
By icarus

 This article copyright Melonfire 2000−2002. All rights reserved.

http://www.melonfire.com/

Table of Contents
Fame And Immense Fortune...1

Have Content, Will Syndicate..2

Switching Channels...3

Fresh Meat...7

Capture The Flag..11

Nesting Time..14

Back To Class..18

A Free Lunch...25

Adding A Little Style..27

Homework...30

Plugging RDF Content Into Your Web Site With PHP

i

Fame And Immense Fortune
Imagine a site that carried the latest news from the hottest portals on the Web. Stock prices, weather
information, news stories, threaded discussions, software releases...all updated dynamically, on an hourly
basis, without any manual intervention. Imagine the traffic such a site would get. Imagine the advertising
dollars that would pour in, and the adulation that the webmaster would receive.

Now stop imagining and start reading, because, if you pay close attention, that webmaster could be you and
that site could be yours. All you need is a little imagination, some clever PHP coding and a couple of free RSS
files. And, obviously, the remaining nine pages of this article.

Fame And Immense Fortune 1

Have Content, Will Syndicate
We'll start with the basics − what the heck is RSS anyhow?

RSS (the acronym stands for RDF Site Summary) is a format originally devised by Netscape to distribute
information about the content on its My.Netscape.Com portal. The format has gone through many iterations
since its introduction in early 1997 − take a look at the end of this article for links to information on RSS's
long and complicated history − but seems to have stabilized at RSS 1.0, an RDF−compliant version that is
both lightweight and full−featured.

RSS makes it possible for webmasters to publish and distribute information about what's new and interesting
on a particular site at a particular point in time. This information, which could range from a list of news
articles to stock market data or weather forecasts, is published as a well−formed XML document, and can
therefore be parsed, processed and rendered by any XML parser.

By making it possible to distribute a frequently−updated list of the latest information about a particular Web
site, RSS opens the door to simple, easy content syndication over the Web. In order to understand how,
consider the following simple example:

Site A, a news site (a "content syndicator"), could publish, on a hourly basis, an RSS document containing a
list of the latest news from around the world, together with links to the full article on the site. This RSS
document could be picked up by another Web site (Site B, a "content aggregator"), parsed, and displayed on
Site B's index page. Every time Site A publishes a new RSS document, Site B's index page automatically gets
updated with the latest news.

This kind of arrangement works for both organizations involved in the transaction. Since the links within the
RSS document all point to articles on Site A, Site A will immediately experience an increase in visitors and
site traffic. And Site B's webmaster can take the week off, since he now has a way to automagically update his
index page, simply by linking it to the dynamic content being published by Site A.

Quite a few popular Web sites make an RSS or RDF news feed available to the public at large. Freshmeat,
(http://www.freshmeat.net) and Slashdot (http://www.slashdot.org) both have one, and so do many others. I'll
be using Freshmeat's RDF file extensively over the course of this article; however, the techniques described
here can be applied to any RSS 1.0 or RDF file.

Have Content, Will Syndic... 2

http://www.freshmeat.net
http://www.slashdot.org

Switching Channels
An RSS document typically contains a list of resources (URLs), marked up with descriptive metadata. Here's
an example:

<?xml version="1.0" encoding="UTF−8"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
xmlns="http://purl.org/rss/1.0/">

<channel rdf:about="http://www.melonfire.com/">
<title>Trog</title>
<description>Well−written technical articles and
tutorials on Web technologies</description>

<link>http://www.melonfire.com/community/columns/trog/</link>
<items>
<rdf:Seq>
<li
rdf:resource="http://www.melonfire.com/community/columns/trog/article.ph
p?id
=100" />
<li
rdf:resource="http://www.melonfire.com/community/columns/trog/article.ph
p?id
=71" />
<li
rdf:resource="http://www.melonfire.com/community/columns/trog/article.ph
p?id
=62" />
</rdf:Seq>
</items>
</channel>

