

chapter 3

System Development
Framework (SDF) Overview

If you don’t know where you’re going, you’ll end up somewhere else.
—Yogi Berra

In Chapter 2, the basic building block of the SDF was developed, based upon
the collection of activities that is commonly associated with the System
Engineering Process. These activities were derived from the consensus that
emerged through a survey of the literature. It was suggested that there was
little consensus, however, in terms of the arrangement of those activities into
a consistent and coherent process. In this chapter, a top-level framework in
which each of the identified activities can be arranged is developed.

In many industries, fierce competition is forcing cost and schedule
resources to decrease substantially. In some industries, new programs are
moving from financially safe cost-plus contracts to more risky fixed price
contracts.25 This puts much more pressure on the contractor to contain costs
so that overruns that detract from profit can be minimized or avoided alto-
gether. In order to increase the probability of earning a reasonable profit, it
is essential that the bid reflect an accurate assessment of the scope of effort
involved. In order to develop an accurate assessment of scope, an accurate
understanding of the tasks involved and the resources required to perform
those tasks is critical. Therefore, the more accurately the process for devel-
oping the system is defined, the more accurately the scope of the necessary
effort can be determined.

25 Cost-plus contracts generally assure the contractor that all costs incurred during the perfor-
mance of the contract will be reimbursed by the customer. This type of contract is usually
implemented where there is significant risk in the development of a new system or technology.
In this type of contract, the customer agrees to bear some or all of the financial risk. Fixed price
contracts, on the other hand, require that the system or product be delivered for the price agreed
to by the contractor and customer at the time of the contract award regardless of the actual
costs incurred by the contractor.
©2000 CRC Press LLC

I. Two Views Needed for an Accurate Model
The system engineering process must be defined with respect to two scales
of time — the macro-scale and the micro-scale. In terms of the macro-scale,
program development over large increments of time or program phases
spanning from initial studies to the operational phase of the program is
considered. This view of the program is called the Time Domain view. On
the micro-scale, the concern is with information flow and energy expenditure
at any instant in time. This view has been called the Logical Domain view.
These two domains are more fully discussed below, but first the rationale
for this approach is considered.

A. Rationale

Why emphasize this distinction between the macro and micro time scales?
A central goal of this book is to define a process that accurately reflects what
ought to occur on a well-ordered system development program in the real
world. And why is this important? There are several reasons:

• Cost Containment — Provide a basis for accurate modeling of the
program to facilitate more accurate estimates to complete, and for
more accurate change impact analyses. This will serve to maximize
the probability that the program will be completed within its cost and
schedule constraints.

• Scope Assessment — Provide a basis for accurately assessing the
scope of a development program which, in turn, facilitates more ac-
curate bids for new contracts with more solid bases of estimate.

• Metrics Development — Provide a basis for accurate measuring of
the state of the program as the development progresses.

• Resource Planning — Provide a basis for determining when specific
resources will be required.

So, the first reason for this distinction is to provide an accurate model
of what actually occurs in the real world of system development programs.
A second goal of this book is to define a system development framework
that can be applied to a wide variety of contexts. It is suggested that when
the Time and Logical Domains are not explicitly identified and characterized
in distinction, much difficulty arises in terms of defining a coherent and
consistent development process that can be applied in a wide variety of
contexts.

B. An Illustration

Consider the activity commonly called Verification. Verification is an activity
that often consumes a significant percentage of overall program resources
for its execution. Most of those resources are generally expended after the
©2000 CRC Press LLC

design work has been completed. In fact, some system engineering processes
define this activity as occurring after the last major design review. However,
is that an accurate or even desirable depiction of when this critical activity
should take place — at the end of the design phase?

In order to minimize risk to the program, Verification issues must be
considered at the earliest stages of development. Where will the system be
tested? What facilities will be available? What interfaces must be satisfied?
How will the system be transported? What special equipment will be
needed? If these issues are considered during the early stages of design it
will likely be possible to minimize the cost and schedule needed to perform
the Verification activity.

