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Chapter 6

Wavelet-Based Image Compression

James S. Walker
University of Wisconsin-Eau Claire

Truong Q. Nguyen
Boston University

6.1 Introduction

One of the most successful applications of wavelet methods is transform-based
image compression (also called coding). Such a coder [depicted in Fig. 6.1(a)] op-
erates by transforming the data to remove redundancy, then quantizing the transform
coefficients (a lossy step), and finally entropy coding the quantizer output. Because
of their superior energy compaction properties and correspondence with the human
visual system, wavelet compression methods have produced superior objective and
subjective results [5]. Since a wavelet basis consists of functions with both short
support (for high frequencies) and long support (for low frequencies), large smooth
areas of an image may be represented with very few bits, and detail added where it is
needed.

FIGURE 6.1
(a) Transform-based coder. (b) Subband decomposition used in the FBI finger-
print compression standard.



Both orthogonal [73] and bi-orthogonal [1, 70] wavelets have been used for image
compression. The recent FBI fingerprint compression standard [70] uses symmetric
dyadic wavelets and significantly outperforms the JPEG (Joint Picture Expert Group)
standard [38] at compression ratios above 10:1. Fig. 6.1(b) shows the subband de-
composition used in the FBI fingerprint compression standard. Interestingly, the
wavelet tree used in the FBI specification is a predominantly 4-channel decomposi-
tion achieved by cascading 2-channel filter banks.

Most high-quality algorithms today use some form of transform coder. One widely
used standard is the JPEG compression algorithm, based on the discrete cosine trans-
form (DCT) [38]. The image is partitioned into 8 × 8 blocks, each of which is then
transformed via a tensor product of two 8-point DCTs. The transform coefficients
are then arranged into 64 subbands, scalar-quantized, and adaptively Huffman coded.
The JPEG algorithm yields good results for compression ratios of 10:1 and below
(on 8-bit gray-scale images), but at higher compression ratios the underlying block
nature of the transform begins to show through the compressed image. By the time
compression ratios have reached 24:1, only the DC (lowest frequency) coefficient is
getting any bits allocated to it, and the input image has been approximated by a set
of 8 × 8 blocks. Consequently, the decompressed image has substantial blocking
artifacts for medium and high compression ratios.

Researchers have applied subband coding to images for over a decade [69, 60];
their results reached a new level with the advent of the wavelet transform. Wavelet
methods involve overlapping transforms with varying-length basis functions. The
overlapping nature of the transform (each pixel contributes to several output points)
alleviates blocking artifacts, while the multiresolution character of the wavelet de-
composition leads to superior energy compaction and perceptual quality of the de-
compressed image. Furthermore, the multiresolution transform domain means that
wavelet compression methods degrade much more gracefully than block-DCT meth-
ods as the compression ratio increases. One wavelet algorithm, the embedded zerotree
wavelet (EZW) coder, yields acceptable compression at a ratio of 100:1 [48]. The
EZW coder is described in detail in Section 6.3.2.

Section 6.2 briefly reviews the concepts of dyadic wavelet transform and multires-
olution representation and their design and implementation using two-channel filter
banks. Further details can be found in Mallat [26] and Strang and Nguyen [53]. Read-
ers familiar with wavelet theory could skip this section and proceed to Section 6.3
where several coding schemes based on zerotree wavelet coding are described and
compared to JPEG.

6.2 Dyadic Wavelet Transform

The dyadic wavelet transform is an octave-band representation for signals; the dis-
crete wavelet transform may be obtained by iterating a two-channel filter bank on its
lowpass output. This multiresolution decomposition of a signal into its coarse and



detail components is useful for data compression, feature extraction, and denoising.
In the case of images, the wavelet representation is well-matched to psychovisual
models, and compression systems based on the wavelet transform yield perceptual
quality superior to other methods at medium and high compression ratios. Further-
more, the multiresolution nature of the wavelet transform enables fast browsing of
image databases (the user may decompress only the coarsest scale representation of
an image to decide whether he or she wants to examine it at a finer resolution).

FIGURE 6.2
Dyadic wavelet transform, multiresolution representation, implementation us-
ing two-channel filter bank and filter characteristics. Reproduced by Special
Permission of Playboy magazine. Copyright ©1972, 2000 by Playboy.

Fig. 6.2 shows an original image, its wavelet representation, and the reconstructed
image without coefficient quantization. Since the wavelet transform is invertible,
the reconstructed image is exactly the same as the original image. The decomposed
image (wavelet representation) shows a coarse approximation image in the upper left
corner and several detail images at various scales. As the scale changes, the sub-
image size changes. This is multiresolution and is enabled by the downsampling
operation in the structure shown in the bottom left portion of Fig. 6.2. The coarse
approximation and detail images are computed by first filtering the original image by
lowpass and highpass filters H0(z) and H1(z), respectively. The filtered images are
then downsampled by a factor of 2 to preserve the total image size. This is reflected
in the structure as a two-channel filter bank.



This filter bank is repeated on the coarse approximation image since it still has large
energy content (coarse approximation image is also referred to as the all-lowpass
subband in Section 6.3). The structure shows a three-level filter bank and the corre-
sponding decomposed image shows a three-level wavelet decomposition. The above
process is repeated column-wise and row-wise. Throughout this chapter, we use the
following terminology: horizontal subband to denote lowpass filtering on rows and
highpass filtering on columns, vertical subband to denote highpass filtering on rows
and lowpass filtering on columns, and diagonal subband to denote highpass filter-
ing on both rows and columns. As shown, most of the energy is concentrated in
the coarse approximation image, which is 1

64 the original image size. The detailed
images have small coefficients, as observed from the dark regions in the detailed
images. The resulting multiresolution representation enables the user to treat each
subband independently; for example, he or she may selectively allocate bits depend-
ing on the energy content (variance) of each subband, and the subsequent perceptual
or algorithmic processing. Using the above multiresolution representation for image
compression, one needs to develop an efficient coding algorithm for the locations of
these small coefficients in the detailed images. This topic is discussed in detail in
Section 6.3.

The bottom right portion of Fig. 6.2 shows the magnitude frequency responses
of the lowpass filters H0(z) and F0(z) and their corresponding scaling functions.
These are the Daub 9/7 filters used in the FBI fingerprint standard [70] as well as
in the JPEG2000 standard. These filters are designed appropriately such that the
whole filter bank is invertible and the corresponding basis functions are smooth. The
perceptual quality of the reconstructed image depends on both the basis functions
and the coding algorithm. Note that both lowpass filters have zeros at frequency π
(in fact, they both have four zeros at π in this example). In general, filters with more
zeros at π yields smoother basis functions [53].

6.2.1 Two-Channel Perfect-Reconstruction Filter Bank
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The figure above shows a two-channel filter bank where H0 and H1 are analysis
filters used in the decomposition process, and F0 and F1 are synthesis filters, used in
the reconstruction process. The boxes with down and up arrows denote downsampling
and upsampling operations, respectively [54]. The objective is to design these filters
such that the overall filter bank has perfect reconstruction; the output is a delayed
version of the input. It is clear that a two-channel perfect-reconstruction filter bank
yields an invertible discrete dyadic wavelet transform.



Since these filters are used in image compression, only filters with symmetric
and finite impulse responses (FIR) are considered. When applying wavelet and filter
bank transforms to finite-length signals, symmetry of the filters becomes an important
consideration. This is because one must provide special treatment at signal boundaries
(e.g., edges of an image). A simple periodic wrap of the signal (circular convolution)
will work but can lead to unpleasant artifacts if the signal intensities at opposite
boundaries differ significantly. When the filters of the filter bank/wavelet transform
are linear-phase (symmetric or antisymmetric), it has been shown [51, 2, 21, 3] that
one may symmetrically extend the input signal (by reflecting it), and that the subband
outputs will also be symmetric, leading to a critically sampled, perfectly invertible
representation that behaves smoothly at signal boundaries.

Another advantage of symmetric filters is that they maintain the correct spatial
and time positioning of events. In a wavelet representation, if the filters are linear-
phase and odd-length (whole-sample-symmetric), then signal details remain centered
on signal samples under iteration of the filtering and decimation operation. This is
important both for frame-to-frame correlation schemes used in video processing, and
for event localization in geophysical signal processing.

There are several design methods for two-channel filter banks and dyadic wavelets.
They are based on spectral factorization [32, 50], lattice structure [55, 34], time-
domain optimization [33], and quadratic-constrained least-squares (QCLS) [35]. The
design method based on spectral factorization is outlined below.

Using z-transform analysis, one obtains the following conditions on the filters such
that the overall two-channel filter bank is perfectly reconstructed [54, 53]:{

H0(z)F0(z)−H0(−z)F0(−z) = 2z−(2L+1)

H1(z) = F0(−z), F1(z) = −H0(−z ) . (6.1)

Defining P0(z) = H0(z)F0(z), the first condition above is equivalent to finding a
polynomial P0(z) such that

P0(z)− P0(−z) = 2z−(2L+1) . (6.2)

A P0(z) that satisfies the above condition is a halfband filter with length (4L +
3) [54, 53]. The design procedure is as follows:

1. Design a symmetric halfband filter P0(z) with length (4L+ 3).

2. Factorize P0(z) into H0(z) and F0(z) such that they are symmetric filters.

3. The highpass filters can be obtained from H1(z) = F0(−z),
F1(z) = −H0(−z).

This design procedure yields a two-channel perfect reconstruction filter bank. Re-
call that one also needs the lowpass filters to have zeros at frequency π so that the
resulting basis functions are smooth. This condition implies that the halfband filter
P0(z) also has zeros at frequency π . Daubechies [12] discusses a design method to
obtain a halfband filter P0(z) with the maximum number of zeros at π . For P0(z)



with length (4L + 3), the maximum number of zeros at π is (2L + 2). The Daub
9/7 filter comes from a halfband filter with length 15 and with 8 zeros at π . Each
lowpass filter in this case has 4 zeros at π .

6.2.2 Dyadic Wavelet Transform, Multiresolution Representation

A wavelet decomposition arises from iteration of the lowpass filtering and decima-
tion steps of a multirate filter bank. For a dyadic wavelet decomposition, one iterates
on the lowpass output only, whereas for a wavelet-packet decomposition one may it-
erate on any output [26, 53]. A finite number of iterations will lead to a discrete-time

multiresolution analysis with lowpass frequency response
∏n
k=1H0

(
ω
2k

)
. If the low-

pass filterh0 satisfies the orthonormality constraint,
∑
k h0[k] = 1√

2
, and has one van-

ishing moment (
∑
k kh0[k] = 0), then the infinite product limn→∞

∏n
k=1H0

(
ω
2k

)
converges to a function φ(ω), whose inverse Fourier transform is the continuous time
function φ(t) called the scaling function [12, 26, 53]. The scaling function φ(t) is
the solution to the dilation equation

φ(t) = 2
∑
k

h0[k]φ(2t − k) , (6.3)

and it is orthogonal to its integer translates. If the filter h0[n] is FIR, then φ(t) has
compact support. The scaling function determines the wavelet w(t) by means of the
highpass filter h1:

w(t) = 2
∑
k

h1[k]φ(2t − k) . (6.4)

The set of dilates and translates
{
w(2kt − l)}

k,l∈Z forms a tight frame (and in most

cases an orthonormal basis) for L2(R) [8, 23]. The functional relations Eqs. (6.3)
and (6.4) introduce an entirely new set of relationships between discrete and conti-
nuous-time signal processing, unique to wavelet representations.

