OpenVMS
| .. Apache,

4 OSU, o
1 WASD

The Nonstop Webserver

Table of Contents

OpenVMS with Apache,OSU,anNdWASD..........cooi i 1
T 1o o 18 Tox 1 o] o SRR
Chapter 1: Why RUN aWeb Server 0N VIMS?. ...t e e 3
L.LVIMS CIUSTEIING ettt ettt e et e e e e e e et e e e e e e e b et e e e e e e e e s e e et e e e e e e e nnnnnnneeeeeeeaanns 3
R4 S (] 1= o1 1 PP OP PP UPPPPS
G ST U TP PP PPP R PPRPP A
L1.4AYOU AITCAUYNAVEIL..........eeieeieieee ettt et e e e e e e e e e e e e e e r et e e e e e e nnn e e e aeeeas 4
1.5CanNVMS dOWNAL] NEEA 2. .. .ot nneennenneennrnnnee 4
Chapter 2: VIMS @n0 the WED.......coi oottt e et e e e e e e e e e e e e e e nnnnnes 6
P =TT 110 01T g T TP PP P PPPPPPPPRPPR {
P © 1 U TP PPPOTPPPPOPN
2.3 APACKE. ... e e e e e e et e e e e e et e e e e e e n e nr e e e e e e a e |
2AWASD aQNUOTNEIS ... ———————————— 7
(O aF= 1o (=T G T VAT =T o N @ o] 110 o PO P PO PP TOPPPPRP C
I 025V PSP P TP PPOPPPR
2 1] U PO U PP STU PP 1
KR AN B TP PO P PRSPPI 1
3.4AWNhICh SNOUIYOU USE?..... ..t e e e e e e e e e e e e e e e nnnees 12
Chapter 4: INSTAIIALION ISSUEBS.........eeiiiieiiiiii it e e e e e e et e e e e e e e r e e e e e e s s asnbnnreeeeeenaann 13
A A PrEINSTAIAtION. ... ——————— 13
O Y Y STV =T =1 (o o 1SS 13
A I O o =T 01111V = PP 13
4.1 .3DISK SP@ACE. ... tteeeeeee e e ettt e et e e e e e et e nnnees 14
AL ANCIWOIKISSUBS ... e 15
4.2 INSTAllAtIONQUITES ...ttt e e et e e e e e e e et e e e e s s s n e e e e e e e e e e nnnnrnreeeeeeas 16
N A o Y] 1[0 Y= U K= 16
B.2.2CSWS. .o bt oo e e e oo b e e e e b b e e e e b e e e e e ann e e e e e annreeas 16
e [© 1] U TP PPUPPTTPPI 2.
B 2. ANVNASD.....cceieeee ettt e b et e e e R b et e e e e b b et e e e aab et e e e nae e e e e nreeeean 2t
Chapter 5: BasicConfiguration and Server CONMIOL............oooiiiiiiiiiiiiee i 27
ST G2 V1T PRSP P PUPRPRPPPPR 2
ST 1] U T PO UPPTI 2
TR AN B TP PSPPSR 3
5.4 BaSICCONTIGUIATION. ...ttt e ettt e e e e e e e e e e e e e s e e e e e e e e s s be e e e e e e e e s annnnrneeeeens 31
o o T 7= g o] g To 1] £ =T g o TSRS 31
5.4.2DocumentireesandindeXfileS........couuvviiiiiiiiii 33
5.4.3CustomizecerrormessageandWebmasteRddress.........ccccvvvvvvvviiiie 36
SRS RS =L gt g e FoTgTo K 0] o] o)1 o o NPT PPPPPPRR PPN 38
5.6 COMMANA—IINEEONTIOL. uuiiiiiiiiiiiiiiiiii ittt e et e e et e e e e e e e e et e et eeeeteeeeteaaeaaataaeaaaaaaaaaaaeeens 43
S ST A NS] B PP P PUPPTRPUPPR 4¢
5.7 WED=DASEEONIION.......eeiiiiiiiiiiieeeeeeeee et a e e e e e e e e e e e e 48

Table of Contents

Chapter 6: Encrypted/SecureCommunications: HTTPS Protocol SUPPOIt............evvveereeieeeieeeierieeeeeeeeeee. 51
T o I I I S TP P PP 5
G N R 0 PP PPPRP P 5!
6.1 2SSLANUPKL....ceieiitiiie ettt bt e e e b n e e e e e b e e e e nrree e 51
6.1.3GettingacertifiCatefroM @ CA ... 53
6.1.4Creatinga Self—SigNeertifiCate.coiiiiiriiiii e 57
6. L.5HTTPSAIAIO0. ..+t eeeeeeeiiiit ettt e e e e e e e e e e e e e s e n e e e e e e e e aannes 58
6.2 INSTAIATION. ...t e et e aeee s 5!
B.2. LCSWS/MOD _SSL.. ittt e e e e et e e e e e et e e e e e e e e e e e e e e 59
G4 © 1] © T TP PUPPRROPPPR 5!
6.2.3TNEENGINE INTEITACE......ciiiiiiiieiti ettt e e e e e e e e 64
6.2.4TNEMST INTEITACE. ... et e e e e e e s e r e e e e e e e aanes 65
B.2. 5WWASD....c ettt R e e e e b b et e e e Rt e e e e e e hb et e e e anar e e e e e nrneeean 6"
SR ©fo] 41 1To 18] £=1 1 0] o HHT RO PP TP PPPPPPPRR 65
B.3. LCSWS/MOD _SSL ...ttt e 65
TS T4 © 1] © TP P PP OUPRPRPPPPR 6!
B.3.3VWASDD.... ettt ettt oo R b e e e e e b bt e e e e R b b e e e e e bbe e e e e nnn e e e e anrneaeaa 7(
Chapter 7: Managing ACCESSIO YOUI SEIVEIRESOUITESuuuriiiieeiiiiiiiiieeeee e e e e e e e e e s s sannnerne e e e e e e e 72
(@Y V1 Y OO EEPP PP PPPPPPPPPPPP 7
E =T o] o]l g Lo | (=] 1U (o= TP PP PPPRTPRTPP 72
A Y o - T TSP PPPPPPPPRPPPN 73
A% 4 © 1] © TP PP OUPPRRPPPPR 7
T L.BWWASD.. .ttt ettt oo R b et e e oAb bt e e e e R bt e e e e e ha et e e e nr e e e e e nrneeeaa 7¢
7.2 AUTNENTICALION. ...ttt ettt e e e e e et et e e e e e e e e e e e e e e e e s b e e e e e e e e e nnnnrnes 87
T 2. LAPACKE. ...t e e e et a e e e e e e e e e e 8¢
A4 © 11 © T PP OUPPRRPRPPR)
T.2.3WASD....c ettt e R bt e e e b bt e e e Rt e e e e e e hb e e e e e e e e e e anrneeean 9¢
7.3 ACCESICONIIONS. ...ttt e e e e e e e e e e e e e e e et e e e e e e reeaeas 10C
7.3 LAPACKE. ...t e e e e e e e e r e e e e 10:
T.BL2WASD ...ttt ek e e e e e b e e e e e e b b et e e s anb e e e e e annee e 10¢
RS e 0] o0 K5« AP P PP P PP PRPPTP PP 106
Chapter 8: Providing User PersonalWeb DIF€CIOIES.uuuiieiiiiiiiiiieeeee et 112
8.1UsSerdireCtOri@SIIO ANUCON.uuiiiiiieeeeieit et e e e e e e ettt et e e e e s e e e e e e e e e s e bb e e e e e e e e e e aannnrereeeeeeeans 112
8.2 IMPIEMENTINGUSEITIIS ... eeiieiiie ettt e b reeeeeeeaanns 113
BL2. LS WSttt R bt e bt e e e R et e e e e b e e e e e r e e e e rreee s 11:
S04 © 1] © PP PU PR RPPPPPTPPPPI 11!
BL2.3WWASNDD....c ettt b et e e ke e e e e a b b e e e e e b b et e e e anb e e e e e nnnee e 11¢
Chapter 9: Multihosting and MURINOMING ..o 119
Q. L WRY MUIINOSTING. ...ttt e e e e s e et e e e e e e e e e e e e e e e annbrn e e e e e e e e aannes 119
9.2 Multihosting/multihomingCoNfIQUIALION..............uiiiiiie e 119
0.2. L C S WSttt e oo e e e R bt e R e e e e e Rt et e e e e b et e e e r e e e e raeee s 12(
A © 1] © PP PU PR PPPPPRPPPPI 12:
0.2.3WWASDD.... ettt bt e bt e e e ke e e e e a b b e e e e e b b et e e s anb e e e e e nnneeeeas 12
Chapter 10: Indexing and SearChiNgYOUI SITE.........coui it 126
0T R)V 1o = PP PTPPR 12¢
10.2VMSINAEXANALYNX CFAWL.......eeiiiiiiiiiiiiiiee e e e e e e e eeeeeeeans 126

Table of Contents

Chapter 10: Indexing and SearchingYour Site

LO.BSWISHTE. oot e e e e e e e e e e e e e 12¢
LOAHTIDIG ...ttt ettt e oo e ettt e a2 e e e bt e e e e e e e e e s e e e e et e e e e e e reeeas 13:
Chapter 11: CaChEANG PrOXYuuieiiiieeeiiiiie e e et e e e s et e e e e e e r e e e e e e s s b b e e e e e e e e e e e ansnnrnreeaeeens 135
N 02 Tod g 1= T g T [o] (04 VTP P PP PUPPPPPPRPPP 135
11.2CaChEMANAGEIMENL. ...ttt e e e e e e e e s e e e e e e e s e r et e e e e e e r e e e e e e e nnrnees 136
L1 2. AAPACKE. ... e e e e e e e e e e s 137
N © 11§ PP PRRPPP PP 13
LL.2.3WASD...c ettt r e e e e e e e e e e e e e e aee s 14C
11.3PrOXY MANAGEMIEILL ... oo e e e e e e e n e e s s n e s nnnnn e e s e e e e e 142
G T Y o T Lo o TSP P PP PPPPPRRI 142
I J021 @ 11§ PP PP PRRPPP PP 14!
LL.B.BWASD...c ettt e e e et e e e e e e et e e e e e e e e s 147
Chapter 12: Managing and Understanding YOUr SErvVerLOgScuuuuuiiiuuiiiiiiieeeiiiiireieeeee s saiinneeeeee s 150
(@Y V1 PSP PP PPPPPPPPRTPR 15
12.1CuStOMIZINGYOUI IOGGING ... etteeeiiiiiieee e e e ettt e e e e e r e e e e e e s e e e e e e e e s e e e e e e e e e e nnnneees 150
12.2Log—file formatSandIOCALIONSuuiiieeeiiiiiie e e e e e s e as 150
12,2 QAPACKE. ... e e e e e e e e e s 151
L2.2. 208Uttt r e e e e e e e e e e e e e e e e e e 15!
L2.2.3WASD....ceeeeeeeee e e et e e e e e e e e e e e e e e e e s 154
12.3L.0Q I FOTALION.eeeeeeeeeee ittt e e e e e e et e e e e e e e e e e e e e s e asbbrn e e e e e e e e aaan 156
12,3 1APACKE. ... e e e e e e s 15¢
I T © 1 1§ TP PP PRPPPP PP 15¢
L2.3.3WASD.... oottt et r e e e e e e e e e e e e e s 157
12.4UnavoidableambiguitieSandUSEMIaCKING............uvrreiieee et e e e 157
L2 4. DAPACKE. ... e e e e e e e e e s 15¢€
L2 4. 2WASD.....coeeeeeeeee et e e e e e e e e e e e s 15¢
Y = ¢ (o] gl (oo ST PP PP PP OPPPPPPRRPP 15¢
12,5, QAPACKE. ... e e e e e aee s 15¢€
L2.5.20SU. ...ttt e e et e e e e e e e et e e e e e 16(
L2.5.3WASD.... oot e et e e e e e e e e e e e e e e e s 16C
12.6TOOISTO INTEIPIEtYOUITOUS. ...ttt e e et e e e e e e e e eeeas 161
12.6.1L0OGRESOIVE.ttt e e e e e e s 161
12.6.2L00—Ti18 @NAIYZELS.........eiiieiieie e 162
L12.6.3ANALOG. ...ttt e e e e e e et e e e e e e n e e e e e e 162
L2.6.4AAWSTALS.eeeeeeeeeeeeee ettt ettt e e e et e e e e e e et e 16€
12.6.5WEDANIZE. ...t e e e 169
L2.6.6WIUSAGE. ...t e e e et e e e e e e e e e e e e e e e 171
Chapter 13: Dynamic Content: Directory Browsing and Server—Sidelncludes.............ccoccvviveeeeennnns 175
R A D[=Tox (0] 4V o] (11T o o PP TP PPRPPPR PRI 175
R T Y o T Lo o 1T PP P PP PPPPPRI 17¢F
R T 2 © 11 O PP PRPPPP PP 18:
L3BLLBWASD...c ettt e et e e e e e e e e e e e e e e e s 184
13.2DynamiCCONENIWItN SS.......cooiiiiiiie e 190
13.3CONTIGUIINGSSI. ..ttt e e e e e e et e e e e e e e b b e e e e e e e e e a b e e e e e e e 191
IR T J01 {01 VA PP PP PP PPRPPTTPPIN 191
R TR T4 © 11§ PP PP PRPPPP PP 19:

Table of Contents

Chapter 13: Dynamic Content: Directory Browsing and Server—Sidelncludes

L3B.BLBWASND...c ettt e e et e e e e e e e e e e e e e e e e s 192
R R] [[£ =Tot 11V = PP OO PP EPP P PPPI 19¢
13.4.1AccesSSCOUNIS(WASD @NAOSU).......cuuiiiiiiiiiiiiiiieiee et e e 193
13.4.2Fi18 INFOIMI@LION. ...t e e e e r e e e e e e e e e e e e e e e nnnnees 194
13.4.3File/doCUMENINCIUAES.oieiiieie et e e s 194
13.4.4File partS(OSUANAWASD)........uiiiiieiiiiiee et e e 195
13.4.5Directory/indexgeneratioflMWASD=0NIY)..........uuiiiiiiiiie e 197
13.4.6ECNOAITECTIVES ..ottt e et e e e e e e e e e e e e s e a e e e e e e e e aannne 197
13.4.7Flow—controldirectiveS(APaChe WASD)...........ouuiiiiiiiiiiieee e 199
134 BSETAINECTIVES.....eeeeiiiieiiiitt ettt e e e e e s et e e e e e s et e e e e e e e e e s nreeeaee s 201
13.4.9Execdirectives(APach@andWASD)..........uuiiiii it 203
13.4.10UNPrivilEgeadairECIIVES:eeeieeei ittt e ettt e et e e e e e e e e e e s r e e e e e aan 203
13.4. 11PTIVIIEgEUUINECTIVES: ... e ettt e e e e e e e e e e e s 204
13.4.12MiscellaneousSNVASD—ONIY AIr€CHIVESoiiiiiiiieiiee et 204
Chapter 14: RUNNING CGl PrOGIaIMS.coiiiiiiiiiiiiiiee et e e e e e e e e e s s e e e e e e e e e e e nnnnees 206
(@Y V1 TSP PPPPPPPRRTPR 20
I N (€] o [1 =T PP TP PR PPPPPPPI 20¢
14. 2ENVIrONMENNVANTADIEScoi i e e e e e e e 208
14.3NeCeSSANHT TP NEAUELSuiiiiiiiiee e e s eeeeeas 215
14.4CoNfIGUIrAtIONTON C Gl ... it e e e e e e e e e e e e e e e e annrnees 215
LA A LCSWS. ..ottt e oottt e e oo oo e e et e e e e r et e e e e e e e e e e e e e 21°F
LA 4. 20SU.... ettt e e e e e e e e e e et e e e e e e 21¢
LAABWASD.....coeeeeeee e et e e e e e e e e e e e e e s 21¢€
T (€ =T 01V (o] 0 4= o ST PP PPEP PP PPPP 217
LA.5.ACSWS ..ottt et oot e e oo et e e e e r et e e e e e e e e e e e e e e 217
LA.5.20SU. ...ttt e e e et e e e e e e e e e e e e e e 21
LA5.BWASD....cceeeeeeee et e ettt e e e e e e e e e e e e ae s 221
14.6LANGUAGESEOT CGll..iiiiiiiiiiiiiite ittt e e e e e e e e e e e e e r e e e e e e e e e e e e e e 225
I 700 1 1 PP PRPPPP PP 22"
I 0L O PP PU PP OTPPRT 22¢
L14.6.3FORTRAN . ..ttt e e et e e e e e e e e e e e e e e e b e e e e e e e e e r e e e e s 226
LB APEIL....eeeeeeee ettt e e e et et e e e ebb e e e e e annreee s 22
LA.B.5PHPA. ... e e et e e e e e e s 22¢
LA.B.6PYLNON......ceeeeiiiee ettt e e e e e e e e e e e n s 22€
LA.B.TJAVA......cei ittt e ettt e oo e e e e e e et e e e e e e e e e e e e e a e e e e e e e aaa 23(
Chapter 15: RDB DatabaseAcCeSSFrom CGl SCHPLS......coiiiiiiiiiiieee e 231
15 1RADWED AGENL....ceieeeiee et e e e e e e e e et e e e e e e e e e e e e e e e 231
15.2EmbeddedRDO or SQL MOdUIEIANGUAGE.........oiuiiiiiieeee e 232
15.3Perl,DBI, aNdDBD:IRDB..........cutiiiiiiiiiiii et e s 232
15.4Pythonandthe RAD PIUG—IN.....ccoiiiiiiie e e e 237
ST o\ = PP T TP U PPPPPPPRTPR 23
Chapter 16: Useful Fre@War@ C Gl SCIIPLS........ciiiiiiiiiieiee ettt e e e e e e s e e e e e e aanes 240
16.1SerViNGVMS MAIL FIlIES......eeieiiiie ettt e e e e e e 240
T I K o 1Y/ 01T 0 T PP P PP PPPPPPPPRRP 240
16.1.2yahMAIL (Yet AnotherHYpermail)..........cccuveiiiiiiiiiie e 240
16.2Sendingmail froM FOMMS. ... e e e s eeeeeeas 241

Table of Contents
Chapter 16: Useful Freeware CGI Scripts

16.2. LCGI=MAILTO . .ttt e et e e e e e e et e e e e e e e e e e e e e e e annnenes 241
LB.2.2TIMAILL ettt e e e et e e e et e e e e e e e e e e e e e e s e e e e e e as 241
L16.2.3TMAILER. ...ttt e e e et e e e e e e e e e e e e e e e e r e e e e e e e e nnnnees 242
16.3SyStemmanagemMETUNCLIONS.uuiiiieiiiiiiie e e e e e e s s r e e e e e s e s eeeeee s 242
16.3.1ChaNGINGDASSWOITS.ietiieiieeeee ettt e e e e e e s e e e e e e e s r e e e e e e s s bt e e e e e e e e e aannnnnreeeeens 242
16.3.2MOoNitoring SYStEMPEITOINMANCE. ..ottt e e e 243
16.3.3Displayingdisk SPaCaULIliIZALION.uvriiiiieeei e 243
16.4Presentin@lOCUMENTATIAN.cuiiiiiiiiiii et e e e e e e s e e e e e e s s e e e e e e e e ennneees 243
16.4.1Web—basethelpDrOWSELS.........eeiiiieiii e 243
16.4.2BO0OKICAUEBIEIVELS.ceeeeiiieeiiaiiite et e e e e ettt e e e e s e e et e e e e s s b et e e e e e e s annbneneeeeeeeaanne 244
Chapter 17: High—Performance Scripting OPtiONS.........coooiiiiiiiiiee et 245
A T B = 24
4 @] o] 1[0 o = PP PP P PP TPPPPP 24
L7. 2. QCSWS .ottt e et e e e e e et e e e e e e et e e e e e 24¢
L7.2.20SU. ...ttt e e e e e e e e e e e et e e e e e e 25(
L7.2.3WASD....ceeeeeeeeee ettt e e e e e e e e e e e e e e s 258
T ARC] ©fo] o Tod U1 o] 4 HU PP PER PP PPPPI 25¢
Chapter 18: User—EditedWED PAgES........ccoiiiiiiiiiiiiie ettt e e e e e e 257
(@Y V1 TP T TP PPPPPPRRPPR 25
18.1File—NamingStanNardS..........ooiuiiiiiie e ae s 257
L8.2 1@ TAYOUL. ...ttt ettt e e e e e e e et e aan 25’
L18.3AREINALIVESIO FT Rttt e e e e e s et e e e e e e b e e e e e e e e nannnnees 258
Chapter 19: USer—DeVelOpeUT G SCHPLS. .. .uiiiiiiiititeieeee ettt e e e e e e e e e e e re e e e e e e aannes 260
(@Y V1 PSP TP P PPPPPPRRPPR 26
LO. L CSWS/APACKE. ...ttt e e e et e e e e et a e e e e e r e e e e e a e 26C
S 24 © 11§ TSP P PP PPPPPPP 26
LO.BWASND ..ottt e oo e e et e e e e e et e e e e e e e e e e e e e e e 26.
APPENAIX AL POttt e e oo r et e e e e e e b e e et e e e e e e et e e e e e e r e e e e e e e e annnes 26
F N o 153 (] Y PP E PP PPPPPPPPEPPPPPPP 26
A.2 A SOftWAr€SWISSAIMY KNITE......eeiiiiiiiiie et e e e s e e e e e e e enes 266
ALBWEDTTEAMY. ...ttt ettt e e e e e e e e e et e e e e e e e e e e e e e 26’
N @ 01T 01 1 o = TP 267
A5 RESOUICEEON PEIL.... ettt e et e e e e e reaee s 268
APPENAIX B PYINON. ...ttt e e et e e e e e e e e e e e e e e r e e e e e e e e e ee s 26!
(@Y V1 TSP PP P PPPPPPPRPPP 26
B.1 Python'shemeaningof [Ife...........ouiiii e 269
B2 JAVAWOCKY. ...ttt ettt ettt e e et e e e e e ettt e e e e e r et e e e e e a e e e e e e aaan 27
B.3JaVA0N VM S ... e e e e e e e e e e e e s e e e e s n e e e en e e e e e e e e ee e 271
B.4 Always 100k onthe bright SIdEOT Ife..........eiiieiiie e 271
B.5 CONCIUSION.ciiiiiiiit ettt e e e e e e e et e e e e e e e e e e e e e e e s rn e e e e e e e e aaan 27.
Gl =TT 0 U of = PP 27.

Table of Contents

APPENAIX € PHRP.. ettt e e et e e e oo e e et e e e e e e e e a b e ettt e e e e e e e e e e e e e e a e nnn s 27
OV BIVIBW ...ttt ettt e oo oottt e e o444k R e ettt 44444 R R R e ettt e e e e e e s R b e e et e e e e e e e s nnnr e e e e e e e annn 27
C.LRESOUICEEON PHP..... ettt e et e e e e e e e e e e e e e annn e 275

APPENIX D APACIE. ...t e et e e e e e e e e e e e et e e e e e a e e e e e e n e 271
OV BIVIBW ...ttt ettt ettt e o4 4ottt e e o444k b ettt e o444 ek R R e e et e a2 e e e e R bR e e et e e e e e e e s R nnnr e e e e e e aannn 27
[B =T 0 1 o =1 TP 27

Appendix E: Annotated SampleConfiguration FileS...........ooo i 278
E. 1 CSWSCONTIQUIALIONTIES.ceie ittt e e s e e e e e eeeaeeas 278

ELL IHTTPD.CONE ..ottt ettt e e ekttt e e e e b e e e s st e e e s anbb e e e e ennnneeean 278
E.L.2MOD _SSL.CONF.....ettiiiiiie ittt e e e et e e e e s e e e e e e e e e annnees 296
E.1.3MOD_PERL.CONFMOD_PHP.CONE........c.cttitiiiiiiiiiiiiieeeee e 300
E.20SU CONfIGUIALIONFIIES.eiiiiiie ettt e e e e e e e e e e s nees 300
E.2.LHTTP_MAIN.CONRE... ..ttt e e e e s r e e e e e e reeaeees 300
E.2.2HTTP_PATHS.CONFE....cc oottt e e e e e e e e nnnees 305
E.2.3HTTP_SUFFIXES.CONE .. .ottt e e e e e e e 307
E.2.4HTTP_MANAGE.CONFE.....cotiiiiiiiiiii ittt e e e e e e e e e e s e e e e e e e anas 310
E.2.5HTTP_SCRIPTS.CONFE....coiiiiiiitiittee ettt e e e e e e e e e e e e e annes 310
E.3WASD CoNfigUIatiONFIIES.ceeiiiiiieiie e e e e e e e e 313
E.3.1HTTPDSCONFIG.CONE.....coiiiiiiii ittt et e e e anre e e e 313
E.3.2HTTPDSIMAP.CONRE ...ttt ettt et e e st e e e et e e e e sbn e e e e asneeaeans 319
E.3.3HTTPDSSERVICE.CONE........ooiiiiiiiii ittt 322
E.3.4AHTTPDEMSG.CONE.... ittt ettt ettt e et b e e e et e e e e sbn e e e e annneeaeaans 322

(I R0 o [U £ TR PP PPPPPPPPPP 32
Chapter2: VMS andtheWEeD...... ... 328
Chapterd: INStAllAtiONISSUES..........uiiiiiiie it e e e e s e e e e e s e rr e e e e e e e aaans 328
Chapter5: BasicConfigurationandServerCONIIOL............couiiiiriiiieeee e 328
Chapter6: Encrypted/Secur€ommunicationsHTTPSProtocolSupport............cccoeeeeeeieeeeeeen, 328
Chapterl0: IndexingandSearChingY OUI SItE............uuiiiiiiiiiiiiiiii e 328
Chapterl2: ManagingandUnderstanding OUr SEIVEILOGSuuvrrrieeeeriiiiiiieeee e e e e e e 328
Chapterl3: DynamicContent:Directory BrowsingandServer—Siddncludes..............cccccccoennnne 329
Chapterl9: User—Develope@ Gl SCrPLS.uu ittt e e e 329

LISt Of TADIES....cceeeeee et e e e e e e e e e e e e et e e e e e e e e e e e e e e e n R n e e e e e e e 3

Chapterl2: ManagingandUnderstanding OuUr SEIVEILOGSc.uvvvreieeeeriiiiiireee e e e e e e 330
Chapterl3: DynamicContent:Directory BrowsingandServer—Siddncludes..............cccccccoennnne 330

Vi

OpenVMS with Apache, OSU, and WASD

Alan Winston

Digital Press An imprint of Elsevier Science

Amsterdam Boston London New York Oxford Paris San Diego San Francisco Singapore Sydney Toky
Copyright © 2002 Alan Winston.

All rights reserved.

& A member of the Reed Elsevier group

Digital Press is an imprint of ButterworthHeinemann.

All trademarks found herein are property of their respective owners.No part of this publication may be
reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical

photocopying, recording, or otherwise, without the prior written permission of the publisher.

>~ Recognizing the importance of preserving what has been written, Elsevier Science prints its books on
acid—free paper whenever possible.

Library of Congress Cataloging—in—Publication Data

ISBN 1-55558-264-8

British Library Cataloguing—in—Publication Data

A catalogue record for this book is available from the British Library.
The publisher offers special discounts on bulk orders of this book. For information, please contact:
Manager of Special Sales

ButterworthHeinemann

225 Wildwood Avenue

Woburn, MA 01801-2041

Tel: 781-904-2500

Fax: 781-904-2620

For information on all ButterworthHeinemann publications available, contact our World Wide Web home
page at: http://www.digitalpress.com or http://www.bh.com.

10987654321
Printed in the United States of America

To Deborah, with love, for many reasons.

Introduction

This book is intended for people considering running a Web server on an OpenVMS system. This includes
OpenVMS hobbyists, professional system administrators, and software developers working on VMS system
My assumption is that readers are already somewhat familiar with VMS systems and may or may not have
any exposure to UNIX/LINUX, Web servers, or freeware tools originating in the UNIX/LINUX world.
Although | will endeavor not to make the text unnecessarily confusing for the VMS neophyte, | am not
including a VMS primer; that would make the book both unwieldy and tedious.