Given that Verification must be considered throughout the system devel-
opment, how should this be depicted in the System Engineering Process?
The same question could be asked about any of the activities identified in
Chapter 2. What about Requirements Development — does that end with
the first major review? What about functional analysis, design, allocation,
design integration, all the various analyses that must be performed, trade
studies, etc.? Do all these occur in a strict serial fashion? Once these have
been performed at some level, are they completed for the duration of the
development? What about other levels in the hierarchy — is Verification
performed only at the system level? The obvious answer to each of these
questions is “No.” Most of the activities of the system engineering process
occur in parallel within the same hierarchical level of the development.26

They also occur across the development timeline within the design activities
of subsystems and sub-subsystems and so forth. But how should this be
depicted as a logical process?

It is suggested that, in order to accurately capture what actually occurs
in the real world of complex system development, the system engineering
process must be defined in two domains — the macro-scale, or Time Domain,
and the micro-scale, or Logical Domain. In the former, the design evolution
that should occur over large increments of time is planned (design phases,
manufacturing, integration and test, etc.). In the latter, the logical flow of the
technical activities (Requirements Development, Synthesis, and Trade Stud-
ies) that should be occurring at any instant in time is defined.

Now, returning to the example, how should each of the technical activ-
ities be represented in the overall development process? It has been pointed
out that each activity is generally performed at some level of intensity and
for each system element during the entire development phase. Require-
ments Development, Synthesis, and Trade Study activities are all per-
formed at different levels of intensity across the program timeline. These
activities are generally performed in parallel, not in series. They often

26 Brooks speaks of the “classical sequential or waterfall model,” p. 265. He then goes on to
offer a critique, “The basic fallacy of the waterfall model is that it assumes a project goes through
the process once, that the architecture is excellent and easy to use, the implementation design
is sound, and the realization is fixable as testing proceeds,” p. 266.
©2000 CRC Press LLC

overlap as one activity feeds the next with data that is not necessarily
complete. It is also generally agreed that these activities are iterated over
the course of the development. So, how should this be depicted? If it is
agreed that each of these activities generally occurs on some element of
the system at some level in the hierarchy at some level of intensity, then
each activity must be depicted as occurring at each point on the program
timeline. It is not realistic to depict each of the technical activities as
occurring in strict serial fashion along the program timeline. Therefore, it
is suggested that the concept of two domains be employed because this
facilitates an accurate model of what actually occurs in the real world of
complex system development.

II. Time and Logical Domain Views Provide
a Full Program Description

As mentioned above, the macro-scale, or Time Domain, considers the Sys-
tem Development activity as viewed across the entire life cycle of the pro-
gram. It is concerned with how inputs and outputs evolve over time as the
system design matures. The micro-scale or Logical Domain, on the other
hand, deals with what occurs within small increments of time. Imagine
instantaneous “snapshots” along the macro-timeline, or time continuum,
where there are an infinite number of “logical planes.” Each “snapshot,” or
plane normal to the macro-timeline, represents an infinitesimally small slice
of time. Each slice, or plane, reveals the instantaneous logical sequencing
of activity occurring at that time. Figure 3.1 illustrates the Time Domain
view of the program and the instantaneous “snapshots” that are provided
by the Logical Domain view. It further depicts how these two views combine
to fully define the program.

A. Time Domain Focus: Inputs and Outputs

The Time Domain view characterizes how the design evolves chronologi-
cally. The essential “value-added” element of this view is a clear definition
of inputs and outputs as they are developed over time. The focus of this
view is not the activities being performed, but rather the outputs generated
by those activities. It is the outputs that change significantly from phase to
phase. The definition of these outputs during the planning process becomes
one of the primary bases by which the program scope is assessed.

