
By icarus

 This article copyright Melonfire 2000−2002. All rights reserved.

http://www.melonfire.com/

Table of Contents
Ahead Of The Game...1

Getting Started..2

Anatomy Lesson..4

Pretty As A Picture...6

The Shortest Distance Between Two Points...8

Square Peg, Round Hole...11

Heaven Is A Place On Earth..14

Piece Of Pie..16

PDF Generation With PHP

i

Ahead Of The Game
One of the reasons I like PHP so much is its consistent support for new technologies. The language invites
extensibility, making it easy for developers to add new modules to the core engine, and widespread
community support has made PHP one of the most full−featured Web programming languages around, with
support for a wide variety of modular extensions. Extensions available today allow developers to use PHP to
perform IMAP and POP3 operations; dynamically constructs images and Shockwave Flash movies; perform
credit card validation; encrypt sensitive data; and parse XML−encoded data.

This isn't all, though. One of the more interesting items currently being bundled with PHP is the PDFLib
extension, which allows developers to dynamically generate documents in Adobe Portable Document Format
(PDF). Over the next few pages, I'm going to take a quick look at this module, providing you with a brief
overview of its functions and demonstrating how you can use it in your PHP development. So come on it, and
let's get going!

Ahead Of The Game 1

Getting Started
In order to use PHP's PDF manipulation capabilities, you need to have the PDFLib library installed on your
system. If you're working on Linux, you can download a copy from http://www.pdflib.com/pdflib/index.html
and compile it for your box. If you're running Windows, your job is even simpler − a pre−built PDF library is
bundled with your distribution, and all you need to do is activate it by uncommenting the appropriate lines in
your PHP configuration file.

Additionally, you'll need a copy of the (free!) Adobe Acrobat PDF reader, so that you can view the documents
created via the PDFLib library. You can download a copy of this reader from http://www.adobe.com/

Once you've got everything in place, it's time to create a simple PDF file. Here goes:

<?php
// create handle for new PDF document
$pdf = pdf_new();

// open a file
pdf_open_file($pdf, "philosophy.pdf");

// start a new page (A4)
pdf_begin_page($pdf, 595, 842);

// get and use a font object
$arial = pdf_findfont($pdf, "Arial", "host", 1);
pdf_setfont($pdf,
$arial, 10);

// print text
pdf_show_xy($pdf, "There are more things in heaven and earth,
Horatio,",
50, 750); pdf_show_xy($pdf, "than are dreamt of in your
philosophy", 50,
730);

// end page
pdf_end_page($pdf);

// close and save file
pdf_close($pdf);
?>

Save this file, and then browse to it through your Web browser. PHP will execute the script, and a new PDF
file will be created and stored in the location specified at the top of the script. Here's what you'll see when you
open the file:

Getting Started 2

http://www.pdflib.com/pdflib/index.html
http://www.adobe.com/

PDF Generation With PHP

Getting Started 3

Anatomy Lesson
Let's take a closer look at the code used in the example above.

Creating a PDF file in PHP involves four basic steps: creating a handle for the document; registering fonts and
colours for the document; writing or drawing to the handle with various pre−defined functions; and saving the
final document.

Let's take the first step − creating a handle for the PDF document.

// create handle for new PDF document
$pdf = pdf_new();

This is accomplished via the pdf_new() function, which returns a handle to the document. This handle is then
used in all subsequent operations involving the PDF document.

Next up, you need to give the PDF file a name − this is accomplished via the pdf_open_file() function, which
requires the handle returned in the previous operation, together with a user−defined file name.

// open a file
pdf_open_file($pdf, "philosophy.pdf");

Once a document has been created, you can insert new pages in it with the pdf_begin_page() function,

// start a new page (A4)
pdf_begin_page($pdf, 595, 842);

and end pages with the − you guessed it! − pdf_end_page() function.

// end page
pdf_end_page($pdf);

Note that the pdf_begin_page() function requires two additional parameters, which represent the width and
height of the page to be created in points (a point is 1/72 of an inch). In case math isn't your strong suit, the
PHP manual provides width and height measurements for most standard page sizes, including A4, the one
used in the example above.

