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5.1 Characterization of Channel Distortion

Many communication channels, including telephone channels, and some radio channels, may be
generally characterized as band-limited linear filters. Consequently, such channels are described by
their frequency response C(f ), which may be expressed as

C(f ) = A(f )ejθ(f ) (5.1)

where A(f ) is called the amplitude response and θ(f ) is called the phase response. Another character-
istic that is sometimes used in place of the phase response is the envelope delay or group delay, which
is defined as

τ(f ) = − 1

2π

dθ(f )

df
(5.2)

A channel is said to be nondistorting or ideal if, within the bandwidth W occupied by the trans-
mitted signal, A(f ) = const and θ(f ) is a linear function of frequency [or the envelope delay τ(f )

= const]. On the other hand, if A(f ) and τ(f ) are not constant within the bandwidth occupied by
the transmitted signal, the channel distorts the signal. If A(f ) is not constant, the distortion is called
amplitude distortion and if τ(f ) is not constant, the distortion on the transmitted signal is called
delay distortion.

As a result of the amplitude and delay distortion caused by the nonideal channel frequency response
characteristic C(f ), a succession of pulses transmitted through the channel at rates comparable to the
bandwidth W are smeared to the point that they are no longer distinguishable as well-defined pulses
at the receiving terminal. Instead, they overlap and, thus, we have intersymbol interference (ISI).
As an example of the effect of delay distortion on a transmitted pulse, Fig. 5.1(a) illustrates a band-
limited pulse having zeros periodically spaced in time at points labeled ±T , ±2T , etc. If information
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is conveyed by the pulse amplitude, as in pulse amplitude modulation (PAM), for example, then one
can transmit a sequence of pulses, each of which has a peak at the periodic zeros of the other pulses.
Transmission of the pulse through a channel modeled as having a linear envelope delay characteristic
τ(f ) [quadratic phase θ(f )], however, results in the received pulse shown in Fig. 5.1(b) having zero
crossings that are no longer periodically spaced. Consequently a sequence of successive pulses would
be smeared into one another, and the peaks of the pulses would no longer be distinguishable. Thus,
the channel delay distortion results in intersymbol interference. As will be discussed in this chapter,
it is possible to compensate for the nonideal frequency response characteristic of the channel by use
of a filter or equalizer at the demodulator. Figure 5.1(c) illustrates the output of a linear equalizer
that compensates for the linear distortion in the channel.

The extent of the intersymbol interference on a telephone channel can be appreciated by observing
a frequency response characteristic of the channel. Figure 5.2 illustrates the measured average am-
plitude and delay as a function of frequency for a medium-range (180–725 mi) telephone channel of
the switched telecommunications network as given by Duffy and Tratcher, 1971. We observe that the
usable band of the channel extends from about 300 Hz to about 3000 Hz. The corresponding impulse
response of the average channel is shown in Fig. 5.3. Its duration is about 10 ms. In comparison,
the transmitted symbol rates on such a channel may be of the order of 2500 pulses or symbols per
second. Hence, intersymbol interference might extend over 20–30 symbols.

Besides telephone channels, there are other physical channels that exhibit some form of time
dispersion and, thus, introduce intersymbol interference. Radio channels, such as short-wave iono-
spheric propagation (HF), tropospheric scatter, and mobile cellular radio are three examples of
time-dispersive wireless channels. In these channels, time dispersion and, hence, intersymbol inter-
ference is the result of multiple propagation paths with different path delays. The number of paths
and the relative time delays among the paths vary with time and, for this reason, these radio channels
are usually called time-variant multipath channels. The time-variant multipath conditions give rise
to a wide variety of frequency response characteristics. Consequently, the frequency response char-
acterization that is used for telephone channels is inappropriate for time-variant multipath channels.
Instead, these radio channels are characterized statistically in terms of the scattering function, which,
in brief, is a two-dimensional representation of the average received signal power as a function of
relative time delay and Doppler frequency (see Proakis [4]).

For illustrativepurposes, a scattering functionmeasuredonamedium-range (150mi) tropospheric
scatter channel is shown in Fig. 5.4. The total time duration (multipath spread) of the channel
response is approximately 0.7µs on the average, and the spread between half-power points in Doppler
frequency is a little less than 1 Hz on the strongest path and somewhat larger on the other paths.
Typically, if one is transmitting at a rate of 107 symbols/s over such a channel, the multipath spread
of 0.7 µs will result in intersymbol interference that spans about seven symbols.