<item
rdf:about="http://www.melonfire.com/community/columns/trog/article.php?i
d=10
0">
<title>Building A PHP−Based Mail Client (part 1)</title>

<link>http://www.melonfire.com/community/columns/trog/article.php?id=100
</li
nk>
<description>Ever wondered how Web−based mail clients
work? Find out here.</description>
</item>

Switching Channels 3

<item
rdf:about="http://www.melonfire.com/community/columns/trog/article.php?i
d=71">
<title>Using PHP With XML (part 1)</title>

<link>http://www.melonfire.com/community/columns/trog/article.php?id=71<
/link>
<description>Use PHP's SAX parser to parse XML data and
generate HTML pages.</description>
</item>

<item
rdf:about="http://www.melonfire.com/community/columns/trog/article.php?i
d=62">
<title>Access Granted</title>

<link>http://www.melonfire.com/community/columns/trog/article.php?id=62<
/link>
<description>Precisely control access to information
with the mySQL grant tables.</description>
</item>

</rdf:RDF>

As you can see, an RDF file is split up into very clearly−demarcated sections. First comes the document
prolog,

<?xml version="1.0" encoding="UTF−8"?>

and namespace declarations in the root element.

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
xmlns="http://purl.org/rss/1.0/">

This is followed by a <channel> block, which contains general information on the channel that is described by
this RDF file. In the example above, the channel is Melonfire's Trog column, which gets updated every week
with new technical articles and tutorials.

<channel rdf:about="http://www.melonfire.com/">
<title>Trog</title>
<description>Well−written technical articles and
tutorials on Web technologies</description>

Plugging RDF Content Into Your Web Site With PHP

Switching Channels 4

<link>http://www.melonfire.com/community/columns/trog/</link>
<items>
<rdf:Seq>
<li
rdf:resource="http://www.melonfire.com/community/columns/trog/article.ph
p?id
=100" />
<li
rdf:resource="http://www.melonfire.com/community/columns/trog/article.ph
p?id
=71" />
<li
rdf:resource="http://www.melonfire.com/community/columns/trog/article.ph
p?id
=62" />
</rdf:Seq>
</items>
</channel>

The <channel> block contains an <items> block, which contains a sequential list of all the resources described
within the RDF document. This list is formulated as a series of elements, which may be familiar to you
from HTML. Every resource in this block corresponds to a resource described in greater detail in a subsequent
<item> block (further down).

<items>
<rdf:Seq>
<li
rdf:resource="http://www.melonfire.com/community/columns/trog/article.ph
p?id
=100" />
<li
rdf:resource="http://www.melonfire.com/community/columns/trog/article.ph
p?id
=71" />
<li
rdf:resource="http://www.melonfire.com/community/columns/trog/article.ph
p?id
=62" />
</rdf:Seq>
</items>

It's also possible to intersperse an 

<item rdf:about="http://freshmeat.net/releases/69583/">
<title>sloop.splitter 0.2.1</title>
<link>http://freshmeat.net/releases/69583/</link>
<description>A real time sound effects program.</description>
<dc:date>2002−02−11T04:52−06:00</dc:date>
</item>

<item rdf:about="http://freshmeat.net/releases/69581/">
<title>apacompile 1.9.9</title>
<link>http://freshmeat.net/releases/69581/</link>
<description>A full−featured Apache compilation
HOWTO.</description>
<dc:date>2002−02−11T04:52−06:00</dc:date>
</item>

<!−− and so on −>

</rdf:RDF>

And here's the PHP script to parse it and display the data within it:

<?php
// XML file
$file = "fm−releases.rdf";

// set up some variables for use by the parser

Plugging RDF Content Into Your Web Site With PHP

Fresh Meat 8

$currentTag = "";
$flag = "";

// create parser
$xp = xml_parser_create();

// set element handler
xml_set_element_handler($xp, "elementBegin", "elementEnd");
xml_set_character_data_handler($xp, "characterData");
xml_parser_set_option($xp, XML_OPTION_CASE_FOLDING, TRUE);