The goal of this book is to provide a detailed introduction to the VMS-based Web servers under current
active development. The reader may expect to learn the features and capabilities of those Web servers, anc
gain an understanding of the issues common to all three (and, in some cases, to all Web server installations
The capability—oriented organization of the book will also assist in conversions from one server to another b
showing the differences and similarities in the ways the servers address the same issues.

All three servers covered run from text—based configuration files. Although | touch on GUI-based
configuration tools from time to time, generally | simply show the text files. This will more clearly represent
what's actually going on in each file, as well as making it easier to compare the configurations of the three
servers. In many chapters, a narrative section on the main topic is followed by example excerpts from the
configuration files for each server. The annotated example configurations in the appendices should also hel
to make the meanings and differences clear.

The exigencies of formatting for book publication may have resulted in some of the examples wrapping at th
wrong places. Be wary of this.

Chapter 1: Why Run a Web Server on VMS?

To ask the question posed by the title of this chapter is, in effect, nearly the same as asking "Why should | b
a book about running a Web server on VMS?" So if you're standing in the aisle at a bookstore trying to mak
up your mind, read on. The answers are different depending on whether you're considering starting up a hug
Web-based enterprise from scratch, looking to add Web access to the data you already have, or running a
hobbyist site. If you're starting up a huge Web-based enterprise, you might want to show this chapter to yoL
management.

The reasons to choose VMS as a Web platform if you're starting from scratch include reliability, availability,
stability, scalability, security, and ease of administration, all of which boil down to VMS and VMS clustering
technology. Clusters were invented for VMS and have been available on that operating system since the
1980s. Other operating systems are starting to catch up, but VMS clustering capability continues to be
developed and will probably retain its technological lead for some time to come.

1.1 VMS clustering

If you absolutely, positively must have access to your data all the time, you can get that capability with
VMS-based computers. With VMS cluster technology and shareable RAID storage, multiple systems can
access your databases or plain files simultaneously, with access arbitrated at a fine—grained level by the
distributed lock manager. If you're set up with volume shadowing, losing a physical disk still leaves you with
an on-line copy of the information. Losing a system just distributes the load over the other systems in the
cluster. If you're really on the high end, you can do clustering over dedicated wide area network links and
have your data centers miles apart; in this instance, losing a data center will just distribute the load over you
other data centers. (This is the "disaster—tolerant" configuration.)

You don't need to reserve a system as the "backup" server; you can load—balance over all your cluster mern
systems and get full use from your hardware investment. Your cluster doesn't have to come down altogethe
when you do an operating system upgrade; "rolling upgrades" are supported, which let you shut down and
upgrade one system at a time. The cluster can share user authorization files, configuration files, and so on,
enabling the system manager to manage dozens of systems with little more effort than it takes to manage a
single one.

Clustering is very scalable. In a well-designed cluster, if the load is getting too big for the existing systems,
you can buy another system, configure it as a cluster member, and have it start taking its share of the load,
without ever having to suffer an outage. Even a small cluster with three nodes can give high availability; you
never have to go down altogether for operating system upgrades, and a single hardware failure won't take y
off the air. Because you still have two systems remaining, you can fix the failed system and bring it back
online, again without having a visible outage.

1.2 Reliability

VMS has had more than 20 years of development targeted at environments in which reliability is very
important. It runs chip foundries, factories, railroad switch yards, banks, cell phone billing, laboratories, and
hospitals, environments in which computer availability is mission critical.

1.3 Security

VMS was designed, rather than just growing or being patched together, and the design has rarely been
compromised by, say, having to support existing Windows applications, or by putting graphics display code
into the kernel where it can crash the system. It doesn't crash by itself, absent hardware failures or really
serious misconfiguration. User—-mode code doesn't usually require recompilation to run on later operating
system releases; VMS 1.0 binaries still work on VAXes running 7.2.

1.3 Security

The culture in VMS engineering is such that you just don't do things like taking input into a buffer without
checking the length of the input, which is something that has caused UNIX systems untold problems and is
the enabling problem for the famous Code Red virus on Windows systems. Even if you did write a program
that allowed user input to overrun a buffer, your process would blow up when it got outside its own memory
area, rather than having a chance to compromise the OS itself.

This feature makes VMS less vulnerable to compromise from outside than other popular systems. Even if
sendmail ran on it, it wouldn't be vulnerable to the famous sendmail bug, in which overflowing an uncheckec
buffer with specific values gave the attacker the ability to execute arbitrary code. But sendmail doesn't run o
VMS and neither do many other well-known vulnerable applications. The VMS separation of program and
data space means that arbitrary code can't overwrite the stack and execute, but buffer overflows can still
occurespecially in software ported from UNIX. VMS does a good job of containing the damage.

The bright side of Digital Equipment Corporation's failure to market VMS effectively in the 1990s is that
most of the bad guys are unfamiliar with it. You can find cookbook instructions on the Web for cracking
Windows and UNIX systems, but those don't exist for modern versions of VMS. (I wouldn't ordinarily try to
sell "security—through—-obscurity," but this obscurity comes in addition to a robust security model with a
fine—grained privilege structure that's been built into VMS from the start.) A properly administered VMS Wet
server isn't going to display any defaced pages.

There hasn't been a virus or worm that affected VMS since the famous Morris worm of 1987, which knew
how to exploit an unsecured DECnet default account. Since then systems are locked down by default, rathe
than getting installed wide open and requiring a system manager to close the holes. VMS is a C2 rated
operating system, following formal evaluation by the NCSC.

1.4 You already have it

The other obvious reason to run a Web server on VMS is that you already have VMS. Your departmental
server is a VMS system, and you want to Web-enable some of your applications, or you're a hobbyist with
home or club server. You don't need to be sold on VMS; you already run it. This book is also for you. If you
have it, why bring in a security hazard such as a Windows Web server, or a LINUX box you don't already
know how to manage? Why mess with expensive cross—platform middleware to get your data to a Web sen
running on a different box?

1.5 Can VMS do what | need?

That's the question this book is meant to answer. After some discussion of the history of each currently

1.3 Security

supported Web server, we'll look at broad functional questions, such as "How do | do X?" and give the
answers for each server. (On some servers, sometimes, the answer will be "You can't.") You can compare
your Web-service requirements with what's available on VMS and decide for yourself whether VMS can do
the job.

I hope you'll phrase questions in terms of functional requirements (e.g., "Can VMS provide dynamic
database-driven pages?") rather than in terms of specific products (e.g., "Can VMS run ColdFusion?")
because, while the capabilities are there, the fact that VMS is a minority platform means that some of the
specific commercial products aren't available. Often, open source products that do the same things have be
ported to VMS, so there are ways to accomplish this.

The strategy of incorporating open source technology brings a nice benefit: platform—independence. Apache
Perl, PHP, and Java are all platform-independent technologies, which makes it easier to find experienced
people for Web development, allows easy porting of applications from UNIX systems, and allows bespoke
development on low-cost platforms with deployment on VMS.

According to Macromedia, the next generation ColdFusion Server ("Neo") will rely on underlying Java
technology for ColdFusion application services. This will broaden the number of platforms that support
ColdFusion and opens the door to a potential VMS port in the future.

Halcyon Software has a Java—based implementation of ASP technology called "Instant ASP" (IASP), which
one of the CSWS developers got running in test under CSWSthis shows how Java technology is bringing
more capabilities to VMS.

At the time of writing, VMS Engineering is working on the DIl COE project, a Defense Departmentmandated
effort to bring a full Posix—compliant UNIX environment to VMS. When this is complete, there will be fewer
barriers to porting commercial UNIX code to VMS. Maybe Cold Fusion will run on VMS eventually. In the
meantime, PHP does quite a good job. Altogether, VMS provides a robust, secure, scalable environment, w
a good complement of tools available to meet your Web-service needs.

Chapter 2: VMS and the Web

In a way, this chapter also answers the question "Why VMS?" A short answer is "Because it was there from
the start.”

2.1 Beginnings

As you may well recall, Tim Bernars—-Lee at CERN, the European high—energy physics laboratory, invented
the Web as a convenient means of sharing high—energy physics information stored in different forms on
diverse servers. VMS systems were big players in the scientific community. (They'd been preeminent in the
middle 1980s, but the price/performance of RISC-based UNIX workstations compared with that of the
VAXes, which were the only VMS platform at the time, meant that the price—sensitive and
performance—hungry scientific market was buying a lot of those as well.) So CERN developed Web servers
for UNIX, for IBM machines, and for VMS.

The Web uses the HyperText Transfer Protocol (HTTP), so a typical name for a Web server is HTTPd, with
the "d" standing for "daemon." (A "daemon"an essential concept on UNIX systemsis a program that runs in

the background, listening until it recognizes that it needs to do something, then doing it.) The first HTTPd we
developed at CERN; and the first non—-European Web server was installed at*5inAcember 1991

(running on an IBM mainframe). My site started running the CERN HTTP server on VMS in 1993 (on a VAX
8700).

A basic Web server, one that just takes requests and serves files, isn't that hard to write. The requirements
begin to get exponentially more complicated when the server needs to provide dynamic content in various
ways; when it needs to support encrypted communication; when it needs to handle heavy loads gracefully;
when it needs to be robust and secure in the face of hacking attempts and badly behaved browser software
The Web actually started before the Internet went commercial, and the environment for Web servers change
considerably when that happened.

CERN eventually needed to spend its money on the Large Hadron Collider and ceased WWW software
development after December 1994. (The CERN server can still be found on the OpenVMS Freeware CD.)
Various computer science and physics sites had already developed browsers, including SLAC; the National
Center for Supercomputing Applications had already developed Mosaic (whose developers went on to founc
Netscape) and produced an NCSA HTTPd; but development on that product stopped when the primary autt
Rob McCool, left. NCSA HTTPd was the most popular server on the Web, but Webmasters now had to
develop their own patches, changes, fixes, and enhancements without any coordination, and the program w
wandering in different directions.

Hwww.slac.stanford.edu

2.2 OSU

In 1994 came the first release of an excellent freeware server on VMS, which | have used at my site since
1995: the Ohio State University DECthreads HTTP server (OSU) written by David Jones. It has been activel
enhanced and maintained ever since.

2.3 Apache
2.3 Apache

In February 1995, a group of Webmasters "got together" via mailing list to support the NCSA HTTPd
product. They combined their patches and bug fixes, and by April 1995 they made the first official public
release of the Apache server (version 0.6.2). Because of all the patches, it was "a patchy server'I'm afraid
that's where the name came from.

The Webmasters developed a methodology for making changes to the core, a method of "lazy consensus,"
which no changes could be checked into the archive without a number of "Yes" votes and an absence of "N
votes. You got voting rights by being recognized as a useful contributor to Apache development.

Using this methodology for working together, the Apache group started improving the server. Version 0.7
involved various new features, but version 0.8 had a hew server architecture incorporating features for spee
(e.g., spinning off new processes before they were needed) and extensibility (e.g., a clearly defined
application programming interface [API] and a modular structure). After lots more work, Apache version 1.0
came out in December 1995, extensively tested, ported to lots of UNIX platforms, and adequately
documented. Within a year, it was the most popular server on the Web, and it has held that leadership posit
since. Some 6 million sites run Apache, including Amazon.com, Hewlett—Packard, the Financial Times, and
the English royal family (www.royal.gov.uk).

Apache runs on Linux, FreeBSD, on other UNIX variants, on Windows NT, MacOS X, OS/2, and now on
OpenVMS. Compagq, VMS's proprietor at the time, created the Apache port. The current version is CSWS 1.
(based on Apache 1.3.20, mod_ssl 2.8.4, and OpenSSL 0.9.5a). The CSWS engineers are working with the
Apache Software Foundation to get their port checked in to the official CVS repository.

Apache 2.0, currently in test, is a rewritten server organized with the platform—specific services isolated in tt
Apache run—time library (APR) and multiprocessing modules (MPM). The rest of the code is
platform—independent. This should considerably simplify the process of porting 2.0 for a later release of
CSws.

2.4 WASD and others

In 1995 came the release of Process Software's Purveyor, a commercial Web server for VMS. Support was
dropped in 1999. (It can still be purchased on an "as—-is" basis or downloaded and run for free by hobbyists,
but source code is not available.) At this writing, the Multinet Web%ite still running Purveyor, and

Compag's own sitd! didn't switch from Purveyor to Apache until September 2001. This book doesn't cover
Purveyor because it's unsupported and not under active development; for the same reason | don't cover the
port of Netscape FastTrack Server to VMS. (The retirement and end-of-support date for FastTrack is
December 31, 2001, on OpenVMS Alpha V7.1-2 and June 30, 2002, for OpenVMS Alpha V7.2-1 and
V7.2-2.) Also in 1995, TGV (the company that originated Multinet) produced the Cheetah Web server but
dropped it in 1997. VMS was not proving a profitable market for commercial Web server software. It's not
entirely clear that a profitable market for Web server software exists anywhere, with the ubiquitous
availability of free alternatives. (I would have said "free high—quality alternatives,” but that wouldn't have
covered IIS.) Figure 2.1 illustrates the Web server timeline.

2.3 Apache

HetWed My CERN Purveyer HFRD Cheetsh Netcupe Punveyorso CSWS/Apeche

server 8 s sener be releisad Server " FaTract Joagerwap- 100a VMS
CERN— akopts Joeger o VMS (later dropped Scrveroe poard
s o0 CERN supporied Cheetah WASD) vMs
BM server oa VMS rekanal refcumad
LNIX, on NCSA o VMS
Ms VMS Senver Apache
Fiest Novk scleasad, 10
Amencan Zrons in
Weh she Apache
SLAC (a0 osu
TEAE VM) Server
versku |
[

Figure 2.1: Web server timeline.

In 1996 Mark Daniel in Australia came out with the first public release of the WASD (initially HFRD) server,
which had been working inside the High Frequency Radar Division of the Defense Science and Technology
Organization for some 18 months before that. Both OSU and WASD were adopted fairly widely and have
grown user communities; both are still under active development.

Imultinet.process.com

Blwww.openvms.compag.com

Chapter 3. Web Options

At this stage in history, the real options for VMS Web serving are CSWS/Apache, OSU, and WASD. (There
are still some vocal adherents of Purveyor from Process Software, but it doesn't really make much sense to
start any new project on a server that's neither Open Source nor supported, no matter how solidly it works.)
Here's an overview of what the three programs offer.

