

chapter 4

The Rework Cycle

I haven’t failed, I’ve found 10,000 ways that don’t work.
—Thomas Alva Edison31

The only man who never makes a mistake is the man who never does anything.
—Theodore Roosevelt

I. What Is The Rework Cycle?
The Rework Cycle, as defined in the discipline of System Dynamics32, is a
key concept that must be considered in developing an accurate representa-
tion of the processes involved in engineering and managing complex system
development programs. It was first developed explicitly by Cooper (1980)33

and has subsequently been adapted by many other authors.34 Explaining the
Rework Cycle, Richardson and Pugh note:

Not all work done in the course of a large project is
flawless. Some fraction of it is less than satisfactory
and must be redone. Unsatisfactory work is not dis-
covered right away, however. For some time it passes
as real progress, until the need for reworking the tasks
involved shows up. Hence, we are led to suggest that
the project workforce accumulates two kinds of
progress: real and illusory. We shall term the latter
undiscovered rework. Together, cumulative real
progress and undiscovered rework constitute what is

31 The author also found some sources that attribute this to Benjamin Franklin.
32 System dynamics was pioneered by Jay Forrester. His first book on the subject is Industrial
Dynamics, Portland, OR: Productivity Press, 1961.
33 Cooper, Kenneth G. Naval Ship Production: A Claim Settled and a Framework Built, Interfaces,
10:6, December 1980.
34 Ford and Sterman note several papers: Cooper, 1993a, b, c, 1994; Seville and Kim, 1993;
Jessen, 1990; Kim, 1988; Pugh and Richardson, 1981; Abdel-Hamid, 1984; Ford and Sterman,
1997; Ford, 1995.
©2000 CRC Press LLC

perceived within the project as actual cumulative
progress. . . .35

Understanding the Rework Cycle is key to understanding the dynamics of
complex system development. In the context of simulating the dynamics of
a real software development program, Cooper comments:

. . . we had to simulate the performance of actual projects
as they really did occur — not just how they were
planned to go, or how they should have gone. . . . To
do so we had to explicitly address their substantial
rework, as well as its causes, detection, and execution.36

The basic rework cycle is depicted in Figure 4.1. It begins with a quan-
tification of the work that must be performed, much like developing a cost
estimate based upon an understanding of the scope of tasks involved. All
of the planned tasks are in a bucket, as it were, waiting to be performed.
The work generation activities begin to expend energy and resources to
perform the tasks in the “Work to Do” bucket. Once the work is performed
it is allocated to the “Work Done” bucket. But herein lies the problem: some
of the tasks that are thought to be done, are not actually done. Some fraction
of the work thought to be done must be redone. That portion of the work
goes, by definition, into the undiscovered rework bucket.37

The quality of the work performed is a key factor that drives the amount
of rework in any given System Development activity. Quality, in this context,
is a measure of that portion of work performed that is actually completed,
as opposed to that which is thought to have been completed. Because the
quality of the work is not perfect, some of the work that is thought to be
done is not actually done. That work is allocated to the rework bucket.

There is a further difficulty as well. Exactly which tasks are done and
which need to be redone? In other words, some of the rework is known: that
is, some tasks are known to be incomplete or otherwise problematic. How-
ever, as Richardson and Pugh note in the above quote, there will likely be
tasks that certainly require rework but which have not yet been discovered.
The rework bucket contains both known and undiscovered rework.

Known rework can be intelligently managed because it is known. How-
ever, undiscovered rework injects risk into the program precisely because it
is not known. It is not a trivial task to manage something that is not known.
What is the potential cost, schedule, and technical impact? How extensive

35 George P. Richardson and Alexander L. Pugh, Introduction to System Dynamics Modeling,
Portland, OR: Productivity Press, 1981, pp. 56-57.
36 Cooper, Kenneth G. and Thomas W. Mullen, Swords and Plowshares: The Rework Cycles of
Defense and Commercial Software Development Projects, American Programmer, May 1993, p. 42.
37 The buckets labeled “Undisc RW” in Figures 4.1 and 4.2 contain both known and undiscov-
ered rework. There is no need to model these separately since the tasks in each bucket must
be redone and are thus handled in the same way in the model.
©2000 CRC Press LLC

is it? What is the risk to the company and to the customer? Many more issues
could be raised, but the key point here is that undiscovered rework is a
potentially dangerous thing for all stakeholders. The implication to the sys-
tem development process is this:

Key Point

Specific activities must be included in the SDF that are
aimed at exposing undiscovered rework in order to
mitigate its potentially adverse effects.

