

Chapter 6

Implement Threat

Control Measures

This chapter describes the third component of an effective information secu-
rity/IA program — implementing threat control measures. Outputs from the
previous component, performing vulnerability and threat analyses, are used
to prioritize the implementation of threat control measures. The following
activities are performed during the implementation of threat control measures:

�

The extent of protection needed is determined.

�

Controllability, operational procedures, and in-service considerations
are evaluated.

�

Plans are made for contingencies and disaster recovery.

�

The use of perception management is considered.

�

IA design features and techniques are selected and implemented.

This book purposely uses the term “threat control measures” rather than
“countermeasures.” Countermeasures denote reactive responses to attacks. In
contrast, threat control measures designate a proactive strategy designed to
reduce the incidence of successful attacks and the severity of their consequences.

In 1991, Zebroski

445

 identified 11 common precursors to an accident/
incident by analyzing several major engineering catastrophes. Recently, Long
and Briant

340

 developed a corresponding proactive mitigating response to each
accident precursor. While Zebroski, Long, and Briant focused on safety, their
results are equally applicable to security and reliability. It is interesting to
review these recommendations in the context of threat control measures
because it demonstrates why the psychology of individuals and organizations
— both insiders and outsiders — must be considered in addition to technical
issues (see Exhibit 1).

AU1163-ch06-Frame Page 127 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Exhibit 1 Proactive Responses to Common Accident/Incident Precursors

Accident/Incident
Precursor

a

Proactive Response

b

1. Risk management
techniques not
used

1. Use proven techniques as an aid to technical excellence
(see Annex B):

�

IA analysis techniques (Exhibit B.2)

�

IA design techniques and features (Exhibit B.3)

�

IA verification techniques (Exhibit B.4)

�

IA accident/incident investigation techniques
(Exhibit B.5)

2. Little preparation
for severe events

2. Prepare and practice for emergencies:

�

Involve all stakeholders in contingency planning

�

Keep contingency plans up to date

�

Conduct practice drills regularly
3. Invincible mindset 3. Respect for technology:

�

Awareness of associated hazards

�

Awareness of residual risk exposure

�

Anticipating and preparing for the unexpected
4. Unnecessary

acceptance of
hazards in system
design or operation

4. Maximize safe, secure, and reliable system design and
operation:

�

Eliminate avoidable hazards, reduce remaining
hazards to ALARP

�

Conduct regular interdisciplinary safety and security
reviews

�

Conduct regular independent safety and security
reviews

5. Safety, security,
reliability matters
not recognized or
integrated into work
of organization

5. Clearly defined responsibilities and authority for safety,
security, and reliability matters:

�

Real authority

�

Prominent organizational role

�

Appropriate staffing levels and competency
6. Low priority given

to safety, security,
and reliability

6. Safety, security, and reliability are paramount:

�

Safety, security, and reliability are an integral part of
system design and operation

�

Employees accept responsibility for their actions
7. No systematic

processing of
experience from
elsewhere

7. Learning from others’ experiences:

�

Systematic gathering and analysis of lessons learned
from other projects: within and outside organization,
industrial sector, and country

8. Lessons learned
disregarded

8. Learning from ourselves:

�

Encouraging open discussion of what went wrong
and why

�

Implementing corrective and preventive action
9. Compliance means

safe, secure,
reliable enough

9. Striving for excellence:

�

Compliance necessary, but insufficient in itself

�

Continuous process/product improvement
10. Groupthink instead

of teamwork
10. Teamwork with robust decision-making:

�

Open sharing of ideas, opinions, concerns

�

Valuing dissenting views

AU1163-ch06-Frame Page 128 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Exhibit 2 illustrates the chronology of threat control measures. These
measures may be proactive or reactive, depending on whether or not they
are preceded by proper planning and analyses. It goes without saying that
actions which are preplanned will be more successful than those which are
not. Initially, threat control efforts focus on preventing faults, failures, vulner-
abilities, and attacks that could compromise a system or render it inoperable.
Given that this will not be possible in all situations, the ability to detect faults,
failures, and attempted attacks is provided.

344

 Anomalous behavior is charac-
terized to contain the consequences and formulate an appropriate response.
Once the appropriate response is taken, effort is focused on instigating
recovery

344

 or an emergency shutdown, as the situation warrants, and a return
to normal operations. The following chapter sections discuss how these threat
control measures are implemented.

6.1 Determine How Much Protection Is Needed

Chapter 4 explained how to determine what needs to be protected and why.
Chapter 5 explained how to determine the initial risk exposure. Now it is
time to determine the type, level, and extent of protection needed. The type,
level, and extent of protection needed is unique to each system. A variety of
factors are analyzed and synthesized to determine how much protection a
particular system needs, such as (see Exhibit 3):

1. A comparison of the initial risk exposure to the target risk exposure
2. An analysis of system entities and functions that are IA critical or IA related
3. The specification of must work functions (MWFs) and must not work

functions (MNWFs)
4. A reassessment of entity control analysis
5. An evaluation of the time element relative to proposed threat control

measures
6. A reexamination of privacy issues

Exhibit 1 Proactive Responses to Common Accident/Incident Precursors

(continued)

Accident/Incident
Precursor

a

Proactive Response

b

11. Diffuse
responsibilities

11. Accountability and openness:

�

Clearly defined duties and responsibilities

�

Procedures that allow room for professional
judgment

�

Open communication channels

a

Column one summarized/adapted from Zebroski, E., Lessons Learned from Catastrophes,

Risk Management: Expanding Horizons in Nuclear Power and Other Industries

, (Knief, R.
et al., Eds.), Hempshire Publishing Corporation, 1991.

b

Column two summarized/adapted from Long, R. and Briant, V., Vigilance Required: Les-
sons for Creating a Strong Nuclear Culture,

Journal of System Safety

, Q4, 1999, pp. 31–34.

AU1163-ch06-Frame Page 129 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Exhibit 2 Chronology of Threat Control Measures

A
U

1163-ch06-Fram
e Page 130 T

uesday, Septem
ber 11, 2001 8:02 A

M

© 2002 by CRC Press LLC

Exhibit 3 Summary of the Activities Involved in Determining the Level of Protection Needed

A
U

1163-ch06-Fram
e Page 131 T

uesday, Septem
ber 11, 2001 8:02 A

M

© 2002 by CRC Press LLC

The delta between the initial and target risk exposures is a prime factor
in determining the extent of protection needed and the threat control measures
to be implemented. The vulnerability and threat analyses (Chapter 5) produced
the initial risk exposure, which melded the severity and likelihood of each
vulnerability/threat pair with critical threat zones. This initial risk exposure is
compared to specified IA goals, applicable laws and regulations, etc. to
determine whether or not it is acceptable. In other words, is the initial risk
exposure consistent with the target risk exposure? If so (a rare occurrence),
no further action is needed. If not (the more likely case), threat control
measures need to be implemented to reduce the initial risk exposure to the
desired target. Residual risk is that which remains after threat control measures
have been implemented. Chapter 7 explains how to assess the effectiveness
of threat control measures.

A second factor used in determining the extent of protection needed is
the identification of IA-critical and IA-related system entities and functions.
IA-critical designates any condition, event, operation, process, or item whose
proper recognition, control, performance, or tolerance is essential to the safe,
reliable, and secure operation and support of a system. IA-related denotes a
system or entity that performs or controls functions which are activated to
prevent or minimize the effect of a failure of an IA-critical system or entity.
A third category consists of entities and functions that are neither IA-critical
nor IA-related. This distinction is illustrated in Exhibit 4 using the three
hypothetical systems developed thus far.

The determination of the level of protection needed is tempered by the
criticality of the system entity/function. After system entities and functions

Exhibit 4 High-Level Identification of Entity Criticality

Example
IA-Critical

Entity/Function
IA-Related

Entity/Function
Not IA-Critical or

IA-Related

Radiation
therapy system

Functions that control
the release of radiation

Functions that verify that
the type of radiation,
dosage, etc. are within
known safe parameters
and consistent with the
treatment plan

Functions that
abort or inhibit
the release of
energy when
an anomaly
is detected

Remote billing
system

Online banking
system

Access control,
authentication
functions

Intrusion
detection and
response
functions

Ancillary functions
not related to
account
transactions

ATC system Aircraft transmitter that
sends location signal

Radar signal transmitter/
receiver

ATC signal receiver
ATC terminal displays

Voice
communication
system

Ancillary functions
on ATC terminals
not related to air
traffic control
mission

AU1163-ch06-Frame Page 132 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

have been identified as being IA-critical, IA-related, or neither, this information
is correlated to the initial risk exposure. In other words, what is the risk
exposure for IA-critical and IA-related entities and functions? Is it higher or
lower than that for entities and functions that are not IA-critical or IA-related?

Many international standards recommend implementing automatic inhibits
to prevent the inadvertent operation of IA-critical functions. The standard
formula is that two independent inhibits are required to prevent the inad-
vertent operation of an IA-critical function that could result in a critical
accident/incident, while three independent inhibits are required to prevent
the inadvertent operation of an IA-critical function that could result in a
catastrophic accident/incident.

18,31,60,64,125,127,130

A third factor used in determining the extent of protection needed is the
specification of must work functions (MWFs) and must not work functions
(MNWFs). The concept of and need to specify MWFs and MNWFs originated
with NASA. An MWF is software that if not performed or performed incor-
rectly, inadvertently, or out of sequence could result in a hazard or allow
a hazardous condition to exist; for example: (1) software that directly
exercises command and control over potentially hazardous functions or
hardware, (2) software that monitors critical hardware components, and
(3) software that monitors the system for possible critical conditions or
states.

126,127

 An MNWF is a sequence of events or commands that is prohibited
because it would result in a system hazard;

126,127

 that is, an illegal state that
would have severe consequences. Remember that in the IA domain the
consequences of a hazard may or may not be physical.

In most cases, MWFs will be IA-critical. The logic that prevents an MNWF
from executing is also IA-critical. The risk exposure of MWFs and MNWFs is
evaluated as described above to determine the level of protection needed.

Often, there is a tight coupling between MWFs and MNWFs (see Exhibit 5).
For example, in simplest terms, an MWF may specify:

if x

→

 then y

A corresponding MNWF may be:

if not x

→

 then not y

MNWFs are uncovered through a review of MWFs, particularly an analysis of
all possible logic states or truth tables associated with MWFs. A HAZOP study
is also a good way to uncover MNWFs because of the inclusion of domain
experts in the process. Due to the rigor with which they are developed, formal
specifications are also a good source from which to identify MNWFs. Adequate
time is usually not taken to specify MNWFs; the emphasis during design and
development is on implementing, not inhibiting, functionality. Neglecting to
specify MNWFs creates an opportunity for serious vulnerabilities.

While estimating the type, level, and extent of protection a system needs, it
is useful to reassess the results of the entity control analysis. A careful review
of the entity control analysis should ensure that there is no single point of
failure. Entities over which the system owner has partial or no control should

AU1163-ch06-Frame Page 133 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

be of particular concern, especially if one of these entities is essential to the
correct operation of an IA-critical function or an MWF or the non-operation of
an MNWF. In this case, the level of protection needed increases, sometimes
dramatically. Contingency planning (see chapter section “Contingency Planning”)
should be undertaken to plan and prepare for the nonavailability or suboptimal
performance of these resources. At the same time, alternative designs that
employ redundancy, diversity, and fault tolerance should be evaluated. In the
spring of 1998, a major communications satellite and its automatic backup failed
for several hours. As reported by Garber,

269

 90 percent of U.S. pagers, or 35 to
40 million customers, some wireless ISPs, television and radio feeds, and credit
card verification companies lost service and were caught without a backup
strategy. This is a good example of what happens when the results of entity
control analysis and contingency planning are ignored.

The time element should not be ignored either when determining the level
of protection needed. There are two aspects of the time element to evaluate:
(1) the time window during which the protection is needed, and (2) the time
interval during which the proposed threat control measures will be effective.
In general, different operational modes/states and profiles occur at different
times during the day, during the week, on holidays, etc. The level of protection
needed may or may not be the same for each. As a result, the type, level,
and extent of protection needed for each of these scenarios should be
determined. Failing to do so could cause a system to be over- or under-
protected in a given situation.

Exhibit 5 High-Level Identification of MWFs and MNWFs

Example MWFs MNWFs

Radiation
therapy system

Functions responsible for
controlling the accurate
release of energy

Functions that verify which
parameters for a treatment
session are within known safe
limits and are consistent with
the treatment plan

Functions that would allow the
erroneous release of radiation

Functions that would allow
ongoing treatment plans or
historical treatment records to
be altered or deleted without
authorization

Online banking
system

Functions responsible for
maintaining the confidentiality
and integrity of transactions
and data

Functions that would allow
access to account information
without authorization

Functions that would allow
access control/authentication
features to be bypassed

ATC system Functions responsible for
maintaining the integrity and
availability of r/t signal location
information

Functions that allow r/t location
signal information to be
altered, deleted, or delayed

Functions that would allow two
controllers to direct multiple
aircraft to the same runway or
flight path at the same time

AU1163-ch06-Frame Page 134 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

A final factor to consider is privacy. As Morris

357

 observes:

Secrecy and security are terms usually connoting national and spe-
cifically military interests. They have applications, however, far below
the national level, ranging from commercial espionage to individual
privacy.

Privacy issues should be reexamined in light of the system design, operation,
and operational environment to ensure that corporate or organizational assets,
intellectual property rights of the organization and others, and information
maintained about employees, customers, vendors, and others are adequately
protected. IA goals, business ethics, laws and regulations, and societal norms
will each contribute to the determination of what constitutes adequate privacy
and the level of protection needed to guarantee it. In one situation, data privacy
may be of utmost concern; in another, data integrity may be the driving factor.

In today’s technological environment, no industrial sector or application
domain is immune from privacy considerations; two of many possible exam-
ples follow. Wang, Lee, and Wang

436

 have developed a taxonomy of privacy
concerns related to e-Commerce, including:

�

Improper access to consumer’s private computer

�

Improper collection of consumer’s private information

�

Improper monitoring of consumer’s Internet activities without notice
or authorization

�

Improper analysis of consumer’s private information

�

Improper transfer of consumer’s private information to a third party

�

Sending unwanted solicitations

�

Improper storage of consumer’s private information

Rindfleisch

395

 has identified privacy concerns related to medical records, to
include:

�

Insider threats

�

Accidental disclosure

�

Insider curiosity

�

Insider subornation

�

Secondary user (quasi-insider) threats

�

Uncontrolled access/usage

�

Outsider threats

�

Unauthorized access/usage

Through an analysis and synthesis of these six factors, the risk exposure
reduction needed is identified and the estimated level of protection needed is
refined. As a result, an IA integrity level is defined for the system or major
system entities, as appropriate. IA integrity is a property reflecting the likelihood
of a system, entity, or function achieving its required security, safety, and
reliability features under all stated conditions within a stated measure of use.

130

An IA integrity level represents the level of IA integrity that must be achieved

AU1163-ch06-Frame Page 135 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

or demonstrated to maintain the IA risk exposure at or below its acceptable
level. Many national and international standards promote the concept of safety
integrity levels (SILs) as part of the design, certification, and approval pro-
cess.

31,38,57,63–65,124,129–130

 This book expands that concept to the broader realm of
IA. There are five levels of IA integrity, comparable to the five widely used SILs:

4 — Very high
3 — High
2 — Medium
1 — Low
0 — None

IA integrity levels are used to: (1) prioritize the distribution of IA resources
so that resources are applied effectively and to the most critical need(s); and
(2) to select appropriate threat control measures based on the type, level, and
extent of protection needed. Depending on the system architecture, operation,
and mission, one system entity may have an IA integrity level of 3 while
another entity has an IA integrity of 1. Also, the IA integrity level for security,
safety, and reliability functions may vary. For practicality of implementation
and assessment, IA integrity levels should not be assigned to too low a level
of a component.

While related, IA integrity levels should not be confused with EALs (discussed
in Chapter 3). EALs, which do not measure safety or reliability, reflect confidence
in security functionality. In contrast, IA integrity levels reflect confidence that a
system will achieve and maintain required safety, security, and reliability features
under all stated conditions so that the risk exposure is maintained at or below
the target; that is, a measure of the robustness and resiliency of a system’s IA
features and the process(es) used to develop and verify them. This distinction is
similar to the distinction between functional safety and safety integrity in IEC
61508

63–69

 and other standards.

6.2 Evaluate Controllability, Operational Procedures, and
In-Service Considerations

Threat control measures go beyond design features and techniques. Threat
control measures encompass any aspect that could enhance the safe, secure,
and reliable operation of a system. All entities, including people, are examined
for opportunities to reduce risk exposure and improve system integrity. People
are often cited as the weakest link in a system because often they: (1) are
not aware of safety or security procedures; (2) do not understand the impor-
tance of following safety or security procedures, particularly the ramifications
of not doing so; and (3) do not execute safety or security features, choosing
instead to ignore, bypass, or disable them. At the same time, people have the
potential to influence system integrity in a positive manner. As a result, the
implementation of threat control measures necessitates an evaluation of addi-
tional parameters beyond system design and risk exposure. Specifically, con-
trollability, operational procedures, and in-service considerations are evaluated.

AU1163-ch06-Frame Page 136 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Controllability is a measure of the ability of human action to control the
situation following a failure. The concept of controllability originated with the
automotive industry, where controllability was defined as “the ability of vehicle
occupants to control the situation following a failure.”

53

 Five controllability
categories have been defined by the automotive industry

53

:

Uncontrollable

: human action has no effect

Difficult to control

: potential for human action
Debilitating: sensible human response
Distracting: operational limitations, normal human response
Nuisance: safety (or security) not an issue

The five categories are mapped directly to the IA integrity levels (4–0). Jesty
and Buckley309 describe the relationship between controllability and integrity
levels:

The controllability category for each hazard defines an integrity level
required for the design of the new (sub)system, which in turn defines
the requirements for the process of development.

Exhibit 6 illustrates this relationship.
Controllability reflects the potential mitigating effect of human action sub-

sequent to vulnerability exploitation and threat instantiation. In other words,
can human action be taken to mitigate, contain, or preempt the unfolding
consequences of a hazard, physical or cyber? Controllability is derived from
both (1) the technical feasibility of taking a mitigating action, and (2) the time
interval during which the mitigating action can be taken. Most hazardous
situations do not instantly transition from a nonhazardous state to a catastrophic
state; rather, there is a chain of events or ripple effect before reaching a
catastrophic state. This interval, however small, represents the time when
action can be taken to control a hazard or mitigate its consequences. It is
important to note that the definition used by the automotive industry refers
to the vehicle occupants and not just to the driver. Most likely, the ability to
take a controlling action will vary, depending on the threat perspective.
Therefore, it is useful to review transaction paths from different threat per-
spectives to determine controllability.