5.2 Characterization of Intersymbol Interference

In a digital communication system, channel distortion causes intersymbol interference, as illustrated
in the preceding section. In this section, we shall present a model that characterizes the ISI. The
digital modulation methods to which this treatment applies are PAM, phase-shift keying (PSK) and
quadrature amplitudemodulation (QAM).The transmitted signal for these three typesofmodulation
may be expressed as

s(t) = vc(t) cos 2πfct − vs(t) sin 2πfct

= Re
[
v(t) ej2πfct

]
(5.3)
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FIGURE 5.1: Effect of channel distortion: (a) channel input, (b) channel output, (c) equalizer output.
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FIGURE 5.2: Average amplitude and delay characteristics of medium-range telephone channel.

where v(t) = vc(t) + jvs(t) is called the equivalent low-pass signal, fc is the carrier frequency, and
Re[ ] denotes the real part of the quantity in brackets.

In general, the equivalent low-pass signal is expressed as

v(t) =
∞∑

n=0

In gT (t − nT ) (5.4)

where gT (t) is the basic pulse shape that is selected to control the spectral characteristics of the
transmitted signal, {In} the sequence of transmitted information symbols selected from a signal
constellation consisting of M points, and T the signal interval (1/T is the symbol rate). For PAM,
PSK, and QAM, the values of In are points from M-ary signal constellations. Figure 5.5 illustrates the
signal constellations for the case of M = 8 signal points. Note that for PAM, the signal constellation
is one dimensional. Hence, the equivalent low-pass signal v(t) is real valued, i.e., vs(t) = 0 and
vc(t) = v(t). For M-ary (M > 2) PSK and QAM, the signal constellations are two dimensional and,
hence, v(t) is complex valued.
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FIGURE 5.3: Impulse response of average channel with amplitude and delay shown in Fig.5.2.

FIGURE 5.4: Scattering function of a medium-range tropospheric scatter channel.

The signal s(t) is transmitted over a bandpass channel that may be characterized by an equivalent
low-pass frequency response C(f ). Consequently, the equivalent low-pass received signal can be
represented as

r(t) =
∞∑

n=0

In h(t − nT ) + w(t) (5.5)
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FIGURE 5.5: M = 8 signal constellations for PAM, PSK, and QAM.
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where h(t) = gT (t) ∗ c(t), and c(t) is the impulse response of the equivalent low-pass channel, the
asterisk denotes convolution, and w(t) represents the additive noise in the channel.

To characterize the ISI, suppose that the received signal is passed through a receiving filter and
then sampled at the rate 1/T samples/s. In general, the optimum filter at the receiver is matched to
the received signal pulse h(t). Hence, the frequency response of this filter is H ∗(f ). We denote its
output as

y(t) =
∞∑

n=0

In x(t − nT ) + ν(t) (5.6)

where x(t) is the signal pulse response of the receiving filter, i.e., X(f ) = H(f )H ∗(f ) = |H(f )|2,
and ν(t) is the response of the receiving filter to the noise w(t). Now, if y(t) is sampled at times
t = kT , k = 0, 1, 2, . . . , we have

y(kT ) ≡ yk =
∞∑

n=0

Inx(kT − nT ) + ν(kT )

=
∞∑

n=0

Inxk−n + νk, k = 0, 1, . . . (5.7)

The sample values {yk} can be expressed as

yk = x0


Ik + 1

x0

∞∑
n=0
n6=k

Inxk−n


 + νk, k = 0, 1, . . . (5.8)

The term x0 is an arbitrary scale factor, which we arbitrarily set equal to unity for convenience. Then

yk = Ik +
∞∑

n=0
n6=k

Inxk−n + νk (5.9)

The term Ik represents the desired information symbol at the kth sampling instant, the term

∞∑
n=0
n6=k

Inxk−n (5.10)

represents the ISI, and νk is the additive noise variable at the kth sampling instant.
The amount of ISI, and noise in a digital communications system can be viewed on an oscilloscope.

For PAM signals, we can display the received signaly(t)on the vertical input with the horizontal sweep
rate set at 1/T . The resulting oscilloscope display is called an eye pattern because of its resemblance
to the human eye. For example, Fig. 5.6 illustrates the eye patterns for binary and four-level PAM
modulation. The effect of ISI is to cause the eye to close, thereby reducing the margin for additive
noise to cause errors. Figure 5.7 graphically illustrates the effect of ISI in reducing the opening of a
binary eye. Note that intersymbol interference distorts the position of the zero crossings and causes
a reduction in the eye opening. Thus, it causes the system to be more sensitive to a synchronization
error.
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BINARY QUATERNARY

FIGURE 5.6: Examples of eye patterns for binary and quaternary amplitude shift keying (or PAM).
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FIGURE 5.7: Effect of intersymbol interference on eye opening.

For PSK and QAM it is customary to display the eye pattern as a two-dimensional scatter diagram
illustrating the sampled values {yk} that represent the decision variables at the sampling instants.
Figure5.8 illustrates suchaneyepattern foran8-PSKsignal. In theabsenceof intersymbol interference
and noise, the superimposed signals at the sampling instants would result in eight distinct points
corresponding to the eight transmitted signal phases. Intersymbol interference and noise result in
a deviation of the received samples {yk} from the desired 8-PSK signal. The larger the intersymbol
interferenceandnoise, the larger the scatteringof the receivedsignal samples relative to the transmitted
signal points.