The span of integer translates of the scaling function φ(t) is the “lowpass” space
V0, the set of scale-limited signals [17]. Any continuous-time function f (t) in V0
can be expanded as a linear combination f (t) = ∑

n v
0
nφ(t − n) . The superscript 0

denotes an expansion “at scale level 0.” f (t) is completely described by the sequence{
v0
n

}
. Given such a sequence, its coarse approximation [component in V1, where V1

is the signal space with basis function φ(2t − n)] is computed with the lowpass filter
of the wavelet filter bank:

v1
n =

((
v0 ∗ h0

)
↓ 2

)
[n] .

This is essentially implemented as lowpass filtering followed by downsampling in the
two-channel filter bank structure. Analogously, the details [component inW1, where
W1 is the signal space with basis functionw(2t−n)] are computed with the highpass



filter h1[n]. Hence, if we take a discrete sequence vn to be the coefficients of a signal
f (t) at some fixed scale, the discrete wavelet transform of vn will decompose the
underlying signal f into a coarse-scale component and detail at several intermediate
scales, as follows:

V0 = V1⊕W1 = [V2 ⊕W2]⊕W1 = [[V3 ⊕W3] ⊕W2]⊕W1 = . . . = VJ⊕
J∑
j=1

Wj .

In summary, the signal is represented in terms of its coarse approximation at scale
J [with basis function φ(2J t − n)], and the J details [with basis functions w(2j t −
n), 1 ≤ j ≤ J ]. This transform matches multiresolution models of human and com-
puter vision [27] and has proven very effective for high-quality image compression. It
also allows multiscale access to information, for applications such as image browsing
and selective decoding of individual channels in a multicarrier system.

6.2.3 Wavelet Smoothness

As with any signal processing structure, one must consider the performance of
the filters involved. In the case of the wavelet transform, one is concerned with the
smoothness of the iterated lowpass filter. When using wavelets for lossy transform-
based image coding, any quantization noise will appear in the decompressed image as
linear combinations of the wavelet transform basis functions φ(t) and w(t). If these
basis functions (which are derived from the iterated discrete filter) are not smooth,
then perceptually unacceptable artifacts will result. In fact, for all commonly used
wavelets, the cascade converges fast enough so that the smoothness of the infinite
limit is visually comparable to that of a six-level iterate [41]. Five- and six-level iter-
ates are common in commercial implementations of wavelet-transform-based image
compression [73, 10].

The smoothness of continuous-time wavelet systems has been the object of inten-
sive study [12, 13, 15, 18, 64, 65]. Because the wavelet w(t) is determined from
the scaling function by means of the highpass filter taps Eq. (6.4), the smoothness
of the scaling function (infinitely iterated lowpass filter) determines the smoothness
of the overall wavelet system. In the two-band case, Daubechies’ construction [12]
imposed N vanishing wavelet moments

∫
tkw(t)dt = 0, 0 ≤ k ≤ N − 1 as a means

of ensuring smoothness; this condition is equivalent to an N -th order zero at π for
the lowpass filter:

∑
n(−1)nnkh0[n] = 0, 0 ≤ k ≤ N − 1. This condition was moti-

vated by a theorem [11] stating that if an orthonormal system of dilates and translates{
2j/2w(2j t − k)} is made up of N times continuously differentiable functions, then

the generating wavelet w(t) must have N vanishing moments.
Vanishing moments are also associated with polynomial interpolation properties of

the lowpass filter [52]. If a wavelet system hasN vanishing moments, then polynomi-
als of degree less than N may be represented as a linear combination of translates of
the scaling function. In the setting of digital filter banks, this means that any locally
polynomial component of a signal (of degree less thanN ) is preserved by the lowpass
filter and zeroed out by the highpass filter — so long as the wavelet system has N



vanishing moments. These smoothness-under-iteration and polynomial approxima-
tion properties help explain why wavelet filters with vanishing moments perform so
well in image compression.

6.3 Wavelet-Based Image Compression

There are two types of image compression: lossless and lossy. With lossless com-
pression, the original image is recovered exactly after decompression. Unfortunately,
with images of natural scenes it is rarely possible to obtain error-free compression
at a rate beyond 2:1. Much higher compression ratios can be obtained if some error,
which is usually difficult to perceive, is allowed between the decompressed image
and the original image. This is lossy compression. In many cases, it is not necessary
or even desirable that there be error-free reproduction of the original image. For
example, if some noise is present, then the error due to that noise will usually be
significantly reduced via some denoising method. In such a case, the small amount
of error introduced by lossy compression may be acceptable. Lossy compression is
also acceptable in fast transmission of still images over the Internet.

We concentrate on wavelet-based lossy compression of gray-level still images.
When there are 256 levels of possible intensity for each pixel, then we shall call these
images 8 bpp (bits per pixel) images. Images with 4096 gray-levels are referred to
as 12 bpp. Some brief comments on color images are also given, and we also briefly
describe some wavelet-based lossless compression methods.

6.3.1 Lossy Compression

We concentrate on the following methods of lossy compression: EZW (embedded
zerotree wavelet) algorithm, SPIHT (set partitioning in hierarchical trees) algorithm,
WDR (wavelet difference reduction) algorithm, and ASWDR (adaptively scanned
wavelet difference reduction) algorithm. These are relatively recent algorithms which
achieve some of the lowest errors per compression rate and highest perceptual quality
yet reported. After describing these algorithms in detail, we shall list some of the
other algorithms that are available.

Before we examine the algorithms listed above, we shall outline the basic steps that
are common to all wavelet-based image compression algorithms. The five stages of
compression and decompression are shown in Figs. 6.3 and 6.4. All of the steps shown
in the compression diagram are invertible, hence lossless, except for the quantize step.
Quantizing refers to a reduction of the precision of the floating point values of the
wavelet transform, which are typically either 32- or 64-bit floating point numbers.
To use less bits in the compressed transform — which is necessary if compression of
8 bpp or 12 bpp images is to be achieved — these transform values must be expressed
with less bits for each value. This leads to rounding error. These approximate,



quantized, wavelet transforms will produce approximations to the images when an
inverse transform is performed. Thus creating the error inherent in lossy compression.

Image Wavelet
Transform

Quantize Encode
Compressed
Image

FIGURE6.3
Compression of an image.

Compressed
Image

Decode
Approximate
Wavelet
Transform

Inverse
Wavelet
Transform

Round off to
integer values,
create Image

FIGURE 6.4
Decompression of an image.

The relationship between the quantize and encode steps, shown in Fig. 6.3, is the
crucial aspect of wavelet transform compression. Each of the algorithms described
below takes a different approach to this relationship.

The purpose served by the wavelet transform is that it produces a large number
of values having zero, or near zero, magnitudes. For example, consider the image
shown in Fig. 6.5(a), which is called “Lena.” Fig. 6.5(b), shows a 7-level Daub 9/7
wavelet transform of the “Lena” image. This transform has been thresholded, using
a threshold of 8. That is, all values with magnitudes less than 8 have been set equal
to 0; they appear as a uniformly gray background in the image in Fig. 6.5(b). These
large areas of gray background indicate that there is a large number of zero values
in the thresholded transform. If an inverse wavelet transform is performed on this
thresholded transform, then the image in Fig. 6.5(c) results (after rounding to integer
values between 0 and 255). It is difficult to detect any difference between the images
in Figs. 6.5(a) and (c).

The image in Fig. 6.5(c) was produced using only the 32,498 nonzero values of the
thresholded transform, instead of all 262,144 values of the original transform. This
represents an 8:1 compression ratio. We are, of course, ignoring difficult problems
such as how to transmit concisely the positions of the nonzero values in the thresh-
olded transform, and how to encode these nonzero values with as few bits as possible.
Solutions to these problems are described below, when the various compression al-
gorithms are discussed.

Two commonly used measures for quantifying the error between images are mean
square error (MSE) and peak signal to noise ratio (PSNR). The MSE between two
images f and g is defined by

MSE = 1

N

∑
j,k

(f [j, k] − g[j, k])2 (6.5)



FIGURE 6.5
(a) “Lena” image, 8 bpp. (b) Wavelet transform of image, threshold = 8. (c) In-
verse of thresholded wavelet transform, PSNR = 39.14 dB. Reproduced by Spe-
cial Permission of Playboy magazine. Copyright ©1972, 2000 by Playboy.

where the sum over j, k denotes the sum over all pixels in the images, and N is the
number of pixels in each image. For the images in Figs. 6.5(a) and (c), the MSE
is 7.921. The PSNR between two (8 bpp) images is, in decibels,

PSNR = 10 log10

(
2552

MSE

)
. (6.6)

PSNR tends to be cited more often since it is a logarithmic measure, and our brains
seem to respond logarithmically to intensity. Increasing PSNR represents increasing
fidelity of compression. For the images in Figs. 6.5(a) and (c), the PSNR is 39.14 dB.
Generally, when the PSNR is 40 dB or larger, then the two images are virtually
indistinguishable by human observers. In this case, we can see that 8:1 compression
should yield an image almost identical to the original. The methods described below
do in fact produce such results with even greater PSNR than we have just achieved
with our crude approach.

Before we begin our treatment of various “state of the art” algorithms, it may be
helpful to briefly outline a baseline compression algorithm of the kind described in
Davis and Nosratinia [14] and Mallat [26]. This algorithm has two main parts.

First, the positions of the significant transform values — the ones having larger
magnitudes than the threshold T — are determined by scanning through the transform
as shown in Fig. 6.6. The positions of the significant values are then encoded using a
runlength method. To be precise, it is necessary to store the values of the significance
map:

s(m) =
{

0 if |w(m)| < T
1 if |w(m)| ≥ T ,

(6.7)

where m is the scanning index, and w(m) is the wavelet transform value at index m.
From Fig. 6.5(b) we can see that there will be long runs of s(m) = 0. If the scan
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FIGURE 6.6
Scanning for wavelet transforms: zigzag through all-lowpass subband, column
scan through vertical subbands, row scan through horizontal subbands, zigzag
through diagonal subbands. (a) and (b): Order of scanned elements for 2-level
and 3-level transforms of 8 by 8 image.

order illustrated in Fig. 6.6 is used, then there will also be long runs of s(m) = 1. The
positions of significant values can then be concisely encoded by recording sequences
of 6 bits according to the following pattern:

0 abcde : run of 0 of length (abcde)2
1 abcde : run of 1 of length (abcde)2 .