Most mission-critical systems are designed to be fault tolerant and to either
fail safe/secure or fail operational. In both instances, the intent is to keep the
system in a known safe/secure state at all times. These proactive design
techniques enable a system to respond to one or more failures and hence
protect itself. Controllability can be thought of as a human-assisted form of
fault tolerance or failing safe/secure. As such, design provisions such as manual
override, emergency shutdown, critical bypass, etc. should be implemented
to facilitate controllability.

Operational procedures are a major component of threat control measures,
although they are often overlooked as such. Operational procedures encom-
pass the totality of IA concerns relative to the safe, secure, and reliable
operation of a system in its operational environment. This includes many items

AU1163-ch06-Frame Page 137 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

traditionally associated with physical security and OPSEC, such as managing
cryptographic keys and other security tokens. Safety and security features and
procedures that lead to correct operation are described. Procedures are devel-
oped for each operational mode/state, including normal operations, abnormal
operations, and recovery, and all operational profiles. If developed correctly
and followed, operational procedures provide an opportunity to contribute to
system integrity; the opposite is equally true.

Exhibit 6 Relationship Between Controllability and IA Integrity Levels

AU1163-ch06-Frame Page 138 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Operational procedures are reviewed as part of the implementation of
threat control measures to determine whether or not they are consistent with
and support the IA goals, IA integrity level, and contingency plans; that is,
do they treat the broader issues of safety, security, and reliability and not just
functionality? Operational procedures are reviewed to ensure that they ade-
quately address all issues related to personnel operations, software/data oper-
ations, and administrative operations identified in Chapter 3, Exhibit 10. For
each of these issues, the following questions should be pursued:

1. Are the procedures consistent with the IA goals, IA integrity level, and
contingency plans? Are all safety and security features and procedures
explained?

2. Do the procedures conform to the current as-built system, or is an
update needed? Do the procedures define the correct operational
environment and any limitations or constraints imposed by it?

3. Are the procedures complete? Do they address all operational modes/
states, missions, and profiles? Do they address the decommissioning of
sensitive systems and disposal of sensitive information, including
expired passwords and keys? Is enough detail provided? Is the infor-
mation clear, concise, unambiguous, and accessible in a reasonable
amount of time?

4. Have staff members been trained in how to follow the procedures?
5. Are the procedures being followed?

The IA challenge hardly disappears once a system is fielded. Consequently,
in-service considerations should be evaluated when implementing threat control
measures. In-service considerations, as they relate to threat control measures,
take two forms: (1) system maintainability, and (2) the system usage profile.

Whetton439 points out that:

… maintainability has an indirect effect on system safety [and security]
in that any maintenance action must be done in such a way that it
does not introduce new [vulnerabilities or] hazards into the system.

Maintenance actions, hardware upgrades, software enhancements, new ver-
sions of COTS products, etc. can all potentially impact the IA integrity level of
a system. As a result, systems — including their threat control measures —
should be designed to be maintainable. There are two aspects to this:
(1) designing a system so that its functionality, especially IA-critical and IA-related
functions, can be maintained; and (2) designing a system so that it is main-
tainable without disrupting threat control measures. Highlighting requirements
that are likely to change and reflecting this in the architecture through
information hiding, partitioning, etc. promote the design of systems that are
maintainable.18 A change in operational environment, a change or addition to
a system’s mission, or extensive maintenance actions should trigger a reas-
sessment/revalidation of the vulnerability and threat analyses.

AU1163-ch06-Frame Page 139 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

A second in-service consideration is the system usage profile. A profile
should be developed that defines anticipated low, normal, peak, and overload
or saturation conditions. System loading may vary by operational mode/state,
number of users, time of day, time of week, time of year (holidays), etc.
Characteristics for each system load category should be defined and compared
against known system constraints/capacity. The integrity of IA-critical func-
tions, IA-related functions, and threat control measures should be verified
under low, normal, and peak loading scenarios.

System overload often leads to unpredictable behavior. As a result, systems
should be designed to prevent themselves from reaching this state; overload
should be defined as an illegal state. Once peak loading has been reached, a
monitor should be activated to ensure that the system does not transition from
the peak loading threshold to overload. Before a critical situation is reached,
protective measures should be invoked to block further user logons, e-mail,
database queries, and other transactions, as appropriate. This is a simple tech-
nique for blocking denial-of-service attacks. Occasionally, low system loads can
cause anomalous system behavior. This situation should also be investigated
and remedied, if necessary.

6.3 Contingency Planning and Disaster Recovery
Planning for contingencies is an integral part of risk management in general
and implementing threat control measures in particular. Webster’s Dictionary
defines a contingency as:

(a) an event, such as an emergency, that is of possible but uncertain
occurrence, (b) something liable to happen as an adjunct to something
else, (c) something that happens by chance or is caused by circum-
stances not completely foreseen.

Contingency implies the notion of uncertainty, unforeseen events, and the
unknown. Thus, contingency plans identify alternative strategies to be followed
or action to be taken to ensure ongoing mission success should unknown,
uncertain, or unforeseen events occur. Contingency plans provide planned
measured responses to these events, in contrast to an unplanned workaround,
the wrong response, or no response at all, in order to return a system to a
known safe/secure state.

The activities described thus far in this book have been directed toward
preventing, containing, and minimizing the likelihood and severity of system
failures/compromises. Given that accidents are not 100 percent preventable,
contingency planning provides an opportunity to prepare a measured response
beforehand. Contingency planning allows a system owner to be prepared for
the loss, unavailability, or anomalous performance of one or more system
entities, whether or not the entity is internal (under their control) or external
(not under their control). In addition, this planning takes place in an environ-
ment in which cool heads and logical thinking prevail, in contrast to panic
responses during a crisis situation. The goal is to be prepared for any

AU1163-ch06-Frame Page 140 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

eventuality, and thereby ensure that there is no single point of failure that
could lead to an inoperable or compromised system.

Exhibits 7 and 8 illustrate the contingency planning process. The first step
is to identify all internal and external system entities and the degree of control
the system owner has over each. This information is derived from the system

Exhibit 7 Contingency Planning Process

AU1163-ch06-Frame Page 141 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

definition and entity control analysis (Chapter 4). It is important to be thorough
when identifying entities and the dependencies between them. Exhibit 9
provides a checklist to review for this step.

The second step is to identify what could go wrong with a system and its
entities: the failure points/modes and loss/compromise scenarios. This question
is tackled from two angles47:

� Cause and effect: what could happen and what will ensue (cause
consequence analysis)

� Effects and causes: what outcomes are to be avoided or encouraged
and how each might occur*

Exhibit 8 Contingency Planning Process (continued)

* The movie Frequency, which was released in May 2000, is a good (fictional) example of this
approach; historical events were changed to produce desired outcomes.

AU1163-ch06-Frame Page 142 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Vulnerability/threat characterizations, transaction paths, and critical threat
zones (Chapter 5) are analyzed during this process. Particular attention is
paid to IA-critical and IA-related entities/functions. Contingency planning
assumes worst-case scenarios. For example, consider the ATC system in
Chapter 5, Exhibit 16. At a high level, contingency plans should be made
for the following scenarios:

� Loss of the radar system (no transmission or reception)
� Loss of voice communication between pilot and air traffic controller
� Loss of ATC DBMS
� Loss of ATC terminals
� Loss of location signal from aircraft (no transmission or reception)
� No air traffic controllers in the control tower

Consider another example closer to home: your neighborhood branch bank.
In the last five years, the United States has experienced a wave of bank merger
mania. My (what once was a) local bank has merged three times in three
years, each time with a larger, more geographically dispersed bank. The merger
requires, among other things, that the financial systems of the “old” bank be
incorporated into those of the “new” bank and steps be taken to eliminate
potential duplicate account numbers. Each time a merger has taken place, the
new financial systems have been down two or more days. Given that financial
systems are considered critical infrastructure systems, this is unacceptable.
Obviously, (1) more robust contingency planning is needed so that transactions
do not come to a halt following a merger; (2) an extended period of parallel
operations is needed before switching to the new system; and (3) a capability
to fall back to the old system is needed, should the new system prove unstable.

Once the various contingencies have been identified, an appropriate
response for each is defined, consistent with the IA goals and IA integrity
level. This involves formulating alternative courses of action and identifying
alternative system resources. Priorities are established for restoring and main-
taining critical functionality (degraded mode operations). The availability of
alternative sources, services, and resources are specified. This may include
redundant or diverse cold spare or hot standby systems/components, switching
to a secondary operational site, relying on voice communications instead of
data, etc. Exhibit 9 provides a generic list of alternatives to consider.

The fourth step is to assign responsibility for deploying the alternative
course of action and resources. Next, the maximum time interval during which
the responsive action can be invoked is defined. In almost all situations, there
is a fixed time period during which a response is ameliorative; after that
interval, the response has no effect or may even make the situation worse.
In a crisis situation, it may not always be possible to respond in a timely
manner. Hence, secondary courses of action/resources to invoke, if the max-
imum time interval for the primary response is exceeded, need to be identified.

With any plan, if a contingency plan is to be successful, it must be
communicated and staff must be trained. Practice drills should be conducted
regularly to both familiarize staff with the plan’s provisions and to uncover

AU1163-ch06-Frame Page 143 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

any defects in the plan. Finally, contingency plans should be reviewed,
updated, and revalidated at fixed intervals.

6.4 Perception Management
Perception management is a useful tool in many endeavors, including IA.
Vendors have a vested interest in managing customers’ expectations. Speakers
have a vested interest in managing audience expectations. Likewise, system
owners have a vested interest in managing the reality users perceive relative
to the safe, secure, and reliable operation of a system.

Exhibit 9 Contingency Planning Checklist (partial)

Step 1: Identify all system entities, both internal and external.

� Hardware components
� Communications equipment
� System software
� Applications software
� Services

� Power
� Environmental
� Voice communications
� Data communications
� Facility concerns

� Archives
� Electronic
� Hardcopy

� People
� Employees
� Customers
� System administrators
� Maintenance technicians
� Visitors
� Trainers

Step 3: Formulate alternative courses of action; identify alternate resources.

� Activate cold spare
� Activate hot standby
� Reconfigure system
� Switch to degraded-mode operations, fail operational
� Emergency shutdown, logoff, fail safe/secure
� Restart system
� Restore system/data from local archives
� Restore system/data from offsite archives
� Switch operations to remote location
� Switch to alternate service provider
� Deploy emergency personnel
� Site/application-specific responses, actions, commands

AU1163-ch06-Frame Page 144 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Perception management serves multiple purposes. End users, whether
customers of an online business or employees of an organization, gain con-
fidence in a system and the results it produces if the system appears to be
robust and provides accurate information quickly while protecting privacy. At
the same time, this perception may serve as a deterrent to would-be attackers,
both inside and outside the organization; the system is perceived as being
extremely difficult to attack. However, one should not go overboard and
attempt to give the impression that system safety/security is invincible — that
may have the opposite effect by posing a challenge some attackers cannot
resist. By the same token, a system should not appear too easy to attack.

Decoys are another perception management device. As Gollmann277 points
out:

Sometimes it is not sufficient to hide only the content of objects. Also,
their existence may have to be hidden.

In this case, it may be advisable to deploy decoy servers, decoy screens,
decoy files/data, decoy passwords, etc.248,277,305,375 Decoys can function as a
benign security filter, an aggressive security trap that is meant to lure would-
be attackers away from critical systems/data and catch them, or some com-
bination thereof. Decoys, which must appear authentic or no one will be
fooled, are also an effective method of blocking denial-of-service attacks.

6.5 Select/Implement IA Design Techniques and Features
Threat control measures are primarily implemented through design techniques
and features, with operational procedures, contingency plans, and physical
security practices being the other main contributing factors. Consequently,
design techniques and features should be carefully chosen because of the
pivotal role they play in achieving and maintaining IA integrity.

Threat control measures are selected based on the target risk exposure
and the level of protection and IA integrity level needed. Controllability, in-
service considerations, and perception management are also major determi-
nants. As far back as 1979, DoD 5200.28-M140 directed that security design
techniques and features be chosen based on trade-off studies that evaluated
risk analysis, the level of risk that could be tolerated, and cost. Particular
threat control measures are chosen in response to specific vulnerabilities,
hazards, and threats. Threat control measures represent a solution to a specific
defined problem, the intent being to reduce the initial risk exposure to at or
below the target. In summary, as Morris357 notes, threat control measures
should be implemented that are efficient, do not degrade system performance,
and are appropriate for the level of risk exposure.

Exhibit 10 lists 25 current, proven IA design techniques and features. A
description of each technique or feature is provided in Annex B, which
describes the purpose, benefits, and limitations of each technique or feature
and provides pointers to references for further information.

AU1163-ch06-Frame Page 145 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Exhibit 10 IA Design Techniques and Features

IA Design
Techniques and Features C/R Type

 Life-Cycle Phase
in which Technique is Used

Concept Development Operations

Access control:
Rights
Privileges

C2 SA, SE x x x

Account for all possible
logic states

C2 SA, SE x x

Audit trail, security alarm C2 SE x x x
Authentication:

Biometrics
Data origin
Digital certificates
Kerberos
Mutual
Peer entity
Smartcards
Unilateral

C2 SA, SE x x x

Block recovery C2 All x x
Confinement:

DTE
Least privilege
Wrappers

C2 SA, SE x x

Defense in depth C2 All x x x
Defensive programming C2 All x x
Degraded-mode

operations, graceful
degradation

R2/C2 All x x

Digital signatures:
Nonrepudiation of origin
Nonrepudiation of receipt

C2 SE x x

Diversity
Hardware
Software

C2 SA, SE x x x

Encryption:
Asymmetric
Symmetric
Block
Stream
Hardware
Software

C2 SE x x x

Error detection, correction C2 ALL x x
Fail safe/secure,

fail operational
R2/C2 SA, SE x x

Fault tolerance C2 All x x
Firewalls, filters C2 SA, SE x x
Formal specifications,

animated specifications
C2 SA, SE x x x

AU1163-ch06-Frame Page 146 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Design techniques and features are a collection of methods by which a
system (or component) is designed and capabilities are added to a system to
enhance IA integrity. For custom software/systems, they represent techniques
and features to employ when designing and developing a system. For COTS
software/systems, they represent techniques and features to specify and eval-
uate during the product selection/procurement process. In the case of COTS
software or systems, the EAL should be specified and verified. The delineation
between the two categories (techniques and features) is not exact; hence,
they will be considered together.

Exhibit 10 IA Design Techniques and Features (continued)

IA Design
Techniques and Features C/R Type

 Life-Cycle Phase
in which Technique is Used

Concept Development Operations

Information hiding C2 SA, SE x x
Intrusion detection,

response
C2 SA, SE x x

Partitioning:
Hardware
Software
Logical
Physical

C2 SA, SE x x x

Plausibility checks C2 All x x
Redundancy C2 RE x x x
Reliability allocation C2 RE x x
Secure protocols:

IPSec, NLS
PEM, PGP, S/MIME
SET
SSL3, TLS1

C2 All x x

Virus scanners C2 All x

Source: Adapted from Herrmann, D., Software Safety and Reliability: Techniques,
Approaches and Standards of Key Industrial Sectors, IEEE Computer Society Press, 1999.

Legend for the codes used in Exhibit 10:

Column Code Meaning

Type SA Technique primarily supports safety engineering
SE Technique primarily supports security engineering
RE Technique primarily supports reliability engineering
All Technique supports a combination of safety, security, and reliability

engineering
C/R Cx Groups of complementary techniques

Rx Groups of redundant techniques; only one of the redundant
techniques should be used

AU1163-ch06-Frame Page 147 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Exhibit 11 compares the International Organization for Standardization (ISO)
Open Systems Interconnection (OSI) seven-layer Information/Communications
reference model to the TCP/IP four-layer Internet reference model. Both
models present a layered approach to specifying and achieving the reliable
exchange and processing of information in distributed environments. The
Internet model is more simplistic; it does not address physical connectivity,
but it does merge session management, context management, syntax manage-
ment, and application management into one layer. The table also identifies
sample protocols, functions, and primitives associated with each layer.

These models are important in the IA domain because they highlight the
need to deploy threat control measures at each layer. This need is often
overlooked (by system owners, not necessarily attackers!) and all effort is
(mistakenly) focused on protecting the application layer. To help organizations
overcome this deficiency, the ISO and International Electrotechnical Commission

Exhibit 11 Comparison of ISO OSI Information/Communications and
TCP/IP Internet Reference Models

TCP/IP
Four-layer
Internet

Reference
Model

ISO OSI
Seven-layer

Information/
Communications
Reference Model

Sample
Protocols

Functions
Performed

Sample
Primitives

4: Application
layer

7: Application
layer

FTP, HTTP,
SMTP, SNMP,
Telnet, APIs

Execution of
distributed
applications

End-user data,
files, queries,
and responses

6: Presentation
layer

Context
management,
syntax
management
(ASN)

Conversion of
data between
systems

Character sets,
special
characters,
file formats

5: Session layer Session
management,
synchronization

3: Transport
layer

4: Transport
layer

TCP, TP0-TP4,
UDP

Reliable packet
assembly,
disassembly,
sequencing;
end-to-end
integrity checks

Packets

2: Internet
layer

3: Network layer IP, X.25, ATM Routing Packets

1: Network
interface
layer

2: Data Link
layer

IEEE 802.3,
LAP-B,D
Frame Relay

Transmission,
framing, error
control

Frames

— 1: Physical layer V.90, OC-3
SONET,
RS-422

Establish
physical circuit,
electrical or
optical

Bits

AU1163-ch06-Frame Page 148 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

(IEC) have jointly published more than 50 security standards70–123 based on
the ISO OSI model. These standards address a variety of topics, applicable to
different layers in the model, such as: access control, audit trails, authentication,
digital signatures, block ciphers, hashing functions, key management, and
security alarms. Readers are encouraged to consult these standards.

The physical layer is the bottom or first layer of the ISO OSI model. The
function of this layer is to establish physical connectivity between two or
more systems/components that want to communicate. This connection can
be established by an electrical connection (V.90), optical connection (OC-3
SONET), a microwave link, a satellite feed, etc. The primitive associated with
this layer is a stream of bits. Physical safety and security concerns are dealt
with at this layer, along with concerns such as wiretapping, eavesdropping,
EMI/RFI, and jamming.

The second layer is the data link layer, which is responsible for transmission,
framing, and error control.403 LANs employ data link layer protocols such as
IEEE 802.3. The primitive associated with this layer is data frames. The data
link layer shares many of the same safety, security, and reliability concerns
as the physical layer.

The network layer is the third layer. This layer is responsible for routing
data packets between networks. Protocols commonly used at this layer include
IP, X.25, and ATM. In general, the system owner is responsible for the first
two layers, while the third layer is part of the critical telecommunications
infrastructure system or NII.