In practice, the transmitter and receiver filters are designed for zero ISI at the desired sampling
times t = kT . Thus, if GT (f ) is the frequency response of the transmitter filter and GR(f ) is the
frequency response of the receiver filter, then the product GT (f ) GR(f ) is designed to yield zero ISI.
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FIGURE 5.8: Two-dimensional digital eye patterns.

For example, the product GT (f ) GR(f ) may be selected as

GT (f )GR(f ) = Xrc(f ) (5.11)

where Xrc(f ) is the raised-cosine frequency response characteristic, defined as

Xrc(f ) =




T ,  0 ≤ |f | ≤ (1 − α)/2T

T

2
b1 + cos

πT

α

(
|f | − 1 − α

2T

)
,

1 − α

2T
≤ |f | ≤ 1 + α

2T

0, |f | >
1 + α

2T

(5.12)

where α is called the rolloff factor, which takes values in the range 0 ≤ α ≤ 1, and 1/T is the symbol
rate. The frequency response Xrc(f ) is illustrated in Fig. 5.9(a) for α = 0, 1/2, and 1. Note that
when α = 0, Xrc(f ) reduces to an ideal brick wall physically nonrealizable frequency response with
bandwidth occupancy 1/2T . The frequency 1/2T is called the Nyquist frequency. For α > 0, the
bandwidth occupied by the desired signal Xrc(f ) beyond the Nyquist frequency 1/2T is called the
excess bandwidth, and is usually expressed as a percentage of the Nyquist frequency. For example,
when α = 1/2, the excess bandwidth is 50% and when α = 1, the excess bandwidth is 100%. The
signal pulse xrc(t) having the raised-cosine spectrum is

xrc(t) = sin πt/T

πt/T

cos(παt/T )

1 − 4α2 t2/T 2
(5.13)

Figure 5.9(b) illustrates xrc(t) for α = 0, 1/2, and 1. Note that xrc(t) = 1 at t = 0 and xrc(t) = 0
at t = kT , k = ±1, ±2, . . . . Consequently, at the sampling instants t = kT , k 6= 0, there is no ISI
from adjacent symbols when there is no channel distortion. In the presence of channel distortion,
however, the ISI given by Eq. (5.10) is no longer zero, and a channel equalizer is needed to minimize
its effect on system performance.
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FIGURE 5.9: Pulses having a raised cosine spectrum.

5.3 Linear Equalizers

The most common type of channel equalizer used in practice to reduce SI is a linear transversal filter
with adjustable coefficients {ci}, as shown in Fig. 5.10.

On channels whose frequency response characteristics are unknown, but time invariant, we may
measure the channel characteristics and adjust the parameters of the equalizer; once adjusted, the
parameters remain fixed during the transmission of data. Such equalizers are called presetequalizers.
On the other hand, adaptive equalizers update their parameters on a periodic basis during the
transmission of data and, thus, they are capable of tracking a slowly time-varying channel response.

First, let us consider the design characteristics for a linear equalizer from a frequency domain
viewpoint. Figure 5.11 shows a block diagram of a system that employs a linear filter as a channel
equalizer.

The demodulator consists of a receiver filter with frequency response GR(f ) in cascade with a
channel equalizing filter that has a frequency response GE(f ). As indicated in the preceding section,
the receiver filter response GR(f ) is matched to the transmitter response, i.e., GR(f ) = G∗

T (f ), and
the product GR(f )GT (f ) is usually designed so that there is zero ISI at the sampling instants as, for
example, when GR(t)GT (f ) = Xrc(f ).

For the system shown in Fig. 5.11, in which the channel frequency response is not ideal, the desired
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FIGURE 5.10: Linear transversal filter.

FIGURE 5.11: Block diagram of a system with an equalizer.

condition for zero ISI is
GT (f )C(f )GR(f )GE(f ) = Xrc(f ) (5.14)

where Xrc(f ) is the desired raised-cosine spectral characteristic. Since GT (f )GR(f ) = Xrc(f ) by
design, the frequency response of the equalizer that compensates for the channel distortion is

GE(f ) = 1

C(f )
= 1

|C(f )| e−jθc(f ) (5.15)

Thus, the amplitude response of the equalizer is |GE(f )| = 1/|C(f )| and its phase response is
θE(f ) = −θc(f ). In this case, the equalizer is said to be the inverse channel filter to the channel
response.

