

chapter 6

The System Development
Framework — Managerial

It’s easy to play any musical instrument:
all you have to do is touch the right key at the right time

and the instrument will play itself.
—Johann Sebastian Bach

The other teams could make trouble for us if they win.
—Yogi Berra

I. Integrating Technical and Managerial Activities
As Figure 6.1 illustrates, activities composing the management effort include
Risk Management, development and tracking of metrics and technical per-
formance measures, Configuration Management, etc. The technical effort
comprises Requirements Development, Synthesis, and Trade Analyses.
Because these activities are closely related, they must be coupled for efficient
management of the development. The SDF can be used to effectively link
these together.

II. Developing the Program Structure
How should the program be partitioned to enhance the efficiency of the
development? How should information flow from one development team
to another? Where does each development team get its requirements? Who
should be responsible for identifying, characterizing, and controlling inter-
faces? The SDF can be used to address these key questions.

Logically, the first task in developing the program structure is to partition
the system into its constituent elements. In the case of a precedented system,
the first level decomposition is usually well understood. A low earth orbiting
spacecraft bus, for example, is often partitioned into the following sub-
systems: structures and mechanisms, thermal control, electrical power,
©2000 CRC Press LLC

attitude determination and control, propulsion, communications, and com-
mand and data handling. It is often the case that the development teams are
organized in the same way. A significant benefit of doing this is that the
interfaces and roles and responsibilities are well understood. In the case of
an unprecedented system, the partitioning of the functional teams should be
guided by the current system description to provide a first-cut hierarchical
arrangement of functional teams.

With regard to information flow, it is often the case that problems within
a system occur at an interface.

Key Point

Therefore, a key objective in partitioning the system
into subelements is the minimization of the number of
interfaces between partitioned elements.

The Design Structure Matrix (DSM) can be used to determine the best
partitioning of the program elements as well as the functional teams.
Figure 6.2 illustrates a typical DSM. Each system element is represented in
the matrix down the first column and across the first row. The interfaces
between elements are indicated by an “X” where the appropriate column
and row intersect. The diagonal is obviously left blank. Partitioning is indi-
cated by a box drawn around the group of elements that make up each

Figure 6.1 Technical and Managerial Activities61

61 Adapted from Adamsen’s presentation charts presented at the 1996 INCOSE Symposium.
Cf. Rochecouste, who develops a similar listing of activities. Systems Engineering Process/
Activities: Requirements Analysis, Functional Analysis, Design Synthesis and Specifications,
Subsystem Integration, System Test and Evaluation, etc. Technical Management Activities:
Technical Planning, Requirements Management, Configuration Management, Design Review-
ing, Technical Risk Management, Technical Performance Measurement, etc. Rochecouste, Hervé.
A Systems Engineering Capability in the Global Market Place. P004.
©2000 CRC Press LLC

subsystem. A goal is to arrange the order of the elements such that the
interfaces between them are minimal in number.62

Obviously in the case of precedented systems, there may be limited
flexibility in terms of repartitioning established subsystems. However, when-
ever possible, interfaces between elements should be minimized. This
applies to the creation of development teams on the program. If the system
design has been efficiently partitioned so as to minimize interfaces, this will
likely provide an efficient model for partitioning of functional teams as well.
For this reason, it is advocated that the team structure should follow the
structure of the partitioned system insofar as it makes sense to do so.

Now that the question regarding how to partition the program hierarchy
has been addressed, the question concerning how these partitioned elements
ought to interact is discussed. It is suggested that the logical flow of infor-
mation between the partitioned elements should be provided by the control
logic defined in the SDF.

Figure 6.3 illustrates the development of the program structure from the
existing system design partitioned so as to minimize the interfaces between
system elements. It also uses the “control logic” of the SDF to define the
information flow paths within the total system hierarchy.

Figure 6.2 The Design Structure Matrix (DSM).

