapter project:
Generating random
quotes

✦ ✦ ✦ ✦

e3687-7 ch08.F 6/12/02 2:30 PM Page 141

142 Part II ✦ Using Basic ActionScript in Your Movie

file cabinet filled with neatly organized folders of data you can retrieve in an

instant. You also learn how to create conditional statements. A conditional
statement evaluates an outcome. In plain English, a conditional statement does

something if a given set of conditionals evaluate as true.

The Actions panel’s got lots of books. And some of these books have books within
a book. To add some actions to your scripts, you have to click this book icon, then
click that book icon, then click another book icon, and so on. Rather than bore you
with a lot of words, I’m going to show the path to each action as shown in the
following example: Click Actions➪Movie Control and then double-click goto.

Understanding Variable Types
When you create a variable, it can hold one of three types of information: text

data (known as strings to programmers), numeric data that you can use to perform

calculations, or Boolean data. The following is a brief explanation of each data type.

✦ Text or string data is data that is comprised of text characters. You can use

string data to display text and numbers. However, when you have a string

variable, you cannot add numbers and use them in calculations. String literal

data can be a single character, several words, or several sentences. You can

use string literal data to store large amounts of text that are displayed in

dynamic text boxes. In Chapter 11, you learn to create scrolling text that is

stored in a variable. Examples of string data are: “Fred,” “Mary,” “That is the

correct answer,” and so forth. Note that each example is surrounded by

quotes. That is exactly how string data appears in your scripts.

✦ Numeric literal data are numeric characters that are used to describe

object but cannot be used in calculations. You can combine numeric

literal and string literal data, for example, to describe a street address:

123 Mockingbird Lane.

✦ Numeric data are values that you can use in calculations. You can also

use information stored in variables of this type to change an object’s

characteristics. In addition, you can use numeric data to retrieve information

from an object on Stage, such as its current position, and then pass that

information to another variable. When you create a variable that will be

evaluated, you specify it as an expression. Examples of numeric data are:

56, 2.56, and 956.

✦ Boolean data can have only two possible values: true or false. Booleans are

used in conditional statements, a topic that is covered later in this chapter.

In other types of programming, variables can only contain one type of data. In other

programming languages, the type of data must be specified when the variable is

declared. In Flash MX ActionScript, variables are much more forgiving. You can

house numeric data in a variable at the start of a movie and replace it with string

literal data as the movie progresses. When you change the type of data stored in a

variable, the Flash Player adjusts for it and the script executes as you planned.

Note

e3687-7 ch08.F 6/12/02 2:30 PM Page 142

143Chapter 8 ✦ Creating Variables to Store and Dispense Information

About string data
When you create a variable that stores string values, you have two types of

information: string literal, which is comprised solely of words or characters from

the alphabet; and numeric literal, data that contains numeric characters.

You can use string literal data to dispense and retrieve text information. If you

design a movie for a client who wants to password protect a site, you retrieve the

password the user enters into an input text box and store the data in a variable.

You can also use a string literal variable to store a person’s name and display it

when needed in a dynamic text box, a technique you were introduced to in the

project in Chapter 7. When you see string literal data in ActionScript, it is

surrounded by quotation marks; for example, customerName= “Harry Smith”,

where customerName is the variable name and Harry Smith is the value of the

variable. You can also create a new variable to combine (or concatenate as

programmers refer to this) the contents of two or more variables. Listing 8-1

shows an example of this process in action.

Listing 8-1: Combining the Contents of Two Variables

firstName = “Jane”;
lastName = “Doe”;
fullName = firstName + “ “ + lastName;

When the variable full name is displayed, the result is as you would expect, Jane

Doe. Notice the space between the quotation marks between firstName, and

lastName. You know this is a string literal value because it is surrounded by

quotation marks. Without this space, the variables would run together and you’d

end up with JaneDoe. One more thing you need to notice about the third line in the

above example is that the value of the variable fullName, which combines two

string literal values, is not surrounded by quotation marks. That’s because the

variable must be evaluated by Flash as an expression. An expression is when you

combine:

✦ The values of two variables

✦ Different kinds of variables

✦ Hard numeric values and variables to perform a mathematical computation.

In the above example, the expression is combining two string literal values to

produce a third. If the variable fullName is not designated as an expression, the

third line of code in the example above reads as follows: fullName = “firstName
+\” \” + lastName”; and when the movie is published or tested variable

fullName is displayed as: firstName +” “ + lastName. Whenever you create a variable

to combine the values of two or more variables with string literal data, you must

specify it as an expression.

e3687-7 ch08.F 6/12/02 2:30 PM Page 143

144 Part II ✦ Using Basic ActionScript in Your Movie

While on the subject of combining variables, it’s important to understand how Flash

combines numeric literal values. Consider Listing 8-2. In this example, you see two

variables that are numeric literal data. The third line of code uses an expression to

combine them. Everyone knows that 4 + 6 = 10, but the variables in the first two lines

of code are not specified as expressions. The quotes around each value identify the

value to the Flash Player as a numeric literal value, and Flash combines the literal data

to produce a result of 46 when the script is executed. In order to add the two values as

a numbers, you specify each value as an expression. When you specify a value as an

expression, the Flash Player no longer recognizes the value as numeric literal data.

Listing 8-3 shows the subtle difference (the lack of quotation marks around the

variable’s values) in the code when a variable’s value is designated as an expression.

The value of the variable designated in the third line of code will now be 10.

Listing 8-2: Combining Two Numeric Literal Values

numLiteral1 = “4”;
numLiteral2 = “6”;
combined = numLiteral1 + numLiteral2;

Listing 8-3: Combining Two Numeric Values

numLiteral1 = 4;
numLiteral2 = 6;
combined = numLiteral1 + numLiteral2;

About expressions
When you create a variable and designate its contents as an expression, you create

a variable that can be evaluated using mathematical functions. In Listing 8-3, each

variable is designated as an expression. The third variable uses a mathematical

expression to produce a result that you’d expect when adding two numbers. You

can also create an expression that performs multiple operations. An example of this

is the expression you created to generate a random frame in Chapter 6’s project.

In addition to using numeric data to perform mathematical operations, you can also

use a variable whose value is designated as an expression to evaluate the properties

of an object. For example, if you need to use the x position of movie clip named

myClip, you create a variable and set it equal to the x position of the movie clip. After

you declare the value of the variable as an expression, you end up with a variable

that looks something like this: xPos=_root.myClip._x where xPos is the name of

the variable and _root.myClip._X is the value. Because the value of xPos is

declared as an expression, you can now use it as part of a mathematical expression.

e3687-7 ch08.F 6/12/02 2:30 PM Page 144

145Chapter 8 ✦ Creating Variables to Store and Dispense Information

Creating mathematical expressions
You can use mathematical expressions for many things in your designs. If your

client wants you to create an e-commerce design with online shopping, you can

tally up a customer’s purchase by creating variables and using expressions to add

up the customer’s purchase plus applicable taxes. You can also use expressions to

keep score of quiz games.

When you create expressions in your scripts, you use the standard math operands.

You can add math operands to your scripts by manually entering them in a text

parameter box, or you select an operator from the Arithmetic Operators book in

the Actions panel. Table 8-1 shows the standard operators you can use in your

expressions.

Table 8-1
Arithmetic Operators

Operand Operation performed Proper syntax

+ Adds two numbers a+b

++ Increments a value by 1 ++a or a++

– Subtracts the second value from the first a–b

–– Decrements a value by 1 ––a or a––

* Multiplies two values a*b

/ Divides the first value by the second x/y

% Returns the remainder of a division. (a%b)
For example (16%3) returns a value of 1

The ++ operand and –– operand are shortcuts. Whenever you need to increase or

decrease a value by 1, you can use these shortcut keys. However, notice there are

two ways to format these operands; you can put them before or after the variable

you are incrementing or decrementing. Where you place the operand is all important

when creating a script, especially when using these operands in a loop. Listing 8-4

and Listing 8-5 show the different values returned by placing the operand before or

after a value being increased or decreased by 1.

Listing 8-4 Pre-Increment Syntax of the Operand

a = 124;
b = ++a;

e3687-7 ch08.F 6/12/02 2:30 PM Page 145

146 Part II ✦ Using Basic ActionScript in Your Movie

The code in Listing 8-4 returns a value of 125. You would use this syntax if your

script called to increase the value of variable a by a value of 1 while leaving the

value of variable b unaffected.

The code in Listing 8-5 returns a value of 124 for b, but returns a value of 125 for a.

Listing 8-5: Post-Increment Form of the Operand

a = 124;
b = a++;

If you create a for loop and use the post-increment syntax to increase the value of
the variable, the script will fail because the value of the variable would never
increase. This in effect creates an endless loop, which causes the Flash Player to
crash.

When you create expressions for your ActionScript, you can create an expression

that uses multiple operations. For example, you can multiply a variable by a

randomly generated number and then divide that computation by another value.

Just remember to separate each operation with parentheses and remember which

operators take precedence over the others so the expression generates the

expected result.

About operator precedence
When you create a complex expression involving multiple operations, you must

take operator precedence into account. The rules of mathematics dictate that

certain operations are performed before others. These rules of precedence also

apply to the expressions you create with ActionScript. As an example, consider the

following equations:

x = 7 + 3 x 10

x = (7 + 3) x 10

The result of the first operation is 37, the second operation yields a result of 100.

In the first equation, multiplication takes precedence over addition; in the second

equation, the operation in brackets takes precedence over multiplication. It may

help to remember the acronym BODMAS to keep the order of precedence straight:

Brackets, Open (no brackets), Division, Multiplication, Addition, and Subtraction.

Operations in brackets have priority over operations not in brackets; operations

not in brackets have precedence over division, which has precedence over

multiplication, which has precedence over addition, and last but not least is

subtraction.

Caution

e3687-7 ch08.F 6/12/02 2:30 PM Page 146

147Chapter 8 ✦ Creating Variables to Store and Dispense Information

Creating a Variable
You create a variable whenever you need to store data in your movie or retrieve

data input from a movie viewer. You’ve already created a few variables in projects

presented earlier in this book. When you branch out and begin creating variables

for your own designs, there are a few things you need to remember. Like everything

else in ActionScript, variables have a set of rules you must adhere to — otherwise,

your script will fail or you’ll get unexpected results.

Naming a variable
When you name a variable, it’s in your best interests to choose a name that

describes what the variable does, yet at the same time remember the acronym KISS:
Keep It Short, Simple. This is especially important when you use the same variable

repeatedly in a design. One typo and Flash won’t pass the value of the variable and

your script will fail. Mistyped variables are one of the main reasons an ActionScript

fails. Fortunately, you have tools to track the value of variables when debugging

your ActionScript.

Debugging is covered in Chapter 14.

There are other things to consider when naming a variable. You cannot include any

of the following when naming a variable:

✦ Reserved words and commands: If you use a reserved keyword or command

to name a variable, Flash may mistake it as an action. Therefore, you cannot

use break, case, continue, date, default, delete, else, function, if, in,

instanceof, new, on, return, sound, switch, this, typeof, var, void,

while, or with as a variable name. You can use reserved words as part of a

variable name; for example, the name dateToday doesn’t cause the script to

run improperly.

✦ Punctuation: You cannot use any of the following punctuation as part of a

variable name: {}, ; , or (). Also, if you begin a variable name with two

forward slashes (//), Flash mistakes the variable as a comment.

✦ Flash objects: You cannot use any of the Flash objects as variable names as

they will render the object inoperable. Date, Sound, Key, Math, and so on are

all names of Flash objects.

When you choose a Flash object as a variable name and test the movie, Flash
displays a warning in the Output window telling you the variable conflicts with a
Flash object and will obscure it. When you see this warning, it’s best to choose
another variable name.

✦ Mathematical operators: If you use +,-, *, or / as part of a variable name,

Flash mistakes the variable for an expression.

Note

Cross-
Reference

e3687-7 ch08.F 6/12/02 2:30 PM Page 147

148 Part II ✦ Using Basic ActionScript in Your Movie

✦ Spaces: You cannot include a spaces between words when naming a variable.

For example, site password causes the script to fail. If you need to separate

two names in a variable, use an underscore, as in site_password, or capitalize

the second word, as in sitePassword.

✦ Numbers: You cannot precede a variable name with a number. A variable

name of 4tier won’t work; tier4 will.

When you create a name for a variable, it should be displayed in black in the Script

pane. If you violate a syntax rule when creating a variable, the offending variable is

highlighted in red with the message The variable name you have entered
contains a syntax error.

Another thing to remember about variable names is case sensitivity. When you

write ActionScript mode in expert mode, you must use the proper case. If you

create a line of script gotoandplay (2) instead of gotoAndPlay (2), your script

will fail. However, if you create a variable and initially name it myVariable and refer

to it later as Myvariable, the Flash Player reads them as the same variable.

When you need to retrieve the value of a variable on a different timeline, you must

include the path to the variable in the variable name. If you create a variable called

currentTime in a movie clip called digitalClock and add the movie clip to the

main timeline of the movie, the path to the variable is

_root.digitalClock.currentTime.

Another thing to remember about variable names is that you can assign the same

variable to a different timeline and Flash thinks it a different variable. For example,

if you create another movie clip with the variable currentTime, Flash recognizes

them as two separate variables, even though you may not.

Declaring a variable
When you decide to add a variable to your design, you must first create it, or as

programmers are fond of saying, declare the variable. If you use a variable several

times throughout the course of a movie, declare the variable on the movie’s first

keyframe. If you use variables in a movie clip, declare them on the movie clip’s first

keyframe.

To create a variable, do the following:

1. Select the keyframe or object where you want to declare the variable.

2. Click Actions➪Variables and then double-click setVariable.

The action is added to the script and two parameter text boxes appear above

the Script pane.

e3687-7 ch08.F 6/12/02 2:30 PM Page 148

149Chapter 8 ✦ Creating Variables to Store and Dispense Information

3. In the Variable field, enter a name for the variable.

Remember to adhere to the variable naming conventions presented earlier in

this chapter.

4. In the Value field, enter the value you’re assigning to the variable. Click the

Expression checkbox if the value will be evaluated. Figure 8-1 shows a typical

script to create a new variable.

Figure 8-1: To use a variable in your design, you must first declare it.

Creating a local variable
If you use variables in a movie clip that won’t be called from the root timeline, you

can save yourself the hassle of having to refer to a timeline by declaring a local

variable. When you declare a local variable, you can still change its value when a

button in the movie clip is clicked for example. Creating local variable can be a

tremendous time saver if you’re creating modular ActionScript in a movie clip.

To declare a local variable:

1. Select the object or keyframe where you want to declare the local variable.

2. Click Actions➪Variables book, and then double-click var.

A single parameter text box named Variables appears above the Script pane.

You can declare more than one local variable in this field.

3. Enter the name of the variable followed by an equal sign (=) and the variable’s

value. If you declare more than one local variable, separate each variable with

a comma. If the value of the local variable is string data, remember to put the

value between quotation marks. Figure 8-2 shows an ActionScript declaring a

few local values.

e3687-7 ch08.F 6/12/02 2:30 PM Page 149

150 Part II ✦ Using Basic ActionScript in Your Movie

Figure 8-2: You can declare several local variables for a movie clip with a single
line of code.

Passing a variable’s value to other objects
When you have several variables in your movie, you can pass a variable’s value to

another value or create the value for another variable by combining the values of

two or more variables. You can combine the numeric and string data to create new

string data. You can combine the values of two or more variables with expression

data to create numeric data for a new variable.

To pass the value of one variable to another, create a new variable and set its value

equal to another variable. When you create the new variable, be sure to check the

Expression checkbox or Flash will set the value of the new variable equal to the

variable’s name instead of the variable’s value. Figure 8-3 shows a new variable

whose value is equal to the value of another variable.

Figure 8-3: You can pass values from one variable to another.

e3687-7 ch08.F 6/12/02 2:30 PM Page 150

151Chapter 8 ✦ Creating Variables to Store and Dispense Information

You can also set the value of a new variable equal to two variables that contain

string literal data. You can use this to personalize a user’s experience. Users enter

their names in an input text box, and you create a new variable to display a user’s

name combined with a greeting message, as shown in Figure 8-4. Again notice that

the Expression checkbox is checked. If you’re combining string literal data with a

variable as in this example, add a space after the string literal data (the word

Welcome in this example) and the variable’s contents are correctly spaced when

displayed in a dynamic text box. If you combine two variables with string literal

data and need to place punctuation or a space between the two values, add the

punctuation or space between the two variable names. Be sure to enclose the

punctuation between quotation marks so it displays properly in a dynamic text box.

The subject of dynamic and input text is covered in Chapter 11.

Figure 8-4: You can combine the contents of variables with string literal data.

Storing Data with an Array
When you need to store a lot of similar data for a design you are creating, you can

use an array. An array is like a variable due to the fact that both store data. When

you create an array, you can store many pieces of data. An array is like a neatly

organized file folder in your file cabinet. For example, if you use a file drawer for

client proposals, you create a folder for each client and arrange them in alphabetical

order. To follow this analogy a step further, the file drawer is the array, and each

client folder is an element in the array. Within each folder is all of the information

related to that client. When you need the information, you simply pluck the folder

from the file drawer. Arrays are like that. If you were to store your clients’ names in a

Flash movie, you could create a variable for each client, as shown in Listing 8-6.

Cross-
Reference

e3687-7 ch08.F 6/12/02 2:30 PM Page 151

152 Part II ✦ Using Basic ActionScript in Your Movie

Listing 8-6: Comparing Multiple Variables to an Array

// creating individual variables for each client
client1 = “Acme Enterprises”;
client2 = “ABC Engineering”;
client3 = “Collage Computers”;
client4 = “Laxon Enterprises”;
client5 = “Smith Auto-bionics”;
client6 = “Zanadu Xylophones”;

// Storing client names in an array
clients = new Array(“Acme Enterprises”,”ABC Engineering”,”Collage
Computers”,”Laxon Enterprises”,”Smith Enterprises”,”Zanadu Xylophones”);

In the above example, six client names have been neatly grouped in one array. In

this example, you still have to enter each client’s name into the array but you save

the bother of creating numerous variables. What would you rather do — create 50

variables or create one array with 50 elements?

The clients array in the previous listing has six elements. The first element in an

array’s position (also known as offset), is always 0. When you need to refer to an

element in the array, you refer to it by its offset. Therefore, if you wanted to create a

variable named customer that retrieves information about your third client, the

variable would look like this: customer=clients[2]. Notice that the array element

is surrounded with square brackets.

You can use the elements from two arrays and combine them in a single variable.

For example, you can store the names of each client contact person in a different

array called contacts. When you create the array, you use the same array offset for

the client contact person as you did in the clients array. The array offset for the

client and contact person are the same. If you need to create a variable that

displays the name of the client and the contact person, it would look something like

this: custContact = “The CEO for “+clients[2]+ “ is “ + contacts[2]
+”.”. When you cross reference different arrays, this is known as cross indexing.
In the example above, each element for the clients array corresponds with the

same element in the contacts array. In the custContact variable example, notice the

addition of the string literal data. You can combine string literal data and array data

to display just about anything in your designs. At the end of the chapter, you’ll be

using array data to generate random quotes.

Creating an array
When you create an array, you create an instance of the Array object. You set

the instance of the Array object equal to a variable. The Array object has various

methods you can use to manipulate the contents of an array and join the contents

e3687-7 ch08.F 6/12/02 2:30 PM Page 152

153Chapter 8 ✦ Creating Variables to Store and Dispense Information

of one array to another. The Array object also one property that you can use to

measure the number of elements in an array. You’ll be using this property in the

project at the end of this chapter.

When you decide to add an array to your design, you create a variable and set its

value equal to the Array object. After you create the array, you add elements to it.

When you go to the trouble of creating an array, chances are you use it often in the

design. Therefore, it’s good practice to define the array on the first keyframe of the

movie or the first keyframe of the movie clip the array is housed in.

To create an array:

1. Select the keyframe where you want to create the array.

2. Click Actions➪Variables and then double-click setVariable.

3. In the Variable field, enter the name of the variable you want associated with

the array.

4. Place your cursor inside the Value field.

5. In the left pane of the Actions panel, click Objects➪Core➪Array and then

double-click newArray.

The code newArray() is added to your script.

6. Click the Expression checkbox.

That’s all you need to do to create an array. The next step is to add the individual

elements to the array.

Creating elements for an array
The elements in an array can be string literal data, numeric literal data, or numeric

data. Flash ActionScript doesn’t require that the elements of an array contain the

same type of data, but it will be much easier to keep a handle on things if you keep

string data and numeric data separate. Each array element is separated by a comma.

If an array element is string literal data, it must be surrounded by quotation marks.

To create the elements for an array:

1. Repeat Steps 1 through 6 from the previous section.

2. Position your cursor between the parentheses in the Value field.

3. Enter each element of the array followed by a comma. If the data is string

literal data, remember to sandwich the element between beginning and ending

quotation marks. Figure 8-5 shows an array populated with similar data.

e3687-7 ch08.F 6/12/02 2:30 PM Page 153

154 Part II ✦ Using Basic ActionScript in Your Movie

If you create arrays with multiple elements, create the data in your favorite word
processing program. Enter the name for each element, remembering to separate
the elements with a comma and include quotation marks for string literal data. If
your word processor has smart quotes, turn them off as they will cause your script
to fail if you copy them into the Actions panel. Select the array data and then copy
it to the clipboard. In Flash, place your cursor between the parentheses and then
choose Paste from the context menu. Working in a word processor is easier than
creating copious amounts of data in the Script pane. As an added bonus, your
word processor probably has a spell checker.

Figure 8-5: You populate an array with similar data.

Creating an associative array
You create an associative array when you need placeholders to accept data that

will be displayed later. Each element in an associative array is linked to a variable

in the movie. For example, if your client wants you to create a customer survey

form, you can create an associative array to accept the data the customer enters.

After the customer answers a question, the result is transferred to an element in

the associative array. After the customer answers all the questions, they can be

reviewed by transferring the element from the array to a variable, which is

displayed in a dynamic text box. When you create an associative array, you create

blank placeholders for data to be transferred to.

To create an associative array:

1. Create a variable and assign its value to the newArray method of the Array

object as outlined previously.

After you create the new array, your cursor blinks between the parentheses in

the Value field.

Tip

e3687-7 ch08.F 6/12/02 2:30 PM Page 154

155Chapter 8 ✦ Creating Variables to Store and Dispense Information

2. Enter the number of elements in the array. Remember that the first element of

an array is 0. If you’re creating an array with 20 elements, enter 19. Listing 8-7

shows the code for an associative array with 20 elements.

Listing 8-7: Creating an Associative Array

surveyResults=newArray(19);

You finish your code for an associative array by creating a variable with the name

of the array element you want to store the data in and set the variable’s value equal

to the data of the variable associated with the element. You do this by using the

eval action, which evaluates the contents of the variable. Listing 8-8 shows the

code needed to transfer data from the variable to its associated element in the

array when the user clicks a button.

Listing 8-8: Transferring Data to the Array

on (release) {
surveyResults[0] = eval(“result1”);
}

Working with Conditional Statements
You add a conditional statement to a script when you want a certain set of actions to

occur if the set of conditions are met and a different set of actions to occur if the

conditions are not met. When you add a conditional statement to a script, the Flash

Player evaluates the condition. If the condition is true, the actions associated with

the statement are executed. If the condition evaluates as false, the next line of code

is executed. You can create a conditional statement to evaluate the answer to a

question in a quiz, or you can create a conditional statement that evaluates certain

properties of an object in your movie. For example, in Chapter 16, you create a slide

show that scrolls across the screen. To prevent the images from scrolling beyond

the boundaries of the movie, you create a conditional statement. As long as the

movie is less than or equal to the boundary, the condition evaluates as false and the

clip continues moving. As soon as it reaches the boundary the condition evaluates

as true and the next set of actions occur, which sets the position of the clip equal to

the boundary, effectively stopping all movement. Listing 8-9 shows the conditional

statement and associated action that halts the clip at the right boundary.

e3687-7 ch08.F 6/12/02 2:30 PM Page 155

156 Part II ✦ Using Basic ActionScript in Your Movie

Listing 8-9: A Conditional Statement

if (reelPos>rightStop) {
reelPos = rightStop;

}

Notice that the code in Listing 8-9 begins with the if action. As long as the value of

reelPos is less than the value of rightStop, the statement is false. As soon as the

value of reelPos (the position of the moving slide show) is greater than the value

of rightStop, the condition evaluates as true and the next line of code executes

and sets the value of reelPos equal to rightStop (the boundary of the movie

clip), which stops the clip from advancing further.

Creating conditional statements
When you need a different set of actions to occur based on an outcome, you create

a conditional statement. You use operators to evaluate the statement; the operators

you use differ depending on the type of data the statement is evaluating. The

conditional statement in Listing 8-9 is an expression; therefore, mathematical

operators evaluate the expression, in this case the greater than (>) operand. When

you compare string data, you use logical operators.

To create a conditional statement:

1. Select the object or keyframe where you need to create a conditional statement.

2. Open the Actions panel.

3. Click Actions➪Conditions/Loops and then double-click if.

The action is added to the script and the Condition parameter text box

appears.

4. Enter the condition that must be true for the next set of actions to occur.

5. Enter the actions that will occur when the condition evaluates as true.

Working with conditional statements that have
multiple outcomes
You often end up creating scripts where you need more than one outcome depending

on the properties of an object. As an example, when you display the results of a quiz,

you display a different message depending on the player’s score. When you need to

evaluate more than one outcome, you use the elseif action and the else action.

e3687-7 ch08.F 6/12/02 2:30 PM Page 156

157Chapter 8 ✦ Creating Variables to Store and Dispense Information

To create a conditional statement with multiple outcomes:

1. Select the keyframe or object where you want to create the conditional

statement.

2. Add the if action to your script as outlined previously and add the actions

that occur when the condition evaluates as true.

3. Click Actions➪Conditions/Loops and then double-click elseif.

Like the if action, the elseif action has only one parameter: Condition.

4. Enter the condition that must be true for the associated action to occur.

5. Create the code that executes if the condition is true.

6. Repeat Steps 3 through 6 for other possible outcomes to the first condition.

7. When you arrive at the final possible outcome for the first condition,

double-click the else action from the Conditions/Loops book.

8. Enter the condition that must be true in order to execute the associated

action.

9. Enter the actions that you want to execute when the condition in the else

statement evaluates as true. Listing 8-10 shows an example of the elseif and

else actions used to display different messages depending on how well or

poorly a player scored on a current events quiz.

Listing 8-10: A Conditional Statement with
Multiple Outcomes

if (score <70) {
message =”Take out a subscript to your local paper.” ;

} else if (score<=79) {
message = “Not bad, but you can do better.”;

} else if (score<=89) {
message = “Well done. You keep up with the news.”;

} else if (score<=99) {
message = “Excellent.You know your current events.”;

} else {
message =”Congratulations. You achieved a perfect score.” ;

}

In the above example, the first statement checks to see if the player scored below

70. If the condition evaluates as false, the condition in the first elseif statement is

evaluated. The Flash Player continues evaluating the possible outcomes until a

conditional statement evaluates as true. If none of the elseif statements are true,

the else statement takes control. The else statement is the last possible outcome;

therefore, no parameters are required. If all conditions evaluate as false, the next

line of code executes.

e3687-7 ch08.F 6/12/02 2:30 PM Page 157

158 Part II ✦ Using Basic ActionScript in Your Movie

Using Logical Operators
You can also create conditional statements where two conditions are evaluated.

When you compare two conditions in a single statement, you can specify that both

conditions must be true to execute the actions associated with the statement or

either condition must be true for the actions to occur. To create statements like

these, you use the logical AND operator or the logical OR operator. There is a third

logical operator that checks for the opposite of a condition: the logical NOT operator.

Table 8-2 shows the logical operators you find in the Logical Operators book.

Table 8-2
The Logical Operators

Operator Description

&& Logical AND Operator

|| Logical OR Operator

! Logical NOT Operator

When you use a logical operator, you insert it between the statements you’re

comparing. In the case of the NOT logical operator, you insert if before the

condition you want to evaluate. Listing 8-11 shows the correct syntax for the logical

operators.

Listing 8-11: Proper Syntax for the Logical Operators

// The Logical AND Operator evaluates the next statement.
if (password==”Enter”&&username==”Bill”) {
message = “Welcome Bill.”;

}
// The Logical OR Operator evaluates the next statement.
if (password==”Enter”||username==”Bill”) {
message = “Welcome to our Web site.”;

}
// The Logical NOT Operator evaluates the next statement.
if (!password) {
message = “You are not authorized to view this site.”;

}

In the above example, the first statement evaluates as true if the password AND the

username are correct. The second statement evaluates as true if the password OR

the username are correct. In the third example, the statement evaluates as true if an

e3687-7 ch08.F 6/12/02 2:30 PM Page 158

159Chapter 8 ✦ Creating Variables to Store and Dispense Information

incorrect password is entered and a Boolean statement preceding the code defines

what the contents of the password variable must be for the password to evaluate as

true. You can create a statement that evaluates more than two conditions by placing

the appropriate logical operator for your script between the conditions you want

Flash to evaluate.

Working with Boolean Expressions
When you decide to do something, you evaluate a number of parameters. For

example, if a potential client contacts you to create a Web site, you must weigh

several factors. Do you have the time to create the site? Do you have the knowledge

to meet the client’s expectations? Based on your initial meeting, will the client be

easy to work with or is the client from you-know-where? You have many possible

outcomes, but when a computer evaluates a situation, there are only two possible

outcomes: true or false. If you’re familiar with the binary system, everything done

by your computer is comprised of a long string composed of the numbers 0 and 1.

Granted, a powerful computer can evaluate hundred of situations in the blink of an

eye, but each situation is evaluated one at a time and each situation evaluates as

either true or false.

So how do you use Boolean expressions in your designs? You can have one set of

actions execute if an expression is true and another execute when the expression

evaluates as false by creating a conditional statement as outlined previously.

Listing 8-12 shows a Boolean expression in action.

Listing 8-12: Boolean Expression

on (release) {
if (password===”Bill”) {
passed=true;
if (passed) {
gotoAndPlay(“Enter”);

}
} else {
message = “You are not authorized to enter this Web site.”;

}
}

In the previous listing, if the password is Bill, the variable passed is assigned the

Boolean value of true. The next line of code evaluates checks to see if passed has a

value of true. If so, the movie advances to a frame labeled Enter, and Bill is granted

permission to visit the Web site. If the password is not equal to Bill, the statement

evaluates as false and passed evaluates as false; the visitor sees a message instead

of gaining entry to the site.

e3687-7 ch08.F 6/12/02 2:30 PM Page 159

160 Part II ✦ Using Basic ActionScript in Your Movie

Chapter Project: Generating Random Quotes
You’ve been exposed to a lot information about variables and arrays. Granted,

it’s not the most stimulating subject in the world, but as you’ll find out in future

chapters, arrays and variables are useful objects. Now that you’ve absorbed all of

this information, it’s time to put your hard-won knowledge to work. In this project,

you create a movie clip with an array that stores 70 quotes. The quotes appear in

random order. You’ll be using a user-defined component that contains a timer,

which displays the quote for a few seconds before another one is generated.

Open up this chapter’s folder on the CD-ROM that accompanies this book and
copy the rndQuote.fla and quotes.txt files to your hard drive. Use your operating
system to disable the file’s read-only attribute.

To begin the project:

1. Launch Flash and open the rndQuote.fla file.

2. Open the document Library and double-click the Random Quote movie clip.

The clip opens in symbol-editing mode. Notice you have two layers to work

with: Text and Actions. The Actions layer has three keyframes.

3. Click the first frame on the Actions layer and then open the Actions panel.

4. Click Actions➪Variables book and double-click set variable to add the

action to your script.

5. In the Variable field, type rndQuote.

6. Place your cursor inside the Value field and in the left pane of the Actions

panel, click Objects➪Core➪Array.

7. Double-click newArray to add it to the script.

The code newArray() appears in the value field. Your cursor blinks between

the parentheses.

8. Minimize Flash, open your word processing software, and open the quotes.txt

file you copied to your hard drive.

9. Select all of the text and copy it to the clipboard.

10. In Flash, place your cursor between the parentheses after newArray and

right-click (Windows) or Ctrl+click (Macintosh) and choose Paste from the

context menu.

11. Click the Expression checkbox. The array is now populated with 70 quotes.

In the next section, you’ll be creating the code to generate the random number.

Leave the Actions panel open — you’ll need it again in a minute or so.

On the
CD-ROM

e3687-7 ch08.F 6/12/02 2:30 PM Page 160

161Chapter 8 ✦ Creating Variables to Store and Dispense Information

Generating the random number
Now that you’ve got the array populated, it’s time to generate the random number

that plucks a quote from the array. When you use the random method of the Math

object, it generates a random value between 0 and 1. You could just multiply the

random method of the math object by 70 to generate a quote, but that wouldn’t

leave you any room for future expansion. If you add or delete elements from an

array, you have to remember how many elements are currently in the array and

change the script accordingly. Instead of relying on a set numeric value to generate

the random number, you use the length property of the Array object. When you add

this to your script, Flash checks the array length and knows the exact number of

elements in the array. In the future, when you add or subtract elements from the

array, Flash evaluates the array length and knows the number of elements currently

in the array.

To generate the random number:

1. Click Actions➪Variables and double-click setVariables.

2. In the Variable field, type rndNum and then place your cursor in the Value field.

3. Click Objects➪Core➪Math➪Methods and double-click round.

The text Math.round() appears in the Value field.

4. Place your cursor between the parentheses, and in the left pane of the Actions

panel, Click Objects➪Core➪Math➪Methods and then double-click random.

The method is added to your script, and the text Math.random() appears in

the Value field.

5. Place your cursor between the parentheses and type rndQuote.

6. In the left pane of the Actions panel, click Objects➪Core➪Array➪Properties

and then double-click length. Click the Expression checkbox. Your finished

ActionScript for the first frame should look like Figure 8-6.

Adding a timer and accessing the array
The first frame of the movie generates the first random number. In the second

frame of the movie, you use the first random number to pluck the first quote from

the array. However, if you don’t have some way to pause the movie, the quote will

be visible only for a fraction of a second — one-twelfth of a second to be exact,

which is the amount of time it takes to reach the next frame. You could add 36

frames before the next keyframe, which pauses the movie for three seconds before

the keyframe’s ActionScript generates the next random number, but there’s a much

easier way to do it using a programmable timer.

e3687-7 ch08.F 6/12/02 2:30 PM Page 161

162 Part II ✦ Using Basic ActionScript in Your Movie

Figure 8-6: In the first frame, you create the array and generate the random
number.

To add the timer and access the array:

1. Click the second keyframe on the Actions layer.

2. Open the document Library and drag the timer component on Stage. Place it

anywhere — it won’t be seen when you publish the movie.

3. With the timer component still selected, open the Property inspector and

click the Parameter tab. Notice you have one parameter displayed in the

window, seconds. To the right of the word seconds, you see the number 10.

4. Double click the 10, enter 3, as shown in Figure 8-7. and press Enter or Return.

The timer is now programmed to pause on the frame for three seconds. If

that’s too much or too little time for your taste, you can change the value at

any time.

5. Close the Property inspector, click the second frame on the Actions layer, and

open the Actions panel.

6. Click Actions➪Variables and then double-click set variable.

7. In the Value field, type quote.

This is the same name as the variable in the dynamic text box that is already

created for you. When the movie is published, the value of the variable you’re

now creating is displayed in the dynamic text box.

8. In the Value field, type rndQuote[rndNum].

The first part of the variable value, rndQuote, is the name of the array you

created in the first keyframe. The brackets are used to designate the number

of the array element (offset). The element offset is the value of the rndNum

variable, a random number between 0 and the length of the array.

e3687-7 ch08.F 6/12/02 2:30 PM Page 162

163Chapter 8 ✦ Creating Variables to Store and Dispense Information

9. Click the Expression checkbox.

10. Click the third frame on the Actions layer. The code in Listing 8-13 has already

been created for you.

11. Click the Back button to exit symbol-editing mode.

Figure 8-7: The timer component has one parameter: Seconds.

Listing 8-13: Code for the Third Frame

currentNum = rndNum;
rndNum = (Math.round((Math.random()*(this.rndQuote.length))));
if (rndNum == currentNum) {
rndNum = Math.round(Math.random()*currentNum);

}
gotoAndPlay(2);

The code in Listing 8-13 checks to make sure the last random number is not

duplicated. A new variable currentNum is set equal to the value of rndNum, the

last random number generated. The second line of code generates a new random

number using the same code as you created on the first keyframe. The conditional

statement in the third line of code checks to see if the new random number is the

same as the old one. If the condition evaluates as true, a new random number is

created by multiplying the previous random number by the random method of the

Math object. Granted, the new number could be the same as the old, but with an

array of 70 elements, the odds are against it. The last line of code loops the movie

clip to the second keyframe and displays another quote.

Finishing the project
To finish the project, open the document Library, drag the Random quote movie

clip on Stage, and center it using the Align panel. To test the movie, choose

Control➪Test Movie. You should see a quote appear followed three seconds later

by another quote. If the timing is too fast or slow, select the timer component and

change the seconds parameter to a different value.

e3687-7 ch08.F 6/12/02 2:30 PM Page 163

164 Part II ✦ Using Basic ActionScript in Your Movie

The finished product may seem a little bland. After all, there’s nothing but text on

Stage. But this little gem is stored in a movie clip, which means the ActionScript is

modular, you can use it in any other movie by using the Open as Library command

to open this library and then transfer the movie clip to another document. When

you use the Random quote movie clip in another document, you bring the timer

right along with it. As a matter of fact, the timer is modular as well.

When you use the Random quote movie clip in another document, you can modify

the contents of the array to suit the movie. For example, if you have a client who

wants to display customer quotes in the header of the Flash movie you are designing,

here’s the perfect way to do it. After the customer supplies you with the quotes,

replace the quotes currently in the array with your client’s quotes. You can modify

the amount of time each quote is displayed by changing the seconds parameter

of the timer component. If need be, you can modify the font style and color by

changing the parameters of the dynamic text box that displays the quote.

Dynamic text is covered in Chapter 11.

Designer Notes
In this chapter, you learned to work with variables and arrays. The project at the

end of the chapter demonstrates the amount of power you can add to your designs

with variables and arrays. When you add arrays to your designs, you can pack an

impressive amount of data into a small package. When you take it one step further

and put all your code in a movie clip, you can use the movie clip in another

document and modify it to suit the design. In the next chapter, you take your

knowledge of ActionScript to the next level by using variables and expressions to

modify the properties of objects.

✦ ✦ ✦

Cross-
Reference

e3687-7 ch08.F 6/12/02 2:30 PM Page 164

Creating
ActionScript
Elements for
Your Movie

✦ ✦ ✦ ✦

In This Part

Chapter 9
Generating
ActionScript to
Modify Objects

Chapter 10
Designing Interactive
Navigation

Chapter 11
Composing
Dynamic Text

Chapter 12
Building Interactive
Interfaces

Chapter 13
Creating ActionScript
Sound Objects

Chapter 14
Debugging an
ActionScript

✦ ✦ ✦ ✦

P A R T

IIIIII

f3687-7 Pt03.F 6/12/02 9:05 AM Page 165

f3687-7 Pt03.F 6/12/02 9:05 AM Page 166

Generating
ActionScript to
Modify Objects

Your previous Flash work probably featured some

interesting animations using motion and shape tweening.

The problem with motion and shape tweening is that after a

while, the results are fairly predictable. Veteran Web surfers

have seen a zillion Flash movies and tend to become a bit

jaded. If a Web page doesn’t jump up and grab them by the

throat, they click the Back button and meander elsewhere.

You can take your designs to a higher plateau when you use

ActionScript to modify the properties of objects in your

designs. Instead of creating plain-Jane, me-too Flash designs,

you can use ActionScript to create compelling designs that

capture the attention of your audience and leave them

wanting more.

When you place a graphic symbol in a movie clip, you can

modify the properties of the object. You can make the object

move on demand, create random motion, change the color of

an object, scale an object, and vary its opacity. In this chapter,

you learn how to modify many object properties. You also

learn how to create a Color object. When you create a Color

object, you can use it to modify the color of objects. Finally,

I show you how to create code that modifies an object’s

properties with keystrokes from the user’s keyboard.

The Actions panel’s got lots of books. And some of these
books have books within a book. To add some actions to
your scripts, you have to click this book icon, then click that
book icon, then click another book icon, and so on. Rather
than bore you with a lot of words, I’m going to show the
path to each action as shown in the following example:
Click Actions➪Movie Control and then double-click goto.

Note

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Modifying object
properties

Changing object
opacity

Using the Color
object

Using the Key object

Duplicating an object

Chapter project:
Creating an
interactive animation

✦ ✦ ✦ ✦

g3687-7 ch09.F 6/12/02 9:06 AM Page 167

168 Part III ✦ Creating ActionScript Elements for Your Movie

Modifying an Object’s Properties
Every object you create has properties. Objects have a width and height (x and y)

coordinates that represent the object’s position on Stage, properties that reflect the

object’s opacity, and more. When you create an object and embed it in a movie clip,

you can modify these properties with ActionScript.

Setting an object’s properties
You can modify an object’s properties by creating a variable that includes the path

to the object, the property you want to modify, and set the variable’s value to the

amount you want to modify the property by. If you modify several properties of an

object, you can use the with action to save some hard coding. You can also use the

setProperty action to modify a specific property. Listing 9-1 shows the three

methods.

Listing 9-1: Changing an Object’s Properties

// Using the with action to modify properties
with (_root.sphereClip) {
_x=125;
_y=125;

}
// Changing properties by addressing the object’s path
_root.sphereClip._x=125;
_root.sphereClip._y=125;
// Changing properties using the setProperty action
setProperty(“_root.sphereClip”, _x, 125);
setProperty(“_root.sphereClip”, _y, 125);

When you change an object’s properties using the with action or by directly

addressing the object’s target path, you use the Properties book to locate the

properties you add to your script. If you use either of these methods, you can

access the target path using the Insert Target Path dialog box. Remember, you

can assign ActionScript only to a named instance of a movie clip, and all named

instances in your movie are listed in this dialog box. The third method is probably

the simplest — you get the object’s target path and the property and assign the

value with a single action. However, this method is also the most time consuming if

you have several properties to change.

The method you use to modify an object’s properties depends on how comfortable

you are, or how comfortable you plan to be, with ActionScript. Table 9-1 lists the

properties you can modify with a brief description of each and the parameters you

can modify, along with the properties you use to return a the current property of an

object, such as the frame number the playhead is over in a movie clip.

g3687-7 ch09.F 6/12/02 9:06 AM Page 168

169Chapter 9 ✦ Generating ActionScript to Modify Objects

Table 9-1
ActionScript Properties

Property What It Modifies Property Parameters

_alpha An object’s opacity Any value between 0
(transparent) and 100
(opaque)

_currentframe Returns the frame number currently None, read only
being played

_droptarget Returns the absolute path of an None, read only
object in slash (\) where a dragged
movie clip is dropped

_focuserect A Boolean value that specified whether True or false
a movie clip has a yellow rectangle
around it when it has keyboard focus

_framesloaded Returns the number of frames loaded None, read only
from a streaming movie

_name An instance’s name None, read only

_height An object’s height in pixels Any numeric value

_quality Render quality Low, medium, high, best

_rotation Degree of rotation Any value between 0 and 360

_soundbuftime Time before a movie begins to stream An integer

_target Returns the target path of the specified None, read only
movie clip

_totalFrames Returns the total number of frames None, read only
in a movie clip

_url Returns the URL of the .swf file from None, read only
which the movie clip is downloaded

_visible Toggles visibility on or off True or 1 (visible); false or
0 (invisible)

_width An object’s width in pixels Any numeric value

_x An object’s x position Any numeric value

_xmouse Returns the current x coordinate of None, read only
the mouse

_xscale An object’s x scale Any numeric value

_y An object’s y position Any numeric value

_ymouse Returns the current y coordinate of None, read only
the mouse

_yscale An object’s y scale Any numeric value

g3687-7 ch09.F 6/12/02 9:06 AM Page 169

170 Part III ✦ Creating ActionScript Elements for Your Movie

It is possible to enter a value for many of the properties in the preceding table that

is acceptable to the Flash Player but not realistic. For example, you can enter a

value for an object’s _x property that moves it beyond the boundaries of the Stage.

Using the setProperty action
When you use the setProperty action, you can address the movie clip root path,

select the property to modify, and set the value using one action. The drawback to

this action is that when you need to modify several properties of an object, you

have to add the action for each property you need to modify. That is, you have to

unless you use the ActionScript context menu to copy the line of code that contains

the setProperty action and paste it as needed. You can then go back and select a

different property and value.

To add the setProperty action to a script:

1. Select the object or keyframe that will trigger the property change.

2. Open the Actions panel and then click Actions➪Movie Clip Control.

3. Double-click the setProperty action.

The action is added to the script and three parameter text boxes appear. Your

cursor flashes in the Target field.

4. Click the Insert a Target Path button and from the Insert Target Path dialog

box, click the button for the movie clip’s target path.

5. Click the triangle to the right of the Property field and choose a property from

the drop-down menu.

6. In the Value field, enter an appropriate value for the property you are modifying,

as shown in Figure 9-1. If you enter an inappropriate value, Flash does not display

a warning dialog box. Refer to Table 9-1 for examples of applicable values.

Figure 9-1: Use the setProperty action to change an object’s characteristics.

g3687-7 ch09.F 6/12/02 9:06 AM Page 170

171Chapter 9 ✦ Generating ActionScript to Modify Objects

Modifying an object by addressing its target path
You can modify an object’s properties by creating a variable that addresses the target

path of the object and the property you are modifying. You set the variable’s value

equal to an applicable value for the property you are changing. Refer to Table 9-1 for

the range of values for each property. You can also use a variable for a value.

To modify an object’s property by addressing its target path:

1. Select the keyframe or object that will trigger the object’s property change.

2. Click Actions➪Variables and then double-click set variable to add the

action to your script.

3. In the Variable field, enter the target path to the object whose properties you

want to change.

You can enter the path directly in the field, or click the Insert a Target Path but-

ton to insert the target path from the Insert Target Path dialog box. Remember

that you can only change the property of a named instance of a movie clip.

4. In the Variable field, type a dot (.) after the target path.

5. In the left pane of the Actions panel, click Properties and double-click the

property you want to change.

6. In the Value field, enter a value or the name of a variable that contains the

value of the property you are changing.

7. Click the Expression checkbox. Listing 9-2 shows several properties of a

movie clip being changed. The lines of code preceded by two forward slashes

are comments. Comments are notes you can add to ActionScript to describe

the code that follows. (Comments are covered in Chapter 14.)

Listing 9-2: Changing an Object’s Properties by
Addressing Its Target Path

// Increases the xscale of a movie clip named bigSphere by 50%
_root.bigSphere._xscale = 150;
// Increases the yscale of a movie clip named bigSphere by 20%
_root.bigSphere._yscale = 120;
// Change the alpha value of bigSphere to 75%
_root.bigSphere._alpha = 75;
// Moves bigSphere to the X coordinate 525
_root.bigSphere._x = 525;
// Moves bigSphere to the y coordinate 25
_root.bigSphere._y = 25;
// Changes the width of bigSphere to 25 pixels
_root.bigSphere._width = 25;
// Changes the height of bigSphere to 75 pixels
_root.bigSphere._height = 75;

g3687-7 ch09.F 6/12/02 9:06 AM Page 171

172 Part III ✦ Creating ActionScript Elements for Your Movie

You can also create code that changes an object’s property by a certain increment

or decrement every time a button is clicked or a key is pressed. You can use this

technique to create an interactive animation where the user can move objects with

button clicks or key presses.

To create an expression that changes an object property by a given value:

1. Select the object or keyframe that triggers the property change.

2. Click Actions➪Miscellaneous Actions and then double-click evaluate.

One parameter text box named Expression appears.

3. Enter the target path of the object you want to apply the property change to.

4. Type a dot (.) after the target’s name.

5. Enter a plus sign (+) to increase (increment) the value of the property or a

minus sign (–) to decrease (decrement) the value of the property.

6. Type an equals sign (=) followed by the amount you want to increment or

decrement the property by.

Figure 9-2 shows the Expression field and several lines of code where an

object’s property is incremented or decremented by a set amount. You can

also use a variable for the value. When you use a variable for a value, you can

modify the variable to change the amount the property is incremented of

decremented by. For example, you can speed up an object by increasing the

value of a variable when a key is clicked.

Figure 9-2: You create an expression to increment or decrement a property

value by a given amount.

g3687-7 ch09.F 6/12/02 9:06 AM Page 172

173Chapter 9 ✦ Generating ActionScript to Modify Objects

Getting an object’s properties
You can use the properties of an object to modify other objects in your movie.

For example, if you have a movie clip with an object that can be dragged exactly

100 pixels along the x axis, you can use the _x property of the object to control the

volume of a sound in your movie. When the object’s _x property is 0, the sound

cannot be heard; when the value of _x property changes to 100, the sound plays at

full volume. The _x property changes as the object is being dragged; therefore, you

can use a variable to record the property of the object and modify the sound.

You find out how to make a sound controller in Chapter 13.

You can get an object’s property using two methods. You can address the object

directly by referring to its target path, or you can use the getProperty function.

The resulting code for both methods is shown in Listing 9-3.

Listing 9-3: Getting an Object’s Properties

// The following line of code addresses the clip target path to get a property
yPos = _root.sphereClip._y;
// The following line of code uses the getProperty function to return the

property
yPos = getProperty(_root.sphereClip,_y);

Both examples in the previous listing retrieve the same result. When you get an

object’s property, you set it equal to a variable so that as the property changes, the

value of the variable also changes. To address the clip directly by its path, do the

following:

1. Select the object or keyframe where you want the action to occur.

2. Click Actions➪Variables and then double-click set variable.

3. In the Variable field, enter a name.

Choose a name that reflects the property you are retrieving. In the previous

example, the variable’s value is equal to _y property of the movie clip, hence

the name yPos.

4. Click inside the Value field, click the Insert a Target Path button, and from the

Target Path dialog box, click the button that corresponds to the movie clip

you whose property you want to use in your script. Then close the Insert

Target Path dialog box.

5. In the Value field, type a dot (.) to the right of the target path.

Cross-
Reference

g3687-7 ch09.F 6/12/02 9:06 AM Page 173

174 Part III ✦ Creating ActionScript Elements for Your Movie

6. Enter the property you want the variable to return. In the above example, the

sphereClip’s _y property is returned by the yPos variable. If you’re not sure of

the proper syntax for a property, position your cursor to the right of the dot,

open the Properties book, and then double-click the property you want the

variable to return.

You can also use the getProperty function to return the value of an object’s

property. This function is not as easy to use as the setProperty action because

the getProperty function does not have object properties listed on a menu. You’ll

probably find it easier to address the movie clip target directly and then choose the

desired property from the Properties book (as outlined in the previous steps).

If you prefer to use the getProperty function, follow these steps:

1. Select the object or keyframe where you want the action to occur.

2. Click Actions➪Variables and then double-click set variable.

3. In the Variable field, enter a name that reflects the type of property the

variable is returning.

4. Click inside the Value field and in the left pane of the Actions panel, click

Functions and then double-click getProperty. The function is added to your

script and the Value field getProperty() appears.

5. Place your cursor between the parentheses and click the Insert a Target Path

button to add the movie clip’s target path to the script.

6. To the right of the movie clip’s path, type a comma and then enter the property

you want the variable to return. If you’re not sure of the syntax, in the left pane

of the Actions panel, click Properties and then double-click the applicable

property. Figure 9-3 shows a variable whose value is set using the getProperty
function to return an object’s property.