The transport layer is the fourth layer. This layer is responsible for ensuring
reliable packet assembly, disassembly, and sequencing and performing end-
to-end integrity checks. TCP and UDP are common protocols that are employed
at this layer. In the TCP/IP model, the transport layer defines port information
for layer 4 applications; for example, 21 - FTP, 23 - Telnet, 25 - SMTP, 80 -
HTTP. The fifth layer performs session management between two communi-
cating nodes, controlling when each can transmit and receive.

The sixth layer, the presentation layer, performs context management and
syntax management, allowing communication between open systems. In the
past, for remote systems to communicate, all parties had to use the same
operating system, file format, character sets, etc. Today, the ability to send and
receive e-mail and execute online applications is near-universal. All of this is
made possible by presentation layer protocols.

The seventh or top layer is the application layer. This is the layer that
controls and facilitates the distributed execution of applications. End users
interact with applications at this layer. End-user data, files, and queries/
responses are processed. FTP, SMTP, SNMP, and HTTP are common application
layer protocols.

In summary, each layer: (1) serves a different purpose, (2) operates on a
different unit of data; and (3) presents different IA challenges. All layers should
be reflected in the entity control analysis. Different groups of people (end
users, system administrators, software engineers, hardware engineers, commu-
nications engineers, …) and organizations (system owner, ISP, telecommuni-
cations company, hardware vendor, LAN vendor, …) interact with and are

AU1163-ch06-Frame Page 149 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Exhibit 12 Assignment of Common Vulnerabilities and Threats to ISO OSI
and TCP/IP Reference Model Layers

Common Vulnerability/Threata

ISO OSI
Layer(s)

TCP/IP
Layer(s)

1. Accidental action, command, response 1–4, 7 1–4
2. Blocking access to system resources 2–4, 7 1–4
3. Browsing 7 4
4. Corruption of resource management information

(accidental or intentional)
2–7 1–4

5. Deletion of information or message (accidental or intentional) 3, 4, 6, 7 2–4
6. Denial of service, network flooding, system saturation,

lack of capacity planning
2–4 1–3

7. EMI/RFI 2, 3 1, 2
8. Environmental, facility, or power faults or tampering 1 —
9. Illegal operations, transactions, modes/states 2–4, 7 1–4
10. Inference, aggregation 7 4
11. Insertion of bogus data, “man-in-the-middle” 2–4, 7 1–4
12. Jamming 2–4 1–3
13. Lack of contingency planning, backups 1–7 1–4
14. Masquerade, IP spoofing 3, 4, 7 2–4
15. Modification of information (accidental or intentional) 2–4, 7 1–4
16. No fault tolerance, error detection or correction 2–7 1–4
17. Overwriting information (accidental or intentional) 6, 7 4
18. Password guessing, spoofing, compromise 2–4, 7 1–4
19. Replay, reroute, misroute messages 2–4 1–3
20. Repudiation of receipt, origin 2–4, 7 1–4
21. Site/system/application-specific vulnerabilities and threats 1–7 1–4
22. Theft of information, copying, distributing 2–4, 7 1–4
23. Theft of service 2–4, 7 1–4
24. Trojan horse 4, 7 3, 4
25. Unauthorized access to system resources 2–4, 7 1–4
26. Unauthorized use of system resources 2, 3, 7 1, 2, 4
27. Uncontrolled, unprotected portable systems and media,

archives, hardcopy
2–4, 7 1–4

28. Unpredictable COTS behavior 2–7 1–4
29. Virus attack 7 4
30. Wiretapping, eavesdropping, leakage 1–4 1–3

a Sources: Adapted from Denning, D., Information Warfare amd Security, Addison-Wesley,
1999; Denning D., Cryptology and Data Security, Addison-Wesley, 1982; Gollmann, D.,
Computer Security, John Wiley & Sons, 1999; Morris, D., Introduction to Communication
Command and Control Systems, Pergamon Press, 1977; Rozenblit, M., Security for
Telecommunications Network Management, IEEE, 1999.

AU1163-ch06-Frame Page 150 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

responsible for the services provided by different layers. Often, these people
and organizations are oblivious to layers other than their own. A clear
understanding should be established about what needs to be/is/is not pro-
tected at each layer. A threat control measure deployed at layer x may provide
some protection to the layers above it, but none to the layers below it. Any
serious or organized attack will simply attack the weakest layer. Consequently,
appropriate threat control measures need to be implemented at each layer.

Exhibit 12 lists 30 common vulnerabilities and threats. Each is assigned to the
layer or layers in the ISO OSI and TCP/IP reference models in which it might
appear. This knowledge is essential in selecting appropriate IA design techniques
and features; it also underscores the need to provide threat control measures at
all layers.

Exhibit 13 identifies the IA integrity function provided by each of the 25
IA design techniques and features. In addition, each technique/feature is
assigned to the layer or layers in the ISO OSI and TCP/IP reference models
in which it can be implemented. Using this knowledge, IA design techniques
and features can be selected to eliminate or mitigate specific vulnerabilities/
threats at particular layers in the model.

Next, the IA design techniques/features are examined in detail. There is a
high degree of interaction and interdependence between the techniques/
features; the output of one technique is the input to another technique and
the techniques complement or reinforce each other.

Access Control

Access control is a design feature that prevents unauthorized and unwarranted
access to systems, applications, data, and other resources. Access control
consists of two main components: (1) access control rights that define which
people and processes can access which system resources; and (2) access
control privileges that define what these people and processes can do with
and to the resources accessed.248 Examples of access control privileges include:
read, write, edit, delete, execute, copy, print, move, forward, distribute, etc.

Access controls should be operative at all layers. For example, at the
network layer, access control restrains access to one or more networks and
the establishment of network sessions. This is similar to blocking outgoing or
incoming telephone calls. At the application layer, access control restricts
access to, and the execution of, systems, applications, data, and other shared
resources. Access may be permanently denied, permanently granted, or
granted conditionally based on some variable parameters.

Access control mechanisms are activated immediately after authentication.
In simplest terms, an initiator (person or process) requests to perform an
operation on a target resource. Access control mechanisms mediate these
requests based on predefined access control rules. The initiator/resource com-
bination reflects access control rights, while the initiator/operation combination
reflects access control privileges. As noted by Rozenblit,403 access control rules
can be defined three ways:

AU1163-ch06-Frame Page 151 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Exhibit 13 Assignment of IA Techniques and Features to ISO OSI and TCP/IP Reference Model Layers

Technique/Feature IA Integrity Function ISO OSI Layer TCP/IP Layer

Access control:
Rights
Privileges

Protect IA-critical and IA-related systems, applications, data,
and other resources by preventing unauthorized and
unwarranted access.

1: Physical
2: Data Link
3: Network
7: Application

1: Network
2: Internet
4: Application

Account for all possible logic
states

Prevent system from entering unknown or undefined states
that could compromise IA integrity.

7: Application 4: Application

Audit trail, security alarm Capture information about which people/processes accessed
what system resources and when.

Capture information about system states and transitions; trigger
alarms if necessary.

Develop normal system and user profiles for intrusion
detection systems.

Reconstruct events during accident/incident investigation.

2: Data link
3: Network
4: Transport
7: Application

1: Network
2: Internet
3: Transport
4: Application

Authentication:
Biometrics
Data origin
Digital certificates
Kerberos
Mutual
Peer entity
Smartcards
Unilateral

Establish or prove the claimed identity of a user, process, or
system.

1: Physical
2: Data Link
3: Network
4: Transport
7: Application

1: Network
2: Internet
3: Transport
4: Application

Block recovery Enhance IA integrity by recovering from an error and
transitioning the system to a known safe and secure state.

7: Application 4: Application

Confinement:
DTE
Least privilege
Wrappers

Restrict an untrusted program from accessing system resources
and executing system processes.

7: Application 4: Application

A
U

1163-ch06-Fram
e Page 152 T

uesday, Septem
ber 11, 2001 8:02 A

M

© 2002 by CRC Press LLC

Defense in depth Provide several overlapping subsequent barriers with respect
to one safety or security threshold, so that the threshold can
only be surpassed if all barriers have failed.a

1: Physical
2: Data Link
3: Network
4: Transport
7: Application

1: Network
2: Internet
3: Transport
4: Application

Defensive programming Prevent system failures and compromises by detecting errors
in control flow, data flow, and data during execution and
reacting in a predetermined and acceptable manner.b

7: Application 4: Application

Degraded-mode operations,
graceful degradation

Ensure that critical system functionality is maintained in the
presence of one or more failures.b

3: Network
4: Transport
5: Session
6: Presentation

2: Internet
3: Transport
4: Application

Digital signatures:
Nonrepudiation of origin

Nonrepudiation of receipt

Provide reasonable evidence of the true sender of an electronic
message or document.

Provide reasonable evidence that an electronic message or
document was received.

3: Network
7: Application

2: Internet
4: Application

Diversity:
Hardware
Software

Enhance IA integrity by detecting and preventing systematic
failures.

1: Physical
2: Data link
3: Network
7: Application

1: Network
2: Internet
4: Application

Encryption:
Asymmetric
Symmetric
Block
Stream
Hardware
Software

Provide confidentiality for information while it is stored or
transmitted.

2: Data Link
3: Network
4: Transport
7: Application

1: Network
2: Internet
3: Transport
4: Application

Error detection, correction Increase data integrity. 2: Data Link
4: Transport
7: Application

1: Network
3: Transport
4: Application

A
U

1163-ch06-Fram
e Page 153 T

uesday, Septem
ber 11, 2001 8:02 A

M

© 2002 by CRC Press LLC

Exhibit 13 Assignment of IA Techniques and Features to ISO OSI and TCP/IP Reference Model Layers (continued)

Technique/Feature IA Integrity Function ISO OSI Layer TCP/IP Layer

Fail safe/secure,
fail operational

Ensure that a system remains in a known safe and secure state
following an irrecoverable failure.

3: Network
4: Transport
7: Application

1: Network
2: Internet
3: Transport
4: Application

Fault tolerance Provide continued correct execution in the presence of a
limited number of hardware and/or software faults.a

2: Data Link
3: Network
4: Transport
7: Application

1: Network
2: Internet
3: Transport
4: Application

Firewalls, filters Block unwanted users, processes, and data from entering a
network while protecting legitimate users, sensitive data, and
processes

3: Network 2: Internet

Formal specifications,
animated specifications

Ensure correctness, consistency, completeness, and
unambiguousness of the requirements and design for IA-critical
and IA-related functions

7: Application 4: Application

Information hiding Enhance IA integrity by: (1) preventing accidental access to or
corruption of critical software and data, (2) minimizing
introduction of errors during maintenance and enhancements,
(3) reducing the likelihood of CCFs, and (4) minimizing fault
propagation.

7: Application 4: Application

Intrusion detection, response Recognize and respond to a security breach either as it is
happening or immediately afterward; initiate appropriate
response.

3: Network
4: Transport
7: Application

2: Internet
3: Transport
4: Application

Partitioning:
Hardware
Software
Logical
Physical

Enhance IA integrity by preventing IA-critical and IA-related
functions/entities from being accidentally or intentionally
corrupted by non-IA-related functions/entities.

1: Physical
2: Data Link
3: Network
4: Transport
7: Application

1: Network
2: Internet
3: Transport
4: Application

A
U

1163-ch06-Fram
e Page 154 T

uesday, Septem
ber 11, 2001 8:02 A

M

© 2002 by CRC Press LLC

Plausibility checks Enhance IA integrity by verifying the validity and legitimacy of
critical parameters before acting upon them, detect faults early
in the execution cycle and prevent them from progressing into
system failures or compromises.

7: Application 4: Application

Redundancy Enhance hardware reliability and system availability. 1: Physical
2: Data Link
3: Network
4: Transport

1: Network
2: Internet
3: Transport

Reliability allocation Distribute reliability and maintainability requirements, derived
from IA goals, among system entities.

1: Physical
2: Data Link
3: Network
4: Transport
7: Application

1: Network
2: Internet
3: Transport
4: Application

Secure protocols:
IPSec, NLS
PEM, PGP, S/MIME
SET
SSL3, TLS1

Enhance the confidentiality of distributed data
communications.

3: Network
7: Application
7: Application
4: Transport

2: Internet
4: Application
4: Application
3: Transport

Virus scanners Automatically detect and remove computer viruses before they
are activated.

7: Application 4: Application

a See IEC 60880 (1986-09), Software for Computers in Safety Systems of Nuclear Power Stations.

b See IEC 61508-7 (2000-3) Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems — Part 7: Overview of Techniques
and Measures.

A
U

1163-ch06-Fram
e Page 155 T

uesday, Septem
ber 11, 2001 8:02 A

M

© 2002 by CRC Press LLC

1. Through the use of access control lists that specify the approved
initiator(s) for each (group of) target(s)

2. Through the use of access capability lists that specify the target(s)
accessible to a (group of) initiator(s)

3. Through the use of security labels, such that each initiator and target
is assigned to one or more security label (confidential, secret, top secret,
etc.), which in turn defines access control rights and privileges

(See also ISO/IEC 10164-9 and ISO/IEC 10181-3*.)
Exhibit 14 illustrates the three methods for specifying access control rules,

using the set of initiators, operations, and resources listed below. Note that
initiators can be individuals or user groups.

Often, it is easier to think in terms of the access control list. It is useful to
develop the access control list first, and then rotate the matrix to develop the
corresponding access capability list. This serves as a crosscheck to ensure that
no unintended inferred access control privileges or information flow have been
specified. For example, to execute application A, send/receive foreign e-mail,
perform Internet searches, or import foreign files access to the organization’s
LAN/WAN is inferred. Because Henani has access to everything, that is alright.
Malachi and Omri only have limited access; hence, design features must be
employed to restrict them from other resources connected to the LAN/WAN to
which they do not have explicit access control rights. The third option, security
labels, is a variation of access control lists. Initiators are groups of people with
a certain security clearance who have rights/privileges to access resources having
the same or lower classification.

* ISO/IEC 10164-9(1995-12) Information Technology — Open Systems Interconnection —
Systems Management: Objects and Attributes for Access Control.92

ISO/IEC 10181-3(1996-09) Information Technology — Open Systems Interconnection —
Security Framework for Open Systems: Access Control Framework.95

1. Initiators 2. Operations 3. Resources

a. Malachi a. Execute desktop office
automation functions

a. Desktop PC

b. Omri b. Send/receive local e-mail b. Application server
c. Henani c. Send/receive foreign e-mail c. E-mail server, LAN/WAN

d. Remote access d. Web server, Internet
e. Perform Internet searches
f. Import foreign files
g. Execute application A (limited)

� View some data
� Print some reports

h. Execute application A (full)
� View all data
� Enter new data
� Delete data
� Edit data
� Copy files to desktop
� Print reports

AU1163-ch06-Frame Page 156 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Regardless of which method is used, adequate time must be taken to
define access control rights and privileges to the appropriate level of detail.
A default of “access denied” should be invoked if the system encounters an
unknown or undefined state. Access control rules should be regularly

Exhibit 14 Comparison of Methods for Specifying Access Control Rules

Initiators

Resources

Desktop PC,
Printer

Application
Server

E-mail Server,
LAN/WAN

Web Server,
Internet

A. Access Control List
Malachi 2.a: Execute

desktop
office
automation
application

None 2.b: Send/
receive
local
e-mail

None

Omri 2.a: Execute
desktop
office
automation
application

2.g: Execute
application A
(limited)

2.b: Send/
receive
local
e-mail

None

Henani 2.a: Execute
desktop
office
automation
application

2.h: Execute
application A
(full)

2.b: Send/
receive
local
e-mail

2.d: Remote
access

2.c: Send/
receive
foreign
e-mail

2.e: Perform
Internet
searches

2.f: Import
foreign
files

B. Access Capability List
2.a: Execute

desktop
office
automation
application

Malachi,
Omri,
Henani

— — —

2.b: Send/receive
local e-mail

— — Malachi,
Omri,
Henani

—

2.c: Send/ receive
foreign
e-mail

— — a Henani

2.d: Remote
access

— — Henani —

2.e: Perform
Internet
searches

— — a Henani

2.f: Import
foreign files

— — a Henani

2.g: Execute
application A
(limited)

— Omri a —

2.h: Execute
application A
(full)

— Henani a —

AU1163-ch06-Frame Page 157 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

reviewed, updated, and revalidated. A capability should be implemented to
provide emergency revocation of access control rights and privileges. Files
defining access control rules must themselves be protected from unauthorized
access and modification. An extension to defining access control rules is
defining who has the right to update/modify the access control rules, in both
normal and abnormal situations.

Specifying access control rights for data files can be complicated. Depend-
ing on the application and sensitivity of the information, access control rights
can be specified at the field, record, or file level. If access control rights are
not specified carefully, a vulnerability is created for aggregation and inference.
Also, keep in mind that it is usually easier and less error-prone to (re)design
data structures to accommodate a security architecture than to develop
complex access control software.

A novel way of expressing access control rights is by time of access. To
illustrate:

1. A user/process may be allowed to access certain system resources only
at certain times during the day.

2. A user/process may only be allowed to access system resources during
a specified time interval after their identity has been authenticated.

Exhibit 14 Comparison of Methods for Specifying Access Control Rules
(continued)

Initiators

Resources

Desktop PC,
Printer Application Server

E-mail Server,
LAN/WAN

Web Server,
Internet

C. Security Label
Confidential 2.a: Execute

desktop
office
automation
application

None 2.b: Send/
receive
local
e-mail

None

Secret 2.a: Execute
desktop
office
automation
application

2.g: Execute
application A
(limited)

2.b: Send/
receive
local
e-mail

None

Top secret 2.a: Execute
desktop
office
automation
application

2.h: Execute
application A
(full)

2.b: Send/
receive
local
e-mail,

2.d: Remote
access

2.c: Send/
receive
foreign
e-mail,

2.e: Perform
Internet
searches,

2.f: Import
foreign
files

a Inferred right/privilege.

AU1163-ch06-Frame Page 158 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

3. Time-sensitive information may only be accessed “not before” or “not
after” specific dates and times.

4. E-mail, public keys, and other security tokens may have built-in (hidden)
self-destruct dates and macros.277

This approach is particularly useful for information that is distributed outside
the owner’s system.

Due to the variety of resources being protected, access control mechanisms
are implemented throughout a system. For example, server and network con-
figuration files, username/password, groupname/password, file access privi-
leges, default permissions, server log, server root access, etc. need to be
protected as well as data files.277,405 For some situations, the capabilities of
commercial products are employed — using NT™ to define shared directories.
In other situations, custom code is written to operate stand-alone or as an
enhancement to a commercial capability.

Finally, physical access control issues, such as control of and accountability
for portable systems and media, physical access to desktop PCs, servers, cable
plant, shared printers, archives, and hardcopy output, should not be overlooked.

