
MSDN Home > ASP.NET Home > Headline Archive

Creating Server Controls
Paul D. Sheriff
PDSA, Inc.

December 2003

Summary: Server controls add functionality to Microsoft ASP.NET by bundling
code and controls into a single unit. See how to create a simple server control in
Microsoft Visual Studio .NET to display items from any database. (22 printed
pages)

 Microsoft® ASP.NET
 Microsoft® Visual Studio® .NET

Download the source code for this article.

Contents

Creating a Data-Aware DropDownList Control
Creating the DataDropDownList Control
Testing Your Server Control
Custom Exception Handling
Customizing Your Web Custom Control
Conclusion

Creating a Web user control is simple. All you need to do is to copy and paste controls from an existing Web page
onto a user control. However, since these controls are text files, with an optional code-behind file, the source files
themselves must be placed into each project you wish to use them in. This creates multiple copies of the user
control across multiple sites, which can become a maintenance nightmare.

In this article you will create a Web server control. These controls are a great way to create reusable UI and code
that is stored in a DLL file. A DLL makes it easy to reuse this control in multiple Web sites and not have to worry
about distributing the source code as you do with Web user controls. In addition, you can add a custom control to
the toolbox.

Creating a Data-Aware DropDownList Control

One of the most common routines you will write when creating a Web application is filling a DropDownList
control with data. To do this you will supply a DataTextField with the name of the field in a data source that you
wish to use to fill the list portion of the control. You will need a DataValueField, which is used to retrieve the
value from a field to use as the value field. You will use either a DataAdapter and a DataSet, or a DataReader
to fill the control. Here is an example of the code you would write to fill a DropDownList control with data from
the Categories table in the Microsoft® SQL Server™ database named Northwind.

' Visual Basic .NET
Private Sub CategoryLoad()
 Dim ds As DataSet
 Dim da As SqlDataAdapter
 Dim strSQL As String
 Dim strConn As String

 strSQL = "SELECT CategoryName, CategoryID "
 strSQL &= " FROM Categories"

 strConn = ConfigurationSettings. _
 AppSettings.Get("ConnectString")

See This in MSDN Library

Page Options

Page 1 of 14Headline Archive: Creating Server Controls (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/se...

 Try
 ds = New DataSet()
 da = New SqlDataAdapter(strSQL, strConn)

 da.Fill(ds)

 With ddlCat
 .DataTextField = "CategoryName"
 .DataValueField = "CategoryID"
 .DataSource = ds

 .DataBind()
 End With
 Catch ex As Exception
 Response.Write(ex.Message)

 End Try
End Sub

// C#
private void CategoryLoad()
{
 DataSet ds;
 SqlDataAdapter da;
 string strSQL;
 string strConn;

 strSQL = "SELECT CategoryName, CategoryID ";
 strSQL += " FROM Categories";

 strConn = ConfigurationSettings.
 AppSettings.Get("ConnectString");

 try
 {
 ds = new DataSet();
 da = new SqlDataAdapter(strSQL, strConn);

 da.Fill(ds);

 ddlCat.DataTextField = "CategoryName";
 ddlCat.DataValueField = "CategoryID";
 ddlCat.DataSource = ds;

 ddlCat.DataBind();
 }
 catch (Exception ex)
 {
 Response.Write(ex.Message);
 }
}

As you can see, this is quite a bit of code. While you could write your own class and a method to which you could
pass in many of these parameters, a custom control would be very efficient in this case. When you are through
with this article, you will be able replace all of the above code with code like the following:

' Visual Basic .NET
Private Sub CategoryLoad()
 With ddlCat
 .ConnectString = ConfigurationSettings. _
 AppSettings.Get("ConnectString")

 .DataTable = "Categories"
 .DataTextField = "CategoryName"
 .DataValueField = "CategoryID"

 .DataBind()

Page 2 of 14Headline Archive: Creating Server Controls (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/se...

 End With
End Sub

// C#
private void CategoryLoad()
{
 ddlCat.ConnectString = ConfigurationSettings.
 AppSettings.Get("ConnectString");

 ddlCat.DataTable = "Categories";
 ddlCat.DataTextField = "CategoryName";
 ddlCat.DataValueField = "CategoryID";

 ddlCat.DataBind();
}

This is a big improvement, as you have cut down the amount of code you have to write by about 75 percent. In
fact, you really will only need to set the ConnectString property and call the DataBind method, as the rest of
the properties you can set at design time using the Properties window.