// read XML file
if (!($fp = fopen($file, "r")))
{
die("Could not read $file");
}

// parse data
while ($xml = fread($fp, 4096))
{
if (!xml_parse($xp, $xml, feof($fp)))
{
die("XML parser error: " .
xml_error_string(xml_get_error_code($xp)));
}
}

// destroy parser
xml_parser_free($xp);

// opening tag handler
function elementBegin($parser, $name, $attributes)
{
global $currentTag, $flag;
// export the name of the current tag to the global scope
$currentTag = $name;
// if within an item block, set a flag
if ($name == "ITEM")
{
$flag = 1;
}
}

// closing tag handler
function elementEnd($parser, $name)
{
global $currentTag, $flag;
$currentTag = "";
// if exiting an item block, print a line and reset the flag

Plugging RDF Content Into Your Web Site With PHP

Fresh Meat 9

if ($name == "ITEM")
{
echo "<hr>";
$flag = 0;
}
}

// character data handler
function characterData($parser, $data)
{
global $currentTag, $flag;
// if within an item block, print item data
if (($currentTag == "TITLE" || $currentTag == "LINK" ||
$currentTag ==
"DESCRIPTION") && $flag == 1)
{
echo "$currentTag: $data
";
}
}

?>

Don't get it yet? The next page has an explanation.

Plugging RDF Content Into Your Web Site With PHP

Fresh Meat 10

Capture The Flag
The first step in this script is to set up some global variables:

// XML file
$file = "fm−releases.rdf";

// set up some variables for use by the parser
$currentTag = "";
$flag = "";

The $currentTag variable will hold the name of the element that the parser is currently processing − you'll see
why this is needed shortly.

Since my ultimate goal is to display the individual items in the channel, with links, I also need to know when
the parser has exited the <channel>...</channel> block and entered the <item>...</item> sections of the
document. Since I'm using a SAX parser, which operates in a sequential manner, there is no parser API
available to discover depth or location in the tree. So I have to invent my own mechanism to do this − which
is where the $flag variable comes in.

The $flag variable will be used to find out if the parser is within the <channel> block or the <item> block.

The next step is to initialize the SAX parser and begin parsing the RSS document.

// create parser
$xp = xml_parser_create();

// set element handler
xml_set_element_handler($xp, "elementBegin", "elementEnd");
xml_set_character_data_handler($xp, "characterData");
xml_parser_set_option($xp, XML_OPTION_CASE_FOLDING, TRUE);

// read XML file
if (!($fp = fopen($file, "r")))
{
die("Could not read $file");
}

// parse data
while ($xml = fread($fp, 4096))
{
if (!xml_parse($xp, $xml, feof($fp)))
{
die("XML parser error: " .
xml_error_string(xml_get_error_code($xp)));

Capture The Flag 11

}
}

// destroy parser
xml_parser_free($xp);

This is a fairly standard sequence of commands, and the comments should explain it sufficiently. The
xml_parser_create() function is used to instantiate the parser, and assign it to the handle $xp. Next, callback
functions are set up to handle opening and closing tags, and the character data within them. Finally, the
xml_parse() function, in conjunction with a bunch of fread() calls, is used to read the RDF file and parse it.

Each time an opening tag is encountered in the document, the opening tag handler elementBegin() is called.

// opening tag handler
function elementBegin($parser, $name, $attributes)
{
global $currentTag, $flag;
// export the name of the current tag to the global scope
$currentTag = $name;
// if within an item block, set a flag
if ($name == "ITEM")
{
$flag = 1;
}
}

This function receives, as function argument, the name of the current tag and its attributes (if any). This tag
name is assigned to the global $currentTag variable, and − if the tag is an opening <item> tag − the $flag
variable is set to 1.

Conversely, when a closing tag is found, the closing tag handler elementEnd() is invoked.