Figure 4.1 illustrates a single rework cycle or “phase.” The term “phase”
in this context refers to a complete rework cycle, unlike its previous usage
where it describes different brackets of time along a program timeline.
Figure 4.2 depicts a system made up of multiple Rework Cycles, or multiple
phases. For simplicity, the activities that compose the Requirements Devel-
opment activity are coalesced into one phase; similarly, those composing the
synthesis activity. Thus, as illustrated here, the system-level portion of the
development comprises two Rework Cycle phases. The subsystem tier,
which comprises similar Requirements Development and Synthesis activities
is depicted with a single Rework Cycle phase. This illustration shows that
the fidelity of the output of Requirements Development is a function of the
quality of the work performed in its set of activities. This output becomes
the input to the system-level Synthesis activity. The quality of the output of
the Synthesis activity is limited by the quality of the input data.

The objective here is to illustrate how poor quality ripples through the
entire system development in a non-linear fashion. For the purposes of this

Figure 4.1 The Rework Cycle.
©2000 CRC Press LLC

illustration, only three phases are shown for an entire System Development
program. The rationale for the three phases is that requirements drive the
Synthesis activity and the Synthesis activity drives the lower-level develop-
ment activities. In reality, each sub-activity could be modeled as a rework
cycle, each with its own quality level. In a real program there would likely
be many more levels in the hierarchy.

It is apparent that even small lapses in quality at upper levels in the
hierarchy can have a devastating effect on the quality achievable at lower
levels in the hierarchy. Because of feedback effects, this influences quality at
upper levels as well. A vicious cycle begins to emerge.

Key Point

It is clear from this discussion that improving the qual-
ity of work performed should be a major priority in
sound program management. The amount of work
performed that is actually complete is directly related
to the quality level of the work. As the quality level
goes down, the amount of rework that will be required
necessarily increases at a non-linear rate.

Key Point

This discussion highlights a key difference between
complex system development and relatively simple
product development. In complex systems, rework at
lower levels grows exponentially. The impact of this
effect is not as significant in relatively simple products.

Figure 4.2 The Rework Cycle in Multiple Phases.
©2000 CRC Press LLC

II. A Simple System Dynamics Model
In order to illustrate the impact of various parameters on the success of a
system development program, a simplified System Dynamics model will be
employed. The model includes three phases as mentioned in the discussion
concerning Figure 4.2. Some of the key parameters include: quality of the
work performed, productivity of the workers performing the task, and the
level of effort applied to discovering rework as a percentage of the total staff
level. Certainly, more detail could be added with profit, but for the purpose
of this discussion, this model will be adequate. When the output is examined,
a focus on the absolute numbers is not the primary concern; rather, the central
issue has to do with the trends they indicate.

In this context, productivity is simply the rate at which the work is being
accomplished. It is a measure of how efficiently allotted time is being used.
Quality, in this context, refers to the amount of work actually completed as
a fraction of the amount of work thought to be complete. As discussed above,
not all the work performed is actually complete. Some fraction becomes
either discovered or undiscovered rework.

In the System Dynamics model three variables for quality are employed.
The first is “nominal quality,” Qnominal , which represents the quality of the
work as it is being performed by the people or machines. In the model, this
number does not change. It is assumed that a fixed percentage of the work
performed goes to the rework bucket. The second variable for quality is
called “average quality.” Once the program starts, it is calculated. Average
quality, Qavg, is defined as:

(4.1)

As the program progresses, Qavg approaches unity because the work done
bucket is filling up and rework is being discovered and thereby eliminated
from the rework bucket. The third variable is quality, Q. It is a function of
the nominal quality of the phase in question times the average quality of the
input data. Thus, each phase starts at a quality level, Q, equaling its nominal
quality times the quality of the input data. This is illustrated in Figure 4.3
which is an output of the System Dynamics model. The horizontal axis
represents time, while the vertical axis represents the quality level on a scale
of zero to one.

The initial quality level, Qnominal, for each phase was defined as 50%. The
quality of the first phase remains constant because, in this simplified model,
it is not dependent upon downstream phases for its input.38 However, the
quality level of the output of the first phase is the average quality level or
QPhase 1 avg. The quality level of the Phase 2 activity is calculated as follows:

38 It is recognized that this is a simplification. In real life there would be feedback from the
downstream activities. Such feedback is developed in Chapter 5.