A lossless compression, such as Huffman or arithmetic compression, of these data is
also performed for a further reduction in bits.

Second, the significant values of the transform are encoded. This can be done
by dividing the range of transform values into subintervals (bins) and rounding each
transform value into the midpoint of the bin in which it lies. Fig. 6.7 shows the
histogram of the frequencies of significant transform values lying in 512 bins for the
7-level Daub 9/7 transform of “Lena” shown in Fig. 6.5(b). The extremely rapid drop
in the frequencies of occurrence of higher transform magnitudes implies that the very
low magnitude values, which occur much more frequently, should be encoded using
shorter length bit sequences. This is typically done with either Huffman encoding
or arithmetic coding. If arithmetic coding is used, then the average number of bits
needed to encode each significant value in this case is about 1 bit.

We have only briefly sketched the steps in this baseline compression algorithm.
More details can be found in Davis and Nosratinia [14] and Mallat [26].

Our purpose in discussing the baseline compression algorithm is to introduce some
basic concepts, such as scan order and thresholding, which are needed for our exam-
ination of the algorithms to follow. The baseline algorithm was one of the first to be



FIGURE 6.7
Histogram for 512 bins for thresholded transform of “Lena.”

proposed using wavelet methods [1]. It suffers from some defects which later algo-
rithms have remedied. For instance, with the baseline algorithm it is very difficult,
if not impossible, to specify in advance the exact compression rate or the exact error
to be achieved. This is a serious defect. Another problem with the baseline method
is that it does not allow for progressive transmission. In other words, it is not pos-
sible to send successive data packets (over the Internet, for instance) which produce
successively increasing resolution for the received image. Progressive transmission
is vital for applications that include some level of interaction with the receiver.

Let us now turn to these improved wavelet image compression algorithms. The
algorithms to be discussed are the EZW, SPIHT, WDR, and ASWDR algorithms.

6.3.2 EZW Algorithm

The EZW algorithm was one of the first algorithms to show the full power of
wavelet-based image compression. It was introduced in the groundbreaking paper of
Shapiro [48]. We shall describe EZW in some detail because a solid understanding of
it will make it much easier to comprehend the other algorithms we shall be discussing.
These other algorithms build upon the fundamental concepts that were first introduced
with EZW.

Our discussion of EZW will be focused on the fundamental ideas underlying it.
We will not use it to compress any images because it has been superceded by a far
superior algorithm, SPIHT. Since SPIHT is only a highly refined version of EZW, it
makes sense to first describe EZW.

EZW stands for embedded zerotree wavelet. An embedded coding is a process
of encoding the transform magnitudes that allows for progressive transmission of



the compressed image. Zerotrees allow for a concise encoding of the positions of
significant values that result during the embedded coding process. We shall first
discuss embedded coding, and then examine the notion of zerotrees.

The embedding process used by EZW is called bit-plane encoding. It consists of
the following five-step process:

Bit-plane encoding —

Step 1: Initialize. Choose initial threshold, T = T0, such that all transform values
satisfy |w(m)| < T0 and at least one transform value satisfies |w(m)| ≥ T0/2.

Step 2: Update threshold. Let Tk = Tk−1/2.

Step 3: Significance pass. Scan through insignificant values using baseline algorithm
scan order. Test each value w(m) as follows:

If |w(m)| ≥ Tk, then

Output sign of w(m)

Set wQ(m) = Tk
Else if |w(m)| < Tk then

Let wQ(m) retain its initial value of 0 .

Step 4: Refinement pass. Scan through significant values found with higher threshold
values Tj , for j < k (if k = 1 skip this step). For each significant value w(m), do the
following:

If |w(m)| ∈ [
wQ(m),wQ(m)+ Tk

)
, then

Output bit 0

Else if |w(m)| ∈ [
wQ(m)+ Tk,wQ(m)+ 2Tk

)
, then

Output bit 1

Replace value of wQ(m) by wQ(m)+ Tk .

Step 5: Loop. Repeat steps 2 through 4.

This bit-plane encoding procedure can be continued for as long as necessary to obtain
quantized transform magnitudeswQ(m)which are as close as desired to the transform
magnitudes |w(m)|. During decoding, the signs and the bits output by this method
can be used to construct an approximate wavelet transform to any desired degree of
accuracy. If instead, a given compression ratio is desired, then it can be achieved
by stopping the bit-plane encoding as soon as a given number of bits (a bit budget)
is exhausted. In either case, the execution of the bit-plane encoding procedure can
terminate at any point (not just at the end of one of the loops).

As a simple example of bit-plane encoding, suppose that we just have two transform
valuesw(1) = −9.5 andw(2) = 42. For an initial threshold, we set T0 = 64. During
the first loop, whenT1 = 32, the output is the sign ofw(2), and the quantized transform
magnitudes arewQ(1) = 0 andwQ(2) = 32. For the second loop, T2 = 16, and there
is no output from the significance pass. The refinement pass produces the bit 0 because
w(2) ∈ [32, 32 + 16). The quantized transform magnitudes are wQ(1) = 0 and
wQ(2) = 32. During the third loop, when T3 = 8, the significance pass outputs the



sign ofw(1). The refinement pass outputs the bit 1 becausew(2) ∈ [32+8, 32+16).
The quantized transform magnitudes are wQ(1) = 8 and wQ(2) = 40.

It is not hard to see that after n loops, the maximum error between the transform
values and their quantized counterparts is less than T0/2n. It follows that we can
reduce the error to as small a value as we wish by performing a large enough number
of loops. For instance, in the simple example just described, with seven loops the
error is reduced to zero. The output from these seven loops, arranged to correspond
to w(1) and w(2), is

w(1) : − 0 0 1 1
w(2) : + 0 1 0 1 0 0 .

Notice that w(2) requires seven symbols, but w(1) requires only five.
Bit-plane encoding consists simply of computing binary expansions — using T0 as

unit — for the transform values and recording in magnitude order only the significant
bits in these expansions. Because the first significant bit is always 1, it is not encoded.
Instead, the sign of the transform value is encoded first. This coherent ordering of
encoding, with highest magnitude bits encoded first, is what allows for progressive
transmission.

Wavelet transforms are particularly well-adapted for bit-plane encoding1 because
wavelet transforms of images of natural scenes often have relatively few high-mag-
nitude values, which are mostly found in the highest level subbands. These high-
magnitude values are first coarsely approximated during the initial loops of the bit-
plane encoding, thereby producing a low-resolution, but often recognizable, version
of the image. Subsequent loops encode lower magnitude values and refine the high
magnitude values, adding further details to the image and refining existing details.
Thus, progressive transmission is possible, and encoding/decoding can cease once a
given bit budget is exhausted or a given error target is achieved.

Now that we have described the embedded coding of wavelet transform values, we
will describe the zerotree method by which EZW transmits the positions of significant
transform values. The zerotree method gives an implicit, very compact, description
of the location of significant values by creating a highly compressed description of
the location of insignificant values. For many images of natural scenes, such as the
“Lena” image for example, insignificant values at a given threshold T are organized
in zerotrees.

To define a zerotree we first define a quadtree — a tree of locations in the wavelet
transform with a root [i, j ] and its children located at [2i, 2j ], [2i+1, 2j ], [2i, 2j+1],
and [2i + 1, 2j + 1], and each of their children, and so on. These descendants of the
root reach all the way back to the 1st level of the wavelet transform. For example,
Fig. 6.8(a) shows two quadtrees (enclosed in dashed boxes). One quadtree has root
at index 12 and children at indices {41, 42, 47, 48}. This quadtree has two levels. We
denote it by {12 | 41, 42, 47, 48}. The other quadtree, which has three levels, has its

1Although other transforms, such as the block discrete cosine transform, can also be bit-plane encoded.



root at index 4, the children of this root at indices {13, 14, 15, 16}, and their children
at indices {49, 50, . . . , 64}. It is denoted by {4 | 13, . . . , 16 | 49, . . . , 64}.

(c) Threshold = 32 (d) Threshold = 16
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FIGURE 6.8
First two stages of EZW. (a) 3-level scan order. (b) 3-level wavelet transform.
(c) Stage 1, threshold = 32. (d) Stage 2, threshold = 16.

Now that we have defined a quadtree, we can give a simple definition of a zerotree.
A zerotree is a quadtree which, for a given threshold T , has insignificant wavelet
transform values at each of its locations. For example, if the threshold is T = 32,



then each of the quadtrees shown in Fig. 6.8(a) is a zerotree for the wavelet transform
in Fig. 6.8(b). But if the threshold is T = 16, then {12 | 41, 42, 47, 48} remains a
zerotree, but {4 | 13, . . . , 16 | 49, . . . , 64} is no longer a zerotree because its root value
is no longer insignificant.

Zerotrees can provide very compact descriptions of the locations of insignificant
values because it is only necessary to encode one symbol, such as R, to mark the
root location. The decoder can infer that all other locations in the zerotree have
insignificant values, so their locations are not encoded. For the threshold T = 32, in
the example just discussed, two R symbols are enough to specify all 26 locations in
the two zerotrees.

Zerotrees can be useful only if they occur frequently. Fortunately, with wavelet
transforms of natural scenes, the multiresolution structure of the wavelet transform
does produce many zerotrees (especially at higher thresholds). For example, consider
the images shown in Fig. 6.9. Fig. 6.9(a) shows the second all-lowpass subband of a
Daub 9/7 transform of the “Lena” image. Image 6.9(b), on its right, is the third verti-
cal subband produced from this all-lowpass subband, with a threshold of 16. Notice
that there are large patches of gray pixels in this image. These represent insignifi-
cant transform values for the threshold of 16 which correspond to regions of nearly
constant, or nearly linearly graded, intensities in the image in 6.9(a). Such intensities
are nearly orthogonal to the analyzing Daub 9/7 wavelets. Zerotrees arise for the
threshold of 16 because in image 6.9(c) — the second all-lowpass subband — there
are similar regions of constant or linearly graded intensities. In fact, it was precisely
these regions that were smoothed and downsampled to create the corresponding re-
gions in image 6.9(a). These regions in image 6.9(c) produce insignificant values in
the same relative locations (the child locations) in the second vertical subband shown
in image 6.9(d).

Likewise, there are uniformly gray regions in the same relative locations in the first
vertical subband [see Fig. 6.9(f)]. Because the second vertical subband in Fig. 6.9(d)
is magnified by a factor of two in each dimension, and the third vertical subband
in Fig. 6.9(b) is magnified by a factor of four in each dimension, it follows that the
common regions of gray background shown in these three vertical subbands are all
zerotrees. Similar images could be shown for horizontal and diagonal subbands, and
they would also indicate a large number of zerotrees.