In between the calls to pdf_begin_page() and pdf_end_page() comes the code that actually writes something
to the PDF document, be it text, images or geometric shapes. In this case, all I'm doing is writing a line of text
to the document − so all I need to do is pick a font, and then use that font to write the text string I need to the

Anatomy Lesson 4

document.

Selecting and registering a font is accomplished via the pdf_findfont() and pdf_setfont() functions. The
pdf_findfont() function prepares a font for use within the document, and requires the name of the font, the
encoding to be used, and a Boolean value indicating whether or not the font should be embedded in the PDF
file; it returns a font object, which may be used via a call to pdf_setfont().

$arial = pdf_findfont($pdf, "Arial", "host", 1);
pdf_setfont($pdf,
$arial, 10);

Once the font has been set, the pdf_show_xy() function can be used to write a text string to a particular
position on the page.

// print text
pdf_show_xy($pdf, "There are more things in heaven and earth,
Horatio,",
50, 750); pdf_show_xy($pdf, "than are dreamt of in your
philosophy", 50,
730);

As you can see, this function requires a handle to the PDF document, a reference to the font object to be used,
the text string to be written (obviously!), and the X and Y coordinates of the position at which to begin writing
the text. These coordinates are specified with respect to the origin (0,0), which is located at the bottom left
corner of the document.

Once the text has been written, the page is closed via a call to pdf_end_page(). You can then add one or more
extra pages, or − as I've done here − simply close the document via pdf_close(). This will save the document
contents to the file specified in the initial call to pdf_open_file(), and destroy the document handle created.

PDF Generation With PHP

Anatomy Lesson 5

Pretty As A Picture
Now, that was a very simple example − but PHP's PDF extension allows you to do a lot more than just write
text to a page. Since a picture is worth a thousand words, consider this next example, which demonstrates the
process of adding an image to your newly−minted PDF document.

<?php
// create handle for new PDF document
$pdf = pdf_new();

// open a file
pdf_open_file($pdf, "philosophy.pdf");

// start a new page (A4)
pdf_begin_page($pdf, 595, 842);

// get and use a font object
$arial = pdf_findfont($pdf, "Arial", "host", 1);
pdf_setfont($pdf,
$arial, 10);

// print text
pdf_show_xy($pdf, "There are more things in heaven and earth,
Horatio,",
50, 750); pdf_show_xy($pdf, "than are dreamt of in your
philosophy", 50,
730);

// add an image under the text
$image = pdf_open_image_file($pdf, "jpeg", "shakespeare.jpg");
pdf_place_image($pdf, $image, 50, 650, 0.25);

// end page
pdf_end_page($pdf);

// close and save file
pdf_close($pdf);
?>

Here's the PDF output:

Pretty As A Picture 6

Most of the magic here happens via the pdf_open_image_file() and pdf_place_image() functions. The first
one accepts an image type − GIF, JPEG, TIFF or PNG − and file name as arguments, and returns an image
handle, which may then be re−used multiple times in the document.

The image handle returned in the previous step can be used by the pdf_place_image() function, which actually
takes care of positioning the image at a particular point on the page. The coordinates provided to this function
(the second and third arguments) refer to the position of the lower left corner of the image, while the fourth
argument specifies the scaling factor to use when displaying the image (a scaling factor of 1 will show the
image at actual size, while a factor of 0.5 will reduce the image to half its size).

PDF Generation With PHP

Pretty As A Picture 7

The Shortest Distance Between Two Points
Why stop there? PHP's PDF extension comes with a whole bag of functions designed to let you draw lines,
circles and other shapes in your PDF document. Consider the following example, which demonstrates the
process of drawing a line.