3.1 CSWS

Compag Secure Web Server (CSWS) is an official, Compaqg—supported port of Apache, the most popular W
server on the planet. It's available for download from the OpenVMS Web page
(www.openvms.compag.com/openvms/products/ips/apache/csws.html). If you have a support contract for
VMS, you have support for Apache, so you can call in if you find bugs. It comes as a PCSI kit and is
extremely easy to install, delivering compiled images that are ready to go, so you don't need to have a C
compiler on your system. (I will endeavor to use "CSWS" when referring to the VMS port in particular, and
"Apache" for how Apache generally works.)

The most widely used add-ons for Apache are probably mod_ssl, FrontPage extensions, mod_php, and
mod_perl. Compaq has ported mod_ssl and mod_perl, created a supported port of Perl, created a new mod
for OpenVMS user authorization, added a module that lets you run CGI programs written for the OSU Web
server, added mod_php in the 1.2 beta release, and added mod_rewrite as well. There are dozens of modul
available for Apache on other platforms; it's hoped that a VMS community will develop around
Apache/CSWS and port more of the modules. (I'd certainly like to see mod_python, since there's a VMS pot
of that scripting language. There was a port of mod_python for an early version of Python.) There is at prese
no port of the FrontPage extensions to VMS. Mod_include, the server—side include module, is part of the
core, so CSWS can do very full server-side includes that incorporate some scripting logic. CSWS can run
Java servlets (if Java's installed), and Compaq also makes Tomcat/Jakarta, the Java application server,
available on VMS. (Jakarta won't be discussed in much detail in this book.)

Perl is the amazingly capable scripting/glue language that, in addition to a lot of data manipulation and syste
management applications, turned out to be perfect for Web programming through the Common Gateway
Interface. mod_perl embeds a persistent copy of the Perl interpreter into Apache, with two good effects: Wh
the server needs to process a Perl script, it doesn't have to spend the time to fire up a separate process anc
Perl from disk. It can handle the request faster and with less overall system load. In addition, it means that
Apache can be extended with Perl modules, instead of being limited to writing, compiling, and linking
additional C modules. (The mod_perl interface exposes enough of the Apache internal state to Perl that Per
modules can be involved in Apache's internal processing.)

A Perl module such as Apache::ASP brings Active Server Pages functionality, developed for Microsoft's IS,
to Perl. mod_perl in CSWS 1.1 works only with the version of Perl it was built with (5.5.3), which is not the
most up—to—date version; still, with some ingenuity you can use later versions of Perl in CGI scripts but not
with mod_perl. The CSW 1.2 has a CSWS_PERL and mod_perl that use Perl 5.6.1, which is the most curre
stable Perl version as this is written, although Perl development continues apace. See Appendix A for more
about Perl history and capability. PHP is the PHP HyperText Processor, the most popular Web-templating
language; see Appendix C for more about PHP's history and capability.

There are more add—ons and modules for Apache than for any other Web server, but they aren't supported
Compag. Just because something runs on UNIX or Windows Apache doesn't mean it will necessarily work c
VMS at all or without considerable porting effort, but it will probably be easier to get something that exists

9

3.2 0SU

working than to build something from scratch. Some things that are fairly standard on UNIX Apaches (e.qg.,
using the Berkeley database manager for authentication files) aren't supported on VMS; I'll point these
instances out as we come to them.

The VMS Apache port runs only on Alpha, not on VAX. It requires VMS 7.2-1 or higher. In order to
maximize portability, the port doesn't radically change the Apache core very much. As a result, it doesn't
really take advantage of many of VMS's unique featuresexceptions include that processes use shared mem
to communicate rather than keeping a score—board file on disk and the use of Galactic shared memory for
SSL session cacheand doesn't wring out the last possible bit of performance from the hardware.

CSWS doesn't offer a Web—based administration tool. (There are a number of third—party add-ons that do
this on UNIX.) Most configuration will be done by editing the configuration file.

3.2 0SU

The Ohio State University DECthreads HTTP Server, developed by David Jones, is available from
http://kcgll.eng.ohio—state.edu/www/doc/serverinfo.html. Jones also wrote a freeware secure shell server fc
VMS, the first available SSH server on VMS as far as | know. (Multinet and TCPware include SSH servers,
but TCP/IP Services doesn't offer one, and no plans to offer one have been announced so far.)

You can get OSU to run on VAX or Alpha with any version from 5.5-2 on up. (For versions of VMS higher
than 7.2 you need to run OSU 3.6b or higher. The current version as of this writing is OSU 3.9b, with
3.10alpha in alpha test.) OSU uses threading to handle concurrent Web requests. If you're running a
multiprocessor box and a version of VMS recent enough to handle kernel threads properly, you can take
advantage of your CPU investment by automatically running different threads from the same image
concurrently on any available processor. (OSU is really good at exposing bugs in VMS's threading
implementation, and you may need to turn off kernel threading in the server. Also, the threading model has
changed a couple of times, so if you're on an old—enough VMS version you may need to run an old version
OsuU.)

To communicate with CGI worker processes, OSU uses DECnet internallythat is, without going outside the
server box. (There's a hack that uses VMS mailboxes instead, but that isn't in common use and is really
intended only for testing.) Because of the DECnet method, the scripting environment isn't completely
standard, and scripts developed for other Web servers often need a small DCL wrapper to work properly. (A
exception is made for Perl scripts; the environment sends the right stuff out on the DECnet link and makes t
necessary assignments before invoking Perl.) OSU has some support for persistent scripting environments,
ranging from using DECnet tweaking to keep the script processes around a long time to a special Webperl
image to a High—Performance Script Server process pool manager that accelerates compiled programs link
with the HPSS shareable image. This server can run Java servlets on an Alpha with Java installed. OSU ha
also has very capable and flexible authentication and access control options.

OSU has no built=in SSL support; you have to build OpenSSL and then create an SSL_ENGINE or
SSL_TASK process that communicates with OSU over DECnet, such as a CGl. (This is extremely finicky to
set up but works very solidly once it's going; it's discussed in greater detail in Chapter 6.) You definitely nee
a C compiler if you're going to have encrypted communication support for OSU, and it's a good idea to have
one anyway, as there are enough combinations of operating system levels and VMS TCP/IP products that it
may be difficult to find a precompiled version of OSU with everything you need.

OSU has very configurable and sophisticated file caching, which gives it an advantage over serving pages |

10

3.3 WASD

from disk. Some MicroVAX systems serve hundreds of thousands of pages a month, and the cache can hel,
considerably in reducing the system load. Pulling something from memory is a lot cheaper than pulling it
from disk.

Documentation is somewhat sketchy. There are example configuration files and some on-line documentatic
of what they mean, and some users have put up documentation Web pages. Digital Press expects to releas
OSU manual in 2002. Quite a lot of server configuration can be done via a Web form, although | prefer
editing the configuration files, and most of my examples will be in the form of edited configuration files.

Support is by volunteer effort on the VMS-WEB-DAEMON mailing list. If you have a question or problem,
you can raise it on the list and will often get an answer back very promptly, day or night. (Some of the
contributors are on different continents, so there's effectively 24—hour coverage.) Jones himself reads the lis
and answers questions when he's available. I've been using OSU since 1994 and have generally been very
happy with it.

3.3 WASD

Mark Daniel developed WASD (then HFRD) for internal use at the High Frequency Radar Division of the
Defense Science and Technology Organization, and it was in use for some 18 months before being release
the public. The High Frequency Radar Division of the Defense Science and Technology Organization
changed its name to Wide Area Surveillance Division, so the package became WASD; later the division
became Surveillance Systems Division, but WASD was too well known to change to SSD, and it might have
been too easily confused with the secure shell daemon (SSHD). It's available from http://wasd.vsm.com.au.
WASD runs on VAX or Alpha.

The idea with WASD was to be a really good VMS-only server; Mark Daniel says, "l suffered a bit of a VMS
cringe when amongst my UNIX colleagues (VMS was and is perceived to be a bit slow and cumbersome), s
| have also endeavored to make WASD as fast and efficient as | could, avoiding C run—time library and evel
RMS code layers where it was feasible and worth it. | also wanted a similarly tight scripting environment anc
have spent a lot of time honing this aspect.”

Although everybody's usage varies, WASD seems to be the fastest server available, getting as much
performance as possible from the system. WASD supports a number of scripting environments: standard C(
CGilplus (each with callouts that can request the server to perform certain functions for the CGI and then
resume processing); ISAPI (the fast application program interface developed for Microsoft's IIS); a
framework for a persistent run—time environment that you can customize to make your own application
permanently available, and a Perl processor that takes advantage of this; plus a CGIUTL utility that simplifie
the job of DCL scripts. All of these goodies are supplied with object code, but for customization you'll need &
C compiler. There's support for Java servlets on Alpha with Java installed, and there's also an OSU
compatibility mode. WASD also allows the execution of DCL commands from within server-side include
statements in HTML code.

WASD offers server administration and some statistics via a Web form, or you can edit the configuration file
manually. To get SSL working you install a separate kit, which includes the OpenSSL object libraries into the
WASD directory tree, and then run a script to link. You don't need to make any source code changes. ltis al
possible to link WASD against the object libraries of an existing OpenSSL installation. This is easier than
OSU but marginally harder than CSWS.

11

3.4 Which should you use?

3.4 Which should you use?

The answer to the question "Which should | use?" is always "It depends." If you're running on a VAX, CSWSE
isn't an option, so you'll need to choose between OSU and WASD. If your Webmaster already understands
Apache, use CSWS. If you need to squeeze out the last bit of performance, use WASD. If your site policies
won't let you use software without a support contract, use CSWS (or go to a third—party provider of OSU or
WASD support). If you're not afraid of compiling source code and want a very stable server with a
knowledgeable user base, use OSU. If being "industry standard" matters to youbeing able to buy O'Reilly
handbooks, Dummy's Guides, and so ongo with CSWS, but be prepared to find out that the stuff they
document isn't in the VMS version, or at least be prepared to have to figure out file names and the like. If yo
don't have a C compiler, don't use OSU. If you're stuck on a less—current version of VMS (such as the very
stable 6.2 or 6.2—-1H1), Apache is out of the picture.

In most cases, everything will matter somewhat to you, so you're going to have to prioritize (i.e., figure out
what matters most or how much to weight each factor). All of these servers are available for free, so you do
have the comforting option of downloading each one and trying it out, seeing how well it works in your
environment, and finding out which one you find most congenial to maintain. You can even run them all at
once, on different TCP/IP ports, serving the same or different documents.

12

Chapter 4. Installation Issues

Before making a decision about which Web server to choose for your production server, | strongly encourag
you to install at least one and play with it. (You could qualify or disqualify Web servers based on the
information in this book, but you still shouldn't make a final decision without a real evaluation in your own
environment. If you're a hobbyist with a home setup, you don't have to do a full-scale evaluation, or at least
you don't have to persuade your management that you made the right decision. However, you still need to ¢
through some preinstallation process to give yourself the best chance of a successful installation. Some of t
advice | give here, as in the rest of this book, is more relevant for some readers than for others.

After working through the steps in this chapter, you should have a running copy of the Web server of your
choice, which you can then refine and configure more fully following the advice in subsequent chapters.

4.1 Preinstallation

4.1.1 VMS version

CSWS requires at least version 7.2-1 of OpenVMS on Alpha to run. OSU will work back to VMS 5.5-2 on
VAX; WASD goes back pretty far as well. (Version 7.2-1 of WASD included special code to enable
PERSONA functionality on VMS 6.0 and 6.1; this wasn't provided with the OS until version 6.2.)

The caution with the OSU DECthreads Server is that it was extremely good at exposing thread bugs; you dc
get kernel threads (threads as independently scheduleable entities within a process that can be run
simultaneously on different processors in an symmetric multiprocessing system) that work right until
sometime in the version 7 timeframe. OpenVMS 7.1 introduced kernel threads. OpenVMS 7.2-1 brought
persona—based security profiles to kernel threads. (The absence of these resulted in some baroque
complications in OSU and WASD. Prior to 7.2-1 kernel threads shared a common security profile.)
Therefore, if you have an SMP system and want OSU to work it as hard as possible, you'd better get a rece
VMS release. As | write, OSU is at 3.10alpha (that's "three.ten," which followed 3.9¢); if you're on a version
of VMS earlier than 7.2, you can't use higher than 3.6, but all versions back to the first are available on the
OSU Web site (and can be browsed through Dave Jones's targazer script or downloaded as entire archives

If you're running OSU you need a C compiler. (You can download precompiled object files for WASD and
link them on your system.) You should get a C compiler anyway if you want to be able to build any other
tools. If you have VAX C, get DEC C (now Compag C). Your VAX C license will work for DEC C, and it's a
much better and more standard compiler; it will make your life much, much easier when you go to build othe
packages. If you're on a VMS version before 6.2, you should download and install the "Backport" C library
from Compag; this will also make your development life easier. A C license is included in the hobbyist and
educational layered products license; commercial users can buy single—user C licenses for less than $1,00C

4.1.2 TCP/IP software

Because VMS was developed before the broad spread of TCP/IP software, TCP/IP is an add—on to the
operating system rather than an integrated component. Third parties developed TCP/IP for VMS before
Digital did, and Digital's offering (originally UCX for "Ultrix Connection") was for a long time really inferior

to the third—party products. Process Software was the original developer of TCPware, and they are now alsc
the owners and maintainers of Multinet, first sold by TGV, then by Cisco when Cisco acquired TGV
(apparently to get the expertise of the designers rather than the product), and finally by Process. (Wollongor

13

4.1.3 Disk space

was a respectable TCP/IP package for VMS, but it was eventually sold to Attachmate, which let it wither, an
now it's a dead product.) There was also a Carnegie—Mellon freeware package, but it doesn't seem to be
maintained now; in any case, Process and Compagq both provide free hobbyist licenses for their software, sc
few people have any interest in the CMU-IP package any longer. As far as | can tell, it never worked on
Alpha anyway. Version 5 of the UCX package, renamed "TCP/IP Services for VMS," is considerably more
useful and robust than the earlier versions; much of it is a port from the Tru-64 UNIX IP components. With
version 5, TCP/IP Services becomes a serious option for heavy—duty IP use (although I'm told UCX 4.2 was
pretty adequate).