The “Lena” image is typical of many images of natural scenes, and the above
discussion gives some background for understanding how zerotrees arise in wavelet
transforms. A more rigorous, statistical discussion can be found in Shapiro [48].

Now that we have laid the foundations of zerotree encoding, we can complete our
discussion of the EZW algorithm. The EZW algorithm consists simply of replacing
the significance pass in the Bit-plane encoding procedure with the following step:

EZW Step 3: Significance pass. Scan through insignificant values using baseline



FIGURE 6.9
(a) Second all-lowpass subband. (b) Third vertical subband. (c) First all-lowpass
subband. (d) Second vertical subband. (e) Original “Lena.” (f) First vertical
subband. Reproduced by Special Permission of Playboy magazine. Copyright
©1972, 2000 by Playboy.



algorithm scan order. Test each value w(m) as follows:

If |w(m)| ≥ Tk, then

Output the sign of w(m)

Set wQ(m) = Tk
Else if |w(m)| < Tk then

Let wQ(m) remain equal to 0

If m is at 1st level, then

Output I

Else

Search through quadtree having root m

If this quadtree is a zerotree, then

Output R

Else

Output I .

During a search through a quadtree, values that were found to be significant at higher
thresholds are treated as zeros. All descendants of a root of a zerotree are skipped in
the rest of the scanning at this threshold.

As an example of the EZW method, consider the wavelet transform shown in
Fig. 6.8(b), which will be scanned through using the scan order shown in Fig. 6.8(a).
Suppose that the initial threshold isT0 = 64. In the first loop, the threshold isT1 = 32.
The results of the first significance pass are shown in Fig. 6.8(c). The coder output
after this first loop would be

+ − I R + RRRR I R R I I I I I + I I (6.8)

corresponding to a quantized transform having only two values: ±32 — +32 at each
location marked by a plus sign in Fig. 6.8(c), −32 at each location marked by a minus
sign, and 0 at all other locations. In the second loop, with threshold T2 = 16, the
results of the significance pass are indicated in Fig. 6.8(d). Notice, in particular, that
the symbolR is at the position 10 in the scan order because the plus sign which lies at
a child location is from the previous loop, so it is treated as zero. Hence, position 10
is at the root of a zerotree. There is also a refinement pass done in this second loop.
The output from this second loop is then

− + RRR − RRRRRRR I I I + I I I I 1 0 1 0 (6.9)

with corresponding quantized wavelet transform shown in Fig. 6.10(a). The MSE
between this quantized transform and the original transform is 48.6875. This is
a 78% reduction in error from the start of the method (when the quantized transform
has all zero values).

A couple of final remarks are in order concerning the EZW method. First, it should
be clear from the discussion above that the decoder, whose structure is outlined in



Fig. 6.4 above, can reverse each of the steps of the coder and produce the quantized
wavelet transform. It is standard practice for the decoder to then round the quantized
values to the midpoints of the intervals that they were last found to belong to during
the encoding process (i.e., add half of the last threshold used to their magnitudes).
This generally reduces MSE. For instance, in the example just considered, if this
rounding is done to the quantized transform in Fig. 6.10(a), then the result is shown
in Fig. 6.10(b). The MSE is then 39.6875, a reduction of more than 18%. A good
discussion of the theoretical justification for this rounding technique can be found in
Mallat [26]. This rounding method will be employed by all of the other algorithms
that we shall discuss.
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FIGURE 6.10
(a) Quantization at end of second stage, MSE = 48.6875. (b) After rounding to
midpoints, MSE = 39.6875, reduction by more than 18%.

Second, since we live in a digital world, it is usually necessary to transmit just
bits. A simple encoding of the symbols of the EZW algorithm into bits would be to
use a code such as + = 0 1, − = 0 0, R = 1 0, and I = 1 1. Since the decoder
can always infer precisely when the encoding of these symbols ends (the significance
pass is complete), the encoding of refinement bits can simply be as single bits 0 and
1. This form of encoding is the fastest to perform, but it does not achieve the greatest
compression. In Shapiro [48], a lossless form of arithmetic coding was recommended
in order to further compress the bit stream from the encoder.

6.3.3 SPIHT Algorithm

The SPIHT algorithm is a highly refined version of the EZW algorithm. It was
introduced in Said and Pearlman [44, 45]. Some of the best results — highest PSNR
values for given compression ratios — for a wide variety of images have been ob-



tained with SPIHT. Consequently, it is probably the most widely used wavelet-based
algorithm for image compression, providing a basic standard of comparison for all
subsequent algorithms.

SPIHT stands for set partitioning in hierarchical trees. The term hierarchical trees
refers to the quadtrees that we defined in our discussion of EZW. Set partitioning
refers to the way these quadtrees partition the wavelet transform values at a given
threshold. By a careful analysis of this partitioning of transform values, Said and
Pearlman were able to greatly improve the EZW algorithm, significantly increasing
its compressive power.

Our discussion of SPIHT will consist of three parts. First, we describe a modified
version of the algorithm introduced in Said and Pearlman [44]. We refer to it as the
spatial-orientation tree wavelet (STW) algorithm. STW is essentially the SPIHT
algorithm; the only difference is that SPIHT is slightly more careful in its organi-
zation of coding output. Second, we describe the SPIHT algorithm. It is easier to
explain SPIHT using the concepts underlying STW. Third, we see how well SPIHT
compresses images.

The only difference between STW and EZW is that STW uses a different approach
to encoding the zerotree information. STW uses a state transition model. From one
threshold to the next, the locations of transform values undergo state transitions. This
model allows STW to reduce the number of bits needed for encoding. Instead of code
for the symbols R and I output by EZW to mark locations, the STW algorithm uses
states IR , IV , SR , and SV and outputs code for state-transitions such as IR → IV ,
SR → SV , etc. To define the states involved, some preliminary definitions are needed.

For a given index m in the baseline scan order, define the set D(m) as follows. If
m is either at the first level or at the all-lowpass level, then D(m) is the empty set ∅.
Otherwise, if m is at the j th level for j > 1, then

D(m) = {Descendents of index m in quadtree with root m} .
The significance function S is defined by

S(m) =
{

max
n∈D(m)

|w(n)|, if D(m) �= ∅
∞, if D(m) = ∅ .

With these preliminary definitions in hand, we can now define the states. For a
given threshold T , the states IR , IV , SR , and SV are defined by

m ∈ IR if and only if |w(m)| < T, S(m) < T (6.10)

m ∈ IV if and only if |w(m)| < T, S(m) ≥ T (6.11)

m ∈ SR if and only if |w(m)| ≥ T , S(m) < T (6.12)

m ∈ SV if and only if |w(m)| ≥ T , S(m) ≥ T . (6.13)

Fig. 6.11 shows the state transition diagram for these states when a threshold is
decreased from T to T ′ < T . Note that once a location m arrives in state SV , it will
remain in that state. Furthermore, there are only two transitions from each of the



IR SR

IV SV

FIGURE 6.11
State transition diagram for STW.

Table 6.1 Code for State
Transitions, • Indicates that
SV → SV Transition is Certain
(Hence no Encoding Needed)

Old\New IR IV SR SV

IR 00 01 10 11
IV 0 1
SR 0 1
SV •

states IV and SR , so those transitions can be coded with one bit each. A simple binary
coding for these state transitions is shown in Table 6.1.

Now that we have laid the groundwork for the STW algorithm, we can give its full
description.

STW encoding —

Step 1: Initialize. Choose initial threshold, T = T0, such that all transform values
satisfy |w(m)| < T0 and at least one transform value satisfies |w(m)| ≥ T0/2. Assign
all indices for the Lth level, where L is the number of levels in the wavelet transform,
to the dominant list (this includes all locations in the all-lowpass subband as well as the
horizontal, vertical, and diagonal subbands at the Lth level). Set the refinement list of
indices equal to the empty set.

Step 2: Update threshold. Let Tk = Tk−1/2.

Step 3: Dominant pass. Use the following procedure to scan through indices in the



dominant list (which can change as the procedure is executed).

Do

Get next index m in dominant list

Save old state Sold = S(m, Tk−1)

Find new state Snew = S(m, Tk) using Eqs. (6.10)--(6.13)

Output code for state transition Sold → Snew

If Snew �= Sold then do the following

If Sold �= SR and Snew �= IV then

Append index m to refinement list

Output sign of w(m) and set wQ(m) = Tk
If Sold �= IV and Snew �= SR then

Append child indices of m to dominant list

If Snew = SV then

Remove index m from dominant list

Loop until end of dominant list

Step 4: Refinement pass. Scan through indices m in the refinement list found with
higher threshold values Tj , for j < k (if k = 1 skip this step). For each value w(m),
do the following:

If |w(m)| ∈ [
wQ(m),wQ(m)+ Tk

)
, then

Output bit 0

Else if |w(m)| ∈ [
wQ(m)+ Tk,wQ(m)+ 2Tk

)
, then

Output bit 1

Replace value of wQ(m) by wQ(m)+ Tk .

Step 5: Loop. Repeat steps 2 through 4.

To see how STW works — and how it improves the EZW method — it helps to
reconsider the example shown in Fig. 6.8. In Fig. 6.12, we show STW states for the
wavelet transform in Fig. 6.8(b) using the same two thresholds we used previously
with EZW. It is important to compare the three quadtrees enclosed in the dashed
boxes in Fig. 6.12 with the corresponding quadtrees in Figs. 6.8(c) and (d). There
is a large savings in coding output for STW represented by these quadtrees. The
EZW symbols for these three quadtrees are + I I I I , − I I I I , and +RRRR. For
STW, however, they are described by the symbols + SR , − SR , and + SR , which is a
substantial reduction in the information that STW needs to encode.

There is not much difference between STW and SPIHT. The one thing that SPIHT
does differently is to carefully organize the output of bits in the encoding of state
transitions in Table 6.1, so that only one bit is output at a time. For instance, for the
transition IR → SR , which is coded as 1 0 in Table 6.1, SPIHT outputs a 1 first and
then (after further processing) outputs a 0. Even if the bit budget is exhausted before
the second bit can be output, the first bit of 1 indicates that there is a new significant
value.
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FIGURE 6.12
First two stages of STW for wavelet transform in Fig. 6.8.

The SPIHT encoding process, as described in Said and Pearlman [45], is phrased
in terms of pixel locations [i, j ] rather than indices m in a scan order. To avoid
introducing new notation, and to highlight the connections between SPIHT and the
other algorithms, EZW and STW, we rephrase the description of SPIHT from Said
and Pearlman [45] in terms of scanning indices. We also slightly modify their notation
in the interests of clarity.

First, we need some preliminary definitions. For a given set I of indices in the
baseline scan order, the significance ST [I] of I relative to a threshold T is defined
by

ST [I] =
{

1, if max
n∈I |w(n)| ≥ T

0, if max
n∈I |w(n)| < T .

(6.14)

It is important to note that, for the initial threshold T0, we have ST0 [I] = 0 for all
sets of indices. If I is a set containing just a single indexm, then for convenience we
write ST [m] instead of ST [{m}].