62 A thorough treatment of the subject of Design Structure Matrix methodology is beyond the
scope of this book. For more information, see Steven D. Eppinger, Daniel E. Whitney, Robert
P. Smith, and David A. Gebala, A Model-Based Method for Organizing Tasks in Product
Development, Research in Engineering Design, 6:1-13, 1994, and Kent R. McCord and Steven D.
Eppinger, Managing the Integration Problem in Concurrent Engineering, MIT Sloan School of
Management, Working Paper Number 3594, August 1993. See also Rosaline K. Gulati and Steven
D. Eppinger, The Coupling of Product Architecture and Organizational Structure Decisions,
MIT Sloan School of Management, International Center for Research on The Management of
Technology, Working Paper Number 151-96.
©2000 CRC Press LLC

A

A

B C D E F G H I J K L M N O

Figure 6.3 Program Structure Development.

Customer

System

Subsys BSubsys A Subsys C

Input Develop
Rqmts

Converge? Converge?Design &
Integrate

Verify
Design

Do
Trades

Selected
Design

Synthesize

Input Develop
Rqmts

Converge? Converge?Design &
Integrate

Verify
Design

Do
Trades

Selected
Design(s)

Synthesize

Data OK?

Subsystem 1
Subsystem 2

Subsystem 3

Level 0
Level 1

Start with Current Design, Partition elements such
that the number of interfaces is minimized

B

C

D

E

F

G

H

I

J

K

L

M

N

O

X

X

X

X

X X X

X

X

X

X

X

X

XX

X

X X

X

X

X

X

X

X

X

X

XXX

X

X

X

X

X

X

X X

X

XX

X

X

X

X

X

X

X

X

System Development Process

Design-to
Data

Data
Control

OK?

Design-to
Data

Data
Control

OK?

Customer

System

Subsystem A Subsystem B Subsystem C

No

No

Yes

Yes

Resulting Team Structure & Control

Feedback
- Risk Status
- Metrics Status
- Rework
- Work Complete
- Design Solution(s)

Feedback
- Risk Status
- Metrics Status
- Rework
- Work Complete
- Design Solution(s)
©2000 CRC Press LLC

©2002 CRC Press LLC

There are several reasons for applying the control logic provided by the
SDF to the program structure:63

• Defines activity flow and information flow between and within devel-
opment teams

• Provides basis for requirements, design, and decision database structure
• Identifies interfaces between tiers of system hierarchy
• Defines team roles and responsibilities in context of total system

hierarchy
• Defines activities more precisely enabling more precise progress mea-

surement

III. Interaction in the Logical Domain
Figure 6.4 illustrates the horizontal and vertical interfaces between the var-
ious functional teams in the program hierarchy. These interfaces are derived
directly from the SDF. All “design-to” data is passed to a lower level from
the team at the level directly above. This is also true of feedback. All such
data is communicated to the level directly above. Data travels horizontally
through the team at the level above. It is the responsibility of that team to
disseminate information to the appropriate teams under its jurisdiction.
Remember, it is formal interfaces that are being addressed here. Of course,
it is desirable for teams on the same horizontal level to communicate and
interact.

Key Point

All design data, however, must pass through and be
coordinated by the team at the level above. This is
important in order to maintain control of the informa-
tion and to ensure that all information is communicat-
ed accurately and in a timely manner.

It is also important to maintain such control when changes occur. The
appropriate reviewers must be consulted so that all impacts resulting from
the change are properly assessed. Any modifications to the design made to
accommodate such changes must be coordinated so as not to introduce new
problems into the design.

Each lower level element functions semi-autonomously from its next
level up element as long as it stays within its allocations (i.e., prescribed
boundary conditions). Periodic status is provided to the level above in terms
of technical performance measures, risk assessments and mitigation
approaches, design issues and solutions, etc. If an allocation is violated, the

63 Adamsen (1996), pp. 1093-1100.
©2000 CRC Press LLC

next level up element becomes involved to either reallocate or modify the
design at its level.

IV. Interaction in the Time Domain
Having described how the SDF drives the interactions of teams in the logical
domain, the question of how it functions in the time domain is now
addressed. Figure 6.5 depicts the SDF in the time domain. Along the timeline,
the number of options converges to a single solution while the level of detail
definition increases. As discussed in previous chapters, the time domain
view describes how the generation of data evolves as a function of time.
This includes prescribing the level of fidelity of each output required at a
particular point on the program timeline for each tier of the hierarchy. As
discussed previously in Chapter 3, in order to proceed along the program
timeline with minimal risk, it is necessary to “incrementally solidify” key
requirements by program milestone.