Account for All Possible Logic States

One way to prevent a system from entering unknown or undefined states,
and thus potentially unstable states, that could compromise IA integrity is to
account for all possible logic states. This technique is based on the same
concepts and rationale behind specifying MWFs and MNWFs. That is, for each
critical decision point or command, all possible logic states that a system could
encounter are defined. Truth tables are a straightforward method to uncover
logic states. Once the logic states have been identified, an appropriate response
(continue normal operations, trigger alarm, request further input/clarification,
emergency shutdown, etc.) for each is defined. An extra level of safety and
security is provided by implementing an OTHERWISE or default clause to trap
exceptions and transient faults. This technique should be applied to all types
of software: system software, applications software, firmware, etc. This tech-
nique is useful for uncovering missing and incomplete requirements, simple
to implement, and of significant benefit in maintaining IA integrity. Exhibit 15
provides an illustration of how to account for and specify responses to all
possible logic states. In this example, there are two parameters — temperature
and pressure — that can be in any of three states: normal, too high, or too low.

Audit Trail, Security Alarm

An audit trail/security alarm provides several IA integrity functions, including:

1. Capturing information about which people/processes accessed what
system resources and when

2. Capturing information about system states and transitions and triggering
alarms if necessary

AU1163-ch06-Frame Page 159 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

3. Developing normal system and user profiles for intrusion detection
systems

4. Providing information with which to reconstruct events during accident/
incident investigation

Exhibit 16 illustrates the ways in which an audit trail contributes to IA integrity.
(See also ISO/IEC 10164-7, ISO/IEC 10164-8, and ISO/IEC 10181-7*.)

An audit trail provides real-time and historical logs of system states, tran-
sitions, and resource usage. When a system compromise is expected, a security
alarm is triggered. Alarm contents and primary and secondary recipients are
defined during implementation. Potential components of a security alarm
include90,99,403:

Exhibit 15 How to Account for All Possible Logic States

Step 1: Determine all possible logic states:

Parameter Possible Logic States

Temperature 0 – + 0 – + 0 – +
Pressure 0 – + – 0 0 + + –

Step 2: Specify appropriate responses:

Do case:
case temperature = normal .and. pressure = normal

do continue_normal_operations
case (temperature = too low .and. pressure = too low) .or.

(temperature = normal .and. pressure = too low) .or.
(temperature = too low .and. pressure = normal)

do trigger_warning
case (temperature = normal .and. pressure = too high) .or.

(temperature = too high .and. pressure = too low) .or.
(temperature = too high .and. pressure = normal)

do trigger_alert
case (temperature = too high .and. pressure = too high) .or.

(temperature = too low .and. pressure = too high)
do activate_shutdown

Step 3: Trap exceptions and transient faults:

Otherwise
do trigger_alert

Endcase;

Note: 0: normal; –: too low; +: too high

* ISO/IEC 10164-7(1992-05) Information Technology — Systems Management: Security Alarm
Function.90

ISO/IEC 10164-8(1993-06) Information Technology — Systems Management: Audit Trail
Function.91

ISO/IEC 10181-7(1996-08) Information Technology — Security framework for Open Systems:
Security Audit and Alarm Framework.99

AU1163-ch06-Frame Page 160 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

� Identity of the resource experiencing the security event
� Date/timestamp of the security event
� Security event type (integrity violation, operational violation, physical

violation, security feature violation, etc.)
� Parameters that triggered the alarm
� Security alarm severity (indeterminate, critical, major, minor, warning)
� Source that detected the event
� Service user who requested the service that led to the generation of the

alarm
� Service provider that provided the service that led to the generation

of the alarm

Audit trails are implemented at several layers in the ISO OSI and TCP/IP
reference models. The completeness of the events/states recorded and the

Exhibit 16 Use of Audit Trail Data to Maintain and Improve IA Integrity

AU1163-ch06-Frame Page 161 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

timeliness in responding to the anomalous events determines the effectiveness
of the audit trail. An audit trail consumes system resources; thus, care should
be exercised when determining what events to record and how frequently
they should be recorded. A determination also has to be made about the
interval at which audit trails should be archived and overwritten. Another
implementation issue is whether or not safety and security events should be
recorded in a separate audit trail. Audit trails should be protected from
unauthorized access to prevent: (1) masking current events that should trigger
an alarm, and (2) analysis of historical information to facilitate a masquerade
attack. The analysis of historical audit trail information, particularly informa-
tion collated from several different audit trails, can help identify persistent,
previously undetected, low-level attacks and improvements needed in oper-
ational procedures.403

Authentication

Authentication is a design feature that permits the claimed identity of a user,
process, or system to be proven to and confirmed by a second party. Accurate
authentication is an essential first layer of protection, upon which access
control, audit trail, and intrusion detection functions depend. Authentication
may take place at several levels: logging onto an NT™ desktop, e-mail, a bank
ATM, a specific application system, etc. In each instance, a user is required
to identify him- or herself and prove it through some supporting evidence. A
username and supposedly secret password are provided in most cases. There
is movement toward the use of more sophisticated parameters because of the
vulnerabilities associated with using just usernames and passwords. For exam-
ple, browsers store previous pages, including usernames and passwords.277

As several sources conclude, common sense dictates that a combination of
factors should be used to authenticate a user or process, such as260,277,344:

� individual username/passwords
� User group or category
� Security level, token, PIN
� Time of day
� Terminal ID or location
� Network node, traffic source
� Transaction type
� Biometric information

Fegghi, Fegghi, and Williams260 point out that, when choosing authentication
parameters, consideration should be given to what information is supplied,
what information is derived, and what information can be faked.

There are several authentication methods: unilateral, mutual, digital certif-
icates, Kerberos, data origin, peer entity, smartcards, and biometrics. These
methods are used for different purposes and at different layers in the ISO OSI
and TCP/IP reference models.

AU1163-ch06-Frame Page 162 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Authentication can be unilateral or mutual. When a user logs onto a system,
the user is authenticated to the system but the system is not authenticated to
the user. In many situations, particularly e-Commerce, it is highly desirable to
have mutual authentication in which both parties (users, processes, or systems)
are authenticated to each other before any transactions take place. A challenge-
response protocol is commonly used to perform mutual authentication. The
basic exchange is as follows403:

1. x sends an association establishment request, plus a unique string to y.
2. y encrypts the string and sends it back to x along with a new unique

string.
3. x decrypts the string, verifies that it is the string sent, then encrypts

the second string and sends it to y.
4. y decrypts the message and verifies that it is the string sent.

This protocol makes use of public key encryption and requires a minimum
of three message exchanges.403 The association request can be aborted at any
time if a discrepancy is detected.

Digital certificates are used to authenticate the distribution of public keys,
software, and other material by binding a public key to a unique identifier.
Trusted certificate authorities (CAs) issue digital certificates. The format of
digital certificates has been standardized since June 1996 through CCITT X.509
version 350,260,403:

a. X.509 version (1, 2, or 3)
b. Certificate serial number assigned by CA
c. Algorithm used to generate the certificate signature (k)
d. CA name
e. Certificate validity period (start/end dates)
f. Subject name (unique individual or entity)
g. Subject public key information (public key, parameters, algorithm)
h. Optional issuer unique identifiers
i. Optional subject unique identifiers
j. Optional extensions

k. CA digital signature of preceding fields

Certificates can revoked before they expire; hence, it is prudent to check
current certificate revocation lists (CRLs) maintained by trusted CAs. Also,
digital certificates should be bound to a specific request to prevent replay.403

It is important to remember that digital certificates guarantee the source; they
do not guarantee that software is virus-free or will operate safely, securely,
and reliably.277

Kerberos, which provides trusted third-party authentication for TCP/IP
networks,409 is an authentication product. It supports unilateral and mutual
authentication, primarily user to host, and provides a reasonable degree of
confidentiality. Kerberos utilizes tickets as its basic security token. Kerberos

AU1163-ch06-Frame Page 163 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

is primarily available as a shareware product, although some commercially
supported products are beginning to emerge.433,453,466,478 Kerberos is under
consideration to become an Internet standard.182 At present, NT™ 5.0 uses
Kerberos for authentication.277

Data origin authentication ensures that messages received are indeed from
the claimed sender and not an intruder who hijacked the session.260,403 Data
origin authentication is initiated after an association setup is established and
may be applied to all or selective messages.403

Peer entity authentication provides mutual application to application
authentication. As Rozenblit403 reports:

It provides a (usually successful) second line of defense against
intruders who have successfully bypassed connection access control.

Smartcards are a physical security token that a user presents during the
authentication process. They represent an evolution of ATM or credit cards
with magnetic strips, in that they contain a limited amount of processing
power. Smartcards are currently used to access mobile phone networks, store
electronic funds, and perform debit/credit card transactions. In the near future,
they may replace employee badges for authentication purposes: entry into
secure office spaces, desktop logon, etc.

Chadwick239 cites the advantages and disadvantages of smartcards:

� Advantages:
� Increased security: private key is unlikely to be copied unless the

smartcard is stolen and the thief knows the password and PIN
� Potential mobility of users; however, mobility is dependent on the

availability of smartcard readers
� Sequential access to one desktop PC or other machine by multiple users

� Disadvantages:
� Cost: which may improve over time
� Slower performance: 5 to 100 percent slower during message signing

and encryption
� Interoperability problems associated with new technology

As reported by Garber,271 American Express, Visa, Banksys, and ERG
Systems have formed a joint venture called ProtonWorld International to
develop an open standard for smartcards, and hence solve the interoperability
issues worldwide. Their immediate goal is to define the common electronic
purse specifications (CEPS) that will standardize interfaces, electronic cash
formats, and security mechanisms, such as public keys. Standardization will
also help to minimize smartcard fraud. See www.protonworld.com486 for the
latest information about standardization efforts.

Biometric systems are one of the newest modes of authentication. In simplest
terms, a biometric system is a pattern recognition system that establishes the

AU1163-ch06-Frame Page 164 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

http://www.protonworld.com

authenticity of a specific physiological or behavioral characteristic possessed
by a user.374 A biometric system has two major components: (1) a high-
resolution scanner that acquires and digitizes information, and (2) computer
hardware and software that perform the pattern recognition. The two major
functions of a biometric system are enrollment and identification. Enrollment,
which involves registering biometric information with a known identity, consists
of three steps427:

1. Capturing a raw biometric data sample from a scanner
2. Processing the raw biometric data to extract the unique details
3. Storing a composite of raw and unique data with an identifier

Identification involves comparing a current biometric sample to known
stored samples to verify a claimed identity or to identify a person.266,427

Identification repeats the capture and processing steps. Then, pattern recog-
nition algorithms are invoked to perform the comparison. Current and planned
future applications of biometric identification include access to secure facilities,
access to desktop PCs, verification for receipt of welfare payments, verification
for home banking privileges, and verification for bank ATM access.

Nine types of biometric systems are currently in use or under development.
Each measures a different physical characteristic266,332: fingerprints, iris, retina,
face, hand, ear, body odor, voice, and signature.

Fingerprint scanning is the oldest technology. Automated fingerprint iden-
tification standards began appearing in 1988*. Fingerprint scanning offers
40 degrees of freedom. Lerner332 reports that the false positive rate, which can
be improved if two fingers are scanned, is ~1 percent. Fingerprint scanning
may replace passwords in the near future for access to desktop computers.

The algorithm for iris scanning was developed in 1980 by John Daugman
of the Cambridge University Computer Science Department. It is only recently,
given improvements in computer processing power and cost, that iris scanning
technology has become commercially viable. IrisScan, Inc., of New Jersey
currently holds the patent for this technology. In simplest terms, iris scanning
involves wavelet analysis on a 512-byte pattern, similar to Fourier analysis.
As reported by Lerner,332 iris scanners support 266 degrees of freedom and
can perform 100,000 scans per second.

Biometric authentication can also be performed through voice verification.
In this case, the enrollment process consists of extracting unique feature vectors
from a passphrase that is recorded and stored in a voice print database.
Biometric authentication through voice verification is geared toward reducing
fraud in three environments: e-Commerce over the Internet, t-Commerce over

* ANSI/IAI 1-1988, Forensic Identification — Automated Fingerprint Identification Systems —
Benchmark Tests of Relative Performance.16

ANSI/IAI 2-1988, Forensic Identification — Automated Fingerprint Identification Systems —
Glossary of Terms and Acronyms.17

ANSI/NIST-CSL 1-1993, Information Systems — Data Format for the Interchange of Fingerprint
Information.15

AU1163-ch06-Frame Page 165 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

fixed-line telephones, and m-Commerce over mobile/wireless devices. An
advantage of voice verification is that it requires “little or no additional
infrastructure investment due to the wide availability and low cost of computer
microphones and telephones, whether fixed-line or cellular.”282

Configate’s463 Verimote is a leading voice verification product. As reported
by Gordon282:

… they have developed patent-pending software and adaptive algo-
rithms that use 40 objective voice features and 40 subjective features
to confirm the identity of an individual by verifying the unique
aspects of his voice…. Subsequent comparisons of the feature vectors
have yielded 99.6 percent accuracy.

Verimote is language independent; unlike some products, it is not tied to
English. In addition, the level of security is selectable. For example, a user
may be required to repeat randomly selected numbers to further reduce the
likelihood of a false positive.

A drop in the cost of biometric systems has expanded their usage. This is
turn has given impetus to biometric standardization efforts. As reported by
Tilton,427 the BioAPI consortium, consisting of some 45 companies, is devel-
oping a multi-level, platform-independent architecture to support the enroll-
ment and identification functions. The architecture specification is being written
in an object-oriented notation. This architecture envisions a biometric service
provider (BSP) that will operate between the input device and specific API.
A draft standard was released for comment December 1999. At the same time,
the biometric data format, common biometric exchange file format (CBEFF),
is being defined by the U.S. Biometric consortium and ANSI X.9F4 subcom-
mittee. For the latest information on biometric standards, see www.ibia.org474

and www.biometrics.org.459

The use of biometric identification systems raises performance and privacy
issues. While biometric systems are considered more accurate than nonbiomet-
ric systems,266 they still raise concerns about false positives and false negatives
given the variability in biometric characteristics.374 For example, changes in
makeup, hair style or color, tinted contact lenses, plastic surgery, a suntan, and
presence or absence of a mustache or beard would all change facial charac-
teristics, as would an illness or the normal aging process. Also, what is to
prevent a person from placing a photograph or hologram in front of the scanner,
or in the case of a voice recognition system, playing a tape recording? The
accuracy of biometric systems is, not surprisingly, tied to cost. Some experts
think that multi-mode biometric identification may be more accurate than single
mode266; however this has not yet been proven. The integrity of stored data
samples and current data samples is another concern. Biometric data is not
immune to misuse and attacks anymore than other types of data.332 Enrollment
fraud is a major concern for the system owners and the individual whose
identity has been hijacked.393 Likewise, the privacy and confidentiality of
biometric data must be protected. Until standardization efforts take hold, system
integration and interoperability issues will remain. In summary, biometric

AU1163-ch06-Frame Page 166 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

http://www.ibia.org
http://www.biometrics.org

identification systems are expected to reduce fraud, forgery, and theft332; but
like other authentication methods, they are not a panacea.

Block Recovery

Block recovery is a design technique that provides correct functional operation
in the presence of one or more errors.69 Block recovery is implemented to
increase the integrity of modules that perform critical functions. Exhibit 17
illustrates the basic logic of block recovery.

For each critical module, a primary and a secondary module (employing
diversity) are developed. After the primary module executes, but before it
performs any critical transactions, an acceptance test is run. This test checks
for possible error conditions, such as runtime errors, excessive execution time,
or mathematical errors, and performs plausibility checks.422 If no error is
detected, normal execution continues. If an error is detected, control is
switched to the corresponding secondary module and another acceptance test
is run. If no error is detected, normal execution resumes. However, if an error
is detected, the system is reset either to a previous (backward block recovery)
or future (forward block recovery) known safe/secure state.

If the system is reset backward, internal states have to be saved at well-
defined checkpoints and some compensatory action must be taken to account
for events that took place after the state to which the system is being
reset.69,333,422 Forward block recovery is appropriate for real-time systems with
fast changing internal states and a small amount of data.69 After the system
has been reset, normal operation continues. Jajodia305 recommends implement-
ing forward block recovery for anticipated errors and backward block recovery
for unanticipated errors.

Confinement

Confinement is a design feature that restricts an untrusted program from
accessing system resources and executing system processes. The intent is
to prevent an untrusted program from exhibiting unknown and unauthorized
behavior, such as:

� Accidentally or intentionally corrupting data
� Accidentally or intentionally triggering the execution of critical

sequences
� Initiating a trapdoor or Trojan horse through which executables are

misused or corrupted
� Opening a covert channel through which sensitive data is misappro-

priated

Noninterference is the goal of confinement — preventing interference
between independent functions that utilize shared resources and unintended
intercomponent communication.255 Interference can lead to255:

AU1163-ch06-Frame Page 167 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

AU1163-ch06-Frame Page 168 Tuesday, September 11, 2001 8:02 AM

Exhibit 17 Illustration of Bloc k Recovery Logic

© 2002 by CRC Press LLC

� Data corruption. Untrusted components overwrite vital information
stored in common memory and used by trusted components.

� Denial of access to critical resources. Untrusted components can
prevent or delay the execution of critical functions by restricting or
preventing access to a shared resource. In particular, untrusted com-
ponents can use too much CPU time or can fail to terminate or crash
and hence prevent the trusted components from executing.

Noninterference and separability are used in the information security domain
much the same as partitioning and isolation are used in the computer safety
domain.

COTS software, mobile code,405,406 reused software, shareware, and the
active content of Web pages are all good candidates for confinement. Con-
finement can be implemented by:

1. Restricting a process to reading data it has written277

2. Limiting executable privileges to the minimum needed to perform its
function, referred to as least privilege or sandboxing; for example, child
processes do not inherit the privileges of the parent processes335,405

3. Mandatory access controls (MAC)
4. Domain and type enforcement (DTE)
5. Language-based confinement of mobile code, per the Java™ security

model335

6. Wrappers

DTE is a confinement technique in which an attribute called a domain is
associated with each subject (user or process), and another attribute called a
type is associated with each object (system resource). A matrix is defined that
specifies whether or not a particular mode of access to objects of type x is
granted to subjects in domain y.335

Gollmann277 gives examples of language-based confinement:

� Applets do not get to access the user’s file system
� Applets cannot obtain information about the user’s name, e-mail

address, machine configuration, etc.
� Applets may make outward connections only back to the server they

came from
� Applets can only pop-up windows that are marked “untrusted”
� Applets cannot reconfigure the system, for example by creating a new

class loader or a new security manager

Wrappers are a confinement technique that encapsulates datagrams to
control invocation and add access control and monitoring functions.277 They
were originally developed for use with secure protocols, such as the encap-
sulated payload in IPSec or NLS. In the case of IPSec and NLS, the wrapper

AU1163-ch06-Frame Page 169 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

is used to protect what is encapsulated from the outside world. In the case
of confinement, wrappers are used to protect the outside word from what is
encapsulated (and untrusted). Since then, their usage has expanded. Fraser,
Badger, and Feldman264 recommend using wrappers to confine COTS software:

Using appropriate activation criteria, wrappers can be applied selec-
tively to points of vulnerability, or can be globally applied to all
processes on a system. In either case, with respect to a wrapped
program, the mediation and additional functionality provided by a
wrapper is nonbypassable and protected from tampering. These char-
acteristics, in addition to the fine-grained control that wrappers may
provide by potentially processing every system call, give wrappers a
great deal of power to add to and enforce security policies.