For a succinct presentation of the method, we need the following definitions of sets
of indices:

D(m) = {Descendent indices of the index m}
C(m) = {Child indices of the index m}
G(m) = D(m)− C(m)

= {Grandchildren of m, i.e., descendants which are not children} .



In addition, the set H consists of indices for the Lth level, where L is the number of
levels in the wavelet transform (this includes all locations in the all-lowpass subband as
well as the horizontal, vertical, and diagonal subbands at theLth level). It is important
to remember that the indices in the all-lowpass subband have no descendants. If m
marks a location in the all-lowpass subband, then D(m) = ∅.

SPIHT keeps track of the states of sets of indices by means of three lists. They
are the list of insignificant sets (LIS), the list of insignificant pixels (LIP), and the
list of significant pixels (LSP). For each list a set is identified by a single index,
in the LIP and LSP these indices represent the singleton sets {m} where m is the
identifying index. An index m is called either significant or insignificant, depending
on whether the transform value w(m) is significant or insignificant with respect to
a given threshold. For the LIS, the index m denotes either D(m) or G(m). In the
former case, the index m is said to be of type D and, in the latter case, of type G.

The following is the pseudocode for the SPIHT algorithm. For simplicity, we write
the significance function STk as Sk .

SPIHT encoding —

Step 1: Initialize. Choose initial threshold T0 such that all transform values satisfy
|w(m)| < T0 and at least one value satisfies |w(m)| ≥ T0/2. Set LIP equal to H, set
LSP equal to ∅, and setLIS equal to all the indices inH that have descendants (assigning
them all type D).

Step 2: Update threshold. Let Tk = Tk−1/2.

Step 3: Sorting pass. Proceed as follows:

For each m in LIP do:

Output Sk[m]
If Sk[m] = 1 then

Move m to end of LSP

Output sign of w(m); set wQ(m) = Tk
Continue until end of LIP

For each m in LIS do:

If m is of type D then

Output Sk[D(m)]
If Sk[D(m)] = 1 then



For each n ∈ C(m) do:

Output Sk[n]
If Sk[n] = 1 then

Append n to LSP

Output sign of w(n); set wQ(n) = Tk
Else If Sk[n] = 0 then

Append n to LIP

If G(m) �= ∅ then

Move m to end of LIS as type G

Else

Remove m from LIS

Else If m is of type G then

Output Sk[G(m)]
If Sk[G(m)] = 1 then

Append C(m) to LIS, all type D indices

Remove m from LIS

Continue until end of LIS

Notice that the set LIS can undergo many changes during this procedure, it typically
does not remain fixed throughout.

Step 4: Refinement pass. Scan through indices m in LSP found with higher threshold
values Tj , for j < k (if k = 1 skip this step). For each valuew(m), do the following:

If |w(m)| ∈ [
wQ(m),wQ(m)+ Tk

)
, then

Output bit 0

Else if |w(m)| ∈ [
wQ(m)+ Tk,wQ(m)+ 2Tk

)
, then

Output bit 1

Replace value of wQ(m) by wQ(m)+ Tk .

Step 5: Loop. Repeat steps 2 through 4.

It helps to carry out this procedure on the wavelet transform shown in Fig. 6.8. Then
one can see that SPIHT simply performs STW with the binary code for the states in
Table 6.1 being output one bit at a time.

Now comes the payoff. We shall see how well SPIHT performs in compressing
images. To do these compressions we used the public domain SPIHT programs that
can be downloaded from the Internet [46]. In Fig. 6.13 we show several SPIHT com-
pressions of the “Lena” image. The original “Lena” image is shown in Fig. 6.13(f).
Five SPIHT compressions are shown with compression ratios of 128:1, 64:1, 32:1,
16:1, and 8:1.

Several things are worth noting about these compressed images. First, they were
all produced from one file containing the 1 bpp compression of the “Lena image.”



FIGURE 6.13
SPIHT compressions of “Lena” image. PSNR values: (a) 27.96 dB. (b) 30.85
dB. (c) 33.93 dB. (d) 37.09 dB. (e) 40.32 dB. Reproduced by Special Permission
of Playboy magazine. Copyright ©1972, 2000 by Playboy.

By specifying a bit budget, a certain bpp value up to 1, the SPIHT decompression
program will stop decoding the 1 bpp compressed file once the bit budget is exhausted.
This illustrates the embedded nature of SPIHT.

Second, the rapid convergence of the compressed images to the original is nothing
short of astonishing. Even the 64 : 1 compression in Fig. 6.13(b) is almost indis-
tinguishable from the original. A close examination of the two images is needed in
order to see some differences, e.g., the blurring of details in the top of Lena’s hat.
The image in (b) would be quite acceptable for some applications, such as the first
image in a sequence of video telephone images or as a thumbnail display within a
large archive.

Third, notice that the 1 bpp image has a 40.32 dB PSNR value and is virtually indis-
tinguishable — even under very close examination — from the original. Here we find
that SPIHT is able to exceed the simple thresholding compression we first discussed
(see Fig. 6.5). For reasons of space, we cannot show SPIHT compressions of many
test images, so in Table 6.2 we give PSNR values for several test images [19]. These
data show that SPIHT produces higher PSNR values than the two other algorithms
that we shall describe below. SPIHT is well-known for its superior performance



when PSNR is used as the error measure. High PSNR values, however, are not the
sole criterion for the performance of lossy compression algorithms. We discuss other
criteria below.

Table 6.2 PSNR Values, With Arithmetic
Compression

Image/Method SPIHT WDR ASWDR

Lena, 0.5 bpp 37.09 36.45 36.67
Lena, 0.25 bpp 33.85 33.39 33.64
Lena, 0.125 bpp 30.85 30.42 30.61
Goldhill, 0.5 bpp 33.10 32.70 32.85
Goldhill, 0.25 bpp 30.49 30.33 30.34
Goldhill, 0.125 bpp 28.39 28.25 28.23
Barbara, 0.5 bpp 31.29 30.68 30.87
Barbara, 0.25 bpp 27.47 26.87 27.03
Barbara, 0.125 bpp 24.77 24.30 24.52
Airfield, 0.5 bpp 28.57 28.12 28.36
Airfield, 0.25 bpp 25.90 25.49 25.64
Airfield, 0.125 bpp 23.68 23.32 23.50

Fourth, these SPIHT compressed images were obtained using SPIHT’s arithmetic
compression option. The method that SPIHT uses for arithmetic compression is quite
involved and space does not permit a discussion of the details here. Some details are
provided in Said and Pearlman [47].

Finally, it is interesting to compare SPIHT compressions with compressions ob-
tained with the JPEG method2. The JPEG method is a sophisticated implementation
of block discrete cosine transform encoding [67, 38]. It is used extensively for com-
pression of images, especially for transmission over the Internet. In Fig. 6.14, we
compare compressions of the “Lena” image obtained with JPEG and with SPIHT at
three different compression ratios. (JPEG does not allow for specifying the bpp value
in advance; the 59:1 compression was the closest we could get to 64:1.) It is clear from
these images that SPIHT is far superior to JPEG. It is better both in perceptual quality
and in terms of PSNR. Notice, in particular, that the 59:1 JPEG compression is very
distorted (exhibiting blocking artifacts stemming from coarse quantization within the
blocks making up the block DCT used by JPEG). The SPIHT compression, even at
the slightly higher ratio of 64:1, exhibits none of these objectionable features. In fact,
for quick transmission of a thumbnail image (say, as part of a much larger webpage),
this SPIHT compression would be quite acceptable. The 32:1 JPEG image might be

2JPEG stands for Joint Photographic Experts Group, a group of engineers who developed this compression
method.



acceptable for some applications, but it also contains some blocking artifacts. The
32:1 SPIHT compression is almost indistinguishable (at these image sizes) from the
original “Lena” image. The 16:1 compressions for both methods are nearly indistin-
guishable. In fact, they are both nearly indistinguishable from the original “Lena”
image.

Although we have compared JPEG with SPIHT using only one image, the results we
have found are generally valid. SPIHT compressions are superior to JPEG compres-
sions both in perceptual quality and in PSNR values. In fact, all of the wavelet-based
image compression techniques that we discuss here are superior to JPEG. Hence, we
will not make any further comparisons with the JPEG method.

FIGURE 6.14
Comparison of JPEG and SPIHT compressions of “Lena” image. PSNR values:
(a) 24.16 dB. (b) 30.11 dB. (c) 34.12 dB. (d) 30.85 dB. (e) 33.93 dB. (f) 37.09 dB.
Reproduced by Special Permission of Playboy magazine. Copyright ©1972, 2000
by Playboy.

6.3.4 WDR Algorithm

One of the defects of SPIHT is that it only implicitly locates the position of signif-
icant coefficients. This makes it difficult to perform operations which depend on the
exact position of significant transform values, such as region selection on compressed
data. By region selection, also known as region of interest (ROI), we mean selecting



a portion of a compressed image that requires increased resolution. This can occur,
for example, with a portion of a low resolution medical image that has been sent at a
low bpp rate in order to arrive quickly.

Such compressed data operations are possible with the wavelet difference reduction
(WDR) algorithm of Tian and Wells [56]–[58]. The term difference reduction refers to
the way in which WDR encodes the locations of significant wavelet transform values,
which we describe below. Although WDR will not typically produce higher PSNR
values than SPIHT (see Table 6.2), we will see that WDR can produce perceptually
superior images, especially at high compression ratios.

The only difference between WDR and the bit-plane encoding described above is
in the significance pass. In WDR, the output from the significance pass consists of
the signs of significant values along with sequences of bits which concisely describe
the precise locations of significant values. The best way to see how this is done is to
consider a simple example.

Suppose that the significant values are w(2) = +34.2, w(3) = −33.5, w(7) =
+48.2, w(12) = +40.34, and w(34) = −54.36. The indices for these significant
values are 2, 3, 7, 12, and 34. Rather than working with these values, WDR works
with their successive differences: 2, 1, 4, 5, 22. In this latter list, the first number
is the starting index, and each successive number is the number of steps needed
to reach the next index. The binary expansions of these successive differences are
(10)2, (1)2, (100)2, (101)2, and (10110)2. Since the most significant bit for each of
these expansions is always 1, this bit can be dropped and the signs of the significant
transform values can be used instead as separators in the symbol stream. The resulting
symbol stream for this example is then +0 − +00 + 01 − 0110.

When this most significant bit is dropped, we will refer to the binary expansion
that remains as the reduced binary expansion. Notice, in particular, that the reduced
binary expansion of 1 is empty. The reduced binary expansion of 2 is just the 0 bit,
the reduced binary expansion of 3 is just the 1 bit, and so on.