Q

Work Done
Work Doneavg =

+

 Rework
©2000 CRC Press LLC

(4.2)

This is because the Phase 2 activity is dependent upon the output of Phase
1 for its input. The instantaneous quality of the output of Phase 1 is its
average quality at the particular instant. Therefore, as shown in Figure 4.3,
the initial quality level for the Phase 2 activity is 25% (50% × 50%). It rises
to the nominal value over time as rework is discovered in Phase 1 and
converted to work complete, thus raising the quality level of the input to
Phase 2. Likewise, for Phase 3 the initial value is 12.5% (50% × 50% × 50%).

Key Point

The obvious assumption here is that the Phase 1 activ-
ity continues to discover rework in order to convert it
to work complete. If this does not happen, the quality
level of the input to Phase 2 does not improve and the
quality level of the Phase 2 work stagnates at 25%. This
represents a classic “Pay me now or pay me later”
scenario. Poor quality work that is not corrected early
will cause many orders of magnitude more serious
problems in the future. In terms of the model, if the
average quality of Phase 1 is not improved, the model
will not converge — it will not be able to finish because
not all the work is complete. How much more on a
real program?

Figure 4.3 Dynamics of Quality over Time.

 Q Q QPhase 2 nominal Phase 1 avg =
©2000 CRC Press LLC

Key Point

This discussion highlights an issue regarding the optimal
timing of the release of output data from one activity as
input data to subsequent activities. Should the data be
input to the next activities as soon as it is available or
should the rework activities be given time to improve
the data? The answer to this question involves an assess-
ment of the quality of the output data. The better the
data, the sooner it makes sense to pass it downstream.
The poorer the quality of the data, the more rework it
will generate in subsequent activities and thus increase
overall program costs (Garbage in → Garbage out).

Returning to Figure 4.3, it can be seen that as more phases are added,
or the more tiers in a complex hierarchy, the more rapidly quality deteri-
orates at lower levels. It can also be seen that the schedule is pushed farther
to the right. This is apparent since the horizontal axis represents time and
the phase is not completed until the quality level reaches its nominal value.
The quality level of Phase 3 at any given instant in time is calculated as
follows:

(4.3)

where the values of Qnominal, QPhase 1, and QPhase 2 are the instantaneous values
at the time QPhase 3 is calculated. If k equals the number of phases in the
hierarchy, then a pattern emerges whereby:

(4.4)39

If all the phases have the same quality level, as it is assumed in this model,
then:

(4.5)

Of course, Equation 4.5 is only true for the initial value of quality since after
time equals zero, each Qavg changes at a different rate.

Exponential Rework Growth — The aforementioned System Dynamics
Model is used here to briefly examine the effects of rework as it ripples

39 Equation 4.4 assumes that for n = 0, QPhase n avg = 1, such that QPhase n+1 = QPhase 1 = Qnominal

Q Q Q QPhase 3 nominal Phase 1 avg Phase 2 avg =

Q Q Q
n

k

Phase n nominal Phase n avg +
=

=








∏1

0

 Q Q Q n
Phase n nominal avg + =1
©2000 CRC Press LLC

through this simple three-phase hierarchy.40 Figure 4.4 depicts the amount of
rework generated by each phase as a function of time, with a nominal quality
value of 50%. For Figures 4.4 through 4.6 the horizontal axis represents time,
and the vertical axis represents the number of tasks waiting to be performed.
It is clear from the figure that rework is growing in a non-linear fashion. It
is also clear from this view that the schedule is being pushed to the right in
a significant way. This is indicated because each phase is completed when all
of the tasks have been completed; in order for all the tasks to be completed,
all of the rework must be emptied from the rework bucket. Thus when the
rework bucket remains empty, the phase is completed.

Note that as the results of the simulations performed are presented, both
cost and schedule impacts are identified. The schedule impacts are observed
directly from the figures since time is the unit of measure along the horizontal
axis. Cost is a function of the number of tasks that must be performed.
Therefore, an increase in the number of tasks that must be performed indi-
cates a commensurate increase in cost. Such is the case with rework. Rework
represents tasks that were performed at least once, but for various reasons,
must be redone.

Note in the following discussion that the effort applied to generating
work, or the Potential Work Rate (units = tasks per month), is fixed by the
number of staff (units = persons) available and their respective productivity
(units = tasks per month per person). For all simulations the number of
staff generating work is fixed at five people. The potential work rate for
Rework Discovery activities is determined by multiplying the Potential
Work Rate for work generation activities by the fixed percentage identified
in each simulation. For example, if the effort applied to Rework Discovery
activities is set at 20% of the effort applied to generating work, then the
effort applied to discovering rework would be 20% times five people times
the productivity level.

Figure 4.5 provides a similar view of the program, but with a nominal
quality level of 70%. The contrast between these two emphasizes the need
to minimize rework generated. Rework still cascades non-linearly through
the hierarchy. However, its magnitude is reduced significantly as quality is
improved.