Mobile code is also a good candidate for confinement. Sander and
Tschudin406 cite several concerns about mobile code that confinement can
help to mitigate:

� Protecting host computers from accidental or intentional errant mobile
code

� Protecting mobile agent’s code and data from accidental or intentional
tampering, corruption, and privacy violations

� Secure routing of mobile code
� Protecting mobile code from I/O analysis

To be effective, all six confinement techniques require thorough upfront
analysis to determine how to restrict the untrusted program and to what to
restrict it.

Defense in Depth

Defense in depth provides several overlapping subsequent limiting barriers
with respect to one safety or security threshold, so that the threshold can only
be surpassed if all barriers have failed.60 The concept of defense in depth, as
applied to systems, originated in the nuclear power industry. Defense in depth
should be applied to all layers in the ISO OSI and TCP/IP reference models.

Defense in depth is a design technique that reflects common sense. In short,
everything feasible is done to prepare for known potential hazards and vulner-
abilities. Then, acknowledging that it is impossible to anticipate all hazards and
vulnerabilities, especially unusual combinations or sequences of events, extra
layers of safety and security features are implemented through multiple com-
plementary design techniques and features. For example, partitioning, informa-
tion hiding, plausibility checks, and block recovery could be implemented; four
layers of protection are better than one. Exhibit 18 illustrates the concept of
defense in depth. In this example, each of the six successive defensive layers
would have to be surpassed for a compromise to occur. Note that robust access
control and authentication are the foundation of this defense strategy.

AU1163-ch06-Frame Page 170 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Exhibit 18 Illustration of Defense in Depth

A
U

1163-ch06-Fram
e Page 171 T

uesday, Septem
ber 11, 2001 8:02 A

M

© 2002 by CRC Press LLC

Defensive Programming

Defensive programming prevents system failures or compromises that could
affect IA integrity by detecting errors in control flow, data flow, and data during
execution and reacting in a predetermined and acceptable manner.69 Defensive
programming is applied to all IA-critical and IA-related functions. Defensive
programming is approached from two directions. First, potential software design
errors are compensated for; this is accomplished by: (1) performing range,
plausibility, and dimension checks at procedure entry and before executing
critical commands, and (2) separating read-only and read-write parameters to
prevent overwriting. Second, failures in the operational environment are antic-
ipated; this is accomplished by: (1) performing control flow sequence checks
to detect anomalous behavior, especially in state transitions; (2) regularly
verifying the hardware and software configuration; and (3) conducting plausi-
bility checks on critical input, intermediate, and output variables before acting
upon them. In summary, all actions and transitions are verified beforehand as
a preventive strategy.

Degraded-Mode Operations, Graceful Degradation

The purpose of degraded-mode operations — or graceful degradation as it is
sometimes called — is to ensure that critical system functionality is maintained
in the presence of one or more failures.69 IA-critical and IA-related functions
can rarely just cease operation in response to an anomalous event, suspected
attack, or compromise. Rather, some minimum level of service must be
maintained. Degraded-mode operations allows priorities to be established for
maintaining critical functions, while dropping less critical ones, should insuf-
ficient resources be available to support them all. The total system (hardware,
software, and communications equipment) is considered when planning for
degraded-mode operations; often, a system reconfiguration is necessary.422

Degraded-mode operations is tied directly to and consistent with operational
procedures and contingency plans.

The prioritized set of IA-critical and IA-related functions should be specified
during the requirements and design phases. Criteria for transitioning to
degraded-mode operations is specified. The maximum time interval during
which a system is allowed to remain in degraded-mode operations is also
defined. Degraded-mode operations should include provisions for the follow-
ing items, at a minimum126,127:

� Notifying operational staff and users that the system has transitioned
to degraded-mode operations

� Error handling
� Logging and generation of warning messages
� Reduction of processing load (execute only core functionality)
� Masking nonessential interrupts
� Signals to external resources to slow down inputs
� Trace of system states to facilitate post-event analysis
� Specification of the conditions required to return to normal operations

AU1163-ch06-Frame Page 172 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Degraded-mode operations provides an intermediate state between full
operation and system shutdown; hence the name graceful degradation. This
allows the minimum priority system functionality to be maintained until
corrective action can be taken. Degraded mode operations is another preven-
tive strategy where decisions are made beforehand about how to respond to
a potential crisis situation. Without this prior planning and preparation, the
ensuing system degradation and compromise will be most ungraceful indeed.

Digital Signatures

Digital signatures provide reasonable evidence of the true sender of an
electronic message or document, which is often referred to as nonrepudiation
of origin. Digital signatures are created using public key encryption, like RSA.
A signature generation algorithm and a signature verification algorithm are
involved. The initial digital signature standard (DSS) was issued in May 1994.165

A digital signature consists of a fixed-length string of bits that is derived
from the original message using public key encryption. This string of bits is
attached to the original message before it is sent. In general, a digital signature
is generated on the clear text message, the message is encrypted, and then
the signature is attached and the message is transmitted.403 The recipient
decrypts the string to verify that the signature reflects the original message.
In this way, the recipient knows (1) the message has not been altered, and
(2) the real origin of the message. Nonrepudiation of receipt requires the
recipient to sign the message and return it to the sender. This provides
roundtrip message delivery confirmation.

Digital signatures help to establish the identity of a sender of a document.
However, they do not necessarily prove that the sender created the contents
of the message.248 Digital signatures consume additional system resources and
require that a reliable key management process be followed.

The use of digital signatures will grow as e-Commerce grows. Legislation
passed in the United States during the summer of 2000 will also accelerate
this process. As reported by Shuman413:

At the end of June, U.S. President Bill Clinton signed the Electronic
Signature Act. This was no ordinary signature. The President used
a smartcard encrypted with his digital signature to “e-sign” the
legislation. The new law officially grants electronic digital signatures
legal status in court.

Diversity

Diversity is a design technique employed to enhance IA integrity by detecting
and preventing systematic failures. While diversity does not prevent specifi-
cation errors, it is useful for uncovering specification ambiguities.422 Diversity
can be implemented in hardware and software.

In software diversity, also referred to as n-version programming, more than
one algorithm is developed to solve the same problem. The same input is

AU1163-ch06-Frame Page 173 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

supplied to the n versions, and then the outputs are compared. If they agree,
the appropriate action is taken. Depending on the criticality of the application,
100 percent agreement or majority agreement can be implemented288; if the
results do not agree, error detection and recovery algorithms take control.
Diverse software may execute in parallel on different processors or sequentially
on the same processor. The first approach increases hardware size, cost, and
weight, while the second approach increases processing time.422 Diversity can
be implemented at several stages in the life cycle129:

� Development of diverse designs by independent teams
� Development of diverse source code in two or more different languages
� Generation of diverse object code by two or more different compilers
� Implementation of diverse object code using two or more different

linking and loading utilities

Hardware diversity employs multiple, different components and modules
to perform the same function. This contrasts with hardware redundancy in
which multiple units of the same hardware are deployed. To the extent
possible, components and modules are chosen that have different rates and
types of failures.

The goal of diversity is to decrease the probability of common cause and
systematic failures, while increasing the probability of detecting errors.69 Diver-
sity may complicate supportability issues and synchronization between diverse
components operating in parallel.129 Accordingly, diversity should only be
implemented for IA-critical and IA-related functions.

Encryption

Encryption is an IA design feature that provides confidentiality for data while
it is stored or transmitted. This is accomplished by manipulating a string of
data (clear text) according to a specific algorithm to produce cipher text, which
is unintelligible to all but the intended recipients. As shown in Exhibit 19, a
series of decisions must be made when implementing encryption.

The first question to answer is: What data needs to be encrypted? This
information is derived from the IA goals and may include items such as e-mail,
application-specific data, authentication data, private keys, and video telecon-
ference sessions. At the same time, data that does not need to be encrypted
is identified; for example, certain fields in a database record may need to be
encrypted but not the entire record or file. Because of the time and resources
utilized, it is important not to over identify data needing encryption. Conversely,
it is equally important not to under identify data needing encryption and in
so doing create opportunities for aggregation and inference.

The second question to answer is: Where is the data created, stored, and
transmitted? The intent is to uncover all instances of this data so that the most
efficient and effective encryption strategy can be employed. The stored and
transmitted categories should include printouts, local and organizational hard-
copy archives, and electronic archives; there is no point in encrypting active
electronic data if printouts and archives are unprotected.

AU1163-ch06-Frame Page 174 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Third, the encryption strength needed is determined; this can vary from
low to medium for random office e-mail traffic, to very high for defense or
intelligence applications. This information is derived from the IA goals.

Fourth, the level or levels of the ISO OSI and TCP/IP reference models in
which to implement encryption are identified. Exhibit 20 depicts potential encryp-
tion points in a typical information architecture. As shown, encryption can be
implemented at the physical, data link, network, transport, and application layers.

Data link level encryption encrypts all traffic on a single point-to-point link.
It is easy to implement because of well-defined hardware interfaces.409 Data
link level encryption is transparent to higher level applications and provides
protection against traffic analysis.241,409 However, data is exposed at network
nodes because it must be decrypted to obtain routing information.241,409

Exhibit 19 Key Decisions to Make when Implementing Encryption

1. What data needs to be encrypted?

a. E-mail f. Fax transmissions
b. Text, graphic, video, audio files g. Video teleconferences
c. Database files h. Authentication data files
d. Application data i. Private keys
e. Telephone conversations and voice mail j. Access control rights and

privileges

2. Where is the data:

a. Created? b. Stored? c. Transmitted?

3. What strength of encryption is needed?

a. Low b. Medium c. High d. Very high

4. At what level(s) in the ISO OSI or TCP/IP reference models should encryption
take place?

a. Physical b. Data link c. Network d. Transport e. Application

5. Should hardware or software encryption be used?

6. Should block or stream ciphers be used?

7. What cipher mode of operation should be used?

a. ECB b. CBC c. OFB d. CFB e. Counter

8. Should symmetric or asymmetric keys be used?

9. What key management procedures should be used for:

a. Key generation f. Key change
b. Key distribution g. Key storage
c. Key verification h. Key recovery, backup
d. Controlling key use i. Destroying old keys
e. Responding to key compromise

10. What encryption algorithm should be used?

Note: Questions 3 through 10 are repeated for each collection of data identified in
Questions 1 and 2.

AU1163-ch06-Frame Page 175 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Network and transport level encryption utilize a key ID that explains the
encryption algorithm, blocksize, integrity check, and validity period. ATM
encryption standards are under development.426 Transport level encryption is
implemented using the transport level security (TLS1) protocol, which makes
use of TCP virtual circuits. This permits different circuits between the same
pair of hosts to be protected with different keys.241 TLS1 encrypts the TCP
header and segment, but not the IP header. Network level encryption is
implemented using either IPSec or the network level security (NLS) protocol,
which make use of encapsulation. IPSec and NLS encrypt entire packets,
including the original IP header, and generate a new IP header. IPSec, NLS,
and TLS1 are transparent to higher level applications. IPSec and NLS protect
subnets from traffic analysis,241 while TLS1 does not. Key management is

Exhibit 20 Potential Encryption Points in a Typical Information Architecture

AU1163-ch06-Frame Page 176 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

more complex than data link level encryption.409 (See also the discussion of
secure protocols.)

Application layer encryption can be implemented in a variety of ways.
For example, a custom application can encrypt data stored on a server or in
a database. Financial data in spreadsheets can be encrypted on local work-
stations. Corporate personnel files can be encrypted. Perhaps the best-known
instance of application level encryption is e-mail. Several e-mail encryption
protocols are available, including PEM, PGP, and S/MIME. In addition to
encryption, some of these protocols support digital signatures and digital
certificates. A common vulnerability of all application layer security is that
the data can be attacked through the operating system before it is encrypted.
Another concern is when encryption takes place relative to the browser
function, because browsers store previous Web pages.277 Accordingly, it is
beneficial to employ encryption at multiple levels.

To supplement application level encryption, data can also be encrypted while
it is stored on a local workstation, on an application server, in backup files,
archives, and other portable media. As mentioned, the clear text stores of this
information must be controlled as well or the encryption will be to no avail.

The fifth decision is whether hardware or software encryption should be
used, inasmuch as encryption algorithms can be implemented in either. Hard-
ware encryption is the primary choice for critical applications and is used almost
exclusively by the defense and intelligence communities.409 This is true for
several reasons. Hardware encryption provides algorithm and to some extent
key security because the units are designed to: (1) be tamperproof, (2) erase
keys if tampering is attempted, and (3) eliminate emanations through shield-
ing.409 Hardware encryption is considerably faster than software encryption and
it offloads intensive calculations from the CPU, thus improving overall system

Legend for Exhibit 20

Encryption Point Level of Encryption Type of Encryption

a. Keyboard to CPU Data link Hardware
b. CPU to portable media Data link Hardware
c. Local workstation hard drive Application Hardware or software
d. Local workstation to LAN Network Hardware
e. Local workstation to shared

printer/smart copier
Network Hardware

f. Electronic archives Application Software
g. Application server Application Software
h. Database management system Application Software
i. E-mail server Transport Software
j. Internet server Transport Hardware
k. Telephone conversations Data link Hardware
l. Voice mail storage Data link Hardware
m. Fax transmissions Data link Hardware
n. Remote access to LAN Data link Hardware

AU1163-ch06-Frame Page 177 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

performance. Hardware encryption is implemented in modules, boards, and
boxes that are easy to install. Software encryption, while easy to use and
upgrade, presents several vulnerabilities not found in hardware encryption. For
example, the software encryption task runs the risk of being preempted by a
higher priority task or interrupt and being written to disk. This leaves both the
key and the data exposed.409 Likewise, software encryption algorithms are
vulnerable to unauthorized and potentially undetected alterations. Key man-
agement is also more complex with software encryption.

The sixth decision is whether block or stream ciphers should be used. Block
ciphers operate on a fixed number of bits or bytes; if necessary, the last block
is padded. Both the cipher text and clear text have the same block size. Block
ciphers can be implemented in hardware or software. Stream ciphers operate
on asynchronous bit streams, transforming a single bit or byte of data at a
time. Stream ciphers are implemented in hardware at the data link level.

The next decision concerns the mode the block or stream cipher will
operate in — its mode of operation. Some modes are only applicable to
block ciphers, while others work for both block and stream ciphers. The
differences between the modes are, for the most part, subtle. A notable
difference is the extent to which errors are propagated. The five most common
modes are: electronic code book (ECB), cipher block chaining (CBC), output
feedback (OFB), cipher feedback (CFB), and counter. ECB mode produces
the same results from the same block of data each time. This feature is
convenient and simplifies verification, but facilitates cryptoanalysis.241 In CBC
mode, each block of clear text is exclusive OR’d with the previous block of
cipher text before encryption. Initialization vectors are supplied for the first
block of data. Block ciphers or stream ciphers can operate in OFB mode. In
this mode, n-bits of the previous cipher text are exclusive OR’d with the
clear text, starting at the right-most bit. This mode has the advantage that
errors are not propagated. In CFB mode, the left-most n-bits of the last cipher
text block are exclusive OR’d with the first/next n-bits of the clear text.
Unfortunately, this mode propagates errors. In counter mode, sequence
numbers (rather than previous cipher text) are used as input to the encryption
algorithm. The counter is increased by a constant value after each block is
encrypted. Block ciphers or stream ciphers can operate in counter mode.
Errors are not propagated.

The choice of encryption key type is next. Symmetric or asymmetric keys
can be used. When symmetric or secret keys are used, the same key is used for
encryption and decryption. The use of symmetric keys is the traditional approach
to encryption and was used in the past primarily for defense and intelligence
applications. Symmetric keys are appropriate in the following situations:

� The sender and receiver are known to each other and are in the same
organization or cooperating organizations.

� The sender and receiver remain constant for a fixed period of time.
� The sending and receiving nodes remain constant for a fixed period

of time.

AU1163-ch06-Frame Page 178 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

� A long-term relationship between the sender and receiver is anticipated,
with a regular need to exchange sensitive information.

� The sender and receiver have the ability to cooperate on key manage-
ment and other encryption issues.

In contrast, with asymmetric keys, a pair of public and private keys are used.
The public key (used for encryption) is shared, while the private key (used for
decryption) is not. The two keys are mathematically related but it is not feasible
to uncover the private key from the public key. In practice, when A wants to
send B a sensitive message, A encrypts the message with B’s public key. Then,
B decrypts the message with their private key. The first asymmetric key cryp-
tosystems were announced in the late 1970s. Since then, several other systems
have been developed. Asymmetric key cryptosystems are considerably slower
and use much longer key lengths than symmetric key systems. As Schneier409

points out, symmetric and asymmetric key systems are designed for different
operational profiles:

Symmetric cryptography is best for encrypting data. It is orders of
magnitude faster and is not susceptible to chosen cipher text attacks.
Public key cryptography can do things symmetric cryptography
can’t; it is best for key management and a myriad of other protocols
[digital signatures, key exchange and authentication, digital cash,
and so forth].

Most organizations employ a combination of symmetric and asymmetric
key systems. As Lee330 observes:

In practice, the symmetric key and public key systems are not in
competition. Most cryptographic schemes on which e-Commerce
operations rely use a hybrid of the two systems to exploit the key
management flexibility of a public key system and the fast scram-
bling speeds of symmetric key systems. This hybrid approach is often
called key wrapping.

Key management issues are the next logical decision. Given that most
encryption algorithms are publicly available, it is the keys that must be pro-
tected. The extent to which a key is protected should be proportional to the
sensitivity of the information being encrypted. Several issues must be decided
when developing key management plans and procedures; these include:

� Algorithm to use to generate the key
� Process and schedule for changing keys
� How to distribute keys securely
� How to store keys securely, both local and backup copies
� How to verify the authenticity of keys
� Process for recovering “lost” keys

AU1163-ch06-Frame Page 179 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

� Process for controlling and revoking keys
� Process for destroying all instances of old keys
� Process for responding to the compromise of a secret or private key

These policies and procedures need to be established by an organization,
with the involvement of all stakeholders, prior to implementing encryption.
All staff should be thoroughly trained to use the procedures. Periodic audits
should be conducted to verify that the procedures are being followed and to
look for opportunities to improve them.