<?php
// create handle for new PDF document
$pdf = pdf_new();

// open a file
pdf_open_file($pdf, "letterhead.pdf");

// start a new page (A4)
pdf_begin_page($pdf, 595, 842);

// get and use a font object
$arial = pdf_findfont($pdf, "Arial", "host", 1);
pdf_setfont($pdf,
$arial, 12);

// set a colour for the line
pdf_setcolor($pdf, "stroke", "rgb", 0, 0, 0);

// place a logo in the top left corner
$image = pdf_open_image_file($pdf, "jpeg", "logo.jpg");
pdf_place_image($pdf, $image, 50, 785, 0.5);

// draw a line under the logo
pdf_moveto($pdf, 20, 780);
pdf_lineto($pdf, 575, 780);
pdf_stroke($pdf);

// draw another line near the bottom of the page
pdf_moveto($pdf, 20,
50); pdf_lineto($pdf, 575, 50); pdf_stroke($pdf);

// and write some text under it
pdf_show_xy($pdf, "Confidential and proprietary", 200, 35);

// end page
pdf_end_page($pdf);

// close and save file
pdf_close($pdf);
?>

The Shortest Distance Bet... 8

Here's what you should see in the PDF document

In this case, the process of drawing a line involves creative use of the pdf_moveto(), pdf_lineto() and
pdf_stroke() functions.

In the example above, I'd like to draw a line from the position (20,780) to the new position (575, 780). In
order to do this, I first need to place the cursor at the starting point (20,780), via a call to pdf_moveto().

pdf_moveto($pdf, 20, 780);

Next, I need to set the end point of the line, via pdf_lineto():

pdf_lineto($pdf, 575, 780);

Finally, the line is actually rendered using pdf_stroke().

pdf_stroke($pdf);

The stroke colour is set via a call to pdf_setcolor(), which accepts a number of parameters: the PDF document
handle, whether the colour being set is for "stroke", "fill" or "both", the colour scheme to use (RGB or
CMYK), and a list of colour values appropriate to the selected colour scheme.

pdf_setcolor($pdf, "stroke", "rgb", 0, 0, 0);

PDF Generation With PHP

The Shortest Distance Bet... 9

It's important to note that the list of colour values provided to pdf_setcolor() must be specified in terms of
percentage intensity − that is, the intensity of that colour, expressed as a percentage of the maximum intensity
possible. So, if I wanted to set red (RGB: 255,0,0) as the stroke colour, my call to pdf_setcolor() would look
like this,

pdf_setcolor($pdf, "stroke", "rgb", 1, 0, 0);

while a fill colour of yellow (RGB: 255,255,0) would be

pdf_setcolor($pdf, "fill", "rgb", 1, 1, 0);

PDF Generation With PHP

The Shortest Distance Bet... 10

Square Peg, Round Hole
Lines aren't the only thing you can draw − circles and rectangles also figure prominently on the menu. Take a
look at the following example, which demonstrates.

<?php
// create handle for new PDF document
$pdf = pdf_new();

// open a file
pdf_open_file($pdf, "shapes.pdf");

// start a new page (A4)
pdf_begin_page($pdf, 595, 842);

// set a fill colour
pdf_setcolor($pdf, "fill", "rgb", 1, 1, 0);

// set a stroke colour
pdf_setcolor($pdf, "stroke", "rgb", 0, 0, 0);

// draw a rectangle
pdf_rect($pdf, 50, 500, 200, 300);
pdf_fill_stroke($pdf);

// set a fill colour
pdf_setcolor($pdf, "fill", "rgb", 0, 1, 0);

// set a stroke colour
pdf_setcolor($pdf, "stroke", "rgb", 0, 0, 1);

// draw a circle
pdf_circle($pdf, 400, 600, 100);
pdf_fill_stroke($pdf);

// end page
pdf_end_page($pdf);

// close and save file
pdf_close($pdf);
?>

Here's the output:

Square Peg, Round Hole 11

In this case, the pdf_rect() function has been used to draw a rectangle, given the coordinates of the lower left
corner and the height and width. This rectangle has then been filled and outlined in two different colours, via
the pdf_fill_stroke() function.