// closing tag handler
function elementEnd($parser, $name)
{
global $currentTag, $flag;
$currentTag = "";
// if exiting an item block, print a line and reset the flag
if ($name == "ITEM")
{
echo "<hr>";
$flag = 0;
}
}

Plugging RDF Content Into Your Web Site With PHP

Capture The Flag 12

This closing tag handler also receives the tag name as parameter. If this is a closing </item> tag, the value of
$flag is reset to 0, and the value of $currentTag is cleared.

Now, what about the data between the tags, which is what we're really interested in? Say hello to the character
data handler, characterData().

// character data handler
function characterData($parser, $data)
{
global $currentTag, $flag;
// if within an item block, print item data
if (($currentTag == "TITLE" || $currentTag == "LINK" ||
$currentTag ==
"DESCRIPTION") && $flag == 1)
{
echo "$currentTag: $data
";
}
}

Now, if you look at the arguments passed to this function, you'll see that characterData() only receives the
data between the opening and closing tag − it has no idea which particular tag the parser is currently
processing. Which is why we needed the global $currentTag variable in the first place (told you this would
make sense eventually!)

If the value of $flag is 1 − in other words, if the parser is currently within an <item>...</item> block − and if
the element currently being processed is either a <title>, <link> or <description> element, then the data is
printed to the output device (in this case, the Web browser), followed by a line break.

The entire RDF document will be processed in this sequential manner, with output appearing every time an
item is found. Here's what you'll see when you run the script:

Plugging RDF Content Into Your Web Site With PHP

Capture The Flag 13

Nesting Time
Now, the previous example was just fine for illustrative purposes − but if you're serious about plugging
content into your Web site, you're going to need something a lot prettier. So take a look at this evolution of the
previous script, which makes a few additions to simplify the task of formatting the RDF data.

<html>
<head>
<basefont face="Verdana">
</head>
<body>

<table border="0" cellspacing="5" cellpadding="5">
<tr>
<td>New releases on freshmeat.net today:</td>
</tr>

<?php
// XML file
$file = "http://www.freshmeat.net/backend/fm−releases.rdf";

// set up some variables for use by the parser
$currentTag = "";
$flag = "";
$count = 0;

// this is an associative array of channel data with keys
("title",
"link",
"description")
$channel = array();

// this is an array of arrays, with each array element
representing an
<item> // each outer array element is itself an associative
array
// with keys ("title", "link", "description")
$items = array();

// opening tag handler
function elementBegin($parser, $name, $attributes)
{
global $currentTag, $flag;
$currentTag = $name;
// set flag if entering <channel> or <item> block
if ($name == "ITEM")
{

Nesting Time 14

$flag = 1;
}
else if ($name == "CHANNEL")
{
$flag = 2;
}
}

// closing tag handler
function elementEnd($parser, $name)
{
global $currentTag, $flag, $count;
$currentTag = "";

// set flag if exiting <channel> or <item> block
if ($name == "ITEM")
{
$count++;
$flag = 0;
}
else if ($name == "CHANNEL")
{
$flag = 0;
}
}

// character data handler
function characterData($parser, $data)
{
global $currentTag, $flag, $items, $count, $channel;
$data = trim(htmlspecialchars($data));
if ($currentTag == "TITLE" || $currentTag == "LINK" ||
$currentTag ==
"DESCRIPTION")
{
// add data to $channels[] or $items[] array
if ($flag == 1)
{
$items[$count][strtolower($currentTag)] .=
$data;
}
else if ($flag == 2)
{
$channel[strtolower($currentTag)] .= $data;
}
}

}

Plugging RDF Content Into Your Web Site With PHP

Nesting Time 15

// create parser
$xp = xml_parser_create();

// set element handler
xml_set_element_handler($xp, "elementBegin", "elementEnd");
xml_set_character_data_handler($xp, "characterData");
xml_parser_set_option($xp, XML_OPTION_CASE_FOLDING, TRUE);
xml_parser_set_option($xp, XML_OPTION_SKIP_WHITE, TRUE);