Note here that the output of a previous activity becomes the input to
the subsequent activity. As Figure 3.1 indicates, there are two distinct sets
of data that are output: requirements and design. Notice that the requirement
outputs lead the design outputs. The logic is that the requirements at any
given level of the hierarchy drive the design being generated at the same
level. This is discussed in more detail in Chapter 5.
©2000 CRC Press LLC

B. Logical Domain Focus: Energy Expenditure

The Logical Domain view provides an instantaneous snapshot in time of the
program state, revealing which activities are being performed at each hier-
archical level, what the sequencing of those activities is, and how much
energy is being applied in the performance of each activity.

Energy is expended in each activity (i.e., requirements development,
synthesis, and trades) until the desired output at the necessary fidelity is
generated. This “energy” refers to the manpower and other resources needed
to generate the required output. It is the scope of the effort necessary. Thus
the more accurate the estimates for outputs required and the inputs needed
to generate the outputs, the more accurate the manpower and other resource
estimates will be.

In any well-planned complex development program there are major
milestones where a certain level of design definition is planned to be
achieved. Figure 3.1 illustrates three such milestones. The first major mile-
stone is concerned with defining the top-level system architecture. The sec-
ond focuses on defining the architectures of the various subsystems. The
third and subsequent major milestones generate the designs of the lower
level elements. Each plane reveals how many levels of the hierarchy are
involved and how many subsystems are at each level, what the logical
connections are within and between each of the levels, and the energy level
applied to each activity.

Figure 3.1 Time and Logical Domain Coupling.
©2000 CRC Press LLC

III. The SDF in the Logical Domain
Figure 3.2 enhances Figure 2.2 of Chapter 2 by including decision points for
convergence, adding tiers to the program, and indicating connectivity
between the tiers. It illustrates that there is control logic coupling the various
modules of activity between and within the tiers of the system hierarchy.
Several important points are implied by Figure 3.2.

A. Control Logic

One of the key elements of the SDF is the clear delineation of the data flow-
down and feedback paths that connect same-tier and adjacent-tier activities.
This “control logic” defines the paths and the gates through which informa-
tion flows within the overall hierarchy. This is developed in detail in
Chapter 5, where Figure 3.2 is decomposed to the next level.

B. Hierarchy

The Moses of the Bible implemented a hierarchy of leadership in his govern-
ing the nation of Israel (Exodus 18:13-27). Hierarchy is an essential element
of organizing any complex system. The SDF building block, mentioned above,
defines the basic activities and the logical sequencing of those activities for
each tier in the program hierarchy.

Figure 3.2 The SDF Logical View.
©2000 CRC Press LLC

At any instant in time it is likely that each activity of the SDF is being
performed at some level of intensity and at some level in the system hier-
archy. The level of intensity applied to each activity is dependent upon a
whole array of variables: stability of the input requirements, level of com-
plexity of the system, whether the system is precedented or not, where on
the program timeline the development effort is occurring, etc.

C. Modularity

The SDF is modular and therefore tailorable. Tailoring is accomplished by
partitioning the program hierarchy appropriately, adding tiers as necessary,
and by adding same-tier elements as needed.

D. Closed Loop

The SDF is closed loop, with information flowing down from the Design,
Analyze, and Integrate activity to the next tier, and with data flowing back
up from the lower tier into the Design and Integrate activity of the tier above.
This is an important point because it is this organization that can preclude
design teams from spending resources and increasing costs by designing in
capabilities that are not required. Conversely, it can also be used to ensure
design teams are responding to all design requirements, thus eliminating
expensive redesign needed to include functionality that was missed.

E. Traceability

The SDF provides a structure for program requirements databases. This
logical flow of activity ought to reflect the manner in which requirements
flow up and down throughout the system hierarchy. Therefore, this same
structure should be used in designing the requirements traceability system,
which includes not only requirements flow, but also verification method and
the stage in the system build-up at which the verification will be performed.
It also provides the basis for change impact analyses, sensitivity analyses,
cycle-time reduction analyses, etc.27

F. Comprehensiveness

It is important to note that each activity of which the SDF is composed
considers not only the development of the deliverable product itself, but also
all of the associated hardware, software, procedures, processes, etc. needed
to produce, integrate, test, deploy, operate, support, and dispose of the
system. The effort applied to the development of support elements is com-
mensurate with program need.