Figure 9-3: Getting an object’s property with the getProperty function.

g3687-7 ch09.F 6/12/02 9:06 AM Page 174

175Chapter 9 ✦ Generating ActionScript to Modify Objects

Using the Color Object
You can also use ActionScript to modify the colors of objects in your designs. When

you modify an object’s color, you work with the Color object. The Color object has

methods that allow you to modify an object. The Color object has the following

methods:

✦ getRGB: Returns the value of the last color transform applied to an object in

hexadecimal format.

✦ getTransform: Returns the parameters used the last time an objects color was

transformed using the setTransform method.

✦ setRGB: Sets the color of an object as specified in hexadecimal format.

✦ setTranform: Sets the transformation parameters for a color transform object.

Creating a Color object
When you modify the color characteristics of an object in your design using the

Color object, you must first create an instance of the Color object. When you create

an instance of the Color object, you specify the target path of the movie clip

instance to be transformed.

To create a Color object:

1. Select the object or keyframe that will be used to trigger the change.

2. Click Actions➪Variables and then double-click set variable.

3. In the Variable field, enter a name for the Color object.

4. Click Actions➪Objects➪Movie➪Color and then double-click newColor.

The action is added to your script and your cursor is flashing between

parentheses.

5. Enter the target path to the movie clip that will be linked to the Color object.

6. Click the Expression checkbox.

That’s the first step in modifying an object’s color characteristics. After you set up

an instance of the Color object, you use one of the methods to modify the color of

the movie clip linked to the Color object.

Modifying an object’s color
After you create a Color object, you can use the setRGB method to change an

object’s color by specifying a new color value in hexadecimal format, or you can

use the setTransform method to modify the color characteristics of the original

g3687-7 ch09.F 6/12/02 9:06 AM Page 175

176 Part III ✦ Creating ActionScript Elements for Your Movie

object and then transform them. You use the setRGB method to modify a solid color

and the setTransform method to tint a multi-colored object such as a bitmap image

or a vector object with a gradient fill.

Using the setRGB method to modify a solid color
You use the setRGB method of the Color object to transform a solid color to a new

hexadecimal value. If you use the setRGB method with a multicolored object, the

entire object is transformed to the color specified.

To modify an object’s color using the setRGB method:

1. Create an instance of the Color object as outlined previously.

2. Click Objects➪Movies➪Colors➪Methods book and then double-click setRGB.

The method is added to the script and two parameter text boxes open.

3. In the Object field, enter the name of the Color object the method will be used

with. This is the Color object you created an instance of as outlined in the

previous section.

4. In the Parameters field, enter the hexadecimal value of the color you want to

set using the following format: 0xRRGGBB.

The 0x informs the Flash Player that the numbers are in hexadecimal format.

RR is the hexadecimal value of red, GG the hexadecimal value of green, and BB

the hexadecimal value of blue. You can enter any combination of letters from

a through f; numbers from 0 through 9. For example, the proper syntax to

convert an object to bright red is 0xFF0000.

If you’re not sure of the hexadecimal value of the color you want to apply, choose
Window➪Color Mixer to open the Color Mixer panel. Click the swatch in the Fill
Color well and choose a color from the palette. If you work with the Color Mixer
expanded to show all windows, the hexadecimal value of the selected color is
displayed below the Color Sample window.

5. Click the Expression checkbox. When the movie is published and the event to

trigger the setRGB method occurs, the object will be changed to the colors

specified.

You work with the setRGB method in Chapter 12.

Using the setTransform method to tint an object
When you want to transform the color characteristics of a multi-hued object, use

the setTranform method. If you’ve used the Advanced Color effect in the Property

inspector to transform an object, the process is similar. You can modify eight sets

Cross-
Reference

Tip

g3687-7 ch09.F 6/12/02 9:06 AM Page 176

177Chapter 9 ✦ Generating ActionScript to Modify Objects

of parameters. You use four of the parameters to vary the percentage of red, green,

blue, and alpha in the original color, and four sets of parameters to specify the

offset values of the original color. The offset values for the red, green and blue

components correspond to the 8-bit, 256-color model. Each of the parameters is

described in the following list:

✦ ra: Specifies the percentage to change the red component. Acceptable values

are from –100 to 100.

✦ rb: Specifies the amount to offset of the red component. Acceptable values are

from 255 to 255.

✦ ga: Specifies the percentage to change the green component. Specify a value

from –100 to 100.

✦ gb: Specifies the amount to offset the green component. Specify a value from

–255 to 255.

ba: Specifies the percentage to change the blue component. Use a value

between –100 and 100.

✦ bb: Specifies the amount to offset the green component. Use a value between

–255 and 255.

✦ aa: Specifies the percentage to change the alpha component. Acceptable

values are from –100 to 100.

✦ ab: Specifies the amount to offset the alpha component. Acceptable values are

from –255 to 255.

It may help to think of these changes as before and after. The percentage values

modify the values in the original color. They either add or remove a percentage of

the component. This is similar to adjusting an object’s color characteristics in an

image editing program such as Photoshop. The offset values are the equivalent of

tinting an object. For example, if you specify a value of 255 for the rb setting, it’s the

equivalent of applying a red tint over an object.

Before you decide on what settings to use with the setTransform method, select
the movie clip and open the Property inspector. Click the triangle to the right of
the Color field and choose Advanced from the drop-down menu. Click Settings to
open the Advanced Effect dialog box. Drag the sliders in the two columns until you
have the desired transformation. Jot the percentage figure for each component in
the left window. They correspond to the ra, ga, ba, and aa parameters. Write down
the offset values from the right column. These correspond to the rb, gb, bb, and ab
settings. After getting the values, be sure to choose None from the Color field as
you want to use ActionScript to transform the color. The Advanced Color effect will
yield a larger file size than if you apply the change with ActionScript.

When you use the setTransform method to tint a bitmap, you need to create a new

object. The object passes the transformation data to the Color object.

Tip

g3687-7 ch09.F 6/12/02 9:06 AM Page 177

178 Part III ✦ Creating ActionScript Elements for Your Movie

To tint an object with the setTransform method, do the following:

1. Create a Color object as previously outlined.

2. Click Actions➪Variables book and double-click set variable.

3. In the Variable field, enter a name for the color transformation object.

A logical choice is myColorTransformation.

4. Click inside the Value field and then in the left pane of the Actions panel, click

Objects➪Core➪Objects.

5. Double-click newObject.

After you create the color transformation object, you need to specify the

parameters for the transformation. There are two different ways to do this.

You can specify each parameter individually by creating an expression. This

is handy when you’re just modifying one or two parameters. For example,

to apply a light blue tint to a bitmap, you need to use only the bb parameter.

If you’re modifying all the parameters, you create a single expression. The

following list shows both ways of specifying the parameters for a transformation.

The last item on the last specifies a value for each parameter, while the other

items address a single parameter.

• myColorTransform.ra=75

• myColorTransform.rb=175

• myColorTransform.ga=25

• myColorTransform.gb=215

• myColorTransform.bb=65

• myColorTransform.bb=240

• myColorTransform.aa=-52

• myColorTransform.ab=15

• myColorTransform={ ra: ‘80’, rb: ‘204’, ga: ‘30’, gb: ‘212’, ba: ‘12’, bb:’90’,

aa: ‘40’, ab: ‘70’}

6. Click Actions➪Miscellaneous Actions book and then double-click evaluate.

The Expression parameter box appears (see Figure 9-4).

7. In the Expression field, type myColorTransform and then use one of the

methods outlined in Step 5 to set the parameters.

• You address individual parameters by typing a dot (.) after the

parameter followed by an equals sign (=) and then the value.

• If you use the last method outlined in Step 5, enter the equals sign (=)

and then curly braces. Between the curly braces, list each parameter is

followed by a colon and the parameter value, which is enclosed in single

quotes.

g3687-7 ch09.F 6/12/02 9:06 AM Page 178

179Chapter 9 ✦ Generating ActionScript to Modify Objects

8. Click Objects➪Movie book➪Color book➪Methods book and then double-click

setTransform.

The action is added to the script and two parameter text boxes appear above

the Script pane.

9. In the Object field, enter the name of the Color object linked to the movie clip

you’re transforming.

10. In the Parameters field, enter the name of the color transformation object you

created in Step 7.

When the movie is published and the event that triggers the code occurs, the

object is transformed to the parameters of the color transformation object.

Figure 9-5 shows a typical script using the setTransform method. Figure 9-6

shows four bitmaps. The original is in the upper-left corner; the other three

have been transformed using the setTransform method.

Figure 9-4: You use the setTransform method to modify a bitmap’s colors.

In this chapter’s folder on the CD-ROM, you’ll find a file called colorComponents.fla.
Open the document Library and you’ll find two components. You can add the
setRGB component to a movie clip that includes a graphic with a solid fill. After
adding the component to the movie clip, open the Property inspector and click
the color swatch to specify the color you want the object to change to. You can use
the setTransform component in a movie clip that has a bitmap object whose color
characteristics you want to modify. If you use the component more than once in a
document, give each instance a unique name.

On the
CD-ROM

g3687-7 ch09.F 6/12/02 9:06 AM Page 179

180 Part III ✦ Creating ActionScript Elements for Your Movie

Figure 9-5: You can achieve some interesting effects by modifying an object’s color
properties.

Using the Key Object
When you program a button, you can get it to accept keyboard input using the Key

object. You can also program a movie clip to execute when a key is pressed using

the Key Down or Key Up events. When your design calls for different things to

happen based on a user’s keyboard input, you use methods of the Key object. For

example, you can program an object to do different things by using the Arrow keys

as triggers. If the up arrow key is pressed, one thing happens; when the Down arrow

key is pressed something different happens, and so on.

When you use the Key object, you create a conditional statement. If a certain key is

pressed, the actions that follow occur. The actions that occur can be anything from

an object moving to images appearing from off Stage. You can even use the Key

object to load additional content. You can have a key press as a button event, and a

key press can also be used to trigger actions in a movie clip. With a button mouse

event or a clip event, you can only use one key as a trigger. When you use the Key

3 4

1 2

g3687-7 ch09.F 6/12/02 9:06 AM Page 180

181Chapter 9 ✦ Generating ActionScript to Modify Objects

object, you can use multiple keys for your ActionScript. You can address each

key by its key code or take the easy way out and use one of the constants that

addresses most of the popular keys you’d use in ActionScript, for example the

arrow keys, Page Up, Page Down, spacebar, and so on.

You can use the Key object with other actions on a keyframe; however, you need to

loop back and forth between two keyframes. If you don’t loop back and forth, Flash

will execute the action once when the keyframe is reached and not read additional

key presses. A better way to use the Key object is with a single-frame movie clip

using the onFrameEnter event. Flash executes the script every time the frame is

entered.

To use the Key object in a script, do the following:

1. Select the object or keyframe that you want to use to trigger the script. Your

best bet is to use a movie clip and use the onEnterFrame clip event.

2. Click Actions➪Conditions/Loops and double-click if.

The action is added to your script and the Condition parameter text box

opens.

3. Click Objects➪Movie➪Key➪Methods and double-click isDown.

The text Key.isdown() appears in the Condition parameter box and your

cursor flashes between the parentheses.

4. In the left pane of the Actions panel, click Objects➪Movie➪Key➪Constants

and then double-click the key you want to trigger the actions that follow.

5. Create the code you want to execute when the key is pressed. The code in

Listing 9-4 makes it possible for the user to navigate the movie clip the code is

assigned to by clicking one of the arrow keys. Notice that an expression has

been used to increment or decrement the object’s _x or _y property. By

pressing the two of the arrow keys that trigger the objects movement in

different axes, diagonal movement occurs.

Listing 9-4: Creating Movement with the Arrow Keys

//the right arrow key moves the object right in 5 pixel increments
if (Key.isDown(Key.RIGHT)) {
this._x+=5;

}
//the left arrow key moves the object left in 5 pixel increments
if (Key.isDown(Key.LEFT)) {
this._x-=5;

}
//the up arrow key moves the object up in 5 pixel increments
if (Key.isDown(Key.UP)) {

Continued

g3687-7 ch09.F 6/12/02 9:06 AM Page 181

182 Part III ✦ Creating ActionScript Elements for Your Movie

Listing 9-4 (continued)

this._y-=5;

}
//the down key moves the object down in 5 pixel increments
if (Key.isDown(Key.DOWN)) {
this._y+=5;

}

You can create additional statements that rotate the object if, for example, the right

and up arrow keys are pressed at the same time.

Duplicating an Object Using the
duplicateMovieClip Action

Before you used ActionScript to add a little magic to your designs, you probably

dragged instances of graphic symbols from the document Library and put them

through their paces using motion tweening. With ActionScript, you can create a

screen full of moving objects with a few lines of code.

When you need to create one or several clones of a movie clip, use the

duplicateMovieClip action. The duplicateMovieClip action takes a movie clip

and creates the number of duplicates you specify. Combined with a while loop, this

action is a powerful addition to any designer’s arsenal. Figure 9-6 shows the action

in use to create multiple copies of a bitmap image.

When you use the action, the duplicated movie clip begins playing on its first frame,

no matter what frame of the parent clip is playing when the duplicate is created.

The action has parameters that you use to specify the name of the duplicated clips

as well as the depth, or number of copies you want to create. (In Chapter 16, you

use the action to create a background of twinkling stars.)

Listing 9-5 shows the action used to create 20 duplicates with a while loop.

Listing 9-5: Using the duplicateMovieClip Action

k = 0;
while (k<20) {
duplicateMovieClip(“Sphereclip”, “Sphereclip”+k, k);
k = ++k;

}

g3687-7 ch09.F 6/12/02 9:06 AM Page 182

183Chapter 9 ✦ Generating ActionScript to Modify Objects

Figure 9-6: You create duplicates of an object with the duplicateMovieClip action.

Chapter Project: Creating an Interactive
Animation

In Chapter 9, you learned to create conditional statements. In this chapter, you

learned how to use keyboard input to trigger actions. In this project, you’ll combine

both of these skills to create an interactive animation.

Locate the submarine.fla file in this chapter’s folder on the CD-ROM that accom-
panies this book. Copy the file to your hard drive and use your operating system to
disable the file’s read-only attributes.

In this project, you’ll be animating a submarine (see Figure 9-7) by creating code

that checks for a key press. The arrow keys will be used to navigate the submarine.

You won’t be creating each and every line of code. Much of the script has been

written for you. You will create a conditional statement that checks for a key press

and moves the sub in a specific direction.

To create an interactive animation:

1. Launch Flash and open the file submarine.fla. The file consists of a solitary

submarine on a sea bottom.

On the
CD-ROM

g3687-7 ch09.F 6/12/02 9:06 AM Page 183

184 Part III ✦ Creating ActionScript Elements for Your Movie

2. Select the submarine and open the Actions panel.

You see several lines of code have been created for you. Notice that the first

lines of code use the load clip event. This initializes the variable speed. The

next several lines of code check to see if one arrow key is pressed and the

opposite arrow key is not pressed. This code determines the direction and

rotation of the submarine. You’ll be creating a few lines of code to move the

submarine towards the top of the Stage.

3. Place your cursor over the line of code that reads // Check for keys that
are pressed, set direction and rotation.

4. Click Actions➪Conditions/Loops book and double-click if.

5. Place your cursor in the Condition field, and in the left pane of the Actions

panel, click Object➪Movie➪Key➪Methods and then double-click isdown.

The action is added to your script and in the Conditions field, your cursor is

flashing between parentheses.

6. In the left pane of the Actions panel, open the Constants book and double-

click UP.

The words Key.Up appear between the parentheses.

7. In the Conditions field, click to the right of the parenthesis, type a space and

then type && !

You may recognize the double ampersand (&&) as the logical AND operator

from Chapter 8. The single exclamation point is the Logical NOT Operator.

It checks for the reverse of the next condition in the statement.

8. In the left pane of the Actions panel, Object➪Movie➪Key➪Methods double-

click isdown.

9. In the left pane of the Actions panel, click Object➪Movie➪Key➪Constants and

then double-click Down. (At this point, you may find it convenient to close one

or two of the books to make navigating the Actions panel a bit easier.)

10. Click Actions➪Miscellaneous Actions and double-click evaluate.

The Expression pane appears above the Script pane.

11. In the Expression field, type the following code: _y- = speed

This line of code decrements the _y property of the movie clip by the value of

the variable speed.

12. In the Script pane, click the line of code you just created.

13. In the left pane of the Actions panel, double-click evaluate.

g3687-7 ch09.F 6/12/02 9:06 AM Page 184

185Chapter 9 ✦ Generating ActionScript to Modify Objects

14. In the Expression field, type the following code: _rotation = 0

This line of code sets the rotation of the sub to 0 degrees when the up arrow

key is pressed. Your finished code should look like this:

if (Key.isDown(Key.UP) && !Key.isDown(Key.DOWN)) {
_y -= speed;
_rotation = 0;

}

15. Close the Actions panel and then choose Control➪Test Movie.

After Flash publishes the movie and opens it in another window, press any of

the arrow keys to set the sub in motion. After the sub is moving, press the

right arrow key and the up arrow key. Notice that the sub veers to the right.

When the sub moves beyond the range of the movie, it pops out on the other

side. The sub’s moving at a snail’s pace, though. Press the Shift key to kick it

into overdrive; press the spacebar to slow it back down again. After you’re

finished navigating your yellow submarine, save your work and study the

complete code for the movie clip, as shown in Listing 9-6.

Figure 9-7: To animate the submarine, you use the Key object.

g3687-7 ch09.F 6/12/02 9:06 AM Page 185

186 Part III ✦ Creating ActionScript Elements for Your Movie

Listing 9-6: Setting the Sub in Motion

onClipEvent (load) {
// sets initial speed
speed = 2;

}
onClipEvent (enterFrame) {
// Check for keys that are pressed, set direction and rotation
if (Key.isDown(Key.UP) && !Key.isDown(Key.DOWN)) {
_y -= speed;
_rotation = 0;

}
if (Key.isDown(Key.RIGHT) && !Key.isDown(Key.LEFT)) {
_x += speed;
_rotation = 90;

}
if (Key.isDown(Key.DOWN) && !Key.isDown(Key.UP)) {
_y += speed;
_rotation = 180;

}
if (Key.isDown(Key.LEFT) && !Key.isDown(Key.RIGHT)) {
_x -= speed;
_rotation = 270;

}
// Sets diagonal motion if 2 keys are pressed
if (Key.isDown(Key.LEFT) && Key.isDown(Key.UP) && !Key.isDown(Key.RIGHT) &&

!Key.isDown(Key.DOWN)) {
_rotation = 315;

}
if (Key.isDown(Key.RIGHT) && Key.isDown(Key.UP) && !Key.isDown(Key.LEFT) &&

!Key.isDown(Key.DOWN)) {
_rotation = 45;

}
if (Key.isDown(Key.LEFT) && Key.isDown(Key.DOWN) && !Key.isDown(Key.RIGHT) &&

!Key.isDown(Key.UP)) {
_rotation = 225;

}
if (Key.isDown(Key.RIGHT) && Key.isDown(Key.DOWN) && !Key.isDown(Key.LEFT) &&

!Key.isDown(Key.UP)) {
_rotation = 135;

}
// Checks to see if sub is out of range and changes x or y property so sub

appears on the other side of the stage
if (_x<5) {
_x = 435;

}
if (_x>435) {
_x = 5;

}
if (_y<5) {
_y = 435;

g3687-7 ch09.F 6/12/02 9:06 AM Page 186

187Chapter 9 ✦ Generating ActionScript to Modify Objects

}
if (_y>435) {
_y = 5;

}
// Increases and decreases sub speed
if (Key.isDown(Key.SHIFT)) {
speed = 7;

}
if (Key.isDown(Key.SPACE)) {
speed = 2;

}
}

As you study the above listing, you’ll see several comments (the text preceded by

two forward slashes) that explain what the following lines of code accomplish. All

of the code that sets the sub in motion follows the enterFrame clip event. When you

use the enterFrame clip event with a single frame movie clip, Flash continually

reevaluates the code that follows.

Designer Notes
In this chapter, you learned to modify objects by changing their properties. Modifying

an object’s color characteristics was another key topic in this chapter. You were

introduced to the duplicateMovieClip action, which you’ll use in upcoming

chapters to create eye candy for your Flash designs. You also learned to generate

action after a key is pressed. The chapter project combined your knowledge of

conditional statements with the Key object to create an interactive animation. In the

next chapter, you learn to work with dynamic and input text objects.

✦ ✦ ✦

g3687-7 ch09.F 6/12/02 9:06 AM Page 187

g3687-7 ch09.F 6/12/02 9:06 AM Page 188

Designing
Interactive
Navigation

One of the most important parts of any design is the nav-

igation. Navigation should be intuitive for the novice

Web user, yet at the same time have enough bells and whistles

to entertain experienced Web surfers. In this chapter, you

learn how to create navigation that appeals to both types of

users. You also learn the importance of breaking a movie

down into scenes. If you’ve ever toiled over creating several

symbols to create navigation for a site, you’ll appreciate the

quick and simple way to create a navigation (also called nav)

bar. To add interesting variation to your designs, consider

adding an animated button, a technique you’ll learn before the

end of the chapter. And if your designs are viewed by Web

surfers from the old school who prefer to navigate with their

browser’s Back and Forward buttons, you’ll learn to harness a

new Flash MX feature known as the named anchor. When you

add named anchors to your design, users can navigate

between named anchors by clicking the Back or Forward but-

tons in their Web browser.

The Actions panel’s got lots of books. And some of these
books have books within a book. To add some actions to
your scripts, you have to click this book icon, then click that
book icon, then click another book icon, and so on. Rather
than bore you with a lot of words, I’m going to show the
path to each action as shown in the following example:
Click Actions➪Movie Control and then double-click goto.

Navigating to Scenes
When you create a movie that uses an introduction before the

main movie, you can save yourself a lot of time by breaking

the movie into scenes. Breaking a movie into scenes makes it

easier to find objects, especially if you end up adding a lot of

Note

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Breaking a movie
into scenes

Working with named
anchors

Creating a
navigation bar

Designing an On
When Pressed button

Creating an
animated button

Chapter project:
Creating a flyout
menu

✦ ✦ ✦ ✦

g3687-7 ch10.F 6/12/02 9:06 AM Page 189

190 Part III ✦ Creating ActionScript Elements for Your Movie

frames to the design. If the movie is large enough to warrant a preloader, that’s yet

another reason to break the movie into scenes. If the movie has a logical beginning,

middle, and end (meaning, for example, an introduction, the main movie, and an

exiting trailer), break the movie into three scenes. If you’ve created a particularly

compelling introduction, you can create a button to replay the introduction.

You can break a movie into scenes like you’d break a Web design into separate

pages. Create a separate scene for each section of the movie and create a naviga-

tion menu viewers can use to navigate from scene to scene.

Adding a scene
You can add a scene to a movie at any time. When you add a scene to a movie,

you’ve got a blank Stage and a single timeline with one keyframe. Consider adding a

scene whenever you reach a logical breaking-off point or if the sheer magnitude of

frames is more than you’re willing to deal with on one timeline.

To add a scene to your movie: do one of the following:

1. Choose Insert➪Scene. A new scene is added to your movie.

2. Choose Window➪Scene to open the Scene panel shown in Figure 10-1 and

then click the Add Scene button that looks like a plus sign (+).

Figure 10-1: You can create separate scenes for
your designs.

Naming a scene
When you add a scene to a movie, it is given the default name of Scene followed by

the next available number. While this is perfectly logical, the name is not very intu-

itive, especially if you’re working with other designers. Whichever way you go

about adding a scene to a movie, you use the Scene panel to name it.

To name a scene:

1. Choose Window➪Scene.

2. Double-click the scene name. A text box appears and the current scene name

is highlighted.

3. Type a new name for the scene and press Enter or Return.

g3687-7 ch10.F 6/12/02 9:06 AM Page 190

191Chapter 10 ✦ Designing Interactive Navigation

Navigating to a scene
After you have a movie divided into scenes, you can quickly navigate from one

scene to another as needed. There are three methods you can use to navigate to a

scene.

To navigate to a scene, do one of the following:

✦ Choose View➪Go To and choose a scene name from the submenu.

✦ Choose Window➪Scene to open the Scene panel and then click the scene

name.

✦ Click the Scene button (looks like a movie clapper) and select a scene from

the menu, as shown in Figure 10-2.

Figure 10-2: You can navigate to a scene by choosing it from this menu.

Deleting a scene
After you break a movie into scenes, you may find a scene is no longer needed. You

can delete a scene at any time. You can delete a scene in one of two ways.

Scenes in movieScene button

g3687-7 ch10.F 6/12/02 9:06 AM Page 191

192 Part III ✦ Creating ActionScript Elements for Your Movie

To delete a scene:

✦ Navigate to a scene and then choose Insert➪Remove Scene.

✦ Choose Window➪Scene to open the Scene panel. Select the scene name and

then click the Delete button, which looks like a trash can.

After you choose to delete a scene, you are prompted to confirm the deletion. Click

OK to delete the scene from your design.

Duplicating a scene
You can duplicate a scene when it becomes necessary to create a new scene with

elements from the preceding scene. This option is useful when, during the planning

stage of your design, you decide to break a movie into scenes. Create the main

scene with all the elements that will be used in every scene; for example, the

movie’s banner and navigation buttons. Duplicate the scene as needed and change

the scene name to reflect what the scene does. Remember, you can use the scene

name when creating ActionScript for navigation. Remembering a unique scene

name is easier than remembering which scene number the navigation button needs

to link to.

To duplicate a scene, do the following:

1. Choose Window➪Scene to open the Scene panel.

2. Select the scene you want to duplicate.

3. Click the Duplicate Scene button.

4. Name the scene.

5. Close the Scene panel.

Rearranging scene order
When you add several scenes to a movie, the Flash Player rolls the scenes in the

order they were created. If you decide that the order in which the scenes play

needs to be changed, you can quickly rearrange the order of scenes from within the

Scene panel.

To rearrange the order of scenes:

1. Choose Window➪Scene to open the Scene panel.

2. Select the name of the scene whose order you need to rearrange.

3. Drag the name to a different position in the list. Drag up the list to play the

scene earlier, down to play it later.

g3687-7 ch10.F 6/12/02 9:06 AM Page 192

193Chapter 10 ✦ Designing Interactive Navigation

Using Named Anchors
If the audience viewing your design is from the old school, you may find it beneficial

to take advantage of a new feature in Flash MX: named anchors. You can add a

named anchor to any keyframe, and it will serve as a navigation device that can be

accessed through the user’s Web browser.

Creating a named anchor
When you need to create a named anchor, it’s done in the same manner as labeling

a frame. If you’ve created the document using scenes, you can create a named

anchor at the beginning of each scene. If you’ve created a particularly compelling

introduction (or intro as Flash designers are fond of calling them), you can create a

named anchor at the beginning of the intro.

To create a named anchor:

1. Select the keyframe you want the viewer to navigate to when clicking the

browser Back or Forward button. Remember, you can use a named anchor

only on a keyframe. If you attempt to add it to a regular frame, it is applied to

the previous keyframe.

2. Click the arrow to the left of the word Properties to open the Property

inspector.

3. In the <Frame Label> field, enter a name for the anchor.

4. Click the Named Anchor checkbox.

5. Continue labeling frames you want to be named anchors.

After you create the named anchors, you must choose the proper template before

publishing the document or testing the named anchors (by choosing File➪Publish

Preview➪HTML).

Publishing a document with named anchors
When you create a document with named anchors, you must choose the proper

template; otherwise, the named anchors will not work. Before you test or publish

your document, you can modify the publish settings in order for the named

anchors to be functional.

To modify the settings of a document with named anchors:

1. Choose File➪Publish Settings to open the Publish Settings dialog box.

By default, all Flash documents are published as Flash *.SWF files embedded

in an HTML document. When the dialog box opens, you have three tabs:

Formats, Flash, and HTML.

g3687-7 ch10.F 6/12/02 9:06 AM Page 193

194 Part III ✦ Creating ActionScript Elements for Your Movie

2. Click the HTML tab to open the HTML section of the dialog box.

3. Click the triangle to the right of the Template field, and from the drop-down

menu, choose Flash with Named Anchors (see Figure 10-3).

Figure 10-3: You must choose the proper template to
activate named anchors.

Creating an On When Pressed Button
If you create designs with buttons that require viewers to frequently click them,

viewers quickly become bored and wander off to view someone else’s handiwork.

For example, if you create a scrolling text block using a standard button, viewers

must click the button each time they want to advance to another line in the docu-

ment. A much more elegant solution is to create a button that is continually active

when pressed. The ActionScript to create an On When Pressed button is surpris-

ingly simple. All you have to do is nest the button in a movie clip and create a

Boolean expression.

To create an On When Pressed button:

1. Choose Insert➪New Symbol to open the Create New Symbol dialog box.

Choose the button behavior and click OK to enter symbol-editing mode.

2. Create a button.

You can use as many states as needed to create the button. After you create

the button, click the Back button to exit symbol-editing mode and add the but-

ton to the document Library.

3. Choose Insert➪New Symbol to open the Create New Symbol dialog box.

g3687-7 ch10.F 6/12/02 9:06 AM Page 194

195Chapter 10 ✦ Designing Interactive Navigation

4. Enter a name for the symbol, choose the Movie Clip behavior, and then click

OK to enter symbol-editing mode.

5. Open the document Library and drag an instance of the button symbol you

created in Steps 1 and 2 into the movie clip.

6. Center the button to Stage using the Align panel.

7. With the button still selected, click the arrow to the left of the word Actions.

8. In the left pane of the Actions panel, click Actions➪Variables and then double-

click set variable.

9. In the Variable field, type clicked.

10. In the Value field, type true and click the Expression checkbox.

11. Click the first line of code to select it and change the event handler to Press.

12. Repeat Steps 8 through 10 using the set variable action to set the value of

clicked to false. Accept the default release event handler. Your code should

look like Listing 10-1.

13. Click the Back button to return to movie-editing mode.

Listing 10-1: Creating Code for an On When Pressed Button

on (press) {
clicked = true;

}
on (release) {
clicked = false;

}

The code in Listing 10-1 sets the value of clicked to true as long as the button is

pressed. When the button is released, the value of clicked is false. To finish creating

an On When Pressed button, you program the movie clip the button is nested in.

To program the movie clip, you use a conditional statement. A conditional statement
evaluates a statement, and if the condition is true, executes the code that follows. If

the statement evaluates as false, the next bit of code executes.

To program the movie clip, do the following:

1. Click the arrow to the left of the word Actions.

2. In the left pane of the Actions panel, click Actions➪Conditions/Loops and

double-click if.

The action is added to your script and the Condition field appears above the

Script pane.

g3687-7 ch10.F 6/12/02 9:06 AM Page 195

196 Part III ✦ Creating ActionScript Elements for Your Movie

3. In the Condition field, type clicked.

That’s all that’s needed. You don’t have to create a statement like clicked=true.

Flash knows that the clicked variable is a Boolean expression. To create a

statement to evaluate if the button isn’t clicked, you use the Logical NOT

operator discussed in Chapter 9 and create a statement that reads !clicked.

4. Create the code that executes when the button is clicked.

5. Click the first line of code and choose the EnterFrame clip event.

When you choose the EnterFrame clip event, Flash executes the code in the

movie clip every time the frame is entered, which is just what you want. When

the user presses the mouse button and holds it down, the script is executed

until the button is released, upon which time the Boolean value of clicked is

false. Listing 10-2 shows a script that continually scrolls a block of text while a

button is clicked. You’ll be creating a scrolling text box in Chapter 11.

Listing 10-2: Programming the Movie Clip

onClipEvent (enterFrame) {
if (clicked) {
_root.ScrollBox.scroll+=1; }

}
}

Creating a Navigation Bar
In your role as a designer, you’ve probably created quite a few navigation bars for

your HTML designs. Navigation bars in Flash are similar; however, you can take

advantage of symbols to streamline your work. As you may know, symbols are

reusable graphic objects. When you create a button symbol for a navigation bar, it

uses the same shape with different text. Therefore, you can streamline your work

by creating a template for the button and a template for the button label. After you

create the template, it’s a simple matter of duplicating each template, giving it a dif-

ferent name and editing the contents.

When you plan a movie that will have a navigation bar, create the document to suit

the navigation bar. For example, if your client needs you to design a movie with six

buttons and you decide a navigation bar is the way to go, you’ll need to create a

document 600 pixels wide and six buttons 100 pixels wide. The font size you use for

the text label is dictated by the longest word. In this case, choose a font size that

keeps the width of the label less than 95 pixels to allow for space between the label

and the border of the button

g3687-7 ch10.F 6/12/02 9:06 AM Page 196

197Chapter 10 ✦ Designing Interactive Navigation

Creating a label template
The first step is to create the label template. You choose the Graphic behavior for

the label and then duplicate it as needed for the other labels in your navigation bar.

To create a label template:

1. Choose Insert➪New Symbol.

The Create New Symbol dialog box appears.

2. Choose the Graphic behavior and enter a name for the symbol.

Choose the same name that will appear on the navigation bar. This makes it

easier to keep track of the symbol in a crowded document Library.

3. Click OK to enter symbol-editing mode.

4. Create the text for your label by choosing the desired font style, size, and

color. After you create the text, check the W: field in the Property inspector to

make sure the text is no wider than the button you’ll be creating for it.

5. Click the Back button to exit symbol-editing mode.

After you create the button template, open the document Library, select the symbol

you just created, and make enough duplicates for each button on the navigation

bar. When you duplicate each button, name it as it will appear on the navigation

bar. After you create the duplicates, edit each one, changing the text to read as it

will appear on the navigation bar.

Creating a button template
After you have all of your labels created, you create a button and nest one label

with the button. As a rule, a navigation bar uses a rectangular button. If you want a

border around the button choose a stroke that is 1 pixel wide when creating the

button shape. Be sure to choose a color that contrasts nicely with the button fill

color.

To create the button template:

1. Choose Insert➪New Symbol to access the Create New Symbol dialog box.

2. Choose the button behavior and enter a name for the button. Choose a name

that matches the first button on your navigation bar, for example, aboutButton.

3. Create the basic shape for the button.

4. Create a new layer.

5. Select the first frame in the new layer, open the document Library, and drag

an instance of the appropriate label on Stage.

6. Align the label to the center of the Stage.

g3687-7 ch10.F 6/12/02 9:06 AM Page 197

198 Part III ✦ Creating ActionScript Elements for Your Movie

7. Create additional frames for the other button states you want to use.

8. Modify the color and fill of the button shape for the other button states.

9. To modify the color of the label symbol, open the Property inspector, click the

triangle to the right of the Color field and choose Tint. Click the color swatch

and select a color from the pop-up palette.

Now that you have the first button created, you can quickly create the rest of the

buttons for your navigation bar by doing the following:

1. Open the document Library.

2. Select the button symbol you just created.

3. Click the Options menu icon in the upper right corner of the Library panel and

choose Duplicate. Alternately, you can right-click (Windows) or Ctrl+click

(Macintosh) and choose Duplicate from the drop-down menu.

4. In the Duplicate Symbol dialog box, enter a name for the symbol. Choose a

name that matches the button’s title, for example, servicesButton.

5. Create one duplicate for each button on your navigation bar.

6. After you duplicate the buttons, double-click each button to enter symbol-

editing mode.

7. Select the label symbol, open the Property inspector, and click the Swap

button to open the Swap Symbol dialog box (see Figure 10-4).

Figure 10-4: You can quickly swap the label symbol with
another from the document Library.

8. Select the appropriate label symbol for this button and click OK to swap the

symbol. If you created additional states for the button, select the keyframe,

select the symbol, and swap it. When you swap a symbol, any effect you

applied to the previous symbol is inherited by the new symbol.

9. Continue in this manner until you have swapped the label symbol for all dupli-

cated buttons.

g3687-7 ch10.F 6/12/02 9:06 AM Page 198

199Chapter 10 ✦ Designing Interactive Navigation

Swapping symbols is an easy way to quickly create several buttons. Instead of cre-

ating the shape for each button and then creating the text, you create the button

shape one time, duplicate the button, and swap the label. If you need to use the

label symbol in other parts of the movie, just drag an instance of it on Stage and

modify it to suit.

Building the navigation bar
After you create the buttons, drag them onto the Stage, select them, and then align

them with the Align panel. If the buttons are sized to fill the width of the movie,

click the Distribute horizontal center button and the Stage button to align the

buttons. A finished nav bar is shown in Figure 10-5.

Figure 10-5: You can quickly create a navigation bar by
duplicating a button symbol.

Creating an Animated Button
Buttons play a major art in many Flash designs. You can add variety to a basic but-

ton by changing the shape or changing the color of the shape in a different button

state. Rollover buttons are rather commonplace in Flash work and are expected by

the experienced Web surfer. You can take a rollover button a step further by nesting

a movie clip in the button’s Over state. The movie clip plays when users roll their

mouse over the button. If you use motion tweening or frame by frame animation in

the movie clip, the results are predictable after the button is rolled over a second

or third time. You can create a more interesting effect by randomly changing one or

more properties of an object with ActionScript.

To learn how to create an animated button with ActionScript, copy to your hard
drive the file Jittery.fla from this chapter’s folder on the CD-ROM that accompanies
this book. Use your operating system to disable the file’s read-only attribute.

On the
CD-ROM

g3687-7 ch10.F 6/12/02 9:06 AM Page 199

200 Part III ✦ Creating ActionScript Elements for Your Movie

Creating the movie clip
When you decide to add a button with random animation to your design, the first

step is to create the movie clip. Remember when you animate an object with

ActionScript, you animate an instance of a movie clip. Therefore, if you are animat-

ing a symbol already in your movie, you must nest the symbol in a movie clip. You

then create another movie clip and nest the previous movie clip in it and then use

ActionScript to animate the nested movie clip.

To create an animated movie clip:

1. Launch Flash and open the Jittery.fla file.

2. Choose Insert➪New Symbol to open the Create New Symbol dialog box.

3. Name the movie clip jittery, choose the Movie Clip behavior, and then click

OK to enter symbol-editing mode.

4. Choose Window➪Library to open the document Library.

5. Drag an instance of the aboutLabel symbol on Stage and then center it to

Stage with the Align panel.

6. Click the Back button to exit symbol-editing mode.

7. Choose Insert➪New Symbol to open the Create New Symbol dialog box.

8. Name the movie clip jitteryClip, choose the Movie Clip behavior, and click OK

to enter symbol-editing mode.

9. Open the document Library and drag an instance of the jittery movie clip you

created in Step 3 on Stage and then use the Align panel to center it to Stage.

10. Click the arrow to the left of the word Properties to open the Property

inspector.

11. In the <Instance Name> field, type Jitter

12. Click the next frame on the timeline, drag right to select an additional frame,

and press F6 to convert the selected frames to keyframes.

After you create the keyframes, it’s time to change one or more properties of the

movie clip. When you created the additional keyframes, you copied the instance of

the movie clip and preserved the instance name. You’ll be referring to the instance

name in your ActionScript as shown in the following section.

Creating the ActionScript to animate the label
To animate the label, in the first frame, you set the properties of the object to their

original states. In the second frame of the animation, you modify the property — for

example, increase the object’s _xscale property by a random percentage. In the

third frame, you loop the animation back to the first frame and the cycle begins

g3687-7 ch10.F 6/12/02 9:06 AM Page 200

201Chapter 10 ✦ Designing Interactive Navigation

anew. When you use ActionScript to animate an object, the change is instanta-

neous, meaning that it happens as soon as the actions execute. You can add a few

frames after the second frame to display the label with its changed properties, or

you can pause the movie at the frame for a random amount of time. (You do the lat-

ter by adding a user-defined timer component to the second frame that pauses the

movie for a random amount of time.)

To animate the label:

1. Select the first keyframe and then click the triangle to the left of the word

Actions.

2. In the left pane of the actions panel, click Actions➪Miscellaneous Actions and

then double-click evaluate.

The Expression field appears above the Script pane.

3. In the Expression field, type the following: Jitter._xscale=100

This line of code sets the _xscale property of the movie clip Jitter to 100 per-

cent. You don’t have to specify a target path for the movie clip as it is nested

within the movie clip you’re creating the ActionScript in.

4. Repeat Step 3 to set additional properties as shown in Listing 10-3.

Listing 10-3: Setting Other Properties of the Movie Clip

Jitter._yscale=100;
Jitter._x=0;
Jitter._y=0;
Jitter._rotation=0;

5. Select the second keyframe.

6. In the left pane of the Actions panel, click Actions➪Miscellaneous Actions and

then double-click evaluate.

7. In the Expression field, type the following code: Jitter._xscale+=Math.

random()*75. This line of code adds a random value between 0 and 75 to the

_xscale property of the movie clip Jitter. As you may remember, the random

method of the Math object generates a random number between 0 and 1.

Multiplying the result of the random method by another number generates a

random value between 0 and that number.

Now that you’ve modified the _xscale, you can modify other properties to ani-

mate the movie clip.

8. Repeat Step 7 to modify the _yscale, _x, and _y properties of the movie clip, as

shown in Listing 10-4.

g3687-7 ch10.F 6/12/02 9:06 AM Page 201

202 Part III ✦ Creating ActionScript Elements for Your Movie

Listing 10-4: Creating the Code to Change the Movie Clip’s
Properties

Jitter._yscale+=Math.random()*75;
Jitter._x+=Math.random()*3;
Jitter._y+=Math.random()*3;

The only property you haven’t modified is the movie clip’s rotation. You can

modify the rotation property by a given number of degrees to make the movie

clip rotate, but it will rotate in only one direction. To get the movie clip to

rotate clockwise and counterclockwise, you create a conditional statement.

9. In the left pane of the Actions panel, click Actions➪Conditions/Loops and

then double-click if.

The Condition field appears above the Script pane.

10. In the Condition field, type the following: Jitter._x<1.5

11. In the left pane of the Actions panel, click Actions➪Miscellaneous Actions and

then double-click evaluate.

12. In the Expression field, type the following: Jitter._rotation+=Math.random()*15

13. In the left pane of the Actions panel, click Actions➪Conditions/Loops and

then double-click else.

14. In the left pane of the Actions panel click Actions➪Miscellaneous Actions and

then double-click evaluate.

15. In the Expression field, type the following: Jitter._rotation-=Math.random()*15

Your code for the conditional statement should look like Listing 10-5

The conditional statement you just created checks to see if the value of the

movie clip’s _x property is less than 1.5. When it is, the _rotation property of

the movie clip is incremented by a random value between 0 and 15; in other

words, the movie clip rotates in a clockwise direction. If the value is greater

than 1.5, the _rotation property decrements by a random value between 0 and

15, rotating the movie clip in a counterclockwise direction.

Listing 10-5: Creating a Conditional Statement to Change
Rotation

if (Jitter._x<2) {
Jitter._rotation+=Math.random()*15;

} else {
Jitter._rotation-=Math.random()*15;

}

g3687-7 ch10.F 6/12/02 9:06 AM Page 202

203Chapter 10 ✦ Designing Interactive Navigation

16. Choose Window➪Library to open the document Library.

17. Drag the timer component anywhere on Stage.

18. Click the arrow to the left of the word Properties to open the Property

inspector.

19. In the Pause for: field, enter a value of .3

The component you just added to the movie clip will pause the movie on the

frame for a random amount of time equal to or less than the value entered in

the Pause for: field.

20. Select the third keyframe.

21. In the left pane of the Actions panel, click Actions➪Movie Control and then

double-click goto. Accept the default parameters to go to and play frame 1.

22. Click the Back button to exit symbol-editing mode.

After you exit symbol-editing mode, the symbol is added to the document Library.

To finish creating the animated button, you nest the movie clip in a button symbol.

Nesting the movie clip in a button symbol
To finish the project, you create a button. The movie clip will be added to the but-

ton’s Over frame. When the document is published as a *.SWF movie, the movie clip

will be playing in the background, but won’t be visible until viewers roll their mouse

over the button. Then the movie clip will randomly jitter away until the mouse is

rolled off the button.

To nest the movie clip in a button:

1. Choose Insert➪New Symbol to open the Create New Symbol dialog box.

2. Enter a name for the symbol, choose the Button behavior and then click OK to

enter symbol-editing mode.

3. Click the Up frame to select it and then choose Window➪Library.

4. Drag an instance of the aboutLabel symbol on Stage and use the Align panel to

center the symbol to Stage.

5. Select the first layer, right-click (Windows) or Ctrl+click(Macintosh) and then

choose Insert Layer from the context menu. Name the layer Movie clip.

6. Select the Over frame and press F7 to insert a blank keyframe.

7. Drag an instance of jitteryClip from the document Library on Stage and center

it with the Align panel.

8. Click the Back button to exit symbol-editing mode.

g3687-7 ch10.F 6/12/02 9:06 AM Page 203

204 Part III ✦ Creating ActionScript Elements for Your Movie

9. Drag an instance of the button on Stage and then choose Control➪Test movie.

After the movie is published, roll your mouse over the button. The label

should start randomly moving around. When you roll off the button, the

motion stops. If the motion wasn’t frenetic enough for your tastes, edit the

jitteryClip and change the value in the timer component’s pause for field.

Note that the actual object being animated is a symbol. By duplicating the movie

clips and button, and then swapping symbols, you can quickly create additional ani-

mated buttons.

Chapter Project: Creating a Flyout Menu
When you create a flyout menu, you combine the tried and true Flash animation sta-

ple known as motion tweening with ActionScript to create a menu that flies out when

summoned, and tucks neatly back into the interface after a button has been clicked.

When you create a flyout menu, you first create a navigation bar as outlined previ-

ously in this chapter. Create the code for what you want each button to do when

clicked. If you’re creating the flyout menu for a large Flash movie, use the loadMovie
action to load other content. You can also program the buttons to play movie clips.

To learn how to convert a navigation bar to a flyout menu, follow the upcoming steps.

To create the flyout menu project, copy to your hard drive the flyoutMenu.fla file
from this chapter’s folder on the CD-ROM that accompanies this book. Use your
operating system to disable the file’s read-only attribute.

1. Launch Flash and open the flyoutMenu.fla file.

The document contains a navigation bar and a Menu button, as shown in

Figure 10-6. If you were creating your own flyout menu, at this stage you’d

have each button programmed with the exception of the ActionScript needed

to activate the flyout menu.

2. Click the arrow to the left of the word Actions. After the Actions panel opens,

click the scroll bar to the right of the Stage and drag it so that both the

Actions panel and the buttons are visible, as shown in Figure 10-7.

3. Select the Services button and in the left pane of the Actions panel, click

Actions➪Movie Control and then double-click play.

The default release event is added to the script.

4. Select the three lines of code and then right-click (Windows) or Ctrl+click

(Macintosh) and select Copy from the context menu.

5. Click the Listings button and then in the Script pane, right-click (Windows) or

Ctrl+click (Macintosh) and select Paste from the context menu.

6. Repeat Step 5 to paste the code to the other buttons.

On the
CD-ROM

g3687-7 ch10.F 6/12/02 9:06 AM Page 204

205Chapter 10 ✦ Designing Interactive Navigation

Figure 10-6: You can convert a navigation bar into a flyout menu.

The previous steps demonstrated how you can save time when you need to use the

same code on several objects. Now that you’ve programmed the buttons, it’s time

to convert the navigation bar into a symbol.

To convert the navigation bar to a symbol, do the following.

1. Select the buttons on the navigation bar.

2. Choose Insert➪Convert to Symbol. The Convert to Symbol dialog box opens.

3. Enter a name for the symbol, choose the Movie Clip behavior, and click the

center left square for the registration point, as shown in Figure 10-8.

This sets the symbol registration point equal the left side of the buttons,

which makes it easier to manipulate the position of the buttons with the

Property inspector because the x, y coordinates in symbol-editing mode are

the same as the x, y coordinates of the Stage.

4. Click OK to convert the buttons into a symbol.

At this stage the new symbol is added to the document Library. It should also

be selected on Stage.

5. Choose Edit➪Edit in Place.

The workspace is converted to symbol-editing mode.

g3687-7 ch10.F 6/12/02 9:06 AM Page 205

206 Part III ✦ Creating ActionScript Elements for Your Movie

Figure 10-7: You can save time by copying code from one button and pasting it to
another.

Figure 10-8: Choosing the proper
registration point.

Symbol registration point

g3687-7 ch10.F 6/12/02 9:06 AM Page 206

207Chapter 10 ✦ Designing Interactive Navigation

6. With the buttons still selected, choose Modify➪Distribute to layers.

A separate layer is created for each button. Each layer has the same name as

the button within the layer. Select Layer 1 and rename it to Actions.

7. Select the buttons, open the Property inspector, and type 600 in the X: Field.

This moves the buttons to the left of the Stage, exactly where you want them

to appear when the movie begins playing.

8. Press Ctrl (Windows) or Ô (Macintosh), click frame 12 in the Actions layer,

and drag down to select frame 12 in all layers.

9. Press F6 to convert the frames to keyframes.

10. Click the first frame in the service layer and then drag down to select all of the

button layers.

11. Choose Insert➪Create Motion Tween.

A motion tween arrow appears between the beginning and ending keyframes

on each button layer.

12. Click the sixth frame in the Actions layer, press Ctrl (Windows) or Ô
(Macintosh) and drag down to select all the frames.

13. Press F6 to convert the frames to keyframes. All the buttons will be selected.

14. Open the Property inspector, click the About button and change the value in

the X: Field to 0.

The buttons are moved to their flyout position, as shown in Figure 10-9. This

sets up the basic animation for the buttons. When the movie initially begins,

the buttons are not visible. When the flyout menu is activated, the buttons

move to the left side of the movie.

Figure 10-9: Your timeline should look like this.

15. Click the first keyframe in the Actions layer, and then click the arrow to the

left of the word Actions.

16. In the left pane of the Actions panel, click Actions➪Movie Control and then

double-click stop.

17. Repeat Step 16 for the sixth frame in the Actions layer.

g3687-7 ch10.F 6/12/02 9:06 AM Page 207

208 Part III ✦ Creating ActionScript Elements for Your Movie

18. Select the 12th frame in the Actions layer and open the Actions panel.

19. In the left pane of the Actions panel, click Actions➪Movie Control and then

double-click goto.

20. Click the Go to and Stop radio button. Accept all the other parameters.

21. Click the Back button to exit symbol-editing mode.

22. Click the arrow to the left of the word Properties to open the Property inspector.

23. Type menu in the <Instance Name> field.

24. Click the Menu button in the upper-right corner of the document.

25. Click the arrow to the left of the word Actions. The Actions panel should read

Actions-Button. If it doesn’t, select the button again.

26. In the left pane of the Actions panel, click Actions➪Variables and then double-

click with.

27. Click the Insert a Target Path button to open the Insert Target Path dialog box.

28. Click the button labeled menu and then click OK to add the target path to the

script.

29. In the left pane of the Actions panel, click Actions➪Movie Control and then

double-click play.

30. Choose Control➪Test Movie.

When you click the Menu button, the menu should fly in from the side of the

interface. After the menu flies open, click any of the buttons to retract the

menu.

In a nutshell, this is how the menu works: When the movie plays, the stop action

on the first frame of the menu movie clip prevents the movie clip from playing.

When the Menu button is clicked, the play action starts the movie clip, the motion

tween moves the buttons into position, and the stop action in frame 6 halts the

movie. When you click any button on the navigation bar, the play action starts the

movie again and the buttons retract. When frame 12 is reached, the goto action

sends the movie to frame 1 where it stops until the Menu button is clicked and the

movie clip starts again.

Designer Notes
In this chapter, you learned to add some interactive navigation elements to your

designs. You learned how to break a movie down into scenes as well as how to cre-

ate named anchors for use as browser navigation devices. You learned how to

quickly create a navigation bar by duplicating buttons and swapping symbols. The

chapter project showed you how to create a flyout menu. In the next chapter you’ll

to use ActionScript with dynamic text.