// read XML file
if (!($fp = fopen($file, "r")))
{
die("Could not read $file");
}

// parse data
while ($xml = fread($fp, 4096))
{
if (!xml_parse($xp, $xml, feof($fp)))
{
die("XML parser error: " .
xml_error_string(xml_get_error_code($xp)));
}
}

// destroy parser
xml_parser_free($xp);

// now iterate through $items[] array
// and print each item as a table row
foreach ($items as $item)
{
echo "<tr><td>" . $item["title"]
.
"
" . $item["description"] . "</td></tr>"; }

?>
</table>
</body>
</html>

The major difference between this iteration and the previous one is that this one creates two arrays to hold the
information extracted during the parsing process. The $channel array is an associative array which holds basic
descriptive information about the channel being processed, while the $items array is a two−dimensional array
containing information on the individual channel items. Every element of the $items array is itself an
associative array, with named keys for the item title, URL and description; the total number of elements in
$items is equal to the total number of <item> blocks in the RDF document.

Plugging RDF Content Into Your Web Site With PHP

Nesting Time 16

Note also the change to the $flag variable, which now holds two values depending on whether a
<channel>...</channel> or <item>...</item> block is being processed. This is necessary so that the parser puts
the information into the appropriate array.

Once the document has been fully parsed, it's a simple matter to iterate through the $items array and print
each item as a table row. Here's what the end result looks like:

Plugging RDF Content Into Your Web Site With PHP

Nesting Time 17

Back To Class
Now, with all this power at your command, why on earth would you want to restrict yourself to just a single
RDF feed? As I said earlier, most major sites make snapshots of their content available on a regular basis...and
it's fairly simple to plug all these different feeds into your own site. Let's see how.

The first thing to do is modularize the code from the previous example, so that you don't need to repeat it over
and over again for every single feed. I'm going to simplify things by packaging it into a class, and including
the class file into my final PHP script.

Here's the class:

<?
class RDFParser
{
//
// variables
//

// set up local variables for this class
var $currentTag = "";
var $flag = "";
var $count = 0;

// this is an associative array of channel data with keys
("title", "link", "description")
var $channel = array();

// this is an array of arrays, with each array element
representing an <item>
// each outer array element is itself an associative array
// with keys ("title", "link", "description")
var $items = array();

//
// methods
//

// set the name of the RDF file to parse
// this is usually a local file
// you may set it to a remote file if your PHP build supports
URL fopen()
function setResource($file)
{
$this−>file = $file;
}

Back To Class 18

// parse the RDF file set with setResource()
// this populates the $channel and $items arrays
function parseResource()
{
// create parser
$this−>xp = xml_parser_create();

// set object reference
xml_set_object($this−>xp, $this);

// set handlers and parser options
xml_set_element_handler($this−>xp, "elementBegin",
"elementEnd");
xml_set_character_data_handler($this−>xp,
"characterData");
xml_parser_set_option($this−>xp,
XML_OPTION_CASE_FOLDING, TRUE);
xml_parser_set_option($this−>xp, XML_OPTION_SKIP_WHITE,
TRUE);

// read XML file
if (!($fp = fopen($this−>file, "r")))
{
die("Could not read $this−>file");
}

// parse data
while ($xml = fread($fp, 4096))
{
if (!xml_parse($this−>xp, $xml, feof($fp)))
{
die("XML parser error: " .
xml_error_string(xml_get_error_code($this−>xp)));
}
}

// destroy parser
xml_parser_free($this−>xp);
}

// opening tag handler
function elementBegin($parser, $name, $attributes)
{
$this−>currentTag = $name;
// set flag if entering <channel> or <item> block
if ($name == "ITEM")
{

Plugging RDF Content Into Your Web Site With PHP

Back To Class 19

$this−>flag = 1;
}
else if ($name == "CHANNEL")
{
$this−>flag = 2;
}
}

// closing tag handler
function elementEnd($parser, $name)
{
$this−>currentTag = "";