Creating the DataDropDownList Control

There are two different approaches to creating a Web server control. You may either add all the UI and
functionality yourself by inheriting from System.Web.UI.WebControls.WebControl, or you may choose to
inherit from an existing control and simply extend that control's functionality. It is much easier to extend an
existing control than it is to build one from scratch. In this article you will learn to extend an existing control, such
as the DropDownList control.

Your new control, the DataDropDownList control, will contain a standard DropDownList control, and will
provide additional members as shown in Table 1. The ConnectString and DataTable properties are new to this
control. The DataBind method is an override from the base DropDownList control, since you need to provide
additional capabilities. All the rest of the properties, methods, and events are provided automatically, since we
inherited from the DropDownList control.

Table 1. The new user control supplies these methods.

The following sections walk you through creating your own DataDropDownList control.

Create the Web Server Control Project

To begin creating your DataDropDownList control, you need to create a new project in Microsoft® Visual
Studio® .NET. Follow the steps below to accomplish this.

1. Start Visual Studio .NET and click New Project.

2. Click either Visual Basic Projects or Visual C# Projects in the Project Types list.

3. Select Web Control Library from the Templates.

4. Set the name to DataDropDown.

5. Set the location to any valid folder on your hard drive.

6. Click OK to create the new project.

Member Type Description
ConnectString Property (String) Pass in a connection string to this property. This property is

required to connect to the appropriate database that contains the
table in the DataTable property.

DataTable Property (String) Set this property to the table name from the database that will be
used to supply the data.

DataBind Method This method will override the DropDownList control's DataBind
method.

Page 3 of 14Headline Archive: Creating Server Controls (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/se...

Visual Studio .NET will create a new file named WebCustomControl1.vb or WebCustomControl1.cs that contains a
template class with some attributes for your new custom control. You should see something like the following in
your editor.

' Visual Basic .NET
Imports System.ComponentModel
Imports System.Web.UI

<DefaultProperty("Text"), _
 ToolboxData("<{0}:WebCustomControl1 _
 runat=server></{0}:WebCustomControl1>")> _
Public Class WebCustomControl1
 Inherits System.Web.UI.WebControls.WebControl

 Dim _text As String

 <Bindable(True), Category("Appearance"), _
 DefaultValue("")> Property [Text]() As String
 Get
 Return _text
 End Get

 Set(ByVal Value As String)
 _text = Value
 End Set
 End Property

 Protected Overrides Sub Render(_
 ByVal output As System.Web.UI.HtmlTextWriter)
 output.Write([Text])
 End Sub
End Class

// C#
using System;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.ComponentModel;

namespace DataDropDownCS
{
 /// <summary>
 /// Summary description for WebCustomControl1.
 /// </summary>
 [DefaultProperty("Text"),
 ToolboxData("<{0}:WebCustomControl1
 runat=server></{0}:WebCustomControl1>")]
 public class WebCustomControl1 :
 System.Web.UI.WebControls.WebControl
 {
 private string text;

 [Bindable(true),
 Category("Appearance"),
 DefaultValue("")]
 public string Text
 {
 get
 {
 return text;
 }

 set
 {
 text = value;
 }
 }

Page 4 of 14Headline Archive: Creating Server Controls (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/se...

 /// <summary>
 /// Render this control to the output
 /// parameter specified.
 /// </summary>
 /// <param name="output"> The HTML writer to
 /// write out to </param>
 protected override void Render(
 HtmlTextWriter output)
 {
 output.Write(Text);
 }
 }
}

Unlike a user control, when you create your own Web server control, there is no design-time interface. Web
server controls are built entirely from code. You will need to make a few changes to this standard template to
create your own DataDropDownList control. Follow the steps below:

1. Change the DefaultProperty("Text") to DefaultProperty("DataTable").

2. Change both the occurrences of WebCustomControl1 within the ToolboxData attribute to
DataDropDownList.

3. Change the Class name from WebCustomControl1 to DataDropDownList.

4. Change the file name from WebCustomControl1.vb to DataDropDownList.vb or
DataDropDownList.cs.

5. You now need to change where this control inherits from . It must inherit from DropDownList instead of
WebControl.

Visual Basic .NET

Public Class DataDropDownList
 Inherits System.Web.UI.WebControls.DropDownList

// C#

public class DataDropDownList :
 System.Web.UI.WebControls.DropDownList

6. Delete the Text property declaration, including the line of code that declares the "_text" variable.

7. Finally you will change the Render event to call the Render method of the base DropDownList control.

When you are done, the code should look like the following:

' Visual Basic .NET
Imports System.ComponentModel
Imports System.Web.UI

<DefaultProperty("DataTable"), _
 ToolboxData("<{0}:DataDropDownList
 runat=server></{0}:DataDropDownList>")> _
 Public Class DataDropDownList
 Inherits System.Web.UI.WebControls.DropDownList

 Protected Overrides Sub Render(_
 ByVal output As System.Web.UI.HtmlTextWriter)
 MyBase.Render(output)
 End Sub
End Class

// C#
using System;
using System.Web.UI;
using System.Web.UI.WebControls;

Page 5 of 14Headline Archive: Creating Server Controls (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/se...

using System.ComponentModel;

namespace DataDropDown
{
 /// <summary>
 /// Summary description for DataDrownDownList.
 /// </summary>
 [DefaultProperty("DataTable"),
 ToolboxData("<{0}:DataDropDownList
 runat=server></{0}:DataDropDownList>")]
 public class DataDropDownList :
 System.Web.UI.WebControls.DropDownList
 {

 /// <summary>
 /// Render this control to the output
 /// parameter specified.
 /// </summary>
 /// <param name="output"> The HTML writer to
 /// write out to </param>
 protected override void Render(HtmlTextWriter output)
 {
 base.Render(output);
 }
 }
}

Add a ConnectString Property

Since you want this new control to be able to read data from a data source, you must supply a connection string
so it can connect to that data source. Add the following code to your DataDropDownList Class.

' Visual Basic .NET
Private mstrConnect As String = ""

<Bindable(True), Category("Data"), DefaultValue("")> _
Property ConnectString() As String
 Get
 Return mstrConnect
 End Get

 Set(ByVal Value As String)
 mstrConnect = Value
 End Set
End Property

// C#
private string mstrConnectString;

[Bindable(true),
Category("Data"),
DefaultValue("")]
public string ConnectString
{
 get {return mstrConnectString;}
 set {mstrConnectString = value;}
}

Notice the use of the Bindable(True), Category("Data"), and DefaultValue("") attributes. These attributes
inform the Visual Studio .NET environment how to display a property within the Property Window.

Add a DataTable Property

Since you need a table name to read the data from, you need to add a new property to your control into which
you can place the table name. Add the following code to your control to add a DataTable property.

Page 6 of 14Headline Archive: Creating Server Controls (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/se...

' Visual Basic .NET
Private mstrDataTable As String = ""

<Bindable(True), Category("Data"), DefaultValue("")> _
Public Property DataTable() As String
 Get
 Return mstrDataTable
 End Get
 Set(ByVal Value As String)
 mstrDataTable = Value
 End Set
End Property

// C#
private string mstrDataTable;

[Bindable(true),
Category("Data"),
DefaultValue("")]
public string DataTable
{
 get {return mstrDataTable;}
 set {mstrDataTable = value;}
}

Override the DataBind Event

Finally you must override the DataBind event so it can build the SQL statement, and use the connect string to
hook up to the database and build a dataset to load the DropDownList control. Add the code to your server
control that is shown below.

' Visual Basic .NET
Public Overrides Sub DataBind()
 Dim strSQL As String
 Dim strConn As String

 Try
 ' Build SQL String
 strSQL = String.Format("SELECT {0}, {1} FROM {2}", _
 MyBase.DataTextField, MyBase.DataValueField, _
 mstrDataTable)

 ' Fill in DataSource
 MyBase.DataSource = _
 Me.GetDataSet(strSQL, mstrConnect)

 ' Bind the Data
 MyBase.DataBind()

 Catch ex As Exception
 Throw ex

 End Try
End Sub

// C#
public override void DataBind()
{
 string strSQL;

 try
 {
 // Build SQL String
 strSQL = String.Format(
 "SELECT {0}, {1} FROM {2}",
 base.DataTextField, base.DataValueField,
 mstrDataTable);

Page 7 of 14Headline Archive: Creating Server Controls (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/se...