✦ ✦ ✦

g3687-7 ch10.F 6/12/02 9:06 AM Page 208

Composing
Dynamic Text

In your previous Flash forays, you probably used text in

your designs, possibly even dynamic text. ActionScript and

dynamic text make it possible for you to display data that you

store in variables. When you combine variables with dynamic

text, it is possible for you to change the content of dynamic

text boxes. You can use dynamic text boxes to respond to

viewer inputs, display data from within a text array, or load

data from an external source.

Input text boxes, on the other hand, accept input from view-

ers of your designs. For example, you can use input text boxes

to accept information in an e-commerce design such as a

user’s name and shipping address.

In this chapter, you learn how to create dynamic text and

input text. As for chapter projects, you create a scrolling text

box that is populated by data loaded from an external source

and also create a scrolling marquee.

The Actions panel’s got lots of books. And some of these
books have books within a book. To add some actions to
your scripts, you have to click this book icon, then click that
book icon, then click another book icon, and so on. Rather
than bore you with a lot of words, I’m going to show the
path to each action as shown in the following example:
Click Actions➪Movie Control and then double-click goto.

Creating Flashy Text with the
Property Inspector

If you’re a Flash veteran, no doubt you’ve worked with the

Text tool. You may have even used input text or dynamic text

in your prior designs. When you add dynamic text to a design,

you can add scrolling text boxes to your designs or create

a text box where information is updated as the movie

Note

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Working with
dynamic text

Creating input text
boxes

Creating rich
formatted text

Creating text links

Loading text into a
movie

Chapter project:
Creating a scrolling
text box

Creating text fields

Chapter project:
Creating a ticker text
marquee

✦ ✦ ✦ ✦

g3687-7 ch11.F 6/12/02 9:06 AM Page 209

210 Part III ✦ Creating ActionScript Elements for Your Movie

progresses. (You were introduced to a dynamic text box when you worked through

the project in Chapter 7.) You create text with the Text tool and then use the Property

inspector to specify whether the text is dynamic text, input text, or static text.

Creating input text boxes
When you add an input text box to your design, you create an interface between the

published Flash movie and the viewer. You use input text boxes whenever you need

to receive information from the viewer. You assign a variable to an input text box

and a variable on the timeline to receive the information from the input text box

and pass it along to another function or ActionScript in your design. You can also

use the data stored by the input text box variable to transfer data to a Web site. For

example, if you create a customer response form for an e-commerce site, you can

transfer the information directly to a Web server’s CGI mailto script that passes the

information on to the designated part.

To create an input text box, do the following:

1. Open the Property inspector, shown in Figure 11-1.

Figure 11-1: You specify text parameters with the Property inspector.

2. Click the triangle to the left of the Text type field and choose Input Text from

the drop-down menu.

3. Specify the font size, font type, and font color.

4. Enter a name in the <Instance name> field.

Although you can’t assign actions to a input text box, you can refer to it from

ActionScript in other objects or keyframes.

5. Click the triangle to the right of the line type field and choose one of the fol-

lowing options:

• Single Line: Displays text as a single line.

• Multiline: Wraps text to the next line when it exceeds the boundary of

the text box.

• Multiline No Wrap: Wraps text to the next line when the user presses

Enter or Return; otherwise, the text exceeds the boundary of the box.

Character options buttonShow border around textText type Line type

Variable nameRender text as HTMLSelectableInstance name

g3687-7 ch11.F 6/12/02 9:06 AM Page 210

211Chapter 11 ✦ Composing Dynamic Text

• Password: Displays each letter entered as an asterisk to prevent the

user’s password from being intercepted by someone nearby.

6. Enter a name in the Var field.

If you will be displaying this data in a dynamic text box, use the same name in

the dynamic text box’s Var field. Remember to adhere to the variable naming

conventions discussed in Chapter 9.

7. Enter a value in the Maximum Characters field.

This is the maximum amount of characters the input text box will accept.

Users can enter as many characters as they want, but when the user clicks a

button to submit the data, the variable assigned to the text box won’t accept

more data characters than the value you specify in this field.

8. Click the Show Border around Text button.

When you choose this option, Flash displays a border around the text when

the movie is published. Without a border, an input text box would never be

seen by the users, even though their cursors would change to I-beams if they

happened to click inside the box.

9. Select the Text tool and drag across to create a text box of the desired length.

Drag across to create a text box that accepts a single line of text, or drag

down and across to create a text box that accepts multiple lines of text, such

as the comments field in an online form.

After you set the parameters for an input text box, it is ready to accept data from a

user. As you can see by the options, you can use an input text box for quite a few

things in your designs. They can be the basis for an online form, much like the one

you’ll work with in Chapter 15. Input text boxes can also be used to password-pro-

tect a site. The data entered by the user is evaluated using a conditional statement

you create that determines whether the password entered is valid or not. You can

limit the type of data entered by the user by changing character options, which is

presented before the end of this chapter.

Creating dynamic text boxes
You create a dynamic text box to display data previously entered by a user in an

input text box or to display data stored in one or more variables. You can also use a

dynamic text box to display the contents of an array. When you use a dynamic text

box to display the content of multiple variables, you create ActionScript that sets

value of the dynamic text box variable equal to the value of the variable that con-

tains the data you want displayed in the dynamic text box.

To create a dynamic text box:

1. Select the Text tool and then open the Property inspector.

2. Click the triangle to the right of the text type field and choose Dynamic Text

from the drop-down menu.

g3687-7 ch11.F 6/12/02 9:06 AM Page 211

212 Part III ✦ Creating ActionScript Elements for Your Movie

3. Specify a font size, font color, font type, and other parameters you want

assigned to the text box.

4. If the dynamic text box will be referenced in other ActionScript, enter a name

in the <Instance Name> field.

5. Enter a name in the Var field.

This is the variable name you’ll be referring to when you want to display the

contents of other variables, or data in this field.

6. Click the triangle to the right of the line type field and choose one of the

following:

• Single Line: Displays a single line of text in the field and does not wrap

text when the boundary of the text box is exceeded.

• Multiline: Displays text as multiple lines, wrapping to the next line when

the text exceeds the border of the text box.

• Multiline No Wrap: Displays text as multiple lines. The Flash Player

wraps text to a new line when encountering a hard break character

caused by pressing Enter or Return in a word processing program.

7. Click the Selectable button if you want users to be able to select the text dis-

played in this box.

8. Click the Render as HTML button to render text with HTML tags with rich text

formatting options. (You learn how to create rich formatted text in an upcom-

ing section.)

9. Select the Text tool and then drag a text box on Stage.

The dynamic text box is now ready to receive data. If you suspect the text you spec-

ify may not be available on computers used to view your design, you can embed the

fonts with the movie by following the instructions in the next section.

Setting character options
When you create an input or dynamic text box, you can specify whether or not to

embed fonts when the movie is published. You can choose to embed an entire font

set or a partial font set. When you embed a partial font set, you limit the characters

that will be accepted in an input text box or displayed in dynamic text box, there-

fore controlling the content of associated variables to values that work with your

design. You do this by setting character options for the text box.

To set character options:

1. Create a dynamic or input text box following the steps in the previous sec-

tions.

2. In the Property inspector, click the Characters button to open the dialog box

shown in Figure 11-2.

g3687-7 ch11.F 6/12/02 9:06 AM Page 212

213Chapter 11 ✦ Composing Dynamic Text

Figure 11-2: You can embed an entire font
set or a partial font set by specifying character
options.

3. Choose to embed the entire font set by clicking the All Characters radio but-

ton. To embed a partial font set, click the Only button and choose an option.

When you choose to embed a partial font set with an input text box, only the

embedded characters are passed on to the variable. This is handy when

you’re accepting numeric input. Limit the maximum number of characters to 5

and embed only numerals, and in the Include These Characters field, type a

decimal point (.). By doing this, you limit the maximum value the users can

input to 99999 with no decimal point, or 99.99 with a decimal point.

4. Click Done to close the dialog box.

Creating rich formatted text
You can display rich formatted text in a dynamic text box. When you create text

with HTML tags to specify the font color, font size, and other attributes, you can

configure a dynamic text box to properly read the HTML tags as instructions

instead of string data. To do this, you click the Render As HTML button when speci-

fying the parameters for the dynamic text box as outlined previously.

You can use HTML 1.0 tags when formatting the text in a word processing program.

You must use beginning (<) and ending (>) symbols to reference the data between

the tags as HTML. If you’ve ever manually coded HTML, you’re familiar with these

tags. If not, Table 11-1 will show you the proper formatting for HTML tags. You can

use the tags in Table 11-1 to create rich formatted text.

You create the document with rich text formatting in a word processing program.

You begin the document with the variable name (the Var field) of the dynamic text

box the rich formatted text is to be displayed in, followed by the equals sign (=) and

the rich formatted text. The finished document is saved as a .txt file. Figure 11-3

shows a document in a word processing program that will be saved for use in a

Flash design.

g3687-7 ch11.F 6/12/02 9:06 AM Page 213

214 Part III ✦ Creating ActionScript Elements for Your Movie

Table 11-1
HTML Tags for Creating Rich Formatted Text

Tag Description

<a href=”http://www. The text between the tags is hyperlinked to the referenced site. If
mysite.com”>text<a> the link is in the same directory on the host Web site, you need

only enter the relative path.

Text The text between the tags is boldfaced.

<I>Text<I> The text between these tags is italicized.

<p>Text</p> The text between the tags is displayed as a separate paragraph.

<u>Text</u The text encompassed by the tags is italicized.

<Font Size=”x” The text between these tags is displayed at the specified font
>Text size.

<Font Face=”Arial” The text between these tags is displayed using the specified font
>Text face. In this case, the text is displayed with the Arial font face.

<Font Color =”#FF0000” The text between these tags is displayed using the color between
>Text the quotation marks. In this example, the color would be bright

red. The font color must be designated using a hexadecimal value.

Figure 11-3: Creating rich formatted text for a design

g3687-7 ch11.F 6/12/02 9:06 AM Page 214

215Chapter 11 ✦ Composing Dynamic Text

To display rich formatted text in your design, you create a dynamic text box as out-

lined previously. Click the Render as HTML button and when the movie is pub-

lished, the formatting specified by the tags is used to display the text. Figure 11-4

shows a published movie with a block of rich formatted text.

Figure 11-4: You can liven up a design by using rich formatted text.

Loading Text from External Sources
When you create a dynamic text box, you can display a great deal of information.

However, creating copious amounts of text in the Action panel’s Script pane can be

a pain (pun intended). The Script pane is small, and there’s no spell checker. You

can save yourself a lot of time and headache by creating large amounts of text data

in a word processing program, saving it as a text document, and then loading the

document into a movie as variable data. Not only is the initial document easier to

create, it’s also easier to update. If your client wants you to update the text data in a

movie, you edit the text file and upload it to your client’s serve. The next time the

movie is viewed, the dynamic text box displays the contents of the edited text file.

You display the text data in a dynamic text box with the same name as specified in

the text file.

Dynamic text rendered as HTML

g3687-7 ch11.F 6/12/02 9:06 AM Page 215

216 Part III ✦ Creating ActionScript Elements for Your Movie

Creating text data
When you need to pack a lot of data into a small dynamic text box, create the data

in your word processing software as follows:

1. Create a new document.

2. Enter the name of the variable you assigned to the dynamic text box the text

will be displayed in followed by an equals (=) sign.

3. Save the document as a *.txt file.

You’ll be using this name to load the document into your movie. Remember to

use proper variable naming conventions for the variable name in Step 2 as

well as the document name.

Naming variables is covered in Chapter 8.

Using the loadVariables action
After you create the text data, use the loadVariables action to bring it into your

movie. You can use the loadVariables action at any time; however, it’s good prac-

tice to declare all of your variables in the first frame of your movie, even the ones

you load from external sources.

To load data into your movie:

1. Select the first frame of your movie.

2. Click the arrow to the left of the word Actions to open the Actions panel.

3. In the left pane of the Actions panel, click Actions➪Browser/Network Control

and then double-click loadVariables.

4. In the URL parameter text box, enter the name of the document that contains

the variables. If the document is in the same directory or a different directory,

enter the relative path to the document, for example: myData.txt. If the doc-

ument is stored at another Web site, enter the absolute path to the document,

for example: http://www.mysite.com/documents/data.txt.

That’s all you need to do to get the data into your design. You can now load the text

data in any dynamic text box that has the same variable name as you designated in

the first line of the document.

Creating an E-Mail Link
You can add an e-mail link to your designs by taking advantage of the ability to use

HTML tags in a dynamic text field. To create an e-mail link, add the proper tags to a

text file and then use the loadVariables action to load the text data into the movie.

Cross-
Reference

g3687-7 ch11.F 6/12/02 9:06 AM Page 216

217Chapter 11 ✦ Composing Dynamic Text

To create an e-mail link, do the following:

1. Create a document in a word processing program.

2. In the first line of the document, enter the variable name you will assign to the

dynamic text box that will display the e-mail link.

3. At the spot where you want the e-mail link to appear in the document, type

the following tag: E-mail me.

4. Save the document as a text(*.txt) file.

5. In Flash, create a dynamic text box.

6. In the Var field, enter the same name you used when creating the text file.

7. Click the Render Text as HTML button.

8. Select the first frame of the document and use the loadVariables action to

load the text file into the movie as outlined previously.

When the movie is published and played in a Web browser, the familiar hand icon

appears when viewers roll their mouse over the text link. When the link is clicked,

the Web browser’s mail program opens a blank e-mail document addressed to recip-

ient specified in the HTML tag.

Chapter Project: Creating a Scrolling Text Box
If you have a client who needs to display a large amount of text in a small area, a

scrolling text box is the ticket. In Chapter 12, you’ll learn to use one of the new

Flash UI Components to create a scrolling text box. However, if you want to create a

scrolling text box with buttons of your own design, follow the steps in this section.

To follow along with this tutorial, locate the scrollText.fla and scrollText.txt files
located in this chapter’s folder on the CD-ROM that accompanies this book. Copy
the files to your computer and use your operating system to disable the file’s read-
only attributes.

To begin the creating scrolling text:

1. Launch Flash and open the scrollText.fla file.

Most of the project is completed for you. The document, as shown in

Figure 11-5, consists of a banner, two images, and a blank text field. The

loadVariables action has already been assigned to the first frame. To the

right of the text field is a multi-functional slider. The upper and lower arrows

scroll the text. The white bar at the top of the slider can also be dragged to

scroll the text. The up and down arrows are buttons nested in a movie clip.

The white bar is in a movie clip nested with an invisible button that is coded

so that the movie clip can be dragged vertically when the button is pressed.

On the
CD-ROM

g3687-7 ch11.F 6/12/02 9:06 AM Page 217

218 Part III ✦ Creating ActionScript Elements for Your Movie

Figure 11-5: You have all the necessary elements to create scrolling text.

2. Choose Control➪Test Movie.

After Flash publishes the movie and opens it in another window, you see the

result of the loadVariables action. The dynamic text field is filled with rich

formatted text. Click the white bar and drag down. The text starts scrolling as

shown in Figure 11-6. After you scroll to the end of the text, click the up arrow

at the top of the slider and hold the mouse button. (This is the same type of

button you learned to create in Chapter 10.) Click the down arrow at the bot-

tom of the slider bar, and the text stays still because the button hasn’t been

programmed yet. You’ll be programming this button to scroll the text in just a

few minutes.

3. Close the window to return to movie-editing mode.

Programming the down arrow
Dynamic text fields are considered Text Field objects. While dynamic text blocks

cannot have code assigned to them, they can be addressed with other ActionScript.

The dynamic text box has been given an instance name of ScrollBox. The variable

name scrollText has been assigned to the object, the same variable name in the first

line of the document that is loaded into the movie when it starts.

The code used to load the text document into the movie is shown in Listing 11-1.

The code is on the first frame of the Actions layer.

g3687-7 ch11.F 6/12/02 9:06 AM Page 218

219Chapter 11 ✦ Composing Dynamic Text

Figure 11-6: Rich formatted text makes a message stand out.

Listing 11-1: Loading the Text Document into the Movie

loadVariablesNum(“scrollText.txt”, 0);

To program the down arrow, follow these steps:

1. Select the Slider layer and then double-click the slider to the right of the

text box.

After you double-click the symbol, you enter symbol-editing mode. You may

find it helpful to zoom in on the slider before continuing.

2. Click the down arrow.

The down arrow is a movie clip nested within the symbol. The actual button is

nested within the arrow movie clip. This button has two Boolean statements

that set the value of the variable clicked to true when the button is pressed,

false when the button is released. This is the same code you created when

you learned to create a button that is on when pressed in Chapter 10.

g3687-7 ch11.F 6/12/02 9:06 AM Page 219

220 Part III ✦ Creating ActionScript Elements for Your Movie

3. Open the Actions panel.

Notice that most of the code is already written for you. Listing 11-2 shows the

code already created for you.

Listing 11-2: Creating Code for the Down Arrow

onClipEvent (enterFrame) {
if (clicked) {

if (_root.CompSlider.slideBar._y>=100) {
_root.CompSlider.slideBar._y=100;

}
}

}

The code in the previous listing is executed when the frame is entered. As you

learned previously, when you use the enterFrame clip event, the actions that

follow are constantly evaluated. You have two conditional statements to work

with. You create the code for the first conditional statement, which advances

the text one line at a time when the button is pressed while at the same time

synchronizing the movement of the slider bar. The second conditional state-

ment prevents the slider bar from moving beyond the boundary of the slider.

4. In the Actions panel, select the second line of code that reads: if (clicked) {.

5. In the left pane of the Actions panel, click Actions➪Miscellaneous Actions and

double-click evaluate. The Expression text parameter box opens above the

Script pane.

6. Place your cursor inside the Expression field and click the Insert a Target Path

icon. The Insert Target Path dialog box opens.

7. Click the ScrollBox icon as shown in Figure 11-7 and then click OK. This is the

target path to the dynamic text box.

8. In the left pane of the Actions panel, click Objects➪Movie➪Text Field➪
Properties and double-click scroll.

The scroll property of the Text Field object reads the current position of the

text in the dynamic text box. When the movie loads, the scroll value of the

text is 1. As the text scrolls to another line, the scroll value increases by 1.

The expression you are creating will increment the value of the Text Field

object ScrollBox by a value of 1 as long as the button is pressed.

9. In the Expression field, following the word scroll, type =+1.

Your finished line of code should read: _root.ScrollBox.scroll+=1;. This

completes the code needed to scroll the text by an increment of 1.

g3687-7 ch11.F 6/12/02 9:06 AM Page 220

221Chapter 11 ✦ Composing Dynamic Text

Figure 11-7: You insert the target path
to the text box using this dialog box.

10. In the left pane of the Actions panel, click Actions➪Miscellaneous Actions and

then double-click evaluate.

The Expression parameter text box appears.

11. Enter the following code: _root.CompSlider.slideBar._y+=5.5555555

This line of code synchronizes the movement of the white slider bar with the

down button when clicked. You may recognize this as an incremental state-

ment. As long as the button is pressed, the white slider bar (a movie clip with

the instance name of sliderBar) advances 5.555555 pixels towards the bottom

of the slider. The next section explains how the value was determined.

12. Choose Control➪Test Movie.

Click the down arrow on the slider bar and the text should start scrolling nicely.

The Text Field object has several properties that you can use when adding text

objects to your designs. For example, if you want to add an End of Page button to a

text box, you use the maxscroll property. If you want to add an End of Page button

to the project you just finished, the button code looks like Listing 11-3.

Listing 11-3: Code for an End of Page Button

on(release){
_root.ScrollBox.scroll=maxscroll

}

To take the design one step further, you can add a Top of Page button. To do so, set

the scroll property of the text box equal to 1, which returns the user to the first line

of text when the button is clicked.

Deciphering the rest of the code
This section gives you an idea of what went into the code for creating the slider and

coordinating the movement of the slider with the scrolling text. There’s also the

g3687-7 ch11.F 6/12/02 9:06 AM Page 221

222 Part III ✦ Creating ActionScript Elements for Your Movie

code for the slider bar to consider. An invisible button in the slideBar movie clip is

programmed to execute the startDrag action when the button is pressed. The code

constrains the movie clip’s movement from 0 to 100 along the y axis. The slider

movement had to be converted into equal increments to scroll the text. After deter-

mining the maxscroll property of the text is 18, that result is divided into 100 to

return a value of 5.55555. Therefore, the value of the scroll property of the text box

is set to the _y property of the slider divided by 5.5555, as shown in Listing 11-4.

Listing 11-4: Scrolling Text with the Slider

onClipEvent (enterFrame) {
// Value determined by dividing 100 by maxscroll
_root.ScrollBox.scroll = this._y/5.5555;

}

When the slider isn’t being use to scroll the text, the slider must be set to move in

synch with the scrolling text in case the user decides to switch from button

scrolling to dragging the slider. Therefore, an expression needs to be set up to

increment the slider when an arrow is clicked, as shown in Listing 11-5.

Listing 11-5: Synching the Slider to the Scrolling Text

onClipEvent (enterFrame) {
if (clicked) {
_root.ScrollBox.scroll+=1;
_root.CompSlider.slideBar._y+=5.5555;
if (_root.CompSlider.slideBar._y>=100) {
_root.CompSlider.slideBar._y=100;

}
}

}

The third line of code shown in the previous listing moves the slideBar by 5.5555

(the result of dividing 100 by the maxscroll value of the text box) when the button

is pressed. The next line of code has a conditional statement that prevents the _y

property of the slider from exceeding 100. Without this line of code, the slider

would continue past the down arrow if the arrow is pressed long enough. The code

for the up arrow, shown in Listing 11-6, decrements moves the slider in the opposite

direction and prevents it from going above the up arrow.

g3687-7 ch11.F 6/12/02 9:06 AM Page 222

223Chapter 11 ✦ Composing Dynamic Text

Listing 11-6: The Code for the Up Arrow

onClipEvent (enterFrame) {
if (clicked) {
_root.ScrollBox.scroll-=1;
_root.CompSlider.slideBar._y-=5.5555555;
if (_root.CompSlider.slideBar._y<=0) {
_root.CompSlider.slideBar._y=0;

}
}

}

To determine the maxscroll value of a block of text, select the frame where the text
box is displayed in your movie. Make sure it is a keyframe. Open the Actions panel
and click Actions➪Miscellaneous Actions and then double-click trace. In the
Message field, type the name of the dynamic text box variable, followed by a dot
(.) and the word maxscroll. Click the Expression check box and choose
Control➪Test Movie. The maxscroll value of the text box is displayed in the Output
window. After you determine the maxscroll value, you can delete the trace
action.

Creating a Text Hyperlink
When you need to create a text hyperlink for an HTML page, use either your HTML

editor or enter hard code such as: DAS
Designs Web Site. When you create a hyperlink in this manner, you’re lim-

ited to certain fonts and the hyperlink is underlined. Of course, you can create a

Cascading Style Sheet (CSS) to do away with the underline and specify a text font.

In previous versions of Flash, you could not create a text hyperlink. Now you can

easily create a text hyperlink using a text font, color, and size to match your design.

To create a text hyperlink:

1. Select the text tool and create a block of text on Stage.

2. With the Text tool, click inside the text box and drag backwards to select the

block of text.

3. Open the Property inspector.

4. Click the triangle to the right of the text type field and choose Static Text.

Tip

g3687-7 ch11.F 6/12/02 9:06 AM Page 223

224 Part III ✦ Creating ActionScript Elements for Your Movie

5. In the URL target field, enter the path of the Web site to which you want to

hyperlink the text. If the page resides at the same URL, enter the relative path;

if the HTML document is at another Web site, enter the absolute path, for

example: htttp://www.dasdesigns.net/about.htm.

6. Click the triangle to the right of the target field and choose one of the

following:

• Self: Opens the URL in the same window as the link.

• Blank: Opens the specified URL in a new browser window. Choose this

option and your Flash movie will play in the background.

• Parent: Loads the URL in the window of the frame that called the link. If

the frame isn’t nested, the URL opens in the full browser window.

• Top: Loads the URL in the full browser window, removing all frames.

That’s all there is to it. When the movie is published, the user’s cursor becomes the

familiar pointing hand when moved over the text. When the text link is clicked, the

linked page opens up in the browser window you specified.

Populating Dynamic Text with Array Elements
As you learned in Chapter 9, arrays are the perfect tool to store lots of data. When

you create dynamic text and assign a variable name to the text box, you can easily

display the content from an array in a text box. When you want to display an ele-

ment from an array in a dynamic text box, you create a variable that’s equal to the

array element you want to display.

To create a dynamic text box that displays an array element:

1. Create a dynamic text box as outlined earlier.

2. Open the Property inspector.

3. In the Var field, enter a name for the text box variable. Remember to adhere to

the variable naming conventions discussed in Chapter 9.

Your next step is to create the variable and set if equal to the array element

you want to display in the text box. You can create the variable on a

keyframe, within a button, or within a movie clip, depending on your design

requirements.

4. Select the keyframe, button, or object where the variable will reside.

5. Click Actions➪Variables and then double-click set variable.

g3687-7 ch11.F 6/12/02 9:06 AM Page 224

225Chapter 11 ✦ Composing Dynamic Text

6. In the Variable field, enter the same name as the dynamic text box variable the

array element will be displayed in.

7. In the Value field, enter the array name and then the element number you

want to display.

The element number is surrounded with square brackets. Remember the first

element of an array is always 0.

8. Click the Expression checkbox.

Listing 11-7 shows a variable with a value equal to the third element of an

array.

Listing 11-7: Creating a Variable to Display an Array Element
in a Dynamic Text Box

tickerText = tickerList[2];

Chapter Project: Creating a Ticker Text
Marquee

In this project, you combine your knowledge of arrays and dynamic text boxes to

create a ticker display. You also learn to display text one letter at a time by adding

characters from an array element to the display in the dynamic text box.

To follow along with this project, copy to your hard drive the scrollTick.fla file from
this chapter’s folder in the CD-ROM that accompanies this book. Use your operat-
ing system to disable the file’s read-only attribute.

To begin the project:

1. Launch Flash and open the scrollTick.fla file. Notice that this project builds on

the scrolling text project you completed earlier in this chapter. The elements

have been rearranged slightly to accommodate the text box below the banner

(see Figure 11-8).

The text box is actually nested in a movie clip. If you’ll remember the discus-

sion about modular ActionScript, you can use this movie clip in any of your

designs by choosing File➪Open as Library and dragging an instance of the

movie clip into the current document Library.

On the
CD-ROM

g3687-7 ch11.F 6/12/02 9:06 AM Page 225

226 Part III ✦ Creating ActionScript Elements for Your Movie

Figure 11-8: The scrolling ticker is added to the previous project.

2. Click the text box movie clip and then right-click (Windows) or Ctrl+click

(Macintosh) and choose Edit from the context menu.

After the movie clip is displayed in symbol-editing mode, notice you have six

keyframes on the Actions layer. Select the first keyframe and open the Actions

panel to display the code shown here:

// initialize labels and counter
k = 0;
tickText = “”;
tickerList = new Array();
tickerList[0] = “Welcome to Pepper Cay... your vacation
paradise... “;
tickerList[1] = “White water rafting trips... “;
tickerList[2] = “Fishing for marlin and kingfish... “;
tickerList[3] = “Experienced guides available... “;
tickerList[4] = “Create your own adventure in paradise... “;
endLine = tickerList.length;

The code in this keyframe initializes the array and three variables. The vari-

able k is used as a counter, the variable endLine returns the number of ele-

ments (length) of the array, which in this case is five. The value of endLine

could have been set equal to 5, but that limits you to using this movie clip

Scrolling ticker

g3687-7 ch11.F 6/12/02 9:06 AM Page 226

227Chapter 11 ✦ Composing Dynamic Text

only with an array with five elements. If you modify this movie clip for use in

another design, you can add as many array elements as needed, and the

endLine variable will always return the number of elements in the array. The

variable tickText is the same variable assigned to the dynamic text box that

displays the elements of the array. Another thing to notice is the manner in

which the array has been created; each element is created separately. You can

accomplish the same thing by creating a variable named tickerList and then

entering each array element in quotes and separating them with commas.

This particular method was chosen for this project because it’s easier to see

each array element’s offset. You’ll be referring to each array element by its off-

set to complete the project.

3. Select the second keyframe.

In the Actions panel, you see that a single line of code has been created that

initializes a variable named lineNum and sets its value equal to 0. This is the

offset of the first element in the tickerList array. This frame has been labeled

newLine.

4. Select the third keyframe, which has been labeled lineLoop.

In the Actions panel, notice that two lines of code have been created. Two

new variables have been declared, as shown below.

len = tickerList[lineNum].length;
i = 0;

The variable len returns the length of an individual array element. When the

code is first executed, the variable returns the length of the element in the

tickerList array at offset 0, the initial value of the variable lineNum. The vari-

able i is another counter.

5. Select the fourth keyframe that has been labeled msgLoop.

In the Actions panel, notice a conditional statement has been started for you.

You’ll be creating the action that executes when the value of k is less than 65.

6. In the Actions panel Script pane, select the first line of code

7. In the left pane of the Actions panel, click Actions➪Variables and then

double-click set variable.

8. In the Variable field, type tickText

9. In the Value field, type tickText+tickerList[lineNum].charAt (i)

Be sure to click the Expression checkbox.

This line of code begins displaying text. It takes the initial value of tickText, a

null string variable, and sets it equal to itself plus the first character of the

first element in the array. The .charAt(i) part of the code returns the string

value of character at this position in the string. When the code first executes,

it returns the first character (i=0) of the first element (the initial value of

lineNum is 0) from the tickerList array. The .charAt element of the code is a

Property of the String object.

g3687-7 ch11.F 6/12/02 9:06 AM Page 227

228 Part III ✦ Creating ActionScript Elements for Your Movie

10. In the left pane of the Actions panel, click Actions➪Conditions/Loops and

then double-click else. You’ll now create the code that executes when the

value of k exceeds 65.

When k reaches 65, the dynamic text box cannot accept any additional char-

acters. In order for the ticker to display the next character, one character

must be removed from the string in tickText. In other words, the number of

characters in tickText must be reduced to 64 before the next character can be

displayed. To achieve this, you use the substring method of the String object.

You’ll use this method to return the 1st through 65th characters of the string

tickText, which in essence removes the first character.

11. In the left pane of the Actions panel click Actions➪Variables, and then double-

click set variable.

12. In the Variable field, type tickText

13. In the Value field, type tickText.substring(1,65)+tickerList[lineNum].charAt

(i) and click the Expression checkbox.

This line of code returns a substring of the 1st through 65th characters of

tickText and adds the next character to the string. Remember, the first charac-

ter of a string is position 0. The rest of the code has been written for you.

14. Select the fifth keyframe and open the Actions panel to view the following

code.

i = ++i;
k = ++k;
if (i<len) {
gotoAndPlay(“msgLoop”);

}

This line of code increments the value of the variables i and k by a value of 1.

The conditional statement evaluates the value of the variable len, which is the

length of an array element. As long as the value of i is less than the length of

the array element, the movie clip loops to the frame labeled msgLoop and

another letter from the array element is added. When the value of i becomes

greater than len, frame 6 plays.

15. Select the sixth keyframe and notice the following code in the Actions panel.

lineNum = ++lineNum;
if (lineNum==endLine) {
gotoAndPlay(“newLine”);

} else {
gotoAndPlay(“lineLoop”);

}

The code in this keyframe increments the value of lineNum by 1. When the

value of lineNum is equal to endLine, the movie goes to the frame labeled

g3687-7 ch11.F 6/12/02 9:06 AM Page 228

229Chapter 11 ✦ Composing Dynamic Text

newLine, which sets the value of lineNum equal to 0 and begins displaying the

characters from the first array element. Otherwise the movie loops to the

frame labeled lineLoop, which sets the value of i equal to 0 to display the first

character from the next array element.

16. Click the Back button to exit symbol-editing mode and then choose

Control➪Test Movie.

The movie plays and the text advances one letter at a time across the marquee

until the text box is filled, whereupon the next letters advance one at a time.

Several things happen in this movie. After the variables are declared and the array

is set, the first element in the array is displayed one letter at a time by evaluating

the charAt() property of the string data in the array. When the last letter of the

string is displayed as determined by the conditional statement, the next element in

the array is selected. The conditional statement in frame 4 evaluates the length of

the variable stored the string data. When it exceeds the specified value, the sub-

string property of the String object takes the first character away from the string.

When the last element in the array is displayed, the code loops back to newLine,

which resets to the first element in the array and letters from that element are

added to continue the ticker.

You can use this movie clip in one of your own designs. All you need to do is

change the size of the text box to suit your movie. You can also modify the color,

size, and font by selecting the text box and modifying the parameters in the

Property inspector. When you change the size of the text box, or any of the text

parameters, you have to experiment to get the proper value for k and the ending

value of the substring. If you choose a smaller font size, you have to increase the

value of k; otherwise, the code will start dropping letters before the end of the text

box is reached. Change both values in the fourth keyframe until the text advances

properly, as shown in Listing 11-8.

Listing 11-8: Modifying the Code for a Different Text Size

if (k<85) {
tickText = tickText+tickerList[lineNum].charAt(i);

} else {
tickText = tickText.substring(1,85)+tickerList[lineNum].charAt(i);

}

The values you use vary depending upon the font size and size of the text box. Each

font has different kerning characteristics, which enters into the value you end up

using.

g3687-7 ch11.F 6/12/02 9:06 AM Page 229

230 Part III ✦ Creating ActionScript Elements for Your Movie

Copy the file marqueeComponent.fla to your hard drive. Launch Flash and open
the file. In the document Library, you’ll find a single component. Drag the compo-
nent on Stage and center it to the top of the document. Open the Property inspec-
tor and then click the Parameter tab. Click the magnifying glass to open the Values
panel. Three values have already been entered. Click a value and enter your own
text. To add additional values, click the button that looks like a plus sign and enter
some text. Click OK to apply the modifications and then test the movie. You now
have a programmable marquee ticker.

The String object has many properties you can use to evaluate string data. In this
chapter you’ve been exposed to the scroll, charAt(), and substring properties. A
detailed discussion of each string property is beyond the scope of this book. You
are urged to experiment with these properties. To understand what each property
does, open the Actions panel, click the Reference icon and then click Objects➪

Core➪String➪Properties; then click each property for a detailed explanation.

Designer Notes
In this chapter you were introduced to dynamic and input text. You learned how to

create a scrolling text box for your designs and how to create a ticker marquee. You

were shown how to manipulate string data as well as display string data from an

array in a dynamic text box. In the next chapter, you’ll create some interactive ele-

ments for your movies.

✦ ✦ ✦

Note

On the
CD-ROM

g3687-7 ch11.F 6/12/02 9:06 AM Page 230

Building
Interactive
Interfaces

In previous chapters, you learned to create elements such

as animated buttons and navigation bars for your designs.

In this chapter, the interactivity is cranked up a notch or two.

In this chapter, you learn to design interactive interface

elements such as tooltips. If you’d like to give your viewers

the option of dragging interface elements to different areas,

you’ll learn how to create the code to do that in this chapter.

You’ll also learn how to create the ActionScript where the

user can change the color and opacity of a background object

by clicking a button and dragging a slider. You can also use

ActionScript objects to display the date and time in your

designs. In Chapter 11, you learned to create a scrolling text

box using buttons of your own design. If time constraints

don’t allow you the luxury of creating a custom scrolling text

box, you can use a Flash UI component to quickly create a

scrolling text box. In the chapter project, you learn to create a

moving navigation bar.

The Actions panel’s got lots of books. And some of these
books have books within a book. To add some actions to
your scripts, you have to click this book icon, then click that
book icon, then click another book icon, and so on. Rather
than bore you with a lot of words, I’m going to show the
path to each action as shown in the following example:
Click Actions➪Movie Control and then double-click goto.

Building Tooltips
If you add enough bells and whistles to your designs, it may

be difficult for some viewers to ascertain exactly what each

element of your design does. You can alleviate some of the

confusion by creating tooltips that appear when the users

Note

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Building tooltips

Creating drag-and-
drop elements

Creating a user
customizable
interface

Using the Date object

Using the Scrollbar
component

Chapter project:
Creating a moving
navigation bar

✦ ✦ ✦ ✦

g3687-7 ch12.F 6/12/02 9:06 AM Page 231

232 Part III ✦ Creating ActionScript Elements for Your Movie

roll their mouse over certain elements in your designs. For example, you can add a

tooltip that tells the viewer what they’ll see when a button is clicked, as shown in

Figure 12-1.

Figure 12-1: You can create a tooltip that displays information
to the viewer.

Creating the tooltips
The actual tooltip itself is a movie clip. You can get as creative as you want when

creating the graphics for the tooltip. For example, you can create a rounded rectangle

with a triangle at the top that points to the object the user’s mouse is over.

To create tooltips for a design:

1. Create the basic shape for the tooltip using any of the drawing tools or import

an object.

Do not create a new symbol. You want to create the shape and then convert it

to a symbol so you can specify the registration point.

2. Choose Insert➪Convert to Symbol.

The Convert to Symbol dialog box appears, as shown in Figure 12-2.

3. Specify the registration point for the symbol.

For most tooltips, you’ll choose the upper-left corner. The symbol’s registra-

tion point is the 0 coordinate for both the x and y axis.

4. Name the symbol, choose the Movie Clip behavior and click OK.

The graphic is converted to a symbol.

5. Choose Edit➪Edit Selected to work in symbol-editing mode.

6. Add the tooltip text and any other elements needed for your design.

g3687-7 ch12.F 6/12/02 9:06 AM Page 232

233Chapter 12 ✦ Building Interactive Interfaces

7. Click the Back button to exit symbol-editing mode.

8. Delete the symbol instance.

The master symbol is stored in the document Library. You’ll duplicate it to

create the other tooltips needed for your design.

9. Choose Window➪Library.

The document Library opens.

10. Duplicate the basic tooltip symbol as needed to create the additional tooltips

for your design. When you duplicate each symbol, give it a name that reflects

the tooltip’s function. After you create the duplicates, edit them to change the

text. Remember, you can edit a symbol from the document Library by double-

clicking its name.

After you create the tooltips, you’re ready to add them to your design. When the

movie loads, you don’t want the tooltips to be visible so you place them off Stage.

Then you create the necessary code to make the tooltip appear when the user’s

mouse hovers over a button.

Figure 12-2: You can specify the registration
point for the tooltip.

To position the tooltips, follow these steps:

1. Choose Window➪Library.

The document Library opens.

Symbol registration point

g3687-7 ch12.F 6/12/02 9:06 AM Page 233

234 Part III ✦ Creating ActionScript Elements for Your Movie

2. Select all the tooltips.

To select all of them, select the first tooltip, and then click the additional

tooltips while holding down the Shift key.

3. Drag the tooltips to a position off Stage.

4. Click the arrow to the left of the word Properties.

The Property inspector opens.

5. Record the values in the X: and Y: fields.

You’ll need these values when you create the ActionScript to return the

tooltips after the user’s mouse rolls off the button.

6. Choose Modify➪Distribute to Layers.

A new layer is created for each tooltip. The layer is labeled with the tooltip’s

name, as shown in Figure 12-3. By creating a separate layer for each tooltip,

you can select each tooltip, even though they are in identical positions.

If you’re creating a design that involves many objects, create a layer folder to store
the tooltips in. After you create the tooltips, you can close the folder and it takes up
only one position on the timeline. The tooltips in Figure 12-3 are stored in a folder.

7. Select a tooltip and then open the Property inspector.

To select an individual tooltip, lock and hide the other tooltip layers. Then

you’ll be able to select the tooltip by clicking it (see Figure 12-4).

8. Enter a name for the tooltip in the <Instance Name> field.

9. Repeat Steps 7 and 8 to name the other tooltips in your design.

Figure 12-3: You distribute each tooltip to its own layer so you can work with
them individually.

Tooltip layer folder

Tooltips distributed to layers

Tip

g3687-7 ch12.F 6/12/02 9:06 AM Page 234

235Chapter 12 ✦ Building Interactive Interfaces

Figure 12-4: Lock and hide the tooltip layers so you can edit an individual tooltip.

After you’ve named all of the tooltips, you’re ready to create the ActionScript that

makes the tooltips appear. You could create the same script for each object that

uses a tooltip. However, that can get rather tedious if you have several tooltips. The

easier solution is to create one function to display the tooltips and another to hide

them.

Creating the tooltip functions
The functions you create to display and then hide the tooltips simplify your

ActionScript work. The function that shows each tooltip changes the tooltip’s _x

and _y properties to the current x and y coordinates of the mouse, allowing for a bit

of room if the user rolls over the top of the button. The function that hides each

tooltip returns the tooltip to the _x and _y positions you recorded when you added

the tooltips to your document.

Instance nameTooltip instance

Locked and hidden tooltip layersSelected tooltip layer

g3687-7 ch12.F 6/12/02 9:06 AM Page 235

236 Part III ✦ Creating ActionScript Elements for Your Movie

To create the tooltip functions:

1. Select the top timeline layer and insert a layer. Label the layer Actions.

It’s a good idea to get in the habit of creating a separate layer for actions you
assign to keyframes on the timeline. All of your timeline ActionScript will be on
one layer, making it easier for you to edit and debug the ActionScript.

2. Select the first frame on the Actions layer and then click the arrow to the left

of the word Actions.

3. In the left pane of the Actions panel, click Actions➪User-Defined Functions

and then double-click function.

4. In the Name field, enter a name for the function.

5. In the Parameters field, type mc

This designates that the function is applied to movie clips.

6. Click Actions➪Miscellaneous Actions and then double-click evaluate.

The Expression field appears above the Script pane.

7. In the Expression field, type _root[mc]._x=_xmouse

This line of code sets the _x property of the movie clip called by the function

equal to the current _x position of the mouse.

8. Click Actions➪Miscellaneous Actions and then double-click evaluate.

9. In the Expression field, type root[mc]._y=_ymouse

The function you just created displays the tooltip. Now you need to create a

function to hide the tooltip.

To create a function to hide the tooltips, follow these steps:

1. Select the last line of code (the solitary curly brace) you just created.

2. In the left pane of the Actions panel, click Actions➪User-Defined Functions

and then double-click function.

3. In the Name field, enter a name for the function.

4. In the Parameters field, type mc

5. In the left pane of the Actions panel, click Actions➪Miscellaneous Actions and

then double-click evaluate.

The Expression field appears above the Script pane.

6. In the Expression field, type _root[mc]._x= followed by the value you recorded

from the Property inspector when you added the tooltips to your design.

7. Repeat Steps 5 and 6 to create an expression for the _y property of the movie

clip. Listing 12-1 shows two functions that show and hide tooltips.

Tip

g3687-7 ch12.F 6/12/02 9:06 AM Page 236

237Chapter 12 ✦ Building Interactive Interfaces

Listing 12-1: Creating Functions to Show and Hide Tooltips

function showTip(mc) {
_root[mc]._x=_xmouse+5;
_root[mc]._y=_ymouse+5;

}
function hideTip(mc) {
_root[mc]._x=-150;
_root[mc]._y=-5;

}

Notice that a value of 5 was added to the _xmouse and _ymouse properties in the

code shown in Listing 12-1. This was to allow a bit of space so the item the user’s

mouse hovers over is still visible.

After you create the functions, you create the code that displays or hides the movie

clips depending on where the user’s mouse is in relation to the button.

Programming the buttons
You’ve done most of the hard work by creating the functions. Now all you need to

do is code each button to call the proper function when a user’s mouse rolls over,

or rolls out, of the button target area.

If you want a tooltip to appear when a user’s mouse is over a graphic, you must
nest the graphic in a movie clip with an invisible button.

To program the buttons:

1. Select a button and open the Actions panel.

2. In the left pane of the Actions panel, click Actions➪User-Defined Functions

and then double-click call function.

Three parameter text boxes appear above the Script pane.

3. In the Object field, type _root

This tells the Flash Player that the function will be applied to an object on the

root timeline.

4. In the Method field, type the name of the function you created to display the

tooltip.

5. In the Parameters field, type the instance name of the tooltip you want to

appear. The instance name must be surrounded by quotation marks, as shown

in Listing 12-2.

Note

g3687-7 ch12.F 6/12/02 9:06 AM Page 237

238 Part III ✦ Creating ActionScript Elements for Your Movie

6. Click the first line of code and in the parameter text area, click the Roll Over

checkbox, making sure you deselect the checkbox for the default Release

event.

The button is now programmed to call the tooltip when a user’s mouse rolls

over the button target area.

7. Click the last line of code (the curly brace) and repeat Steps 2 through 6 to

call the function that hides the tooltip. For the event, choose Roll Out.

Listing 12-2 shows a typical ActionScript to call and put a tooltip.

Listing 12-2: Calling the Functions

on (rollOver) {
_root.showTip(“about”);

}
on (rollOut) {
_root.hideTip(“about”);

}

To see an example of tooltips at work, copy to your hard drive the toolTips.fla file
you’ll find in this chapter’s folder on the CD-ROM that accompanies this book.
Disable the file’s read-only attributes and then open the file in Flash. Choose
Control➪Test Movie to publish the file and display it in another window. Roll your
mouse over the buttons to display the tooltips. After you finish testing the movie,
close the window. If you want to examine the ActionScript, open the Actions panel
and then select the individual buttons.

If adding tooltips is cumbersome for your design, you can create a movie clip with
a Help document and position it off Stage. Create a Help button that, when
clicked, changes the position of the Help document so that it appears within the
movie. Create a Close Window button that when clicked moves the document out
of view.

Creating Drag-and-Drop Elements
Another way to add interactivity to your designs is to create drag-and-drop elements.

You can create drag-and-drop menus or drag-and-drop windows. The easiest way to

create a drag-and-drop element is to nest an invisible button in a movie clip and then

use the startDrag action. You can either leave your viewers in the dark and let them

discover the element can be dragged and dropped when they roll over it with their

mouse, or you can create a small motion tween animation that shows the element

moving when the movie begins.

Tip

On the
CD-ROM

g3687-7 ch12.F 6/12/02 9:06 AM Page 238

239Chapter 12 ✦ Building Interactive Interfaces

Creating a drag-and-drop window
You can use the startDrag action to give you viewers the capability of dragging

and dropping objects in your movie. When you create a window or object with the

intention of using it as a drag-and-drop element in your design, create a tab for the

viewer to grab onto. You make this area of the object active by placing an invisible

button over the tab when you create the movie clip. By nesting the button inside a

movie clip, you don’t have to refer to a target path — you can use the this alias to

refer to the movie clip the button is nested in.

To convert a movie clip into a drag-and-drop object:

1. Select the movie clip on Stage that you want to convert to a drag-and-drop

object.

2. Choose Edit➪Edit Selected.

The object is now in symbol-editing mode.

3. Choose Window➪Library.

4. Select an invisible button and drag it on Stage. Align the invisible button over

the target area of the movie clip where the user will be able to click and drag.

5. Click the arrow to the left of the word Actions.

6. In the left pane of the Actions panel, click Actions➪Movie Clip Control and

then double-click startDrag.

7. In the Target field, type this and click the Expression checkbox.

8. Click the last line of code signified by the curly brace.

9. In the left pane of the Actions panel, click Actions➪Movie Clip Control and

then double-click stopDrag.

The stopDrag action has no parameters. It stops the drag action currently in

progress.

10. Select the first line of code that reads on(release) {.

11. In the parameter text area, select the Press event and deselect the Release event.

Listing 12-3 shows a typical script for a drag-and-drop element.

Listing 12-3: Creating the Code for a Drag-and-Drop Element

on (press) {
startDrag(this);

}
on (release) {
stopDrag();

}

g3687-7 ch12.F 6/12/02 9:06 AM Page 239

240 Part III ✦ Creating ActionScript Elements for Your Movie

If you create target windows for loading movie clips, you can use the startDrag
action to give the viewer the capability of dragging the window after the movie clip

loads. If your target window is a movie clip with a blank first frame, add the invisible

button to the second frame of the movie clip.

Closing a window
You can give viewers of your movies the option to close a window by creating a

small movie clip with the letter X inside an unfilled rectangle. Nest an invisible

button in the movie clip and then program the button to close the window.

The method you use to program the button depends on how the window was

created. If the window is the second frame of a target movie clip that another movie

is loaded into, program the button to unload the movie and go to the first frame of

the target movie clip, which is blank. Listing 12-4 shows typical ActionScript for

closing a target movie clip window and unloading a movie from the target.

Listing 12-4: Closing a Window

on (release) {
_root.art_clip_client.gotoAndStop(1);
unloadMovie(_root.art_clip_client);

}

You can also close a window by changing its _visible property to false. The code for

a button that hides a window from view is shown in Listing 12-5.

Listing 12-5: Hiding a Window

on (release) {
this._visible=false;

}

To view a document with a few drag-and-drop elements, copy to your hard drive the
dragNdrop.fla file found in this chapter’s folder on the CD-ROM that accompanies
this book. Use your operating system to disable the file’s read-only attribute. Launch
Flash, open the file and choose Control➪Test Movie. You can drag-and-drop the
windows and the menu. The menu is a derivate of the flyout menu you created
in Chapter 10. Click Menu to expand the menu. Both windows can be closed by
clicking the X. After you’re finished testing the movie, close the window and open
the Actions panel to examine the various scripts used in the movie.

On the
CD-ROM

g3687-7 ch12.F 6/12/02 9:06 AM Page 240

241Chapter 12 ✦ Building Interactive Interfaces

Creating a User Customizable Interface
In addition to giving viewers the capability of dragging and dropping objects,

you can also make if possible for them to modify the interface. You can do this by

creating a movie that uses a background image and then using the Color object and

a function to make it possible for the viewer to change the color of the background

image by clicking a button.

To learn how you can create a background that the user can change, copy to your
hard drive the interface.fla file found in this chapter’s folder on the CD-ROM the
accompanies this book. Disable the file’s read-only attribute using your operating
system utilities.

To create a user-customizable interface:

1. Launch Flash and open the interface.fla file.

2. Choose Control➪Test Movie.

The document is published and appears in a new window.

3. Click the Control Panel label.

The control panel slides into the interface. The panel motion was created by

using a motion tween.

4. Drag the slider bar.

The opacity of the background movie clip changes, as shown in Figure 12-5.

The slider used to change the opacity is constrained to a motion between 0

and 100 along the x axis. The _alpha property of the background image is set

equal to the _X property of the slider. When the slider is all the way to the

right, its _x property is 100 and the background is opaque; when the slider is

at 0, the background movie clip is transparent.

The color swatches are not functional yet. You’ll be programming them to change
the color of the background when they are clicked. But instead of creating a long
ActionScript for each button, you’re going to create a function named setBGcolor
that is called when each button is clicked.

5. Close the window to return the movie-editing mode.

The buttons are nested within a movie clip. You can edit items nested in a movie

clip by double-clicking the movie clip and then double-clicking individual items

nested in the movie clip. Every time you double-click, you open a nested symbol

and make it available for editing.

Note

On the
CD-ROM

g3687-7 ch12.F 6/12/02 9:06 AM Page 241

242 Part III ✦ Creating ActionScript Elements for Your Movie

Figure 12-5: The control panel is programmed to change the
color characteristics of the background image.

To program the buttons:

1. Double-click the control panel on the left side of the Stage.

You are now in symbol-editing mode and the workspace title bar reads

Control Panel, the name of the symbol.

2. Click the arrow to the left of the word Properties.

The Property inspector opens. Notice that the symbol has already been given

an instance name of open panel. This is part of the path to the buttons.

3. Double-click the panel again.

The title bar should now read Inner Panel.

4. Click the color swatch in the upper-right corner of the lower panel, directly

below the word color.