We note that the inverse channel filter completely eliminates ISI caused by the channel. Since it
forces the ISI to be zero at the sampling instants t = kT , k = 0, 1, . . . , the equalizer is called a
zero-forcing equalizer. Hence, the input to the detector is simply

zk = Ik + ηk, k = 0, 1, . . .  (5.16)

where ηk represents the additive noise and Ik is the desired symbol.
In practice, the ISI caused by channel distortion is usually limited to a finite number of symbols on

either side of the desired symbol. Hence, the number of terms that constitute the ISI in the summation
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given by Eq. (5.10) is finite. As a consequence, in practice the channel equalizer is implemented as a
finite duration impulse response (FIR) filter, or transversal filter, with adjustable tap coefficients {cn},
as illustrated in Fig. 5.10. The time delay τ between adjacent taps may be selected as large as T , the
symbol interval, in which case the FIR equalizer is called a symbol-spaced equalizer. In this case, the
input to the equalizer is the sampled sequence given by Eq. (5.7). We note that when the symbol rate
1/T < 2W , however, frequencies in the received signal above the folding frequency 1/T are aliased
into frequencies below 1/T . In this case, the equalizer compensates for the aliased channel-distorted
signal.

On the other hand, when the time delay τ between adjacent taps is selected such that 1/τ ≥ 2W >

1/T , no aliasing occurs and, hence, the inverse channel equalizer compensates for the true channel
distortion. Since τ < T , the channel equalizer is said to have fractionally spaced taps and it is called
a fractionally spaced equalizer. In practice, τ is often selected as τ = T/2. Notice that, in this case,
the sampling rate at the output of the filter GR(f ) is 2/T .

The impulse response of the FIR equalizer is

gE(t) =
N∑

n=−N

cnδ(t − nτ) (5.17)

and the corresponding frequency response is

GE(f ) =
N∑

n=−N

cne
−j2πf nτ (5.18)

where {cn} are the (2N + 1) equalizer coefficients and N is chosen sufficiently large so that the
equalizer spans the length of the ISI, i.e., 2N + 1 ≥ L, where L is the number of signal samples
spanned by the ISI. Since X(f ) = GT (f )C(f )GR(f ) and x(t) is the signal pulse corresponding to
X(f ), then the equalized output signal pulse is

q(t) =
N∑

n=−N

cnx(t − nτ) (5.19)

The zero-forcing condition can now be applied to the samples of q(t) taken at times t = mT . These
samples are

q(mT ) =
N∑

n=−N

cnx(mT − nτ), m = 0, ±1, . . . ,±N (5.20)

Since there are 2N + 1 equalizer coefficients, we can control only 2N + 1 sampled values of q(t).
Specifically, we may force the conditions

q(mT ) =
N∑

n=−N

cnx(mT − nτ) =
{

1, m = 0
0, m = ±1, ±2, . . . ,±N

(5.21)

which may be expressed in matrix form as Xc = q, where X is a (2N + 1) × (2N + 1) matrix with
elements {x(mT − nτ)}, c is the (2N + 1) coefficient vector and q is the (2N + 1) column vector
with one nonzero element. Thus, we obtain a set of 2N + 1 linear equations for the coefficients of
the zero-forcing equalizer.
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We should emphasize that the FIR zero-forcing equalizer does not completely eliminate ISI because
it has a finite length. As N is increased, however, the residual ISI can be reduced, and in the limit as
N → ∞, the ISI is completely eliminated.

EXAMPLE 5.1:

Consider a channel distorted pulse x(t), at the input to the equalizer, given by the expression

x(t) = 1

1 +
(

2t

T

)2

where 1/T is the symbol rate. The pulse is sampled at the rate 2/T and equalized by a zero-forcing
equalizer. Determine the coefficients of a five-tap zero-forcing equalizer.

Solution 5.1 According to Eq. (5.21), the zero-forcing equalizer must satisfy the equations

q(mT ) =
2∑

n=−2

cnx (mT − nT/2) =
{

1, m = 0
0, m = ±1, ±2

The matrix X with elements x(mT − nT/2) is given as

X =




1

5

1

10

1

17

1

26

1

37

1
1

2

1

5

1

10

1

17
1

5

1

2
1

1

2

1

5
1

17

1

10

1

5

1

2
1

1

37

1

26

1

17

1

10

1

5




(5.22)

The coefficient vector c and the vector q are given as

c =




c−2
c−1
c0
c1
c2


 q =




0
0
1
0
0


 (5.23)

Then, the linear equations Xc = q can be solved by inverting the matrix X. Thus, we obtain

copt = X−1q =




−2.2
4.9

−3
4.9

−2.2


 (5.24)

One drawback to the zero-forcing equalizer is that it ignores the presence of additive noise. As a
consequence, its use may result in significant noise enhancement. This is easily seen by noting that
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in a frequency range where C(f ) is small, the channel equalizer GE(f ) = 1/C(f ) compensates
by placing a large gain in that frequency range. Consequently, the noise in that frequency range is
greatly enhanced. An alternative is to relax the zero ISI condition and select the channel equalizer
characteristic such that the combined power in the residual ISI and the additive noise at the output
of the equalizer is minimized. A channel equalizer that is optimized based on the minimum mean
square error (MMSE) criterion accomplishes the desired goal.