 // Fill in DataSource
 base.DataSource =
 this.GetDataSet(strSQL, mstrConnectString);

 // Bind the Data
 base.DataBind();
 }
 catch (Exception ex)
 {
 throw ex;
 }
}

In the above code, you are building the SELECT statement dynamically using the DataTextField,
DataValueField and the DataTable properties. Using the properties in this way makes this control very flexible.
If you wish to use stored procedures to load this control, you would need to add an additional property to this
control to pass in the stored procedure name to use to load this DropDown list. In that case, you would not build
the SELECT in this routine, but instead use the stored procedure name.

The GetDataSet Method

The DataBind method calls a method named GetDataSet. The GetDataSet method is responsible for building a
DataSet from the supplied SQL statement, and a connection string, and returning this DataSet back to the
DataBind method. Add the code shown below to your server control.

' Visual Basic .NET
Private Function GetDataSet(ByVal SQL As String, _
ByVal ConnectString As String) As DataSet
 Dim ds As DataSet
 Dim da As SqlDataAdapter

 Try
 ds = New DataSet()
 da = New SqlDataAdapter(SQL, ConnectString)

 da.Fill(ds)

 Return ds

 Catch ex As Exception
 Throw ex

 End Try
End Function

// C#
private DataSet GetDataSet(string SQL,
 string ConnectString)
{
 DataSet ds;
 SqlDataAdapter da;

 try
 {
 ds = new DataSet();
 da = new SqlDataAdapter(SQL, ConnectString);

 da.Fill(ds);

 return ds;
 }
 catch (Exception ex)
 {
 throw ex;

 }

Page 8 of 14Headline Archive: Creating Server Controls (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/se...

}

Building the Control

After you have completed adding all of the above properties and methods, you may now build your project to
make sure you have no errors.

Click Build | Build Solution from the Visual Studio .NET menu.

This will create a DLL named DataDropDown.dll in the Bin folder underneath the location where you created this
project. Remember where the \Bin folder is located, as you will need to select the DLL from the test project that
you will now create.

Testing Your Server Control

To test out your new Web server control, you will need to create a new Microsoft® ASP.NET Web application
project. You will then be able to add your new server control to the Toolbox.

1. In the Solution Explorer Window, click the Solution, DataDropDown.

2. Right-click the solution and select Add | New Project from the context menu.

3. Click ASP.NET Web Application in the list of templates.

4. Set the name of the project to ServerControl.

5. Right-click on this new project and select Set as Startup Project from the context menu.

6. Right-click the toolbox and click Customize Toolbox in the context menu.

7. Click the .NET Framework Components tab.

8. Click Browse.

9. Navigate to the ServerControl\Bin folder and select the DataDropDown.dll file.

10. Click Open. You should now see the DataDropDownList control appear in the toolbox.

11. Double-click this new control, and it should draw the new control on the Web page.

You are now ready to fill in the design-time properties on this new DataDropDownList control. Fill in the
properties of the DataDropDownList control with the values shown in Table 2.

Table 2. Set these properties to make your control display data from the Categories table in the
Northwind database.

Double-click anywhere on the WebForm1.aspx page to display the code-behind window. Write the following code
into the Page_Load procedure.

' Visual Basic .NET
Private Sub Page_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ddlCat.DataBind()
End Sub

// C#
private void Page_Load(object sender, System.EventArgs e)
{

Property Value
ConnectString Server=(local);Database=Northwind;uid=sa;pwd=sa (or fill in whatever is appropriate for

your database engine and database name)
DataTable Categories
DataTextField CategoryName
DataValueField CategoryID
(ID) ddlCat

Page 9 of 14Headline Archive: Creating Server Controls (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/se...

 ddlCat.DataBind();
}

Try it Out

You are now ready to run the project and test out your DataDropDownList control.

Press F5 to run the project.