Now the three realistic options for IP software are Multinet and TCPware from Process and TCP/IP Services
(UCX) from Compag. If you buy a new server, you'll probably get a license bundle that includes UCX as wel
as VMS. If you're a hobbyist user, you can get a free hobbyist license for any of the three. New features for
Multinet and TCPware are usually developed together; Process writes newer stuff, such as their IMAP serve
so that it'll be compatible with either one. There's no longer a significant difference in robustness among the
three packages, so if you're picking an IP package ab initio, you'll have to compare on cost and features.
Multinet includes an SSH (Secure Shellessentially encrypted Telnet) server; UCX doesn't, and Compaq has
announced no plans to support one. UCX already has support for IPv6, the next—generation Internet; Proce:
doesn't plan to introduce such support until customers ask for it, and so on.

The good news is that they all work pretty well for Web service. CSWS is written to work with UCX, but the
developers are also working with Process to make sure it runs on Multinet and TCPware. (For CSWS you
need to run at least Multinet 4.3 with patches; 4.4 will be out by the time this book is published, and that
should work with CSWS out of the box.) One minor gotcha with the UCX 5 transition is that logical names
beginning with UCX$, such as UCX$DEVICE, got changed to TCPIP$whatever, and the UCX compatibility
in Multinet at least didn't get updated in time, so you need to define the TCPIP$ names yourself, at least in
Multinet 4.3.

4.1.3 Disk space

If you're contemplating doing any serious Web serving, you're probably prepared to devote a few gigabytes
disk to it, unless you're on an old micro—VAX system where the amount of disk you can support is pretty
limited. I'll note the sizes of files in the installation dialogs. If you're developing an e—~commerce application,
you should be thinking about cluster—attached storage, or even storage area network, and that should get y
into terabytes of storage, so the amount of space the software takes up won't be a question.

If you expect to get really substantial traffic, you want your executables and configuration files on a disk that
is neither the system disk (where the CSWS installation will put it by default) nor a disk with files that you'll
be serving; ideally, they should be on a controller different from either. The system disk is typically the most
heavily loaded disk in the system (especially if your page files are located there), and working from the same
disk as your data files means that you'll be in contention with yourself and shuttling the disk heads around. |
not that big an issue for the main executable image of the Web server, since that will typically get loaded int
memory on startup and stay memory resident throughout, requiring no more disk access, but it may be
significant when you spin up new processes to execute CGls. This isn't worth worrying about for low-traffic
hobbyists, but it definitely matters for high—traffic, performance-intensive sites. For those sites, you might
want to consider putting configuration and log files on RAM disks (shadowed to real disk so you don't lose
the data upon system crash). (The benefit of the RAM disk is considerably reduced if it's accessed via MSC
by multiple cluster members in separate boxes, but if you have a large Galaxy system and put the disk in
Galactic shared memory, it can be a big win.)

However, if you just want to know whether you have enough disk space to play with this stuff at all, | can sa
that my Apache installation is about 17 MB, Compagq's Perl is about 20 MB, and Compaqg's PHP is about 3

14

4.1.4 Network issues

MB. WASD is about 33 MB, including about 5 MB of excellent documentation. OSU is about 12.5 MB total.
Perl, from the Perlbuild kitwhich comes with many useful built-in modules that Compagq's Perl doesn't
offertakes up about 60 MB. Python takes up about 43 MB. (Of course, you'll need more than the installed
space available, since you've got to have room for a compressed archiveZIP file or SFX_EXEand its
expansion at the same time, but not necessarily on the same disk.) Basically, 40 MB free should be good
enough to install any of the Web servers in a minimal configuration, and 100 MB will let you install most
other tools. Even at hobbyist prices you ought to be able to devote a 1-gig drive to your server installation,
and that'll be more than you need, strictly speaking (although less than you want, since they don't make fast
1-gig drives).

4.1.4 Network issues

If you're running a departmental system that you want to make accessible to the world at largethe situation «
my laboratoryyou need to talk to your sitewide network administrators. They may have a firewall up that will
block access from offsite, which pretty much defeats the purpose of having a Web server. VMS has an
enviable security record, and if you're a competent system manager you should be able to make a case to h
them poke a hole in the firewall for your system or systems. Sometimes they are unwilling to open the
standard Web ports (port 80 for HTTP, 443 for HTTPS) but will leave higher ports (8000 or 8080 for HTTP,
8443 for HTTPS) open; you can work with that if you know what ports are available. It's much better to use
the standard Web ports if you can.

If your site runs scans on port 80 all over the internal network to make sure nobody's running a vulnerable
Microsoft IIS server, they'll find your VMS system. Therefore, you should definitely talk to site security
people before you start the project; otherwise, you'll be talking to them after they've found your "rogue”
server, and you'll start from a disadvantage.

If you're running a home system over DSL and don't have a nice DNS name, you can get usable ones for fre
in the domains owned by dyndns.org just by signing up with them. This will also leave your system locatable
in the event you have to change DSL providers, since your numeric IP address is just about guaranteed to
change under those conditions. The dyndns.org service is intended for people who want to run servers and
don't even have a static numeric IP address, but you can use it even if your IP address doesn't change from
boot to boot. hudson.dyndns.info (my server) is a much nicer name than anything your DSL provider will giv
you by default. Actually, | registered three names: hudson.dyndns.info, alanwinston.homeip.net, and, my
favorite, vms.kicks—ass.net. In later examples I'll show how | provide different content depending on with
which name you reach my system.

You can start your installation and testing before making your system visible to the outside world, and it's
probably a good idea to do soone less thing to worry about. However, in some environments it can take
months to get firewall changes approved, so you should at least start this process in parallel with installation
and configuration. If you give your network people a heads—up as early as possible, it may make them feel
more collegial.

If you're intending to run a high-traffic Web site, you may want to look at co—location facilities, multiple
high—bandwidth pipes to the Internet, off-loading the most heavily hit content to Akamai, using a specializec
Web cache device from Inktomi, and so on. | won't go into detail here because these are issues with
high—traffic Web sites, not issues with VMS-based Web sites.

15

4.2 Installation guides

4.2 Installation guides

4.2.1 Downloads

I've generally used Mozilla 0.9.40.9.8 to download kits for this book. The browser runs pretty well on VMS.
There are some problems with it, however. You may find yourself compelled to use a PC, Mac, or UNIX
browser to get the files inside your firewall, and then FTP to get the kits onto your VMS system. If you do
this, remember to use binary (or image) mode to transfer the files to VMS; ASCII mode will mess up the kits
beyond easy repair.

4.2.2 CSWS

There are separate kits for CSWS Apache, Perl, mod_perl, mod_java, and PHP. You can get the kits from tl
CSWS home pages, at http://www.openvms.compag.com/products/ips/apache/csws.html. (Perl is a separat
and prerequisite kit from mod_perl; PHP and mod_php come in the same kit.) While you'll see mod_jserv uf
on the site, you don't want itthis has been superseded by mod_java (Jakarta), which adds Java Server Page
the server-side Java capability provided by mod_jserv.

The files you download are self-extracting compressed archive files; you run them to create a PCSI install k
You can download the self-extracting kit with any name you like; it will still (by default) extract the
expanded kit with the name PCSI needs to see. These were the kits for version 1.2 beta; as you can see, |
downloaded the PHP with a shorter name. The names you see with a different version will be different (Note
directory output is rewrapped to fit on the page.)

$ dir
Directory DKBO:[CSWS_KITS]

CPQ-AXPVMS-CSWS-T0102--1.PCSI-DCX-AXPEXE;1
14382/14382 17-DEC-2001 09:21:15.50 (RWED,RWED,RE,)
CPQ-AXPVMS-CSWS_JAVA-V0100—-1.PCSI-DCX-AXPEXE;1
10501/10503 17-DEC-2001 00:04:34.86 (RWED,RWED,RE,)
CPQ-AXPVMS-CSWS_PERL-T0101--1.PCSI-DCX-AXPEXE;1
2507/2508 16-DEC-2001 23:59:38.74 (RWED,RWED,RE,)
CPQ-AXPVMS-PERL-T0506-1-1.PCSI-DCX-AXPEXE;1
19158/19158 16—-DEC-2001 23:57:09.82 (RWED,RWED,RE,)
csws_php_pcsi.exe;l

2994/2994 16-DEC-2001 23:55:29.10 (RWED,RWED,RE,)

Total of 5 files, 49542/49545 blocks.

To decompress one of these kits, run it.

$

$! Decompressing the downloaded self-extracting executable.

$

$ run CPQ-AXPVMS-CSWS-T0102--1.PCSI-DCX-AXPEXE;1
FTSV DCX auto—extractable compressed file for OpenVMS (AXP)
FTSV V3.0 —— FTSV$DCX_AXP_AUTO_EXTRACT

Copyright (c) Digital Equipment Corp. 1993

Options: [output_file_specification
[input_file_specification]]

16

4.2 Installation guides

The decompressor needs to know the file name to use for the decom-pressed file. If you don't specify any, |
will use the original name of the file before it was compressed and create it in the current directory. If you
specify a directory name, the file will be created in that directory. Decompress into (file specification):

Opening and checking compressed file...

Decompressing (press Ctrl-T to watch the evolution)...
Creating decompressed file...

Original file specification: ROOT$:[APACHE.KIT]CPQ-AXPVMS-
CSWS-T0102--1.PCSI;1

Decompressed file specification: DKBO:[CSWS_KITS]CPQ-
AXPVMS-CSWS-T0102--1.PCSI;1

Successful decompression, decompression report follows:
File Size: 14381.07 Blocks, 7190.53 Kbytes, 7363107 bytes
Decompression ratio is 1 to 1.60 (60.43 % expansion)
Elapsed CPU time: 0 00:00:03.95

Elapsed time : 0 00:00:05.44

Speed : 254329.83 Blocks/min, 127164.91 Kbytes/min,
2170281.25 bytes/sec

And you can see here that a larger file has been created.
$ dir

Directory DKBO:[CSWS_KITS]
CPQ-AXPVMS-CSWS-T0102--1.PCSI;1

23072/23073 17-OCT-2001 17:41:14.54 (RWED,RWED,RE,)
CPQ-AXPVMS-CSWS-T0102--1.PCSI-DCX-AXPEXE;1
14382/14382 17-DEC-2001 09:21:15.50 (RWED,RWED,RE,)
CPQ-AXPVMS-CSWS_JAVA-V0100—--1.PCSI-DCX-AXPEXE;1
10501/10503 17-DEC-2001 00:04:34.86 (RWED,RWED,RE,)
CPQ-AXPVMS-CSWS_PERL-T0101--1.PCSI-DCX-AXPEXE;1
2507/2508 16—-DEC-2001 23:59:38.74 (RWED,RWED,RE,)
CPQ-AXPVMS-PERL-T0506-1-1.PCSI-DCX-AXPEXE;1
19158/19158 16—-DEC-2001 23:57:09.82 (RWED,RWED,RE,)
csws_php_pcsi.exe;1

2994/2994 16-DEC-2001 23:55:29.10 (RWED,RWED,RE,)

Total of 6 files, 72614/72618 blocks.
$

Under certain circumstances on ODS-5 disks, the PCSI kit will be created with a name in lowercase letters.
PCSI can't deal with that, so you need to rename the kit to uppercase, with

$ RENAME whatever—the—kit-is.pcsi WHATEVER-THE-KIT-IS.PCSI

If you want to install the bare server, you can do it now; I'd expect you'd rather install all the kits. To have the
mod_perl installation work, you need to install Perl first.

$ product install perl /source=dkb0:[csws_kits] —
_$ /destination=dkb0:[compaq_perl]

After a successful installation, you need to define some logicals so that the next install can find where Perl i
(I recommend installing Craig Berry's prebuilt Perl kit even if you're going to run mod_perl, because it has a
lot of useful modules that have had their VMS compilation issues sorted out, and you can install them into tt
Compagq Perl tree. At the moment Compagq's Perl and this one are the same version [5.6.1], but there'll likely
be a prebuild for 5.8 before Compaqg gets its own out; the 5.6.1 prebuild was more than a year ahead of
Compag's. Anyway, if you've already got the prebuilt Perl up, you probably have definitions for

17

4.2 Installation guides

PERL_ROOT and PERLSHR that point to it, so you need to overwrite them.)

$ define/job/translation=concealed PERL_ROOT -
dkb0:[compag_perl.PERL5_006_01.]
$ define/job PERLSHR PERL_ROOT:[000000]PERLSHR.EXE

You need to define these logicals in some way that will propagate to other processes. A plain define won't b
seen in the process that PCSI creates.

$ define/job
will be visible to all the subprocesses. You could also do

$ define/system

but if you have a systemwide definition for the prebuilt Perl, this will wipe that out.

$ define/job
will work without breaking anything else.

You can certainly install one product at a time, like this:

$ product install csws /source=dkb0:[csws_kits] —
_$ /destination=dkb0:[apache$common]

But there's little reason not to do them all together. Leave out any you don't want to use. You need to have
Java installed and configured if you're going to install CSWS_JAVA; you can get it from
http://lwww.compaq.com/java/download/index.html.

$product install csws,csws_java,csws_perl,csws_php
_$ /source=dkb0:[csws_Kits]
-$ /destination=dkb0:[000000]

The following products have been selected:
CPQ AXPVMS CSWS T1.2 Layered Product
CPQ AXPVMS CSWS_JAVA V1.0 Layered Product

CPQ AXPVMS CSWS_PERL T1.1 Layered Product
CPQ AXPVMS CSWS_PHP T1.0 Layered Product

This will install all the products at once.

After that you need to run APACHE$CONFIG to get Apache running at all. It will create an account/user
name for the server to run under.

$ @sys$manager:apache$config

Compagq Secure Web Server V1.1 for OpenVMS Alpha
[based on Apache]

This procedure helps you define the parameters and the operating environment required to run the Compaq
Secure Web Server on this system.

[Creating OpenVMS username "APACHESWWW"]
[Starting

18

4.2 Installation guides

HUDSONS$DKBO:[APACHE$COMMON.APACHE]JAPACHE$ADDUSER.COM]

You will be prompted for a name that goes in the owner field of the APACHE$WWW account, a password
for the account, and a UIC [group,member] number for the account. Pick a group that doesn't have other us
names already established in it, since that could cause unexpected results (e.g., the server being able to se
files owned by those other users who have G:RE protection). Servers are usually given the first unused grot
starting at [377,*] and working down. Do not go below SYSGEN parameter MAXSYSGROUP (since
members of such groups automatically get system access.)