Figure 4.6 illustrates rework growth at a quality level of 90%. Notice that
the scale of the vertical axis has been changed relative to Figures 4.4 and 4.5.
Both Figures 4.4 and 4.5 have a vertical axis scale of zero to 40. Figure 4.6
has a vertical axis scale of zero to 4, indicating that the rework generated
with a quality level of 90% is negligible as compared to quality levels of 70%
and 50%. Notice also the schedules of the three figures. Completion of the
phase is indicated when the bucket containing the remaining undiscovered
rework tasks reaches zero. With a quality level of 90% the program finishes

40 See Appendix F for a description of the model itself. The effects of schedule pressure, staffing,
etc. have not been modeled.
©2000 CRC Press LLC

Figure 4.4

Rework Growth as a Function of Number of Phases (Quality = 50%).

Figure 4.5

Rework Growth as a Function of Number of Phases (Quality = 70%).

Figure 4.6

Rework Growth as a Function of Number of Phases (Quality = 90%).

Q Q Q

n

k

Phase n nominal Phase n avg +
=

=








∏1

0

Q Q Q n
Phase n nominal avg + =1

2296/ch04/Frame Page 33 Friday, March 31, 2000 11:05 AM

©2000 CRC Press LLC

in about 17 months. With a quality level of 70% the program finishes in about
32 months. At a quality level of 50% the program finishes in about 96 months.

The absolute numbers here are not important. This is a relatively simple
model and a real program is far more complex. Nevertheless, the trends the
numbers indicate are worthy of note. It is obvious from this analysis that
the number of tasks that need to be reworked is significantly reduced by
increasing the level of the quality of work performed. It naturally follows
that, with less work needing to be redone, the program can be completed
much faster and therefore in a much more cost-effective manner.

Figure 4.7 provides a comparison of how the cumulative amount of
rework generated grows non-linearly as the quality level deteriorates. The
vertical axis represents the cumulative number of Rework Discovery tasks
generated. The same point made in Figures 4.4, 4.5, and 4.6 above is reiterated
here: Rework resulting from poor quality adds significant cost to the program
in terms of both dollars and schedule slippage.

Key Point

Rework can also induce technical risk to the program
because the results of the corrected work could involve
changing technical parameters that invalidate certain
aspects of the design.

Figure 4.7 Cumulative Rework Generated as a Function of Quality Level.
©2000 CRC Press LLC

The SDF outlined in this book identifies specific tasks that ought to be
performed specifically for the purpose of discovering rework as early in the
process as possible. This is necessary in order to mitigate its potential negative
consequences.

How Intense Should Rework Discovery Be? — As mentioned above,
in this simulation, the amount of effort applied to discovering rework is
defined as a percentage of the effort applied in generating work complete.
Figures 4.8, 4.9, and 4.10 illustrate the impact of varying the level of effort
applied to discovery of rework. For each simulation the productivity level
is set to 90%. The horizontal axis in each figure represents time, while the
vertical represents the total number of rework discovery tasks generated
(more is worse).

In Figures 4.8 through 4.10 it is the knee in the curve that indicates at
what point Rework Discovery activities level off. This is the point at which
the phase concluded. In order to find the optimal percentage of effort that

Figure 4.8 Rework Generated as a Function of Rework Discovery Effort —
Quality = 90%.
©2000 CRC Press LLC

should be directed toward discovering rework, the curve with the lowest
cumulative amount of rework must be identified. For the first simulation,
the nominal quality parameter is set to 90%. At this quality level, there is
minimal difference between applying 25% effort toward discovering rework
and applying higher percentages. However, as quality deteriorates, more
effort must be applied to discover rework in order to minimize its impact
to cost and schedule.

Figure 4.9 shows the impact of operating at a quality level of 70%. At
such a quality level, about 38% of the effort applied should be directed
toward rework discovery. More than that would not be cost effective. Less
than 38% would result in unnecessarily high cost and schedule impacts.

Figure 4.10 shows the results of running the simulation at a quality level
of 50%. In this scenario, the effort applied to discovery of rework should be
on the order of 50% or more.