27 Cf. Adamsen (1995)
©2000 CRC Press LLC

G. Convergence

With regard to the flow of the process, the key criterion in moving from
Requirements Development (RD) to Synthesis is convergence of the RD
activity. Requirements convergence has to do with defining a set of
requirements that are stable enough to proceed to the Synthesis activity with
acceptable probability that an adequate solution can be generated. The
requirements set will never reach absolute perfection. The issue is whether or
not the risk associated with proceeding to the next activity is acceptable.

An example of non-convergence occurred on a space program in which
the author was involved. The spacecraft was required to communicate with
a relay satellite during a time when the two prescribed orbits precluded
such communication. Because this was an impossible requirements set to
satisfy, the requirements activity could not converge. The requirements set
needed to be changed in order to enable the Requirements Development
activity to converge upon a solution. Another example is the case in which
a function cannot be performed without input from another function. In
such a situation, the input and output requirements of the functions must
be coordinated. If this is not possible, the Requirements activity can not
converge.

The question of convergence relative to the Synthesis activity is similar
to that of the Requirements activity. Examples of non-convergence might
include the unavailability of certain technologies required to satisfy a par-
ticular requirements set. The requirements might be perfectly stable and
consistent, but they are not implementable — at least not at a reasonable
cost or schedule. A feedback path to the input source is provided in the
process when convergence is not achieved.28

To summarize, convergence occurs when the output data has achieved
a level of acceptable risk in terms of the probability of success that the
subsequent activity will be able to reach convergence with that data.29

H. Risk

Risk management is an important tool by which to manage the development
of any complex system. The primary difficulty arises in assessing it accu-
rately and in a meaningful way. Nevertheless, a risk assessment of the output
data ought to be an essential criterion in making the determination whether
or not to proceed to the subsequent activity. The risk assessment should
focus on determining if the requirement and design output are of such
sufficient fidelity that the downstream activities can commence with an
acceptable probability of success.

28 In order to avoid clutter in Figure 3.2, the feedback paths to the input source are not shown.
They are, however, shown explicitly in Figure 5.42 of Chapter 5.
29 A key issue here is accurately quantifying the risk to the program if the subsequent activity
proceeds with the data input to it.
©2000 CRC Press LLC

IV. The SDF in the Time Domain
Having described how the SDF functions in the Logical Domain, the question
of how it functions in the Time Domain is now addressed. Figure 3.3 depicts
the SDF in the Time Domain. During the early stages of the development,
the primary focus of activity centers on defining the top-level system archi-
tecture. The figure illustrates several top-level architecture candidates being
evaluated during the first phase of activity. The conclusion of that phase of
development culminates in the selection of the baseline architecture. After
that point, the focus of activity moves to development of the major sub-
systems at the next level down in the hierarchy. This introduces the concept
of “incremental solidification.”

A. Incremental Solidification

In order to proceed along the program timeline with minimal risk, it is nec-
essary to “incrementally solidify” key requirements by program milestone. It

Figure 3.3 The SDF in the Time Domain.
©2000 CRC Press LLC

is highly desirable to determine which requirements are needed from the
customer (or other entity) and when, in order to maintain progress with
minimal risk. One goal is to include these critical need dates in the contract
so that if there is delay, a cost and schedule scope change can be effectively
negotiated. It is also apparent from the figure that an instability in upper-tier
requirements or design results in instability at each dependent tier below it.
Thus, unstable requirements or design at an upper level induce risk into lower
dependent levels.

B. Risk Tolerance Defines Scope

Notice in Figure 3.3 that only one level of activity below the top-level has
been shown during the first phase. This is intended to illustrate that, at early
stages of development, lower levels of design and analysis are only per-
formed in order to support the development of the top-level architecture. In
other words, the degree of lower-level analysis necessary is determined by
the amount of risk the program is willing to carry. If there is little uncertainty
that the lower level design can perform as required, then there is little reason
to perform detail design and analysis at that point on the timeline. Con-
versely, if there is great uncertainty that a key lower-level design will be able
to perform as required, then significant lower level design and analysis may
be necessary to lower the program risk to an acceptable level.