If you did everything correctly, you should see a drop-down list of category names.

Custom Exception Handling

In your new custom control, you must fill in the Connection String, DataTable, DataTextField, and
DataValueField properties. Since these are all required, you should check to see if any are blank prior to
attempting to create the DataSet and binding to the DataSet. If any are blank, you should throw an exception
with the names of the properties that are missing. You will add the Check method (see below) to your server
control class. You will then call it from the DataBind method.

The Check Method

This method, named Check, is used to ensure that all of the properties are filled in prior to attempting to build
the SQL statement and submit it to the back-end database.

' Visual Basic .NET
Private Sub Check()
 Dim strProp As String

 ' Check to see if all values
 ' are filled in correctly
 If DataTextField.Trim() = "" Then
 strProp &= "DataTextField"
 End If
 If DataValueField.Trim() = "" Then
 strProp &= ", DataValueField"
 End If
 If mstrDataTable.Trim() = "" Then
 strProp &= ",DataTable"
 End If
 If mstrConnectString.Trim() = "" Then
 strProp &= ",ConnectString"
 End If

 If strProp <> "" Then
 strProp = "These properties are required: " _
 & strProp
 Throw New ApplicationException(strProp)
 End If
End Sub

// C#
private void Check()
{
 string strProp = "";

 // Check to see if all values
 // are filled in correctly
 if (DataTextField.Trim() == "")
 strProp += "DataTextField";
 if (DataValueField.Trim() == "")
 strProp += ", DataValueField";
 if (mstrDataTable.Trim() == "")
 strProp += ",DataTable";
 if (mstrConnectString.Trim() == "")
 strProp += ",ConnectString";

Page 10 of 14Headline Archive: Creating Server Controls (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/se...

 if (strProp != "")
 {
 strProp = "These properties are required: "
 + strProp;
 throw new ApplicationException(strProp);
 }
}

Now change the DataBind method to call the Check method. Add the lines of code shown in bold in the below
listing.

' Visual Basic .NET
Public Overrides Sub DataBind()
 Dim strSQL As String
 Dim strConn As String

 Try
 Check()

 ' Build SQL String
 strSQL = String.Format("SELECT {0}, {1} FROM {2}", _
 MyBase.DataTextField, MyBase.DataValueField, _
 mstrDataTable)

 << CODE OMITTED >>
End Sub

// C#
public override void DataBind()
{
 string strSQL;

 try
 {
 Check();

 // Build SQL String
 strSQL = String.Format(
 "SELECT {0}, {1} FROM {2}",
 base.DataTextField, base.DataValueField,
 mstrDataTable);

 << CODE OMITTED >>
}

If you now go back and erase the values from the DataTextField and DataValueField properties in your control
on your Web page, you should see an error that looks like the following:

Page 11 of 14Headline Archive: Creating Server Controls (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/se...

Figure 1. Giving good error messages really helps the users of your Web controls.

Customizing Your Web Custom Control

To finish your custom control, you will probably want to supply a custom bitmap for the toolbox. In addition, the
TagPrefix for these custom controls is currently set to "cc1," and you might wish to supply a better prefix for all of
your own custom controls.

Changing the Toolbox Bitmap

To change the toolbox bitmap. you will first have to create a bitmap. There are a few requirements that must be
met to change the bitmap that appears in the toolbox. First the bitmap must be a 16x16 pixel, 16-bit color
bitmap, saved as a .BMP file. The bitmap must have the same file name as your control's class name. Since the
name of your custom control is DataDropDownList, you will need to save your image as
DataDropDownList.bmp. You will need to change the Build Action property of the bitmap control to Embedded
Resource. This informs Visual Studio to compile the bitmap into the project. Follow the steps below to create a
bitmap for your control:

1. Click Project | Add New Item from the Visual Studio .NET menu.

2. Select Bitmap File from the list of templates.

3. Set the name to DataDropDownList.

4. Click the new bitmap and set the Build Action property to Embedded Resource.

5. Draw anything you want.

6. Build the Project.

7. Switch back to the ServerControl project, and open the WebForm1.aspx page in design mode.

8. Right-click on the DataDropDownList control in the toolbox and click Delete in the context menu.

9. Re-add the DataDropDownList control back to the toolbox to see the new icon.

Modifying the TagPrefix

If you were to look at the HTML view in your WebForm1.aspx page, you would see a Register tag at the top. This
tag informs the .ASPX page where the definition for this control comes from. If you look at this directive right
now, you should see something that looks like the following:

<%@ Register TagPrefix="cc1" Namespace="WebControlSample"

Page 12 of 14Headline Archive: Creating Server Controls (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/se...