// set flag if exiting <channel> or <item> block
if ($name == "ITEM")
{
$this−>count++;
$this−>flag = 0;
}
else if ($name == "CHANNEL")
{
$this−>flag = 0;
}
}

// character data handler
function characterData($parser, $data)
{
$data = trim(htmlspecialchars($data));
if ($this−>currentTag == "TITLE" || $this−>currentTag ==
"LINK" || $this−>currentTag == "DESCRIPTION")
{
// add data to $channels[] or $items[] array
if ($this−>flag == 1)
{

$this−>items[$this−>count][strtolower($this−>currentTag)] .=
$data;
}
else if ($this−>flag == 2)
{

$this−>channel[strtolower($this−>currentTag)] .= $data;
}
}
}

// return an associative array containing channel information
// (the $channel[] array)

Plugging RDF Content Into Your Web Site With PHP

Back To Class 20

function getChannelInfo()
{
return $this−>channel;
}

// return an associative array of arrays containing item
information
// (the $items[] array)
function getItems()
{
return $this−>items;
}

}
?>

If you're familiar with PHP classes, this should be fairly simple to understand. If you're not, flip forward to the
end of this article for a link to a great article on how classes work, and then read the listing above again.

Before we proceed to use this class, I'm going to take a few minutes out to point out one line from it − the call
to xml_set_object() above.

Now, how about using this class to actually generate a Web page with multiple content feeds?

<?
include("class.RDFParser.php");
// how many items to display in each channel
$maxItems = 5;
?>
<html>
<head>
<basefont face="Verdana">
<body>

<table width="100%" border="0" cellspacing="5"
cellpadding="5"> <tr>
<!−− first cell −−>
<td valign=top align=left>

<?
// get and parse freshmeat.net channel
$f = new RDFParser();
$f−>setResource("http://www.freshmeat.net/backend/fm−releases.rdf");
$f−>parseResource();
$f_channel = $f−>getChannelInfo();
$f_items = $f−>getItems();
// now format and print it...

Plugging RDF Content Into Your Web Site With PHP

Back To Class 21

?>
The latest from <a href=<? echo $f_channel["link"]; ?>><? echo
$f_channel["title"]; ?>
 <? // iterate through
items array
for ($x=0; $x<$maxItems; $x++) {
if (is_array($f_items[$x]))
{
// print data
$item = $f_items[$x];
echo "" .
$item["title"] . "";
}
}
?>

</td>

<!−− second cell −−>
<td align=center width=50%>
<i>Primary page content here</i>
</td>

<!−− third cell −−>
<td valign=top align=left>

<?
// get and parse slashdot.org channel
$s = new RDFParser();
$s−>setResource("http://slashdot.org/slashdot.rdf");
$s−>parseResource();
$s_channel = $s−>getChannelInfo();
$s_items = $s−>getItems();
// now format and print it...
?>
The latest from <a href=<? echo $s_channel["link"]; ?>><? echo
$s_channel["title"]; ?>
 <? // iterate through
items array
for ($x=0; $x<$maxItems; $x++) {
if (is_array($s_items[$x]))
{
// print data
$item = $s_items[$x];
echo "" .
$item["title"] . "";
}
}
?>

Plugging RDF Content Into Your Web Site With PHP

Back To Class 22

</td>

</tr>
</table>

</body>
</head>
</html>

This is fairly simple. Once an instance of the class has been instantiated with the "new" keyword,

$f = new RDFParser();

class methods can be used to set the location of the RDF file to be parsed

$f−>setResource("http://www.freshmeat.net/backend/fm−releases.rdf");
$f−>parseResource();

and to retrieve the $channel and $items arrays for further processing.