To elaborate, let us consider the noise corrupted output of the FIR equalizer, which is

z(t) =
N∑

n=−N

cny(t − nτ) (5.25)

where y(t) is the input to the equalizer, given by Eq. (5.6). The equalizer output is sampled at times
t = mT . Thus, we obtain

z(mT ) =
N∑

n=−N

cny(mT − nτ) (5.26)

The desired response at the output of the equalizer at t = mT is the transmitted symbol Im. The
error is defined as the difference between Im and z(mT ). Then, the mean square error (MSE) between
the actual output sample z(mT ) and the desired values Im is

MSE = E |z(mT ) − Im|2

= E




∣∣∣∣∣
N∑

n=−N

cny(mT − nτ) − Im

∣∣∣∣∣
2


=
N∑

n=−N

N∑
k=−N

cnckRY (n − k)

− 2
N∑

k=−N

ckRIY (k) + E
(
|Im|2

)
(5.27)

where the correlations are defined as

RY (n − k) = E
[
y∗(mT − nτ)y(mT − kτ)

]

RIY (k) = E
[
y(mT − kτ)I ∗

m

] (5.28)

and the expectation is taken with respect to the random information sequence {Im} and the additive
noise.

The minimum MSE solution is obtained by differentiating Eq. (5.27) with respect to the equalizer
coefficients {cn}. Thus, we obtain the necessary conditions for the minimum MSE as

N∑
n=−N

cnRY (n − k) = RIY (k), k = 0, ±1, 2, . . . ,±N (5.29)

These are the (2N + 1) linear equations for the equalizer coefficients. In contrast to the zero-forcing
solution already described, these equations depend on the statistical properties (the autocorrelation)
of the noise as well as the ISI through the autocorrelation RY (n).
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In practice, the autocorrelation matrix RY (n) and the crosscorrelation vector RIY (n) are unknown
a priori. These correlation sequences can be estimated, however, by transmitting a test signal over
the channel and using the time-average estimates

R̂Y (n) = 1

K

K∑
k=1

y∗(kT − nτ)y(kT )

R̂IY (n) = 1

K

K∑
k=1

y(kT − nτ)I ∗
k

(5.30)

in place of the ensemble averages to solve for the equalizer coefficients given by Eq. (5.29).

5.3.1 Adaptive Linear Equalizers

We have shown that the tap coefficients of a linear equalizer can be determined by solving a set of linear
equations. In the zero-forcing optimization criterion, the linear equations are given by Eq. (5.21).
On the other hand, if the optimization criterion is based on minimizing the MSE, the optimum
equalizer coefficients are determined by solving the set of linear equations given by Eq. (5.29).

In both cases, we may express the set of linear equations in the general matrix form

Bc = d (5.31)

where B is a (2N + 1) × (2N + 1) matrix, c is a column vector representing the 2N + 1 equalizer
coefficients, and d a (2N + 1)-dimensional column vector. The solution of Eq. (5.31) yields

copt = B−1d (5.32)

In practical implementations of equalizers, the solution of Eq. (5.31) for the optimum coefficient
vector is usually obtained by an iterative procedure that avoids the explicit computation of the inverse
of the matrix B. The simplest iterative procedure is the method of steepest descent, in which one
begins by choosing arbitrarily the coefficient vector c, say c0. This initial choice of coefficients
corresponds to a point on the criterion function that is being optimized. For example, in the case
of the MSE criterion, the initial guess c0 corresponds to a point on the quadratic MSE surface in the
(2N +1)-dimensional space of coefficients. The gradient vector, defined asg0, which is the derivative
of the MSE with respect to the 2N +1filter coefficients, is then computed at this point on the criterion
surface, and each tap coefficient is changed in the direction opposite to its corresponding gradient
component. The change in the j th tap coefficient is proportional to the size of the j th gradient
component.

For example, the gradient vector denoted as gk , for the MSE criterion, found by taking the deriva-
tives of the MSE with respect to each of the 2N + 1 coefficients, is

gk = Bck − d, k = 0, 1, 2, . . . (5.33)

Then the coefficient vector ck is updated according to the relation

ck+1 = ck − 1gk (5.34)

where 1 is the step-size parameter for the iterative procedure. To ensure convergence of the iterative
procedure, 1 is chosen to be a small positive number. In such a case, the gradient vector gk converges
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toward zero, i.e., gk → 0 as k → ∞, and the coefficient vector ck → copt as illustrated in Fig. 5.12
based on two-dimensional optimization. In general, convergence of the equalizer tap coefficients
to copt cannot be attained in a finite number of iterations with the steepest-descent method. The
optimum solution copt, however, can be approached as closely as desired in a few hundred iterations.
In digital communication systems that employ channel equalizers, each iteration corresponds to a
time interval for sending one symbol and, hence, a few hundred iterations to achieve convergence to
copt corresponds to a fraction of a second.