If you still have the Property inspector open, the description should read

“instance of #FF6699.” When the buttons were created, they were named after

their hexadecimal value.

5. Click the arrow to the left of the word Actions.

The panel title bar should read Actions-Button.

6. In the left pane of the Actions panel, click Actions➪Variable and then double-

click set variable.

7. In the Variable field, type chip

You’ll use the contents of this variable to change the color of the background

when the button is clicked.

8. In the Value field, type 0xFF6699

That nomenclature may look familiar. This is the same formatting used to

change an object’s color characteristics using the Color object.

g3687-7 ch12.F 6/12/02 9:06 AM Page 242

243Chapter 12 ✦ Building Interactive Interfaces

9. Click the Expression checkbox.

When you create code like this for your own designs, you’ll already know the

name of the function; therefore, you can create the code to call the function

while coding the button. As mentioned in the previous section, the name of

the function you’ll be creating is called setBGcolor. The instance name of the

background movie clip you’ll be applying the function to has been labeled bg.

10. In the left pane of the Actions panel, click Actions➪User-Defined Functions

and then double-click call function.

11. In the Object field, type _root

12. In the Method field, type setBGcolor

13. In the Parameters field, type “bg”. Your finished code for the button should

look exactly like Listing 12-6.

Listing 12-6: Creating the Code for the Button

on (release) {
chip = 0xFF6699;
_root.setBGcolor(“bg”);

}

14. Click the Scene 1 button to the right of the Back button to return to movie-

editing mode.

The other buttons have already been programmed. In order to make the buttons

active, you need to create a function that uses the setRGB method of the Color

object to apply the transformation.

To create the function:

1. Click the first frame on the Actions layer.

2. Click the arrow to the left of the word Actions.

3. In the left pane of the Actions panel, click Actions➪User Defined Functions

and then double-click function.

4. In the Name field, type setBGcolor

5. In the Parameters field, type mc

This signifies the function is to be used on a movie clip.

6. In the left pane of the Actions panel, click Actions➪Variables and then double-

click set variable.

g3687-7 ch12.F 6/12/02 9:06 AM Page 243

244 Part III ✦ Creating ActionScript Elements for Your Movie

7. In the Variable field, type myColorObject

8. Place your cursor in the Value field and then in the left pane of the Actions

panel, click Objects➪Movie➪Color and then double-click newColor.

The object is added to the script and your cursor blinks between two

parentheses.

9. Type mc and click the Expression checkbox.

10. In the left pane of the Actions panel, click Objects➪Movie➪Color➪Methods

and then double-click setRGB.

11. In the Object field, type myColorObject and then place your cursor inside the

Parameters field.

When you worked with the color object in Chapter 9, you specified a

hexadecimal value in this field. However, you’re using the function with more

than one color value. The value changes whenever one of the color buttons in

the control panel is clicked. You set the variable of the variable chip equal to

the hexadecimal value of the button’s color using the proper formatting for

the Color object. You use the value of the variable in the parameters field by

specifying the path to the variable and the name of the variable.

12. Click the Insert a Target Path button to open the Insert Target Path dialog box.

Click the Absolute mode radio button if it’s not already selected.

13. Click the plus sign (+) to the left of the fullPanel button and then click

openPanel, as shown in Figure 12-6.

This is the target path to the button where you set the value of the variable

chip.

14. In the Value field, place your cursor to the right of the target path that was

entered when you clicked the button and type .chip

The code for your finished function should look exactly like Listing 12-7.

Figure 12-6: Adding the target path to
the script.

g3687-7 ch12.F 6/12/02 9:06 AM Page 244

245Chapter 12 ✦ Building Interactive Interfaces

Listing 12-7: Creating the setBGcolor Function

function setBGcolor(mc) {
myColorObject = new Color(mc);
myColorObject.setRGB(_root.fullPanel.openPanel.chip);

}

The other buttons are already programmed. The value of the variable chip is set

equal to the hexadecimal value of the button’s color, formatted for the setRGB

method of the color object. To test your code choose Control➪Test Movie. After the

movie opens in another window, click the control panel button to open the panel.

Click each color button and watch the color of the background movie clip change.

Drag the slider to vary the look of the background even further by changing the

value of background movie clip’s _alpha property.

Telling Time with ActionScript
You can add the time and date to your designs using ActionScript. You can use the

various methods of the Date object to retrieve the date and time from the user’s

computer. The information retrieved by the Date object is variable — it changes as

the computer updates the time. In order to retrieve the time or date for the

computer playing your Flash movie, you must first create a Date object.

Creating a Date object
Before you can retrieve the date or time from a computer using the Date object, you

must first create an instance of the Date object. You can create an instance of the

Date object on a keyframe or within a movie clip.

To create an instance of the Date object:

1. Click the arrow to the left of the word Actions.

2. In the left pane of the Actions panel, click Actions➪Variables and then double-

click set variable.

3. In the Variable field, type a name for the instance of the Date object,

for example myDate.

4. Place your cursor inside the Value field, and in the left pane of the Actions

panel, click Objects➪Core➪Date and then double-click new Date.

5. Click the Expression checkbox.

After you create an instance of the Date object, you can use the object’s methods to

retrieve date and time information from the host computer playing your Flash design.

g3687-7 ch12.F 6/12/02 9:06 AM Page 245

246 Part III ✦ Creating ActionScript Elements for Your Movie

Displaying the current date
When you use methods of the Date object to display the date, you display the date

in a dynamic text box. You then create a variable with the same name as the

dynamic text box variable and set the value of the variable equal to the various

methods of the Date object. The following list shows some of the most commonly

used Date object methods:

✦ getDate: Returns the current date of the month as a number.

✦ getDay: Returns the current day of the week as a number. The week begins

with Sunday, which is designated by the number 0. In order to display the

day’s name, you create an array with each day of the week. The first element

in the array is Sunday, which is array offset 0, the same number the getDay

method returns when the day of the week is Sunday.

✦ getMonth: Returns the current month of the year as a number. January is

returned as a 0, December as an 11. To display the month’s name instead of a

number, you create an array with each day of the month. If you display the

month as a number, you have to create ActionScript to increase the value the

getMonth method returns by 1.

✦ getFullYear: Returns the current year as a four-digit number; for example, 2002.

To retrieve the current date from the computer’s operating system, you create an

instance of the Date object as described in the previous section. After you create

the object, you then create individual variables to retrieve the day, month, date,

and year from the host computer’s operating system. Listing 12-8 shows a typical

script to retrieve the date.

Listing 12-8: Retrieving the Current Date Using Methods of
the Date Object

mydate = new Date();
day = mydate.getDay();
month = mydate.getMonth();
currentdate = mydate.getDate();
year = mydate.getFullYear();

The code in Listing 12-8 returns the date. To display the date in a dynamic text box

with a variable name of current date, you’d create the script in Listing 12-9.

g3687-7 ch12.F 6/12/02 9:06 AM Page 246

247Chapter 12 ✦ Building Interactive Interfaces

Listing 12-9: Displaying the Date

// Set day array
myday = new Array(“Sunday”, “Monday”, “Tuesday”, “Wednesday”, “Thursday”,
“Friday”, “Saturday”);
// create date object and variables for day, month,date, and year
mymonth = new Array(“January”, “February”, “March”, “April”, “May”, “June”,
“July”, “August”, “September”, “October”, “November”, “December”);
mydate = new Date();
day = mydate.getDay();
month = mydate.getMonth();
currentdate = mydate.getDate();
year = mydate.getFullYear();
current_date = myday[day]+”, “+mymonth[month]+” “+currentdate+”, “+year;

The two arrays contain the days and months as string objects. The first element of

an array is 0. The getDay and getMonth methods of the Date object returns Sunday

and January as a 0. The last lines of code combine the elements to display the date

in a dynamic text box with the variable name of current_date. The first element of

the current_date variable, myday[day] gets the current day for the week from

the myday array. The mymonth[month] element of the variable gets the current

month from the mymonth array. You retrieve an element from an array by specifying

its offset surrounded by square brackets. The variable day and month return a

number that retrieves the proper element from each array.

In this chapter’s folder on the CD-ROM that accompanies this book is a file named
currentDate.fla. Copy the file to your hard drive and use your operating system util-
ities to disable the file’s read-only attributes. Open the file in Flash for an example
of a movie clip that displays the current date. Choose Control➪Test Movie to see
the date displayed. To use the movie clip in your own design, open the file using
the Open as Library command and then drag the movie clip into the current
document Library. You can then edit the movie clip to change the attributes in the
dynamic text box to display a different font or different font color.

Displaying the current Time
To retrieve the current time from the host computer playing your Flash design, you

create an instance of the Date object as outlined previously. After you create an

instance of the Date object, you can use the object’s methods to retrieve the current

time. The following list shows the most commonly used methods to retrieve the time.

✦ getHours: Returns the current hour from the host computer as a whole

number. The time returned is based on a 24-hour clock. Midnight is returned

as a 0; 11:00 PM is returned as 23.

✦ getMinutes: Displays the current minute from the host computer’s clock as a

whole number.

✦ getSeconds: Displays the current second from the host computer’s clock as a

whole number.

On the
CD-ROM

g3687-7 ch12.F 6/12/02 9:06 AM Page 247

248 Part III ✦ Creating ActionScript Elements for Your Movie

After creating an instance of the Date object, you create a variable for each method

you want to retrieve. Listing 12-10 shows a script that creates an instance of the

Date object and three variables to store the information.

Listing 12-10: Retrieving the Current Time from the
Host Computer

mydate = new Date();
hours = mydate.getHours();
minutes = mydate.getMinutes();
seconds = mydate.getSeconds();

To display the date in a dynamic text box, you have to convert the 24-hour clock to

a 12-hour clock, unless of course your client is a military organization. Listing 12-11

shows a script that displays the time correctly in a dynamic text box.

Listing 12-11: Displaying the Time on a 12-Hour Clock

onClipEvent (enterFrame) {
mydate = new Date();
hours = mydate.getHours();
minutes = mydate.getMinutes();
seconds = mydate.getSeconds();
// Calculate value of AMorPM variable before changing hours variable to

compensate for military time
if (hours<12) {
AMorPM = “AM”;

} else {
AMorPM = “PM”;

}
// At midnight military time =0
if (hours<1) {
hours = 12;

}
if (hours>12) {
hours = hours-12;

}
if (minutes<10) {
minutes = “0”+minutes;

}
if (seconds<10) {
seconds = “0”+seconds;

}
current_time = hours+”:”+minutes+”:”+seconds+” “+AMorPM;

}

g3687-7 ch12.F 6/12/02 9:06 AM Page 248

249Chapter 12 ✦ Building Interactive Interfaces

Notice that the code in the previous example specifies the enterFrame clip event.

This code is in a movie clip. Choosing the enterFrame clip event continually

updates the time as the host computer’s clock ticks away. The lines of code below

the seconds variable set the display time to AM or PM and modify the output to a

12-hour clock. These are all conditional statements. If the variable hours returns a

value less than 1, it’s midnight and the variable’s value is reset to 12 — midnight on

a 12-hour clock. If the value of hours exceeds 12, the value is reduced by 12 to

display the proper time on a 12-hour clock; for example, 1300 hours is 1:00 PM on a

12-hour clock. The last two variables add the string “0” to seconds or minutes if

they are less than 10. The current_time variable combines all the variables with the

necessary punctuation to properly display the time in a dynamic text box.

In this chapter’s folder on the CD-ROM that accompanies this book is a file named
currentTime.fla. Copy the file to your hard drive and use your operating system
utilities to disable the file’s read-only attributes. Open the file in Flash for an exam-
ple of a movie clip that displays the current time. Choose Control➪Test Movie to
see the date displayed. To use the movie clip in your own design, open the file
using the Open as Library command and then drag the movie clip into the docu-
ment Library of your current project. You can then edit the dynamic text box in the
movie clip to change the text attributes and choose a different font style or color. If
you choose a larger font size, you may have to resize the dynamic text box with the
Text tool.

Using the ScrollBar Component
In Chapter 11, you learned how to create a scrolling text box that displays dynamic

text using a button and/or slider of your own design. If you’re ever under the gun

to get a project completed in a short period of time and you need to include a

scrolling text box in the design, you can use the ScrollBar component to quickly

get the job done.

To create a scrolling text box with the ScrollBar component:

1. Select the Text tool.

2. Drag a text box on Stage.

3. Click the arrow to the left of the word Properties.

The Property inspector opens.

4. Choose the font style, color, and size.

5. Click the triangle to the right of the Text Type field and choose Dynamic Text

from the drop-down menu.

6. Enter a name for the text box in the <Instance Name> field.

Enter a name with no spaces. If you must have a separation between two

words, use an underscore.

On the
CD-ROM

g3687-7 ch12.F 6/12/02 9:06 AM Page 249

250 Part III ✦ Creating ActionScript Elements for Your Movie

7. Click the triangle to the right of the Line Type field and choose Multiline from

the drop-down menu.

8. Select the dynamic text box with the Arrow tool and then right-click (Windows)

or Ctrl+click (Macintosh) and choose Scrollable from the context menu.

9. Double-click the text box to return to text-editing mode.

10. Enter the desired text in the box or paste the contents of a document you’ve

copied from a word processing program. Make sure you enter enough text to

exceed the boundary of the text box.

11. Choose Window➪Components.

The Components panel opens.

12. Drag an instance of the ScrollBar component and drop it inside the text box.

The component resizes itself to the height of the text box (see Figure 12-7).

When the movie is published, the scrollbar becomes functional.

Figure 12-7: You can use the ScrollBar component to quickly create a scrolling
text box.

ScrollBar parameters ScrollBar component

g3687-7 ch12.F 6/12/02 9:06 AM Page 250

251Chapter 12 ✦ Building Interactive Interfaces

Chapter Project: Creating a Moving
Navigation Bar

If you’ve ever seen a Flash design with a navigation menu that is moving from left to

right and the first item of the menu reappears after the last in a seemingly endless

loop, you know what a compelling effect this is. The code to create this effect is

relatively simple. You begin by creating a navigation bar as outlined previously in

Chapter 10 and then use a bit of ActionScript trickery to pull off the effect.

To learn how to create a moving navigation bar, copy to your hard drive the
movingNavBar.fla file you’ll find in this chapter’s folder on the CD-ROM that
accompanies this book. Disable the file’s read-only attributes using your operating
system utilities.

To create the moving navigation bar:

1. Launch Flash and open the movingNavBar.fla file.

The project is partially completed. You have a basic interface and a navigation

bar, as shown in Figure 12-8.

Figure 12-8: Your first step is to create a navigation bar.

On the
CD-ROM

g3687-7 ch12.F 6/12/02 9:06 AM Page 251

252 Part III ✦ Creating ActionScript Elements for Your Movie

2. Select all the buttons and then choose Insert➪Convert to Symbol.

The Convert to Symbol dialog box appears.

3. Name the symbol, choose the movie clip behavior, and click the center left

square in the Registration section (see Figure 12-9).

Figure 12-9: You convert the navigation
bar to a movie clip symbol.

4. Click OK.

The buttons are converted to a movie clip symbol and the symbol is added to

the document Library.

5. Select the symbol you just created and then choose Edit➪Edit Selected.

You are now working in symbol-editing mode.

6. Select all the buttons and then choose Edit➪Copy.

The buttons are copied to the clipboard.

7. Choose Edit➪Paste in Place.

You now have a carbon copy of the buttons in the navigation bar. Your next

task is to align the first button so that it appears after the last button on the

navigation bar you copied. The document you are working with is 600 pixels

wide, as is the navigation bar. To move the selected buttons, you change the

x value in the Property inspector.

g3687-7 ch12.F 6/12/02 9:06 AM Page 252

253Chapter 12 ✦ Building Interactive Interfaces

8. Click the arrow to the left of the word Properties to open the Property

inspector.

9. In the X field, type 600

The buttons are perfectly aligned.

10. Click the Back button to exit symbol-editing mode.

When you return to movie editing mode, the symbol is still selected.

11. Click the triangle to the left of the word Actions.

The Actions panel opens.

12. In the left pane of the Actions panel, click Actions➪Conditions/Loops and

then double-click if.

13. In the Condition field, type this

14. In the left pane of the Actions panel, click Objects➪Movie➪Movie

Clip➪Methods and then double-click hitTest.

Your cursor flashes between a pair of parentheses.

15. Type the following: _root._xmouse, _root._ymouse,true

The condition you just created tests to see if the mouse has hit the

navigation bar.

16. In the left pane of the Actions panel, click Actions➪Miscellaneous Actions and

then double-click evaluate.

17. In the Expression field, type this._x-=0

You may recognize this as a decremental expression. If the mouse hits the

navigation bar, the x position of the navigation bar decrements by a value of 0.

In other words, there is no motion. To set the navigation bar in motion, you

need to use the else action.

18. In the left pane of the Actions panel, click Actions➪Conditions/Loops and

then double-click else.

19. In the left pane of the Actions panel, click Actions➪Miscellaneous Actions and

then double-click evaluate.

20. In the Expression field, type this._x-=5

This expression decrements the x position of the navigation bar by a value of

five pixels. But if the navigation bar continues to move, eventually it will scroll

past the end of the movie. To prevent this, you create another conditional

statement using the if action. The navigation bar is 600 pixels long, and you

tacked a 600 pixel duplicate to the back end. The first button on the navigation

bar is at x coordinate 0. When the navigation bar moves 600 pixels to the left,

the navigation bar you copied to the back end is fully displayed. Therefore, you

set the _x property of the navigation bar to 0 as soon as it exceeds –600. This is

how the navigation bar appears to be continuous.

g3687-7 ch12.F 6/12/02 9:06 AM Page 253

254 Part III ✦ Creating ActionScript Elements for Your Movie

21. In the left pane of the Actions panel, click Actions➪Conditions/Loops and

then double-click if.

22. In the Condition field, type this._x<=-600

23. In the left pane of the Actions panel, click Actions➪Miscellaneous Actions and

then double-click evaluate.

24. In the Expression field, type this._x=0

As soon the movie clips _x property is less than or equal to –600, the property

is reset to 0 and the navigation bar appears as though it is never-ending.

25. Select the first line of code that reads onClipEvent (load) {.

26. In the parameter text area, select the Enter Frame clip event. Your code for

the navigation bar should look like Listing 12-12.

Listing 12-12: Creating ActionScript for a
Moving Navigation Bar

onClipEvent (enterFrame) {
if (this.hitTest(_root._xmouse, _root._ymouse,true)) {
this._x-=0;

} else {
this._x-=5;

}
if (this._x<=-600) {
this._x=0;

}
}

27. Choose Control➪Test Movie.

After the movie publishes, it displays in another window. If you followed the

steps exactly, the navigation bar should begin moving to the left. Move your

mouse over the navigation bar and it stops.

This technique can also be used when the navigation bar exceeds the width of the

movie. For example, if you create a document that is 600 pixels wide, and you have

eight buttons that are 100 pixels long, you change the values accordingly. When you

duplicate the buttons and paste them onto the back end of the original navigation

bar, you change the value in the X field of the Property inspector to 800.When the

navigation bar’s _x property is less than or equal to –800, you reset the property

value to 0.

g3687-7 ch12.F 6/12/02 9:06 AM Page 254

255Chapter 12 ✦ Building Interactive Interfaces

For another interesting variation, you can create a vertical navigation bar and have
it continuously scroll from top to bottom by decrementing the navigation bar’s _y
property.

Designer Notes
In this chapter, you learned to create interactive elements for your interfaces. You

learned how to create tooltips as well as how to create an interface that the user

can modify. You learned to use the Date object to display the time and date in your

designs. The chapter project showed you how to create a navigation menu that

moves from left to right and appears to have no end. In the next chapter, you learn

to use the Sound object to modify the characteristics of sounds in your Flash

designs.

✦ ✦ ✦

Tip

g3687-7 ch12.F 6/12/02 9:06 AM Page 255

g3687-7 ch12.F 6/12/02 9:06 AM Page 256

Creating
ActionScript
Sound Objects

When you design a movie, chances are sound will be

included. The vast majority of Web surfers seem to

expect sound as a given with any Flash design. However, not

everyone likes sound when viewing a Web site. And not

everyone likes the same type of music. Therefore, it is

necessary to provide some type of control the viewer can use

to control the sound. And that job is left to you, the designer

of the movie.

Soundtracks can be incorporated in the document Library, or

you can add a soundtrack at runtime. In this chapter, you’ll

learn to create a movie with nothing but a soundtrack that is

loaded into another movie. You’ll also learn to create an

instance of the ActionScript Sound object. When you create

an instance of the Sound object, you can use methods of the

Sound object to control the volume of the sound, pan the

sound between speakers, or start and stop the sound. When

you complete the chapter project, you’ll know how to create

a working sound controller.

The Actions panel’s got lots of books. And some of these
books have books within a book. To add some actions to
your scripts, you have to click this book icon, then click that
book icon, then click another book icon, and so on. Rather
than bore you with a lot of words, I’m going to show the
path to each action as shown in the following example:
Click Actions➪Movie Control and then double-click goto.

Creating a Soundtrack
There are two ways you can work a soundtrack into your

designs. First, you can import the sound file into the

document Library and add it to the timeline. When you use

Note

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a
soundtrack

Looping a soundtrack

Using streaming
sound

Creating a Sound
object

Using methods of the
Sound object

Chapter project:
Creating a sound
controller

✦ ✦ ✦ ✦

g3687-7 ch13.F 6/12/02 9:07 AM Page 257

258 Part III ✦ Creating ActionScript Elements for Your Movie

a soundtrack in this manner, the soundtrack must load at runtime before the first

frame of the movie plays. If you have a relatively small sound file, this is generally

not a problem.

However, a better solution for adding sound to your Flash production is to publish

the soundtrack in a separate movie and then give the viewer the option to load the

soundtrack or not. When you choose this option, your base movie loads more

quickly because you don’t have the overhead of the sound file to load in addition

to your other content. Whichever method you choose, you must first import the

sound into the document.

Importing a sound
When you decide to use a soundtrack in one of your designs, you can import any of

the following file types:

✦ WAV (Windows only)

✦ AIFF (Macintosh only)

✦ MP3 (Windows and Macintosh)

If you have QuickTime 4 installed on your machine, you can also import the following

sound format types:

✦ AIFF (Windows or Macintosh)

✦ Sound Designer II (Macintosh only)

✦ Sound only QuickTime Movies (Windows and Macintosh)

✦ Sun AU (Windows or Macintosh)

✦ System 7 Sounds (Macintosh only)

✦ WAV (Windows or Macintosh)

The format you import depends on the source material you have available. If you

use sound sampling software to create your own loops, you can choose a format

to render the file with. The AIFF and WAV formats create a good quality soundtrack

at the expense of a large file size. If you choose the MP3 format, you can choose

a compression setting to apply to the file. However, you can also apply MP3

compression to a sound file within Flash. When you apply MP3 compression using

Flash export settings, you can choose a Bit Rate as high as 160 kbps. This setting

gives you CD-quality sound, but it also generates the largest file size. Unless you

need a Bit Rate setting higher than 160, it is recommended that you render a file in

the native format for your operating system (WAV for Windows and AIFF for

Macintosh) and apply MP3 compression within Flash.

g3687-7 ch13.F 6/12/02 9:07 AM Page 258

259Chapter 13 ✦ Creating ActionScript Sound Objects

To import a sound file into a Flash document:

1. Choose File➪Import.

The Import dialog box opens.

2. Locate the sound file you want to import and then click Open.

The dialog box closes and the sound is stored in the document Library.

After you import a sound into Flash, you can then add it anywhere on the timeline.

To add a sound to the timeline, you use the Property inspector. To add a sound to

the timeline, do the following:

1. Select the keyframe where you want the sound to begin playing.

2. Click the arrow to the left of the word Properties.

The Property inspector opens.

3. Click the triangle to the right of the Sound field.

A menu appears with a list of all sounds stored in the document Library.

4. Select a sound from the menu.

5. Click the triangle to the right of the Effect field and choose one of the following:

• None: The default setting applies no effect to the sound.

• Left Channel: Plays sound in left channel only.

• Right Channel: Plays sound in right channel only. You can use this effect

in conjunction with the Left Channel effect applied to a different sound

on a different timeline to play different sounds in each speaker.

• Fade Left to Right: Fades sound from left speaker to the right.

• Fade Right to Left: Fades sound from right speaker to the left.

• Fade In: Gradually increases the amplitude of the sound to full volume

during the duration of the sound.

• Fade Out: Gradually decreases the amplitude of the sound to silence

during the duration of the sound.

• Custom: Lets you create your own effect by modifying the sound’s

characteristics. When you choose this option, a dialog box appears.

Creating a custom effect will be covered in the next section.

6. Click the triangle to the right of the Sync field and choose one of the following

options:

• Event: An event sound is synched to the keyframe where you add the

sound. The sound plays in its entirety, regardless of the length of the

timeline and regardless of whether the movie is still playing. Choose

Event when you are creating a background sound loop. Event sounds are

mixed when the movie is published.

g3687-7 ch13.F 6/12/02 9:07 AM Page 259

260 Part III ✦ Creating ActionScript Elements for Your Movie

When you use the Event Sync option for a button sound, the sound

starts when the button is clicked and plays for its duration. If the button

is clicked again before the sound finishes playing, a second instance of

the sound plays simultaneously.

• Start: Works the same as Event. However, if the sound is already playing,

a new instance of the sound does not start. This setting is recommended

for a button sound.

• Stop: Stops a sound.

If you create an introduction with sound for one of your designs, add a keyframe
to the last frame of your introduction, open the Property inspector, and from the
Sound field menu, choose your intro soundtrack and from the Sync field menu
choose Stop. Open the Actions panel and create the code to go to and play the
first frame of the main movie. Create a “skip intro” button and program the button
to go to and play the last frame of the introduction. When the user clicks the
button, the last frame of the introduction plays, stops the introduction sound, and
transports the viewer to the first frame of the main scene of your design.

• Stream: Streams the sound into the viewer’s browser. The Flash Player

forces the animation to synchronize with the streaming sound, dropping

frames if necessary to keep up. If the data can’t download into the user’s

browser quickly enough, the sound will stop. If you do not have enough

frames on the timeline, the sound will stop when the last frame is

reached. Streaming sound is best used to synchronize a narration with a

movie. Streaming sound is not recommended for background music as

popping sounds and other artifacts may occur when Flash breaks the

sound into packets for streaming.

7. In the Loop field, enter the number of times you want the sound to loop for.

When you’re using a sound for background music, enter a high value so the

sound plays continuously while the movie is being viewed. However, when

you create background music that loops continuously, provide some way

for the viewer to stop the sound. Either create a button and assign the

stopAllSounds action to it or create a sound controller with volume control

and an Off switch (as you will do in this chapter’s project).

After you complete the previous steps, the sound is added to the timeline. If you

have enough frames on the timeline, the sound’s waveform is displayed, as shown

in Figure 13-1. Otherwise, you see a truncated waveform, but if you choose Event or

Start for the Sync method, the sound will still play in its entirety

Creating a custom effect
If you don’t own sound-editing software, you can still do some basic sound editing

within Flash. You can create a custom fade in or fade out, vary the volume of the

sound as it plays, or change the duration of a sound. When you edit a sound, you

create a custom effect.

Tip

g3687-7 ch13.F 6/12/02 9:07 AM Page 260

261Chapter 13 ✦ Creating ActionScript Sound Objects

Figure 13-1: You can insert a sound at any point on the timeline.

To create a custom effect:

1. Import a sound and add it to the timeline as discussed previously, or select a

sound on the timeline you want to edit.

2. Click the arrow to the left of the word Properties.

The Property inspector opens. If the sound is already on the timeline, the

sound’s name is displayed in the Sound field. Otherwise, follow the previous

steps to set up the imported sound on the timeline.

3. Click the triangle to the right of the Effect field and choose Custom.

Alternately, you can click the Edit button.

The Edit Envelope dialog box opens (see Figure 13-2), and you can perform

any of the following tasks:

• To shorten the duration of the sound, drag the Time In and/or Time Out

controls. With these controls, you change the duration of the sound and

also the point where the sound begins or stops.

Sound waveformSound begins at this keyframe

Selected soundEvent menu

g3687-7 ch13.F 6/12/02 9:07 AM Page 261

262 Part III ✦ Creating ActionScript Elements for Your Movie

• To edit the sound, click anywhere inside one of the windows to create a

handle. You have two windows, one for each channel. When you create a

new handle, one appears in each window. You can drag each handle

independently to apply different settings to each channel and create

custom fade in or fade out effects. Drag a handle down to decrease the

amplitude (volume) of the sound.

• To zoom in on the sound waveform, click the magnifying glass with a

plus sign (+) in it.

• To zoom out and view more of the waveform, click the magnifying glass

with a minus sign (–) in it.

• To toggle the unit of measure between seconds and frames, click the

Seconds and Frames buttons.

• To preview the sound, click the Play button.

• To stop the sound, click the Stop button.

4. Click Done to apply the edits to the selected sound.

Select one of the preset effects as a starting point for a custom effect. Click the Edit
button and then follow the previous steps to modify the effect to suit your design.

Figure 13-2: You can edit a sound’s characteristics within Flash.

Time In slider Time Out slider

Envelope handles

Zoom outZoom in

Seconds
Frames

PlayStop

Tip

g3687-7 ch13.F 6/12/02 9:07 AM Page 262

263Chapter 13 ✦ Creating ActionScript Sound Objects

Modifying export settings
When you import a sound into Flash, it is compressed to create a small file size. You

can accept the default settings for the majority of the sounds you use for buttons

and the like. However, when it comes to music or the spoken word, you can modify

the compression settings to suit your design. In addition to the Default settings, you

can choose ADPCM, MP3, Raw, and Speech. In the following sections, the MP3 and

Speech export settings are covered in detail as they are used most frequently. You

can use the ADPCM sound compression format for 8- and 16-bit sounds such as

button clicks. Use the Raw option for sounds that have been optimized using other

software as this option applies no compression to the sound when exported with a

Flash movie.

Using the MP3 export option
When you have a soundtrack in your design, your best compression option is MP3.

When you use MP3, you get a combination of the smallest possible file size and the

highest fidelity. As mentioned earlier, if you use sound-editing software to create

sound loops, export the file in your operating system’s native format (WAV for

Windows, AIFF for Macintosh), and then use this compression method for the best

results.

To use MP3 compression:

1. Choose Window➪Library.

The document Library opens.

2. Double-click the sound whose export settings you want to modify. Alternately,

you can choose Properties from the Library options menu.

After you choose one of these options, the Sound Properties dialog box

appears.

3. Click the triangle to the right of the Compression field and choose MP3.

4. Click the triangle to the right of the Bit Rate field and choose an option from

the drop-down menu.

Choose a higher setting for better sound fidelity or a lower setting for a

smaller file size. If you choose a setting 20 kbps or higher, the option to

Convert Stereo to Mono becomes available. This option is selected by default.

As you modify the Bit Rate, Flash displays the Bit Rate and the file size of the

sound at the bottom of the dialog box, as shown in Figure 13-3.

5. To play the sound in Stereo, click the Convert Stereo to Mono check box to

deselect the option.

6. Click the triangle to the right of the Quality field and choose Fast, Medium,

or Best.

g3687-7 ch13.F 6/12/02 9:07 AM Page 263

264 Part III ✦ Creating ActionScript Elements for Your Movie

This setting determines the amount of time Flash spends analyzing the sound

as it is compressed. When you choose Best, Flash takes longer to analyze the

sound while compressing it, resulting in a higher quality sound. If you have a

slower machine and you are changing the settings on a large sound file, it will

take longer to publish the movie or test the sound when you choose Best.

If you have the time, choose Best for the highest sound quality.

7. To preview the sound with the new settings, click Test.

Flash applies the current compression settings to the sound and plays it.

If the sound quality is acceptable, click OK to apply the settings; otherwise,

select a different Bit Rate. Your objective is to get the smallest possible file

size with acceptable sound quality. Of course, what is acceptable will be

largely dependent on the client you are creating the site for. For example,

if you’re applying compression settings to sound files for a musician’s Web

site, you’ll end up using a higher Bit Rate to showcase the subtle nuances of

the music and best showcase the musician’s talent.

If you are compressing a sound for a multimedia application that plays from a
CD-ROM, you can choose a higher Bit Rate as file size is not as important when
you play a Flash movie from CD-ROM.

Figure 13-3: You can use MP3 compression when
high quality music and a small file size are required.

Using the Speech compression option
When you have spoken narratives in your design, you can use the Speech

compression option. Speech compression is ideally suited for optimizing sound

files containing the spoken word.

Note

g3687-7 ch13.F 6/12/02 9:07 AM Page 264

265Chapter 13 ✦ Creating ActionScript Sound Objects

To use the Speech compression option:

1. Choose Window➪Library.

The document Library opens.

2. Double-click the sound you want to compress with the Speech option.

The Sound Properties dialog box appears.

3. Click the triangle to the right of the Compression field and choose Speech

from the drop-down menu.

4. Click the triangle to the right of the Sample Rate field and choose one of the

following:

• 5 khz is the lowest sample rate acceptable for human speech. This

setting results in the smallest file size at the expense of quality.

• 11 khz is the best compromise between sound quality and file size.

• 22 khz is the setting to choose if there is background music with the

spoken narrative.

• 44 khz is recommended if the narrative includes background music and

is to be included in a CD-ROM multimedia application.

When you choose a setting, the file size of the sound is displayed at the

bottom of the dialog box, as shown in Figure 13-4.

5. Click the Test button to preview the sound.

If the sound quality is acceptable, click OK to apply the new settings to the

sound and close the dialog box. Otherwise, select a different sample rate and

retest the sound.

Figure 13-4: You can choose the Speech compression
option for sound files with narration.

g3687-7 ch13.F 6/12/02 9:07 AM Page 265

266 Part III ✦ Creating ActionScript Elements for Your Movie

Creating a Movie with Interactive Sound
If you are creating an interactive design and giving the viewer the option to listen to

sound or not, you create a button that loads the soundtrack when clicked. When

you design a movie in this manner, the movie loads quicker because it is does not

have to load the sound file in addition to the other content. You program the button

using the loadMovie action to load the soundtrack. The movie that is loaded

contains nothing but a soundtrack.

Creating a soundtrack movie
When you decide to give viewers the option of listening to music or not, the first

step is to create a movie that contains the soundtrack for the site. As mentioned

previously, the movie contains nothing but a sound file that loops continuously.

To create a soundtrack movie:

1. Create a new document.

2. Choose Modify➪Document.

The Document Properties dialog box opens.

3. Enter a value of 1 in the width and height fields.

Entering these values creates a 1 pixel by 1 pixel document.

4. Import a soundtrack as outlined in the previous section.

5. Select the first frame and then click the arrow to the left of the word

Properties.

The Property inspector opens.

6. Click the triangle to the right of the Sound field and choose the sound loop

you imported.

7. Click the triangle to the right of the Event field and choose Event. In the Loops

field, enter a high value such as 1000.

8. Save the document as a .FLA file.

When you save the document, choose a name that you’ll use to load the

soundtrack movie into your main design; soundtrack is a logical choice.

9. Choose File➪Publish Settings and deselect the HTML option by clicking to

remove the checkmark from the checkbox.

10. Publish the file as a .SWF movie.

After you publish the soundtrack movie, you need to create the ActionScript in

your design that will load the soundtrack.

g3687-7 ch13.F 6/12/02 9:07 AM Page 266

267Chapter 13 ✦ Creating ActionScript Sound Objects

Loading the soundtrack into your design
When you create a soundtrack, you can use the loadMovie action to load the file

when the first frame of your movie plays. If the soundtrack is a background sound,

this is fine. However, depending on the size of your soundtrack movie, it may load

and play before the main movie does. The better solution is to create a preloader to

load your entire movie, and then load the soundtrack movie on the first frame of

the main scene. Or if you want to give the viewer the choice of whether to listen to

the soundtrack or not, create a button that loads the movie.

To load a soundtrack into your movie:

1. Select the keyframe where you want the soundtrack movie to load or the

button that, when clicked, will load the soundtrack movie.

2. Click the arrow to the left of the word Actions.

3. Choose Actions➪Browser/Network and then double-click loadMovie.

4. In the URL field, enter the name of the soundtrack movie.

When you enter the name of the movie, enter the complete filename, for

example, soundtrack.swf. If the movie is in a different directory at the same

Web site, enter the relative path to the file. If the soundtrack movie is at a

different Web site, enter the absolute path to the file, for example,

http://www.mysite.com/soundtrack.swf.

5. Accept Level, the default Location option, and in the Text field, type 99.

This is the highest level in a Flash movie. Specifying level 99 for a soundtrack

movie is always a safe bet. You can load content into the lower layers and not

interfere with the soundtrack. Remember that when you load a movie into a

level, it takes the place of any movie previously playing in that level.

If you want to give your viewers the option of turning off the soundtrack after it

starts playing, create a button and assign the unLoad movie action to it. Be sure to

specify the same level you loaded the movie into. This is another good reason for

always using level 99 for your soundtrack movies — it’s easy to remember.

Loading a soundtrack movie into a document and giving viewers the choice to listen

or not listen is but one level of interactivity you can add to your designs. You can

create multiple soundtrack movies and create a button for each music loop. As long

as you use the same level for each button’s loadMovie action, clicking a button will

unload the previous soundtrack movie and load another. If you want to give viewer

the ability to control the properties of a soundtrack, such as sound volume and

balance between speakers, you can use methods of Sound object to accomplish this.

g3687-7 ch13.F 6/12/02 9:07 AM Page 267

268 Part III ✦ Creating ActionScript Elements for Your Movie

Using the Sound Object
The Sound object was introduced in Flash 5. You can use the methods of the Sound

object to modify various properties of a sound, for example, to vary the volume of a

sound, start a sound, or pan a sound from one speaker to another. When you use

the Sound object in one of your designs, you create an instance of the Sound object

and then attach a sound to the instance of the Sound object. You can then modify

the properties of the attached sound with the Sound object’s methods.

Creating an instance of the Sound object
You can use the Sound object to modify a soundtrack movie that is loaded into the

base movie or to modify a sound in the document Library. After you create an

instance of the Sound object, you attach the sound that you want to modify. You

can create the instance on a keyframe, within a movie clip, or within a button.

To create an instance of the Sound object:

1. Select the object or keyframe where you want to create the instance.

2. Click Actions➪Variables and then double-click set variable.

3. Enter a name in the Variable field.

This is the name you will use to refer to the Sound object. Enter a logical name

such as mySound or globalSound.

4. Place your cursor in the Value field, choose Objects➪Movie➪Sound, and then

double-click new Sound.

That’s all you need to do to create an instance of the Sound object. If you’re going

to use buttons to load movie soundtracks into a document, use the first keyframe

in the movie to create the Sound object instance. Then you can create the

ActionScript to load the sound and attach the sound when a button is clicked.

If you’re creating a movie clip that you’ll use to control the soundtrack in a movie,

create the Sound object instance on the first frame of the movie clip.

Working with sound from the document Library
If you’re going to use the Sound object to modify sounds from within the document

Library, you must create the linkage that you will use to refer to the sound when

attaching it. If you have several sounds in the document Library, you can attach

them and play them at keyframes within your movie or attach them when a button is

clicked. After you attach a sound, you can then modify its properties with methods

of the Sound object.

g3687-7 ch13.F 6/12/02 9:07 AM Page 268

269Chapter 13 ✦ Creating ActionScript Sound Objects

To create the linkage for ActionScript:

1. Choose Window➪Library.

The document Library opens.

2. Select a sound and then right-click (Windows) or Ctrl-click (Macintosh) and

choose Linkage from the context menu. Alternately, choose Linkage from the

Library options menu. Either method opens the Linkage Properties dialog box.

3. Click the Export for ActionScript check box (shown in Figure 13-5).

4. Enter a name in the text field.

By default Flash uses the filename of the sound. You can choose to use the

filename as an ActionScript identifier or enter a name such as sound1. Don’t

use any spaces when you create the name. If you must separate two words in

a name, either capitalize the first letter of the second word or separate the

words with an underscore.

5. Click OK to apply the linkage and close the dialog box.

After you create ActionScript linkage for a sound in the document Library, you can

attach the sound to an instance of the Sound object.

Figure 13-5: You create ActionScript linkage to
modify a sound in the document Library.

Attaching a sound
You can attach a sound from the document Library that has ActionScript linkage to

an instance of the Sound object. You can also attach an instance of the Sound

object to a .SWF movie that you have loaded into the base movie. When you attach

a sound, you refer to it by its linkage nomenclature or by the level that you load the

sound into. You can attach the sound to a movie clip, a button, or to a keyframe on

the timeline.

To attach a sound to an instance of the Sound object:

1. Select the object or keyframe where you want to create ActionScript to attach

a sound.

2. Click the arrow to the left of the word Actions.

The Actions panel opens.

g3687-7 ch13.F 6/12/02 9:07 AM Page 269

270 Part III ✦ Creating ActionScript Elements for Your Movie

3. Click Objects➪Movie➪Sound➪Methods and then double-click attachSound.

Two parameter text boxes open above the Script pane.

4. In the Object field, enter the name of the Sound object instance you created.

5. In the Parameters field, enter either the linkage identifier of a sound from the

document Library or the level into which you loaded a soundtrack movie.

If you enter an ActionScript identifier, place quotation marks around the name.

Listing 13-1 shows the ActionScript to attach a sound from the document

Library to a Sound object; Listing 13-2 shows the ActionScript to attach a

sound loaded into level 99 to an instance of the Sound object.

Listing 13-1: Attaching a Document Library Sound

mysound.attachSound(“sound1”);

Listing 13-2: Attaching a Soundtrack Movie

mysound.attachSound(_level99);

After you attach a sound to your instance of the Sound object, you can use the

various methods of the Sound object to manipulate the sound. If you load a

soundtrack movie into a movie, it begins playing as soon as the keyframe or

object in which you created the ActionScript to load the movie with loads. If you’re

affording your viewers the option of whether or not to listen to the soundtrack, you

create a button that, when clicked, loads the soundtrack. However, if you attach a

sound from the document Library, it won’t begin playing until you invoke the Start

method of the Sound object.

Starting a sound
You can start an attached sound from the document Library by using the start
method of the Sound object when a keyframe is reached, a movie clip loads, or a

button is clicked. When you use the start method, you can specify at which point

in the duration of a sound it begins playing and you can specify the number of times

the sound plays. After a sound starts, it plays in its entirety, even if ActionScript is

executed to attach and play a different sound from the document Library.

g3687-7 ch13.F 6/12/02 9:07 AM Page 270

271Chapter 13 ✦ Creating ActionScript Sound Objects

To start a sound:

1. Select the object or keyframe that you want to trigger the sound.

2. Choose Objects➪Movie➪Sound➪Methods and then double-click start.

Two parameter text boxes appear above the Script pane.

3. In the Object field, enter the name of the Sound object you want to begin playing.

4. In the Parameters field, enter the parameters for the sound offset and number

of loops.

If you want the sound to play only once, you don’t need to enter anything in

the Parameters field. However, you can change the point at which the sound

begins playing and the number of times the sound plays by entering values in

the Parameters field. Below the field you see the message (secondsOffset,
loops). This is the proper syntax for offsetting the start of the sound and

specifying the number of loops. If you just want to loop the sound, enter 0 for

the seconds offset followed by a comma and a value for the number of times

you want the sound to play. If you want to offset the starting point of the

sound, enter a value in the field followed by a comma and the number of times

you want the sound to loop. Listing 13-3 shows ActionScript for a sound that

starts playing the sound three seconds into its duration and loops the sound

16 times. Note that when you offset the start of a sound, the offset is applied

to each loop.

Listing 13-3: Starting a Sound

mysound.start(3,16);

Stopping a sound
You use the stop method of the Sound object to stop playing the sound currently

attached to the instance of the Sound object. This method is useful if you have

several sounds in a document Library that are programmed to play when a button

is clicked. If viewers click another button before the previous sound has finished

playing, Flash mixes the sounds, which is an undesirable occurrence if the sound

being playing is background music or is linked to another action such as the frames

of a movie clip the sound is attached to. In order to prevent this, you create

ActionScript for each button using the stop method to cease playing the currently

attached sound.

If you program several buttons to load different movie soundtracks, as long as all
of the movie soundtracks are loaded into the same level, clicking a button will
stop the current soundtrack from playing when the new soundtrack is loaded. To
stop all sounds from playing, create a button and then create the ActionScript to
unload the soundtrack movie from the level soundtracks are loaded into.

Note

g3687-7 ch13.F 6/12/02 9:07 AM Page 271

272 Part III ✦ Creating ActionScript Elements for Your Movie

To stop a sound from playing:

1. Select the object or keyframe that will cause the sound to stop.

2. Click Objects➪Movie➪Sound➪Methods and then double-click stop.

The Object parameter text box appears above the script pane.

3. Enter the name you assigned to the instance of the Sound object.

Listing 13-4 shows ActionScript to stop a Sound object named mysound from

playing.

Listing 13-4: Stopping a sound

mysound.stop();

In addition to starting and stopping a sound, you can use methods of the Sound

object to control the volume of the sound, pan the sound from one speaker to the

other, and cause another action to execute when the sound stops playing.

Changing a sound’s volume
You can control the volume of a sound using the setVolume method of the Sound

object. You use this method to specify the percentage of amplitude (volume) of the

sound. Enter a value between 0 (silence) and 100 (full volume).

To change a sound’s volume:

1. Choose the keyframe or object that will trigger the volume change.

2. Click the arrow to the left of the word Actions. The Actions panel opens.

3. Choose Objects➪Movie➪Sound➪Methods and then double-click setVolume.

The Object and Parameters text boxes appear above the Script pane.

4. In the Object field, enter the name of your Sound object.

5. In the Parameters field, enter a value for volume percentage.

Listing 13-5 shows ActionScript that will cause a sound to play at 75 percent of

its original volume when a button is clicked.

g3687-7 ch13.F 6/12/02 9:07 AM Page 272

273Chapter 13 ✦ Creating ActionScript Sound Objects

Listing 13-5: Modifying Sound Volume

on (release) {
mysound.setVolume(75);

}

It is possible to play a sound at a higher amplitude (volume) than original by spec-
ifying a value greater than 100. To a limited extent, you can do this to compensate
for a sound with low volume. However, when you exceed the original amplitude
of a sound by a large percentage, distortion occurs.

Panning a sound
Another useful sound method is the setPan method. You use the setPan method

to vary the balance of a sound between speakers. By default, a sound is distributed

evenly between the left and right speakers. You can use the setPan method and

enter a value between 0 and 100 to pan the sound towards the right speaker; a

value between 0 and –100 pans the sound to the left speaker.

To pan a sound:

1. Select the object or keyframe that will cause the balance of the sound to

change.

2. Choose Objects➪Movie➪Sound➪Methods and then double-click setPan.

The Object and Parameters text fields appear above the Script pane.

3. In the object field, enter the name of the Sound object you are modifying.

4. In the Parameters field, enter a value.

Listing 13-6 shows ActionScript that when executed pans the sound towards

the left speaker.

Listing 13-6: Panning a Sound

on (release) {
mysound.setPan(-75);

}

Triggering an event with the onSoundComplete event
If your design has sounds that are synchronized to other events in your design,

such as a movie clip playing, you can use the onSoundComplete event of the Sound

Note

g3687-7 ch13.F 6/12/02 9:07 AM Page 273

274 Part III ✦ Creating ActionScript Elements for Your Movie

object to trigger another action when the sound finishes. For example, if you create

a scene that displays images while a background narration plays, you can use the

onSoundComplete event to play the next scene immediately after the sound

finishes playing.

To trigger an event when a sound finishes playing:

1. Select the object or keyframe that will cause the onSoundComplete event to

be invoked.

For example, you can create ActionScript on a keyframe to start playing a

sound at the beginning of a scene. You can add the onSoundComplete event

on this frame to start playing the next scene when the sound stops.

2. Choose Objects➪Movie➪Sounds➪Events and then double-click

onSoundComplete.

Three parameter text boxes appear: Object, Method, and Parameters.

The method field is already filled in with onSoundComplete.

3. In the Object field, enter the name of the Sound object.

4. In the Parameters field, you can enter the name of a user-defined function

that you want the Flash Player to execute when the sound finishes playing.

Alternately, you can select another action you want executed when the sound

stops, such as the goto action.

Listing 13-7 shows ActionScript that plays a frame labeled Slide1 in the

History scene when the sound stops.

Listing 13-7: Using the onSoundComplete Event

gotoAndPlay(“History”, “Slide1”);

Chapter Project: Creating a Sound Controller
Now that you’re familiar with creating a soundtrack movie, creating an instance of

the Sound object, and attaching and modifying a sound with methods of the Sound

object, it’s time to put your knowledge to work and create a working sound controller.

The controller you’re going to create uses a slider to control the volume and pan the

sound between speakers. This controller gives the viewer the option to choose

between two soundtracks.

Copy to your hard drive the Soundcontroller folder from this chapter’s folder on
the CD-ROM that accompanies this book. Use your operating system to disable
each file’s read-only attribute.

On the
CD-ROM

g3687-7 ch13.F 6/12/02 9:07 AM Page 274

275Chapter 13 ✦ Creating ActionScript Sound Objects

To begin the project:

1. Launch Flash and open the soundbegin.fla file.

2. Choose Insert➪New Symbol.

The Insert New Symbol dialog box opens.

3. Choose the Movie Clip behavior, name the symbol soundController, and click

OK to enter symbol-editing mode.

4. Select the first frame and then click the arrow to the left of the word Actions.

The Actions panel opens.

5. Click Actions➪Variables and then double-click set variable.

Two parameter text boxes appear above the Script pane.

6. In the Variable field, type mysound

7. Click inside the Value field, and in the left pane of the Actions panel, click

Objects➪Movie➪Sound and then double-click newSound.

After creating an instance of the Sound object, you need to attach a sound to

it. In this case, you’ll use a button to load a soundtrack movie and also create

the ActionScript to attach the sound. After you create an instance of the

Sound object, you add the buttons to load additional soundtracks and sliders

to control the sound to the movie clip.

Adding the sliders
Creating an instance of the Sound object is the first step in creating a controller.

Now you need to add the sliders to control the sound and the buttons to load the

sounds.

To add the buttons and sliders:

1. Choose Window➪Library.

The document Library opens.

2. Drag an instance of the Slider Control symbol on Stage.

3. Open the Property inspector and in the X field, type 0. In the Y field, type –25.

Before going on to the next step, right-click (Windows) or Ctrl-click (Macintosh)

the symbol and choose Edit. Select the round button. Open the Property

inspector and notice that this is a movie clip that has already been labeled

knob. You’ll be referring to this instance name when you program the slider.

With the button movie clip still selected, right-click (Windows) or Ctrl-click

(Macintosh) and choose Edit from the context menu. Click the arrow to the

left of the word Actions and you see the ActionScript shown in Listing 13-8.

g3687-7 ch13.F 6/12/02 9:07 AM Page 275

276 Part III ✦ Creating ActionScript Elements for Your Movie

Listing 13-8: Programming the Button for Drag and Drop

on (press) {
startDrag(“”, false, 0, 0, 100, 0);
dragging = true;
_root.dragging = true;

}
on (release) {
stopDrag();
dragging = false;
_root.dragging = false;

}

This code gives the button drag-and-drop capability. The button’s motion is

constrained to 100 pixels on the x axis, which is perfect for creating a sound

controller.

4. Click the soundController title above the workspace.

5. Click the arrow to the left of the word Properties.

The Property inspector opens.

6. Type volControl in the <Instance Name> field.

7. Click the slider movie clip, and while holding down the Alt key (Windows) or

Options key (Macintosh), drag the symbol to create a new instance of it.