Figure 6.4 Program Team Interactions.64

64 Ibid.
©2000 CRC Press LLC

Key Point

It is highly desirable to determine which requirements
are needed from the customer and when, in order to
maintain progress with minimal risk. The goal is to
include these critical need dates in the contract so that
if there is delay, a cost and schedule scope change can
be negotiated.

Figure 6.5 illustrates how requirements and design data are progres-
sively generated. Four stages of increasing fidelity are illustrated: 50%, 70%,
90%, and update.65 Requirements lead the development of the implementa-
tion by one stage of fidelity. First, the system level requirements are gener-
ated to a fidelity level of, say, 70%. Once the requirements set has reached
this level (or a level of acceptable risk), the Synthesis activity can begin with
an acceptable level of risk. As the Synthesis activity progresses toward an
increasing level of fidelity, the requirements are also increasing in fidelity as
they are validated against the developing design.

Also illustrated is the progression of the Development activity down the
hierarchy as a function of time. As upper levels become increasingly stable,
lower-level requirements and Synthesis activities are initiated at acceptable
levels of risk. Thus, the key criterion for vertical (e.g., system to subsystem)
and horizontal (e.g., movement from Requirements Development to Synthe-
sis or passing a Major Milestone Review) progression is attaining to an
acceptable level of risk. This suggests that the more accurately risk can be
quantified, the better the program can be managed in terms of meeting cost
and schedule goals.

Figure 6.5 Time Domain View.

65 In this context, fidelity refers to the completeness of the requirements or the certainty of the
requirements in terms of stability or risk. The quantification of the status is admittedly subjective
and represents a relative measure and not an absolute one.
©2000 CRC Press LLC

Key Point

The above discussion indicates the necessity of solidi-
fying the requirements to some level before design
activities are initiated in order to minimize the risk of
a nonconverging or slow-to-converge Synthesis effort.
It further illustrates the necessity of solidifying the
design before requirements for the next level down are
passed along, thereby initiating the development ac-
tivities at that next level.

This is one cause of overruns on development programs. Requirements
are not stabilized prior to initialization of the synthesis activity. Or, the design
is not stabilized prior to initializing the next-level-down development activ-
ities. This implies that a structured approach to system development is
needed.

V. A Note on Complexity
Systems comprise various subsystems which also comprise several sub-
subsystems and so on. It is intuitively apparent that complexity grows as
more subsystems and tiers are added to the system. Furthermore, growth in
complexity appears to be non-linear in that it grows so quickly on many
development programs.

It might be helpful to quantify the growth of complexity in order to
understand its impact on a program. Figure 6.6 depicts four tiers in the
hierarchy, with three subsystems below each system above. It is clear that
growth in complexity is an exponential function. It has been assumed that
each subsystem comprises only three subsystems. This is quite conservative
as many systems comprise seven subsystems or more. For example, a typical
spacecraft can have seven or eight subsystems, while an aircraft can have
more still.

Figure 6.6 Exponential Growth in Complexity.
©2000 CRC Press LLC

To put this in mathematical terms, if “S” represents the number of
subsystems per system and “n” the nth tier in the hierarchy, then the following
relationship emerges:

9910(6.1)

The Total System Elements (TSE) refers to the total number of hardware and
software pieces of the system. Therefore, as the TSE grows, the overall
complexity also grows as does the energy needed to develop each element.
As has been suggested previously, in this context energy refers to manpower
and all other resources needed to perform the development of all the system
elements.

Figure 6.7 is a graphical depiction of the above relationship. One curve
is plotted for the assumed number of subsystems below each system.
Figure 6.6 is a picture of the case where three subsystems are assumed for
each system. The total number of elements included in Figure 6.6 is 40. This
is represented in Figure 6.7 by the curve labeled “3” in the legend. It is
apparent from the graph that complexity increases rapidly as subsystems
per tier are added and as tiers are added to the system hierarchy.