<?
$f_channel = $f−>getChannelInfo();
$f_items = $f−>getItems();
?>

The latest from <a href=<? echo $f_channel["link"]; ?>><? echo
$f_channel["title"]; ?>
 <? // iterate through
items array
for ($x=0; $x<$maxItems; $x++) {
if (is_array($f_items[$x]))
{
// print data
$item = $f_items[$x];
echo "" .
$item["title"] . "";
}
}
?>

Plugging RDF Content Into Your Web Site With PHP

Back To Class 23

Each time you reload the script above, the appropriate RDF files will be fetched from the specified locations,
parsed and displayed in the format required.

If you have a high−traffic site, you might find this constant "pull" to be more of a nuisance than anything else,
especially if the RDF data in question is not updated all that often. In that case, it might be wise to explore the
option of caching the RDF data locally, either by extending the example above to include caching features, or
by using a cron job to download a local copy of the latest RDF file to your Web server every couple hours,
and using the local copy instead of the "live" one.

Plugging RDF Content Into Your Web Site With PHP

Back To Class 24

A Free Lunch
Now, the class I've written above is meant primarily for illustrative purposes, and perhaps for low−traffic
sites. If you're looking for something more professional, there are a number of open−source RDF parsers out
there which bring additional features (including caching) to the table. Let's look at some examples of how
they can be used.

The first of these is the RDF parser class, developed by Stefan Saasen for fase4 and available for free
download from http://www.fase4.com/rdf/. This is a very full−featured RDF parser, and includes support for
caching and authentication via proxy. Here's an example of how it might be used:

<html>
<head>
<style type="text/css">
body {font−family: Verdana; font−size: 11px;}
.fase4_rdf {font−size: 13px; font−family: Verdana}
.fase4_rdf_title
{font−size: 13px; font−weight : bolder;}
</style>
</head>
<body>
<?
// include class
include("rdf.class.php");

// instantiate object
$rdf = new fase4_rdf;

// set number of items to display
$rdf−>set_max_item(5);

// set RDF engine options
$rdf−>use_dynamic_display(true);
$rdf−>set_Options(array("image"=>"hidden",
"textinput"=>"hidden"));

// parse and display data
$rdf−>parse_RDF("http://www.freshmeat.net/backend/fm−releases.rdf");
$rdf−>finish();
?>
</body>
</html>

An option to this is the PHP RDF parser class developed by Jason Williams, available at
http://www.nerdzine.net/php_rdf/ . This is a bare−bones PHP class, which exposes a few basic methods, but a
large number of properties that you can manipulate to format the processed data to your satisfaction.

A Free Lunch 25

http://www.fase4.com/rdf/
http://www.nerdzine.net/php_rdf/

<html>
<head>
<basefont face="Verdana">
</head>
<body link="Red" vlink="Red" alink="Red">
<?
include("rdf_class.php");

// this needs to be a local file
$f = new rdfFile("./fm−releases.rdf");
$f−>parse(True);
$f−>ReturnTable(True, "black", "white", "100%");
?>
</body>
</html>

Documentation for both these classes is available on their respective Web sites.

Plugging RDF Content Into Your Web Site With PHP

A Free Lunch 26

Adding A Little Style
In case you don't like the thought of iterating through all those PHP arrays and marking them up with HTML,
you also have the option to format and display the data using an XSLT stylesheet. PHP 4.1 comes with
support for the Sablotron XSLT processor via a new XSLT API, which can be used to combine an XSLT
stylesheet with an XML (or, in this case, RDF) document to easily transform XML markup into
browser−readable HTML.