To illustrate this point, consider the conceptual design of a spacecraft
constellation in which direct communication between satellites within the
constellation is necessary. The method of communication is a key issue in
the top-level conceptualization of the system. Suppose that for various rea-
sons the communication method of choice is a laser cross-link. Because of
the uncertainties involved in this technology, it may be necessary to perform
a significant level of detailed analyses at relatively low levels in the system
hierarchy in order to mitigate perceived risks with such a concept. How
accurately must the laser be pointed? Will it be possible to point the laser to
that degree of accuracy? How much onboard electrical power will be nec-
essary to support the cross-link? It may not be possible to answer these
questions without significant design and analysis during the early stages of
development. The extent of design and analysis necessary will be a function
of how much risk the program is willing to tolerate. The more risk adverse,
the more design and analysis at lower levels will be required to mitigate
perceived risk.

C. Time-Phased Outputs

Another feature of the Time Domain view is that it defines which particular
outputs are required, at what fidelity, and when on the program timeline.
To reiterate, the basic activities of the SDF do not change over time. However, the
outputs of those activities change dramatically over the course of the development.
The output of a structural analysis during conceptual studies will be quite
©2000 CRC Press LLC

different from those performed prior to a detail design review. Figure 3.3
indicates that there are two major types of outputs — requirements and
design. The figure also illustrates that requirements should “lead” design
because design activities respond to requirements. Over time, outputs
become more detailed and are generated at increasingly lower levels of the
hierarchy.

V. System Life Cycle
Figure 3.4 illustrates the full life cycle for a typical system, addressing how
the teams responsible for particular system elements function over time.
Supporting teams generally stay intact through Fabrication, Assembly, and
Test phases of the program. As the program moves from development to
production the composition of the teams may vary widely, moving from an
engineering emphasis to production. As the program matures through pro-
duction, deployment and operations lower-level teams may be subsumed
under higher as appropriate.30

It is important to consider the full life cycle of the system at the earliest
stages of the development because each mission phase imposes unique
requirements on the system. In order to maximize the probability of success,
these requirements must be considered from the start.

Figure 3.4 further illustrates that the design effort continues up to the
final Major Milestone Review that concludes the design phase of the pro-
gram. After that, the program moves from significant design effort (depicted
in the first three “snapshots” with the technical activities shown as per
Figure 3.2) to the subsequent phases of manufacturing, integration and test,

Figure 3.4 Full System Life Cycle.

30 Adamsen, Paul B., Jr., Controlling The Chaos: An Integrated Approach To Managing A System
Development Program, “Systems Engineering Practices and Tools,” Proceedings Sixth Annual
Symposium INCOSE, Vol. 1, July 7-11, 1996, Boston, MA, pp. 1093-1100.
©2000 CRC Press LLC

deployment, operations, and disposal. For a production program, it is
important to provide feedback to the design activity, capturing lessons
learned from the deployed systems.
©2000 CRC Press LLC

	A Framework for Complex System Development
	Contents
	Chapter 3: System Development Framework (SDF) Overview
	I. Two Views Needed for an Accurate Model
	A. Rationale
	B. An Illustration

	II. Time and Logical Domain Views Provide a Full Program Description
	A. Time Domain Focus: Inputs and Outputs
	B. Logical Domain Focus: Energy Expenditure

	III. The SDF in the Logical Domain
	A. Control Logic
	B. Hierarchy
	C. Modularity
	D. Closed Loop
	E. Traceability
	F. Comprehensiveness
	G. Convergence
	H. Risk

	IV. The SDF in the Time Domain
	A. Incremental Solidification
	B. Risk Tolerance Defines Scope
	C. Time-Phased Outputs

	V. System Life Cycle