FIGURE 5.12: Examples of convergence characteristics of a gradient algorithm.

Adaptive channel equalization is required for channels whose characteristics change with time.
In such a case, the ISI varies with time. The channel equalizer must track such time variations in
the channel response and adapt its coefficients to reduce the ISI. In the context of the preceding
discussion, the optimum coefficient vector copt varies with time due to time variations in the matrix
B and, for the case of the MSE criterion, time variations in the vector d . Under these conditions, the
iterative method described can be modified to use estimates of the gradient components. Thus, the
algorithm for adjusting the equalizer tap coefficients may be expressed as

ĉk+1 = ĉk − 1ĝk (5.35)

where ĝk denotes an estimate of the gradient vector gk and ĉk denotes the estimate of the tap
coefficient vector.

In the case of the MSE criterion, the gradient vector gk given by Eq. (5.33) may also be expressed
as

gk = −E
(
eky

∗
k

)
An estimate ĝk of the gradient vector at the kth iteration is computed as

ĝk = −eky
∗
k (5.36)

where ek denotes the difference between the desired output from the equalizer at the kth time instant
and the actual output z(kT ), and yk denotes the column vector of 2N + 1 received signal values
contained in the equalizer at time instant k. The error signal ek is expressed as

ek = Ik − zk (5.37)
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where zk = z(kT ) is the equalizer output given by Eq. (5.26) and Ik is the desired symbol. Hence,
by substituting Eq. (5.36) into Eq. (5.35), we obtain the adaptive algorithm for optimizing the tap
coefficients (based on the MSE criterion) as

ĉk+1 = ĉk + 1eky
∗
k (5.38)

Since an estimate of the gradient vector is used in Eq. (5.38) the algorithm is called a stochastic
gradient algorithm; it is also known as the LMS algorithm.

A block diagram of an adaptive equalizer that adapts its tap coefficients according to Eq. (5.38) is
illustrated in Fig. 5.13. Note that the difference between the desired output Ik and the actual output
zk from the equalizer is used to form the error signal ek . This error is scaled by the step-size parameter
1, and the scaled error signal 1ek multiplies the received signal values {y(kT − nτ)} at the 2N + 1
taps. The products 1eky

∗(kT − nτ) at the (2N + 1) taps are then added to the previous values of
the tap coefficients to obtain the updated tap coefficients, according to Eq. (5.38). This computation
is repeated as each new symbol is received. Thus, the equalizer coefficients are updated at the symbol
rate.

τ τ τ τ τ

Σ Σ Σ Σ  Σ

+

∆

Input

+

Output

Detector

{y  }k

{e  }k

c −N+1c −N c1c0 c N

{z  }k

{I  }k

FIGURE 5.13: Linear adaptive equalizer based on the MSE criterion.

Initially, the adaptive equalizer is trained by the transmission of a known pseudo-random sequence
{Im} over the channel. At the demodulator, the equalizer employs the known sequence to adjust its
coefficients. Upon initial adjustment, the adaptive equalizer switches from a training mode to a
decision-directed mode, in which case the decisions at the output of the detector are sufficiently
reliable so that the error signal is formed by computing the difference between the detector output
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and the equalizer output, i.e.,

ek = Ĩk − zk (5.39)

where Ĩ k is the output of the detector. In general, decision errors at the output of the detector occur
infrequently and, consequently, such errors have little effect on the performance of the tracking
algorithm given by Eq. (5.38).

A rule of thumb for selecting the step-size parameter so as to ensure convergence and good tracking
capabilities in slowly varying channels is

1 = 1

5(2N + 1)PR

(5.40)

where PR denotes the received signal-plus-noise power, which can be estimated from the received
signal (see Proakis [4]).

The convergence characteristic of the stochastic gradient algorithm in Eq. (5.38) is illustrated in
Fig. 5.14. These graphs were obtained from a computer simulation of an 11-tap adaptive equalizer
operating on a channel with a rather modest amount of ISI. The input signal-plus-noise power PR

was normalized to unity. The rule of thumb given in Eq. (5.40) for selecting the step size gives
1 = 0.018. The effect of making 1 too large is illustrated by the large jumps in MSE as shown for
1 = 0.115. As 1 is decreased, the convergence is slowed somewhat, but a lower MSE is achieved,
indicating that the estimated coefficients are closer to copt.

FIGURE 5.14: Initial convergence characteristics of the LMS algorithm with different step sizes.

Although we have described in some detail the operation of an adaptive equalizer that is optimized
on the basis of the MSE criterion, the operation of an adaptive equalizer based on the zero-forcing
method is very similar. The major difference lies in the method for estimating the gradient vectors
gk at each iteration. A block diagram of an adaptive zero-forcing equalizer is shown in Fig. 5.15.