I'm not going to get into the details of this − take a look at the PHP manual, or at the links at the end of the
article, for detailed information − but I will demonstrate what I mean with a simple example. First, here's the
stylesheet:

<?xml version="1.0"?>

<xsl:stylesheet
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
xmlns:rss="http://purl.org/rss/1.0/"
xmlns:dc="http://purl.org/dc/elements/1.1/" version="1.0">

<!−− main page −−>
<xsl:template match="/rdf:RDF">
<html>
<head>
<basefont face="Arial" size="2"/>
</head>
<body>
<xsl:apply−templates select="rss:channel" />

<xsl:apply−templates select="rss:item" />

</body>
</html>
</xsl:template>

<!−− channel −−>
<xsl:template match="rss:channel">

<a>
<xsl:attribute name="href"><xsl:value−of select="rss:link"
/></xsl:attribute>
<xsl:value−of select="rss:title" />

</xsl:template>

<!−− item −−>

Adding A Little Style 27

<xsl:template match="rss:item">

<a>
<xsl:attribute name="href"><xsl:value−of select="rss:link"
/></xsl:attribute>
<xsl:value−of select="rss:title" />

<xsl:value−of select="rss:description" />
</xsl:template>

</xsl:stylesheet>

And here's the PHP script that combines the stylesheet above with the Freshmeat RDF document described
previously to generate an HTML page:

<?php
// XML file
// this needs to be a local file
$xml = "fm−releases.rdf";

// XSLT file
$xslt = "fm.xsl";

// create a new XSLT processor
$xp = xslt_create();

// transform the XML file as per the XSLT stylesheet
// return the result to $result
$result = xslt_process($xp, $xml, $xslt);
if ($result)
{
// print it
echo $result;
}

// clean up
xslt_free($xp);

?>

Fairly simple and self−explanatory again, I think. The two documents are merged to produce the following
composite output:

Plugging RDF Content Into Your Web Site With PHP

Adding A Little Style 28

This is an alternative, and perhaps simpler (though not all that optimal), method of turning RDF data
browser−readable HTML. Note, however, that you will need to have an external program running (probably
via cron) to update your local copy of the RDF file on a regular basis, since the PHP XSLT processor may
have trouble accessing a remote file.

Plugging RDF Content Into Your Web Site With PHP

Adding A Little Style 29

Homework
And that's about it for the moment. If you're interested in learning more about the technologies and techniques
discussed in this article, you might want to consider visiting the following links:

The RSS 1.0 specification, at http://www.purl.org/rss/1.0/

An RSS timeline, at http://backend.userland.com/stories/rss091

The W3C's Web site on RDF, at http://www.w3.org/RDF/

A discussion of SAX and DOM programming in PHP, at
http://www.devshed.com/Server_Side/XML/XMLwithPHP

A discussion of XSLT transformation with PHP, at http://www.devshed.com/Server_Side/XML/XSLTrans

A discussion of PHP classes, at http://www.devshed.com/Server_Side/PHP/BackToClass

A discussion of XML basics, at http://www.devshed.com/Server_Side/XML/XMLBasic

A discussion of XSLT basics, at http://www.devshed.com/Server_Side/XML/XSLBasics

The PHP manual page for SAX functions, at http://www.php.net/manual/en/ref.xml.php

The PHP manual page for XSLT functions, at http://www.php.net/manual/en/ref.xslt.php

Till next time...stay healthy! Note: All examples in this article have been tested on Linux/i386 with Apache
1.3.12 and PHP 4.1.1. Examples are illustrative only, and are not meant for a production environment.
Melonfire provides no warranties or support for the source code described in this article. YMMV!

Homework 30

http://www.purl.org/rss/1.0/
http://backend.userland.com/stories/rss091
http://www.w3.org/RDF/
http://www.devshed.com/Server_Side/XML/XMLwithPHP
http://www.devshed.com/Server_Side/XML/XSLTrans
http://www.devshed.com/Server_Side/PHP/BackToClass
http://www.devshed.com/Server_Side/XML/XMLBasic
http://www.devshed.com/Server_Side/XML/XSLBasics
http://www.php.net/manual/en/ref.xml.php
http://www.php.net/manual/en/ref.xslt.php

	Table of Contents
	Fame And Immense Fortune
	Have Content, Will Syndicate
	Switching Channels
	Fresh Meat
	Capture The Flag
	Nesting Time
	Back To Class
	A Free Lunch
	Adding A Little Style
	Homework