VI. Major Milestone Reviews
A central motivation for conducting a technical review is to gain consensus
with all stakeholders that the requirements and design, at the level of the
review, are of sufficiently low risk or acceptable risk, so as to continue toward
the next milestone. There are relatively few complex system development
efforts that are accomplished on schedule and within the proposed cost. One
reason may be that the purpose of each Major Milestone Review is not clearly
defined. Both the customer and the contractor must know when critical
requirements are needed in order for the development activity to proceed
with an acceptable amount of risk. As discussed previously, if requirements
or implementation are unstable at upper levels, the risk induced can be
significant. Therefore, the following is offered as suggested objectives for
each review.66

First Major Milestone Review — This review is conducted to solidify
the system requirements in the form of a configuration-controlled system-
level specification and the Interface Control Document (ICD) that defines
external interfaces before significant resources are invested in developing the
system-level design. This review focuses on understanding the total context
in which the system must function over its full life cycle. It assesses the risk
profile of the program in order to determine whether or not to proceed
toward the Second Major Milestone Review.

Total S Elementsystem Sn

n

m

=
=

∑
0

66 See Appendix C for SDF-derived major milestone review criteria.
©2000 CRC Press LLC

©200
Second Major Milestone Review — This review is conducted to estab-
lish the baseline system-level architecture by configuration controlling the
system block diagram, ICDs that characterize and control system-level
internal interfaces, and the Operations Concept. Successful completion of this
review results in the release of the configuration-controlled specifications for
the next level system elements. It assesses the risk profile of the program in
order to determine whether or not to proceed toward the Third Major Mile-
stone Review.

Third Major Milestone Review — This review is conducted to establish
the subsystem baseline designs by configuration controlling the subsystem
block diagrams and ICDs that characterize and control subsystem-level
internal interfaces. Successful completion of this review results in the release

Figure 6.7 Complexity Growth.

2 CRC Press LLC
©2000 CRC Press LLC

of the configuration-controlled specifications for the next level system elements.
It assesses the risk profile of the program in order to determine whether or not
to proceed toward the Fourth Major Milestone Review.

Fourth Major Milestone Review — In general, this review is conducted
to establish the component-level baseline designs and any necessary next-
level-down specifications by configuration controlling the component block
diagrams and any necessary ICDs that characterize and control component-
level internal interfaces. Successful completion of this review results in the
release of any remaining and necessary configuration-controlled specifications
for the next level system elements. It assesses the risk profile of the program
in order to determine whether or not to proceed toward the build phase of
development. Note that in a very large system with many hierarchical tiers it
may be necessary to add more major milestone reviews. In such a case, the
basic flow and content of the reviews remains the same as indicated in the
preceding.

VII. What About Metrics?
Certainly, a central concern of any program manager is how to determine the
true status of the development. Is the right amount of progress being made?
What is the projected cost to complete the development of the system? When
will the development phase be completed? What are the risks and their poten-
tial impacts?

Meaningful metrics in the area of system engineering have been difficult
to define. One reason for this difficulty may be the lack of a well-defined
system engineering process that can be consistently applied across a broad
range of programs. It is virtually impossible to implement a process that is
inadequately defined and it is likewise difficult to measure progress against
such a process.

The SDF is defined in sufficient detail to enable the implementation of
meaningful metrics. Each major activity (i.e., Requirements Development,
Synthesis, and Trades) and each sub103103activity (e.g., requirements analysis,
functional analysis, design, allocation, analysis, integration, verification,
etc.) is allocated cost, schedule, manpower, computer, and other resources.
Actual consumption of these resources is tracked against the allocated
resource plan to measure progress. These data are cataloged in a database.
As more programs are performed, the metrics are refined in terms of the
necessary allocation of resources for each activity. The database becomes
the benchmark against which future programs are measured. In order to
ensure that apples are compared to apples and not to oranges, this approach
necessitates that each program implement the same SDF. Such a database
would be useful for estimating costs for new proposals and for internal
estimates of completion.
©2000 CRC Press LLC

	A Framework for Complex System Development
	Contents
	Chapter 6: The System Development Framework — Managerial
	I. Integrating Technical and Managerial Activities
	II. Developing the Program Structure
	III. Interaction in the Logical Domain
	IV. Interaction in the Time Domain
	V. A Note on Complexity
	VI. Major Milestone Reviews
	VII. What About Metrics?