The final decision to be made concerns which encryption algorithm to use.
Of course, several of the decisions made above will narrow this choice. The
strength of an encryption algorithm depends in part on the sophistication of
the algorithm and the length of the key.241,403,409 However, as both Schneier410

and Ritter396 point out, longer key lengths by themselves do not necessarily
guarantee more security. Rozenblit403 notes that “the amount of computation
it takes, on average, to uncover the secret key increases exponentially with
the size of the key.” Most sources recommend changing symmetric keys at
least once a day 241,403,409; in fact, in very critical applications, separate keys
may be used for each session.241 Likewise, it is recommended that asymmetric
systems employ timestamps to prevent replay.403

In addition, there are several implementation details to consider. The pro-
cessing efficiency of the algorithm, in terms of time and resources used, is a
major factor. Efficiency is improved if the encryption blocksize is consistent with
the data bus size. Files should be compressed before they are encrypted, while
error detection/correction codes should be added after encryption.409 In situations
where confidentiality is particularly important, it may be beneficial to implement
multiple or cascade encryption to further inhibit opportunities for cryptoanalysis.
In multiple encryption, an algorithm is repeated several times on the same block
of data using multiple keys; triple DES is a well-known example of this. In
cascade encryption, multiple different algorithms are performed on the same
block of data. Finally, while encrypting e-mail increases privacy for the sender
and receiver, it potentially decreases system and data integrity for the receiver
because, as Garber272 notes, many commercial anti-virus products have difficulty
scanning encrypted e-mail effectively.

Error Detection/Correction

Error detection/correction algorithms are used to increase data integrity during
the transmission of data within and among networks and system integrity
during the execution of application software. At the network level, error
detection/correction algorithms examine data to determine if any data was
“accidentally” corrupted or lost, and to discover if any unauthorized changes
were “intentionally” made to the data.357 These errors are compensated for by
self-correcting codes at the receiving end or requests for retransmission. At
the application software level, error detection/correction algorithms detect
anomalous or illegal modes/states, parameters, etc., and initiate the appropriate
error handling routines.

AU1163-ch06-Frame Page 180 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Examples of common error detection/correction algorithms used at the
network level include longitudal and vertical parity checks, Hamming codes,
convolutional codes, recurrent codes, checksums, and cyclical redundancy
checks (CRCs).357 The receiving end performs the error detection and notifies
the transmitting end. In response, the transmitting end, in most cases, provides
a reason for the error along with an indication of whether the condition is
temporary or permanent.334 If the error condition is expected to be prolonged,
the receiving end may request that a new session be established. Morris357

has identified several factors to consider when selecting which error detection/
correction algorithms to implement:

� Type of data to be transmitted
� Degree of accuracy required in received data
� Inherent level of reliability required
� Number (or percent) of incorrect digits or messages that are allowed

through
� Delays allowed in the system
� Accepted redundancy of the data allowed (the volume of the data trans-

mitted versus the accuracy required)
� Required throughput in the system (throughput is reduced by redun-

dancy, coding delays, and requests for retransmission)
� Type of links available and the interferences that may be anticipated

in the links
� Efficiency of the data transmission or communication links
� Implementation cost and the cost efficiency of the various error control

techniques

At the application software level, this technique involves: (1) identifying
where possible errors could occur in accessing, manipulating, and relaying
information; and (2) defining the appropriate corrective action to be taken in
each instance. It is unlikely that error detection/correction will be implemented
for all potential error conditions due to program size, response time, schedule,
and budget constraints; hence, the focus should be on IA-critical and IA-related
functions/entities. Error conditions that might result from accidentally and
intentionally induced anomalies, as well as potential transient faults, should
be included in the analysis.

Fail Safe/Secure, Fail Operational

Fail safe/secure and fail operational are IA design techniques which ensure
that a system remains in a known safe/secure state following an irrecoverable
failure. To fail safe/secure means that a component automatically places itself
in a known safe/secure mode/state in the event of a failure. In many instances,
known safe default values are assumed. Then the system is brought to a known
safe/secure mode/state by shutting it down; for example, the shutdown of a
nuclear reactor by a monitoring and protection system.345 To fail operational

AU1163-ch06-Frame Page 181 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

means that a system or component continues to provide limited critical func-
tionality in the event of a failure. In some instances, a system cannot simply
shut down; it must continue to provide some level of service if it is not to be
hazardous, such as an aircraft flight control system.345

Fail safe/secure and fail operational ensure that a system responds predict-
ably to failures by making proactive design decisions. The first step is to
identify all possible failure modes. This is done by developing transaction
paths and using IA analysis techniques such as FTA, FMECA, and HAZOP
studies. Next, the appropriate response to each failure is specified so that the
system will remain in a known safe/secure state. Examples of different types
of fail safe/secure or fail operational modes include288,333,422:

� Fail operational by transitioning to degraded mode operations
� Fail safe/secure by assuming known safe/secure default values and

then activating an emergency shutdown
� Fail operational by transferring to manual or external control
� Fail operational by activating a restart
� Fail safe/secure by activating a hold state, whereby no functionality is

provided while action is taken to maintain the system in a safe/secure
state and minimize the extent of damage

The correct response to one failure may be to fail safe/secure, while the correct
response to another failure in the same system may be to fail operational. Also,
the operational mode/state will influence the choice of a failure response.

Fail safe/secure and fail operational designs should be implemented for
all IA-critical and IA-related functions/entities at the hardware, software, and
system levels. This is essential for maintaining IA integrity. Fault tolerance
prevents a limited number of faults from progressing to failures. Those that
cannot or are not expected to be handled sufficiently by fault tolerance must
be dealt with by fail safe/secure and fail operational designs. Combining fault
tolerance and fail safe/secure and fail operational designs is another example
of defense in depth.

Fault Tolerance

Fault tolerance increases IA integrity by providing continued correct execu-
tion in the presence of a limited number of hardware or software faults.60,225

As Jajodia305 notes:

Fault tolerance is a natural approach for dealing with information
attacks because it is designed to address system loss, compromise,
and damage during operation.

Fault tolerance is a category of IA design techniques that focuses on
containing and mitigating the consequences of faults, rather than preventing
them. It is important to clarify the terminology used in this regard:

AU1163-ch06-Frame Page 182 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

� An error is the difference between a computed, observed, or measured
value or condition and the true, specified, or theoretically correct value
or condition.44

� A fault is a defect that results in an incorrect step, process, data value,
or mode/state.

� A failure is failing to or to inability of a system, entity, or component
to perform its required function(s), according to specified performance
criteria, due to one or more fault conditions.

� A mistake is an erroneous human action (accidental or intentional)
that produces a fault condition.

Either an error or a mistake can cause a fault, which can lead to a failure:

Error or mistake → Fault → Failure

Fault tolerance attempts to prevent a fault from progressing to a failure,
which could compromise a system or render it inoperable. Faults provide an
opening for possible attacks, especially if the fault condition can be induced.

There are three types of fault tolerance: hardware, software, and system.
As Levi and Agrawala334 point out, hardware faults are generated by design
errors (overload, improper states, etc.) and environmental stresses, which
cause physical degradation of materials, while software faults are caused by
design errors and runtime errors. However, they note that334:

One cannot always distinguish hardware from software failures.
…hardware failures can produce identical faulty behavior to that
generated by software. Memory failures are equivalent to software
failures if they occur during instruction fetch cycles of the processors,
generating an erroneous execution of an instruction. A processor
whose program counter is inappropriately altered produces an out
of order execution of instructions as does a software design error.

As a result, a combination of hardware, software, and system fault tolerance
is needed.

Hardware fault tolerance is usually implemented through redundancy,
diversity, power-on tests, BITE, and other monitoring functions. The concept
is that if a primary component fails, the secondary component will take over
and continue normal operations.

Software fault tolerance is usually implemented through block recovery,
diversity, error detection/correction, and other IA design techniques. The
basic premise of software fault tolerance is that it is nearly impossible to
develop software that is 100 percent defect-free; therefore, IA design tech-
niques should be employed to detect and recover from errors while mini-
mizing their consequences. Software fault tolerance should be implemented
in both application and system software. In September 1999, Enea OSE
Systems of Sweden announced the first fault tolerant, real-time operating
system to be IEC 61508 certified. This product, OSE, offers a “full featured

AU1163-ch06-Frame Page 183 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

real-time operating system for fault tolerant high-end systems” and supports
the “direct message-passing method of interprocess communication, memory
protection, and error detection/correction.” 415

System fault tolerance combines hardware and software fault tolerance, with
software monitoring the health of both the hardware and the software. System
fault tolerance should be employed for IA-critical and IA-related functions. Fault
tolerance is an effective method to increase system reliability and availability. It
may increase the physical size and weight of a system, which can conflict with
specified constraints.

Firewalls, Filters

A firewall is a security gateway between one network and another that uses
a variety of techniques to block unwanted users and processes from entering
a network while protecting legitimate users, sensitive data, and processes, in
accordance with IA goals. Firewalls control access to resources between one
network and another. They determine if a particular message or process should
be allowed to enter or exit a system248 by monitoring both incoming and
outgoing traffic. Firewalls perform several critical functions, similar to caller-
ID and call-blocking on a telephone, which help to maintain IA integrity,
including248,277:

� Access control based on sender or receiver addresses
� Access control based on the service requested
� Hiding internal network topology, addresses, and traffic from the outside

world
� Virus checking incoming files
� Authentication based on traffic source
� Logging Internet activities for future analysis
� Blocking incoming junk e-mail
� Blocking outgoing connections to objectionable Web sites

There are three main types of firewalls: packet filters, application level
gateways, and circuit level gateways. Packet filters determine if a packet should
be let into a network based on the communication endpoint identifiers.253

Depending on the source or destination address or port, packets may be
purposely dropped. Filtering rules (block or allow) are specified based on
source, port, destination, port, and flags. Packets not explicitly allowed by a
filter rule are rejected. This, of course, assumes that filtering rules were created
with tight specifications. Packet filters can be configured to examine both
incoming and outgoing packets. Packet filters are essentially ineffective when
UDP is used.241

Application level gateways are, in essence, firewalls that are developed to
protect specific applications. The most common usage is with e-mail servers.
A separate application level gateway is required for each service or application.
Usually, all traffic is logged by an application level gateway.

AU1163-ch06-Frame Page 184 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Circuit level gateways, sometimes called proxy firewalls, mediate between
two devices attempting to communicate across a firewall253; they relay TCP
connections. In practice, a caller connects to a port on the outside gateway.
If the session is approved, the gateway forwards the information to the
destination that is connected to an internal gateway port. Circuit level gateways
log the number of bytes sent by TCP address. They are not effective against
insider attacks.241 Because of the different services provided, most organizations
use a combination of firewall types.

Several issues arise during the implementation of firewalls. One of the first
is how to configure the firewall; the answer, representing a trade-off between
security and connectivity, is derived from the IA goals and IA integrity level.
Firewalls primarily provide protection at the lower levels of the ISO OSI and
TCP/IP reference models. They should be evaluated against known vulnerabili-
ties, specific protection profiles, and content-based attacks.251 Many commercial
firewall products are available. To facilitate the selection process, the Computer
Security Institute (CSI)470 publishes an annual report that compares these products.
A persistent concern has been the ability to provide firewall-like protection for
home PCs, especially those operating home-based businesses. A remedy for this
situation was recently announced. Groner281 reports that a scaled-down version
of CheckPoint’s firewall software is being sold on a chip to modem manufacturers
for use with home computers.

Formal Specifications, Animated Specifications

Formal methods use mathematical techniques in the specification, design, and
verification of computer hardware and software.422 More precisely, formal
methods are129:

a software specification and production method, based on mathe-
matics that comprises: a collection of mathematical notations
addressing the specification, design, and development processes of
software production; [the result being] a well-founded logical infer-
ence system in which formal verification proofs and proofs of other
properties can be formulated [and] a methodological framework
within which software may be developed from the specification in a
formally verifiable manner.

In short, formal methods use a formal notation, based on discrete mathemat-
ics, to specify and verify system requirements and design. There are a variety
of formal notations, or languages, with supporting toolsets available today:
B, calculus of communicating systems (CCS), communicating sequential pro-
cesses (CSP), higher order logic (HOL), language for temporal ordering
specification (LOTOS), OBJ, temporal logic, Vienna development method
(VDM), and Z. These languages support a combination of computer hardware
and software specification and design in concurrent, parallel, sequential, and
real-time environments.

AU1163-ch06-Frame Page 185 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

A formal specification is a system description written in a formal language.
As such, it can be subjected to rigorous mathematical analysis to detect various
classes of inconsistencies, incorrectness, and incompleteness.69,422 The precision
required by formal specification languages makes this analysis possible. With
some toolsets, the analysis can be performed automatically, similar to a compiler
performing syntax checks.69 Another advantage of formal specifications is that
they can be animated to illustrate specified system behavior and, in so doing,
either validate requirements or highlight the need for clarifications and correc-
tions. As IEC 61508-7 notes69:

Animation can give extra confidence that the system meets the real
requirement as well as the formally specified requirement, because
it improves human recognition of the specified behavior.

Formal specifications were developed to compensate for weaknesses inherent
in natural language specifications, in particular the ambiguity and susceptibility
to misunderstanding and multiple interpretations.422 They attempt to bridge the
gap between a set of natural language requirements and a design implemented
in a computer language. The development of formal languages began in the
1970s. The primary use was in verifying that security kernels correctly imple-
mented a specified security policy and model. The mathematical precision of
these languages was well suited to the task. In the 1980s, the safety community
adapted and expanded the languages and methods to real-time, safety-critical
control systems.422 The languages, methods, and supporting toolsets continued
to evolve and, by the mid-1990s, several national and international standards
either mandated or highly recommended their use.18,24,31,60,69,129

Formal specifications have many advantages in the IA domain. Incorrect
specifications are considered the source of most errors in computer systems422;
in fact, some consider them to be the source of the most serious errors.333 A
technique that reduces the likelihood of errors being introduced during the
specification phase is very beneficial in terms of cost, schedule, and ultimate
system performance. Errors, inconsistencies, and ambiguities are resolved
before coding begins. Formal specifications help to clarify access control
requirements and operational modes/states of IA-critical and IA-related func-
tions. The rigor imposed by the notation forces both positive and negative
instances to be specified, similar to specifying MWFs and MNWFs. The process
by which formal specifications are verified helps to ensure that stated IA
integrity levels will be achieved and can be maintained. Animation permits
the feasibility of a system, against specified constraints (memory, I/O, band-
width, response times, etc.), to be evaluated before full-scale development.81

Exhibit 21 illustrates the precision of formal specifications by rewriting
Exhibits 14c and 15 in a formal notation.

Information Hiding

Information hiding is an IA design technique that enhances IA integrity by:
(1) preventing accidental access to and corruption of critical software and

AU1163-ch06-Frame Page 186 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Exhibit 21 Sample Formal Specifications

A. Exhibit 14C Written as a Formal Specification

SECURITY LABELS

Confidential, Secret, TopSecret, AllModes: F SECURITY LABELS

Confidential ∪ Secret ∪ TopSecret = AllModes
Confidential _ Secret _ TopSecret = 0

DesktopOA ∪ LocalEmail = Confidential
DesktopOA _ LocalEmail = 0

Secret ⊃ Confidential
DesktopOA ∪ LocalEmail ∪ LimitedApplA = Secret
DesktopOA _ LocalEmail _ LimitedApplA = 0

TopSecret ⊃ Secret
DesktopOA ∪ LocalEmail ∪ FullApplA ∪ ForeignEmail ∪ InetSearch ∪

ImportFiles = TopSecret
DesktopOA _ LocalEmail _ FullApplA _ ForeignEmail _ InetSearch _

ImportFiles = 0

B. Exhibit 15 Written as a Formal Specification

OPERATIONAL MODES

NormalOps, TriggerWarning, TriggerAlert, ActivateShutdown, AllModes:
F OPERATIONALMODES

NormalOps ∪ TriggerWarning ∪ TriggerAlert ∪ ActivateShutdown = AllModes
NormalOps _ TriggerWarning _ TriggerAlert _ ActivateShutdown = 0

NormTemp ∪ NormPress = NormalOps
NormTemp _ NormPress = 0

(LowTemp ∪ LowPress) .OR. (NormTemp ∪ LowPress) .OR.
(LowTemp ∪ NormPress) = TriggerWarning

(LowTemp _ LowPress) ∪ (NormTemp _ LowPress) ∪
(LowTemp _ NormPress) = 0

(NormTemp ∪ HighPress) .OR. (HighTemp ∪ LowPress) .OR.
(HighTemp ∪ NormPress) = TriggerAlert

(NormTemp _ HighPress) ∪ (HighTemp _ LowPress) ∪
(HighTemp _ NormPress) = 0

(HighTemp ∪ HighPress) .OR. (LowTemp ∪ HighPress) = ActivateShutdown
(HighTemp _ HighPress) ∪ (LowTemp _ HighPress) = 0

AU1163-ch06-Frame Page 187 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

data, (2) minimizing the introduction of errors during maintenance and
enhancements, (3) reducing the likelihood of CCFs, and (4) minimizing fault
propagation. IEEE Std. 610.12-1990 defines information hiding as:

1. A software development technique in which each module’s interfaces
reveal as little as possible about the module’s innerworkings and other
modules are prevented from using information about the module that
is not in the module’s interface specification;

2. A software development technique that consists of isolating a system
function, or set of data and operations on those data, within a module
and providing precise specifications for the module.

Information hiding can be applied to data and program logic. Information
hiding increases reliability and maintainability by minimizing coupling between
modules, while maximizing their cohesion.81 Data structures and logic are
localized and as self-contained as possible. This allows the internal data
structures and logic of a module to be changed at a later date without affecting
the behavior of other modules or necessitating that they also be changed;
hence the four benefits listed above. Accordingly, information hiding is highly
recommended by several national and international standards.18,27,38,69 Object-
oriented designs are quite amenable to information hiding.277

Intrusion Detection, Response

Intrusion detection and response systems recognize and respond to a security
breach, either as it is happening or immediately afterward. Intrusion detection
and response systems operate behind a firewall; following the concept of
defense in depth, they catch outsider attacks that penetrated a firewall. Insider
attacks can also be foiled by intrusion detection and response systems. Lehtinen
and Lear331 quote from a CSI report that “financial losses from network security
breaches at 163 businesses surveyed amounted to $123.7 million in 1998.” They
note that this figure is probably low because many companies under-report
information security related losses in order to maintain customer confidence.
Regardless, the need for robust intrusion detection and response systems will
expand in proportion to the growth of e-Commerce and corporate and gov-
ernment dependence on information infrastructures. It is important to note that
the consequences of security breaches are not limited to financial concerns;
safety, legal, national security, and other issues can be raised as well. For
example, when someone breaks into your house, that is a security breach.
What is important, however, is what they do once they are inside.