The WDR algorithm simply consists of replacing the significance pass in the bit-
plane encoding procedure with the following step:

WDR Step 3: Significance pass. Perform the following procedure on the insignificant
indices in the baseline scan order:

Initialize step-counter C = 0

Let Cold = 0

Do

Get next insignificant index m

Increment step-counter C by 1



If |w(m)| ≥ Tk then

Output sign w(m) and set wQ(m) = Tk
Move m to end of sequence of significant indices

Let n = C − Cold

Set Cold = C
If n > 1 then

Output reduced binary expansion of n

Else if |w(m)| < Tk then

Let wQ(m) retain its initial value of 0.

Loop until end of insignificant indices

Output end-marker

The output for the end-marker is a plus sign, followed by the reduced binary expansion
of n = C + 1 − Cold, and a final plus sign.

It is not hard to see that WDR is of no greater computational complexity than SPIHT.
For one thing, WDR does not need to search through quadtrees as SPIHT does. The
calculations of the reduced binary expansions adds some complexity to WDR, but they
can be done rapidly with bit-shift operations. As explained in Tian and Wells [56]–
[58], the output of the WDR encoding can be arithmetically compressed. The method
that they describe is based on the elementary arithmetic coding algorithm described
in Witten, Neal, and Cleary [68]. This form of arithmetic coding is substantially less
complex (at the price of poorer performance) than the arithmetic coding employed
by SPIHT.

As an example of the WDR algorithm, consider the scan order and wavelet trans-
form shown in Fig. 6.8. For the threshold T1 = 32, the significant values are w(1) =
63, w(2) = −34, w(5) = 49, and w(36) = 47. The output of the WDR significance
pass will then be the following string of symbols:

+ − + 1 + 1 1 1 1 + 1 1 0 1 +
which compares favorably with the EZW output in Eq. (6.8). The last six symbols are
the code for the end-marker. For the threshold T2 = 16, the new significant values
are w(3) = −31, w(4) = 23, w(9) = −25, and w(24) = 18. Since the previous
indices 1, 2, 5, and 36, are removed from the sequence of insignificant indices, the
values of n in the WDR significance pass will be 1, 1, 4, and 15. In this case, the
value of n for the end-marker is 40. Adding on the four refinement bits, which are
the same as in Eq. (6.9), the WDR output for this second threshold is

− + − 0 0 + 1 1 1 + 0 1 0 0 0 + 1 0 1 0

which is also a smaller output than the corresponding EZW output. It is also clear
that, for this simple case, WDR does not produce as compact an output as STW does.



As an example of WDR performance for a natural image, Fig. 6.15 shows several
compressions of the “Lena” image. These compressions were produced with free
software [16].

FIGURE 6.15
WDR compressions of “Lena” image. PSNR values: (a) 27.63 dB. (b) 30.42 dB.
(c) 33.39 dB. (d) 36.45 dB. (e) 39.62 dB. Reproduced by Special Permission of
Playboy magazine. Copyright ©1972, 2000 by Playboy.

There are a couple things to observe about these compressions. First, the PSNR
values are lower than for SPIHT. This is typically the case. In Table 6.2 we compare
PSNR values for WDR and SPIHT on several images at various compression ratios.
In every case, SPIHT has higher PSNR values.

Second, at high compression ratios, the visual quality of WDR compressions of
“Lena” are superior to those of SPIHT. For example, the 0.0625 bpp and 0.125 bpp
compressions have higher resolution with WDR. This is easier to see if the images
are magnified as in Fig. 6.16. At 0.0625 bpp, the WDR compression does a better
job in preserving the shape of Lena’s nose and in retaining some of the striping in the
band around her hat. Similar remarks apply to the 0.125 bpp compressions. SPIHT,
however, does a better job in preserving parts of Lena’s eyes. These observations
point to the need for an objective, quantitative measure of image quality.

There is no universally accepted objective measure for image quality. We shall
now describe a simple measure that we have found useful. There is some evidence
that the visual system of humans concentrates on analyzing edges in images [30, 40].



FIGURE 6.16
SPIHT and WDR compressions of “Lena” at low bpp. Reproduced by Special
Permission of Playboy magazine. Copyright ©1972, 2000 by Playboy.

To produce an image that retains only edges, we proceed as follows. First, a 3-level
Daub 9/7 transform of an image f is created. Second, the all-lowpass subband is
subtracted away from this transform. Third, an inverse transform is performed on
the remaining part of the transform. This produces a highpass filtered image, which
exhibits edges from the image f . A similar highpass filtered image is created from
the compressed image. Both of these highpass filtered images have mean values that
are approximately zero. We define the edge correlation γ3 by

γ3 = σc

σo

where σc denotes the standard deviation of the values of the highpass filtered version
of the compressed image, and σo denotes the standard deviation of the values of
the highpass filtered version of the original image. Thus γ3 measures how well the
compressed image captures the variation of edge details in the original image.

Using this edge correlation measure, we obtained the results shown in Table 6.3. In
every case, the WDR compressions exhibit higher edge correlations than the SPIHT
compressions. These numerical results are also consistent with the increased preserva-
tion of details within WDR images, and with the informal reports of human observers.



Table 6.3 Edge Correlations, With Arithmetic
Compression

Image/Method SPIHT WDR ASWDR
Lena, 0.5 bpp .966 .976 .978
Lena, 0.25 bpp .931 .946 .951
Lena, 0.125 bpp .863 .885 .894
Goldhill, 0.5 bpp .920 .958 .963
Goldhill, 0.25 bpp .842 .870 .871
Goldhill, 0.125 bpp .747 .783 .781
Barbara, 0.5 bpp .932 .955 .959
Barbara, 0.25 bpp .861 .894 .902
Barbara, 0.125 bpp .739 .767 .785
Airfield, 0.5 bpp .922 .939 .937
Airfield, 0.25 bpp .857 .871 .878
Airfield, 0.125 bpp .766 .790 .803

Although WDR is simple, competitive with SPIHT in PSNR values, and often
provides better perceptual results, there is still room for improvement. We now turn
to a recent enhancement of the WDR algorithm.

6.3.5 ASWDR Algorithm

One of the most recent image compression algorithms is the adaptively scanned
wavelet difference reduction (ASWDR) algorithm of Walker [66]. The adjective
adaptively scanned refers to the fact that this algorithm modifies the scanning order
used by WDR in order to achieve better performance.

ASWDR adapts the scanning order so as to predict locations of new significant
values. If a prediction is correct, then the output specifying that location will just be
the sign of the new significant value — the reduced binary expansion of the number
of steps will be empty. Therefore a good prediction scheme will significantly reduce
the coding output of WDR.

The prediction method used by ASWDR is the following: ifw(m) is significant for
thresholdT , then the values of the children ofm are predicted to be significant for half-
threshold T/2. For many natural images, this prediction method is a reasonably good
one. As an example, Fig. 6.17 shows two vertical subbands for a Daub 9/7 wavelet
transform of the “Lena” image. The image in Fig. 6.17(a) is of those significant values
in the second level vertical subband for a threshold of 16 (significant values shown
in white). In Fig. 6.17(b), we show the new significant values in the first vertical
subband for the half-threshold of 8. Notice that there is a great deal of similarity
in the two images. Since the image in Fig. 6.17(a) is magnified by two in each
dimension, its white pixels actually represent the predictions for the locations of new
significant values in the first vertical subband. Although these predictions are not



FIGURE 6.17
(a) Significant values, second vertical subband, threshold 16. (b) New significant
values, first vertical subband, threshold 8. Reproduced by Special Permission
of Playboy magazine. Copyright ©1972, 2000 by Playboy.

perfectly accurate, there is a great deal of overlap between the two images. Notice
also how the locations of significant values are highly correlated with the location of
edges in the “Lena” image. The scanning order of ASWDR dynamically adapts to
the locations of edge details in an image, and this enhances the resolution of these
edges in ASWDR compressed images.

Table 6.4 Number of Significant Values Encoded, No
Arithmetic Coding

Image\Method WDR ASWDR % increase
Lena, 0.125 bpp 5,241 5,458 4.1%
Lena, 0.25 bpp 10,450 11,105 6.3%
Lena, 0.5 bpp 20,809 22,370 7.5%
Goldhill, 0.125 bpp 5,744 5,634 −1.9%
Goldhill, 0.25 bpp 10,410 10,210 −1.9%
Goldhill, 0.5 bpp 22,905 23,394 2.1%
Barbara, 0.125 bpp 5,348 5,571 4.2%
Barbara, 0.25 bpp 11,681 12,174 4.2%
Barbara, 0.5 bpp 23,697 24,915 5.1%
Airfield, 0.125 bpp 5,388 5,736 6.5%
Airfield, 0.25 bpp 10,519 11,228 6.7%
Airfield, 0.5 bpp 19,950 21,814 9.3%

A complete validation of the prediction method just described would require as-
sembling statistics for a large number of different subbands, thresholds, and images.



Rather than attempting such an a priori argument (see [6, 66]), we instead argue from
an a posteriori standpoint. We present statistics that show that the prediction scheme
employed by ASWDR does, in fact, encode more significant values than are encoded
by WDR for a number of different images. As the pseudocode presented below
shows, the only difference between ASWDR and WDR is in the predictive scheme
employed by ASWDR to create new scanning orders. Consequently, if ASWDR
typically encodes more values than WDR does, this must be due to the success of the
predictive scheme.

Table 6.4 shows the numbers of significant values encoded by WDR and ASWDR
for four different images. In almost every case, ASWDR was able to encode more
values than WDR. This gives an a posteriori validation of the predictive scheme
employed by ASWDR.

We now present the pseudocode description of ASWDR encoding. Notice that the
significance pass portion of this procedure is the same as the WDR significance pass
described above, and that the refinement pass is the same as for bit-plane encoding
(hence the same as for WDR). The one new feature is the insertion of a step for
creating a new scanning order.

FIGURE 6.18
ASWDR compressions of “Lena image.” PSNR values: (a) 27.73 dB. (b) 30.61
dB. (c) 33.64 dB. (d) 36.67 dB. (e) 39.90 dB. Reproduced by Special Permission
of Playboy magazine. Copyright ©1972, 2000 by Playboy.



ASWDR encoding —

Step 1: Initialize. Choose initial threshold, T = T0, such that all transform values
satisfy |w(m)| < T0 and at least one transform value satisfies |w(m)| ≥ T0/2. Set the
initial scan order to be the baseline scan order.

Step 2: Update threshold. Let Tk = Tk−1/2.

Step 3: Significance pass. Perform the following procedure on the insignificant indices
in the scan order:

Initialize step-counter C = 0

Let Cold = 0

Do

Get next insignificant index m

Increment step-counter C by 1

If |w(m)| ≥ Tk then

Output sign w(m) and set wQ(m) = Tk
Move m to end of sequence of significant indices

Let n = C − Cold

Set Cold = C
If n > 1 then

Output reduced binary expansion of n

Else if |w(m)| < Tk then

Let wQ(m) retain its initial value of 0.