8. In the Property inspector, type 0 in the X field and 25 in the Y field.

9. In the <Instance Name> field, type panControl

10. Choose Window➪Library.

11. Drag an instance of the soundButton symbol on Stage and align it to the left

of the two sliders.

12. Click the Arrow to the left of the work Actions.

The Actions panel opens.

13. Choose Actions➪Browser/Network and then double-click loadMovie.

14. In the URL field, type sound1.swf, accept the default Level option, and in the

Text field, type 99.

This code loads the soundtrack movie into level99.

15. Choose Objects➪Movie➪Sound➪Methods and then double-click

attachSound.

Two parameter text boxes appear above the Script pane.

g3687-7 ch13.F 6/12/02 9:07 AM Page 276

277Chapter 13 ✦ Creating ActionScript Sound Objects

16. In the Object field, type mysound and in the Parameters field, type _level99.

Your code should look exactly like Listing 13-9.

17. Click the button labeled “Sound” to select it, and then press the Alt key

(Windows) or Option key (Macintosh) to create another instance of the but-

ton.

18. With the button still selected, click the arrow to the left of the word Actions

and modify the button’s script by changing the second line of code to

loadMovieNum(“sound2.swf”, 99).

There are two more soundtracks in the project folder. If you feel ambitious,

create two more instances of the button and change the code so that the but-

tons load sound3.swf and sound4.swf respectively.

19. Click the Back button to exit symbol-editing mode.

Listing 13-9: Loading and Attaching the Sound

on (release) {
loadMovieNum(“sound1.swf”, 99);
mysound.attachSound(_level99);

}

Now that the movie clip components are programmed, it’s time to put the symbol

to work. To do this you drag an instance of the soundController symbol on Stage,

create the initial states for each slider, and then use methods of the Sound object to

manipulate the sounds when the sliders are dragged.

Programming the movie clip
When you program the movie clip, you’ll use the setVolume and setPan methods

of the Sound object to modify the sound. The setVolume and setPan methods

parameters will be set equal to the _x property of each slider, which at 100 pixels

long gives you a range of 0 to 100 to work with.

To program the movie clip:

1. Choose Window➪Library.

The document Library opens.

2. Drag an instance of the soundController movie clip on Stage.

3. Click the arrow to the left of the word Actions.

g3687-7 ch13.F 6/12/02 9:07 AM Page 277

278 Part III ✦ Creating ActionScript Elements for Your Movie

The Actions panel opens.

4. Choose Actions➪Miscellaneous Actions and then double-click evalutate.

The Expression parameter text box appears above the Script pane.

5. With your cursor inside the Expression field, click the Insert a Target Path

button.

The Insert Target Path dialog box opens.

6. Click the Relative mode radio button, click the plus sign (+) to the left of

panControl button, and then click knob (see Figure 13-6).

7. Click OK to add the target path and close the dialog box.

8. In the Expression field, type the following text after the target path: ._x=50

This code sets the _x position of the pan slider to 50, the halfway point of the

scale, which is a perfect balance between the two speakers.

9. Repeat Steps 5 through 8 but insert the target path to the volControl knob and

set the _x property to 75. Accept the default load clip event.

Your code should look like Listing 13-10.

Figure 13-6: Adding the target path to the
slider knob.

Listing 13-10: Setting the Initial Values for the Sliders

onClipEvent (load) {
panControl.knob._x=50;
volControl.knob._x=75;

}

g3687-7 ch13.F 6/12/02 9:07 AM Page 278

279Chapter 13 ✦ Creating ActionScript Sound Objects

The initial value for each slider sets the volume and balance when viewers click a

button to load a sound. After setting the initial values for the sliders, you have to

create the code that sets the volume and balance of the Sound object as the sliders

are dragged. To constantly evaluate the position of each slider as the movie plays,

you use the enterFrame clip event.

To create the code that evaluates the position of the sliders:

1. Click the arrow to the left of the word Actions.

The Actions panel opens.

2. Select the last line of code (the solitary curly brace).

3. Choose Objects➪Movie➪Sound➪Methods and then double-click setVolume.

The Object and Parameters fields appear above the Script pane.

4. In the Object field, type mysound

5. Click inside the Parameters field and type volControl.knob._x

You may recognize this as the target path to the volume control slider knob.

This time instead of setting the value of the slider knob’s _x property, the

code evaluates and returns the value of the property. When the slider is

dragged, the value of the knob’s _x property changes and sets the volume of

the sound.

6. Choose Objects➪Movie➪Sound➪Methods and then double-click setPan.

7. In the Object field, type mysound

8. In the Parameters field, type 100-(panControl.knob._x*2)

To perfectly balance the sound between the speakers, the parameter of

the setPan method must be 0. The initial position of the slider is 50. The

expression in the Parameters field equates the position of the slider to a

value that can be used by the setPan method. When the slider is dragged all

the way to the right, the _x property of the slider is 50. The equation bumps it

up to 100, the value needed to pan the sound to the right speaker. Using this

equation makes it possible to use the same slider to set the volume and pan of

the sound.

9. Click the line of code that contains the second clip event and change the clip

event to enterFrame.

Your finished code for the movie clip should look like Listing 13-11.

g3687-7 ch13.F 6/12/02 9:07 AM Page 279

280 Part III ✦ Creating ActionScript Elements for Your Movie

10. Choose Control➪Test Movie.

Flash publishes the movie and plays it in another window. The slider knobs

move to their initial positions.

11. Click either of the sound buttons to begin playing a soundtrack.

12. Drag the volume slider to vary the volume and then drag the pan slider to

change the balance between speakers. After you’re done experimenting with

the sliders, close the window to return to movie-editing mode.

13. Add any needed labels to identify the sliders and sound buttons and then

select all the objects on Stage that comprise the sound controller.

As a finishing touch, you can add a button to stop the sound. When you program
this button, use the unloadMovie action and in the Parameter text box, specify
the level you’ve loaded the soundtrack into.

14. Choose Insert➪Convert to Symbol.

The Convert to Symbol dialog box opens.

15. Choose the Movie Clip behavior, name the symbol Sound Controls, and then

click OK.

Listing 13-11: Programming the Movie Clip

onClipEvent (load) {
panControl.knob._x=50;
volControl.knob._x=75;

}
onClipEvent (enterFrame) {
mysound.setVolume(volControl.knob._x);
mysound.setPan(100-(panControl.knob._x*2));

}

After you convert the movie clip to a symbol, it becomes modular and you can use

it in any movie. To use it in another movie, choose File➪Open as Library. Drag an

instance of the Sound Controls movie clip into the current document Library and

you can use it in your design. When you publish the movie and upload it to a Web

site, upload files named sound1.swf and sound2.swf. Now the soundtracks will

play when the buttons are clicked and viewers can control the volume and balance

by dragging the sliders. Figure 13-7 shows the controller at work in a published

Flash movie.

Tip

g3687-7 ch13.F 6/12/02 9:07 AM Page 280

281Chapter 13 ✦ Creating ActionScript Sound Objects

Figure 13-7: Using a sound controller to modify sound in a published Flash movie.

Designer Notes
In this chapter, you learned to work with sound in Flash. You learned to create a

soundtrack within the movie and modify sounds by creating a custom effect.

Also presented was creating a soundtrack movie and creating the necessary

ActionScript to load the soundtrack on demand. You were also shown how to use

methods of the Sound object to modify sounds in the document Library or modify

soundtracks loaded into the movie. The chapter project showed you how to create

a working sound controller. In the next chapter you’ll learn to use the Flash MX

diagnostic tools to debug faulty ActionScript.

✦ ✦ ✦

g3687-7 ch13.F 6/12/02 9:07 AM Page 281

g3687-7 ch13.F 6/12/02 9:07 AM Page 282

Debugging an
ActionScript

When you add ActionScript to a design, your take

your production to the next level. The ability to add

interactivity to a design with ActionScript is what gets you the

big jobs from high-paying clients.

At the same time, adding interactivity to a design can also

increase the level of difficulty for you as a designer.

ActionScript by its very nature is created on different

keyframes, within different objects, and assigned to different

buttons. When something goes awry with a complex

ActionScript design, you can’t just look at a written script and

figure out the error is on line such and such. True, the error

will be in one or more specific lines of code, but on which

frame is the faulty code; in which movie clip? There are so

many places to look, tracking down faulty code can be a

time-consuming process.

Fortunately you have two indispensable tools you can use to

debug a movie: the Debugger and the Movie Explorer. You

can also add elements to your ActionScript to trace variables.

You can also stop a movie at selected places to see what is

happening when a line of code executes, or if there is an error

in your ActionScript, doesn’t execute. In this chapter you’ll

learn to use the Debugger to trace your ActionScript designs

as well as add actions to your scripts that enable you to keep

track of what’s happening as the movie plays.

The Actions panel’s got lots of books. And some of these
books have books within a book. To add some actions to
your scripts, you have to click this book icon, then click that
book icon, then click another book icon, and so on. Rather
than bore you with a lot of words, I’m going to show the
path to each action as shown in the following example:
Click Actions➪Movie Control and then double-click goto.

Note

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using the Debugger

Using the trace action

Tracking ActionScript
with comments

Tracing a variable

Using the Movie
Explorer

✦ ✦ ✦ ✦

g3687-7 ch14.F 6/12/02 9:07 AM Page 283

284 Part III ✦ Creating ActionScript Elements for Your Movie

Testing Your Design
Your first clue to a potential ActionScript problem generally occurs when you

preview the production. There are two ways you can test your design: in a separate

window within the Flash environment or within your Web browser.

To test the movie in the Flash environment, choose Control➪Test Movie. After

you choose the command, the movie is published and plays in another window,

as shown in Figure 14-1. Test all the components of your design to make sure

everything is up to snuff.

Figure 14-1: You can test the movie within the authoring environment.

Notice the graph across the top of the workspace in Figure 14-1. This is the

Bandwidth Profiler. (You’ll use the Bandwidth Profiler in Chapter 15 when you

create an animated preloader.) Across the top of the workspace, you see a timeline.

As the movie plays, the small arrow moves from frame to frame. If the multi-frame

movie stops due to faulty ActionScript, you know exactly which frame the problem

occurs on by viewing this timeline. If your design is a single-frame production and

your ActionScript is embedded in movie clips, your task of tracking down the faulty

script isn’t quite as easy.

g3687-7 ch14.F 6/12/02 9:07 AM Page 284

285Chapter 14 ✦ Debugging an ActionScript

You can also preview your design in a Web browser. When you use a Web browser

to preview your productions, you see exactly what the end user sees. If you use

ActionScript to achieve visual effects, you should preview your production in a Web

browser as well as in the authoring environment. To preview your design in a Web

browser, choose File➪Publish Preview➪HTML. After choosing this command, the

movie is published and plays in your system’s default Web browser, as shown in

Figure 14-2.

Figure 14-2: When you preview your design in a Web browser, you see exactly what
your audience will see.

If you notice an error when testing the movie, you’ll probably have a pretty good

idea what part of your code went awry. But sometimes it can get a bit trickier,

especially when you have arrays and variables scattered throughout your movie.

The easiest way to track a problem with variables is by using the Debugger.

Using the Debugger
You use the Debugger to track objects and their properties as well as the value of

variables. Often you use variables to record one or more of an object’s properties and

then transfer the value to a different variable (as you did in the scrolling text project

in Chapter 11when the _y property of the slider determined when the text scrolled).

g3687-7 ch14.F 6/12/02 9:07 AM Page 285

286 Part III ✦ Creating ActionScript Elements for Your Movie

To launch the Debugger, choose Control➪Debug Movie. After choosing the command,

the movie is published and displays in another window. The movie is halted on the

first frame and the Debugger is displayed (see Figure 14-3).

Figure 14-3: You can use the Debugger to trace elements in your movie.

To begin debugging the movie, click the Continue button. In Figure 14-3, the

Continue button has already been clicked. Notice that in the left window of the

upper window, there are several icons similar to the ones you see in the Insert

Target Path dialog box. These icons represent all the objects in your design that

can have ActionScript assigned to them. If you don’t assign an instance name to a

movie clip, a default name is assigned to it; for example, _level0.instance1. Named

instances are referred to by the level they reside in followed by their label. Now

you can see how important labeling movie clips is.

To find out something about a movie clip, click its icon. After selecting a named

instance, you can find out what the properties of the instance are by clicking the

Properties tab. You can trace variables by clicking the Variable tab. If a movie clip

has local variables, you can trace their values by clicking the Locals tab. You can

also target one or more variable and trace their values by clicking the Watch tab.

Watching a variable
You can trace the value of several variables and watch their values change as the

movie plays. This is the course of action to take if you suspect the problem with

your ActionScript is due to a variable.

Movie clip instance Variables

g3687-7 ch14.F 6/12/02 9:07 AM Page 286

287Chapter 14 ✦ Debugging an ActionScript

To watch a variable:

1. In the left pane of the Debugger, click any named instance icon you know

contains the variable you want to watch.

2. Click the Variables tab.

3. Select the variable you want to watch.

4. Right-click (Windows) or Ctrl+click (Macintosh) and choose Watch from the

context menu.

5. Select any additional variable you want to watch and repeat Step 4.

6. Click the Watch tab to watch the values change as the movie plays.

If you’re not sure which objects or which variables are in your movie, you can view

a list of them while you’re debugging the movie.

Displaying a list of movie objects
When you create a complex movie, it’s often hard to remember exactly which items

you created for the production. You can view a list of movie objects in the Output

window shown in Figure 14-4 by choosing Debug➪List Objects.

Figure 14-4: You can display a list of movie objects
while debugging your design.

After you view the objects in your movie, you may remember a variable value that

should be displayed in the variables window but isn’t.

g3687-7 ch14.F 6/12/02 9:07 AM Page 287

288 Part III ✦ Creating ActionScript Elements for Your Movie

Displaying a list of variables in the movie
Viewing a list of variables can jog your memory and help you ascertain which

variables should have a certain value as the movie plays. For example, if you’re

debugging a movie that records information submitted in an input text box, after

an entry is made and a button is clicked, the variable’s value should display in

the Variables window. To display a list of the variables in your movie, choose

Debug➪List Variables to open the Output window with a list of your variables,

as shown in Figure 14-5.

Figure 14-5: You can display a list of all the variables
in your movie.

After viewing a list of variables and watching the Debugger, you may decide you

need to trace a variable’s value at one or more points in the movie.

You can print a hard copy of the variables in your movie by right-clicking
(Windows) or Ctrl+clicking (Macintosh) inside the Output window and then
choosing Print from the context menu.

Using the Trace Action
You use the trace action to trace the value of a variable at a certain point in the

movie or to display a message at a certain point in the movie. For example, you can

use the trace action to display a message when a certain frame plays. If the message

Tip

g3687-7 ch14.F 6/12/02 9:07 AM Page 288

289Chapter 14 ✦ Debugging an ActionScript

is never displayed when you test or debug the movie, you know the frame is not

playing and the ActionScript you created to play the frame is in error. When you use

the trace action, the results of the trace are displayed in the Output window.

To keep track of a variable or object with the trace action:

1. Select the keyframe or object you want to trace.

2. Open the Actions panel and choose Actions➪Miscellaneous Actions and then

double-click trace.

The Message field appears above the Script pane.

3. Enter the message you want displayed when this point in the movie occurs. To

trace the value of a variable at this juncture in the movie, enter the variable’s

name and click the Expression checkbox.

4. Repeat Steps 1 through 3 for any additional objects you want to trace.

After you trace one or more objects, the message or value of the variable is displayed

in the Output window when you test or debug the movie. If you trace several objects,

you may not know which value relates to a particular variable. In order to know what

variable value is displaying, you can combine a text message with the value of the

variable by enclosing the message in quotes, typing a plus sign (+) and then the name

of the variable.

Figure 14-6 shows the ActionScript for displaying a message in the Output window

along with the variable’s value.

Figure 14-6: You can combine a message with the
value of a variable.

When you trace several objects in a movie, the message in the Output window

updates quickly, sometimes so quickly you can’t read the message as it scrolls past.

When you trace several objects, you can momentarily stop the movie by setting

breakpoints.

g3687-7 ch14.F 6/12/02 9:07 AM Page 289

290 Part III ✦ Creating ActionScript Elements for Your Movie

Stopping the Movie with Breakpoints
When you debug a complex movie with code in several different places, you can

stop the movie after a line of code executes. When the movie stops at a breakpoint,

the line of code is displayed in the right pane of the Debugger. If you use the

breakpoint in conjunction with the trace action, you can compare the line of code

to what is happening in the movie and to the message in the Output window. This

three-pronged approach to debugging a movie can help narrow down the source of

a bug. You can set breakpoints in the Actions panel or in the Debugger itself.

Setting a breakpoint
When you set a breakpoint in the Actions panel, the breakpoint is stored with the

saved *.FLA file. When you set a breakpoint in the Debugger, it is in effect only for

the current debugging session. When you close the window and return to movie-

editing mode, the breakpoints you set in the Debugger are lost.

To set a breakpoint in the Actions panel:

1. Select the object or keyframe that contains the code where you want to set a

breakpoint.

2. Open the Actions panel and select the line of code where you want the movie

to pause.

3. Click the Viewing options icon and choose View Line Numbers.

When you set breakpoints and line numbers are visible, a red dot appears

alongside all line numbers where breakpoints are set.

4. Click the Debugger Options icon that looks like a stethoscope and choose Set

Breakpoint from the menu.

5. Continue adding breakpoints as needed.

After you set breakpoints and add trace actions, you’re ready to flush out the

source of your bug.

Debugging a movie with breakpoints
When you debug a movie with breakpoints, the debugging session begins with the

movie paused. After you click the Continue button, the movie begins and then halts

when it encounters the first breakpoint. As you pause and restart the movie, you

can view each line of code where a breakpoint is set and compare it with what is

happening in the movie.

g3687-7 ch14.F 6/12/02 9:07 AM Page 290

291Chapter 14 ✦ Debugging an ActionScript

To debug a movie with breakpoints:

1. Choose Control➪Debug Movie.

The movie is published and opens in another window. The Debugger appears

and is paused on the first frame of the movie.

2. Click the Continue button.

The movie begins playing and halts at the first breakpoint, as shown in

Figure 14-7.

After the movie pauses at a breakpoint, a yellow arrow appears to the left of

the breakpoint line number. While the movie is paused at a breakpoint, you can

exercise different options by clicking one of the buttons shown in Figure 14-7.

The buttons and their functions are:

• Continue: Restarts the movie and stops it at the next breakpoint.

• Stop Debugging: Resumes the movie but does not stop the movie at

breakpoints.

• Step Over: Advances the movie to the next line of code after the

breakpoint.

• Step In: If the line of code where the breakpoint is set calls a function,

clicking this button displays the first line of code in the function. Click

the button again to advance to the next line of code in the function.

• Step Out: Steps out of the function and restarts the movie.

When you’re in a debugging session, you modify breakpoints from within the
Debugger, as the next section discusses.

Setting breakpoints while debugging
If while debugging a movie you see a suspicious line of code, you can set an

additional breakpoint without exiting the Debugger. Breakpoints you add during a

debugging session are only in effect during the session. You can set a breakpoint

when the movie is paused by selecting a line of code and then clicking the Toggle

Breakpoint button (refer to Figure 14-6).

After you run through a few cycles in a debugging session and determine that the

line of code where you set a breakpoint is not the source of your problem, you can

remove the breakpoint by clicking the Toggle Breakpoint button. To remove all

breakpoints and continue testing the movie, click the Remove All Breakpoints button.

Removing breakpoints after a debugging session
After you track down the source of your bug, you can remove breakpoints and

publish the movie. If you were not able to track down the source of the bug, you

can save the document as a *.FLA file. Breakpoints that were set in the Actions

panel are saved with the file so you can debug the document at a later date. You

can remove a single breakpoint or all breakpoints using the Actions panel.

Note

g3687-7 ch14.F 6/12/02 9:07 AM Page 291

292 Part III ✦ Creating ActionScript Elements for Your Movie

Figure 14-7: The Debugger pauses the movie at each breakpoint.

To remove a single breakpoint:

1. Select the keyframe or object that contains the code where the breakpoint

is set.

2. Open the Actions panel.

3. Select the line of code with the breakpoint. A red dot is displayed to the left of

each line number where you set a breakpoint. If breakpoints are not visible,

choose the View Line Numbers option from the View Options menu.

4. Click the Debugger Options button and choose Remove Breakpoint.

To remove all breakpoints from a document, open the Actions panel, click the

Debugger Options button that looks like a stethoscope, and choose Remove All

Breakpoints.

Tracking ActionScript with Comments
Another useful tool you can use when creating complex ActionScript for your designs

is the comment. You can add a comment before any line of code in a document.

Remove All Breakpoints

Stop Debugging Step In

Toggle Breakpoint Step Over

Continue Step Out

g3687-7 ch14.F 6/12/02 9:07 AM Page 292

293Chapter 14 ✦ Debugging an ActionScript

A comment is a note you can add to describe what a line of ActionScript does.

Comments are useful when debugging a movie. They are also useful when you modify

the movie after a period of time and may not remember exactly what a line of code is

meant to accomplish. You add comments to a script in the Actions panel.

To add a comment to your ActionScript:

1. Select the object or keyframe that contains the code you want to add a

comment to.

2. Open the Actions panel.

3. Select the line of code prior to where you want the comment to appear.

4. Choose Actions➪Miscellaneous Actions and then double-click comment.

The Comment field appears above the Script pane.

5. Enter any descriptive text and close the Actions panel.

When you see a comment in the Actions panel or Debugger, it is preceded by two

forward slashes (//). The default syntax color for a comment is light gray.

Using the Movie Explorer
If you prefer to work with a visual outline of objects and ActionScript in a document,

you can use the Movie Explorer. The Movie Explorer, shown in Figure 14-8, displays an

icon to represent each item in your movie followed by a text description of the item.

By default, the Movie Explorer displays text objects, symbols, and ActionScript. You

can also choose to display sounds, video and bitmaps or frames and layers or to

customize the items to display by clicking the appropriate button, as shown in

Figure 14-8. Notice at the top of the panel, there is a search field. Enter text in the

field and the explorer locates the item. After you locate an item, you can double-

click it to launch the appropriate editor. For example, if you double-click an action,

the Actions panel opens with the action selected.

In Figure 14-8, you see a plus sign (+) to the left of several items. This designates

that there are symbols nested within the object or actions associated with the

object. Click the plus sign (+) to expand the group.

g3687-7 ch14.F 6/12/02 9:07 AM Page 293

294 Part III ✦ Creating ActionScript Elements for Your Movie

Figure 14-8: The Movie Explorer is a visual outline of your
document.

Designer Notes
In this chapter you learned to use the Debugger to track down faulty ActionScript.

You also learned to trace variables and add comments to your ActionScript to clarify

what a line of code is designed to do. You were shown how to add breakpoints within

your ActionScript to pause the movie so you could compare what is happening when

a line of code is reached. You also learned to use the Movie Explorer to track down

items and code in your documents. In the next chapter, you learn to create

ActionScript objects for your movies.

✦ ✦ ✦

Customize which
Items to ShowShow Frames and Layers

Show
Videos,
Sounds,
and
Bitmaps

Show ActionScripts
Show

Buttons,
Movie

Clips, and
Graphics

Show Text

g3687-7 ch14.F 6/12/02 9:07 AM Page 294

Building
Additional
Design Elements
for Your Movie

✦ ✦ ✦ ✦

In This Part

Chapter 15
Building Web Site
Elements with
ActionScript

Chapter 16
Creating Flash
Eye Candy

Chapter 17
Integrating Flash
with HTML

✦ ✦ ✦ ✦

P A R T

IVIV

h3687-7 Pt04.F 6/12/02 9:07 AM Page 295

h3687-7 Pt04.F 6/12/02 9:07 AM Page 296

Building Web
Site Elements
with
ActionScript

When you are approached by a client to design a Web

site using Flash, you can use ActionScript to add

interactivity to a design. When you use ActionScript, the

resulting file size of the published movie is generally much

smaller than designs where extensive frame by frame or

tweening animation is used. However, there are still times

when you have enough data or images in a design that

prevent it from loading quickly. In this chapter, you’ll learn to

analyze your finished design to make sure it doesn’t exceed

the bandwidth of your intended audience. If it does, you’ll

learn how to create an animated preloader to keep your

visitors entertained and informed on the amount of data that

has loaded until your design is fully loaded.

When you create an HTML design, you can use the built-in

form elements to create a user response form. However, the

HTML form elements are not very aesthetically pleasing. In

this chapter, you’ll learn to create a Flash form and transmit

the results of the form to a Web server’s mail forwarding

script. Additionally, you’ll learn to create a page that can be

printed on demand. The chapter project shows you how to

create an e-commerce catalog.

The Actions panel’s got lots of books. And some of these
books have books within a book. To add some actions to
your scripts, you have to click this book icon, then click that
book icon, then click another book icon, and so on. Rather
than bore you with a lot of words, I’m going to show the
path to each action as shown in the following example:
Click Actions➪Movie Control and then double-click goto.

Note

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a Flash form

Creating an
animated preloader

Creating a printable
frame

Chapter project:
Creating an
e-commerce catalog

✦ ✦ ✦ ✦

i3687-7 ch15.F 6/12/02 9:07 AM Page 297

298 Part IV ✦ Building Additional Design Elements for Your Movie

Creating an Animated Preloader
If you’ve ever visited a Web site created using Flash and the movie halted and then

started again, the designer exceeded the available bandwidth of your connection.

Bandwidth is the number of kilobytes that can be downloaded in one second at a

given connection speed. When a Flash movie is downloaded from the Internet, the

information streams into the viewer’s browser. When enough information has

loaded, the first frame of the movie plays. When a frame is reached that exceeds

the available bandwidth of a connection, the Flash Player halts the movie until

enough additional data has downloaded to resume playing. When a movie stops,

the result is jarring. Consider the case of a Flash introduction with a soundtrack.

If the soundtrack has already downloaded and begun playing, and the movie halts

on a frame and the soundtrack finishes playing before the intro does.

Your job as a designer is to create a compelling movie that downloads quickly into the

user’s browser. However, there may be times when your client requests a design that’s

too large to play without interruption. When this occurs, you have no alternative but

to create a preloader. A preloader is a small animation that informs viewers that the

data for a movie is loading. You create the ActionScript to continue playing the

preloader until enough data has loaded to play the movie without interruption.

Figure 15-1 shows a preloader that informs viewers how much of the movie has down-

loaded and keeps them entertained with a field of stars that follows their mouse.

Figure 15-1: You create a preloader to keep the viewer entertained while the main
movie loads.

i3687-7 ch15.F 6/12/02 9:07 AM Page 298

299Chapter 15 ✦ Building Web Site Elements with ActionScript

Analyzing your movie
Before you upload any Flash design to a client’s Web site, always test it to make

sure that it downloads without hesitation into the viewer’s browser. Fortunately,

this is a test you can easily complete within Flash using the Test Movie command in

conjunction with the Bandwidth Profiler. After you’ve analyzed the movie with the

Bandwidth Profiler, you can use the Show Streaming command to view the movie as

if it were streaming into a browser from an Internet site.

Using the Bandwidth Profiler
As you create a movie, you use the Test Movie command from time to time to make

sure the ActionScript and other elements of your movie are performing as intended.

After you finish the movie, test it again before publishing it. When you do the final

test, use the Bandwidth Profiler to analyze the movie frame by frame to spot a

potential bottleneck when the amount of information needed for a given frame

exceeds the bandwidth of your intended audience.

To test a movie with the Bandwidth Profiler:

1. Choose Control➪Test Movie.

Flash publishes the movie and plays it in another window.

2. Choose View➪Bandwidth Profiler.

The Bandwidth Profiler appears, as shown in Figure 15-2.

The Bandwidth Profiler in Figure 15-2 is displayed as a Frame by Frame graph. The

window at the left of the Bandwidth Profiler is divided into three sections: Movie,

Settings, and State.

✦ The Movie section displays pertinent information about your design, the size

of the document in pixels, the frame rate, the size of the published movie in

kilobytes, the duration of the movie, and the preload time.

✦ The Settings section displays the currently selected bandwidth setting.

✦ The State section tells you how large the frame data is in kilobytes.

You can also view the Bandwidth Profiler as a streaming graph by choosing

View➪Streaming Graph. When you view the Bandwidth Profiler as a streaming

graph, the profiler gives you a representation of how the information streams into

the user’s browser. Figure 15-3 shows the Bandwidth Profiler as a streaming graph.

If you compare this graph with Figure 15-2, you see there are some frames where no

information is streaming into the browser. Choose whichever view you prefer. Your

goal is to identify the frames where the frame’s data exceeds the bandwidth setting

of your intended audience.

i3687-7 ch15.F 6/12/02 9:07 AM Page 299

300 Part IV ✦ Building Additional Design Elements for Your Movie

Figure 15-2: You use the Bandwidth Profiler to analyze your movie.

Figure 15-3: If you prefer, you can view the Bandwidth Profiler as a streaming
graph.

i3687-7 ch15.F 6/12/02 9:07 AM Page 300

301Chapter 15 ✦ Building Web Site Elements with ActionScript

You can modify the bandwidth setting by choosing Debug and then choosing one

of the menu settings (14.4K, 28.8K, or 56K), or you can choose one of the User

Settings. You can modify a user setting to suit a specific bandwidth (such as a

user’s intranet) by doing the following:

1. Choose Debug➪Customize to open the Custom Modem Settings dialog box

shown in Figure 15-4.

2. Decide which menu setting you are going to modify, and in the Menu Text

field, select the current menu text and enter your own description for the

custom setting.

3. Inside the Bit Rate field, enter a bandwidth setting.

If you are modifying a setting for a client’s intranet, contact the client’s system

administrator for the proper value.

4. Click OK to close the dialog box.

The custom setting is added as a menu command.

Figure 15-4: You can create a custom
modem setting to suit a particular need.

After you select a bandwidth setting, a red line appears at the bottom of the

Bandwidth Profiler. If any frame appears above the red line, it contains more infor-

mation than the selected modem setting can download and may cause the movie

to pause while additional data streams into the user’s browser. Click the frame to

select it, and the amount of data contained in the frame is displayed in the State

section in the Bandwidth Profiler’s left pane. After you identify one or more frames

as a potential bottleneck, you can test the movie in streaming mode as your viewers

will see it.

Using the Show Streaming command
When you are analyzing your movie for a potential bandwidth problem, your last step

is to view the movie in streaming mode. When you view your design in streaming

Custom
menu entry

Custom
setting

i3687-7 ch15.F 6/12/02 9:07 AM Page 301

302 Part IV ✦ Building Additional Design Elements for Your Movie

mode, you can compare the progress of the streaming data to the current frame

playing. By comparing the streaming data to the progress of the movie, you’ll know

whether or not you need to create a preloader.

To view the movie in streaming mode:

1. Choose Control➪Test Movie.

Flash publishes the movie and plays it in another window.

2. Choose View➪Bandwidth Profiler.

3. Choose Debug and then choose a modem connection setting.

Choose the setting that comes closest to the connection speed your viewers

will access the Internet with. It’s always best to err on the lower side of the

scale and choose the next lowest setting.

4. Choose View➪Show Streaming.

Flash starts playing the movie again, only this time it loads at the selected

connection speed. As the movie loads, a green bar appears at the top of the

timeline indicating the amount of data that has been loaded. Flash begins

playing the movie when enough data has streamed to play the first few

frames. As the movie starts playing, a playhead in the form of a small inverted

triangle begins moving across the timeline. This indicates the current frame

being played. If the playhead catches up with the green bar and stops, this

indicates that Flash does not have enough data to play the frame. The Flash

Player plays the next frame when it has received enough additional data.

5. If the playhead stops before the movie loads completely, record the number of

the frame the movie stops on. When the movie begins playing again, watch

the playhead’s progress in reference to the streaming indicator bar. If it stops

again, record the position. If not, the previous frame where the playhead

stopped is the source of the bottleneck.

After you determine which frame is causing your movie to halt, your next task is

to create a preloader that plays until enough data has loaded to play the movie

without interruption.

Creating the preloader
After you determine that your design doesn’t download completely without pausing,

your next task is to create a preloader. A preloader is a series of frames that loops

while enough data is loaded for the movie to play without interruption. As a rule, a

preloader has a small animation or greeting that asks the viewer to please wait while

the movie loads. Some designers create preloaders that are animated with an

impressive display of graphic images. However, if you put too much animation into a

preloader, your preloader will pause while waiting for enough data to stream in to

play the preloader in its entirety. Talk about your double-whammy.

i3687-7 ch15.F 6/12/02 9:07 AM Page 302

303Chapter 15 ✦ Building Web Site Elements with ActionScript

The best preloader is one that’s short, sweet, and to the point. Follow the steps

below to create a preloader with a small bar that gets larger as the movie loads,

giving the viewer a visual representation of the download progress. To create a

preloader:

1. Choose Window➪Scene.

The Scene panel opens.

2. Click the Add Scene button that looks like a plus sign (+).

3. Name the scene Preloader, drag it to the top of the hierarchy, and then close

the Scene panel.

4. Choose Insert➪New Symbol.

The New Symbol dialog box appears.

5. Choose the Graphic behavior, name the symbol bezel, and click OK to enter

symbol-editing mode.

6. Create a wide and short rectangle with a stroke and no fill.

This will be the outline for your preload progress bar.

7. After you create the symbol, click the Back button to exit symbol-editing mode.

8. Create a new symbol, only this time choose the Movie Clip behavior, name the

symbol preloadBar, and click OK to enter symbol-editing mode.

9. Create a rectangle with a fill and no stroke the same width and height as the

bezel symbol you just created. Choose a color that is harmonious to your

design. Align the rectangle so that its left edge is at the registration point.

You can do this by selecting the rectangle, opening the Property inspector,

and then entering a value in the X field that is half the rectangle’s width.

10. After you create the rectangle, click the Back button to exit symbol-editing

mode.

11. Select the first frame of your preloader and drag an instance of the preloadBar

movie clip on Stage. Use the Align panel to center it to Stage.

12. Create a second layer and drag an instance of the bezel symbol on Stage.

Use the Align panel to center it to the Stage.

13. Select the preloadBar movie clip and click the arrow to the left of the word

Properties.

The Property inspector opens.

14. Type bar in the <Instance Name> field and close the Property inspector.

After you create the symbols for your preload bar and align them to Stage, you

create the ActionScript that loops the animation while the movie data loads.

To animate the preloadBar symbol, you change its _xscale to 0, rendering the movie

clip invisible. You’ll create an expression that increases the _xscale property of the

preloadBar movie clip as more data loads. Then you’ll create the actual loop that

i3687-7 ch15.F 6/12/02 9:07 AM Page 303

304 Part IV ✦ Building Additional Design Elements for Your Movie

plays the preload animation. In one frame of the loop, you’ll create a conditional

statement that evaluates how many frames have loaded. When the number of

frames loaded is greater than the frame that caused the movie to stop playing when

you tested the movie, the preload loop stops and the first frame of the movie plays.

To create the ActionScript for the preload loop:

1. Create a new layer and label it Actions.

2. Select the first frame of the Actions layer, and then click the arrow to the left

of the word Actions.

3. Choose Actions➪Variables and then double-click set variable.

4. In the Variable field enter siteLoaded and in the Value field enter 0.

5. Choose Actions➪Variable and then double-click set variable.

6. In the Variable field, type _root.bar._xscale and in the Value field, type

siteLoaded

This sets the initial size of the preloadBar movie clip to 0 pixels wide.

7. Select the second frame on the Actions layer and then press F6 to convert it

to a keyframe.

8. Click the arrow to the left of the word Actions to open the Actions panel.

9. Choose Actions➪Variables and then double-click set variable.

10. In the Variable field, type siteLoaded

11. Place your cursor in the Value field and type (_root

12. In the left pane of the Actions panel, choose Objects➪Movie➪Movie

Clip➪Methods and then double-click getBytesLoaded.

This method of the Movie Clip object measures the number of bytes that have

loaded. The fact that you’ve specified the _root timeline instructs the Flash

Player to measure the number of bytes that have loaded.

13. Place your cursor to the right of the parentheses in the value field and

type _root

14. In the left pane of the Actions panel, choose Objects➪Movie➪Movie Clip➪
Methods and then double-click getBytesTotal.

This method of the Movie Clip object measures the total number of bytes in

the movie.

15. Place your cursor to the right of the word Total and type the following:)*100

Dividing the bytes loaded by the total bytes gives you a value that when

multiplied by 100 gives you a value you can use to increase the _xscale of the

preloadBar, which gives the viewer a visual representation of the loading

progress. Your finished code for the second frame of the preloader should

look like Listing 15-1.

i3687-7 ch15.F 6/12/02 9:07 AM Page 304

305Chapter 15 ✦ Building Web Site Elements with ActionScript

Listing 15-1: Creating the Code to Animate the Preloader Bar

_root.bar._xscale = siteLoaded;
siteLoaded = (_root.getBytesLoaded()/_root.getBytesTotal())*100;

To complete the preloader, you need to create two more keyframes: a conditional

statement and ActionScript to recycle the preload loop if the conditional statement

evaluates as false. To finish creating the preload loop:

1. Select the ninth frame and convert it to a keyframe by pressing F6.

2. Click the arrow to the left of the word Actions to open the Actions panel.

3. Choose Actions➪Conditions/Loops and then double-click if.

The Condition parameter text box appears above the Script pane.

4. In the left pane of the Actions panel, click Properties and then double-click

framesLoaded.

5. Enter > followed by the frame number you determined caused the movie to

pause plus 10. (You add 10 to compensate for the number of frames in the

preload loop.)

For example, if the frame number is 30, you would enter >40.

6. In the left pane of the Actions panel, choose Actions➪Movie Control and then

double-click goto.

After you add the goto action to your script, the action’s parameters appear

above the Script pane. You’ll have to specify the frame number and the scene

to go to when the proper frame has loaded.

7. In the Scene parameter text box, choose Next Scene, or if you’ve named the

main scene, choose the scene name from the drop-down menu. Choose 1 for

the frame number. Listing 15-2 shows the code for a conditional statement

that breaks the preload loop after the seventeenth frame has loaded.

8. Select the tenth frame and convert it to a keyframe by pressing F6.

9. In the left pane of the Actions panel, choose Actions➪Movie Control and

double-click goto.

10. Type 2 in the Frame field.

11. Choose Control➪Test Movie.

Flash publishes the movie and plays it in another window.

12. After the movie begins playing, choose View➪Show Streaming.

Flash begins playing the movie again, streaming the data with the current

connection setting. The preload bar slowly advances as the data loads. When

the bar is fully extended, the first frame of the main movie begins playing.

i3687-7 ch15.F 6/12/02 9:07 AM Page 305

306 Part IV ✦ Building Additional Design Elements for Your Movie

Listing 15-2: Creating the Conditional Statement

if (_framesloaded>17) {
gotoAndPlay(“Scene 1”, 1);

}

That’s the basic formula for creating a preloader. You can make the preloader more

interesting by creating a simple animation where the message “Loading, Please

Wait” appears letter by letter. You can also create an expression similar to the one

used to increase the scale of the preload bar to display the number of bytes in

the movie and the total number of bytes loaded. You display the results of this

expression in a dynamic text box with the same variable name you use to create the

expression. In order to give the viewer a whole number to look at, use the round

method of the Math object. Listing 15-3 shows the code required to create a

preloader that displays the number of bytes loaded. Notice the string expression

“KB Loaded” that’s added to the result.

Listing 15-3: Code That Displays the Number of Bytes Loaded

bytesLoaded = Math.round((_root.getBytesLoaded())/1000)+” KB Loaded”;

Creating a Flash Form
Standard HTML forms are not very artistic. In fact, they’re downright boring. In

Flash, you can use your design talent to create an interesting form for a client. When

you create a form, you create input text boxes. Each input text box is assigned a

variable name. When the user is finished filling out the form and clicks the Submit

button, the information is transmitted to the Web site’s mail forwarding scripts. Each

Web hosting service uses a different script to forward mail. Check with the site that

will host your design for specific information. In the sections that follow, you’ll learn

to transmit the results to a Web server’s mail forwarding CGI script.

CGI is being used for this example. The process is similar for a server that uses ASP,
PHP, or ColdFusion. Check with the support personnel of the server hosting the
site where your Flash form will be displayed for specific instructions.

Creating the form elements
To create the form elements, you use the Text tool. Create a separate input text box

for each form element. Each input text box has a variable assigned to it. When the

Note

i3687-7 ch15.F 6/12/02 9:07 AM Page 306

307Chapter 15 ✦ Building Web Site Elements with ActionScript

user inputs information into the text box, Flash stores the data until the user clicks

the Submit button. Figure 15-5 shows input text box parameters being modified in

the Property inspector.

Figure 15-5: You create the form elements using the text tool.

Remember that when you create input text boxes, you can specify the type of
information that will be accepted by the variable. You can also limit the number of
characters that will be stored by the variable. For more information on creating
input text boxes, refer to Chapter 11.

Figure 15-6 shows a finished Flash form complete with a Submit and Reset button.

Figure 15-6: You can use input text boxes and other elements to create an
aesthetically pleasing form for your designs.

Cross-
Reference

i3687-7 ch15.F 6/12/02 9:07 AM Page 307

308 Part IV ✦ Building Additional Design Elements for Your Movie

Creating ActionScript for the Reset button
When you create a form for a Flash movie and users input information into the

form, you can give them the option to erase all the information in the form and start

over. This option comes in handy if more than one user is viewing your design from

the same computer. After one user fills in the form and submits the information, a

different user can click the Reset button to clear the form and then submit his

information. When you create the code for a Reset button, you are resetting the

variable for each input text box to null. In other words, you are resetting the

variable for each input text box to a variable with no data.

To reset a variable:

1. Click the arrow to the left of the word Actions to open the Actions panel.

2. Choose Actions➪Variables and then double-click set variable.

3. In the Variable field, enter the name of the variable you want to reset.

4. Leave the Value field blank.

Listing 15-4 shows ActionScript to reset several variables when a button is

clicked.

Listing 15-4: Code for a Reset Button

on (release) {
name = “”;
address = “”;
city = “”;
state = “”;
zip = “”;
phone = “”;
e_mail = “”;

}

Creating ActionScript for the Submit button
Creating the input text boxes and buttons are the easy parts of creating a Flash

form. The difficult part comes when you need to submit the information to the

designated recipient at a Web site. Each Web server uses different scripts to

forward form results. Check with the support staff of the Web hosting service

where your design will be uploaded for specific information. In the section that

follows, you’ll learn how to interpret an HTML mail forwarding script and use that

information to transmit the data from your Flash form to the intended recipient.

Listing 15-5 shows a typical CGI mail forwarding script.

i3687-7 ch15.F 6/12/02 9:07 AM Page 308

309Chapter 15 ✦ Building Web Site Elements with ActionScript

Listing 15-5: An HTML Mail Forwarding Script

<form action=”http://scripts.myserver.com/cgi-bin/mailto.exe”
method=”POST” onSubmit=”return
FrontPage_Form1_Validator(this)”name=”FrontPage_Form1”>
<input type=”hidden” name=”sendto” value=”webmaster↓sdesigns.net”>
<input type=”hidden” name=”server” value=”smtp.myserver.com”>

<input type=”hidden” name=”subject” value=”Form Processed Email Response”>
<input type=”hidden” name=”resulturl”
value=”http://www.dasdesigns.net/thanks.htm”>
<input type=”hidden” name=”VTI-GROUP” value=”0”>

The code may look a little daunting. When you analyze a script like this, you’re

looking for the information that is required to forward the information to a recipient.

When you create a variable, you need to enter a value and a name for the variable.

If you analyze the script, you notice several instances where the script asks for a

value. With each value is also a name. This is the information you need to create the

ActionScript to submit the form results to the intended recipient. The script in

Listing 15-5 requires values for four items: sendto, server, subject, and resulturl.

When you create the ActionScript for the Submit button, you create a variable for

each required item in the CGI script and set the variable value equal to the value in

the script.

To code a Submit button for the above CGI script, follow these steps:

1. Select the button that will submit the information.

2. Click the arrow to the left of the word Actions to open the Actions panel.

3. Choose Actions➪Variables and then double-click set variable.

Two parameter text boxes appear above the Script pane.

4. In the Variable field, enter the first name from the CGI mail forwarding script.

If you are coding a Submit button for the example in Listing 15-5, type sendto

This is the recipient. All mail forwarding scripts require a recipient.

5. In the Value field, enter the value for the name. Following the scenario for

Listing 15-5, you would enter das001@earthlink.net

6. Repeat Steps 3 through 5 for the other required names in the CGI script.

7. Click Actions➪Browser Network and then double-click getURL.

Three parameter text boxes appear above the Script pane.

8. In the URL field, enter the path to the Web hosting service’s CGI bin.

For example: http://scripts.digitalchainsaw.com/cgi-bin/mailto.exe

i3687-7 ch15.F 6/12/02 9:07 AM Page 309

310 Part IV ✦ Building Additional Design Elements for Your Movie

9. Click the triangle to the right of the Variables field and choose Send Using GET.

This instructs the Flash Player to get the data from the variables in the movie

and send them to the specified URL.

After the document is published as a Flash movie and you upload it to the Internet,

when a user fills out the form and clicks the Submit button, the information is

forwarded to the specified recipient. Listing 15-6 shows the ActionScript for the

example in Listing 15-5.

Listing 15-6: Creating ActionScript for a Submit Button

on (release) {
sendto = “das001@earthlink.net”;
server = “smtp.tignet.com”;
subject = “Form Processed Email Response”;
resulturl = “http://www.dasdesigns.net/thanks.htm”;
getURL(“http://scripts.digitalchainsaw.com/cgi-bin/mailto.exe”, “”, “GET”);

}

Creating a Printable Frame
If you create an e-commerce design for a client, you can create a printable frame.

The contents of the frame can be a spec sheet, a catalog product, or a form that the

user can fill out and mail in. When you create a printable frame, you can specify the

print area and then create the code for a button that, when clicked, prints the page

on the user’s default printer.

If you create the page using vector graphics, it will print out just fine, even when

increased to the size of the printer paper. However, if you use bitmap graphics on

the page, the image may be pixilated when increased to the size of the printer paper.

If you’re creating a frame with bitmap graphics and intend for it be a printable

frame, import a bitmap image into the document with a resolution of 150 ppi (or dpi

depending on which image-editing software you use) or better. The resulting Flash

file size will be slightly larger, but your viewers will get a more faithful rendition of

the image when they print it.

When you create a printable frame, put it in a two-frame movie clip and a button

that, when clicked by a viewer, summons the movie clip with the image the viewer

wants a hard copy of.

i3687-7 ch15.F 6/12/02 9:07 AM Page 310

311Chapter 15 ✦ Building Web Site Elements with ActionScript

To create a printable frame:

1. Choose Insert➪New Symbol.

The Create New Symbol dialog box appears.

2. Name the symbol and choose the Movie Clip behavior.

3. Select the first frame and either import the artwork you want to give viewers

the capability of printing or open the document Library and drag an instance

of it into the movie clip.

4. Add a print button to the frame.

You can use a button from one of the Common Libraries or create one of

your own.

5. Select the keyframe and then click the arrow to the left of the word Properties.

The Property inspector opens.

6. Type #p in the <Frame Label> field.

This syntax tells the Flash Player that the frame is printable. If you create

the ActionScript to print the frame as is, Flash prints everything, including

the button.

To restrict printing to a given area, follow the next steps.

7. Select the next frame in the movie and convert it to a keyframe by pressing F6.

8. Open the Property inspector and in the <Frame Label> field, type b#

This nomenclature tells Flash that the contents of the frame act as a bounding

box, restricting the print area.

9. Click the Onion Skin button near the bottom of the timeline. By enabling

Onion Skins, you can see the content of the printable frame.

10. Select the Rectangle tool and create a rectangle with no fill that surrounds the

area you want to give viewers the capability of printing.

11. Click the printable frame and then click the arrow to the left of the word

Actions to open the Actions panel.

If you don’t add the stop action to the printable frame, the movie clip will

advance to the second frame and all viewers see is the bounding box you

created in Step 10.

12. Choose Actions➪Movie Control and then double-click stop.

13. Select the button and in the left pane of the Actions panel, choose

Actions➪Printing and then double-click Print.

That’s all you need to do to create a printable frame. When the movie is published

and the button is clicked, the frame prints on the viewer’s default printer.

i3687-7 ch15.F 6/12/02 9:07 AM Page 311

312 Part IV ✦ Building Additional Design Elements for Your Movie

Chapter Project: Create an
E-Commerce Catalog

If you need to design a movie for a client that sells merchandise online, you can

create a very effective display by creating a movie clip for each product in your

customer’s catalog. Instead of setting up an extensive timeline that advances to a

different frame each time a button is clicked, you can store the movie clips in the

document Library, create ActionScript linkage for each product movie clip, and

then use the attachMovie method of the Movie Clip object to attach the movie clip

to a target window.

To follow along with this exercise, copy the eCommerce.fla file to your hard drive
from this chapter’s folder on the CD-ROM that accompanies this book. Use your
operating system utilities to disable the file’s read-only attributes.

To create an e-commerce catalog:

1. Launch Flash and open the eCommerce.fla file.

You already have several buttons set up on the Stage and a target window.

The movie clips for each product are already in the document Library. You’ll

create ActionScript linkage for the Hat movie clip.

2. Choose Window➪Library.

The document Library opens.

3. Right-click (Windows) or Ctrl+click (Macintosh) the movie clip symbol named

Hat and then choose Linkage from the context menu.

The Linkage Properties dialog box opens.

4. Click Export for ActionScript.

Flash automatically assigns the name Hat as an ActionScript identifier, as

shown in Figure 15-7.

5. Click OK to close the dialog box and assign the identifier to the movie clip.

6. Click the button on Stage with the hat icon and then double-click the arrow to

the left of the word Actions to open the Actions panel.

7. Choose Objects➪Movie➪Movie Clip➪Methods and then double-click

attachMovie.

Two parameter text boxes appear above the Script pane.

8. Place your cursor in the Object field and then click the Insert A Target Path

button.

The Insert Target Path dialog box appears. Make sure you’re in Absolute mode.

On the
CD-ROM

i3687-7 ch15.F 6/12/02 9:07 AM Page 312

313Chapter 15 ✦ Building Web Site Elements with ActionScript

9. Click the button labeled Product.

This is the instance name of the target window on the right side of the movie

that was already labeled for your convenience.

10. Click OK to add the target path to the script and close the dialog box.

Now that you’ve assigned the target path, you need to fill in the parameters.

The attachMovie method has four parameters, three of which you’ll be using

to attach the Hat movie clip to the target window. The first parameter is the

linkage identifier, the second parameter is the new name of the attached

movie clip, and the third parameter is the depth. The depth is the level you

attach the movie clip to. The base movie is _level0. You’ll be attaching the

movie clip to _level1, so the depth is 1 as well.

11. In the Parameters field, type “Hat”,”Product”,1

Make sure to place quotation marks around the linkage identifier and the new

name.

12. Choose Control➪Test Movie.

Flash publishes the movie and plays it in another window.

13. Click any of the buttons to display a different product in the target window.

Figure 15-7: You can create ActionScript
linkage for a movie clip.

By using the same methods presented in this exercise, you can create a one-frame

movie and display many different products. If you’re using other ActionScript to

modify the object, when you attach each movie clip, use the same New Name for

each movie clip to simplify the task of creating other code. If your client has an

extensive product catalog, break the catalog into categories and create a separate

movie for each catalog. Create a product category menu using one of the techniques

presented earlier in this book and then use the loadMovie action to load a category

movie on demand.