Figure 4.9 Rework Generated as a Function of Rework Discovery Effort —
Quality = 70%.
©2000 CRC Press LLC

Looking at Figures 4.8 through 4.10, notice how the total rework gen-
erated grows at a non-linear rate as quality deteriorates from 90 to 70%
and finally to 50%. At a quality level of 90% (Figure 4.8) the total rework
ranges from about 17 to 21 tasks, depending upon how much effort is
applied to finding it. At a quality level of 70% (Figure 4.9) the rework grows
to a minimum of about 60 tasks. At a quality level of 50% (Figure 4.10) the
rework grows to a minimum of about 160 tasks. In terms of schedule, at
90% the program finishes within about 20 months; at 70% it finishes in
about 25 months; and at 50% it completes in about 35 months when the
rework discovery effort is run at the optimum level. Notwithstanding the
above, the main point of Figures 4.8 through 4.10 is not to determine the
optimal amount of rework discovery effort that must be applied in those
specific situations.

Figure 4.10 Rework Generated as a Function of Rework Discovery Effort —
Quality = 50%.
©2000 CRC Press LLC

Key Points

• Failure to acknowledge the existence of rework and to
address it properly can be detrimental to a develop-
ment program.

• Poor quality results in unnecessarily high cost and
schedule resources spent on fixing problems that may
well have been avoided.

• The lower the quality level, the higher the percentage
of resources must be applied to discover the resulting
rework in order to minimize its adverse effects on cost
and schedule. This relationship between quality level
and resulting rework is exponential.

III. Rework Mitigation
The preceding discussion has shown how even small degradations in the
quality of work performed can undermine the ability of a program to operate
within budgeted cost and schedule constraints. Undiscovered rework injects
cost, schedule, and technical risk into any development program because
the nature of the problems is not known. Undiscovered rework, by definition,
is unwittingly accepted within the program as work complete. Such data is
used to make design decisions, make-buy decisions, critical trade-offs, cost
estimates, schedule estimates, etc. This undiscovered rework will make itself
known at some point in the program: during subsequent design phases,
during manufacturing, during integration and test, during deployment, or
during operations. It is obvious that the later in the program it is discovered,
the more difficult and expensive it will be to rectify. In addition, there may
be hazards to humans and the environment hidden in the design.

Key Point

The main point here is that improving the quality of
work performed must be a priority if a program is to
be run at minimal risk. As a corollary, effort must be
made to discover undiscovered rework in order to
minimize its cost, schedule, and technical effects on the
program.

What are some of the causes of rework during the development process?
The following nonexhaustive list identifies some of the sources.

• Imposed requirements incomplete, ambiguous, contradictory, un-
verifiable

• Undiscovered mission requirements
©2000 CRC Press LLC

• Planned technology not available in time
• Initial design “granularity” insufficient to detect fundamental issues
• Heritage hardware and/or software not robust enough for new context
• Interfaces not compatible
• Initial technical, cost, and schedule allocations not sufficient
• Inadequate control and flow of requirements and information
• Incomplete or too top-level performance analyses
• Testability and/or producibility difficult and expensive
• Failure to adequately test and/or simulate design
• Inadequate test planning

These are not uncommon causes of rework. This short, nonexhaustive
list suggests that activities ought to be included in the SDF that are specifi-
cally aimed at discovering these causes of rework. In Adamsen (1995), a
linear, sequential SDF is developed. As Table 4.1 indicates, the activities
identified, which are typical of most system engineering processes, fall nat-
urally into two categories: those activities focused on generating work and
those focused on discovering rework. It is interesting that one half of those
activities focus on the discovery of rework.

Key Point

Sometimes the activities described in the table as fo-
cused on rework discovery are viewed as “non-value-
added” activities. The preceding discussion shows that
such a view is misguided. There is much “value-add-
ed” to finding rework early, which will serve to ensure
that the program proceeds with minimal technical,
cost, schedule, and safety risk to the program.
©2000 CRC Press LLC

Table 4.1

 Focus of SDF Activities Defined in Adamsen (1995)

Requirements

Development

Design and Analysis

Verification

Activity
Main
Focus Activity

Main
Focus Activity

Main
Focus Activity

Main
Focus

Requirements
Analysis

Discover
Rework

Identify/Modify
Design

Work Analyze
Performance

Discover
Rework

Analysis
(may be
same as

Synthesis)
Test

Discover
Rework

Mission
Analysis

Work Allocation Work Assess
Producibility,

Testability

Discover
Rework

Discover
Rework

Requirements
Verification

Check

Discover
Rework

Functional
Decomposition

Work Optimize Work Plan System
Test

Discover
Rework

Functional
Analysis

Work and
Discover
Rework

Design
Integration

Work
©2000 CRC Press LLC

	A Framework for Complex System Development
	Contents
	Chapter 4: The Rework Cycle
	I. What Is The Rework Cycle?
	II. A Simple System Dynamics Model
	III. Rework Mitigation