There are three main types of intrusion detection and response systems287:
statistical anomaly detection, rules-based detection, and hybrid. Statistical
anomaly detection analyzes audit trail data for abnormal user or system
behavior that may indicate an impending attack. Current audit trail data is
compared against historical audit trail data that is presumed to reflect normal
activity. While this approach is straightforward, it has some shortcomings.

AU1163-ch06-Frame Page 188 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

First, if the historical data contains an undetected attack, that activity will be
built into the normal profile. Second, it is possible for an attacker to learn
what normal behavior is and as a result fool the system.248 Third, if the normal
profiles are specified too loosely or too tightly, a wave of false positives or
false negatives will be triggered.248,253,287 Fourth, real-time analysis of audit trail
data is resource intensive.287

Rules-based detection monitors audit trail data for patterns of activity that
match known attack profiles. This approach also has weaknesses. First, only
known attack profiles will be detected; new or unforeseen attacks will not be
recognized.248,253,287 Second, the library of known attack profiles must be
updated frequently or the system will quickly become obsolete.248 Third, like
statistical anomaly detection, it is resource intensive. Hence, the ideal approach
is to deploy a hybrid intrusion detection and response system that combines
statistical anomaly and rules-based detection.

There are several details to consider when implementing intrusion detection
and response systems. Intrusion detection should be implemented for networks
and host computers331; the latter is often overlooked. Denning248 recommends
several criteria to evaluate when developing potential attack profiles:

� Unexplained system crashes or restarts
� A series of unsuccessful login attempts
� Creation of accounts with no passwords
� Creation of accounts that grant root access
� Modifications to system programs
� Modifications to Internet configuration parameters
� A reduction in audit trail size (deleting footprints of an attack)
� Hidden files
� Sudden activity on a previously dormant account
� Logging in at strange hours
� Logging in more than once simultaneously
� Unusual activity in guest/visitor accounts

In addition, Cohen244 makes the astute observation that the first phase of an
attack may be to crash the intrusion detection system itself.

Intrusion detection software can be implemented on the network and
application servers being monitored, although this is not recommended. As
noted above, intrusion detection systems are resource intensive and will affect
system performance. Instead, the use of self-contained intrusion detection
units is preferred. This practice also helps to isolate the intrusion detection
system from an attack.277 There are several commercial products available that
provide this capability. Industry and government are working together to
develop standards that will promote vendor interoperability and common
product evaluation criteria.331 A key effort in this direction is the development
of the common intrusion specification language (CISL) by the common intru-
sion detection framework (CIDF) working group.315 The language will allow
multiple vendors to use common parameters and syntax to detect and profile
attack modes. As Kenyon reports315:

AU1163-ch06-Frame Page 189 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Such communication allows applications to identify and locate
assaults more accurately while enabling administrators to deploy
advanced response and recovery procedures.

A final implementation detail concerns how to respond to an attack. One
option is to have the system automatically respond, with no human interven-
tion. A second option is to trigger an alarm, equivalent to the audit trail
security alarm, which requires human action. Primary and secondary recipients
of the alarm must be identified along with the time interval during which a
response must be taken. A third option is to trigger an alarm. Then, if no
human action occurs within a specified time interval, the system automatically
responds. It is likely that it will be preferable to use different options in
response to the criticality of diverse attack profiles. To preempt a crisis
situation, an appropriate response to each attack profile must be (1) specified
in the operational procedures for the second and third options, or (2) pre-
programmed into the system for the first and third options. The appropriate
response is determined by reviewing/revalidating the fail safe/secure and fail
operational design provisions.

Partitioning

Partitioning enhances IA integrity by preventing the corruption and compromise
of IA-critical and IA-related functions/entities. Partitioning performs two func-
tions: it prevents (1) the non-IA-critical functions/entities of a system from
accidentally corrupting or interfering with the IA-critical and IA-related func-
tions/entities, and (2) the non-IA-critical functions/entities from being used as
a vehicle for intentionally corrupting or compromising IA-critical and IA-related
functions/entities.

The implementation of partitioning is straightforward. Similar to information
hiding, partitioning requires complete interface specifications. Hardware and
software partitioning can be implemented. Software partitioning can be logical
or physical (such as logically partitioning a hard drive). Ideally, a combination
of hardware, software, logical, and physical partitioning should be deployed.
IA-critical and IA-related functions/entities are isolated from non-IA-related
functions/entities. Both design and functionality are partitioned to prevent
accidental and intentional corruption and interference. For example, one
approach to protecting desktop workstations and home computers is hardware
partitioning. Blackburn215 reports that Voltaire has developed a security card
that physically divides a PC into two different workstations — one public/
unsecured and one private/secured. Only one segment can be accessed at a
time; however, both segments utilize the same NIC. This product received NSA
certification in July 1999.

This technique offers several advantages. First, it reduces the effort required
to verify IA-critical and IA-related functions/entities. Second, through the use of
partitioning, resources can be focused on the most critical elements in a system.
Third, partitioning facilitates fault isolation and minimizes the potential for fault

AU1163-ch06-Frame Page 190 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

propagation. Partitioning is often referred to as separability in the security
community. Several national and international standards either mandate or highly
recommend the use of partitioning.18,24,31,53,126,127,129

Plausibility Checks

A plausibility check is an IA design technique that enhances IA integrity by
verifying the validity and legitimacy of critical parameters before acting upon
them. Plausibility checks detect faults early in the execution cycle and prevent
them from progressing into failures or system compromises.

The implementation of plausibility checks is straightforward. Checks are
performed on parameters that affect IA-critical and IA-related functions/entities
before critical operations are performed to verify that the value of the param-
eters are both plausible and legal. The specific parameters checked will vary
by application. Plausibility checks can be used to enhance safety, reliability,
and security. Examples of items that can be checked to enhance safety and
reliability include 60,129,130:

� Parameter size (number of bits, bytes, digits, etc., to prevent overflow)
� Array bounds
� Counter values
� Parameters type verification, especially illegal combinations of parameters
� Legitimate called from routine
� Timer values
� Assertions about parameter values, operational mode/state, and pre-

and post-conditions
� Range checks of intermediate results

Examples of items that can be checked to enhance security include:

� Is this a normal or feasible time for this user to be logging in (shift/
travel/training/leave status)?

� Is this a normal or feasible location for this user to be logging in from
(logical and physical network address, terminal ID, etc.)?

� Does this session reflect a normal activity level for this user account
in terms of resources accessed and used (connection duration, appli-
cation usage, files copied, printer usage, etc.)?

� What is the time interval between when this user was authenticated
and the present (if too long, should reauthentication be initiated to
preempt an imposter)?

� Is this type of request normally initiated by a user or a process?
� Are hard and soft copies being directed to a location normally used

by this user?
� Does this account normally receive e-mail from this destination?
� Is it normal for 100 people to receive e-mail from different senders

that has the same header? (Prevent distribution of e-mail virus.)

AU1163-ch06-Frame Page 191 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

There is a fair degree of synergy between the specification of plausibility
checks to be performed by a software application and the definition of normal
profiles used by an intrusion detection system.

Redundancy

Redundancy is a fault tolerance design technique employed to increase hard-
ware reliability and system availability.69,131,368,422 IEEE Std. 610.12-1990 defines
redundancy as:

the presence of auxiliary components in a system to perform the same
functions as other elements for the purpose of preventing or recovering
from failure.

In this context, identical components are used to perform identical functions.
This contrasts with diversity, in which diverse components are used to perform
identical functions.

The terms “reliability” and “availability” are often confused. Hence, it is
important to clarify them in order to understand the role of redundancy in
relation to reliability and availability. Hardware reliability refers to the ability of
a system or component to correctly perform its function under certain conditions
in a specified operational environment for a stated period of time. Availability
is a measurement indicating the rate at which systems, data, and other resources
are operational and accessible when needed, despite accidental and intentional
subsystem outages and other disruptions. Availability is an outcome of reliability
and a reflection of IA integrity. Availability is usually defined as:

A = MTBF/(MTBF + MTTR)

where: MTBF = Mean time between failures
MTTR = Mean time to repair

This definition is inadequate in the IA domain because it does not take into
account failures induced by malicious intentional acts. If, however, the defini-
tions of MTBF and MTTR are expanded such that:

MTBFIA = Mean time between accidental and intentional failures

MTTRIA = Mean time to repair and recover

then the calculation

AIA = MTBFIA/(MTBFIA + MTTRIA)

would be appropriate in the IA domain. One problem remains. While both
accidental and intentionally induced failures are random, predicting a failure
rate for the latter will be difficult.

AU1163-ch06-Frame Page 192 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Redundancy, and the increased hardware reliability and system availability
it provides, are important to IA for several reasons. The historical COMPUSEC
model focused on confidentiality, integrity, and availability; without reliability,
none of these can be achieved. To be effective, security features must function
reliably. To do so, they are dependent on the reliable operation of hardware
components, communications equipment, etc. If a hardware or communica-
tions component is not reliable, security features can be bypassed and
defeated. For example, if firewall hardware is subject to intermittent faults,
unauthorized users/processes may slip through. Unreliable hardware and
communications equipment can yield incorrect results. Transient memory or
CPU faults could lead to data corruption and compromise. Unreliable hardware
and communications equipment may cause a critical function, service, or
mission not to be performed on time, or at all. This could have security and
safety consequences; for example, the loss of a telecommunications backbone
or an ATC system. In summary, reliability is essential in achieving security
goals and should not be overlooked. As Arbaugh et al.202 succinctly state:

All secure systems assume the integrity of the underlying [hardware
and] firmware. They usually cannot tell when that assumption is
incorrect. This is a serious security problem.

In other words, these assumptions need to be backed up by engineering facts.
Hardware redundancy is implemented three ways: active, standby, and

monitored. Active redundancy utilizes multiple identical components operating
simultaneously to prevent or detect and recover from failures. The redundant
components operate in parallel. If a fault is detected in the primary unit,
control is switched to the redundant or “hot standby” unit. The transition can
be automatic or manual. Standby redundancy also utilizes multiple identical
components. However, the redundant or “cold standby” units are not switched
on until a fault is detected in the primary unit. Monitored redundancy, often
referred to as m-out-of-n redundancy, is a variation of active redundancy. This
method monitors the outputs of the parallel components. If discrepancies are
found, voting logic is activated (hence the name m-out-of-n) to determine
which output is correct and what action should be taken (e.g., switching to
a new primary component).69,422 Monitored redundancy is frequently used in
PLCs as triple modular redundancy (TMR).

There are several issues to consider when implementing redundancy. Active
redundancy permits a faster transition — the redundant unit is already pow-
ered-up and initialized; however, this unit consumes additional power, space,
and weight and has been subjected to the same environmental stresses as the
primary unit.362 Standby redundancy provides a slower transition because of
the need to power-up and initialize the system.422 However, the remaining life
of this unit is longer than a hot standby because it has not been stressed.
Regardless of which method is used, two redundant units are required to trap
a single fault, three redundant units are required to trap two faults, etc.368,422

Trade-off studies conducted early in the design phase evaluate which option
is best for a given application.131 These studies should ensure that single points

AU1163-ch06-Frame Page 193 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

of failure are eliminated and that there are no common cause failure modes
between redundant units. Redundancy can be implemented anywhere from
low-level electronic components to major subsystems. As O’Connor368 notes:

Decisions on when and how to design in redundancy depend upon
the criticality of the system or function and must always be balanced
against the need to minimize complexity and [development and oper-
ational] costs.

Redundancy is not implemented in software; redundant software simply
replicates the same systematic errors.288,333,422 Instead, diverse software is imple-
mented. Data redundancy is employed, through the use of parity bits and such,
with data communication error detection/correction codes. The use of redun-
dancy should be addressed in operational procedures and contingency plans.

Reliability Allocation

Reliability allocation distributes reliability and maintainability requirements
among system entities. Reliability is an essential part of IA integrity, as
explained above. System reliability requirements are derived from IA goals.
Reliability does not just “happen”; rather, like any other requirement, it has
to be engineered into a system. The first step in this process is to allocate or
apportion reliability and maintainability requirements to the hardware, soft-
ware, and communications equipment that comprise the system. This step is
analogous to the decomposition of functional requirements. Because of the
impact of maintainability on operational reliability, these requirements are
allocated at the same time.

Reliability allocation serves three main purposes131:

1. Reliability and maintainability targets. It provides designers, devel-
opers, and manufacturers of each part of a system with their target
reliability and maintainability requirements. Most large systems today
involve multiple organizations and vendors; in this way, each is pro-
vided with their reliability and maintainability target.

2. Monitoring and assessment. Reliability and maintainability values are
available for comparison with assessments made later during the design
and development phases. As a result, progress toward achieving reli-
ability and maintainability goals can be monitored. If the evidence
indicates that these goals will not be met, corrective action can be
taken early in the life cycle.

3. Trade-off studies. The process of allocating reliability promotes archi-
tectural trade-off studies early in the design phase. Trade-off studies
evaluate the technical feasibility and development and operational costs
of alternate architectures that meet reliability and maintainability
requirements. The extent of fault prevention and fault tolerance needed
is also identified.

AU1163-ch06-Frame Page 194 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

From its name, reliability allocation sounds simple. In fact, reliability
allocation is a sophisticated iterative process that involves four steps.131 The
first step is to assign numerical reliability requirements to system entities and
components. It is important to assign reliability requirements at a level (sub-
system, component, subcomponent) that is meaningful and verifiable —
requirements should not be assigned at a level that is too high or too low.
Several factors should be considered when assigning reliability
requirements131,368: operational mode (continuous or demand), duty cycle,
criticality in relation to stated IA integrity level, whether or not the unit is
mission repairable, the use of BITE, development risk (especially for new
technology), complexity, uncertainty, and historical experience with similar
units. The intent is to be realistic when allocating reliability requirements.
Acceptable failure rates and the probability of surviving a failure or attack are
used to express reliability requirements.

The second step is to determine the maintainability requirements needed to
support the reliability requirements. The same conditions listed above are taken
into account. Maintainability requirements are generally expressed in terms of
an MTTR.

Third, system reliability and maintainability is calculated from the individual
components. This is the reverse of the first step. Then system reliability is
broken down into values for individual components. Now the values of the
individual components are being combined to see if, in fact, if the system
reliability and maintainability requirements will be met. In practice, the aggre-
gate system reliability value should be somewhat higher than the stated
requirement to compensate for uncertainty.131,368

Fourth, component reliability and maintainability requirements are refined
through an iterative process of (re)allocation and (re)calculation until the
goals are met. Reliability allocations and calculations are generally expressed
and analyzed through the use of reliability prediction models, reliability
block diagrams,69,131,132,368 and more recently BBNs.221,307,361

Reliability and maintainability requirements are assigned to all system
entities (internal, external, hardware, software, and communications equip-
ment) except humans*. Techniques such as FTA, FMECA, and HAZOP studies
support the allocation of reliability requirements and are encouraged because
they are applicable to both hardware and software. The distinction between
random hardware failures and systematic software failures must be maintained
when allocating reliability requirements. It is recommended that separate
reliability requirements be stated for different types and consequences of
failure, taking into account factors such as132:

� The severity of the consequences of the failure
� Whether or not recovery from the failure is possible without operator

intervention

* Human reliability analysis (HRA) is still subject to academic debate. Reliable, correct, and
timely administrator and end-user actions are an important part of mission success. However,
at this time, there is no consensus on how this should be estimated or measured.

AU1163-ch06-Frame Page 195 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

� Whether or not the failure causes corruption of software or data
� The time required to recover from the failure

Reliability requirements for COTS and reused software should consider his-
torical experience with these products if the previous application is quite
similar to the new proposed use.

Secure Protocols

Secure protocols enhance the confidentiality of distributed data communications
by providing security services not available through basic communications
protocols such as TCP, IP, or X.25. Secure protocols address interoperability
issues related to implementing security features, such as placement of a digital
signature, algorithms to use to sign and encrypt messages, and key sharing and
authentication schemes.403 Current secure protocols include IPSec, NLS, TLS1,
SSL3, SET, PEM, PGP, and S/MIME. While these protocols are used for different
purposes, they share a common two-step process. The first step is a digital
handshake between the parties that want to communicate. During this step, the
parties are authenticated to each other and they negotiate the context of their
security association. Encryption algorithms, keys, and other security mechanisms
to be used are agreed upon. The second step is the secure exchange of
information; sensitive information is exchanged at the level of protection nego-
tiated. If need be, the context of the security association can be updated.

IPSec provides strong one-way authentication for IPv4 and IPv6 packets.403

Bidirectional communication requires the establishment of two security associ-
ations (client → server and server → client) and two sets of encryption keys.
IPSec is transparent to users and applications. It attempts to address risks
associated with password sniffing, IP spoofing, session hijacking, and denial-
of-serve attacks.372 The IPSec protocol can operate on a router or a firewall.
The handshaking process is performed offline. The IPSec authentication header
provides data integrity,372 but not nonrepudiation of origin.403 A keyed one-way
hash function is used to calculate and verify the authentication header data.
The second component of IPSec, the encapsulating security payload, can be
configured in two modes: transport mode and tunnel mode. Transport mode is
used for host-to-host connectivity and provides end-to-end security. In this mode,
transport layer frames are encapsulated. In tunnel mode, the entire IP packet
is encapsulated and a second IP header is generated for the security gateway.
Sequence numbers are assigned to security payloads to prevent replay attacks.
Optionally, security payloads can be encrypted before encapsulation, for exam-
ple, with DES CBC.277,403 IPv6 mandates the use of IPSec. IPSec is expected to
be widely used with virtual private networks (VPNs) and remote connections
to corporate intranets.372 NLS and IPSec perform essentially the same functions.

TLS1, the Transport Layer Security protocol, represents an Internet Engi-
neering Task Force (IETF) standardized version of SSL3. Once it is commercially
available, TLS1 is expected to supersede SSL3 in many applications, especially
in the ISO OSI environment.403 TLS1 utilizes TCP virtual circuits. The TCP
header and segment are encrypted, but the IP header is not.