 Assembly="WebControlSample" %>

If you then look further down within the <FORM> HTML tag, you will see the definition for your
DataDropDownList control. You will see the "cc1" prefix that matches the TagPrefix in the Register directive.

<cc1:DataDropDownList id="DataDropDownList1"
 runat="server" ConnectString="Server=(local);
 Database=Northwind;uid=sa;pwd=sa" DataTable="Categories"
 DataTextField="CategoryName" DataValueField="CategoryID">
</cc1:DataDropDownList>

You will most likely wish to change this prefix as "cc1" is not very descriptive. To accomplish this, you will need to
follow the steps below.

1. Double click on the AssemblyInfo.vb file within the WebControlSample project.

2. Add an Imports or a using statement at the top of the file to bring in the System.Web.UI namespace.

' Visual Basic .NET
Imports System.Web.UI

// C#
using System.Web.UI;

3. You should then move down to where the other <Assembly:> tags are located and add the following tag:

' Visual Basic .NET
<Assembly: TagPrefix("DataDropDown", "DataDD")>

// C#
[assembly: TagPrefix("DataDropDown", "DataDD")]

4. Rebuild your ServerControl solution.

You must now delete the control from the toolbox and re-add the control to the toolbox to have it refresh the
TagPrefix attribute. You will also need to delete the control from your Web page, and you will most likely have to
manually delete the old Register directive from the HTML view of the WebForm1.aspx file.

After adding the control back to your Web page, you can now view the HTML and see the new TagPrefix of
"DataDD."

<%@ Register TagPrefix="DataDD" Namespace="DataDropDown"
 Assembly="DataDropDown" %>

You will also see the new prefix in the declaration of your custom control.

<DataDD:DataDropDownList id="ddlCat"
runat="server"></DataDD:DataDropDownList>

Of course when you delete the control, all of the design-time properties will be deleted as well. You will need to
reset the design-time properties (DataTable, ConnectString, DataTextField, and DataValueField), or write
the code as shown at the beginning of this article.

Conclusion

Creating a Web server control is very different from creating a Web user control. You will end up writing a lot less
code in the UI layer when you employ a server control, as you can take advantage of inheritance. Since you will
be creating a DLL, this will also ensure that no one can modify your source code. With a user control, anyone can
view and see the source code. Another advantage of a server control over a user control is you only need one

Page 13 of 14Headline Archive: Creating Server Controls (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/se...

 Top of Page

copy of the DLL on a single server. This one DLL can service all Web sites. With user controls, you would have to
copy the user control from site to site. This makes maintenance of these user controls very difficult. With the
server control, you only need to modify the control in one location.

About the Author

Paul D. Sheriff is the President of PDSA, Inc. (http://www.pdsa.com), a Microsoft Partner in Southern California.
Paul is the Microsoft Regional Director for Southern California, and has four books on .NET. The first book is
entitled ASP.NET Developer's Jumpstart from Addison-Wesley and is co-written with Ken Getz. His other three
books are eBooks and can be purchased directly from the PDSA Web site. You can contact Paul directly at
PSheriff@pdsa.com.

How would you rate the quality of this content?

1 2 3 4 5 6 7 8 9

Poor Outstanding

Tell us why you rated the content this way. (optional)

Submit

Average rating:
7 out of 9

1 2 3 4 5 6 7 8 9

89 people have rated this page

Manage Your Profile | Legal | Contact Us | MSDN Flash Newsletter

©2004 Microsoft Corporation. All rights reserved. Terms of Use | Privacy Statement

Page 14 of 14Headline Archive: Creating Server Controls (ASP.NET Technical Articles)

5/02/2004http://msdn.microsoft.com/asp.net/archive/default.aspx?pull=/library/en-us/dnaspp/html/se...