For more details on the tap coefficient update method for a zero-forcing equalizer, the reader is
referred to the papers by Lucky [2, 3], and the text by Proakis [4].
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FIGURE 5.15: An adaptive zero-forcing equalizer.

5.4 Decision-Feedback Equalizer

The linear filter equalizers described in the preceding section are very effective on channels, such as
wire line telephone channels, where the ISI is not severe. The severity of the ISI is directly related
to the spectral characteristics and not necessarily to the time span of the ISI. For example, consider
the ISI resulting from the two channels that are illustrated in Fig. 5.16. The time span for the ISI
in channel A is 5 symbol intervals on each side of the desired signal component, which has a value
of 0.72. On the other hand, the time span for the ISI in channel B is one symbol interval on each
side of the desired signal component, which has a value of 0.815. The energy of the total response is
normalized to unity for both channels.

In spite of the shorter ISI span, channel B results in more severe ISI. This is evidenced in the
frequency response characteristics of these channels, which are shown in Fig. 5.17. We observe that
channel B has a spectral null [the frequency response C(f ) = 0 for some frequencies in the band
|f | ≤ W ] at f = 1/2T , whereas this does not occur in the case of channel A. Consequently, a
linear equalizer will introduce a large gain in its frequency response to compensate for the channel
null. Thus, the noise in channel B will be enhanced much more than in channel A. This implies
that the performance of the linear equalizer for channel B will be sufficiently poorer than that for
channel A. This fact is borne out by the computer simulation results for the performance of the
two linear equalizers shown in Fig. 5.18. Hence, the basic limitation of a linear equalizer is that it
performs poorly on channels having spectral nulls. Such channels are often encountered in radio
communications, such as ionospheric transmission at frequencies below 30 MHz and mobile radio
channels, such as those used for cellular radio communications.

A decision-feedback equalizer (DFE) is a nonlinear equalizer that employs previous decisions to
eliminate the ISI caused by previously detected symbols on the current symbol to be detected. A
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FIGURE 5.16: Two channels with ISI.

simple block diagram for a DFE is shown in Fig. 5.19. The DFE consists of two filters. The first
filter is called a feedforward filter and it is generally a fractionally spaced FIR filter with adjustable
tap coefficients. This filter is identical in form to the linear equalizer already described. Its input is
the received filtered signal y(t) sampled at some rate that is a multiple of the symbol rate, e.g., at
rate 2/T . The second filter is a feedback filter. It is implemented as an FIR filter with symbol-spaced
taps having adjustable coefficients. Its input is the set of previously detected symbols. The output
of the feedback filter is subtracted from the output of the feedforward filter to form the input to the
detector. Thus, we have

zm =
0∑

n=−N1

cny(mT − nτ) −
N2∑
n=1

bnĨm−n (5.41)

where {cn} and {bn} are the adjustable coefficients of the feedforward and feedback filters, respectively,
Ĩ m−n, n = 1, 2, . . . , N2 are the previously detected symbols, N1 + 1 is the length of the feedforward
filter, and N2 is the length of the feedback filter. Based on the input zm, the detector determines
which of the possible transmitted symbols is closest in distance to the input signal Im. Thus, it makes
its decision and outputs Ĩ m. What makes the DFE nonlinear is the nonlinear characteristic of the
detector that provides the input to the feedback filter.

The tap coefficients of the feedforward and feedback filters are selected to optimize some desired
performance measure. For mathematical simplicity, the MSE criterion is usually applied, and a
stochastic gradient algorithm is commonly used to implement an adaptive DFE. Figure 5.20 illustrates
the block diagram of an adaptive DFE whose tap coefficients are adjusted by means of the LMS
stochastic gradient algorithm. Figure 5.21 illustrates the probability of error performance of the
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FIGURE 5.17: Amplitude spectra for (a) channel A shown in Fig.5.16(a) and (b) channel B shown
in Fig.5.16(b).

DFE, obtained by computer simulation, for binary PAM transmission over channel B. The gain in
performance relative to that of a linear equalizer is clearly evident.

We should mention that decision errors from the detector that are fed to the feedback filter have
a small effect on the performance of the DFE. In general, a small loss in performance of one to two
decibels is possible at error rates below 10−2, as illustrated in Fig. 5.21, but the decision errors in the
feedback filters are not catastrophic.
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FIGURE 5.18: Error-rate performance of linear MSE equalizer.

FIGURE 5.19: Block diagram of DFE.