pdf_setcolor($pdf, "fill", "rgb", 1, 1, 0);

pdf_setcolor($pdf, "stroke", "rgb", 0, 0, 0);

pdf_rect($pdf, 50, 500, 200, 300);

pdf_fill_stroke($pdf);

Circles are handled by the pdf_circle() function, which accepts three arguments: the X and Y coordinates of
the circle center, and the length of the circle radius.

pdf_circle($pdf, 400, 600, 100);

This ability to draw geometric shapes on the fly can come in handy in a number of different situations.
Consider the following one, in which a couple of "for" loops have been combined with the pdf_lineto()
function to generate a PDF line grid.

<?php
// create handle for new PDF document
$pdf = pdf_new();

// open a file
pdf_open_file($pdf, "grid.pdf");

// start a new page (A4)
pdf_begin_page($pdf, 595, 842);

// set a stroke colour
pdf_setcolor($pdf, "stroke", "rgb", 0, 0, 0);

// draw vertical lines (move along X axis)

PDF Generation With PHP

Square Peg, Round Hole 12

for ($x=0; $x<=595; $x+=20)
{
pdf_moveto($pdf, $x, 0);
pdf_lineto($pdf, $x, 842);
pdf_stroke($pdf);
}

// draw horizontal lines (move along Y axis)
for ($y=0; $y<=842; $y+=20)
{
pdf_moveto($pdf, 0, $y);
pdf_lineto($pdf, 595, $y);
pdf_stroke($pdf);
}

// end page
pdf_end_page($pdf);

// close and save file
pdf_close($pdf);
?>

Here's the output:

PDF Generation With PHP

Square Peg, Round Hole 13

Heaven Is A Place On Earth
You can set document information with the pdf_set_info_*() family of functions; this information identifies
the document creator, title and content. The following example demonstrates:

<?php
// create handle for new PDF document
$pdf = pdf_new();

// open a file
pdf_open_file($pdf, "philosophy.pdf");

// start a new page (A4)
pdf_begin_page($pdf, 595, 842);

// set document information
pdf_set_info_author($pdf, "William Shakespeare");
pdf_set_info_creator($pdf, "William Shakespeare");
pdf_set_info_title($pdf, "Hamlet"); pdf_set_info_subject($pdf,
"Act I
Scene 5"); pdf_set_info_keywords($pdf, "Horatio Hamlet
philosophy");

// get and use a font object
$arial = pdf_findfont($pdf, "Arial", "host", 1);
pdf_setfont($pdf,
$arial, 10);

// print text
pdf_show_xy($pdf, "There are more things in heaven and earth,
Horatio,",
50, 750); pdf_show_xy($pdf, "than are dreamt of in your
philosophy", 50,
730);

// end page
pdf_end_page($pdf);

// close and save file
pdf_close($pdf);
?>

And now, when you view the dynamically−generated PDF file in Acrobat Reader, you'll see this information
in the Document Properties window.

Heaven Is A Place On Eart... 14

PDF Generation With PHP

Heaven Is A Place On Eart... 15

Piece Of Pie
Now that you've got a good understanding of just how to go about creating PDF files, it's time to see a
real−life application. The following example demonstrates how PHP can accept numeric data and turn it into a
graph − specifically, a multi−coloured pie chart.

The form below asks for a series of data "slices", in the form of numeric data, separated by commas. Once
you've entered a few numbers, the "pie.php" script converts them from absolute numbers into data chunks of
different relative sizes, and uses these chunks to create a PDF document containing a pie chart, marking out
the different pie slices and filling them with different colours.