Designer Notes
You covered quite a bit of ground in this chapter. You learned to analyze a finished

design to make sure it loads quickly into a user’s browser. Expanding on this

knowledge, you learned to create a preloader to prevent a movie from halting

i3687-7 ch15.F 6/12/02 9:07 AM Page 313

314 Part IV ✦ Building Additional Design Elements for Your Movie

before enough data streamed to the user’s browser. You learned to create elements

for a Flash form and create the ActionScript to forward the results to a recipient via

a CGI forwarding script. Also covered was creating ActionScript to print out a

frame. By completing the chapter project, you learned how to use the attachMovie
method of the Movie Clip object to load a movie clip from the document Library

into a target window. In the next chapter, you’ll learn to use ActionScript to create

appealing eye candy for your designs.

✦ ✦ ✦

i3687-7 ch15.F 6/12/02 9:07 AM Page 314

Creating Flash
Eye Candy

If you create movies for clients who demand all the eye

candy that the available bandwidth will allow and then

some, you’ve got a tough task if you rely on standard Flash

animation methods. In order to get effects like starburst

backgrounds, animated mouse trails, and the like, you’ve got

to create lots of movie clips. However, if you use ActionScript,

you can create one movie clip and have hundreds of clones

darting across the screen with just a few lines of code.

In this chapter, you’ll learn to create some Flash eye candy.

If your clients insist on doing away with the hum-drum arrow

cursor, you can do it by hiding the mouse with ActionScript

and then replacing the cursor with one of your own designs

or perhaps your client’s logo. Another effect you’ll learn to

create in this chapter is the mouse chaser. They seem to be

everywhere, but a mouse chaser is still a desirable effect,

especially when you put your own twist on it. If your client

demands something special, you can create a backdrop of

twinkling stars that refreshes and changes every few seconds.

Finally, you’ll learn to create a slide show that moves across

the screen to display images. This is the ideal answer if you

need to design a site for a photographer.

The Actions panel’s got lots of books. And some of these
books have books within a book. To add some actions to
your scripts, you have to click this book icon, then click that
book icon, then click another book icon, and so on. Rather
than bore you with a lot of words, I’m going to show the
path to each action as shown in the following example:
Click Actions➪Movie Control and then double-click goto.

Creating a Mouse Chaser
There are as many ways to create a mouse chaser as there are

to animate objects. Each designer has a favorite method.

In this section, you’ll learn how to create a basic mouse

Note

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using the Mouse
object

Creating a mouse
chaser

Creating a dynamic
background

Creating a mask with
ActionScript

Creating a custom
cursor

Creating motion trails

Creating a starburst
backdrop

Chapter project:
Creating a Flash slide
show

✦ ✦ ✦ ✦

i3687-7 ch16.F 6/12/02 9:08 AM Page 315

316 Part IV ✦ Building Additional Design Elements for Your Movie

chaser. The mouse chaser you’ll be creating is a movie clip nested in a movie clip.

The nested movie clip uses the duplicateMovieClip action and the setProperty
action to create random clones of a star shape. You’ll be programming the parent

movie clip to follow the mouse.

To follow along with this exercise, copy to your hard drive the mouseChaserBegin.fla
that you’ll find in this chapter’s folder on the CD-ROM that accompanies this book.
Use your operating system utilities to disable the file’s read-only attributes.

To create a mouse chaser:

1. Launch Flash and open the mouseChaserBegin.fla file.

In the center of the scene, you see one solitary movie clip.

2. Double-click the movie clip.

Flash enters symbol-editing mode and the dark_star movie clip is available for

editing. This is the movie clip that creates the clones of the star. The

ActionScript has already been written for you. Before you program the main

movie clip, examine the ActionScript for this movie clip.

3. Click the arrow to the left of the word Actions.

The Actions panel opens and the code shown in Listing 16-1 is displayed.

Listing 16-1: Duplicating the Star

onClipEvent (enterFrame) {
for (i=0; i<10; ++i) {
duplicateMovieClip(this, chase+i, i);
setProperty(eval(“chase”+i), _x, this_.x+Math.random()*i*3);
setProperty(eval(“chase”+i), _y, this_.y+Math.random()*i*3);
setProperty(eval(“chase”+i), _alpha,Math.random()*100);

}
}

The actions for this movie clip are executed every time the frame is entered;

therefore, the code is continually creating ten copies of the original star. The

second line of code creates a for loop with ten iterations. The next line of code

duplicates the original movie clip, giving it a new name of chase appended by the

current iteration of the loop. The third through fifth lines of code set the _x, _y,

and _alpha (opacity)properties of the duplicate movie clips. The target part of the

setProperty action uses the eval action to evaluate each duplicate as it is

created. The value of each property is generated using the random method of the

Math object. When the movie clip chases the mouse, you’ll see a field of twinkling

stars lagging slightly behind the mouse.

On the
CD-ROM

i3687-7 ch16.F 6/12/02 9:08 AM Page 316

317Chapter 16 ✦ Creating Flash Eye Candy

To finish creating the ActionScript for the mouse chaser:

1. Click the Back button to exit symbol-editing mode.

2. Select the movie clip and then click the arrow to the left of the word Actions

to open the Actions panel.

3. Choose Actions➪Variables and then double-click set variable.

Two parameter text boxes appear above the Script pane.

4. In the Variable field, type diff_x

5. In the Value field, type _x-_root._xmouse and click the Expression checkbox.

This line of code figures the distance between the current _x position of the

mouse chaser and the current _x position of the mouse.

6. Repeat Steps 3 through 5 to create a variable named diff_y and set its value

equal to _y_root._ymouse.

This line of code records the distance between the _y position of the mouse

chaser and the _y position of the mouse. Again, make sure to click the

Expression checkbox.

7. In the left pane of the Actions panel, choose Actions➪Miscellaneous Actions

and then double-click evaluate.

8. In the Expression field, type _x=_root._xmouse+(diff_x/2)

This line of code sets the _x position of the mouse chaser equal to the x

position of the mouse plus the variable diff_x divided by 2. In a nutshell, this

line of code creates a slight lag behind the mouse. The faster the mouse is

moved, the larger the value of diff_x. The variable is divided by 2 so the

mouse chaser doesn’t lag too far behind when the mouse is moved rapidly.

9. Repeat Steps 7 and 8 to create a new expression that reads

_y=_root._ymouse+(diff_y/2)

This expression sets the _y position of the mouse chaser, again creating a lag

between the mouse chaser clip and the mouse.

10. Select the first line of code that reads onClipEvent (load) { and in the

parameter text area, click the Mouse move radio button.

When you choose the Mouse move clip event, the code will be executed when

viewers move their mouse across the scene.

11. Choose Control➪Test Movie.

Flash publishes the movie and plays it in another window. Drag your mouse

around the screen and watch the sparkling field of stars follow it, similar to

what is shown in Figure 16-1.

i3687-7 ch16.F 6/12/02 9:08 AM Page 317

318 Part IV ✦ Building Additional Design Elements for Your Movie

Figure 16-1: A mouse chaser is entertaining eye candy for any design.

Creating an ActionScript Mouse Chaser
In this section, you’ll use one of the new Flash MX objects to create a mouse chaser.

Flash MX has a new method of the Movie Clip object that enables you to create an

empty movie clip. When you create an empty movie clip, you can use the drawing

methods of the Movie Clip object to create shapes. The mouse chaser you’ll be

creating uses an empty movie clip to create a line that curves toward the cursor.

To follow along with this exercise, copy to your hard drive the simpleChaserBegin.fla
file. Use your operating system’s utility to disable the file’s read-only attribute.

To create an ActionScript mouse chaser:

1. Launch Flash and open the simpleChaserBegin.fla file.

All you have to work with is a solitary movie clip, which is designated by the

white registration point in the center of the Stage.

On the
CD-ROM

i3687-7 ch16.F 6/12/02 9:08 AM Page 318

319Chapter 16 ✦ Creating Flash Eye Candy

2. Click the movie clip to select it and then click the arrow to the left of the

word Actions.

The Actions panel opens. Notice that a considerable amount of ActionScript

has already been created for you. The code (shown in Listing 16-2) generates

a random color for the mouse chaser.

Listing 16-2: Creating a Random Color

onClipEvent (load) {
HexDec = new Array(“0”, “1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”, “A”, “B”,
“C”, “D”, “E”, “F”);
}
onClipEvent (enterFrame) {
colorArray = new Array();
for (i=0; i<6; ++i) {
k = Math.round(Math.random()*15);
colorArray[i] = HexDec[k];

}
rndColor =

“0x”+colorArray[0]+colorArray[1]+colorArray[2]+colorArray[3]+colorArray[4]+color
Array[5];
}

Before creating the empty movie clip, take a moment or two to examine the

ActionScript in Listing 16-1. You can modify this script to suit other movies where

you need to generate a random color. When the movie clip initially loads, a new

array is created. The elements of the array are the same numbers and letters that

are used to designate the hexadecimal format of a color. The code to generate the

color appears after the enterFrame clip event. The first order of business is a new

array called colorArray. Notice there are no elements specified for the array. This is

an associative array. It will be storing the data generated by the next few lines of

code. The for loop runs for six iterations, which is the exact number of characters

used to designate a hexadecimal color. Each iteration of the loop generates a

random number between 0 and 15. Remember that the first element of an array is

always 0. The next line of code starts filling the colorArray. Each element of the

colorArray is set equal to the [k] (the random number between 1 and 15 generated

by the last line of code) element number of the HexDec array. Finally, a variable

called rndColor is created by plucking the elements from the colorArray.

Now that you know how to create ActionScript to generate a random color, it’s time

to create the empty movie clip.

i3687-7 ch16.F 6/12/02 9:08 AM Page 319

320 Part IV ✦ Building Additional Design Elements for Your Movie

To create the empty movie clip:

1. Select the last line of code that reads rndColor =
“0x”+colorArray[0]+colorArray[1]+colorArray[2]+colorArray[3]+c
olorArray[4]+colorArray[5];.

2. In the left pane of the Actions panel, choose Objects➪Movie➪Movie

Clip➪Methods and then double-click createEmptyMovieClip.

Two parameter text boxes appear: Object and Parameters.

3. In the Object field, type _root

The empty movie clip will reside on the root timeline.

4. In the Parameters field, type “line”, 1

The first parameter (line) is the ActionScript identifier for the empty movie

clip. ActionScript identifiers are always specified with quotation marks. The

second parameter is the depth, or level, that the object will be displayed on.

In this case, the line will be displayed on _level1. Remember this code follows

an enterFrame clip event. Therefore, the code is evaluated every time the

Flash Player enters the frame.

5. In the left pane of the Actions panel, choose Actions➪Variables and then

double-click with.

6. In the Object field, type _root.line

7. In the left pane of the Actions panel, choose Objects➪Movie➪Movie Clip➪
Drawing Methods and then double-click lineStyle.

Two parameter text boxes appear above the Script pane: Object and

Parameter.

8. In the Object field, type _root.line

This is the path to the empty movie clip. In the Parameters field, you’ll be

specifying the actual style of the line. The lineStyle has three parameters:

thickness, RGB value, and alpha. The ActionScript has already been generated

to create a random color value. You’ll also be creating code to generate a

random thickness and alpha properties.

9. Place your cursor inside the Parameter field and type Math.random()*6,

rndColor, Math.random()*100

The completed code does three things:

• The first section generates a random value between 0 and 6, which

creates a line thickness between 0 (hairline thickness) and 6 pixels.

• The second part of the code plugs in the value of the random color to

designate the rgb (color) parameter.

i3687-7 ch16.F 6/12/02 9:08 AM Page 320

321Chapter 16 ✦ Creating Flash Eye Candy

• The third part of the code generates a random value for the line’s _alpha

property, which varies the opacity of the line. When the line bends

towards the cursor, the opacity of the line varies between transparent

and solid depending on the value generated by the random method of

the Math object.

10. In the left pane of the Actions panel, choose Objects➪Movie➪Movie

Clip➪Drawing Methods and then double-click moveTo.

The moveTo Drawing method specifies the starting point for the object

being drawn. You can enter specific x and y coordinates. In this case, you’ll be

entering code to generate a random position.

11. In the Object field, type _root.line

12. In the Parameters field, type Math.random()*500, Math.random()*100

This code generates a random starting point for the line within an area of 500

pixels by 100 pixels from the center of the empty movie clip.

13. In the left pane of the Actions panel, click Objects➪Movie➪Movie

Clip➪Drawing Methods and then double-click curveTo.

This Drawing method curves a line to a designated point. In this case, you want

the line to curve to the mouse from a randomly generated point in the movie.

14. In the Object field, type _root.line

15. In the Parameters field, type Math.random()*500,Math.random()*100,

_xmouse, _ymouse

This line of code curves the line from a random point within the specified

coordinates directly to the mouse’s x and y coordinates.

16. Choose Control➪Test Movie.

Flash publishes the movie and plays it in another window. As you move

your mouse around the Stage, a line curves towards the mouse from different

starting points. The line will be of random width, color, and thickness. It kind

of looks like a fireworks sparkler on the 4th of July.

This type of mouse chaser is way too frenetic for the main part of a movie but is an

excellent device to add to a preloader. The curving line will keep your visitors

entertained and occupied while the main site loads.

Creating a Mask with ActionScript
In previous versions of Flash, you can create a mask layer. The shape you put on

the mask layer reveals objects on masked layers beneath it. You could add a degree

of interest to the mask by creating a rudimentary motion tween animation. With

Flash MX, you can create a movie clip with animation and then use it to mask

another movie clip. If you create a random animation in the movie clip that masks

another other movie clip, you can create Flash eye candy that will interest even the

most jaundiced Web surfer.

i3687-7 ch16.F 6/12/02 9:08 AM Page 321

322 Part IV ✦ Building Additional Design Elements for Your Movie

To create an ActionScript mask:

1. Create a movie clip symbol that you want to use as a mask. You can animate

the movie clip if desired using motion tweening, frame-by-frame animation, or

by using ActionScript to generate random motion.

2. Create a movie clip for the object that will be masked. This movie clip can be

animated as well. However, you’ll get your best results if you mask a static

image such as a vector graphic or a bitmap.

3. Open the document Library and drag an instance of the movie clip you want

to mask onto the Stage.

4. Drag an instance of the movie clip that will serve as the mask onto the Stage.

5. With the mask movie clip still selected, click the arrow to the left of the word

Properties to open the Property inspector.

6. Enter a name for the movie clip in the <Instance Name> field and close the

Property inspector.

7. Select the movie clip that will be masked.

8. Click the arrow to the left of the word Actions to open the Actions panel.

9. Choose Objects➪Movie➪Movie Clip➪Methods and then double-click

setMask.

Two parameter text boxes appear above the Script pane.

10. In the Object field, type this

The object is what is being masked. Because the ActionScript is being applied

to the object being masked, the this alias can be used. If the ActionScript is

assigned to a button, the absolute path to the movie clip needs to be entered

in this field.

11. Place your cursor in the Parameters field and click the Insert a Target Path

button to open the Insert Target Path dialog box.

12. Click the button that represents the movie clip you are using as a mask and

then click OK to close the dialog box.

When the movie is published, the animated movie clip mask will reveal the mask

object. Figure 16-2 shows four frames of a movie clip mask in action.

You can also create an ActionScript mask within a movie clip symbol. You do this

by nesting the movie clip and the movie clip that will serve as a mask within a

movie clip. Then it’s a simple matter of applying the ActionScript and choosing the

right path, as shown in the following steps:

1. Create the movie clip that will serve as the mask as outlined previously.

2. Create a movie clip symbol for the object you want to mask as outlined

previously.

i3687-7 ch16.F 6/12/02 9:08 AM Page 322

323Chapter 16 ✦ Creating Flash Eye Candy

Figure 16-2: You can create dazzling eye candy using the setMask action.

3. Choose Insert➪New Symbol.

The Create New Symbol dialog box appears.

4. Name the symbol, choose the Movie Clip behavior, and then click OK to enter

symbol-editing mode.

5. Choose Window➪Library to open the document Library.

6. Drag an instance of the movie clip symbol you want to mask onto the Stage.

Use the Align panel to center the movie clip to Stage.

7. Drag an instance of the movie clip that you’ll use as a mask from the document

Library to the Stage and align it to the center of the Stage.

8. With the movie clip still selected, click the arrow to the left of the word

Properties to open the Property inspector.

9. Type mask in the <Instance Name> field and then close the Property inspector.

10. Select the movie clip that will be masked and then click the arrow to the left of

the word Actions to open the Actions panel.

3 4

1 2

i3687-7 ch16.F 6/12/02 9:08 AM Page 323

324 Part IV ✦ Building Additional Design Elements for Your Movie

11. Choose Objects➪Movie➪Movie Clip➪Methods and then double-click

setMask.

Two parameter text boxes appear above the Script pane.

12. In the Object field, type this

The object you are masking is the selected object; therefore, you can refer to

it by the this alias.

13. Place your cursor inside the Parameters field and then click the Insert a

Target Path button. The Insert Target Path dialog box opens.

14. Click the Relative radio button and then click the button that reads mask.

Click OK to close the dialog box.

15. Click the Back button to exit symbol-editing mode.

When you create an ActionScript mask in a movie clip symbol, you can use it

anywhere in the document. You can have two or three instances of the ActionScript

mask playing at one time, or you can create several movie clips where you use

ActionScript to mask different objects. You can resize the movie clips to a different

size as needed. Consider the effect you can achieve by having multiple instances of

an animated mask movie clip on Stage, each clip a different size.

Using the Mouse Object
When you want to create a custom cursor, you use the Mouse object. The most

common methods of the Mouse object are Show and Hide. When you create a

custom cursor, you use the hide method of the Mouse object. After you hide

the mouse, you can make it visible at any time by choosing the show method

of the Mouse object. When you hide or show the Mouse object, you usually

assign the action to a keyframe, although you can use the action in conjunction

with a button click when beginning a game. When you hide the mouse, make sure

you use the startDrag action to attach a movie clip in place of the mouse as out-

lined in the upcoming section; otherwise, your viewers will have no idea of where

their cursor is — unless, of course, that’s the effect you’re after.

To hide the mouse:

1. Select the keyframe or object where you want to create the ActionScript to

hide the mouse.

2. Click the arrow to the left of the word Actions to open the Actions panel.

3. Choose Objects➪Movie➪Mouse➪Methods and then double-click hide.

i3687-7 ch16.F 6/12/02 9:08 AM Page 324

325Chapter 16 ✦ Creating Flash Eye Candy

To display the mouse after it has been hidden:

1. Select the keyframe or object where you want to create the ActionScript to

reveal the mouse.

2. Click the arrow to the left of the word Actions to open the Actions panel.

3. Click Objects➪Movie➪Mouse➪Methods and then double-click show.

Creating a Custom Cursor
If you have a client who wants something different, consider creating a custom

cursor using either the client’s logo or a tool of the client’s trade. For example, if

your client is an artist, create a paint brush cursor. If your client is a rock guitarist,

create a cursor that looks like the musician’s guitar.

To create a custom cursor:

1. Choose Insert➪New Symbol.

The Create New Symbol dialog box opens.

2. Name the symbol cursor, choose the Movie Clip behavior, and then click OK to

enter symbol-editing mode.

3. Create the object you want to use as a cursor for your design or import a

vector graphic or bitmap.

4. Click the Back button to exit symbol-editing mode.

5. Choose Window➪Library.

The document Library opens.

6. Drag an instance of your cursor movie clip onto the Stage.

7. Click the arrow to the left of the word Properties.

The Property inspector opens.

8. In the <Instance Name> field, type cursor

9. Select the first frame in your document.

10. Click the arrow to the left of the word Actions.

The Actions panel opens.

11. Choose Objects➪Movie➪Mouse➪Methods and then double-click hide.

12. In the left pane of the Actions panel, choose Actions➪Movie Clip Control and

then double-click startDrag.

13. Place your cursor inside the Target field and click the Insert a Target Path

button to open the Insert Target Path dialog box.

i3687-7 ch16.F 6/12/02 9:08 AM Page 325

326 Part IV ✦ Building Additional Design Elements for Your Movie

14. Click the button labeled cursor to add the target path of your cursor movie

clip to the code and then click OK to close the dialog box.

15. Click the Lock Mouse to Center check box. Your finished ActionScript should

look like Listing 16-3.

Listing 16-3: Creating ActionScript for a Custom Cursor

Mouse.hide();
startDrag(“_root.cursor”, true);

Figure 16-3 shows an example of a custom cursor.

Figure 16-3: You can spice up a design by creating a custom cursor.

Creating Motion Trails
Another bit of eye candy you can use to spice up your designs is a motion trail.

When you create a motion trail, an object moves across the movie and leaves a trail

of images in its wake, each image being a little fainter as it disappears into the

background. The motion trails finally catch up with the object and disappear. To

i3687-7 ch16.F 6/12/02 9:08 AM Page 326

327Chapter 16 ✦ Creating Flash Eye Candy

create this effect, you first create a movie clip with a motion tween animation in it.

Then you use the duplicateMovieClip action to create the trails and modify each

duplicated movie clip’s alpha property to create the fading effect.

To create a motion trail:

1. Choose Insert➪New Symbol.

The Create New Symbol dialog box appears.

2. Choose the Graphic behavior and then click OK to enter symbol-editing mode.

3. Use the drawing tools to create an object or import a vector or bitmap image.

4. Click OK to exit symbol-editing mode.

5. Create another new symbol, this time choosing the Movie Clip behavior.

6. Choose Window➪Library.

The document Library opens.

7. Drag an instance of the graphic symbol into the movie clip symbol.

8. Create a motion tween animation. Vary the size of the object between

keyframes.

Motion paths also make good motion tween animations.

9. Click the Back button to exit symbol-editing mode.

Figure 16-4 shows a motion tween animation created for a motion trail

movie clip.

After you create the motion tween animation, you nest it in another movie clip

and the fun begins. The ActionScript to finish the motion trail effect uses three

frames. The first frame initializes the variables, the second frame uses the

duplicateMovieClip action to create the trails, and the third frame loops the

animation.

To complete the motion trail effect

1. Create a new movie clip symbol.

2. Choose Window➪Library.

The document Library opens.

3. Drag an instance of the motion tween animation you just created on Stage.

4. Open the Property inspector and in the <Instance Name> field, type clip

5. Create a new layer and label it actions.

6. Select the second and third frames and press F6 to convert them to

keyframes.

i3687-7 ch16.F 6/12/02 9:08 AM Page 327

328 Part IV ✦ Building Additional Design Elements for Your Movie

Figure 16-4: A motion tween animation is the first step in creating a motion trail
effect.

7. Select the third frame on the first layer and press F5 to create additional

frames.

8. Select the first keyframe on the Actions layer and then click the arrow to the

left of the word Actions.

9. In the left pane of the Actions panel, choose Actions➪Variables and then

double-click set variable.

10. In the Variable field, type loops and in the Value field, type 0

11. In the Value field, click the Expression check box.

12. Repeat Steps 8 thorough 10 to create a new variable. Name the variable trails

and set its value equal to 12. Be sure to check the Expression check box in the

Value field.

The actual value you choose for trails is largely a matter of personal taste.

The sample file in this chapter’s CD-ROM uses a value of 15. Experiment with

different values to suit the design you are creating.

13. Select the second keyframe and in the left pane of the Actions panel, choose

Actions➪Conditions/Loops and then double-click if.

The Condition parameter text box appears above the Script pane.

14. In the Condition field, type loops<trails+1

i3687-7 ch16.F 6/12/02 9:08 AM Page 328

329Chapter 16 ✦ Creating Flash Eye Candy

15. In the left pane of the Actions panel, choose Actions➪Movie Clip Control and

then double-click duplicateMovieClip.

The parameter text boxes appear above the Script pane.

16. In the Target field, type clip

This is the instance name of the motion tween animation that will be duplicated

to create the motion trails.

17. In the New Name field, type “clip” + loops

Be sure to click the Expression check box. This line of code names the

duplicated movie clips.

18. In the Depth field, type loops

19. Click Actions➪Movie Clip Control and then double-click setProperty.

20. Click the triangle to the right of the Property field and choose _alpha(Alpha).

The line of code will vary the opacity of the duplicate clips.

21. In the Target field, type “clip” + loops and click the Expression check box.

22. In the Value field, type 70-(loops*(50/trails))

This may look a little complex, but actually it isn’t. Each duplicated movie clip

becomes more transparent as the loop continues. The next line of code

increases the value of loops by 1.

23. In the left pane of the Actions panel, choose Actions➪Variables and then

double-click set variable.

24. In the Variable field, type loops and in the Value field, type loops + 1

Your finished code should look like Listing 16-4.

25. Select the third frame and click the arrow to the left of the word Actions.

The Actions panel opens.

26. In the left pane of the Actions panel, click Actions➪Movie Control and then

double-click goto.

27. Accept the default parameters and in the Frame field enter 2.

Your ActionScript should read gotoAndPlay(2).

Listing 16-4: Creating the Code to Create the Motion Trails

if (loops<trails+1) {
duplicateMovieClip(“clip”, “clip”+loops, loops);
setProperty(“clip”+loops, _alpha, 70-(loops*(50/trails)));
loops = loops+1;

}

i3687-7 ch16.F 6/12/02 9:08 AM Page 329

330 Part IV ✦ Building Additional Design Elements for Your Movie

The heart of this effect is in the code you create on the second keyframe. This

duplicates the motion tween animation movie clip and decreases the opacity of

each duplicate. When you create this effect for your own designs, remember that

you can swap the motion tween animation symbol with another to create a different

effect. Just remember to name the instance of the new symbol, “clip” and the effect

plays without a hitch. You can also vary the effect by changing the number of trails

and the beginning alpha value. Instead of using 70 as the base alpha for the effect,

try a lower or higher value. Figure 16-5 shows a movie that uses the motion trail

effect to good effect.

Figure 16-5: You can add excitement to your designs with the motion trail effect.

To view an example of a motion trail movie, copy to your hard drive the
motionTrails.fla file that you find in this chapter’s folder on the CD-ROM that
accompanies this book. Use your computer operating system utilities to disable
the file’s read-only attributes and launch the file in Flash. Choose Control➪Test
Movie to see the effect.

Creating a Starburst Backdrop
Another scintillating effect you can add to your designs is a starburst backdrop.

This effect creates random duplicates of a small sphere to simulate a starfield.

On the
CD-ROM

i3687-7 ch16.F 6/12/02 9:08 AM Page 330

331Chapter 16 ✦ Creating Flash Eye Candy

Unfortunately, the number of steps involved in creating this effect are quite

numerous. Rather than have you read a lengthy tutorial, the steps that follow

dissect the ActionScript used to create the effect.

To learn how to create a starburst backdrop, copy to your hard drive the
randomStars.fla file found in this chapter’s folder on the CD-ROM that accompanies
this book. Use your operating system utilities to disable the file’s read-only
attributes.

To learn how the starburst backdrop effect is created:

1. Launch Flash and open the randomStars.fla file.

2. Choose Control➪Test Movie.

Flash publishes the file and plays it in another window (see Figure 16-6).

Figure 16-6: You can use ActionScript to create a starburst background like this.

As the movie plays, you see what appears to be an ever changing field of stars. In

reality, it’s only one movie clip duplicated over a hundred times. The entire file is

only 155 KB, dainty by any designer’s standards. You can use this file or a similar

one of your own creation for an interesting backdrop. To see how the effect is

created, close the window and follow the upcoming steps.

On the
CD-ROM

i3687-7 ch16.F 6/12/02 9:08 AM Page 331

332 Part IV ✦ Building Additional Design Elements for Your Movie

1. Click the small white dot in the upper-left corner of the movie and choose

Edit➪Edit Selected.

Flash enters symbol-editing mode. The entire movie clip is only two

keyframes long.

2. Click the arrow to the left of the word Actions to open the Actions panel.

3. Click the small white dot just above the center of the Stage. This is a small

circle nested in the movie clip.

Listing 16-5 shows the ActionScript that is used to set the initial position of

the movie clip.

Listing 16-5: Initializing the Movie Clip

onClipEvent (load) {
this._x=Math.random()*540;
this._y=Math.random()*280;
this._xscale=Math.random()*100;
this._yscale=this._xscale;
this._alpha=Math.random() * 100;
if (this._alpha<50) {
this._alpha=50;

}
}

When the movie clip first loads, the _x and _y properties of the movie clip are set to

random positions. The value of 540 for the _x was chosen to keep the movie clip

within the boundary of the movie. The value of 280 for the _y property was chosen

to keep the stars above the orange part of the background, which is a gradient

blend created with the Color Mixer. The fourth line of code generates a random

value for the _xscale of the movie clip, and the fifth line of code sets the _yscale

equal to the _xscale so the movie clip resizes proportionately. The next line of code

varies the opacity of the movie clip. The conditional statement sets the _alpha

property equal to 50 if the random value generated drops below 50. This statement

was entered to prevent the movie clip from blending into the background. The

desired effect was to simulate twinkling stars; an alpha value less than 50 would

cause the stars to all but disappear.

To see the code used to create the rest of the effect, click the first keyframe. If you

still have the Actions panel open, you see the code in Listing 16-6.

i3687-7 ch16.F 6/12/02 9:08 AM Page 332

333Chapter 16 ✦ Creating Flash Eye Candy

Listing 16-6: Creating the Stars

k = 0;
i = Math.random()*200;
while (k<i) {
duplicateMovieClip(“circle”, “circle”+k, k);
k = ++k;

}

The first line of code declares a variable named k and sets it equal to 0. The second

line of code initializes a variable named i and sets its value equal to a random

number between 1 and 200. The third line of code initializes a while loop. While the

value of k is less than i, the movie clip is duplicated. The movie clip is duplicated

each time it loads and new random values are generated, which simulates the

appearance of a star on another part of the Stage. The next line of code increments

the value of k by 1. The loop continues creating duplicate stars until the value of k
exceeds i. After the loop finishes, the movie clip plays frame 2 which has a goto
action that returns it to frame 1, whereupon the whole process repeats itself and a

new field of stars is generated. However, there’s one additional item on the second

frame that pauses the movie so the viewer can see the stars.

Click the small white dot below the center of the Stage. This is a user-defined com-

ponent that contains nothing but ActionScript. The component pauses the movie.

You could pause the movie by adding a few frames between the keyframes.

However, if you ever needed to change the effect, you’d have to add or delete

frames. Also, with a given number of frames, the effect would be too predictable.

The user-defined component is a timer that pauses the movie for a different amount

of time every time the frame plays. With the component still selected, click the

arrow to the left of the word Properties to open the Property inspector. The

component has only one parameter: Seconds (shown in Figure 16-6). The

ActionScript in the component pauses the movie for a random amount of time up

to the value entered in the Seconds field. To see how the component works, click

the number (.6) to the right of seconds and enter a higher value. Choose Control➪
Test Movie. After Flash publishes the file, you’ll see that the stars don’t change as

quickly. Enter a smaller value in the seconds field, and a new star field is generated

more quickly.

You can create a similar effect by recreating the code in your own movie, or you

can modify this movie to suit your needs by creating a different background or by

creating a new movie clip symbol with a different graphic than a circle. Edit the

starfield movie clip and swap the circle movie clip for your own symbol.

i3687-7 ch16.F 6/12/02 9:08 AM Page 333

334 Part IV ✦ Building Additional Design Elements for Your Movie

Chapter Project: Creating a Flash Slide Show
For the chapter project, you’ll be examining the code used to create a slide show.

The slide show is a moving strip of images. The speed of the strip varies depending

on the position of the user’s mouse. To examine any of the images in greater detail,

viewers move their mouse towards the image and the strip stops moving.

To follow along with this exercise, copy to your hard drive the slideShow.fla file you
find in this chapter’s folder on the CD-ROM that accompanies this book. Use your
computer operating system utilities to disable the file’s read-only attributes.

To dissect the code used to create the slide show movie:

1. Launch Flash and open the slideShow.fla file.

2. Choose Control➪Test Movie.

Flash publishes the movie and plays it in another window. When the movie

begins, all you see are instructions for the user.

3. Move your mouse over the scroll left control and the images begin moving

(see Figure 16-7).

4. Move your mouse farther to the left and the images move faster. Move your

mouse toward the images and they stop moving so you can get a better look.

Move your mouse over the scroll right control and the images move to the

right, picking up speed as you move farther away from the center of the

movie.

After you’ve finished playing the movie, close the window.

Now that you’ve seen the effect in action, it’s time to examine the code and see

what makes this effect work. As shown in Figure 16-7, the actual movie consists of

three keyframes and several layers. There’s a mask layer with an image the same

size as the movie. By adding the mask, you can load this movie into a target window

in a larger movie. The mask prevents the other images from being seen as they

scroll past the edge of the movie. The actual image was created in an image editing

program. Several individual images were combined to create the strip. The image

was given an instance name of strip.

To examine the code used to create this effect:

1. Click the arrow next to the word Actions to open the Actions panel.

2. Click the first keyframe on the Actions layer and you see the code shown in

Listing 16-7.

On the
CD-ROM

i3687-7 ch16.F 6/12/02 9:08 AM Page 334

335Chapter 16 ✦ Creating Flash Eye Candy

Figure 16-7: The images in the slide show scroll across the screen.

Listing 16-7: Initializing the Variables

center = 250;
rightBorder = -3496;
leftBorder = 0;
stripPos = strip._x;

The ActionScript in Listing 16-7 initializes the variables for the movie. The variable

named center defines the center of the movie; rightBorder defines the end of the

image strip. The leftBorder variable is equal to 0. The registration point is set to

x=0 instead of the center of the film strip. The last variable, stripPos, is set equal

to the _x property of strip, the instance name of the movie clip with the image.

Figure 16-8 shows the movie clip with the image. Notice that the left side of the

image is aligned to the center of the Stage. The image is 3496 pixels long, making

its right border –3496.

i3687-7 ch16.F 6/12/02 9:08 AM Page 335

336 Part IV ✦ Building Additional Design Elements for Your Movie

Figure 16-8: The image is nested in a movie clip symbol.

When the movie begins playing, the first frame sets up all the variables and then the

second keyframe plays. The code for the second keyframe is shown in Listing 16-8.

Listing 16-8: ActionScript to Move the Image

if (_ymouse>250) {
stripSpeed = (_xmouse-center)/8;
stripPos = (stripPos+stripSpeed);
if (stripPos>leftBorder) {
stripPos = leftBorder;

}
if (stripPos<rightBorder) {
stripPos = rightBorder;

}
strip._x = stripPos;

}

Registration point

i3687-7 ch16.F 6/12/02 9:08 AM Page 336

337Chapter 16 ✦ Creating Flash Eye Candy

Notice that the ActionScript consists of three conditional statements. The first

conditional statement evaluates the _y property of the mouse. When the _y property

of the mouse is greater than 250 (the top border of the scroll controls), the variable

stripSpeed is set equal to the _x property of the mouse minus the value of center

divided by 8. If you experiment with this effect, you can speed up the scrolling by

choosing a value less than 8, or slow it down by choosing a value higher than 8. The

variable center defines the center of the movie. This defines the speed and direction

of the strip. The result was divided by 8 to slow the speed down. The next line of

code sets the value for the variable stripPos. The first frame initialized the value of

stripPos and set it equal to the _x property of the image strip. As the user moves the

mouse to the left, the value of stripSpeed decreases. When this value is added to

stripPos, it causes the strip to move to the left. When the user moves the mouse to

the right, the value of stripSpeed increases and when added to stripPos, causes the

image strip to move to the right. As the user moves the mouse farther in either

direction, the speed increases.

The next two conditional statements reset the value of stripPos in order to keep the

film strip from scrolling out of the movie. The final line of code sets the _x property

of the strip movie clip equal to stripPos.

The third keyframe loops the movie back to the second frame so that the Flash

Player can continually evaluate the position of the user’s mouse and move the

film strip.

When you need to create an effect like this for a client, all you need to do is change

the value of the variable center to equal the center of your document (width/2) and

change the value of rightBorder to the negative of the width of the image you are

displaying. When you create the movie clip for the image, remember to align the left

edge of the image to x=0. Alternately, you can import the image into the document,

select it, and then click F8 to convert the image into a symbol. Choose the movie

clip behavior and the middle left registration point and you’re good to go.

Designer Notes
In this chapter, you learned to create some of the fun frilly things that make a Flash

design a success. You learned to create a custom cursor and a mouse chaser, two

items sure to keep your viewers entertained. You also learned to create the motion

trail effect and create a custom background of twinkling stars. In the chapter project,

you learned how to create the ActionScript needed to create a moving slide show. In

the next chapter, you’ll learn to integrate Flash movies with your HTML designs.

✦ ✦ ✦

i3687-7 ch16.F 6/12/02 9:08 AM Page 337

i3687-7 ch16.F 6/12/02 9:08 AM Page 338

Integrating
Flash with HTML

Flash MX is a complete solution for Web publishing. You

can create designs with video, audio, complex navigation

systems, and much more. However, as powerful as Flash is, the

content is still embedded in an HTML document. When you

publish a Flash movie and choose the HTML option, the *.swf

file is automatically embedded in an HTML document using

the browser’s default alignment, which places the Flash

movie in the upper-left corner of the document — not the most

desirable place. You can change the location by modifying the

alignment in an HTML editor.

In this chapter, you’ll learn to integrate Flash with HTML.

You’ll learn to create a pop-up window from within Flash to

display an HTML page in another window. You’ll also learn to

detect the version of the Flash Player your movie is being

viewed with. In addition, you’ll learn to create a compelling

Flash introduction, as well as create banner ads to integrate

with your HTML designs.

The Actions panel’s got lots of books. And some of these
books have books within a book. To add some actions to
your scripts, you have to click this book icon, then click that
book icon, then click another book icon, and so on. Rather
than bore you with a lot of words, I’m going to show the
path to each action as shown in the following example:
Click Actions➪Movie Control and then double-click goto.

Creating a Pop-Up Window with
JavaScript

If you create a design for a client that needs to include links

to external Web sites, you can use a bit of JavaScript in

conjunction with the getURL action to display the link in

another browser window. Displaying a URL link in another

Note

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a pop-up
window

Creating banner ads

Detecting the Flash
Player

Creating a Flash
introduction

Chapter project:
Creating an
animated Flash
banner

✦ ✦ ✦ ✦

i3687-7 ch17.F 6/12/02 9:08 AM Page 339

340 Part IV ✦ Building Additional Design Elements for Your Movie

window gives you control over the parameters of the pop-up window. You can

specify the size of the window and whether the new window has scrollbars or not.

To display a link in a pop-up window:

1. Select the button or keyframe that will cause the new window to pop up.

2. Click the arrow to the left of the word Actions to open the Actions panel.

3. Choose Actions➪Browser/Network and then double-click getURL.

4. In the URL field, type Javascript:newwin1 ()

This bit of code tells the Flash Player that the URL for the link is located

within JavaScript in the HTML document the movie is embedded in.

5. To create additional links that open in another window, repeat Steps 3 and 4,

and in the URL field, type Javascript:newwin2, ()Javascript:newwin3 (), and

so on.

After you publish the document as a Flash movie, you have to modify the HTML

document the movie is embedded in to include the JavaScript that will open the

link in a new window.

To modify the HTML document:

1. In your HTML editor, open the HTML document the Flash movie is embedded

in. Alternately, you can open the document in a text editor.

2. In the head of the HTML document, enter the JavaScript shown in Listing 17-1.

Listing 17-1: JavaScript to Open a Link in Another Window

<script language=”Javascript”> function newwin1() {
window.open(‘http://www.dasdesigns.net/about.htm’, ‘links’
,’scrollbars=yes,width=640,height=480’) }
</script>

The JavaScript in the previous listing opens the link in a browser window 640 pixels

wide by 480 pixels high. The window has scrollbars. When you create the JavaScript

to open the new window, it’s always a good idea to size it smaller than the parent

window. A desktop size of 800 pixels by 600 pixels seems to be the most popular

these days. Therefore, if you size the pop-up window to 640 x 480, the HTML page

with your Flash design is visible in the background.

You can also use this technique to play your Flash design in an HTML document

the exact size of the movie. To do this, you create two movies. The first movie has

nothing but the getURL action with the Javascript newwin 1() code. In the

i3687-7 ch17.F 6/12/02 9:08 AM Page 340

341Chapter 17 ✦ Integrating Flash with HTML

HTML page, you create the JavaScript to open the main movie in a new window

called flashMovie.html that is sized to the movie. Listing 17-2 shows the code that

will open the main movie in a sized window.

Listing 17-2: JavaScript to Open a Flash File in a
Sized Window

<HTML>
<HEAD>
<meta http-equiv=Content-Type content=”text/html; charset=ISO-8859-1”>
<TITLE>Untitled-1</TITLE>
<script language=”Javascript”> function newwin1() {
window.open(‘flashMovie.html’, ‘links’ ,’scrollbars=yes, menu=yes,
width=550,height=400’) } </script>
</HEAD>
<BODY bgcolor=”#FFFFFF”>
<!-- URL’s used in the movie-->
<!-- text used in the movie-->
<OBJECT classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”

codebase=”http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#ve
rsion=6,0,0,0”
WIDTH=”1” HEIGHT=”1” id=”Untitled-1” ALIGN=””>
<PARAM NAME=movie VALUE=”mainMovie.swf”> <PARAM NAME=quality VALUE=high> <PARAM
NAME=bgcolor VALUE=#FFFFFF> <EMBED src=”browserSize.swf” quality=high
bgcolor=#FFFFFF WIDTH=”1” HEIGHT=”1” NAME=”Untitled-1” ALIGN=””
TYPE=”application/x-shockwave-flash”
PLUGINSPAGE=”http://www.macromedia.com/go/getflashplayer”></EMBED>
</OBJECT>
</BODY>
</HTML>

In the preceding code, you notice the HTML page with the Flash movie is referred to

by its relative path. When the HTML document the movie is embedded in is in the

same root directory, you can refer to it by name and extension. Also notice that the

size of the Flash movie embedded in the HTML document that opens the main

movie is only 1 pixel by 1 pixel.

Creating Banner Ads
Banner ads seem to be everywhere on the Internet these days. Before Flash became

a popular Web development tool, designers resorted to the old tried-and-true

Animated GIF to get the job done. However, Animated GIFs with any degree of

advanced animation are comprised of several frames and the file size may be

i3687-7 ch17.F 6/12/02 9:08 AM Page 341

342 Part IV ✦ Building Additional Design Elements for Your Movie

too large to download quickly. This is where Flash has come into favor with Web

designers. Using Flash, you can quickly create an impressive banner ad that

downloads quickly into the user’s browser.

But before you rush headlong into Flash and create the banner, consider where

the banner will appear in your HTML design. Many Web designers display a single

banner across the top of a page; other designers prefer to display one or more

banner ads on the side of the page. Figure 17-1 shows a Flash banner across the top

of a Web page.

Figure 17-1: You can display a banner ad across the top of an HTML page.

When you do decide on a position for the banner ad, keep the elements in your

HTML design in mind. Stick with similar colors or the same colors that appear in

your HTML design. You don’t want your finished product looking like some of the

cut and paste HTML designs that run rampant in the backwaters of the Internet.

Figure 17-2 shows a Web page displaying ad banners on the side of the page.

Another popular alternative is the pop-up ad that appears when a page loads or a

button is clicked. Whether you decide to place your banner ad at the top or side of

the page, there’s no need to reinvent the wheel when you create the ad in Flash.

Most of the popular layouts and sizes for banner ads are available as templates.

i3687-7 ch17.F 6/12/02 9:08 AM Page 342

343Chapter 17 ✦ Integrating Flash with HTML

Figure 17-2: Many Web designers display banner ads on the side of a design.

To create a banner ad:

1. Launch Flash and choose File➪New from Template.

Flash opens the New Document dialog box.

2. In the Category column, click Ads to display the Flash ad templates

(see Figure 17-3).

3. Choose one of the presets.

Flash opens the template, as shown in Figure 17-4.

Notice the text in Figure 17-4. These are instructions and guidelines the designers of

Flash have thoughtfully included with the template. They offer some good advice,

such as keeping the file size of the initial load below 15K. The information is all on a

guide layer. After you finish reading the information, delete the guide layer and

you’re ready to go to work.

At the end of this chapter, you’ll be creating a small banner ad.

i3687-7 ch17.F 6/12/02 9:08 AM Page 343

344 Part IV ✦ Building Additional Design Elements for Your Movie

Figure 17-3: You can create banner ads from a preset
template.

Figure 17-4: You can quickly create an ad using a template.

i3687-7 ch17.F 6/12/02 9:08 AM Page 344

345Chapter 17 ✦ Integrating Flash with HTML

Detecting the Flash Player
Most popular Web browsers include a version of the Flash Player as standard

equipment. But when a new version of Flash is released, the general population may

not have the latest version of the Flash Player for a few months. If you anticipate

this occurrence, you can create a small movie with ActionScript to detect the

version of the Flash Player the movie is being viewed with. After the version is

detected, you can create a conditional statement that either loads the main movie

or loads an alternate version of the movie published for the detected version of the

Flash Player. Or you can direct viewers to the Macromedia Web site where they can

download the latest version of the Flash Player.

When you debug a movie, one of the first variables displayed is the version of the

Flash Player. The version of the Flash Player is designated by the OS and then the

version of the Flash Player. The nomenclature for the latest Windows version of the

Flash Player as this is written is WIN 6,0,21,0. This information is string data. The

fifth character in the string designates which version of the Player is being used. All

you have to do is create a variable that records the version of the Flash Player and

a conditional statement to evaluate which version of the Player is being used to

view your design.

To create a movie that detects the Flash Player, do the following:

1. Create a new document.

2. Select the first frame and then click the arrow to the left of the word Actions.

The Actions panel opens.

3. Choose Actions➪Variables and then double-click set variable.

4. In the Variable field, type Version

5. Place your cursor in the Value field and then in the left pane of the Actions

panel, choose Functions➪Conversion Functions and then double-click

getVersion.

This line of code gets the version of the Flash Player being used and stores it in

the variable named Version. Now you have to create a conditional statement

that detects which version of the player is being used.

6. In the left pane of the Actions panel, choose Actions➪Conditions/Loops and

then double-click if.

7. In the Condition field, type _root.Version and then in the left pane of the

Actions panel, choose Objects➪Core➪String➪Methods and double-click

charAt.

Flash adds the action to your script and highlights the word Index.

i3687-7 ch17.F 6/12/02 9:08 AM Page 345

346 Part IV ✦ Building Additional Design Elements for Your Movie

8. Type 4

This evaluates the fifth character in the version string. Remember that the

first index of a string is 0.

9. Place your cursor the right of the last parentheses in the field and type ==6

How you finish the ActionScript depends on how you have structured your movie.

Listing 17-3 shows ActionScript that loads one movie if Flash Player 6 is detected,

another if Flash Player 5 is detected, and directs the viewer to an HTML version of

the site if neither Player is detected.

Listing 17-3: Detecting the Flash Player Version

Version = getVersion();
if (_root.Version.charAt(4)==6) {
loadMovieNum(“Flash6.swf”, 0);

} else if (_root.Version.charAt(4)==5) {
loadMovieNum(“Flash5.swf”, 0);

} else {
getURL(“nonFlash.html”);

}

Another option you may want to consider is creating an HTML page that welcomes

viewers to the site and lists the Flash Player required to view the site and other

necessary hardware. The page has two buttons, one that links viewers to the Flash

version of the site and another that directs viewers to the HTML version of the site.

If you prefer, you can use some ready made Macromedia detection tools. Log on
to the Internet and point your Web browser to: http://dynamic.
macromedia.com/bin/MM/software/trial/hwswrec.jsp?product=
flash_deployment_kit to download the Flash Deployment Kit.

Creating a Flash Introduction
If despite your best efforts, a prospective client will not foot the bill for a full-

fledged Flash site, revise your proposal to include a Flash introduction (intro) that

leads into a standard HTML design. When you create a Flash intro, you create a

Flash movie with animation to whet the viewer’s appetites for the HTML page. Your

Flash intro should be like a commercial with lots of movement, sound, and other

eye candy to draw the viewer into the site. However, you can create too much

interactivity, which bloats the file size and causes a lengthy download. Use just

enough eye candy and other bells and whistles to pique the viewer’s interest.

Figure 17-5 shows an example of a Flash intro.

Tip

i3687-7 ch17.F 6/12/02 9:08 AM Page 346

347Chapter 17 ✦ Integrating Flash with HTML

Figure 17-5: You create an intro to whet the viewer’s appetite for an HTML site.

If your client runs television commercials, request copies of the images used in the

commercial for use in the intro. You can then use some of the techniques presented

in this book to add motion. If you have image-editing software at your disposal,

create a strip of images and then have them move across the screen. Add another

layer with highly transparent text moving in the opposite direction, and you’ve got

a compelling intro.

If you add music to your intro, use an interesting four-second music loop, play it

four times, and you’ve got a 16-second intro. Alternately, you can loop the sound

three times and then position another instance of the sound on the timeline four

seconds before the intro ends. If you have a 16-second intro playing at 12 fps

(frames per second), your timeline is 192 frames long. Place an instance of the

sound on frame 144, open the Property inspector, click the arrow to the right of the

Effect field, and choose Fade Out. When you publish the movie, the sound will fade

out at the end of the intro.

You should always include a Skip Intro button so viewers who have been to the site

before have the choice of viewing the intro again or not. If you do your job correctly,

new viewers to the site won’t use the Skip Intro button. If you have no sound with

your intro, program the Skip Intro button with the getURL action to launch the

first page in the HTML site. However, if you have sound with your intro, the sound

continues playing even though the intro is no longer playing. If you have a soundtrack

on your intro, program the Skip Intro button as follows:

i3687-7 ch17.F 6/12/02 9:08 AM Page 347

348 Part IV ✦ Building Additional Design Elements for Your Movie

1. Create a symbol button symbol with text that reads something like

“<Skip Intro>” and then place an instance of the button on Stage.

2. Select the Skip Intro button, click the arrow to the left of the word Actions.

3. Choose Actions➪Movie Control and double-click goto.

Code the ActionScript to go to and play the last frame of the intro.

4. Select the last frame of the intro and press F6 to convert it to a keyframe.

5. Click the arrow to the left of the word Properties to open the Property

inspector.

6. Click the triangle to the right of the Sound field and choose your intro sound

from the drop-down menu.

7. Click the arrow to the right of the Event field and then choose Stop.

8. Click the arrow to the left of the word Actions to open the Actions panel.

9. Choose Actions➪Browser/Network and then double-click getURL.

10. In the URL field, enter the path to your main HTML page. If the page is in

the same directory as the movie, you need only enter the relative path,

for example: homePage.html.

11. Choose Control➪Test Movie.

When your intro starts playing, click the Skip Intro button. The movie advances to

the last frame and the sound stops playing. When you create a Skip Intro button for

a movie with no soundtrack, you don’t have to worry about advancing the movie to

the last frame and then stopping the soundtrack. Therefore, all you have to do is

create the button and then use the getURL action to load the main HTML page.

When the button is clicked, the specified URL loads.

If you meet face-to-face with your clients and you have a small laptop, consider
adding a directory to the laptop and storing some examples of your best Flash
work in the directory. Create an HTML document with links to play the movies.
Create a desktop shortcut to the HTML page, and you can demonstrate your work
to the client. If a picture is worth a thousand words, a great Flash intro must be
worth at least a million. A quick demonstration of your work can be the difference
between getting a job on the spot or having your potential customer shop your
quote with other designers.