Loop until end of insignificant indices

Output end-marker as per WDR Step 3

Step 4: Refinement pass. Scan through significant values found with higher threshold
values Tj , for j < k (if k = 1 skip this step). For each significant value w(m), do the
following:

If |w(m)| ∈ [
wQ(m),wQ(m)+ Tk

)
, then

Output bit 0

Else if |w(m)| ∈ [
wQ(m)+ Tk,wQ(m)+ 2Tk

)
, then

Output bit 1

Replace value of wQ(m) by wQ(m)+ Tk .

Step 5: Create new scan order. For the highest-scale level (the one containing the
all-lowpass subband), use the indices of the remaining insignificant values as the scan
order at that level. Use the scan order at level j to create the new scan order at level j−1
as follows. The first part of the new scan order at level j −1 consists of the insignificant
children of the significant values at level j . The second part of the new scan order at
level j − 1 consists of the insignificant children of the insignificant values at level j .
Use this new scan order for level j − 1 to create the new scan order at level j − 2, until
all levels are exhausted.

Step 6: Loop. Repeat steps 2 through 5.



The creation of the new scanning order only adds a small degree of complexity to
the original WDR algorithm. Moreover, ASWDR retains all of the attractive features
of WDR: simplicity, progressive transmission capability, and ROI capability.

FIGURE 6.19
SPIHT, WDR, and ASWDR compressions of “Lena” at low bpp. (a)–(c) 0.0625
bpp, 128:1. (d)–(f) 0.125 bpp, 64:1. Reproduced by Special Permission of Playboy
magazine. Copyright ©1972, 2000 by Playboy.

Fig. 6.18 shows how ASWDR performs on the Lena image. The PSNR values
for these images are slightly better than those for WDR, and almost as good as those
for SPIHT. More importantly, the perceptual quality of ASWDR compressions are
better than SPIHT compressions and slightly better than WDR compressions. This is
especially true at high compression ratios. Fig. 6.19 shows magnifications of 128:1
and 64:1 compressions of the “Lena” image. The ASWDR compressions better
preserve the shape of Lena’s nose and details of her hat, and show less distortion
along the side of her left cheek (especially for the 0.125 bpp case). These subjective
observations are borne out by the edge correlations in Table 6.3. In almost every case,
the ASWDR compressions produce slightly higher edge correlation values.

As a further example of the superior performance of ASWDR at high compression
ratios, in Fig. 6.20 we show compressions of the “airfield” image at 128:1. The
WDR and ASWDR algorithms preserve more of the fine details in the image. Look
especially along the top of the images: SPIHT erases many fine details such as



FIGURE 6.20
Comparisons of 128:1 compressions of “airfield” image. (From Walker, James
S., A lossy image codec based on adaptively scanned wavelet difference reduction,
in Optical Engineering, July 2000. With permission.)

the telephone pole and two small square structures to the right of the thin black
rectangle. These details are preserved, at least partially, by both WDR and ASWDR.
The ASWDR image does the best job in retaining some structure in the telephone
pole. ASWDR is also superior in preserving the structure of the swept-back winged
aircraft, especially its thin nose, located to the lower left of center. These are only a
few of the many details in the airplane image which are better preserved by ASWDR.

As quantitative support for the superiority of ASWDR in preserving edge details,
we show in Table 6.5 the values for three different edge correlations γk , k = 3, 4,
and 5. Here k denotes how many levels in the Daub 9/7 wavelet transform were
used. A higher value of k means that edge detail at lower resolutions was considered
in computing the edge correlation. These edge correlations show that ASWDR is
superior over several resolution levels in preserving edges in the “airfield” image at
the low bit rate of 0.0625 bpp.



Table 6.5 Edge Correlations for 128:1
Compressions of “Airfield” Image

Corr./Method SPIHT WDR ASWDR
γ3 .665 .692 .711
γ4 .780 .817 .827
γ5 .845 .879 .885

High compression ratio images like these are used in reconnaissance and in medical
applications, where fast transmission and ROI (region selection) are employed, as well
as multiresolution detection. The WDR and ASWDR algorithms do allow for ROI
while SPIHT does not. Furthermore, their superior performance in displaying edge
details at low bit rates facilitates multiresolution detection.

Further research is being done on improving the ASWDR algorithm. One important
enhancement will be the incorporation of an improved predictive scheme, based on
weighted values of neighboring transform magnitudes as described in Buccigrossi
and Simoncelli [6].

6.3.6 Lossless Compression

A novel aspect of the compression/decompression methods diagrammed in Figs. 6.3
and 6.4 is that integer-to-integer wavelet transforms can be used in place of the
ordinary wavelet transforms (such as Daub 9/7) described so far. An integer-to-
integer wavelet transform produces an integer-valued transform from the gray-scale,
integer-valued image [7]. Sincen loops in bit-plane encoding reduces the quantization
error to less than T0/2n, it follows that once 2n is greater than T0, there will be zero
error. In other words, the bit-plane encoded transform will be exactly the same as
the original wavelet transform; hence lossless encoding is achieved (with progressive
transmission as well). Of course, for many indices, the zero error will occur sooner
than with the maximum number of loops n. Consequently, some care is needed in
order to efficiently encode the minimum number of bits in each binary expansion. A
discussion of how SPIHT is adapted to achieve lossless encoding can be found in Said
and Pearlman [47]. The algorithms WDR and ASWDR can also be adapted in order
to achieve lossless encoding (public versions of these adaptations are available [16].)

6.3.7 Color Images

Following the standard practice in image compression research, we have concen-
trated here on methods of compressing gray-scale images. For color images, this
corresponds to compressing the intensity portion of the image. That is, if the color
image is a typical RGB image, with 8 bits for red, 8 bits for green, and 8 bits for blue,
then the intensity I is defined by I = (R+B+G)/3, which rounds to an 8-bit gray-
scale image. The human eye is most sensitive to variations in intensity, so the most



difficult part of compressing a color image lies in the compressing of the intensity.
Usually, the two color channels are denoted Y and C and are derived from the R, G,
and B values [43]. Much greater compression can be done on the Y and C versions
of the image since the human visual system is much less sensitive to variations in
these two variables. Each of the algorithms described above can be modified so as
to compress color images. For example, the public domain SPIHT coder [46] does
provide programs for compressing color images. For reasons of space, we cannot
describe compression of color images in any more detail.

6.3.8 Other Compression Algorithms

There is a wide variety of wavelet-based image compression algorithms besides
the ones that we focused on here. Some of the most promising are algorithms that
minimize the amount of memory which the encoder and/or decoder must use [20, 29].
A new algorithm which is embedded and which minimizes PSNR is described by Li
and Lei [24]. Many other algorithms are cited in the review article by Davis and
Nosratinia [14]. In evaluating the performance of any new image compression al-
gorithm, one must take into account not only PSNR values but also the following
factors: (1) perceptual quality of the images (edge correlation values can be helpful
here); (2) whether the algorithm allows for progressive transmission; (3) the com-
plexity of the algorithm (including memory usage); and (4) whether the algorithm
has ROI capability.

6.3.9 Ringing Artifacts and Postprocessing Algorithms

As observed from the simulation for low bit rate (high compression ratio) com-
pression, the decompressed image has ringing artifacts at the strong edges in the
image. This is caused by the quantization process and by the overlapping nature of
the wavelet transform. Edges have significant coefficients in all detailed subbands
(horizontal, vertical, and diagonal subbands) and at low bit rate compression, these
subband coefficients are quantized heavily. The ringing artifact at an edge is the linear
combination of the (overlapping) wavelets and the quantization errors. Several post-
processing algorithms are proposed to reduce the ringing artifacts [22, 36, 72] and im-
prove the perceptual quality of the decompressed image. Simulation results, software,
and further details can be found at http://mmsplab.ece.wisc.edu/post/
index.html.

References

[1] Antonini, M., Barlaud, M., Mathieu, P., and Daubechies, I., Image coding
using the wavelet transform, IEEETrans. on Image Processing, 1, 205–220,
1992.



[2] Bamberger, R.H., Eddins, S.L., and Nuri, V., Generalized symmetric extension
for size-limited multirate filter banks, IEEETrans. on Image Processing, 3, 82–
86, 1994.

[3] Brislawn, C., Classification of symmetric wavelet transforms, LosAlamos Tech.
Report, 1993.

[4] Brislawn, C., A simple lattice architecture for even-order linear-phase perfect
reconstruction filter banks, Proc. IEEE-SP Intl. Symp. Time-Frequency and
Time-Scale Analysis, Philadelphia, PA, 124–127, 1994.

[5] Brower, B.V., Low-bit-rate image compression evaluations, Proc. SPIE, Or-
lando, FL, April 4–9, 1994.

[6] Buccigrossi, R.W. and Simoncelli, E.P., Image compression via joint statistical
characterization in the wavelet domain, IEEE Trans. on Image Processing,
8(12), 1999.

[7] Calderbank, A.R., Daubechies, I., Sweldens, W., and Yeo, B.-L., Wavelet
transforms that map integers to integers, Applied and Computational Harmonic
Analysis, 5(3), 332–369, 1998.

[8] Cohen,A., Ondelettes, analyses multirésolutions et traitement numérique du
signal, Ph.D. thesis, Universite Paris IX, Dauphine, 1990.

[9] Cohen, A., Daubechies, I., and Feauveau, J.-C., Biorthogonal bases of com-
pactly supported wavelets, Comm. Pure Appl. Math., 45, 1992.

[10] Compression with Reversible Embedded Wavelets, RICOH Company Ltd.
submission to ISO/IEC JTC1/SC29/WG1 for the JTC1.29.12 work item, 1995.
Can be obtained on the World Wide Web, address: http://www.crc.
ricoh.com/CREW.

[11] Daubechies,I., Ten Lectures on Wavelets, CBMS Conference Series, SIAM,
Philadelphia, 1992.

[12] Daubechies, I., Orthonormal bases of compactly supported wavelets, Comm.
Pure Appl. Math., 41, 909–996, 1988.

[13] Daubechies, I. and Lagarias, J., Two-scale difference equations I. Existence
and global regularity of solutions, SIAMJ. Math. Anal., 22, 1388–1410, 1991.

[14] Davis, G.M. and Nosratinia, A., Wavelet-based image coding: an overview,
Applied and Computational Control, Signals and Circuits, 1(1), 1998.

[15] Eirola,T., Sobolev characterization of solutions of dilation equations, SIAM J.
Math. Anal., 23, 1015–1030, 1992.

[16] WDR and ASWDR compressors are part of the FAWAV software package
at http://www.crcpress.com/edp/download/fawav/fawav.
htm/.



[17] Gopinath, R.A., Odegard, J.E., and Burrus, C.S., Optimal wavelet representa-
tion of signals and the wavelet sampling theorem, IEEE Transaction on Circuits
& Systems II, 41, 262–277, 1994.