Other questions include whether you want to define the system-wide logical names APACHE$SPECIFIC,
APACHE$COMMON, and APACHES$ROOT. (You probably do, unless you have some unusual requirement
to run multiple instances of Apachenot just multiple processes, but multiple instanceswhich isn't even requir
to run multiple virtual hosts on multiple IP addresses.)

You'll also be asked whether to enable MOD_SSL and whether to specify any command-line arguments for
the server. (This is useful for mildly tricky stuff such as testing configuration files or making temporary
changes with defines, but you probably don't need to do it in the permanent configuration.)

Add
@SYS$STARTUP:apache$startup

to your systartup_vms.com and
@sys$startup:apache$shutdown

to your syshutdwn.com files so that Apache will start on system boot. If you're going to run MOD_PERL and
don't have a DEFINE/SYSTEM of PERL_ROOT and PERLSHR that'll point to the right Perl image, go to the
Apache login directory and add

$ define/job/translation=concealed PERL_ROOT -
dkb0:[compaqg_perl.PERL5_006_01.]
$ define/job PERLSHR PERL_ROOT:[000000]PERLSHR.EXE

to the LOGIN.COM file there.

To start Apache "by hand" now, do
$ @SYS$STARTUP:APACHES$STARTUP

Run
@SYS$SMANAGER:APACHES$JAKARTA_CONFIG

to configure Jakarta (CSWS_JAVA). By default, Jakarta runs as SYSTEM, but you should make it run as
APACHE$SWWW; so pick Option 1 from the configuration menu.

Enter the OpenVMS account name for Jakarta (Tomcat)
[SYSTEM]: apache$www

Set the owner of the Java files to apache$www. Look in SYSSMAN-AGER:SYLOGIN.COM to make sure
that you don't run

19

4.2 Installation guides

$ SET TERMINAL/INQUIRE

on any but interactive processes, since this will fail when Jakarta starts.

$ @SYS$STARTUP:APACHES$JAKARTA_STARTUP
will start Jakarta; you can add that or a slight variant

$ file := SYS$STARTUP:APACHES$JAKARTA_STARTUP.COM
$ if f$search("file™) .nes. ™ then @'file'

to
SYS$MANAGER:SYSTARTUP_VMS.COM,
and similarly add

$ file :== SYS$STARTUP:APACHE$JAKARTA_SHUTDOWN.COM
$ if f$search(""file™) .nes. ™ then @'file'

to

SYS$SMANAGER:SYSHUTDWN.COM

Point your browser to HTTP://yourhost.yourdomain.tld/ and you should see the standard Apache startup pa
as shown in Figure 4.1.

(] Nt case 169 Page for The 1L TS awvare Asache Wstad sthon oa We e BE)
4 32X 2 0 a4 38O 1 u
dem R —— el o Tt ey Dy

Twte Bbyinecim @ s

Hay, It worked !

The SSLTLS-aware Apache webserver was
successfully installed on this website.

10 0 v 00 B g ot B e Wi wwn Bt e b o el G aacle TWOY sucs e sl S L
~ 4 55 MoveTaIy TWY W < sy g O

LbCae £ C9AL0 w0t 85 w0 Moy WA N B M S O il Spme T) dwetedlel Jace (v 4Pe

Tt e VR e o D O R BEL AN e VT e
Ths s g Agte sud ot SpealiEL

Fr- e R e

Figure 4.1: The default Apache startup page.
HTTP://lyourhost.yourdomain.tld:8080/ should show the Tomcat startup page, as shown in Figure 4.2.

20

4.2 Installation guides

o————————————— G lumatvadi =1
<4 e = - B
. e - e
T s L e L s L LSS TE N
Tomcat
II Varsden 321
s R, T & (e delimdt Tomu Lowe pruge Tha juage seves o 0 quich (el ence pide (0§ shaed erou e

P —
o </pash/ts/toncat>/webpagesn/ izdex. htnl
Indkoded wetun S 1o wry fachenel enaapler weh Lasoouted souce (ode, APT Socamertanes foe Mrviets sl 5T, 2

README. « seshumal FAQ wa s vidonss mnd mn swnn tunnd of ons Son whveds ws g wnns Gov s oorvwmed dovibopment
efwob techreloges mehdng 15 md Jerdens

Esngles
JEPK s
Sorviet §uamples
Dacerwarstin

e R)

o AIT doo for Serviet and JST Packages

The BEADME G, whuch can Ve Cound & “paditoNoonc st *TEADME. contans ¢ i ofbawwn bugs, sconpaibdues ad
Wreators

a oan fnd wore wfvewvnena how the Sarviet md I2T techasdopes

o Sua's Java Server Pager Site
* Swan verviet See

2 by SR 1 crm o6 ire A0 T Tilowang Sarviet sed 7TF seled reast ity

P I T ——
Figure 4.2: The default Tomcat/Jakarta startup page.
Edit

APACHE$COMMON:[CONF]HTTPD.CONF

and look for the "include" lines for the mod_ssl, mod_perl, and mod_php configurations (assuming that you
chose to install them). The installation should have automatically inserted them at the bottom of the file.
(Later, you'll be happier if you've moved the mod_ssl include up near the top.) If they're not there, insert thel

You can now test the mod_perl configuration by pointing your browser to this test page:
http:/lyourserver.yourdomain.tid/perl/perl_rules.pl. See Figure 4.3.

D LR Vo) Pert ek aE)
S 53d a8 u3e 0
Ml | T e vy |) @ eratwmns |
Mod_Perl Rules !!
Povwrnme u foie
Fa — DAL 2

Figure 4.3: The mod_perl test page.
Similarly, to determine whether or not mod_php is working, look at
http:/lyourserver.yourdomain.tid/php/php_rules.pl. See Figure 4.4.

21

4.2.3 OSU

e L —o.

[§ <3828 4 2 ¢ 0 1 [~]
Niaeibbn onncmevermansd CF st

Mod_Php Rules !

|l e R
Figure 4.4: The mod_php test page.

You should now have a working CSWS/Apache server, although all it will serve right now is the Apache
documentation set. If you have an existing set of files you want to serve, you can edit HTTPD.CONF and ad

DocumentRoot "/deviceorlogicalname/directoryname"

to point there, but make sure Apache$WWW can read them.

4.2.3 OSU

These directions are suggested by, but enhanced and somewhat reorganized from, Brian Reed's directions
http://www.iron.net/www/userguide/index.html.

Download the server as a .ZIP or .TAR file from http://kcgl1l.eng.ohiostate.edu/www/doc/serverinfo.html.
(You can get UNZIP and TAR2VMS from the freeware CD, either using the copy that's distributed with
operating system distributions or from the OpenVMS home page,
http://www.openvms.compag.com/freeware.) | use ZIP, but that's a personal preference. Put the ZIP file in tl
root directory in which you want to install the server software. I've made that DKBO:[OSU].

$ dir
Directory DKBO:[OSU]

HTTP_SERVER_3-10.ZIP
2549/2550 5-FEB-2002 03:07:35.32 (RWED,RWED,RE,)
Total of 1 file, 2549/2550 blocks.

$ unzip "-V" http_server_3-10.ZIP

(The "-V" option retains whatever version numbers the files were zipped up with, rather than making all the
files version 1. This doesn't make a lot of real difference.) ZIP will create and populate a set of subdirectorie
to your root directory; these are . BASE_CODE], [.BIN], [.CGI-BIN], [.[FORK_CODE], [.JAVA_CODE],
[.[PROXY_CODE], [.PVBIN], [.SCRIPT_CODE], [SERVERDOC], [.SYSOSF], and [.SYSTEM].
Configuration files and server executables typically live in [.SYSTEM], sources for distribution—provided

CGlI programs and CGl infrastructure in . SCRIPT_CODE], and CGI programs in [.BIN].

22

4.2.3 OSU

To build the server image (which requires a C compiler), choose a name based on which IP software you're
running

$ SET DEFAULT [.BASE_CODE]
and then the appropriate one of

$ @BUILD_MULTINET ! for MULTINET

$ @BUILD_TCPWARE ! for TCP

$ @BUILD_UCXTCP ! for UCX or TCP/IP Services

$ @BUILD_TWGTCP ! for Pathway (Wollongong, then Attachmate)
$ @BUILD_CMUTCP ! for CMU TCP/IP

Move over to [-.SCRIPT_CODE] and execute
$ @BUILD_SCRIPTS_tcpip—name

Before you can run the server, you need to create a server account and set up some DECnet proxies. (It's
actually possible to run the server interactively out of a user account, but that isn't a good long-term approa
It's also possible to run it without DECnet, but the author of the software doesn't recommend it; the MBXnet
protocol [communicating via mail-boxes] is included only for testing purposes.)

To create the account, do

$ SET DEFAULT SYS$SYSTEM ! not necessary if SYSUAF is
defined.

$ RUN AUTHORIZE ! or AUTHORIZE if DCL$PATH includes
SYS$SYSTEM

UAF>ADD HTTP_SERVER -
/DEVICE=disk_you_put_the_directory_on —
/DIRECTORY=[OSU]/PASSWORD=make_up_a_password —
/FILLM=18/BIOLM=18/PRCLM=15/DIOLM=18 -
/ASTLM=20/BYTLM=32000/JTQUOTA=4096 -
/WSDEF=2000/WSQUO=4000/WSEXTENT=32767 -
/PGFLQUO=150000 -

[PRIV=(TMP MBX,NET MBX)/DEFPRIV=(TMP MBX,NET MBX)
UAF>

The account doesn't have to be named HTTP_SERVER. On VAX; if the SYSGEN parameter
VIRTUALPAGECNT is smaller than the /PGFLQUO qualifier, the server will only get
VIRTUALPAGECNT pages, so you may need to edit MODPARAMS.DAT to increase
VIRTUALPAGECNT and run AUTOGEN to make it take effect. If the various PQL_Mxxxx working set
parameters (which define the minimum working set quotas for processes) are larger than those you've
specified, the values from PQL_Mxxxx will be used rather than those from the UAF.

If you're not running DECnet, you'll have to start it and may need to install it. On VMS versions prior to 6, the
command was

@SYS$STARTUP:STARTNET

For more recent versions, see the documentation. Note that you have to start DECnet Phase IV before you
start an IP product, because it changes the hardware address of your Ethernet card, which it can't do after tl
IP software is already using it. So if you're not already running DECnet, you'll need to reboot. A complete
DECnet installation and management guide is outside the scope of this book.

23

4.2.3 OSU

Because OSU uses DECnet to communicate with the processes that run CGI scripts and because SYSTENM
needs to be able to tell it to start, you need to define some DECnet proxies. If you've never defined a DECne
proxy before, you'll need to create the proxy file.

UAF> CREATE/PROXY

Now you can add the proxies:

UAF>ADD/PROXY 0::http http/DEFAULT
UAF>ADD/PROXY 0::system http

(0 is DECnet shorthand for the current system, so this enables passwordless login from the HTTP account ¢
this system to itself, and from the SYSTEM account to itself. If your proxy file is shared clusterwide, the O::
notation means that the same proxies are defined on each system, whereas if you included a node name, y:
be defining proxies from that node to each system.)

On really old DECnet Phase IV systems, you may need to tell DECnet that you've updated the proxy file. Th
shouldn't hurt, in any case.

$MCR NCP SET KNOWN PROXIES ALL

At this stage, you can download Brian Reed's TEST_SERVER.COM and run it to see whether your
configuration is basically okay, but it's not an essential part of the installation or startup. Get it from
http://www.iron.net/www/userguide/test_server.com. Before you start it up, make sure
HTTP_STARTUP.COM is readable by the server account, either via W:RE protection, an Access Control Li
entry, or making OSU the owner of the file. (If you've been editing in the SYSTEM account, you may end up
with SYSTEM owning the file even though you think it's something else.)

You can also just start it up:

$ @device:[directory.SYSTEM]HTTP_STARTUP account-name

(While the rest of this could be done from any suitably privileged account, this must be done from the
SYSTEM account, or at least from an account that has a proxy to the server account.) The startup will define
the /SYSTEM logicals WWW_ROOT and WWW_SYSTEM.

If DECnet is configured to allow it, you should now have a running OSU server. You can add the startup
command to your system configuration. There isn't a Web server shutdown command file to include in
SYSHUTDWN. Point a browser at your server and you should see something similar to the page shown in
Figure 4.5.

24

4.2.4 WASD

< t =N - u

Bes Rebwdh rewt .-

I e o L L T L rer—

Configuring the server

5
ri
.4

1T

g jxens

Yty
Figure 4.5: OSU default page.
4.2.4 WASD

Go to the WASD download page (http://wasd.vsm.com.au/wasd/) and pick your nearest mirror site. Downloz
the zipped WASD Kkit, currently HTROOT_721.ZIP (for a full kit including both VAX and Alpha object

files); there's a beta of version 8 out already. If you want SSL support, you can get precompiled binaries of
current OpenSSL objects as WASDOPENSSL096C_AXP.ZIP (or WASDOPENSSL096C_VAX.ZIP). Put the
zip files in a handy directory, say [WASD].

$ UNZIP "-V" HTROOT_721
$ UNZIP "-V" WASDOPENSSL096C_AXP.ZIP

This creates the [.HT_ROOT] subdirectory, with the whole tree underneath it. (You can promote this to a roc
directory by RENAMing

$device_name:[WASD]HT_ROOT.DIR $device_name:[000000]
but you don't have to do that.

$ SET DEFAULT [.HT_ROOT]
$ @INSTALL ! no SSL support

or

$ @INSTALL SSL ! SSL support

This will ask you if you want to compile and link or just link the provided objects. (I always feel better about
compiling, since | then have some independent confirmation that [1] the sources provided actually do compi
and [2] there are probably no poorly concealed backdoors in the software. Although, in fact, | rarely take the
time to desk—check thousands of lines of code for possible bad behavior, | feel fairly confident with a
well-known package that someone other than the developer will have looked at the code at some point. In t
course of writing this book, I've looked at a lot of surce code and not found any trapdoors.)