Integrating Flash with Dreamweaver
When you publish a Flash movie and choose the Flash and HTML publishing

options, Flash embeds the .SWF file in the document. However, the movie plays in

the brower’s default location. Unless your movie is sized to a specific maximized

browser size, the movie plays in the upper left-hand corner of the browser. To center

Tip

i3687-7 ch17.F 6/12/02 9:08 AM Page 348

349Chapter 17 ✦ Integrating Flash with HTML

the movie to the browser, open the HTML file in an HTML editing program such as

Dreamweaver and center the movie. Each software program uses slightly different

tools to achieve this. In Dreamweaver, you can place your cursor before the Flash

movie, open the Property inspector, and click the Center alignment button. If you

edit the document in software where you can work directly with the code, type the

following tag before the Flash object: <div align=”center”>. Then type the following

tag after the object: </div>. Listing 17-4 shows the HTML code for a Flash object that

has been centered in an HTML page.

Listing 17-4: Centering the Flash Object in the HTML Page

<HTML>
<HEAD>
<meta http-equiv=Content-Type content=”text/html; charset=ISO-8859-1”>
<TITLE>test</TITLE>
</HEAD>
<BODY bgcolor=”#E6E6FF”>
<!-- URL’s used in the movie-->
<!-- text used in the movie-->
<!--button photographypixel perfect-->
<div align=”center”><OBJECT classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”

codebase=”http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#ve
rsion=6,0,0,0”
WIDTH=”800” HEIGHT=”600” id=”test” ALIGN=””>
<PARAM NAME=movie VALUE=”homePage.swf”>
<PARAM NAME=quality VALUE=high>
<PARAM NAME=bgcolor VALUE=#E6E6FF>
<EMBED src=”test.swf” quality=high bgcolor=#E6E6FF WIDTH=”800” HEIGHT=”600”

NAME=”test” ALIGN=””
TYPE=”application/x-shockwave-flash”
PLUGINSPAGE=”http://www.macromedia.com/go/getflashplayer”>
</EMBED>
</OBJECT> </div>
</BODY>
</HTML>

Notice the PLUGINSPAGE line in the previous listing. If the viewer doesn’t have the

Flash plug in and the user’s browser supports redirecting, the browser displays the

warning that the Flash plug in is required to view the page and offers an option to

redirect the viewer to the listed URL.

If you integrate items such as banners and menus you create in Flash with your

HTML pages, you can import them directly into an HTML document in Dreamweaver.

Many designers find it convenient to nest a Flash banner or menu in an HTML table.

i3687-7 ch17.F 6/12/02 9:08 AM Page 349

350 Part IV ✦ Building Additional Design Elements for Your Movie

This gives you the most flexibility as you can size your table rows and columns

around the Flash documents. From within Dreamweaver, you can select a table row

or column and then choose Insert➪Media➪Flash. Figure 17-6 shows a Flash movie in

an HTML document being edited in Dreamweaver.

When you select a Flash file within Dreamweaver and then open the Dreamweaver

Property inspector, you can preview the file by clicking the Play button (refer to

Figure 17-6).

Figure 17-6: You can insert your Flash work directly into an HTML document.

Dreamweaver also has built-in Flash objects. If you’re working on an HTML

document in Dreamweaver, you can add Flash buttons and Flash text on the fly.

To add a Flash button to an HTML document from within Dreamweaver, choose

Insert➪Interactive Images➪Flash Buttons to open the dialog box, as shown in

Figure 17-7.

To insert Flash text, choose Insert➪Interactive Images➪Flash Text. When you insert

Flash text in a document, you can specify different font parameters than the rest of

the document, select a background color, select a rollover color, and specify a link

and target browser window. Figure 17-8 shows several examples of Flash buttons

and text created in Dreamweaver.

Flash banner adsDreamweaver Property inspector

i3687-7 ch17.F 6/12/02 9:08 AM Page 350

351Chapter 17 ✦ Integrating Flash with HTML

Figure 17-7: You can insert a Flash button from
within Dreamweaver.

Figure 17-8: You can add Flash interactivity to an HTML page from within
Dreamweaver.

i3687-7 ch17.F 6/12/02 9:08 AM Page 351

352 Part IV ✦ Building Additional Design Elements for Your Movie

Chapter Project: Creating an Animated
Flash Banner

One way you can dress up a static HTML design is to add an animated Flash banner

to the site. An animated Flash banner is yet another weapon in your arsenal against

hum-drum Web pages. If you’re competing for a Web design job against a designer

who proposes an Animated GIF banner, you’ll win hands-down every time if you can

show your prospective client an example of an animated Flash banner. You can add

more action and still come in at a fraction of the file size of an Animated GIF. In this

project, you’ll be using ActionScript to creating a steady stream of moving stars on

a banner. You’ll also be adding a small movie clip that’s already been prepared for

you and a banner image of a hypothetical company.

To follow along with this project, copy to your hard drive the animatedBannerBegin.
fla file that you’ll find in this chapter’s folder on the CD-ROM that accompanies this
book. Use your computer operating system utilities to disable the file’s read-only
attributes.

To create an animated banner:

1. Launch Flash and open the animatedBannerBegin.fla file.

Notice that the document has already been sized to 550 x 100, a typical size

for a Web site splash banner. The banner is long enough and wide enough to

attract attention and showcase your talent. You can incorporate the banner

within a table that displays text and images below the banner.

2. Choose Window➪Library.

The document Library opens.

3. Open the Movie Clips folder and drag an instance of the corporateOfficers

movie clip onto the Stage.

4. Using the Align panel, align the movie clip to the left corner of the Stage.

5. Drag an instance of the corpLogo symbol from the document Library onto

the Stage.

6. Align the symbol to the center of the document.

7. Choose Control➪Test Movie.

Flash publishes the movie and displays it in another window.

What you’ve just created is interesting enough. There’s a nice little animation

playing in the corner along with a good-looking logo in the center of the banner.

However, you can add so much more with just a bit of ActionScript. When you’ve

finished looking at the movie, close the window to exit symbol-editing mode.

To add a bit of excitement to the banner, you’re going to add three fields of animated

stars to the banner that move from left to right.

On the
CD-ROM

i3687-7 ch17.F 6/12/02 9:08 AM Page 352

353Chapter 17 ✦ Integrating Flash with HTML

To finish the animated banner:

1. Choose Window➪Library to open the document Library.

2. Drag an instance of the dark_star movie clip onto the Stage.

If this looks somewhat familiar, it should. This is the same movie clip you used

to create the mouse chaser in Chapter 15.

3. With the dark_star movie clip still selected, click the arrow to the left of the

word Actions to open the Actions panel.

4. Choose Actions➪Miscellaneous Actions and then double-click evaluate.

The Expression field appears above the Script pane.

5. In the Expression field, type this._x-=5

This expression moves the movie clip to the left in increments of five pixels.

However, when it reaches the end of the movie clip, it keeps on going unless

you add a conditional statement.

6. In the left pane of the Actions panel, choose Actions➪Conditions/Loops and

then double-click if.

The action is added to the script, and the Condition field appears above the

Script pane.

7. In the Condition field, type this._x<0

As soon as the movie clip moves beyond the left border of the movie, the next

action is executed.

8. In the left pane of the Actions panel, choose Actions➪Miscellaneous Actions

and then double-click evaluate.

The Expression field appears above the Script pane.

9. In the Expression field, type this._x=550

As soon as the movie clip moves beyond the left boundary of the Stage, this

expression moves it back to the right side and it begins moving again.

10. Click the first line of code and in the parameter text box area, change the Clip

Event to EnterFrame.

Your finished code should resemble Listing 17-5. But wait, there’s more.

Listing 17-5: Adding Motion to the Banner

onClipEvent (enterFrame) {
this._x-=5;
if (this._x<0) {
this._x=550;

}
}

i3687-7 ch17.F 6/12/02 9:08 AM Page 353

354 Part IV ✦ Building Additional Design Elements for Your Movie

11. Select the dark_star movie clip, and while holding down the Alt key

(Windows) or Option key (Macintosh), drag down and to the left to create a

duplicate instance of the symbol. Do this once more, this time dragging down

and to the right.

You should now have three instances of the movie clip on the Stage.

12. Select one of the duplicates and then click the arrow to the left of the word

Actions to open the Actions panel.

13. Modify the existing code for the movie clip so the second line of code reads

this._x-=7

14. Select the last duplicate and in the Actions panel, modify the second line of

code to read this._x-=12

15. Choose Control➪Test Movie.

You should see three star fields moving across the banner at different speeds.

As the star fields reach the end of the movie and reappear a time or two,

eventually one starfield passes the other. If the motion is too frenetic for your

taste, you can modify the ActionScript by choosing smaller values to make the

star fields move more slowly. Figure 17-9 shows the banner tucked into a

static HTML Page.

Figure 17-9: You can add excitement to a static HTML design with an animated
banner.

i3687-7 ch17.F 6/12/02 9:08 AM Page 354

355Chapter 17 ✦ Integrating Flash with HTML

Designer Notes
In this chapter, you were shown how easy it is to integrate Flash elements into

your HTML designs. You learned how to open up a Web page in a different browser

window from within a Flash movie. You learned to detect which version of the Flash

Player your design is viewed with. And you also learned to create an intro for a

static HTML page. Animated Flash banners were also presented, and the chapter

project showed you how to spice up an HTML design with an animated splash

banner.

Where to Go from Here
Now that you’ve worked your way through this book and the tutorials, you’re

beginning to see the awesome diversity ActionScript can add to your designs. The

topics presented here are only the tip of the ActionScript iceberg. Literally, you

could dabble full-time in ActionScript for the next year and still not master the

language. However, that’s what makes ActionScript so user friendly. You don’t have

to know it all — you need to know only enough for the project you are working on.

As you venture forth with Flash ActionScript, make it a point to experiment. Make it

a point to learn how to implement one new action into your work each week. Keep

that up and by the end of the year, you’ll have mastered 52 new actions.

To expand your knowledge of ActionScript, modify the projects you created while

working through this book. View the work of other designers and ask yourself how a

certain effect was created. Ask yourself if you can duplicate the effect and perhaps

better it. ActionScript may seem daunting for a designer, someone whose first love

is images and colors. However, the more you work with it, the more comfortable

ActionScript becomes. Strive to make ActionScript as familiar as an old pair of

bedroom slippers, your favorite song, or the faded old pair of jeans you refuse to

toss out because they just feel so good. Do this, and you’ll create some truly

wonderful designs.

✦ ✦ ✦

i3687-7 ch17.F 6/12/02 9:08 AM Page 355

i3687-7 ch17.F 6/12/02 9:08 AM Page 356

What’s on the
CD-ROM

This appendix provides you with information on the

contents of the CD that accompanies this book. (For the

latest and greatest information, please refer to the ReadMe file

located at the root of the CD.) Here is what you will find:

✦ System Requirements

✦ Using the CD with Windows, and Macintosh

✦ What’s on the CD

✦ Troubleshooting

System Requirements
Make sure that your computer meets the minimum system

requirements listed in this section. If your computer doesn’t

match up to most of these requirements, you may have a

problem using the contents of the CD.

For Windows 9x, Windows 2000, Windows NT4 (with SP 4 or

later), Windows Me, or Windows XP:

✦ Intel Pentium processor (Pentium II or better)

✦ 64 MB of available RAM, 128 MB recommended

✦ 800 x 600, 256-color display (1024 x 768, millions colors

recommended)

✦ 100 MB of free hard disk space

✦ Adobe Type Manager Version 4 or later with Type 1 fonts

For Macintosh:

✦ Power Macintosh Processor (G3 or higher recommended)

✦ Mac OS 9.1 or later, MacOS X.1 or later

AAA P P E N D I X

✦ ✦ ✦ ✦

j3687-7 AppA.F 6/12/02 2:31 PM Page 357

358 Macromedia Flash MX ActionScript For Designers

✦ 64 MB of available RAM

✦ 800 x 600, 256-color display (1024 x 768, millions of colors recommended)

✦ 100 MB of free hard disk space

✦ Adobe Type Manager Version 4 or later with Type 1 fonts

Using the CD with Windows
To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive.

2. A window will appear with the following options. Install, Explore eBook, Links,

and Exit.

Install: This will give you the option to install the supplied software and/or

the author-created samples on the CD-ROM.

Explore: Allows you to view the contents of the CD-ROM in its directory

structure.

eBook: Allows you to view an electronic version of the book.

Links: Opens a hyperlinked page of the Web sites.

Exit: Closes the autorun window.

Note: If you do not have autorun enabled or if the autorun window does not appear,

follow the steps below to access the CD.

1.Click Start ➪ Run.

2. In the dialog box that appears, type d:\setup.exe, where d is the letter of your

CD-ROM drive. This will bring up the autorun window described above.

3. Choose the Install, Explore eBook, Links, or Exit option from the menu.

(See Step 2 in the preceding list for a description of these options.)

Using the CD with the Mac OS
To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your CD-ROM drive.

2. Double-click the icon for the CD after it appears on the Desktop.

3. Most programs come with installers; with those, you simply open the

program’s folder on the CD and double-click the Install or Installer icon.

Note: To install some programs, just drag the program’s folder from the CD

window and drop it on your hard drive icon.

j3687-7 AppA.F 6/12/02 2:31 PM Page 358

359Appendix A ✦ What’s on the CD-ROM

What’s on the CD
The following sections provide a summary of the software and other materials

you’ll find on the CD.

Shareware programs are fully functional, trial versions of copyrighted programs. If you

like particular programs register with their authors for a nominal fee and receive

licenses, enhanced versions, and technical support. Freeware programs are free,

copyrighted games, applications, and utilities. Unlike shareware, these programs do

not require a fee or provide technical support. GNU software is governed by its own

license, which is included inside the folder of the GNU product. See the GNU license

for more details.

Trial, demo, or evaluation versions are usually limited either by time or functionality

(such as being unable to save projects). Some trial versions are very sensitive to

system date changes. If you alter your computer’s date, the programs will “time

out” and will no longer be functional.

Author-created materials
All author-created material from the book including code listings and samples are

on the CD in the folder named “Author”. In this folder you’ll find all of the raw

materials for each chapter project, as well as the finished project. You’ll also find

other goodies such as user-defined components that you can drag and drop into

your designs. Where applicable, you’ll also find a file that contains the finished

project. These files are appended by _final.

Applications
The following applications are on the CD:

Acrobat Reader
Freeware Version. This program lets you view and print the Portable Document

Format (PDF) files like the files on this CD. To find out more about using Adobe

Acrobat Reader, choose the Reader Online Guide from the Help menu, or view the

Acrobat.pdf file installed in the same folder as the program. You can also get more

information by visiting the Adobe Systems Web site at www.adobe.com.

Macromedia Dreamweaver
If you want an idea of the magic you can include in your Web designs, check out

this trial software. You can include sophisticated behaviors in your designs without

having to cloud your mind with the first bit of JavaScript. You can also easily

incorporate your Flash work in Dreamweaver.

j3687-7 AppA.F 6/12/02 2:31 PM Page 359

360 Macromedia Flash MX ActionScript For Designers

Macromedia Fireworks
If you have the need for sophisticated image editing software that allows you to

optimize graphics for the Web, Fireworks is the tool for you. You can combine

vector graphics and bitmaps to create a sophisticated design that you can export

as HTML and images, complete with all the JavaScript needed to pull off the effects

you use.

Macromedia FreeHand
If you like to create sophisticated vector graphics, and find that the Flash tools — as

good as they are — fall a bit short, give FreeHand a try. FreeHand makes it possible

for you to create complex vector graphics and export them in Flash’s native *.SWF

format.

Swift 3D
Swift 3D is the solution you’re looking for to add three-dimensional vector objects

to your Flash movies. Swift 3D is a Windows®/Macintosh® application that you use

to create and convert 3D images and animations to 3D vector graphics. Swift 3D

exports the completed file in the Flash SWF format. Please visit Electric Rain’s Web

site at www.electricrain.org for the latest updates on this product.

WildForm SWfx
SWfx is an easy-to-use text animation tool. You can choose from over 200 different

effects to create swirling text, swooping text, and fading text, to name a few. The

animation you create is exported in Flash’s native SWF format. Use animated text to

spice up your Flash designs.

Electronic version of Flash MX ActionScript
For Designers
The complete text of this book is on the CD in Adobe’s Portable Document Format

(PDF). You can read and search through the file with the Adobe Acrobat Reader

(also included on the CD).

Troubleshooting
If you have difficulty installing or using any of the materials on the companion CD,

try the following solutions:

✦ Turn off any anti-virus software that you may have running. Installers

sometimes mimic virus activity and can make your computer incorrectly

believe that it is being infected by a virus. (Be sure to turn the anti-virus

software back on later.)

j3687-7 AppA.F 6/12/02 2:31 PM Page 360

361Appendix A ✦ What’s on the CD-ROM

✦ Close all running programs. The more programs you’re running, the less

memory is available to other programs. Installers also typically update files

and programs; if you keep other programs running installation may not work

properly.

✦ Reference the ReadMe.txt: Please refer to the ReadMe file located at the root

of the CD-ROM for the latest product information at the time of publication.

If you still have trouble with the CD, please call the Wiley Publishing Customer

Care phone number: (800) 762-2974. Outside the United States, call 1 (317) 572-3993.

You can also contact Wiley Publishing Customer Service by e-mail at techsupdum@

wiley.com. Wiley Publishing will provide technical support only for installation

and other general quality control items; for technical support on the applications

themselves, consult the program’s vendor or author.

✦ ✦ ✦

j3687-7 AppA.F 6/12/02 2:31 PM Page 361

j3687-7 AppA.F 6/12/02 2:31 PM Page 362

Flash Resources

Flash is extremely popular software. There is a plethora

of information on the Internet about Flash. You can

download tutorials, completed *.FLA documents, and music

loops for your designs. There are also several ancillary, third-

party plug-in manufacturers that feature interesting software

you can use to enhance your designs. This software ranges

from 2D animation programs to software that produces 3D

animations in the *.SWF format. In this appendix, you’ll find the

URLs for these sites and a brief description of what you can

expect to find at the site. This appendix is divided into three

sections: resources, sounds, and third-party applications.

Resources
The Internet seems to have as many resources for Flash as it

does Flash Web sites. This is a good thing. You can never get

enough information. The sites in this section begin with the

Macromedia resource sites followed by additional resources,

which are listed in alphabetical order.

Macromedia resources
When you need to find out about an application, what better

source than the maker? In this section you’ll find Macromedia

resources for Flash.

Macromedia Flash Designer and Developer Center
Here’s a Macromedia site (www.macromedia.com/desdev/
mx/flash) devoted exclusively to Flash MX. Download

sample files and sample applications as well as view tutorials.

This section of the Macromedia Web site is in its infancy as of

this writing and is sure to grow as MX gains in popularity.

Macromedia Support
Macromedia offers extensive support for their flagship

product at www.macromedia.com/support/flash. Here

you’ll find in-depth support in the form of technical notes,

BBA P P E N D I X

✦ ✦ ✦ ✦

j3687-7 AppB.F 6/12/02 2:31 PM Page 363

364 Macromedia Flash MX ActionScript For Designers

as well as tutorials prepared by Macromedia technicians. If you’ve run into a snag

using ActionScript, chances are you can find a solution here.

Other Flash resources
In this section, you’ll find Internet sites that are devoted to Flash. Many of the sites

are treasure troves, jam-packed with Flash information and tutorials. Others are

devoted to a specific aspect of Flash.

ActionScript.org
If you want to know all about ActionScript, ActionScript.org (www.actionscript.
org) is the site to visit. At this site you’ll find tutorials and other useful information

about ActionScript.

Brendan Dawes-Digital Creative
At Brendan’s site (www.brendandawes.com/headshop/#) you can view his

experimental Flash work and download source files. Currently all of the source

files are Flash 5, but that’s sure to change in the near future.

Crazy Raven Productions
The portal to this site (www.crazyraven.com) lets you choose between two

different interfaces. Once you’ve made a choice, check out the tutorial of the day

or one of the other resources featured at this site.

Extreme Flash
At Extreme Flash (www.extremeflash.com), you’ll find tutorials in the beginning,

intermediate, and advanced categories. You can also download source files to

analyze the files of other Flash designers.

Flahoo
Flahoo (www.flahoo.com) has links to sites designed with Flash. The links are

divided by category. When you’re between assignments, check out some of the

sites featured here to get your creative juices flowing.

Flash Academy
At Flash Academy (www.enetserve.com/tutorials), you’ll find another source for

Flash tutorials. The site has three sections: tutorials, examples, and experiments.

Flash 5 ActionScript
Even though the current version of Flash is MX, you can still find some useful

information at Flash5ActionScript (www.flash5actionscript.com). At this site,

you can download source files and view examples of code.

j3687-7 AppB.F 6/12/02 2:31 PM Page 364

365Appendix B ✦ Flash Resources

Flash Kit
If you’re looking for tutorials, sample *.FLA files, and a host of other information

about Flash, you’re sure to find a lot to pique your interest at this site (www.
flashkit.com). In addition to tutorials, you can also download free music loops

from this site. Sources files can also be found in abundance. Download them and

dissect them at your convenience. If you download a source file from a previous

version of Flash, Flash MX updates the ActionScript where needed.

Flash Magazine
For the latest information about Flash, point your Web browser to www.
flashmagazine.com. The site features noteworthy news flashes about Flash

plus other valuable information and resources about the software.

ProFlasher
ProFlasher (www.proflasher.com) features several forums where you can gain

valuable information about Flash from other designers and developers. There is a

link where you can request tutorials, a link where you can request a review of a site

you are creating, a link devoted to ActionScript, and much more.

TurtleShell.com
At turtleshell.com (www.turtleshell.com/2000), you’ll find resources and

inspiration. The graphics are vector-based, and the author of the site uses them to

good effect. When you click on a link, the vector shapes move and resize. This is

the 2000 version of the site, which is still at the server. After you finish marveling

the construction of the site, check out the Creation section, which features tutorials

and other goodies. The main site (www.turtleshell.com) is undergoing a revision

as this is being written. By the time you have this book in your hands, it may be up

and running.

Virtual FX
The Internet seems to be a never-ending source of Flash information. Virtual FX

(www.virtual-fx.net) features a tutorial search engine, source files, sample

movies, and more. The source files and tutorials are currently in Flash 5 or earlier

format. However, in a short matter of time, there’s bound to be Flash MX source

files and tutorials at this site. There is also a message board where you can

communicate with other Flash designers.

Web Monkey
Web Monkey has a section of their site devoted to Flash. The URL is hotwired.
lycos.com/webmonkey/multimedia/shockwave_flash. Here you’ll find tutorials

and information about the application. You can subscribe to Web Monkey and have

this valuable resource delivered to your via e-mail on a regular basis.

j3687-7 AppB.F 6/12/02 2:31 PM Page 365

366 Macromedia Flash MX ActionScript For Designers

We’re Here Forums
Here’s another site where you’ll find a boatload of useful information for your Flash

work. The site even features a forum for Flash MX ActionScript, even though the

software has only been out for three days as this is written. You’ll also find a wide

variety of tutorials and downloads at this site.

Sounds
Sound has become a very important element in Flash designs. You can add

background music to your Flash designs and use sound effects for buttons or

timeline events. The sites in this section feature loops you can purchase or

download for free and software applications you can use to create your own

sounds.

Free Sound Effects
At this site (www.stonewashed.net/sfx.html), you’ll find links to sites that offer

free sound effects for use in your productions. Sound effects can be used as an

interesting variations for button sounds, or you can mix them on the timeline with

background music to emphasize a visual effect in your design.

GrooveMaker
Here’s another site (www.groovemaker.com) that offers impressive sound mixing

software. Available for both Windows and Macintosh platforms, this software can

be controlled with an external midi-controller or keyboard. You can render the

sounds you mix in the popular MP3 format.

Killer Sound
At this site (www.killersound.com), you can purchase royalty-free music for use

in your Flash designs. Choose from a number of musical genres from classical to

jazz and then preview the music while online.

Sonic Foundry.com
If your clients require sophisticated background music and other sounds, you can

create your own background music with the software available at this site (www.
sonicfoundry.com). Sonic Foundry’s Acid Music is resampling software. The

software features a timeline similar to that found in Flash. You can arrange sound

samples on the timeline to create unique music loops. You can also purchase

libraries of sound samples at this site in a wide variety of genres from hip-hop to

classical. You can render your creation in a wide variety of sound formats. This

software is only available for the PC.

j3687-7 AppB.F 6/12/02 2:31 PM Page 366

367Appendix B ✦ Flash Resources

Sonic Foundry also features a program called Sound Forge. You can use Sound

Forge to record sounds or modify sounds with sophisticated effects like echo and

reverb. This software is only available for the PC.

Sound Shopper.com
If you need royalty-free music loops, buttons sounds, or other sounds for your

designs, you’ll find a wide variety at this site (www.soundshopper.com). You can

preview the sounds while online. The sounds are sold in bundles and priced quite

reasonably.

Sound Strike
Soundstrike.com (www.soundstrike.com) offers free sound loops for download

and other loop packs you can purchase. You can also purchase a bundle of button

sounds.

Third-Party Applications
Flash is such a popular application, everyone seems to want a piece of the pie.

There are several very useful applications you can use to enhance your designs.

In this section, you’ll find a brief description of the type of software offered by the

vendor, plus the URL to the Web site where you can purchase the software,

download a demo version, or find out more information about the application.

Electric Rain
At this Web site (www.electricrain.org), you’ll find several solutions for

including 3D artwork in your designs. Their main product, Swift 3D2.0, is used to

create animations of 3D objects. The completed projects can be exported as .SWF

movies. They also produce plug-ins for popular 3D software, that are used to

generate *.SWF Movies from 3D animations and scenes created in the 3D application.

FlashJester
FlashJester (www.flashjester.com) features interesting products that you can

use to augment your work. At this writing, all of their software is being updated to

support Flash MX.

Flax
Flax (www.flaxfx.com) is another third-party program you can use to add text

effects to your Flash work. You can choose from 31 effects that you can tweak using

sliders and buttons. When the effect is the way you want it, you can export the file

as a *.SWF file for inclusion in your design.

j3687-7 AppB.F 6/12/02 2:31 PM Page 367

368 Macromedia Flash MX ActionScript For Designers

Sorenson
At Sorenson (www.sorenson.com), you can download a copy of Squeeze, which is

software for compressing video files into the *.FLX format for importing into Flash

or as an *.SWF movie. The software has settings for different connection speeds

and does an admirable job of producing a small file size with the least amount of

image degradation possible for the intended connection speed.

Swish
If you like text effects, Swish (www.swishzone.com) offers a relatively inexpensive

program that you can use to add animated text to your designs. The site offers

tutorials and support for Swish users.

Toon Boom Studio
Toon Boom Studio is a sophisticated 2D animation program that features lip

synching. You can use the program to create 2D animations that can be imported

directly into Flash MX. You can download an evaluation copy from their Web site

(www.toonboomstudio.com) to see if the software is beneficial for your designs.

Wildform.com
At this Web site (www.wildform.com), you can purchase a standalone program

called SWfX that you can use to create some interesting text effects for your

productions. The site also features a useful resources section with informative

tutorials and source files for download.

✦ ✦ ✦

j3687-7 AppB.F 6/12/02 2:31 PM Page 368

Flash Inspiration

Some days the creative juices flow like the headwaters of

a clear mountain stream; other days, they’re stagnant

like a slow river in the heat of summer. When you find your

creativity is at a low ebb, you can find inspiration at many of

the sites listed in this section. Each site uses Flash in a unique

or artistic way to create a compelling site that keeps visitors

returning.

When you’re at a loss for what to do or you simply want to

explore a site that’s visually exciting, visit one of the sites

listed in this appendix. Begin your journey at Macromedia’s

site of the day and branch out from there. If the site lists the

URL or a link to the designer’s Web site, visit that site for more

inspiration. You can also find Flash sites by typing Flash into

your favorite search engine. The sites in this appendix begin

with Macromedia’s site. The sites that follow are listed in no

particular order, which is probably the way you look find

inspiration on the net — in no particular order.

Macromedia Site of the Day
Macromedia’s Site of the Day (www.macromedia.com/
showcase) is generally created with Flash. You’ll find excellent

examples of the latest innovations created by avant garde

Flash designers. You’ll find the feature sites get you thinking

and push your own design envelope to come up with new and

interesting uses for Flash.

While you’re at the site of the day, check out the Archive

section for previous sites of the day. The site’s designer is

listed along with information about the site.

Eva Hesse
This site (www.sfmoma.org/hesse) uses Flash to explore

the work of Eva Hesse. During the ’60s, this artist created

sculptures and paintings. The site is informative and features

an interesting navigation system.

CCA P P E N D I X

✦ ✦ ✦ ✦

j3687-7 AppC.F 6/12/02 2:31 PM Page 369

370 Macromedia Flash MX ActionScript For Designers

Madonna
This popular singer’s Web site (www.madonna.com) features an innovative navigation

system. Move your cursor over one of the moving images and then drag down. When

the three images line up, a different song is loaded.

John Frieda
At John Frieda’s site (www.johnfrieda.com/flash.htm), you’ll find links to two

excellent Flash productions: Sheer Blonde and Relax. Both movies promote hair

products and combine an excellent use of text drop-down menus with bitmap

images. The Sheer Blonde side of the site features an intro song and the models

used to promote the products are easy on the eyes.

n.fuse.gfx
This site (www.nfusegfx.com) gives the viewer the option of choosing a low-

bandwidth or high-bandwidth site. Both options provide excellent eye candy,

intriguing background music, and an interesting navigation system.

Pickled the Movie
This branch of Billabong’s site (www.billabong-usa.com) was created by Juxt

Interactive. You’ll find an excellent example of animated buttons here and an artful

balance of vector and bitmap images. Like most Juxt Interactive sites, there’s an

element of fun involved. Enjoy.

Rob Allen Photography
This photographer’s Web site (www.roballen.ca) features a moving navigation bar

like the one you created in the Chapter 12 chapter project and a tasteful balance of

black and white bitmap images to showcase the photographer’s images.

Pepworks.com
This title bar for Pepworks.com (www.pepworks.com) advertises designs, games,

and fun. The site has a compelling introduction. Click the Leo’s Great Day button for

an example of an excellent Flash game.

j3687-7 AppC.F 6/12/02 2:31 PM Page 370

371Appendix C ✦ Flash Inspiration

Juxt Interactive
Juxt Interactive (www.juxtinteractive.com) has designed some of the more

innovative Flash sites in existence today. Their own site is a perfect example of this.

They provide an excellent balance of stationary and animated graphics along with

an interesting drag-and-drop navigation system in their portfolio section. You can

launch some of their impressive designs right from the portfolio section.

Dox Thrash Revealed
The former Macromedia site of the day (http://www.philamuseum.org/
exhibitions/exhibits/thrash/flash.html) is devoted to the work of an artist

whose career spanned five decades. The navigation menu is set up on a timeline of

key years in the artist’s career. Move your mouse over a button and a tooltip

appears with thumbnail images. Click the button and the images load in a target

window.

Lenny Kravitz.com
Lenny Kravitz’s Web site (www.lennykravitz.com) has an animated preloader, a

pop-up navigation menu, and a jukebox that fans can use to preview the musician’s

latest work. The movie loads quickly despite a heavy use of bitmap images.

Jaguar X Type
Jaguar.com (www.jaguar.com.au), an Australian Web site, uses Flash to introduce

the manufacturer’s new model. After the movie loads, move your mouse around

the screen and a movie clip with an animation follows. The animation changes size

as you move it around the screen, an effect no doubt achieved by altering the

properties of the movie clip that houses the animation.

Velocity Studio
At Velocity Studio (www.velocitystudio.com), you’ll find a unique preloader.

The site features a stunning use of bitmap images and a unique navigation menu

that seems to actively defy your attempts to choose a button and then click it.

j3687-7 AppC.F 6/12/02 2:31 PM Page 371

372 Macromedia Flash MX ActionScript For Designers

Milla and Partner
Go to www.milla.de and click the Flash link. The site is in German, but offers an

example of a unique navigation menu and some very interesting visual effects.

Andy Foulds
Photographer’s Web sites always seem to be the epitome of good taste and this one

(www.foulds2000.freeserve.co.uk) is no exception. Entertain yourself with one

of the amusements while the main site loads. After the main site loads, click a link

to view examples of Andy’s photography or Web designs.

Tweened.com
After this site (www.tweened.com) loads, use your arrow keys to navigate the site.

A cute little animated cartoon figure jumps up and down when you press the Up

arrow key and crouches when you press the Down arrow key. When you roll your

mouse over the character, a bubble pops up with a saying. Do it once too often and

the saying in the bubble informs you that the character is ignoring you and ceases

to recognize your existence.

Simian Volume 6 Revolt
Simian Volume 6 Revolt (www.simian.nu/#)is listed as an experimental online

Flash narrative. You can view the site in a pop-up window or full screen (Internet

Explorer only). After the movie loads, click the small dot to launch various parts of

the site. At one part of the site, a background bitmap images assembles itself block

by block as you move your mouse over the screen. Some of the content takes a

while to load, but the visual effects are worth the wait.

Pray Station
At praystation.com (www.praystation.com), you can view the online Flash

explorations of Joshua Davis. Click a link in the left window to experience some very

compelling visual effects. The effects in this site feature some very sophisticated

ActionScript. Take a look at the animations and see if you can figure out how they

were created.

j3687-7 AppC.F 6/12/02 2:31 PM Page 372

373Appendix C ✦ Flash Inspiration

Audi A4 Avant
Audi uses Flash to introduce the Audi A4 Avant (www.audi-a4.com/avant/
a4_avant.html). The site’s preloader features bitmap images. Tasteful background

music and an intriguing navigation menu are a few of the features you’ll find here.

John Coltrane
The life of legendary musician John Coltrane (www.johncoltrane.com) is por-

trayed through the use of Flash. The quick loading site features another example of

an innovative navigation device, similar to the flyout menu project in Chapter 10,

yet done entirely with text.

✦ ✦ ✦

j3687-7 AppC.F 6/12/02 2:31 PM Page 373

j3687-7 AppC.F 6/12/02 2:31 PM Page 374

SYMBOLS
* (asterisk) with random method, 109

, (comma) separating array

elements, 153

{} (curly braces) for statements in

code, 38

. (dot) as separator in code, 38, 39

// (forward slashes) for comments,

38–39, 70

() (parentheses) for parameters in

code, 38, 39

“ (quotation marks) for string literal

data, 143

; (semi-colon) as end of line identifier,

38, 39

A
absolute mode for target path,

130, 131

Acrobat Reader (on CD-ROM), 359

action books. See also specific books

expanding to display actions,

22, 23

path to actions, 19–20

actions. See also specific actions

and books

adding to your script, 29

assigning to buttons, 7, 74–75,

91–96

assigning to keyframes, 7, 29,

70–71

assigning to objects, 29, 87–91

compatibility issues, 26

deleting from your script, 31

deprecated, 26

designation for frames with

actions assigned, 69

displaying information about,

34–35

drop-down menu, 29

expanding books to display, 22, 23

finding using Index book, 4, 26

for Flash Player, 30

hierarchy, rearranging, 31

learning as you need them, 21

looking up in Reference panel, 34

for navigating, 76–80

overview, 10

parameter text boxes for, 30

path to, 19–20, 51

Reference panel for, 17

reserved keywords, 40–41

Actions book. See also specific books

and actions

Browser/Network book, 23

Conditions/Loops book, 24

Miscellaneous book, 24

Movie Clip Control book, 23–24

Movie Control book, 22

overview, 21–24

Printing book, 24

User Defined Functions book, 24

Variables book, 24

Actions command (Window menu), 27

Actions layer, creating, 69–70

Actions panel

action books in, 19–20

adding actions to your script, 29

context menu, 37

deleting actions from your

script, 31

Designer panel layout and, 27

expert mode, 28, 35, 36

Find and Replace button, 33

Find button, 33

Insert a Target Path button, 130

modes, 28, 35

Move the Selected Actions Down

button, 31

Move the Selected Actions Up

button, 31

normal mode, 28, 35

opening, 27

Options menu, 35–36

overview, 20–21

Pin Current Script button, 32

Reference panel, 4, 17

Scene button, 191

Script pane, 21

setting breakpoints in, 289

switching modes, 35

using with other panels, 28

viewing options, 35

ActionScript. See also code;

debugging; scripts

as design element, 12–14

HTML design versus, 52

JavaScript versus, 8–9

overview, 8–12

questions to consider, 16–17

uses for designers, 4–7

ActionScript loops. See loops

ActionScript objects. See objects

ActionScript.org site, 364

AIFF sound format, 258

alias for target path, 132

Allen, Rob, 370

_alpha property, 44, 48, 169

anchors, named, 189, 193–194

AND operator, 158–159

Andy Foulds Web site, 372

animated buttons

animating the label, 200–203

creating movie clip for, 200

nesting the movie clip in a button

symbol, 203–204

uses for, 199

animated Flash banner project

adding motion to the banner,

353–354

creating the banner, 352

overview, 352

animated preloader. See preloaders

animatedBannerBegin.fla file, 352

animation

animated buttons, 199–204

animated Flash banner project,

352–354

animated preloader, 298–306

for drag-and-drop elements, 238

interactive animation project,

183–187

uses for, 14

applications on CD-ROM, 359–360

arithmetic operators, 145, 147

Arithmetic Operators book, 24

Array user-defined component

type, 132

arrays

accessing, 161–163

associative, 154–155

combining elements in a

variable, 152

comparing multiple values to,

151–152

creating, 152–153

creating elements for, 153–154

overview, 6, 151

for populating dynamic text

boxes, 224–225

for random quote generation, 160

ticker text marquee project,

225–230

uses for, 6

using word processor to create

data, 154, 160

variables versus, 151–152

Index

k3687-7 Index.F 6/12/02 9:08 AM Page 375

376 Index ✦ A–C

artwork. See graphics; movie clips

AS-02Start.fla file, 45

.asf files, 84

Assets folder, 58–59

assigning actions

to buttons, 7, 74–75, 91–96

to keyframes, 7, 29, 70–71

to objects, 29, 87–91

associative arrays, 154–155

asterisk (*) with random method, 109

attaching a sound, 269–270, 276, 277

attachSound method of Sound

object, 270, 276

Audi A4 Avant Web site, 373

audio. See Sound object; soundtracks

.avi files, 84

B
bandwidth. See also preloaders

analyzing movies with Bandwidth

Profiler, 299–301

analyzing movies with Show

Streaming command,

301–302

defined, 298

playing movies and, 298

preloader for large movies, 298

Bandwidth Profiler, 299–301

Bandwidth Profiler command (View

menu), 299

banner ads

animated Flash banner project,

352–354

creating, 343–344

overview, 341–342

planning, 342

banner.swf file, 136

base movie

contents of, 120

creating, 121

for hiding your designs or

techniques, 138

level of, 121

loading movies into, 121, 123–125

unloading movies, 123, 124–125

Billabong Web site, 370

bitmaps

nesting in movie clips, 100

swapping nested bitmaps, 100,

101–102

black (syntax coloring), 39

Blank Keyframe command

(Insert menu), 68

blank keyframes. See also keyframes

converting standard frames to, 68

creating, 68

for movie clips, 83

removing content from

keyframes, 68

timeline designation for, 66

uses for, 68

blue (syntax coloring), 39

BODMAS acronym for operator

precedence, 146

books. See action books;

specific books

Boolean data variables, 142

Boolean expressions

defined, 53

for down arrow, 219–221

for On When Pressed button, 196

for password evaluation, 53, 159

using, 159

Boolean user-defined component

type, 133

breaking movies into segments.

See also scenes

base movie, 120, 121

dimensions for segment movies,

121, 125

levels for movies, 121

naming section movies, 123

planning, 120

template for section movies,

121–123

uses for, 119–120

breakpoints

buttons for, 291

debugging a movie with, 290–292

deleting, 291–292

setting in Actions panel, 289

setting in Debugger, 291

storing, 290, 291

with trace action, 290

Brendan Dawes-Digital Creative

Web site, 364

Browser/Network Control book.

See also specific actions

getURL action, 77–80, 339, 340,

347, 348

loadMovie action, 123–124, 125,

127–129, 138, 267

loadVariables action, 216, 217,

218–219

overview, 23

unloadMovie action, 123,

124–125, 267

browsers. See Web browsers

button.fla file, 96

buttonPhotography.fla file, 114

buttons

ActionScript uses for, 7, 12

animated, 199–204

assigning actions to, 7, 74–75,

91–96

CEO button, 138

to change size and opacity of

movie clip, 44–49

copying code between, 204, 206

creating, 72–73

End of Page button, 221

Event Sync option for sounds, 260

frames for, 72

invisible, 74, 75

Key Press event for, 93–94

layers for, 72, 73

mouse events, 9, 42, 75, 92–94

multiple events for, 92–93

for navigation, 95

nesting movie clips in, 203–204

On When Press button, 194–196

play action with, 76

Reset button for Flash forms, 308

rndFrame action with, 116–117

rollOver and rollOut events

for, 93

Skip Intro button, 260, 347–348

for sound controller project,

275–276

states, 73–74

Submit button for Flash forms,

308–310

swapping labels for, 198–199

symbol, 42

for tooltips, programming,

237–238

for user-customizable interface,

programming, 242–243

uses for, 81

C
call function action, 112–113,

237, 243

calling functions, 112–113, 116–117

CD-ROM

animatedBannerBegin.fla file

on, 352

AS-02Start.fla file on, 45

button.fla file on, 96

buttonPhotography.fla file on, 114

colorComponents.fla file on, 179

contents, 359–360

currentDate.fla file on, 247

currentTime.fla file on, 249

dragNdrop.fla file on, 240

drawOutside.fla file on, 60

eCommerce.fla file on, 312

flyoutMenu.fla file on, 204

interface.fla file on, 241

Jittery.fla file on, 199

marqueeComponent.fla file on, 230

mouseChaserBegin.fla file on, 316

k3687-7 Index.F 6/12/02 9:08 AM Page 376

377Index ✦ C

movingNavBar.fla file on, 251

Orgchart folder on, 136

orgChart.fla file on, 136

randomStars.fla file on, 331

rndQuote.fla file on, 160

scrollText.fla file on, 217

scrollText.txt files on, 217

scrollTick.fla file on, 225

simpleChaserBegin.fla file on, 318

slideShow.fla file on, 334

Soundcontroller folder on, 274

submarine.fla file on, 183

system requirements, 357–358

technical support, 361

toolTips.fla file on, 238

troubleshooting, 360–361

centering Flash objects on HTML

page, 349

CEO button, programming, 138

ceo.jpg tile, 137, 138

CGI script for HTML mail forwarding,

308–309

character options, setting, 212–213

child movie clips, 131

Clear Keyframe command (Insert

menu), 68

clients, knowing expectations of, 55

clip events. See also events

available events, 88–89

defined, 9

overview, 87–88

code. See also debugging; scripts

copying between buttons, 204, 206

editing in expert mode, 36

formatting, 38–39

hints in expert mode, 40

identifiers in, 38–39

process of creating, 19

reserved keywords, 40–41

syntax coloring, 37, 39

code handlers, 9. See also events

code hints in expert mode, 40

Color object

creating, 175

methods of, 175

setRGB method, 175–176, 244

setTransform method, 174–180

Color user-defined component

type, 133

colorComponents.fla file, 179

colors

Color object, 175–180

random, for mouse chaser, 319

reserved keywords warning, 40

syntax coloring, 37, 39

user-customizable interface,

241–245

Coltrane, John, 373

combining

array elements in a variable, 152

contents of variables, 143–144, 150

comma (,) separating array

elements, 153

comment action, 293

comments

adding to ActionScripts, 293

for debugging ActionScripts,

292–293

forward slashes for, 38–39, 70

for keyframes, 70

Common Libraries command

(Window menu), 113

Common Libraries menu, adding

effects Libraries to, 113

communicating between timelines,

129–130

Comparison Operators book, 24–25

compatibility

deprecated actions and, 26

detecting Flash Player version,

345–346

Flash Player versions and, 26

competitor URLs, researching, 55

Component Definition dialog box,

132–134

components

in colorComponents.fla file, 179

Flash UI Components book, 26

in marqueeComponent.fla file, 230

overview, 43

ScrollBar component, 249–250

symbol, 43

user-defined, 132–135

concatenating variables, 143–144, 150

conditional statements. See also

if action

for animated button label, 202

Boolean expressions in, 53, 159

to change rotation, 202

controlling the flow of a movie, 53

creating, 156

defined, 11

for detecting Flash Player version,

344, 345

example, 11

for Flash slide show project,

336–337

for Key objects, 181–182

logical operators with, 158–159

multiple outcomes for, 156–157

overview, 24, 155–156

for password evaluation, 53

for preloaders, 305, 306

Conditions/Loops book. See also

conditional statements;

if action; loops

else action, 47, 156–157, 253

elseif action, 156–157

for action, 105

overview, 24

constants, 25

Constants book

Down constant, 184

overview, 25

Up constant, 184

context menu of Actions panel, 37

Control menu

Debug Movie command, 286, 291

Test Movie command, 49, 163

controlling the flow of Flash movies,

53–54

Convert to Blank Keyframes command

(Modify menu), 68

Convert to Keyframes command

(Modify menu), 68

Convert to Symbol command

(Insert menu), 98, 205,

232, 252, 280

Convert to Symbol dialog box

for graphics, 98, 99

for movie clips, 280

for navigation bar, 205, 252

for tooltip shapes, 232

converting

buttons to movie clips, 252

graphics to a symbol, 98, 99

movie clip to symbol, 280

movie clips to masks, 60–62

navigation bar to a symbol, 205

navigation bar to flyout menu,

205–208

standard frames to keyframes, 68

timeline animation to movie clip,

98–99

tooltip shapes to symbols, 232

Copy Frames command

(Edit menu), 98

copying. See duplicating

Crazy Raven Productions Web site, 364

Create New Symbol dialog box

for button templates, 197–198

for buttons, 72, 194–195, 203–204

for label templates, 197

for movie clips, 82, 99, 200, 311,

323, 327

createEmptyMovieClip method, 320

curly braces ({}) for statements in

code, 38

currentDate.fla file, 247

k3687-7 Index.F 6/12/02 9:08 AM Page 377

378 Index ✦ C–E

_currentframe property, 169

currentTime.fla file, 249

curveTo Drawing method, 321

Custom Modem Settings dialog

box, 301

Customize command

(Debug menu), 201

D
dark_star movie clip, 316, 353, 354

Data event, 89

Date object

creating, 245

displaying current date using,

246–247

displaying current time using,

247–249

example files on CD-ROM, 247, 249

methods for dates, 246

methods for times, 247–248

retrieving date from host

computer, 246

uses for, 14

Davis, Joshua, 372

Debug menu

Customize command, 201

List Objects command, 287

List Variables command, 288

Debug Movie command (Control

menu), 286, 291

Debugger

breakpoints with, 290–292

displaying list of movie objects, 287

launching, 286

overview, 285–286

watching a variable, 286–287

debugging ActionScripts

breakpoints for, 290–292

comments for, 292–293

Debugger for, 285–287

Movie Explorer for, 293, 294

need for, 283

testing your design, 284–285

trace action for, 288–289

decision making. See conditional

statements

declaring variables

basic process, 148–149

local variables, 149–150

Default user-defined component

type, 132

deleting

actions from your script, 31

breakpoints, 291–292

content from keyframes, 68

frames, 68

parts of code in expert mode, 36

scenes, 191–192

undoing, 42

demo versions of programs, 359

deprecated actions, 26

Deprecated book, 26

Designer panel layout, 27

detecting

Flash Player version, 345–346

ready-made Macromedia tools

for, 346

DirectX, video files supported by, 84

displaying. See also hiding and

showing

actions information, 34–35

current date, 246–247

current time, 247–249

expanding action books to

display actions, 22, 23

line numbers in scripts, 35, 290

link in pop-up window, 340

list of movie objects with

Debugger, 287

list of variables with Debugger, 288

number of bytes loaded, 306

Distribute to Layers command

(Modify menu), 234

do while loops, 103, 106–107

Document command

(Modify menu), 266

document Library

creating button templates using,

198–199

creating movie clip instances

from, 86

gathering assets from, 59

opening .FLA files as, 59

overview, 43–44

storing effects embedded in

movie clips in, 113

storing user-defined components

in, 134–135

using symbols from, 43, 100

working with sound from, 268–269

Document Properties dialog box, 266

dot (.) as separator in code, 38, 39

down arrow for scrolling, 219–221

Down button state, 74

Down constant, in interactive

animation project, 184

downloading

extensions, 59, 135

user-defined components, 135

Dox Thrash Revealed Web site, 371

drafting your design, 56

Drag Out event, 92

Drag Over event, 92

drag-and-drop elements

closing a window, 240

creating a drag-and-drop window,

239–240

example file on CD-ROM, 240

motion tween animation for, 238

startDrag action, 238, 239, 240

dragNdrop.fla file, 240

drawOutside.fla file, 60

Dreamweaver (Macromedia)

on CD-ROM, 359

integrating Flash with, 348–351

drop-down menus of action

groups, 29

_droptarget property, 169

duplicateMovieClip action

cloning movie clips using, 87

duplicating objects using, 182–183

motion trails using, 326–330

duplicating

cloning movie clips, 87

code between buttons, 204, 206

frames, 98–99

objects with

duplicateMovieClip
action, 182–183

rollOut and rollOver events, 93

scenes, 192

.dv files, 84

dynamic text boxes

creating, 211–212

displaying current date in, 246–247

displaying current time in, 248–249

options, 212

in organizational chart project,

135, 138

populating with array elements,

224–225

rich formatted text for, 213–215

scrolling text box project, 217–223

scrolling text box using ScrollBar

component, 249–250

setting character options,

212–213

ticker text marquee project,

225–230

uses for, 209–210

E
e-commerce catalog project, 312–313

eCommerce.fla file, 312

Edit Envelope dialog box, 261–262

Edit menu

Copy Frames command, 98

Edit Selected command, 239

Paste Frames command, 99

Paste in Place command, 252

Undo command, 42

Edit Selected command

(Edit menu), 239

editing

code in expert mode, 36

sound characteristics, 261–262

symbols, 42

k3687-7 Index.F 6/12/02 9:08 AM Page 378

379Index ✦ E–F

effects

custom effects for sounds,

260–262

free sound effects, 366

movie clips as effects modules, 113

for soundtracks, 259, 260–262

storing in document Library, 113

Electric Rain Web site, 367

else action

adding to script, 47

in conditional statements with

multiple outcomes,

156–157

in moving navigation bar

project, 253

elseif action, 156–157

e-mail forwarding, CGI script for,

308–309

e-mail links, creating, 216–217

embedding fonts, 213

embedding video files in movie clips,

84, 85

empty movie clip, creating, 320

End of Page button, 221

EnterFrame event, 89

erasing. See deleting

error messages and warnings. See also

debugging ActionScripts

for incorrect variable names,

40, 148

for loops unable to execute in

single frame, 103

<not set yet>, 47, 90

eval action, 155

evaluate action

for animating banner ad, 353

for animating button label, 201–202

for down arrow, 220–221

expressions using, 172

in interactive animation project,

184–185

in moving navigation bar project,

253–254

evaluation versions of programs, 359

event handlers. See also on
(Release) event handler

for button symbol, 42

for movie clips, 89

Event Sync option, 260

events

clip events, 9, 87–89

defined, 81

mouse events, 9, 42, 75, 92–94

for objects, 88–89

overview, 9

plain English for planning, 57

sound events, 259–260

triggering at sound completion,

273–274

evolution of an ActionScript, 52–54

expanding books to display actions,

22, 23

expert mode

code hints in, 40

creating ActionScripts in, 36

described, 29

formatting code in, 38–39

identifiers, 38–39

switching from normal mode, 35

syntax coloring in, 37, 39

Export as File command

(Options menu), 41

exporting

scripts, 41

sounds, settings for, 263–265

expressions

Boolean, 53, 159, 196, 219–221

for changing properties by given

value, 172

creating mathematical

expressions, 145–146

defined, 143

in moving navigation bar project,

253–254

operator precedence for, 146

overview, 144

extensions, 59

Extensions Manager, 59

Extreme Flash Web site, 364

eye candy

custom mouse cursor, 325–326

Flash slide show project, 334–337

hiding and showing the mouse

cursor, 324–325

motion trails, 326–330

mouse chaser using Flash MX

object, 318–321

mouse chaser using movie clip,

315–318

movie clip as mask, 321–324

overview, 13

starburst backdrop, 330–333

F
file formats

supported sound formats, 258

supported video formats, 84

File menu

Import command, 58, 84, 259

New from Template command, 343

Open as Library command, 59,

113, 134

Publish Settings command,

193, 266

Save As command, 123

Find and Replace button (Actions

panel), 33

Find button (Actions panel), 33

Find command (Options menu), 33

Find dialog box, using, 33

finding

actions using Index book, 4, 26

and replacing text in a script, 33

text in a script, 33

Fireworks (Macromedia), on

CD-ROM, 360

.FLA files, opening as libraries, 59

Flahoo Web site, 364

Flash 5 ActionScript Web site, 364

Flash Academy Web site, 364

Flash animations. See animation

Flash Deployment Kit, 346

Flash forms

creating elements for, 306–307

example, 14

HTML forms versus, 297, 306

Reset button, 308

Submit button, 308–310

Flash introduction, creating, 346–348

Flash Kit Web site, 365

Flash Magazine Web site, 365

Flash movies. See also movie clips;

planning your ActionScript

movie; timelines

analyzing for bandwidth

problems, 299–302

base movie, 120, 121

breaking into segments, 119–123

controlling flow of, 53–54

creating target movie clip, 125–127

dimensions for segment movies,

121, 125

hiding your designs or

techniques, 138

introduction movie, 346–348

loading into base movie,

123–124, 125

loading into target movie clip,

127–129

navigating with ActionScript,

76–80

organizational chart example,

135–139

passwords for access to

parts of, 53

planning, 51–62

preloaders for, 6, 102, 103,

298–306

size of, 119, 120

slide show project, 334–337

testing, 128, 284–285

unloading, 123, 124–125

user-defined components for,

132–135

k3687-7 Index.F 6/12/02 9:08 AM Page 379

380 Index ✦ F–I

Flash MX ActionScript For Designers,

electronic version on

CD-ROM, 360

Flash objects. See objects

Flash Player

actions for, 30

compatibility for older

versions, 26

detecting version of, 345–346

Flash movie creation and, 53

Flash slide show project

ActionScript to move the image,

336–337

customizing for a client, 337

examining code for, 334

example file for, 334

initializing the variables, 335

Flash UI Components book, 26.