[18] Heller, P.N. and Wells, Jr., R.O., Spectral theory of multiresolution operators
and applications, in Wavelets: Theory, Algorithms, and Applications, Chui,
C.K., Ed., AcademicPress, San Diego, CA, 13–31, 1994.

[19] Go to ftp://ipl.rpi.edu/pub/image/still/usc/gray/ for
“Lena,” “Goldhill,” and “Barbara.” Go to http://www.image.
cityu.edu.hk/imagedb/ for “airfield.”

[20] Islam, A. and Pearlman, W.A., An embedded and efficient low-complexity
hierarchical image coder, Proc. SPIE 3653, Visual Communications and Image
Processing ’99, San Jose, CA, Jan. 1999.

[21] Kiya, H., Nishikawa, K., and Iwahashi, M., A development of symmetric ex-
tension method for subband image coding, IEEE Trans. on Image Processing,
3, 78–81, 1994.

[22] Shen, M. and Jay Kuo, C.C., Artifact removal in low bit rate wavelet coding
with robust nonlinear filtering, MMSP98, 480–485, 1998.

[23] Lawton,W., Necessary and sufficient conditions for construction orthonormal
wavelet bases, J. Math. Phys., 32, 57–61, 1991.

[24] Li, J. and Lei, S., An embedded still image coder with rate-distortion opti-
mization, IEEE Trans. on Image Processing, 8(7), 913–924, 1999.

[25] Majani, E. and Lightstone, M., Biorthogonal wavelets for image compression,
Proc. 1994 Data Compression Conference, Snowbird, Utah, 462, 1994.

[26] Mallat, S., A Wavelet Tour of Signal Processing, Academic Press, New York,
1998.

[27] Mallat, S., A theory for multiresolution signal decomposition: the wavelet
representation, IEEE Trans. PAMI, 11, 674–693, 1989.

[28] Mallat, S., Multifrequency channel decomposition of images and wavelet mod-
els, IEEE Trans. on Acoust. Speech and Signal Processing, 37(12), 2091–2110,
1989.

[29] Malvar, H., Progressive wavelet coding of images, Proc. of IEEE Data Com-
pression Conference, Salt Lake City, UT, 336–343, March 1999.

[30] Marr, D., Vision, W.H. Freeman, San Francisco, CA, 1982.

[31] Recommendation H.262, ISO/IEC 13818. Generic coding of moving picture
and associates audio, Draft International Standard of MPEG-2.

[32] Mintzer, F., Filters for distortion-free two-band multirate filter banks, IEEE
Trans. on ASSP, 626–630, 1985.



[33] Nayebi, K., Barnwell, III, T.P., and Smith, M.J.T., Time-domain filter bank
analysis: a new design theory, IEEE Trans. on Signal Processing, 40, 1992.

[34] Nguyen, T.Q. and Vaidyanathan, P.P., Two-channel perfect-reconstruction FIR
QMF structures which yield linear-phase analysis and synthesis filters, IEEE
Trans. on ASSP, 37, 676–690, 1989.

[35] Nguyen,T.Q., A quadratic constrained least-squares approach to the design of
digital filter banks, Proc. IEEE ISCAS, San Diego, 1344–1347, May 1992.

[36] Oguz, S.H., Hu, Y.H., and Nguyen, T.Q., Morphological post-filtering
of ringing and lost data concealment in generalized lapped ortho-
gonal transform based image and video coding, Ph.D. thesis, Uni-
versity of Wisconsin, 1999. Additional informations can be found at
http://mmsplab.ece.wisc.edu/post/index.html.

[37] Orchard, M. and Ramchandran, K., An investigation of wavelet-based im-
age coding using an entropy-constrained quantization framework, Proc. Data
Compression Conf., Snowbird, Utah, 341–350, 1994.

[38] Pennebaker, W.B. and Mitchell, J.L., JPEG: Still Image Compression Stan-
dard, Van Nostrand Reinhold, NewYork, 1993.

[39] Ramchandran, K. and Vetterli, M., Best wavelet packet bases in a rate-
distortion sense, IEEE Trans. on Image Processing, 2, 160–175, 1993.

[40] Ramos, M.G. and Hemami, S.S., Activity selective SPIHT coding, Proc.
SPIE 3653, Visual Communications and Image Processing ’99, San Jose, CA,
Jan. 1999. See also errata for this paper at
http://foulard.ee.cornell.edu/marcia/asspiht2.html.

[41] Rioul, O., A discrete-time multiresolution theory, IEEE Trans. on Signal Pro-
cessing, 41, 2591–2606, 1993.

[42] Rioul, O. and Vetterli, M., Wavelets and signal processing, IEEE Signal Pro-
cessing Magazine, 8(3), 14–38, 1991.

[43] Russ,J.C., The Image Processing Handbook, CRC Press, Boca Raton, FL,
1995.

[44] Said, A. and Pearlman, W.A., Image compression using the spatial-orientation
tree, IEEE Int. Symp. on Circuits and Systems, Chicago, IL, 279–282, 1993.

[45] Said, A. and Pearlman, W.A., A new, fast, and efficient image codec based on
set partitioning in hierarchical trees, IEEE Trans. on Circuits and Systems for
Video Technology, 6(3), 243–250, 1996.

[46] SPIHT programs can be downloaded from ftp://ipl.rpi.edu/pub/.

[47] Said, A. and Pearlman, W.A., An image multi-resolution representation for
lossless and lossy image compression, IEEE Trans. Image Processing, 5(9),
1303–1310, 1996.



[48] Shapiro, J.M., Embedded image coding using zerotrees of wavelet coefficients,
IEEE Trans. on Signal Processing, 41, 3445–3462, 1993.

[49] Shoham, Y. and Gersho, A., Efficient bit allocation for an arbitrary set of
quantizers, IEEE Trans. on ASSP, 36, 1445–1453, 1988.

[50] Smith, M.J.T. and Barnwell, III, T.P., Exact reconstruction techniques for tree-
structured suband coders, IEEE Trans. ASSP, 434–441, 1986.

[51] Smith, M.J.T. and Eddins, S., Analysis-synthesis techniques for subband image
coding, IEEE Trans. ASSP, 38, 1446–1456, 1990.

[52] Strang, G., Wavelets and dilation equations, SIAM Review, 31, 614–627, 1989.

[53] Strang, G. and Nguyen, T., Wavelets and Filter Banks, Wellesley-Cambridge
Press, Wellesley, MA, 1997.

[54] Vaidyanathan, P.P., Multirate Systems and Filter Banks, Prentice-Hall, Engle-
wood Cliffs, NJ, 1993.

[55] Vaidyanathan, P.P. and Hoang, P.Q., Lattice structures for optimal design
and robust implementation of two-channel perfect-reconstruction QMF banks,
IEEE Trans. on ASSP, 36, 81–94, 1988.

[56] Tian, J. and Wells, Jr., R.O., A lossy image codec based on index coding, IEEE
Data Compression Conference, DCC ’96, 456, 1996.

[57] Tian, J. and Wells, Jr., R.O., Embedded image coding using wavelet-difference-
reduction, in Wavelet Image and Video Compression, Topiwala, P., Ed., 289–
301, Kluwer Academic, Norwell, MA, 1998.

[58] Tian, J. and Wells, Jr., R.O., Image data processing in the compressed wavelet
domain, 3rd International Conference on Signal Processing Proc., Yuan, B.
and Tang, X., Eds., 978–981, Beijing, China, 1996.

[59] Vetterli, M., A theory of multirate filter banks, IEEE Trans. on ASSP, 35,
356-372, 1987.

[60] Vetterli, M., Multidimensional subband coding: some theory and algorithms,
Signal Processing, 6, 97–112, 1984.

[61] Vetterli, M. and Herley, C., Wavelets and filter banks, IEEE Trans. on Signal
Processing, 40, 2207-2233, 1992.

[62] Vetterli, M. and LeGall, D., Perfect reconstruction FIR filter banks: some
properties and factorization, IEEE Trans. on ASSP, 37, 1057–1071, 1989.

[63] Villasenor, J.D., Belzer, B., and Liao, J., Wavelet filter evaluation for image
compression, IEEE Trans. on Image Processing, 4, 1053–1060, 1995.

[64] Villemoes,L., Energy moments in time and frequency for two-scale difference
equation solutions and wavelets, SIAM J. Math. Anal., 23, 1519–1543, 1992.



[65] Volkmer, H., On the regularity of wavelets, IEEE Trans. on Information Theory,
38, 872–876, 1992.

[66] Walker, J.S., A lossy image codec based on adaptively scanned wavelet dif-
ference reduction, Optical Engineering, in press.

[67] Wallace, G.K., The JPEG still picture compression standard, Comm. of the
ACM, 34(4), 30–44, 1991.

[68] Witten, I., Neal, R., and Cleary, J., Arithmetic coding for compression, Comm.
of the ACM, 30(6), 1278–1288, 1986.

[69] Woods, J. and O’Neil, S.D., Subband coding of images, IEEE Trans. on ASSP,
34, 1278–1288, 1986.

[70] Wavelet scalar quantization gray scale fingerprint image compression specifi-
cation, Criminal Justice Information Services, FBI, Washington, DC, 1993.

[71] Xiong, Z., Ramchandran, K., and Orchard, M., Joint optimization of scalar and
tree-structured quantization of wavelet image decomposition, 27th Asilomar
Conf., Pacific Grove, CA, November 1993.

[72] Yang, S., Tull, D., Hu, Y.H., and Nguyen, T., Maximum a posteriori parameter
estimation for image ringing artifact removal, submitted to the IEEE Trans-
action on Image Processing, 1999. Additional information can be found at
http://mmsplab.ece.wisc.edu/post/index.html.

[73] Zettler, W.R., Huffman, J., and Linden, D., The application of compactly
supported wavelets to image compression, Proc. SPIE, 1244, 150–160, 1990.

[74] Zhu, B., Tewfik, A.H., Colestock, M.A., Gerek, O.N., and Cetin, A.E., Image
coding with wavelet representations, edge information and visual masking,
Proc. IEEE ICIP, Washington, DC, 1995.


	The Transform and Data Compression Handbook
	Table of Contents
	Wavelet-Based Image Compression
	6.1 Introduction
	6.2 Dyadic Wavelet Transform
	6.2.1 Two-Channel Perfect-Reconstruction Filter Bank
	6.2.2 Dyadic Wavelet Transform, Multiresolution Representation
	6.2.3 Wavelet Smoothness

	6.3 Wavelet-Based Image Compression
	6.3.1 Lossy Compression
	6.3.2 EZW Algorithm
	6.3.3 SPIHT Algorithm
	6.3.4 WDR Algorithm
	6.3.5 ASWDR Algorithm
	6.3.6 Lossless Compression
	6.3.7 Color Images
	6.3.8 Other Compression Algorithms
	6.3.9 Ringing Artifacts and Postprocessing Algorithms

	References



	© 2001 CRC Press LLC: 