At any rate, if this is a new install of WASD, the install script creates all the executables and then runs the
server (from the account you're installing from); if all goes well, you can see the server test page on port 70¢

25

4.2.4 WASD

It runs in PROMISCUOQUS mode, a mode basically intended just for these circumstances. It will accept any
user=name/password combination for authentication in this mode. Hit CTRL-Y when you've checked out th
server using a browser. Then the procedure will create an HTTP$SERVER account; you'll need to provide &
UIC. As | mention in the OSU install, this should be a group without any other users (so you don't get any
unexpected results from GROUP:RE protection) and of a higher number than the SYSGEN parameter
MAXSYSGROUP, since anything with a lower number than MAXSYSGROUP has implicit system privilege.

Make sure that the HTTP$SERVER account has access to its own files. You can get it running (in a very
minimal mode) with

$ DEFINE HT_ROOT /TRANSLATION=CONCEALED -
device_name:[WASD.HT_ROOT.]
$ @HT_ROOT:[LOCAL]STARTUP

This will start the server (on port 80, by default); and you can again use the browser. Without being
configured to give access to anything, it'll give an "ERROR 403 — Access denied, by default." message, and
serve the error pages.

You now have a working WASD server. Point a browser at your server and you should see something like
Figure 4.6.

= A WARD VA Iy 6wt Lo es Packsge v T an
¥ 3 & » 8 das & 08
| cea R P Smety ey
PN ey rsp———— Q7 e rtane
Wekome Ths s JOVON SOOE S0 DR maton oo, ad woms T S -
I3 e 72
A v s ik s & A puogs ¢ Cupprign @ I900 2000 Mt € Braka] et s e s o P S —.
oy o e P i, ooy —
Yo e el M [l - - -l -
Bils Tiom e+ o~ - ~ -
Pies G g B L
Cencnsttion
P e L . —— e v
2 b 35 vt o — o macn) -
. e a—
Duownbmed
- - o - =
.«
.
Tt vam
Man Lokt bivws gov o |
- Fevmmar 10| o
D e it e S DN e, G
L N R

Figure 4.6: The WASD test page.
If you've followed the instructions here, you now have a working server, whether it's CSWS, OSU, or WASD
In the next chapter, you'll learn how to read and understand the configuration files and to start and stop the
servers; we'll then take the first steps toward making these servers actually serve useful content.

26

Chapter 5: Basic Configuration and Server Control

Ultimately, the configurations of each of the VMS Web servers come down to a few text files. In this chapter
we'll discuss the file names and locations for each server, and, more important, give an overview of the
underlying concepts and structure of each file. This will be vital in understanding the configuration file
excerpts given as examples throughout the rest of the book. We'll also discuss some of the most basic
configuration directives, the ones that tell the servers what ports to listen to, where to find the files to serve,
and how to redirect browsers to the right location for content that has moved. Finally, we'll discuss
command-line control and Web-based control for each server.

Simultaneous with or after reading this chapter, | suggest browsing through the annotated sample
configuration files in the appendices. This chapter plus the annotated sample files can give you a quick start
getting a server up to play with.

5.1 CSWS

The main CSWS configuration file is HTTPD.CONF, usually found in
APACHE$COMMON:[CONF]HTTPD.CONF. There are other files in APACHE$COMMON:[CONF]. (If
you're looking at an Apache book for UNIX, it will tell you that you can specify a different location for the
configuration files as a command-line argument when starting Apache. That's not an available option under
VMS, and APACHE$COMMON is a sensible location anyway. Apache books will also tell you about various
third—party Apache configuration tools, but they won't work with VMS either.)

Individual modules (mod_perl, mod_ssl, mod_php) have their own configuration files, which are referenced
from HTTPD.CONF with include statements. HTTPD.CONF-DIST has the completely uncustomized default
configuration file. HTTPD.CONF-DIST-NW (NetWare) and HTTPD.CONF-DIST-WIN (Windows) can be
safely ignored on VMS. ACCESS.CONF-DIST and SRM.CONF-DIST can also be ignored; these are
prototypes for files whose functionality is better put in HTTPD.CONF. HHGHPERFORMANCE.CONF-DIST
has some configuration hints that work on UNIX and don't work on VMSis there a/dev/null on your system?
MAGIC. is a data file for MOD_MAGIC, which enables the Web server to guess the appropriate file type for
an unknown file based on the "magic numbers" at the beginning of the fileor would, if MOD_MAGIC were
supported on VMS. You're better off making sure files have appropriate names and using MIME types. The
MIME.TYPES file provides a default mapping of file extensions to MIME types; you can add more either by
editing MIME.TYPES or by using the AddType directive in HTTPD.CONFalthough Compaqg recommends
using AddType because MIME.TYPES is repaced with each upgrade. (To shorten all this, the only supplied
configuration files you need to worry about are HTTPD.CONF, MOD_PERL.CONF, MOD_PHP.CONF, and
MOD_SSL.CONF.)

HTTPD.CONF has server—level directives, which affect the whole server, and container directives, which
affect only the things contained in them. (You can also scatter per—directory configuration and authenticatiol
information out in files in the relevant directories, which you have to be careful not to serve out to the world.)
Container directives look a bit like HTML code, with a tag to start them and another one to finish. It's worth
mentioning here that the directives in Apache/CSWS are case-sensitive; those in OSU and WASD typically
are not.

The general form is:

<Container conditions>
directives that apply to this container

27

Chapter 5: Basic Configuration and Server Control

</Container>

The directives are Limit, LimitExcept, Directory, DirectoryMatch, Files, FilesMatch, Location,
LocationMatch, and VirtualHost. The Limit, LimitExcept, Files, and FilesMatch directives can be nested
inside other container directives.

Directory lets you specify either a directory or a wildcard—matched series of directories to which the
commands inside will apply; Directory—Match does the same but uses regular expressionswhich are
emphatically not the wildcards VMS users are used toto specify directories that can match.

<Directory /$disk1/stuff/*>
order allows deny

deny from all

allow from 127.0.0.1
</Directory>

Files, as you'd guess, lets you specify either a file or a wildcard—matched series of files to which the
commands inside will apply; FilesMatch does the same with a regular expression.

Location is similar to Directory, except with URLSs rather than physical directory names; the directives inside
are applied before the server maps the URL into a directory, and LocationMatch is a version of Location tha
uses regular expressions.

Limit is about HTTP methods and is mostly used to grant or restrict access to particular groups. If you want
allow someone at a particular node to PUT (upload) Web pages into a directory, you can do:

<Limit PUT>

order deny, allow

deny from all

allow from the—ip—address—you-like
</Limit>

which disallows everybody except the ip—address—you-like and then allows that one. (But if you want to use
it to disallow all methods, you need to exhaustively list all methods, including any custom ones.) To put a
restriction on all but a few methods without listing them exhaustively, use LimitExcept; the following
directive says that you have to be an authenticated user to do anything but GET.

<LimitExcept GET>
require valid—user
</LimitExcept>

You'll see a lot of container directives throughout the book, so | won't give you examples of them all now.
CSWS can also take instructions from files distributed throughout the document tree; .htaccess files (the
typical UNIX dot—file format for configurations) allow restrictions on access and specifying options for

automatically generated directory listings. CSWS can also use different password files to secure different
parts of the document tree and these can be located in different places.

28

5.2 OSU

5.2 0SU

The OSU configuration files as delivered look pretty confusing. They're actually designed to run through a
preprocessor in the server to generate the full configuration file. The reason for this is that the server has co
with a Web-based configuration aid for many years, and that configuration aid requires this preprocessor
format. You can use the Web-based administration tool, you can hand-edit the files with preprocessor stuff
them, and you can stick nonpreprocessor directives into the config file along with the preprocessor directive:

Most experienced users of the OSU server edit their configuration files by hand. The config files live in the
[.SYSTEM] subdirectory of the Web server directory. Preprocessor code looks like this:

ITERATE Welcome $welcome_file
NEXT index.html

NEXT welcome.html

NEXT index.htmlx

The preprocessor iterates from the .ITERATE command through all the .NEXTs, each time plugging the
actual parameter into the placeholder in the iterate statement. This ends up translated as

Welcome index.html
Welcome welcome.html
Welcome index.htmix

(That particular command specifies what files to look for in each directory when the URL specifies the
directory but does not specify a file, serving the first one found. If index.html, welcome.html, and index.htmlx
all exist, index.html will get served, but if index.html doesn't exist, welcome.html will get served. You can, of
course, specify .htm files as well, if your users are all using PC-based HTML editors. You could also just
type in this translation directly.)

.DEFINE $placeholder parameter

works like a C preprocessor macro, more or lessfurther appearances of the placeholder in .EXPAND
commands will be replaced by the parameter.

.EXPAND $placeholder [$placeholder? ...]

Most of my examples will have the expanded directives, not the preprocessor code.

The config files that come with OSU and are enabled by default are HTTP_MAIN.CONF (the main file),
HTTP_SUFFIXES.CONF (MIME types and in some cases presentation scripts), HTTP_PATHS.CONF (URL
path to directory path translation and access control), and HTTP_MANAGE.CONF (configuration for both
the Web—based and command-line server management interfaces). HTTP_SCRIPTS.CONF specifies how
scripts in different virtual directories are run, HTTP_DIRECTORY configures the MST-based directory
browser (the thing that generates clickable listings of directories that don't have a welcome file in them),
FASTCGI.CONF configures the optional FASTCGI script execution environment, ISAPI.CONF configures
the ISAPI script execution environment, and WWWJEXEC.CONf configures the Java execution environmen

Additional configuration files are .PROT files (which specify access controls and are invoked in the
HTTP_PATHS.CONF file) and files that allow tuning of automatically—generated directory listings. In my
configuration the .PROT files are in the server root directory, not in the document tree, but actually they can

29

5.3 WASD

be placed anywhere the server account has read access to. Some additional configuration can be done thro
the use of logical names, and a little bit moremostly setting log file levelscan be done from a command-line
utility after server startup.

5.3 WASD

WASD's configuration files typically look like this:

[DirectiveName]
stuff to do with that directive
more stuff to do with that directive

[SomeOtherDirectiveName]
or
[DirectiveName] Attribute
or
[[SchemeServiceName]]
or
[[SchemeServiceName:Port]]

when configuring virtual services.

The configuration files you get out of the box are HTTPD$CONFIG.CONF (essential serverwide
configuration information); HTTPD$AUTH.CONF (info relating to authorization and authentication);
HTTPD$MAP.CONF (mapping URLSs to file names, mostly); and HTTPD$MSG.CONF, which allows you to
specify values for server—generated messages in different languages. (If you're aiming only at English
speakers, you'll generally leave this one alone.)

You can also define an HTTPD$SERVICE.CONF, which lets you configure different services in more detail
than you can in the HTTPD$CONFIG.CONF. HTTPD$SERVICE.CONF typically looks like this:

[[SchemeServiceNamel:Port]]
attribute

attribute

[Directive]attribute
[Directive]attribute
[[SchemeServiceName2]]
attribute

attribute

[Directive]attribute
[Directive]attribute

Some configuration can be done by setting systemwide logical names. Some can also be done from the

command line at server startup, and there's also a GUI administration utility. (Note that the GUI administratc
was somewhat broken in 7.2-1, but is fixed in the advance copy of 7.2-2 | was given, and will surely be

30

5.4 Basic configuration

working in version 8, which is likely to be out by the time this book is published. If you have 7.2-1 and want
to use Webbased server administration, you should upgrade.)

5.4 Basic configuration

Basic configuration elements include ways to tell the server what TCP/IP port to listen on, where to find youl
document tree or trees, what host name the server should consider itself to be running on, and how to bring
or block out additional document trees.

5.4.1 Ports and hostnames

The default port for the HTTP transport is 80; for the HTTPS transport it is 443. If you are an unprivileged
user and want to run a Web server process, you can't use ports below 1024, so may need to use 8000, 800
8443. (Even if you're a privileged user, if your site has port 80 blocked at the firewall, you may need to use ¢
higher-numbered port.) If you're doing a test installation and don't want to mess up the existing installation,
you may need some other port than the default. It is, nonetheless, preferable to use 80 and 443 if you can.
can also set your servers up to listen on multiple ports, so if you have an old port 8001 installation you can r
on port 80 as well but not lose people who have port 8001 bookmarked.

You'd think you wouldn't need to tell a server what its name was, but it's helpful in constructing
self-referential URLs and e-mail addresses for server administrators, as seen in error messages. It's rarely
case that the server has only one name in the DNS; most people want the server to respond to
yourhost.yourdomain.tld and www.yourdomain.tld. If you're running in a cluster with a cluster alias, you wan
to be sure to use the cluster alias rather than the individual system's name so that the requests you generat
be satisfied by the least busy cluster member, rather than keeping the user tied to the same system even if |
busy or becomes unavailable. So, trust me, you want a host name. (This chapter is on basic configuration; i
you want to have multiple hosts with different names on your server, refer to Chapter 9.)

In CSWS, the relevant directives are in HTTPD.CONF and MOD_SSL.CONF.

ServerName server.domain.tld
Port port-number
Listen [ip—address:]port—-number

(Listen directives are cumulative; there's one in HTTPD.CONF for the HTTP port and another one in
MOD_SSL.CONF for the HTTPS port [or ports].) While the Listen directive, as the name suggests, tells the
server what port(s) to listen for, the Port directive says what port to use in constructing self-referential
external URLSs, as, for example, in filling out HREFs that are specified relative to the current document.

In OSU, the host-name command is hostname.

hostname server.domain.tld

Until version 3.10alpha there were only two ports supportedthe cached port and the noncached port. (The
noncached port could be handy in viewing changes to documents as soon as the changes have been made
rather than waiting for a cache sweep to find that the document had been updated. However, it's the port thz
ended up being used for HTTPS support, which just adds to the overhead of HTTPS on OSU.) With 3.10alp
you can have up to eight ports in play at once, and you can run HTTPS on a cached port for better
performance.