5.5 Maximum-Likelihood Sequence Detection

Although the DFE outperforms a linear equalizer, it is not the optimum equalizer from the viewpoint
of minimizing the probability of error in the detection of the information sequence {Ik} from the
received signal samples {yk} given in Eq. (5.5). In a digital communication system that transmits
information over a channel that causes ISI, the optimum detector is a maximum-likelihood symbol
sequence detector which produces at its output the most probable symbol sequence {Ĩ k} for the given
received sampled sequence {yk}. That is, the detector finds the sequence {Ĩ k} that maximizes the
likelihood function

3 ({Ik}) = lnp
({yk}

∣∣ {Ik}
)

(5.42)

where p({yk} | {Ik}) is the joint probability of the received sequence {yk} conditioned on {Ik}. The
sequence of symbols {Ĩ k} that maximizes this joint conditional probability is called the maximum-
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FIGURE 5.20: Adaptive DFE.

likelihood sequence detector.
An algorithm that implements maximum-likelihood sequence detection (MLSD) is the Viterbi

algorithm, which was originally devised for decoding convolutional codes. For a description of this
algorithm in the context of sequence detection in the presence of ISI, the reader is referred to the
paper by Forney [1] and the text by Proakis [4].

The major drawback of MLSD for channels with ISI is the exponential behavior in computational
complexity as a function of the span of the ISI. Consequently, MLSD is practical only for channels
where the ISI spans only a few symbols and the ISI is severe, in the sense that it causes a severe
degradation in the performance of a linear equalizer or a decision-feedback equalizer. For example,
Fig. 5.22 illustrates the error probability performance of the Viterbi algorithm for a binary PAM signal
transmitted through channel B (see Fig. 5.16). For purposes of comparison, we also illustrate the
probability of error for a DFE. Both results were obtained by computer simulation. We observe that
the performance of the maximum likelihood sequence detector is about 4.5 dB better than that of
the DFE at an error probability of 10−4. Hence, this is one example where the ML sequence detector
provides a significant performance gain on a channel with a relatively short ISI span.

5.6 Conclusions

Channel equalizers are widely used in digital communication systems to mitigate the effects of ISI
caused by channel distortion. Linear equalizers are widely used for high-speed modems that transmit
data over telephone channels. For wireless (radio) transmission, such as in mobile cellular communi-
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FIGURE 5.21: Performance of DFE with and without error propagation.

FIGURE 5.22: Comparison of performance between MLSE and decision-feedback equalization for
channel B of Fig.5.16.
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cations and interoffice communications, the multipath propagation of the transmitted signal results
in severe ISI. Such channels require more powerful equalizers to combat the severe ISI. The decision-
feedback equalizer and the MLSD are two nonlinear channel equalizers that are suitable for radio
channels with severe ISI.

Defining Terms

Adaptive equalizer: A channel equalizer whose parameters are updated automatically and
adaptively during transmission of data.

Channel equalizer: A device that is used to reduce the effects of channel distortion in a received
signal.

Decision-directed mode: Mode for adjustment of the equalizer coefficient adaptively based on
the use of the detected symbols at the output of the detector.

Decision-feedback equalizer (DFE): An adaptive equalizer that consists of a feedforward filter
and a feedback filter, where the latter is fed with previously detected symbols that are used
to eliminate the intersymbol interference due to the tail in the channel impulse response.

Fractionally spaced equalizer: A tapped-delay line channel equalizer in which the delay be-
tween adjacent taps is less than the duration of a transmitted symbol.

Intersymbol interference: Interference in a received symbol from adjacent (nearby) transmit-
ted symbols caused by channel distortion in data transmission.

LMS algorithm: See stochastic gradient algorithm.

Maximum-likelihood sequence detector: A detector for estimating the most probable se-
quence of data symbols by maximizing the likelihood function of the received signal.

Preset equalizer: A channel equalizer whose parameters are fixed (time-invariant) during
transmission of data.

Stochastic gradient algorithm: An algorithm for adaptively adjusting the coefficients of an
equalizer based on the use of (noise-corrupted) estimates of the gradients.

Symbol-spaced equalizer: A tapped-delay line channel equalizer in which the delay between
adjacent taps is equal to the duration of a transmitted symbol.

Training mode: Mode for adjustment of the equalizer coefficients based on the transmission
of a known sequence of transmitted symbols.

Zero-forcing equalizer: Achannel equalizerwhoseparameters are adjusted to completely elim-
inate intersymbol interference in a sequence of transmitted data symbols.
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Further Information

For a comprehensive treatment of adaptive equalization techniques and their performance charac-
teristics, the reader may refer to the book by Proakis [4]. The two papers by Lucky [2, 3], provide
a treatment on linear equalizers based on the zero-forcing criterion. Additional information on
decision-feedback equalizers may be found in the journal papers “An Adaptive Decision-Feedback
Equalizer” by D.A. George, R.R. Bowen, and J.R. Storey, IEEE Transactions on Communications Tech-
nology, Vol. COM-19, pp. 281–293, June 1971, and “Feedback Equalization for Fading Dispersive
Channels” by P. Monsen, IEEE Transactions on Information Theory, Vol. IT-17, pp. 56–64, Jan-
uary 1971. A through treatment of channel equalization based on maximum-likelihood sequence
detection is given in the paper by Forney [1].
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