AU1163-ch06-Frame Page 196 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

SSL3, the Secure Socket Layer protocol, has been promoted by Netscape. It is
designed for use in client/server and mobile code environments. The handshake
step provides strong peer entity authentication based on X.509v3 digital certifi-
cates.403,405 A separate pair of keys are used for client → server and server →
client transactions. The secure transfer step compresses packets and transmits
end-user data in encrypted, sequenced blocks.277,405 Data integrity is ensured
through the use of checksums that are produced by a one-way hash function.
Currently, SSL3 does not support X.25405 or provide nonrepudiation.204

SET, the Secure Electronic Transactions protocol, supports credit card-based
online payment systems. The SET protocol specification, begun in 1996,
represents a joint effort by the software industry, VISA, Mastercard, JCB, and
American Express. SET is one of the strictest protocols in use today because
it must meet the multi-party transactional audit integrity requirements of the
financial industry.260 It provides a secure messaging standard for electronic
payments over open and untrusted networks. Internet users are, in effect,
linked to credit card payment networks. SET combines X.509 digital certificates
and key management framework with extensions to PKCS #7 digital signatures
and digital envelopes. Selective multi-party field confidentiality is a key feature
of SET; for example, an online merchant cannot see a customer’s credit card
number, but the financial institution can process the transaction.260 As e-
Commerce expands, so will SET usage. Potential future uses include home
banking and online bill payment. The SET protocol is evolving; current
information is posted at www.setco.org.493

PEM, the Privacy Enhanced Mail protocol, was developed in the late 1980s
by the IETF. It was one of the first attempts to provide Internet e-mail privacy.
The specification included encryption, digital signatures, and support for sym-
metric and asymmetric keys. However, because it is incompatible with the
Internet mail system, due to seven-bit text messages, it lacks commercial support.

PGP, the Pretty Good Privacy protocol, was the next attempt at providing
e-mail privacy. PGP supports digital signatures and encryption but lacks
authentication services. It is useful for a small group of casual e-mail users
who know each other, but falls short when it comes to scalability and
accountability, particularly for large organizations.260

The development of S/MIME, the Secure MIME protocol, was a joint effort
begun in 1995 by multiple companies under the leadership of RSA Data Security,
Inc. The MIME protocol supports the exchange of text, created in diverse
languages and character sets, among different computer systems. S/MIME adds
PKCS #7 and PKCS #10 security features. Specifically, message origin authen-
tication, message integrity, and nonrepudiation of origin are provided by digital
signatures, while message confidentiality is provided by encryption. These
features can be optionally selected through human action or set to automatically
execute. Originally, S/MIME was used with e-mail; now its use is expanding
to secure electronic document interchange (EDI), e-Commerce, and other
applications. At present, S/MIME is supported by Netscape Messenger™ and
Microsoft Outlook Express™. The IETF is developing S/MIMEv3 as an Internet
standard, specifying both message syntax and digital certificate syntax. Current
information can be found at www.rsa.com489 and www.ietf.org.475

AU1163-ch06-Frame Page 197 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

http://www.setco.org
http://www.rsasecurity.com/
http://www.ietf.org

Virus Scanners

Virus scanners are an IA design feature that automatically detects and removes
computer viruses before they are activated. It is important to note that virus
scanners detect the presence of viruses — they do not prevent infection. The
purpose of virus scanners is to detect and remove viruses before they cause
damage, such as deleting, overwriting, prepending, or appending files. The
detect/remove process also helps to slow, but not eliminate, the spread of viruses.
Virus alerts, real and hoaxes, regularly make the evening news because of the
speed with which viruses spread and the extent of damage they are capable of
inflicting. The Melissa virus made the rounds in 1999, infecting 1.2 million
computers and 53,000 e-mail servers with a damage assessment of $560 million.272

The Iloveyou virus, in May 2000, was even more destructive. As a result, the
need for robust virus scanners is not expected to diminish any time soon.

Viruses are equivalent to cyber termites in that they use the resources of
host computers to reproduce and spread, without informed operator action.245,416

Viruses are spread via floppy disks, CD-ROMs, e-mail attachments, mobile code,
and Web browsing.248 Viruses are classified a variety of different ways248,277,375:

� Boot virus: Viruses that attack the boot sector of a hard drive or floppy
disk and are activated at power-on

� Macro virus: viruses that are embedded in word processing documents
or spreadsheets as macros and are activated when the macros are executed

� Program virus: viruses that attach to and attack *.exe, *.com, *.sys,
and *.dll files when executed

� Transient viruses: viruses that are active only when the infected
program is executing

� Resident viruses: viruses that remain in memory and link themselves
to the execution of other programs

There are subcategories of viruses: parasitic, stealth, polymorphic, etc. For a
complete description of virus types and categories, see Slade*.

Virus scanners are first cousins of intrusion detection systems. They examine
code that is on or about to enter a system, looking for known virus profiles.248

There are four main types of virus scanners416: (1) activity monitors, (2) change
detection or integrity monitors, (3) pure scanners, and (4) hybrids. Activity
monitors are the oldest type of antiviral software. They function similar to
intrusion detection systems by looking for suspicious activity patterns that
could indicate the presence of virus activity. Change detection or integrity
monitors flag system and user files that have been changed and perform
integrity checksums. They are apt to generate a lot of false positives unless
a method is provided for flagging legitimate changes.416 Pure scanners examine
system and user files, boot sectors, and memory for evidence of infection
through comparison with known virus signatures. Some new scanners incor-
porate heuristic features to detect viruses that have not yet been identified.416

Most virus scan products on the market today are a hybrid of all three types.

* Slade, R., Guide to Computer Viruses, Springer-Verlag, 1994.416

AU1163-ch06-Frame Page 198 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

There are several details to consider when implementing virus scanners.
First, the use of virus scanners needs to be complemented with robust anti-
virus operational procedures. For example277:

� All files should be checked before being used.
� Files should only be accepted from known trusted sources.
� Backups should be generated regularly and the integrity of data should

be verified before it is backed up.329

� The FAT and interrupt tables should be protected.
� The use of default search paths should be minimized.
� Strong file access controls should be implemented.
� E-mail from unknown sources should be deleted.
� Unsolicited e-mail attachments should be considered suspicious and

quarantined until they can be verified.
� E-mail chain letters should be blocked at the server.
� A large number of e-mail messages with the same header but different

senders should be discarded.

Operational procedures should also specify how frequently virus scan
software is executed and updated. It is recommended that both the
execution and update process be run automatically and not rely on the
actions of end users. Users should be aware that the virus removal process
may corrupt original data; this fact reinforces the need for backups. Infected
sectors on a hard disk or floppy disk and infected memory locations should
be overwritten, more than once, to minimize the likelihood of a virus
reappearing. Collaboration between the audit trail function, intrusion detec-
tion system, and virus scanner produces the best results. Finally, it should
be remembered that the virus scanner itself can be subjected to attack.
The latest information on virus alerts and antiviral products is available
from http://service.symantec.com,452 www.cert.org,460 www.mcaffee.com,479

and www.symantec.com/avcenter.495

In addition to IA design techniques/features, IA integrity depends on com-
mon sense, such as having comprehensive and current operational procedures,
contingency plans, and physical security practices or protecting Web pages
from tampering by storing them on CD-ROMs. As the biblical book of Amos
(5:19) says, you do not want to run from a lion only to be caught by a bear.

6.6 Summary
The third component of an effective information security/IA program is the
implementation of threat control measures. Five activities are performed during
the implementation of threat control measures, as shown in Exhibit 22:

� The type, level, and extent of protection needed are determined.
� Controllability, operational procedures, and in-service considerations

are evaluated.

AU1163-ch06-Frame Page 199 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

http://www.service.symantec.com
http://www.cert.org
http://www.mcaffee.com
http://www.symantec.com/avcenter

� Plans are made for contingencies and disaster recovery.
� The use of perception management is considered.
� IA design techniques and features are selected and implemented.

Exhibit 22 Summary of Activities Involved in Implementing Threat Control
Measures

AU1163-ch06-Frame Page 200 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Threat control measures follow a fixed chronology: anticipate/prevent,
detect/characterize, and respond/recover. The first step in implementing threat
control measures is to determine the level of protection needed. This is
accomplished by comparing the initial risk exposure to the target risk specified
in the IA goals to determine the level of risk reduction needed. IA-critical and
IA-related functions/entities and MWFs and MNWFs are identified. The entity
control analysis and privacy issues are reassessed. Time intervals during which
the level of protection is needed and the threat control measures will be
effective are examined. From this, the required level of protection needed is
updated and refined, leading to the specification of an IA integrity level.

Next, controllability, operational procedures, and in-service considerations
are evaluated as opportunities to enhance — not detract from — IA integrity.
Contingency plans are made to ensure that IA integrity is maintained in the
event that one or more entities or services is inoperable or unavailable. Percep-
tion management is employed both to instill confidence in end users and to
deter would-be attackers.

Finally, IA design techniques and features are selected and implemented
based on (1) where they are effective in the threat control chronology, and
(2) the specific vulnerabilities/threats they eliminate or mitigate. Protection is
provided at all layers of the ISO OSI and TCP/IP reference models. Exhibit 23
correlates IA design techniques/features to the chronology of threat control
measures, and Exhibit 24 correlates IA design techniques/features to common
vulnerabilities and threats.

Next, Chapter 7 explains how to determine the effectiveness of threat
control measures.

Exhibit 23 Correlation of IA Design Techniques/Features to the Chronology
of Threat Control Measures

Anticipate/Prevent Detect/Characterize Respond/Recover

Access control
Account for all

possible logic states
Authentication
Confinement
Defense in depth
Defensive programming
Digital signatures
Encryption
Firewalls, filters
Formal specifications,

animated specification
Information hiding
Partitioning
Plausibility checks
Reliability allocation
Secure protocols

Audit trail, security alarm
Block recovery
Digital signatures
Diversity
Encryption
Error detection/correction
Intrusion detection
Redundancy
Virus scanner

Audit trail, security alarm
Block recovery
Degraded-mode operations
Diversity
Error detection/correction
Fail safe/secure, fail operational
Intrusion detection, response
Redundancy

AU1163-ch06-Frame Page 201 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

6.7 Discussion Problems

1. How is the need for reducing risk exposure determined?
2. What is the relationship, if any, between threat control measures and time?
3. Is it possible for an entity or function to be both IA-critical and IA-

related? Explain your reasoning.
4. Identify MWFs and MNWFs for: (a) a nuclear power generation system,

(b) a national security information system, (c) an intelligent transpor-
tation system, and (d) an online business.

5. Under what conditions would the IA integrity level be higher for: (a) a
system entity than a system, (b) a system than a system entity,
(c) security functions/entities than safety functions/entities, and (d)
safety functions/entities than security functions/entities?

6. How is the IA integrity level affected by maintainability and operational
procedures?

7. Explain the relationship between controllability and: (a) threats,
(b) vulnerabilities, and (c) operational procedures.

8. Identify the controllability of the events in transaction path D ← 2.4.3 ←
H (Chapter 5, Exhibits 21 and 25) from the six threat perspectives listed
in Chapter 5, Exhibit 14. Assume the initial compromise was successful.

9. Who is involved in contingency planning? When are contingency plans
developed?

10. How might a tactical defense intelligence system employ decoy entities?
How would that differ from the use of decoys by a financial institution?

11. Identify a set of contingencies and responses for the online banking
system discussed in Chapter 5.

12. What is the relationship between a system usage profile and threat
control measures?

13. What is the relevance, if any, of the ISO OSI and TCP/IP reference
models to IA?

14. Which layer in the ISO OSI and TCP/IP reference models is the easiest
to attack? Which layer in the ISO OSI and TCP/IP reference models is
the most difficult to attack?

15. Explain the differences, similarities, and relationship between: (a) digital
certificates and digital signatures, (b) defense in depth and defensive
programming, and (c) diversity and redundancy.

16. Which of the IA design techniques and features listed in Exhibit 13 are
or are not applicable for: (a) COTS software, (b) custom software, and
(c) reused software? Why?

17. Which method of specifying access control rules is best?
18. How many parameters should be used during authentication? How

many authentication methods should be used?
19. How can partitioning be used to achieve: (a) security objectives,

(b) safety objectives, and (c) reliability objectives?
20. Give examples of IA design techniques/features that complement, interact

with, or are dependent on each other.

AU1163-ch06-Frame Page 202 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Exhibit 24 Assignment of IA Design Techniques/Features to Common
Vulnerabilities and Threats

Vulnerability/
Threata Protective IA Design Techniques/Features

Accidental action,
command,
response

Account for all possible logic states Block recovery
Defense in depth Defensive programming
Error detection/correction Fail safe/secure, fail operational
Fault tolerance Formal specifications
Partitioning Plausibility checks
Reliability allocation

Blocking access to
system resources

Audit trail, security alarm Diversity
Firewalls, filters Intrusion detection, response
Physical security Redundancy

Browsing Access control Audit trail, security alarm
Authentication Encryption
Firewalls, filters Intrusion detection, response

Corruption of
resource
management
information
(accidental and
intentional)

Access control Account for all possible logic states
Authentication Defense in depth
Defensive programming Degraded-mode operations
Diversity Encryption
Fault tolerance Formal specifications
Information hiding Partitioning
Plausibility checks Reliability allocation

Deletion of
information or
message
(accidental and
intentional)

Access control Account for all possible logic states
Authentication Information hiding

Denial of service,
network
flooding, system
saturation, lack
of capacity
planning

Access control Account for all possible logic states
Audit trail, security alarm Degraded mode operations
Diversity Fail safe/secure, fail operational
Fault tolerance Firewalls, filters
Formal specifications Intrusion detection, response
Redundancy Reliability allocation

EMI/RFI Error detection/correction Physical security
Environmental,

facility, or power
faults or
tampering

Degraded mode operations Diversity
Error detection/correction Fail safe/secure, fail operational
Fault tolerance Physical security
Redundancy Reliability allocation

Illegal operations,
transactions,
modes/states

Account for all possible logic states Audit trail, security alarm
Block recovery Defense in depth
Defensive programming Diversity
Fail safe/secure, fail operational Fault tolerance
Formal specifications Plausibility checks
Redundancy Reliability allocation

Inference,
aggregation

Access control Authentication
Encryption Information hiding

Insertion of bogus
data, “man-in-
the-middle”

Access control Authentication
Digital signatures Encryption
Secure protocols

AU1163-ch06-Frame Page 203 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Exhibit 24 Assignment of IA Design Techniques/Features to Common
Vulnerabilities and Threats (continued)

Vulnerability/
Threata Protective IA Design Techniques/Features

Jamming Degraded-mode operations Diversity
Physical security

Lack of
contingency
planning,
backups

Degraded-mode operations Diversity
Fail safe/secure, fail operational Fault tolerance
Operational procedures

Masquerade,
IP spoofing

Authentication Digital signatures
Error detection/correction Encryption
Firewalls, filters Intrusion detection, response
Secure protocols

Modification of
information
(accidental and
intentional)

Access control Account for all possible logic states
Authentication Digital signatures
Encryption Error detection/correction
Formal specifications Information hiding

No fault tolerance,
error detection
or correction

Account for all possible logic states Block recovery
Defense in depth Defensive programming
Diversity Fail safe/secure, fail operational
Information hiding Plausibility checks
Redundancy Reliability allocation

Overwriting
information
(accidental and
intentional)

Access control Authentication
Encryption Information hiding

Password
guessing,
spoofing,
compromise

Authentication Intrusion detection, response
Secure protocols

Replay, reroute,
misroute
messages

Encryption Error detection/correction
Firewalls, filters Intrusion detection, response
Secure protocols

Repudiation of
receipt, origin

Digital signatures

Site/system/
application-
specific
vulnerabilities
and threats

Defense in depth Defensive programming
Degraded-mode operations Diversity
Fail safe/secure, fail operational Fault tolerance
Plausibility checks Operational procedures
Redundancy Reliability allocation

Theft of
information,
copying,
distributing

Access control Authentication
Encryption Intrusion detection, response
Operational procedures Physical security
Secure protocols

Theft of service Access control Authentication
Digital signatures Intrusion detection, response
Secure protocols

AU1163-ch06-Frame Page 204 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

Exhibit 24 Assignment of IA Design Techniques/Features to Common
Vulnerabilities and Threats (continued)

Vulnerability/
Threata Protective IA Design Techniques/Features

Trojan horse Defense in depth Defensive programming
Degraded-mode operations Diversity
Fail safe/secure, fail operational Fault tolerance
Partitioning

Unauthorized
access to system
resources

Access control Audit trail, security alarm
Authentication Confinement
Digital signatures Encryption
Firewalls, filters Intrusion detection, response
Physical security Secure protocols

Unauthorized use
of system
resources

Access control Audit trail, security alarm
Authentication Intrusion detection, response
Physical security

Uncontrolled,
unprotected
portable systems
and media,
archives,
hardcopy

Encryption Operational procedures
Physical security

Unpredictable
COTS behavior

Block recovery Confinement
Defense in depth Defensive programming
Diversity Error detection/correction
Fail safe/secure Fault tolerance
Information hiding Partitioning
Plausibility checks Reliability allocation

Virus attack Audit trail, security alarm Degraded-mode operations
Diversity Fail safe/secure, fail operational
Fault tolerance Intrusion detection, response
Partitioning Physical security
Virus scanner

Wiretapping,
eavesdropping,
leakage

Access control Authentication
Encryption Intrusion detection, response
Physical security Secure protocols

Note: There is no one-to-one correspondence between vulnerabilities/threats and IA design
techniques/features. Instead, it is the cumulative effect of multiple techniques/features that
eliminates or mitigates vulnerabilities/threats. Also, the design techniques/features are
effective at different points in the threat control chronology (anticipate/prevent, detect/
characterize, respond/recover), as illustrated in Exhibit 23.

Sources: Adapted from Denning, D., Information Warfare amd Security, Addison-Wesley, 1999;
Denning D., Cryptology and Data Security, Addison-Wesley, 1982; Gollmann, D., Computer
Security, John Wiley & Sons, 1999; Morris, D., Introduction to Communication Command and
Control Systems, Pergamon Press, 1977; Rozenblit, M., Security for Telecommunications Network
Management, IEEE, 1999.

AU1163-ch06-Frame Page 205 Tuesday, September 11, 2001 8:02 AM

© 2002 by CRC Press LLC

	A PRACTICAL GUIDE TO Security Engineering and Information Assurance
	Table of Contents
	Chapter 6
	Implement Threat Control Measures
	6.1 Determine How Much Protection Is Needed
	6.2 Evaluate Controllability, Operational Procedures, and In-Service Considerations
	6.3 Contingency Planning and Disaster Recovery
	6.4 Perception Management
	6.5 Select/Implement IA Design Techniques and Features
	Access Control
	Account for All Possible Logic States
	Audit Trail, Security Alarm
	Authentication
	Block Recovery
	Confinement
	Defense in Depth
	Defensive Programming
	Degraded-Mode Operations, Graceful Degradation
	Digital Signatures
	Diversity
	Encryption
	Error Detection/Correction
	Fail Safe/Secure, Fail Operational
	Fault Tolerance
	Firewalls, Filters
	Formal Specifications, Animated Specifications
	Information Hiding
	Intrusion Detection, Response
	Partitioning
	Plausibility Checks
	Redundancy
	Reliability Allocation
	Secure Protocols
	Virus Scanners

	6.6 Summary
	6.7 Discussion Problems