See also components

FlashJester Web site, 367

Flax Web site, 367

flow, controlling for Flash movies,

53–54

flyout menu project

beginning the project, 204

converting navigation bar to a

symbol, 205

converting navigation bar to

flyout menu, 205–208

overview, 204, 208

flyoutMenu.fla file, 204

_focuserect property, 169

Font user-defined component

type, 133

fonts, embedding, 213

for loops, 103, 104–106

formatting code, 38–39

forms. See Flash forms

forward slashes (//) for comments,

38–39, 70

Foulds, Andy, 372

Frame command (Insert menu), 67

frame-based loops, 102, 103.

See also loops

frames. See also keyframes

adding, 67

for buttons, 72

converting standard frames

to keyframes, 68

copying and pasting, 98–99

creating, 66–67

deleting, 68

designation on timeline, 66

first frame of movie clips, 82

frame-based loops, 102, 103

goto action for, 77

last frame of movie clips, 83, 86

navigating to random frame, 97,

114–117

printable, 310–311

types of, 66

uses for, 66

_framesloaded property, 169

FreeHand (Macromedia)

on CD-ROM, 360

as planning tool, 56

Frieda, John, 370

function action, 110–111, 236, 243

functions

calling, 112–113, 116–117

creating, 110–111

generating random frame number,

14–16

getting properties of objects,

173–174

getting property values, 174

overview, 110

reserved keywords, 40–41

for tooltips, 235–237

for user-customizable interface,

243–245

Functions book, 25

G
getDate method of Date object, 246

getDay method of Date object, 246

getFullYear method of Date

object, 246

getHours method of Date object, 247

getMinutes method of Date

object, 247

getMonth method of Date object, 246

getProperty function

getting properties for objects,

173–174

getting property values, 174

getRGB method of Color object, 175

getSeconds method of Date

object, 248

getTransform method of Color

object, 175

getURL action

opening URL in different size

window, 79–80

parameters, 78

for pop-up window, 339, 340

for Skip Intro button, 347, 348

using, 77–79

Go To command (View menu), 191

goto action

adding to script, 47, 77

for frame-based loops, 103

parameters, 77

for returning movie clips to first

frame, 83, 86

using, 77

graphics

converting to a symbol, 98, 99

nesting bitmaps in movie

clips, 100

swapping nested bitmaps,

100, 101–102

graphics symbol

converting graphics to, 98, 99

interactivity for, 42, 81

overview, 42

green (syntax coloring), 39

GrooveMaker Web site, 366

H
_height property, 169

Hesse, Eva, 369

hide method of Mouse object,

324, 325

hiding and showing. See also

displaying

mouse cursor, 324–325

tooltips, 236–237

windows, 240

your designs or techniques, 138

hierarchy of actions, rearranging, 31

hints for code, 40

Hit button state, 74

HTML. See also integrating Flash

with HTML

ActionScript versus, 52

centering Flash objects on HTML

page, 349

CGI script for HTML mail

forwarding, 308–309

Flash forms versus HTML forms,

297, 306

JavaScript to open Flash file in

sized window, 341

JavaScript to open link in another

window, 340

tags for rich formatted text,

213, 214

hyperlinks

creating a text hyperlink, 223–224

creating an e-mail link, 216–217

I
identifiers in ActionScript code, 38–39

if action. See also conditional

statements

adding to script, 46–47

for animated button label, 202

in conditional statements with

multiple outcomes, 157

creating conditional statements

using, 156

for detecting Flash Player version,

344, 345

k3687-7 Index.F 6/12/02 9:08 AM Page 380

381Index ✦ I–L

for Flash slide show project,

336–337

in interactive animation project,

184, 185, 186–187

for Key objects, 181–182

in moving navigation bar project,

253–254

for On When Pressed button,

195–196

in scrolling text box project,

219–220, 222, 223

images. See graphics; movie clips

Import command (File menu),

58, 84, 259

Import dialog box, 259

Import from File command

(Options menu), 41

Import Video dialog box, 84–85

Import Video Settings dialog box,

85–86

importing. See also loading

audio for video files, 85

items to Assets folder, 58–59

scripts, 41–42

video files into movie clips,

84–86

Index book, finding actions using,

4, 26

input text boxes

creating, 210–211

options, 210–211

setting character options,

212–213

Insert a Target Path button (Actions

panel), 130

Insert menu. See also New Symbol

command (Insert menu)

Blank Keyframe command, 68

Clear Keyframe command, 68

Convert to Symbol command,

98, 205, 232, 252, 280

Frame command, 67

Keyframe command, 68

Layer command, 70

Remove Frames command, 68

Scene command, 190

Insert Target Path dialog box,

48, 90, 128

installing items from CD

on Macintosh computers, 358

troubleshooting, 360–361

on Windows computers, 358

integrating Flash with HTML

animated Flash banner project,

352–354

banner ads, 341–344

detecting the Flash Player

version, 345–346

Flash introduction, 346–348

integrating Flash with

Dreamweaver, 348–351

pop-up window with JavaScript,

339–341

interactive interfaces

displaying date and time, 245–249

drag-and-drop elements, 238–240

moving navigation bar project,

251–255

ScrollBar component for, 249–250

tooltips, 231–238

user-customizable interface,

241–245

interactivity. See also interactive

interfaces; navigating

buttons for, 95–96

for graphics symbol, 42, 81

interactive animation project,

183–187

movie clips for, 82–83

interface.fla file, 241

introduction movie clip

overview, 346–347

Skip Intro button, 347–348

invisible buttons, 74, 75. See also

buttons

isdown action, in interactive

animation project, 184

J
Jaguar X Type Web site, 371

JavaScript

ActionScript versus, 8–9

creating a pop-up window with,

339–341

to open Flash file in sized

window, 341

to open link in another

window, 340

for opening URL in different size

window, 79–80

Jittery.fla file, 199

John Coltrane Web site, 373

John Frieda Web site, 370

Juxt Interactive Web site, 371

K
Key down event, 89

Key object

uses for, 180–181

using, 181–182

Key Press event, 92, 93–94

Key up event, 89

Keyframe command (Insert menu), 68

keyframes. See also frames

Actions layer for, 69–70

assigning actions to, 7, 29, 70–71

blank, 66, 68, 83

comments for, 70

converting standard frames to, 68

creating, 68

designation for frames with

actions assigned, 69

designation on timeline, 66

labeling, 68–69

removing content from, 68

stop action for, 76

ticker text marquee project,

226–229

uses for, 66, 67

keywords, reserved, 40–41

Killer Sound Web site, 366

KISS acronym for variable names, 147

Kravitz, Lenny, 371

L
labels

animating button labels, 200–203

for keyframes, 68–69

for movie clips, 86–87

reserved keywords, 40–41

swapping for buttons, 198–199

template for navigation bar, 197

Layer command (Insert menu), 70

layers

Actions layer, 69–70

for buttons, 72, 73

Distribute to Layers command

(Modify menu), 234

for movie clips, 83

for section movie template, 122

for tooltips, 234, 235

Lenny Kravitz.com site, 371

levels for movies, 121

Library. See document Library

Library command (Window menu), 43

light gray (syntax coloring), 39

line numbers in scripts

setting breakpoints using, 290

viewing, 35

Linkage Properties dialog box,

312, 313

linking

creating a text hyperlink, 223–224

creating an e-mail link, 216–217

displaying link in pop-up

window, 340

JavaScript to open link in another

window, 340

to sounds in document Library,

268–269

to video files from movie clips, 85

List Objects command

(Debug menu), 287

List user-defined component

type, 133

List Variables command

(Debug menu), 288

k3687-7 Index.F 6/12/02 9:08 AM Page 381

382 Index ✦ L–M

Load event, 88

loading

data into movie, 216, 217, 218–219

movies into base movie,

123–124, 125

movies into target movie clip,

127–129

movies to hide your design, 138

soundtracks, 267, 277

text from external sources,

215–216

loadMovie action

hiding your design and, 138

loading movies into base movie,

123–124, 125

loading movies into target movie

clip, 127–129

for soundtracks, 267

loadVariables action

in scrolling text box project, 217,

218–219

using, 216

locking a script in the Script

window, 32

logical operators, 158–159

Logical operators book, 24, 25

loops

controlling the flow of a movie, 54

creating ActionScript loops,

103–107

creating frame-based loops, 103

do while loops, 103, 106–107

execution in single frame required

for, 103

frame-based versus

ActionScript, 102

for loops, 103, 104–106

overview, 24

for preloaders, 304–305

for sounds, 260

uses for, 11

while loops, 103, 106

M
Macintosh computers

installing items from CD, 358

requirements for CD-ROM,

357–358

Macromedia

Dreamweaver, 348–351, 359

Fireworks, 360

Flash Designer and Developer

Center Web site, 363

FreeHand, 56, 360

Showcase Web site, 12, 15, 369

support Web site, 363–364

Web site, 12

Madonna Web site, 370

managing movie content, 4–5

mapping your ActionScript, 57–58

marquee, ticker text, 225–230

marqueeComponent.fla file, 230

masks

converting movie clips to, 60–62

creating movie clip for, 322

creating within movie clips,

322–324

Math object

random method, 107–109,

115–116, 161

round method, 109–110, 115, 161

mathematical operators, 145, 147

menus

ActionScript for, 12

context menu of Actions panel, 37

drop-down menus of action

groups, 29

flyout menu project, 204–208

Milla and Partner Web site, 372

Miscellaneous book. See also

evaluate action

comment action, 293

overview, 24

trace action, 105, 288–289, 290

modem settings for testing

movies, 301

Modify menu

Convert to Blank Keyframes

command, 68

Convert to Keyframes

command, 68

Distribute to Layers

command, 234

Document command, 266

Swap Bitmap command, 102

Swap Symbol command, 101

modular ActionScript

for interfaces, 13

uses for, 14

using movie clips for, 113

motion trails

completing the effect, 327–329

motion tween animation for, 327,

328, 330

overview, 326–327, 330

motion tween animation

for drag-and-drop elements, 238

for motion trails, 327, 328, 330

mouse chasers

basic, 315–318

Flash MX object for, 318–321

random color for, 319

mouse cursor

custom, 325–326

showing and hiding, 324–325

Mouse down event, 89

mouse events. See also events

available events, 92

for button symbol, 42

defined, 9

Key Press, 93–94

multiple events for buttons, 92–93

on action for, 94

overview, 92–93

Release, 75

rollOut, 93

rollOver, 93

Mouse move event, 89

Mouse object

custom cursor using, 325–326

hide method, 324, 325

overview, 324

show method, 324, 325

Mouse up event, 89

mouseChaserBegin.fla file, 316

.mov files, 84

Move the Selected Actions Down

button (Actions panel), 31

Move the Selected Actions Up button

(Actions panel), 31

moveTo Drawing method, 321

Movie Clip Control book

onClipEvent action, 87, 88, 89

overview, 23–24

setProperty action, 170

startDrag action, 238, 239, 240

movie clips. See also Flash movies;

target movie clip

ActionScript options for, 7–8

animated clips, creating, 200

assigning actions to objects,

87–91

assigning event handler to, 89

button to change size and

opacity, 44–49

buttons for interactivity, 95–96

buttons for navigation, 95

clip events, 9, 87–89

cloning, 87

for closing a window, 240

communicating between

timelines, 129–130

converting timeline animation to,

98–99

converting to a mask, 60–62

creating new clips, 82

custom cursor using, 325–326

detecting the Flash Player

version, 345–346

down arrow, 219–221

for drag-and-drop windows,

239–240

duplicating with

duplicateMovieClip
action, 182–183

k3687-7 Index.F 6/12/02 9:08 AM Page 382

383Index ✦ M–O

as effects modules, 113

empty, creating, 320

first frame, 82

importing video files, 84–86

instances, creating, 86

for interactivity, 82–83

introduction clip, creating,

346–348

labeling, 86–87

last frame, 83, 86

layers for, 83

loading movies into target clip,

127–129

for mask, 322

mask within, creating, 322–324

mouse chasers using, 315–321

naming, 45

navigating to random frame, 97

nesting symbols in, 74, 97, 99–100

On When Pressed button with,

195–196

overview, 43, 81–82

preloaders for, 6, 102, 103,

298–306

returning to first frame, 83, 86

for sound controller project,

277–280

for starburst backdrop, 330–333

stop action, 46, 76, 82

symbol, 43

target clips, creating, 125–127

target path for, 48, 89–91

testing, 49

ticker text marquee project,

225–230

with action for target path, 89–91

Movie Control book

goto action, 47, 77, 83, 86, 103

on action, 94, 238

overview, 22

play action, 76

stop action, 46, 76, 82

Movie Explorer, debugging

ActionScripts using,

293, 294

movies. See Flash movies; movie clips

moving around. See navigating

moving navigation bar project,

251–255

moving objects

actions, changing order of, 31

aligning navigation bar

buttons, 199

code in expert mode, 36

positioning target movie clip, 126

positioning tooltips, 233–234

scenes, changing order of, 192

movingNavBar.fla file, 251

MP3 compression for soundtracks,

258, 263–264

.mpg or .mpeg files, 84

multimedia, ActionScript uses for, 7

N
_name property, 169

named anchors, 189, 193–194

names. See also labels

for movie clips, 45

for scenes, 190

for section movies, 123

for tooltips, 234

for variables, 147–148

navigating. See also interactive

interfaces

buttons for, 95

getURL action for, 77–79

goto action for, 77

moving navigation bar project,

251–255

named anchors for, 189, 193–194

navigation bar for, 196–199

On When Press button for,

194–196

play action for, 76

to random frame, 97, 114–117

to scenes, 189–192

to scripts in Script window, 31–32

stop action for, 76

navigation bar

building, 199

button template for, 197–199

converting to flyout menu, 205–208

label template for, 197

moving navigation bar project,

251–255

suiting document to, 196

uses for, 196

vertical, 255

wider than movie, 254

nesting symbols

animated movie clip in button

symbol, 203–204

bitmaps in movie clips, 100

child versus parent movie clips,

131

defined, 97

invisible buttons within another

symbol, 74

mouse chaser using movie clip,

315–318

in movie clips, 74, 97, 99–100

overview, 97, 99–100

swapping nested symbols, 101

New Document dialog box, 343, 344

New from Template command (File

menu), 343

New Symbol command (Insert menu)

for button templates, 197

for buttons, 72, 74, 194, 203

for label templates, 197

for movie clips, 82, 99, 200, 311,

323, 327

for target movie clip, 125

newArray method, 153, 154

n.fuse.gfx Web site, 370

normal mode

described, 28

switching to expert mode, 35

NOT operator, 158–159

<not set yet> warning, 47, 90

Number user-defined component

type, 133

numbers in variable names, 148

numeric data variables

combining contents of, 144

defined, 142

numeric literal data variables

combining contents of, 144

defined, 142

string literals versus numeric

literals, 143

O
Object user-defined component

type, 132

object-oriented scripting, 7–8

objects. See also properties; specific

objects

assigning actions to, 29, 87–91

centering on HTML page, 349

displaying list of movie objects

with Debugger, 287

duplicating with

duplicateMovieClip
action, 182–183

events for actions, 88–89

Flash objects and variable

names, 147

getting properties, 172–173

getting property value, 174

methods in, 25–26

overview, 7–8, 25–26

passing variable value to, 150–151

placing invisible buttons behind,

74, 75

properties of, 169

setting properties, 108, 168–172

tracking using trace action, 289

on (Release) event handler

for closing a window, 240

as default for buttons, 42, 91

for drag-and-drop window, 239

for hiding a window, 240

overview, 75

for single action, 49

k3687-7 Index.F 6/12/02 9:08 AM Page 383

384 Index ✦ O–P

on action

for tooltips, 238

using, 94

On When Pressed button

creating, 194–195

programming movie clip for,

195–196

uses for, 194

onClipEvent action, 87, 88, 89

online merchants, ActionScript uses

for, 14

onSoundComplete event, 273–274

opacity. See _alpha property

Open as Library command (File

menu), 59, 113, 134

Open dialog box, 41

opening

action books, 22, 23

Actions panel, 27

Bandwidth Profiler, 299

context menu of Actions panel, 37

Debugger, 286

document Library, 59

Reference panel, 34

Scene panel, 190

URLs with getURL action, 77–80

operators

arithmetic, 145, 147

logical, 158–159

post-increment form of

operand, 146

precedence for expressions, 146

pre-increment syntax of

operand, 145

Operators book

Arithmetic Operators book, 24

Comparison Operators book,

24–25

Logical operators book, 24, 25

Options menu

Export as File command, 41

Find command, 33

Import from File command, 41

overview, 35–36

Preferences command, 39

OR operator, 158–159

order

changing for actions, 31

changing for scenes, 192

precedence of operators for

expressions, 146

organizational chart project

beginning the design, 136–137

creating, 135–139

creating the ActionScript, 137–139

described, 135

Orgchart folder on CD-ROM, 136

orgChart.fla file, 136

Over button state, 73

P
Panel Sets, adding panel layout to, 28

Panel Sets command

(Window menu), 27

panels. See also Actions panel

Designer panel layout, 27

docking, 28

Reference panel, 4, 17, 33–35

saving layout for, 28

Scene panel, 190

panning a sound, 273

parameter text boxes, using, 30

parent movie clips, 131

parentheses for parameters in code,

38, 39

passing variable value to other

objects, 150–151

passwords

Boolean expression for

evaluating, 53, 159

input text box option, 211

for limiting access to parts of

movies, 53

for sites, 53

Paste Frames command

(Edit menu), 99

Paste in Place command

(Edit menu), 252

path, target. See target path

Pepworks.com site, 370

Pickled the Movie Web site, 370

pictures. See graphics; movie clips

Pin Current Script button

(Actions panel), 32

pinning a script, 32

plain English for planning, 57

planning your ActionScript movie

controlling the flow, 53–54

drafting your design, 56

evolution of an

ActionScript, 52–54

example project, 60–62

extensions, 59

fleshing out your idea, 58–59

gathering assets, 58–59

importance of, 51

mapping your ActionScript, 57–58

planning your design, 55–58

research, 55

size of movies, 120

storyboards, 56, 57, 126

play action, 76

PLUGINSPAGE line, 349

pop-up window, creating with

JavaScript, 339–341

positioning. See also moving objects;

order

aligning navigation bar

buttons, 199

target movie clip, 126

tooltips, 233–234

Pray Station Web site, 372

precedence of operators for

expressions, 146

Preferences command (Options

menu), 39

preferences for syntax coloring, 39

preloaders

ActionScript for preload loop,

304–305

ActionScript for recycling the

loop, 305

analyzing movies for bandwidth

problems, 299–302

animated, 298–306

conditional statement for,

305, 306

creating, 302–306

defined, 298, 302

displaying number of bytes

loaded, 306

frame-based loops in, 102, 103

need for, 298

progress bar for, 303

visual effects for, 6

Press event, 92

previewing. See also testing

designs in Flash

environment, 284

designs in Web browsers, 285

sounds, 264, 265

printable frames, 310–311

Printing book, 24

ProFlasher Web site, 365

progress bar for preloader, 303

projects

animated Flash banner, 352–354

drawing outside the lines, 60–62

e-commerce catalog, 312–313

first ActionScript, 44–49

Flash slide show, 334–337

flyout menu, 204–208

generating random quotes,

160–164

interactive animation, 183–187

moving navigation bar, 251–255

navigating to random frame,

114–117

organizational chart, 135–139

scrolling text box, 217–223

sound controller, 274–281

ticker text marquee, 225–230

k3687-7 Index.F 6/12/02 9:08 AM Page 384

385Index ✦ P–S

properties. See also Property

inspector; setting

properties

available properties, 169

changing by a given value, 172

experimenting with, 62

getting for objects, 172–173

getting value of, 174

overview, 25

setting, 46, 108, 168–172

Properties book

_alpha property, 48

available properties, 169

overview, 25

_xscale property, 49

_yscale property, 49

Property inspector

for character options, 212–213

for custom cursor, 325

for dynamic text boxes, 211–212

for input text boxes, 210–211

for keyframe labels, 69

for movie clip labels, 86–87

in moving navigation bar

project, 253

for named anchors, 193

for printable frames, 311

for rich formatted text, 213–215

Swap button, 101, 102

for text hyperlinks, 223–224

Protect from Import option, 138

Publish Settings command (File

menu), 193, 266

Publish Settings dialog box, 193–194

punctuation, variable names and, 147

Q
_quality property, 169

QuickTime

linking from movie clips to

external files, 85

sound files supported by, 258

video files supported by, 84

quotation marks (“) for string literal

data, 143

R
random frames, navigating to,

97, 114–117

random numbers

creating a variable with value

equal to, 108–109

generating with random method

of Math object,

107–109, 161

navigating to random frame,

114–117

in random quote generation

project, 160–164

rounding random values,

109–110, 161

setting highest number for, 109

uses for, 107, 108

Random quote project

adding a time and accessing the

array, 161–163

beginning the project, 160

finishing the project, 163–164

generating the random

number, 161

randomStars.fla file, 331

ReadMe.txt file, 361

red

flag for labeled keyframes, 69

for warnings, 40, 47, 89

Reference panel, 4, 17, 33–35

registration point for symbols,

205, 206

relative mode for target path, 130, 131

Release event, 75, 92. See also on
(Release) event handler

Release Outside event, 92

Remove Frames command (Insert

menu), 68

removing. See deleting

Replace dialog box, 33

replacing text in a script, 33

research, 55

reserved keywords

list of, 40–41

variable names and, 147

Reset button for Flash forms, 308

rich formatted text

creating, 213–215

HTML tags for, 214

rndFrame function

calling, 112–113

creating, 114–116

using with a button, 116–117

rndQuote.fla file, 160

Rob Allen Photography Web site, 370

rollOut event, 92, 93, 238

rollOver event, 92, 93, 238

rotation, changing direction of, 202

_rotation property, 169

rounding random values, 109–110,

115, 161

S
Save As command (File menu), 123

Save As dialog box, exporting scripts,

41

Save Panel Layout command

(Window menu), 28

saving breakpoints, 291

Scene command

Insert menu, 190

Window menu, 190, 191, 192

Scene panel, opening, 190

scenes. See also preloaders;

segments

adding to a movie, 190

deleting, 191–192

duplicating, 192

naming, 190

navigating to, 191

opening Scene panel, 190

for preloaders, 303

rearranging order of, 192

uses for, 189–190

Script pane. See also scripts

described, 21, 32

expert mode and, 36

loading text from external

sources, 215–216

Script window of Actions panel

navigating to scripts with, 31–32

pinning a script, 32

scripts. See also code; debugging;

specific actions

adding actions to, 29

for animating button labels,

200–203

creating in expert mode, 36

debugging, 283–294

deleting actions from, 31

experimenting with, 62

exporting, 41

finding and replacing text in, 33

finding text in, 33

importing, 41–42

modular, using movie clips

for, 113

navigating to, with Script window,

31–32

pinning, 32

programming a button to change

size and opacity of image,

44–49

viewing line numbers in, 35

ScrollBar component, 249–250

scrolling text box project

beginning the project, 217–218

End of Page button, 221

loading the text document into

the movie, 218–219

programming the down arrow,

219–221

slider code, 221–222

up arrow, 223

scrollText.fla file, 217

scrollText.txt files, 217

scrollTick.fla file, 225

searching. See finding

sections of movies. See scenes;

segments

k3687-7 Index.F 6/12/02 9:08 AM Page 385

386 Index ✦ S

security, hiding your designs or

techniques, 138

segments. See also scenes

base movie for, 120, 121

dimensions of, 121, 125

labels for, 190

naming, 123

planning, 120

template for, 121–123

uses for, 119–120

semi-colon (;) as end of line identifier,

38, 39

set variable action

accessing arrays using, 162

adding to script, 48

for Color objects, 175

for color transformation

objects, 178

creating variable equal to random

number, 108–109, 114–116

for Date objects, 245

for detecting Flash Player

version, 345

resetting a variable, 308

setBGcolor function, 243–245

setMask method, 324

setPan method of Sound object, 273

setProperty action, adding to

script, 170

setRGB method of Color object

described, 175

for user-customizable

interface, 244

using, 176

setting properties

by addressing target path,

171–172

directly, 168–170

initial state, 46

to random value, 108

setProperty action for, 170

with action for, 168–170

setTransform method of Color object

described, 175–176

offset values for, 177

parameters, 176–177

percentage values for, 177

tinting a multi-colored object

using, 178–180

setVariable action

creating arrays, 153

creating variables, 148–149

setVolume method of Sound object,

272–273

shareware programs, 359

show method of Mouse object,

324, 325

Show Streaming command

(View menu), 302

showing. See displaying; hiding and

showing

Simian Volume 6 Revolt Web site, 372

simpleChaserBegin.fla file, 318

Skip Intro button, 260, 347–348

slide show. See Flash slide show

project

Slider Control symbol, 275–276

sliders

for scrolling, 221–222

for sound controller project,

275–276, 278–279

slideShow.fla file, 334

Sonic Foundry.com site, 366

Sorenson Web site, 368

sound controller project

adding buttons and sliders,

275–277

beginning the project, 275

evaluating slider position, 279

initial values for sliders, 278–279

overview, 274

programming the movie clip,

277–280

Sound Designer II format, 258

sound file formats, 258

Sound object

attaching a sound, 269–270,

276, 277

changing volume for sound,

272–273

creating an instance, 268

in document Library, attaching,

269–270

in document Library, linkage for,

268–269

panning a sound, 273

sound controller project, 274–281

starting a sound, 270–271

stopping a sound, 271–272

triggering an event at sound

completion, 273–274

uses for, 6, 268

Sound only QuickTime Movie

format, 258

Sound Properties dialog box,

263–264, 265

Sound Shopper.com site, 367

Sound Strike Web site, 367

_soundbuftime property, 169

Soundcontroller folder on

CD-ROM, 274

soundtracks

adding to timeline, 257–258

attaching, 269–270, 276, 277

custom effects, 260–262

effects, 259

export settings, 263–265

file formats supported, 258

importing for video files, 85

importing sounds, 258–260

loading into your design, 267, 277

MP3 compression for, 258,

263–264

in separate movie, 258, 266–267

size of file for, 258

sound controller project, 274–281

Speech compression for, 264–265

streaming sound, 260

Web sites, 366–367

spaces, variable names and, 148

Speech compression for soundtracks,

264–265

starburst backdrop

creating the stars, 332–333

example file for, 331

initializing the movie clip, 332

modifying the movie, 333

overview, 330–331

start method of Sound object,

270–271

startDrag action, 238, 239, 240

sticky notes, for planning your

ActionScript, 58

stop action, 46, 76, 82

stop method of Sound object,

271–272

storyboards

creating, 56, 57

usefulness of, 126

Streaming Graph command (View

menu), 299

streaming sound, 260

string data variables, 142, 143

String user-defined component

type, 133

strings, 25. See also text

submarine animation project,

183–187

submarine.fla file, 183

Submit button for Flash forms

CGI script for HTML mail

forwarding, 308–309

programming the button, 309–310

Sun AU sound format, 258

Swap Bitmap command

(Modify menu), 102

Swap Bitmap dialog box, 102

Swap Symbol command (Modify

menu), 101

Swap Symbol dialog box, 101

swapping nested bitmaps, 100,

101–102

SWF (Small Web File)

exporting from FreeHand, 56

size of, 4, 119

SWfx (WildForm), on CD-ROM, 360

Swift 3D, on CD-ROM, 360

k3687-7 Index.F 6/12/02 9:08 AM Page 386

387Index ✦ S–U

Swish Web site, 368

symbols. See also converting; Create

New Symbol dialog box;

nesting symbols; specific

types

in document Library, 43–44

registration point for, 205, 206

types of, 42–43

syntax coloring, 37, 39

syntax of actions, finding in Reference

panel, 4

System 7 Sounds format, 258

system requirements for CD-ROM,

357–358

T
target movie clip

aligning for proper loading, 126

communicating between

timelines, 129–130

creating, 125–127

loading movies into, 127–129

for organizational chart, 136, 137

positioning, 126

target path

absolute mode, 130, 131

alias, 132

defined, 9

overview, 9–10

relative mode, 130, 131

setting properties by addressing,

171–172

specifying for movie clips, 48,

89–91, 128

Target Path dialog box, 131

_target property, 169

technical support for CD-ROM, 361

templates

for banner ads, 343, 344

button templates, 197–198

for documents with named

anchors, 193–194

label template for navigation

bar, 197

for section movies, 121–123

Test Movie command (Control menu),

49, 163

testing

after completing milestones, 128

analyzing movies for bandwidth

problems, 299–302

designs in Flash environment, 284

designs in Web browsers, 285

modem settings for testing

movies, 301

movie clips, 49, 163

sounds, 264, 265

text. See also dynamic text boxes

creating data in word

processor, 216

dynamic text boxes, creating,

211–212

e-mail links, creating, 216–217

finding and replacing in a

script, 33

finding in a script, 33

hyperlinks, 223–224

hyperlinks, creating, 223–224

input text boxes, creating,

210–211

loading from external sources,

215–216

populating dynamic text boxes

with array elements,

224–225

rich formatted text, creating,

213–215

scrolling text box project, 217–223

setting character options,

212–213

ticker text marquee project,

225–230

text boxes. See dynamic text boxes;

input text boxes

text data variables. See string data

variables

text objects, 25. See also text

TextField object, 6

Thrash, Dox, 371

ticker text marquee project, 225–230

time

displaying current time, 247–249

retrieving from host

computer, 248

timelines

adding comments to

keyframes, 70

assigning actions to keyframes,

70–71

communicating between, 129–130

controlling, 66–70

converting animation to movie

clip, 98–99

creating Actions layer for, 69–70

creating buttons, 72–75

navigating with ActionScript,

76–80

need for, 65

overview, 9

soundtrack in, 257–258

typical timeline, 67

working with frames, 66–69

timer component, 162, 203

tooltips

creating, 232–233

creating functions for, 235–237

example file on CD-ROM, 238

layers for, 234, 235

naming, 234

positioning, 233–234

programming buttons for, 237–238

showing and hiding, 236–237

uses for, 231–232

toolTips.fla file, 238

Toon Boom Studio Web site, 368

_totalFrames property, 169

trace action

breakpoints with, 290

for loops with, 105

tracking variables or objects

using, 289

uses for, 288–289

trial versions of programs, 359

troubleshooting the CD-ROM,

360–361

TurtleShell.com site, 365

Tweened.com site, 372

U
UI components. See components

Undo command (Edit menu), 42

undoing, 42

Unload event, 89

unloading movies, 123, 124–125, 267

unloadMovie action,

123, 124–125, 267

up arrow for scrolling, 223

Up button state, 73

Up constant, 184

_url property, 169

URLs. See also Web sites

creating a text hyperlink, 223–224

creating an e-mail link, 216–217

getURL action, 77–80, 339, 340,

347, 348

for loadVariables action, 216

researching competitor URLs, 55

User Defined Functions book

call function action, 112–113,

116, 237, 243

function action,

110–111, 236, 243

overview, 24

rndFrame action, 114–117

user-customizable interface

creating, 241

creating the function for,

243–245

programming the buttons,

242–243

k3687-7 Index.F 6/12/02 9:08 AM Page 387

388 Index ✦ U–Y

user-defined components

creating instances of, 134

creating new components,

132–134

defined, 132

downloading, 135

storing in document Library,

134–135

types of, 132–133

using, 134–135

V
var action, 149

The variable name you have
entered... message,

40, 148

variables

arrays versus, 151–152

Boolean data, 142

combining array elements in, 152

combining contents of,

143–144, 150

comparing multiple values to an

array, 151–152

declaring, 148–150

displaying list using

Debugger, 288

expressions in, 144–146

local, creating, 149–150

naming, 147–148

numeric data, 142

numeric literal data, 142

passing value to other objects,

150–151

reserved keywords and

commands, 40–41, 147

resetting, 308

setting value equal to two other

variables, 151

string data, 142, 143–144

tracking using trace action, 289

types of, 142

uses for, 5, 141

with value equal to random

number, 108–109, 114

watching with Debugger, 286–287

Variables book. See also set
variable action

overview, 24

setVariable action, 148–149, 153

var action, 149

with action, 89–91, 129–130, 168

Velocity Studio Web site, 371

vertical navigation bar, 255

video files

embedding, 84, 85

importing into movie clips, 84–86

linking from movie clips, 85

types of, 84

View menu

Bandwidth Profiler command, 299

Go To command, 191

Show Streaming command, 302

Streaming Graph command, 299

viewing. See displaying; hiding and

showing

Virtual FX Web site, 365

_visible property, 169

visual effects, for preloaders, 6

visual mind map, 58

volume for sound, changing, 272–273

W
warnings. See error messages and

warnings

WAV sound format, 258

Web browsers

JavaScript to open link in another

window, 340

previewing designs in, 285

Web Monkey Web site, 365

Web site designers

orientation of, 3

uses for ActionScript, 4–7

Web site elements

animated preloader, 298–306

e-commerce catalog project,

312–313

Flash forms, 206–210

printable frames, 310–311

Web sites

for extensions, 59, 135

Flash Deployment Kit, 346

Flash resources, 363–366

Flash tutorial sites, 59

for inspiration, 369–373

Macromedia, 12

Macromedia Showcase,

12, 15, 369

researching, 55

for sounds and music, 366–367

for third-party applications,

367–368

for user-defined components, 135

We’re Here Forums Web site, 366

while loops, 103, 106

_width property, 169

WildForm SWfx

on CD-ROM, 360

Web site, 368

Wiley Publishing Customer Care, 361

Wiley Publishing Customer

Service, 361

Window menu

Actions command, 27

Common Libraries command, 113

Library command, 43

Panel Sets command, 27

Save Panel Layout command, 28

Scene command, 190, 191, 192

windows

creating a pop-up window with

JavaScript, 339–341

drag-and-drop, 239–240

JavaScript to open Flash file in

sized window, 341

JavaScript to open link in another

window, 340

movie clip for closing, 240

Windows computers

installing items from CD, 358

requirements for CD-ROM, 357

with action

for changing object

properties, 168

for communicating between

timelines, 129–130

for target path of movie clips,

89–91

.wmv files, 84

word processor

creating array data in, 154, 160

creating text data in, 216

X
_x property, 169

_xmouse property, 169

_xscale property, 49, 169

Y
_y property, 169

_ymouse property, 169

_yscale property, 49, 169

k3687-7 Index.F 6/12/02 9:08 AM Page 388

Wiley Publishing, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the software

packet(s) included with this book (“Book”). This is a license agreement (“Agreement”)

between you and Wiley Publishing, Inc. (“WPI”). By opening the accompanying software

packet(s), you acknowledge that you have read and accept the following terms and conditions.

If you do not agree and do not want to be bound by such terms and conditions, promptly

return the Book and the unopened software packet(s) to the place you obtained them for a

full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license

to use one copy of the enclosed software program(s) (collectively, the “Software”)

solely for your own personal or business purposes on a single computer (whether a

standard computer or a workstation component of a multi-user network). The Software

is in use on a computer when it is loaded into temporary memory (RAM) or installed

into permanent memory (hard disk, CD-ROM, or other storage device). WPI reserves all

rights not expressly granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and

to the compilation of the Software recorded on the disk(s) or CD-ROM (“Software

Media”). Copyright to the individual programs recorded on the Software Media is

owned by the author or other authorized copyright owner of each program. Ownership

of the Software and all proprietary rights relating thereto remain with WPI and its

licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival purposes,

or (ii) transfer the Software to a single hard disk, provided that you keep the

original for backup or archival purposes. You may not (i) rent or lease the

Software, (ii) copy or reproduce the Software through a LAN or other network

system or through any computer subscriber system or bulletin-board system,

or (iii) modify, adapt, or create derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may

transfer the Software and user documentation on a permanent basis, provided

that the transferee agrees to accept the terms and conditions of this Agreement

and you retain no copies. If the Software is an update or has been updated, any

transfer must include the most recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual require-

ments and restrictions detailed for each individual program in Appendix A of this Book.

These limitations are also contained in the individual license agreements recorded on the

Software Media. These limitations may include a requirement that after using the pro-

gram for a specified period of time, the user must pay a registration fee or discontinue

use. By opening the Software packet(s), you will be agreeing to abide by the licenses and

restrictions for these individual programs that are detailed in Appendix A and on the

Software Media. None of the material on this Software Media or listed in this Book may

ever be redistributed, in original or modified form, for commercial purposes.

l3687-7 EULA.F 6/12/02 9:08 AM Page 389

5. Limited Warranty.

(a) WPI warrants that the Software and Software Media are free from defects in

materials and workmanship under normal use for a period of sixty (60) days from

the date of purchase of this Book. If WPI receives notification within the warranty

period of defects in materials or workmanship, WPI will replace the defective

Software Media.

(b) WPI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,

EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE, WITH RESPECT TO THE SOFTWARE, THE PROGRAMS, THE

SOURCE CODE CONTAINED THEREIN, AND/OR THE TECHNIQUES DESCRIBED

IN THIS BOOK. WPI DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED

IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE

OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other

rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) WPI’s entire liability and your exclusive remedy for defects in materials and

workmanship shall be limited to replacement of the Software Media, which may

be returned to WPI with a copy of your receipt at the following address: Software

Media Fulfillment Department, Attn.: Flash MX ActionScript For Designers, Wiley

Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, or call

1-800-762-2974. Please allow four to six weeks for delivery. This Limited Warranty

is void if failure of the Software Media has resulted from accident, abuse, or mis-

application. Any replacement Software Media will be warranted for the remainder

of the original warranty period or thirty (30) days, whichever is longer.

(b) In no event shall WPI or the author be liable for any damages whatsoever

(including without limitation damages for loss of business profits, business

interruption, loss of business information, or any other pecuniary loss) arising

from the use of or inability to use the Book or the Software, even if WPI has been

advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for

consequential or incidental damages, the above limitation or exclusion may not

apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for

or on behalf of the United States of America, its agencies and/or instrumentalities (the

“U.S. Government”) is subject to restrictions as stated in paragraph (c)(1)(ii) of the

Rights in Technical Data and Computer Software clause of DFARS 252.227-7013,

or subparagraphs (c) (1) and (2) of the Commercial Computer Software - Restricted

Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR supplement,

as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and

revokes and supersedes all prior agreements, oral or written, between them and may

not be modified or amended except in a writing signed by both parties hereto that

specifically refers to this Agreement. This Agreement shall take precedence over any

other documents that may be in conflict herewith. If any one or more provisions

contained in this Agreement are held by any court or tribunal to be invalid, illegal,

or otherwise unenforceable, each and every other provision shall remain in full force

and effect.

l3687-7 EULA.F 6/12/02 9:08 AM Page 390

	Flash™ MX ActionScript™ For Designers
	Front Matter
	About the Author
	Credits
	Preface
	Who Should Read This Book
	How This Book Is Organized
	Part I: Comprehending the Mechanics of ActionScript
	Part II: Using Basic ActionScript in Your Movie
	Part III: Creating ActionScript Elements for Your Movie
	Part IV: Building Additional Design Elements for Your Movie
	Appendixes

	How to Approach This Book
	Conventions Used in This Book

	Acknowledgments
	Contents at a Glance
	Contents

	Part I: Comprehending the Mechanics of ActionScript
	Chapter 1: Introducing ActionScript for Designers
	Why Designers Need ActionScript
	Managing movie content with ActionScript
	Storing and dispensing information with variables
	Creating visual effects with ActionScript
	Modifying design elements with ActionScript
	Other uses for ActionScript

	Decoding Object-Oriented Scripting
	Understanding How ActionScript Works
	Using ActionScript as a Design Element
	When to Use ActionScript
	Designer Notes

	Chapter 2: Delving into Your ActionScript Toolkit
	Surveying the Actions Panel
	Essential Actions for Designers
	Exploring the Actions book
	Exploring the Operators book
	Delving into the Functions book
	Exploring the Constants book
	Modifying objects with the Properties book
	Exploring the Objects book
	Dealing with Deprecated actions
	Using actions from the Flash UI Components book
	Using actions from the Index book

	Adding Actions to Your Documents
	Working in modes
	Adding an action to your script
	Using the parameter text boxes
	Deleting an action from your script
	Changing the hierarchy of actions
	Navigating to scripts with the Script window
	Pinning a script
	Finding and replacing text in a script
	Using the ActionScript Reference panel
	Changing your viewing options
	Using the Actions panel Options menu
	Creating ActionScript in expert mode
	Using the Actions panel context menu
	Understanding ActionScript conventions

	Understanding Symbol Types
	About the button symbol
	About the graphics symbol
	About the movie clip symbol
	About the component symbol

	About the Document Library
	Chapter Project: Creating Your First ActionScript
	Designer Notes

	Chapter 3: Planning Your ActionScript Movie
	The Evolution of an ActionScript
	Planning Your Design
	Getting inspired
	Drafting your design
	Mapping your ActionScript

	Fleshing Out Your Idea
	Gathering your assets
	Saving time with extensions

	Chapter Project: Drawing Outside the Lines
	Designer Notes

	Part II: Using Basic ActionScript in Your Movie
	Chapter 4: Charting the Timeline of Your Movie
	Controlling the Timeline
	Working with frames
	Creating an Actions layer
	Adding comments to keyframes

	Allocating Actions to a Frame
	Creating Buttons
	Adding a button to your document
	About button states
	Creating an invisible button
	Assigning actions to a button

	Navigating with ActionScript
	Using the stop action
	Using the play action
	Using the goto action
	Using the getURL action
	Using JavaScript to open an HTML page in a different size window

	Designer Notes

	Chapter 5: Creating Basic Interactivity
	Creating Movie Clips
	Using movie clips for interactive content
	Importing a video file into a movie clip
	Creating instances of movie clips
	Labeling the movie clip with the Property inspector

	Assigning Actions to an Object
	About clip events
	Using the with action

	Assigning Actions to a Button
	About mouse events
	Using the Key Press mouse event
	Using the on action
	Using buttons for navigation
	Using buttons for interactivity

	Designer Notes

	Chapter 6: Creating Elements for Your Movie
	Working with Symbols
	Converting a graphic to a symbol
	Converting a timeline animation to a movie clip
	Nesting symbols
	Swapping symbols
	Swapping bitmaps

	Creating Loops
	Looping frames
	Creating ActionScript loops

	Generating Random Numbers
	Using the random method of the Math object
	Rounding numbers

	Saving Time with Functions
	Creating a function
	Calling a function

	Creating Modular ActionScript
	Chapter Project: Navigating to a Random Frame
	Creating a function to generate a random frame number
	Putting the function to work

	Designer Notes

	Chapter 7: Taking Control of Your Movie
	Breaking Movies into Segments
	Dividing a Flash site into individual movies
	Understanding levels
	Creating movies for site sections

	Using the loadMovie and unloadMovie Actions
	Loading a movie
	Unloading a movie

	Loading a Different-Sized Movie into a Target
	Creating a target movie clip
	Loading a movie into a target

	Communicating between Timelines
	Demystifying Targets and Paths
	Using absolute mode
	Using relative mode

	Introducing the User-Defined Component
	Chapter Project: Creating an Organizational Chart
	Beginning the design
	Creating the ActionScript

	Designer Notes

	Chapter 8: Creating Variables to Store and Dispense Information
	Understanding Variable Types
	About string data
	About expressions
	Creating mathematical expressions
	About operator precedence

	Creating a Variable
	Naming a variable
	Declaring a variable
	Creating a local variable
	Passing a variable’s value to other objects

	Storing Data with an Array
	Creating an array
	Creating elements for an array
	Creating an associative array

	Working with Conditional Statements
	Creating conditional statements
	Working with conditional statements that have multiple outcomes

	Using Logical Operators
	Working with Boolean Expressions
	Chapter Project: Generating Random Quotes
	Generating the random number
	Adding a timer and accessing the array
	Finishing the project

	Designer Notes

	Part III: Creating ActionScript Elements for Your Movie
	Chapter 9: Generating ActionScript to Modify Objects
	Modifying an Object’s Properties
	Setting an object’s properties
	Using the setProperty action
	Modifying an object by addressing its target path
	Getting an object’s properties

	Using the Color Object
	Creating a Color object
	Modifying an object’s color

	Using the Key Object
	Duplicating an Object Using the duplicateMovieClip Action
	Chapter Project: Creating an Interactive Animation
	Designer Notes

	Chapter 10: Designing Interactive Navigation
	Navigating to Scenes
	Adding a scene
	Naming a scene
	Navigating to a scene
	Deleting a scene
	Duplicating a scene
	Rearranging scene order

	Using Named Anchors
	Creating a named anchor
	Publishing a document with named anchors

	Creating an On When Pressed Button
	Creating a Navigation Bar
	Creating a label template
	Creating a button template
	Building the navigation bar

	Creating an Animated Button
	Creating the movie clip
	Creating the ActionScript to animate the label
	Nesting the movie clip in a button symbol

	Chapter Project: Creating a Flyout Menu
	Designer Notes

	Chapter 11: Composing Dynamic Text
	Creating Flashy Text with the Property Inspector
	Creating input text boxes
	Creating dynamic text boxes
	Setting character options
	Creating rich formatted text

	Loading Text from External Sources
	Creating text data
	Using the loadVariables action

	Creating an E-Mail Link
	Chapter Project: Creating a Scrolling Text Box
	Programming the down arrow
	Deciphering the rest of the code

	Creating a Text Hyperlink
	Populating Dynamic Text with Array Elements
	Chapter Project: Creating a Ticker Text Marquee
	Designer Notes

	Chapter 12: Building Interactive Interfaces
	Building Tooltips
	Creating the tooltips
	Creating the tooltip functions
	Programming the buttons

	Creating Drag-and-Drop Elements
	Creating a drag-and-drop window
	Closing a window

	Creating a User Customizable Interface
	Telling Time with ActionScript
	Creating a Date object
	Displaying the current date
	Displaying the current Time

	Using the ScrollBar Component
	Chapter Project: Creating a Moving Navigation Bar
	Designer Notes

	Chapter 13: Creating ActionScript Sound Objects
	Creating a Soundtrack
	Importing a sound
	Creating a custom effect
	Modifying export settings

	Creating a Movie with Interactive Sound
	Creating a soundtrack movie
	Loading the soundtrack into your design

	Using the Sound Object
	Creating an instance of the Sound object
	Working with sound from the document Library
	Attaching a sound
	Starting a sound
	Stopping a sound
	Changing a sound’s volume
	Panning a sound
	Triggering an event with the onSoundComplete event

	Chapter Project: Creating a Sound Controller
	Adding the sliders
	Programming the movie clip

	Designer Notes

	Chapter 14: Debugging an ActionScript
	Testing Your Design
	Using the Debugger
	Watching a variable
	Displaying a list of movie objects
	Displaying a list of variables in the movie

	Using the Trace Action
	Stopping the Movie with Breakpoints
	Setting a breakpoint
	Debugging a movie with breakpoints

	Tracking ActionScript with Comments
	Using the Movie Explorer
	Designer Notes

	Part IV: Building Additional Design Elements for Your Movie
	Chapter 15: Building Web Site Elements with ActionScript
	Creating an Animated Preloader
	Analyzing your movie
	Creating the preloader

	Creating a Flash Form
	Creating the form elements
	Creating ActionScript for the Reset button
	Creating ActionScript for the Submit button

	Creating a Printable Frame
	Chapter Project: Create an E-Commerce Catalog
	Designer Notes

	Chapter 16: Creating Flash Eye Candy
	Creating a Mouse Chaser
	Creating an ActionScript Mouse Chaser
	Creating a Mask with ActionScript
	Using the Mouse Object
	Creating a Custom Cursor
	Creating Motion Trails
	Creating a Starburst Backdrop
	Chapter Project: Creating a Flash Slide Show
	Designer Notes

	Chapter 17: Integrating Flash with HTML
	Creating a Pop-Up Window with JavaScript
	Creating Banner Ads
	Detecting the Flash Player
	Creating a Flash Introduction
	Integrating Flash with Dreamweaver
	Chapter Project: Creating an Animated Flash Banner
	Designer Notes
	Where to Go from Here

	Appendixes
	Appendix A: What’s on the CD- ROM
	System Requirements
	Using the CD with Windows
	Using the CD with the Mac OS
	What’s on the CD
	Author-created materials
	Applications
	Electronic version of

	Troubleshooting

	Appendix B: Flash Resources
	Resources
	Macromedia resources
	Other Flash resources

	Sounds
	Free Sound Effects
	GrooveMaker
	Killer Sound
	Sonic Foundry.com
	Sound Shopper.com
	Sound Strike

	Third-Party Applications
	Electric Rain
	FlashJester
	Flax
	Sorenson
	Swish
	Toon Boom Studio
	Wildform.com

	Appendix C: Flash Inspiration
	Macromedia Site of the Day
	Eva Hesse
	Madonna
	John Frieda
	n.fuse.gfx
	Pickled the Movie
	Rob Allen Photography
	Pepworks.com
	Juxt Interactive
	Dox Thrash Revealed
	Lenny Kravitz.com
	Jaguar X Type
	Velocity Studio
	Milla and Partner
	Andy Foulds
	Tweened.com
	Simian Volume 6 Revolt
	Pray Station
	Audi A4 Avant
	John Coltrane

	Index
	Wiley Publishing, Inc. End-User License Agreement