<html>
<head>
<basefont face=arial>
</head>

<body>
<h3>Pie Chart Generator</h3>
<table cellspacing="5" cellpadding="5">
<form action="pie.php" method=POST>
<tr>
<td>Enter numeric values (pie segments), separated by
commas</td> </tr>
<tr> <td><input type=text name=data></td> </tr> <tr>
<td><input
name="submit" type=submit value="Generate PDF Pie Chart"></td>
</tr>
</form> </table>

</body>
</html>

Here's the script that does all the work:

<?php
// raw data
$data = $_POST['data'];
$slices = explode(",", $data);

// initialize some variables
$sum = 0;
$degrees = Array();
$diameter = 200;
$radius = $diameter/2;

Piece Of Pie 16

// set up colours array for pie slices (rgb, as percentages of
intensity) // add more to these if you like $colours = array(
array(0,0,0),
array(0,0,1),
array(0,1,0),
array(1,0,0),
array(0,1,1),
array(1,1,0),
array(1,0,1),
);

// calculate sum of slices
$sum = array_sum($slices);

// convert each slice into corresponding percentage of
360−degree circle
for ($y=0; $y<sizeof($slices); $y++) {
$degrees[$y] = ($slices[$y]/$sum) * 360;
}

// start building the PDF document
// create handle for new PDF document
$pdf = pdf_new();

// open a file
pdf_open_file($pdf, "chart.pdf");

// start a new page (A4)
pdf_begin_page($pdf, 500, 500);

// set a stroke colour
pdf_setcolor($pdf, "stroke", "rgb", 1, 1, 0);

// draw baseline
pdf_moveto($pdf, 250, 250);
pdf_lineto($pdf, 350, 250);
pdf_stroke($pdf);

for ($z=0; $z<sizeof($slices); $z++)
{
// set a fill colour
pdf_setcolor($pdf, "fill", "rgb", $colours[$z][0],
$colours[$z][1], $colours[$z][2]);

// calculate coordinate of end−point of each arc by obtaining
// length of segment and adding radius
// remember that cos() and sin() return value in radians
// and have to be converted back to degrees!
$end_x = round(250 + ($radius * cos($last_angle*pi()/180)));

PDF Generation With PHP

Piece Of Pie 17

$end_y = round(250 + ($radius * sin($last_angle*pi()/180)));

// demarcate slice with line
pdf_moveto($pdf, 250, 250);
pdf_lineto($pdf, $end_x, $end_y);

// calculate and draw arc corresponding to each slice
pdf_arc($pdf, 250, 250, $radius, $last_angle,
($last_angle+$degrees[$z]));

// store last angle
$last_angle = $last_angle+$degrees[$z];

// fill slice with colour
pdf_fill_stroke($pdf);
}

// redraw the circle outline
pdf_circle($pdf, 250, 250, 100);
pdf_stroke($pdf);

// end page
pdf_end_page($pdf);

// close and save file
pdf_close($pdf);

?>

The data entered into the form is passed to the "pie.php" script via a variable named $data; this data is then
split into its individual components with the explode() function, and each individual value is placed in the
$slices array. A loop then converts these numbers into degrees of a circle, and draws arcs for each slice. In
each iteration of the loop, the coordinate of the end point of the arc is also calculated and a line segment in
drawn to demarcate the arc from the rest of the circle. Once the pie segment has been drawn, the
pdf_fill_stroke() function is used to fill it with colour; this colour is obtained from the $colours array.

I'm not going to go into the details of how the script calculates the length of each arc and line segment − the
script includes commented code fragments, which should explain most of the details.

If you enter five data slices of equal value, your pie chart will look like this,

PDF Generation With PHP

Piece Of Pie 18

Whereas if you enter two slices of equal value, it will look like this:

Go on − play with it and see how the various slices change in shape to reflect the relative sizes of your data
chunks. And while you're enjoying yourself, I'll bid you adieu...till next time!

Note: All examples in this article have been tested on Linux/i586 with Apache 1.3.12 and PHP 4.2.0.
Examples are illustrative only, and are not meant for a production environment. Melonfire provides no
warranties or support for the source code described in this article. YMMV!

PDF Generation With PHP

Piece Of Pie 19

	Table of Contents
	Ahead Of The Game
	Getting Started
	Anatomy Lesson
	Pretty As A Picture
	The Shortest Distance Between Two Points
	Square Peg, Round Hole
	Heaven Is A Place On Earth
	Piece Of Pie