31

5.4 Basic configuration

You can specify the ports you want listened to in the HTTPD_MAIN.CONF file, although these can be
overridden by putting different values in the server startup command. In the file, put

port cached—port[/[+][:][scheme]] [noncached—-port [/[+][:]scheme]]
By default, this looks like:
port 80 443

Add additional port commands to add more ports. The second one on a line will always be a noncached por
If, for some reason | can't currently imagine, you want to specify more noncached ports than cached ports,
can respecify one of the cached ports and OSU will recognize and ignore the duplication.

port 8000 8001
port 8000 8002

If you just give a bare port number, OSU defaults to running HTTP on it, not HTTPS, unless it's 443. OSU
notices whether the port is the standard port for that protocol or not, and marks it if it isn't, but you can also
save it the trouble by marking it yourself with a .. (This matters because it tells the server whether to include
the port number in self-referential URLS.) You can give it a plus sign to indicate that keep-alives are
supported in the protocol, which is by default true for HTTP and false for HTTPS. A whole-hog full
specification of standard and variant ports, including a cached variant HTTPS port, would look like this:

port 80/+http
port 443/https
port 8001/+:http
port 8443/:https

In the 3.10 alpha release, there's no easy way to actually get the ports in the configuration file honored; the
ports specified as arguments to HTTP_STARTUP will override the first two ports in the configuration file,
and if you leave those arguments blank, HTTP_STARTUP will substitute defaults for them. You may be able
to finesse this by defining WWW_SERVER_PORTS to make the port list yourself.

(The problem is that if these are privileged portsvalue less than 10240SU won't have the privilege to allocat
them itself and needs SYSTEM to do it in the startup, but SYSTEM doesn't read the OSU config files so
doesn't know about them.) This should be sorted out by the time 3.10 becomes the production version. As |
read the source code, the rule—file parser will also substitute the value of a logical name or global symbol at
the time of startup, so if you wanted to you could put

port MY_WEIRD_PORT_SPEC
in HTTP_MAIN.CONF and then do
$ DEFINE /SYSTEM MY_WEIRD_PORT_SPEC "8444/:https"

before starting or restarting the server and get that value substituted. It seems to me that this feature would
rarely be valuable, and it is definitely not what you'd consider basic configuration.

When you start the server with the HTTP_STARTUP command procedure, there are six parameters: the na
of the server account (e.g., HTTP_SERVER); the name of the startup log file (as distinct from the access loc
this is where any configuration errors will be reported); the name of the main configuration file (typically
http_main.conf); the cached port (typically 80); the no—cache port (typically 443); and the value for

32

5.4.2 Document trees and index files

WWW_SYSTEM, where all the files will be found. Values specified for ports in the HTTP_STARTUP
invocation take precedence over values in the config file.

For basic configuration in WASD, these questions are all handled in the [Services] directive in
HTTPD$CONFIG.CONF. For more advanced configurations, you can use a separate file in
HTTPD$SERVICE.CONF.

[Services]
[scheme:Inode—name or numeric ip[:porthnumber|*]

Scheme defaults to HTTP:, port defaults to 80 for HTTP or 443 for HTTPS, so this looks like:

[Services]
server.domain.tld
https://server.domain.tld

for default ports, and looks like

server.domain.tld:8001
https://server.domain.tld:8443

for nonstandard ports.

The first service you list will be the "standard" name for the server (although this can be overridden by servic
in virtual service configuration). You may want to do the following:

[Services]
www.server.domain.tld
https://www.server.domain.tld
server.domain.tld:
https://server.domain.tld

if you want the server name to show up with the "www" included. An important note if you do not want the
server to run on port 80 is that it's possible to wildcard everything in a service definition; a simple *' as the
server name will result in your having a service that's bound to port 80 unless you explicitly specify
something else. If you don't specify any services, WASD will start up listening on port 80.

5.4.2 Document trees and index files

In general, you're likely to have one document tree where a lot of your HTML documents can be found along
with other stuff scattered over your file system, some of which you want to serve out and most of which you
don't. It all has to be mappable by a URL whose document part starts with "/". (URLs, "uniform" or
"universal" resource locators, are supposed to be platform independent, but they are, in fact, extremely
reminiscent of the UNIX file system.) As you may know, everything in UNIX (including devices) is a file,
and everything is in a single file system depending from "/". "/dev" is the directory that is actually devices.
Disk—based file structures can be mounted into the file system at different places. There's no difference in
how you specify a directory or subdirectory or file; they're all files. VMS people are used to
device-logical:[directory.subdirectoryl]file.type (e.g.,
$DISK1:[WASD.HT_ROOT.LOCALJHTTPD$CONFIG.CONF), but for all of the Web servers you need to
get used to making the mental translation into /device—logical or
/rooted-logical/directory/subdirectory/file.type (or, in extreme cases, such as the Apache log files,
"ffile_type").

33

5.4.2 Document trees and index files

My first advice is to do yourself a favor. Define a rooted logical that specifies the base Web directory you
want to use, and do all the definitions in terms of that logical. (That way you can move it to another disk late
or even make it a search list and use multiple disks, without having to reconfigure the Web server.)

$ DEFINE $WEB $DISK1:[WEB.)/SYSTEM/EXEC/TRANSLATION=CONCEALED
$ DEFINE $WEB_ROOT $WEB:[ROOT]

You'll also need to tell the server which file to display if the URL specifies a directory but not a file. (If it ends
in a slash, it specifies a directory; if it doesn't end in a slash, it still might specify a directory.) Should it
display an INDEX.HTML, a WELCOME.HTML, or what? (Although we won't talk about server-side

includes until a later chapter, there are reasonable grounds for including .SHTML and .HTMLX filesfiles
containing server—side includesin the list.)

CSWS defines the default Web document directory as apache$root:[htdocs] and places the Apache
documentation in there as well. | think it's less confusing to separate your site documents from the Apache
docs, but you still want to be able to reach them.

Here's the changes to HTTPD$CONF to serve your own files from the Web_root directory tree and still be
able to reach the Apache documents.

DocumentRoot /$Web_root/ # or /$disk1/Web/root/

<Directory "/$Web_root">
Options Indexes MultiViews
AllowOverride None
Order allow,deny
Allow from all

</Directory>

Directorylndex index.html index.shtml welcome.html index.htm welcome.htm

(That Directorylndex command means that whenever Apache gets a directory specification, it will search in
order for index.html, index.shtml, welcome.html, index.htm, and welcome.htm, displaying the first one of
those it finds. If you're expecting to serve up mostly PC—created files, you might want to put the index.htm
[and welcome.htm files, if you'll allow that] first in the list, since putting the likeliest ones first will save
processing time.)

By changing the document root you've made Apache unable to find the cute file-type icons it uses for
automatically generated directory browsing, so you'll want to fix that as well as making the documents
available.

The Alias directive is

Alias URLstring directory—or-file—name
Here's what to put into HTTPD.CONF:

Alias /icons/ "/apache$root/icons/"
Alias /docs/ "lapache$common/htdocs/manual/”

<Directory "/apache$root/icons">
Options Indexes
AllowOverride None
Order allow,deny

34

5.4.2 Document trees and index files

Allow from all

</Directory>

<Directory "/apache$common/htdocs">
Options Indexes MultiViews
AllowOverride None
Order allow,deny
Allow from all

</Directory>

(You need the Directory containers to tell Apache that it's permitted to serve the contents of these directorie!
I'll explain this in detail in Chapter 7.)

In OSU, you set the equivalent of the root directory with the Pass command. These go in the
HTTP_PATHS.CONF file. (Pass combines transmuting the URL component and giving access to the file,
assuming the server itself has access; the similar map command transmutes the URL file component but
doesn't give access.)

pass url-file—component(wildcard permitted) translated-value

pass / /1$Web_root/index.html # or whatever file you choose.
pass /* /$Web_root/*

(Pass, map, and fail commands are processed in the order found in the http_paths file, so if you want to be
able to serve anything that isn't directly under $Web_root, you'll need a pass command for it that appears pr
to the "pass /* /$Web_root/*" command.)

HTTP_PATHS.CONF already, by default, has several useful pass and map commands for server
demonstrations and documentation.

The pass / specified the precise welcome file for your root directory, but for other directories you can give
more options by using the Welcome command in http_main.conf. (If you specify the scriptserver directory
browserthis is covered in greater detail in Chapter 13you'll have to configure this in
HTTP_DIRECTORY.CONF.) The syntax is

Welcome filename.ext

and this is cumulative, so you can do

Welcome index.html
Welcome welcome.html
Welcome index.htmlx
Welcome welcome.htmix
Welcome index.htm
Welcome welcome.htm

and the server will check for files in that order whenever the URL points it to a directory rather than a full file
name. As in Apache, try to get the order so that the likeliest files pecs show up first.

In WASD, edit the HTTPD$MAP.CONF file to accomplish these goals. The items here are mapping rules,
not directives, which is why their syntax is different from the [directive] syntax. There are three syntaxes for
the pass rule:

pass template
pass template result

35

5.4.3 Customized error messages and Webmaster address

pass template "numeric_status message-text"
In your out-of-the-box HTTPD$MAP.CONF file, you want to comment out (with a '#') the
pass /ht_root/*
because that allows any unauthorized user to browse your configuration files.
pass /* [$Web_root/*
will reset your document root without taking away access to the WASD docs, which are in /ht_root/doc/.

Specify the welcome page choices (which apply at the "/" level in WASD, unlike OSU) with the [Welcome]
directive in HTTPD$CONFIG.CONF

[Welcome]
index.html
welcome.html
index.htmlx
welcome.htmlx
index.shtml
welcome.shtml
index.htm
welcome.htm

5.4.3 Customized error messages and Webmaster address

You could, in fact, stop here, start your server, and experience the mild thrill of seeing your documents bein
served. But it might be better at this stage to do some more configuration. You can make each of these serv
offer helpful Web pages for each HTTP status code that turns up, and, further, optionally have those pages
identify which server has produced the error code, and optionally have the pages provide an address to e—n
you to tell you about the problem.

In Apache, make these changes to the HTTPD.CONF file:
ServerAdmin your—account@your.domain.tld
(You may want to set up forwarding from Webmaster@your.domain.tld to your account and use Webmaster

here, rather than revealing your identity.) By default, Apache will produce a reasonable error page (see Figu
5.1). Whether or not it identifies itself as Apache is up to you.

36

5.4.3 Customized error messages and Webmaster address

A0 ot Lo L)

frorva BEDD v / oo Pt tans 204 ryre | v |
[T o e — S Lo [Ty . ot Drswstinine Dren »

Not Found

— o s |

w——ye

- e T

Figure 5.1: Apache error page with signature.
ServerSignature On|Off|[Email

ServerSignature Email will generate error pages that say what version of Apache is running on what system
and the system name is actually a mailto: link to the ServerAdmin address. "On" will do the same thing
without the mailto:; "Off" won't do it at all. (This is arguably more secure, since a potential attacker doesn't
get the extra clue of what Web server this is, but I'd be more concerned about this if | were running IIS.)

If you want to do something fancy with errors, Apache lets you do a lot, although we're getting out of the
realm of basic configuration. The magic directive is

ErrorDocument error—code response

If response begins with a double quote ("), what follows will be taken as a literal string, which the server will
write out; this can be plain text or HTML embedded in the config file. (Lines can be continued with
backslashes.) If it doesn't begin with a quote, response is considered to be a local or remote URL. If it begin
with HTTP or HTTPS, Apache will issue a redirect to that URL. If it begins with a slash, Apache processes it
like any other URL; that means it can be a CGI program as well as an HTML page. Once you get to that sta
your response can be arbitrarily complex.

In OSU, there's no equivalent to the ServerAdmin function, but there's support for the ErrorPage command,
which uses symbolic names for the error codes.

You can have different actions for protection failures, open failures (a sample script is provided), rule failure:
CGil problems, and others. And, of course, if you're producing error pages, you may as well include your
e—mail address of choice. The errorpage command goes in HTTP_PATHS.CONF

errorpage protfail | openfail | rulefail |
cgiprotocol |
| code4 response

In WASD, the server administrator e-mail is configured in HTTPD$CONFIG.CONF with the [ServerAdmin]
directive.

[ServerAdmin] user@server.domain.tld

Whether this will be included in error reports is determined by the [ServerSignature] directive:

37

5.5 Starting and stopping

[ServerSignature] ENABLED | EMAIL | DISABLED

DISABLED (the default) suppresses the signature altogether, ENABLED appends a report of which server a
which host produced the message, and EMAIL makes the host name into a mailto: link to the value specifie
in [ServerAdmin].

WASD plugs error codes into a template that's found in the HTTPD$MSG.CONF file, so the result of any
error will be an HTML page. The [ServerReportBodyTag] directive lets you specify the HTML <BODY> tag
that will be plugged into that template, letting your error messages share at least some of your site's "look al
feel." You can also edit the template to include graphics, font choices, and the like to make the messages
really match the rest of your site, but this will cause you trouble if you do multihosting because the change is
made on a serverwide basis.

[ServerReportBodyTag] String

(If you specify this, it needs to at least say <BODY>, but could be <BODY BGCOLOR="#00FFFF"> or even
call in a cascading style sheet.)

Your basic configuration is complete, and your server should now be ready to serve your own documents.

5.5 Starting and stopping

To start Apache, invoke sys$startup:apache$startup.com. (This procedure can accept parameters; the defa
value for P1is START, which instructs Apache to start in a detached process, which is how you ordinarily
want to run it. The second parameter is a file in which startup configuration information is stored; this defaul
to sys$manager:apache$config.dat, or the value of a logical name APACHE$CONFIG_FILE.) If you want to
start Apache running in your current processmost likely because you're debugging configuration filesuse the
parameter RUN. This is potentially dangerous if you're running from a privileged account.

To shut down Apache, invoke sys$startup:apache$shutdown.com. (Again, this can accept parameters, but
defaults to SHUTDOWN.)

To get Apache to reread the configuration files as though it were starting cleanly, you can invoke either
apache$startup.com or apache$shutdown.com and use the parameter GRACEFUL, if you don't want to bre
existing requests, or the parameter RESTART, if you don't care about existing requests.

Both procedures are actually front ends to another procedure, apache$config.com, which has more options
available; these are discussed in the following section.

To start OSU, invoke HTTP_STARTUP.COM from the [OSU.SYSTEM] directory. HTTP_STARTUP.COM
takes six parameters, in the following order: the name of the account under which OSU will run; the name of
the error log file (which defaults to HTTP_SYSTEM, but can be defined as [for example]
www_root:[logs]http_errors.log if you want to put your log files in a different directory; the configuration file
name; the primary port; the nocache port; and a directory path to have www_system defined as:

$ HTTP_STARTUP HTTP_SERVER HTTP_ERRORS.LOG HTTP_MAIN.CONF
80 443 -
WWW_ROOT:[SYSTEM]

38

5.5 Starting and stopping

(I generally create another startup file that calls HTTP_STARTUP with the parameters it needs, so that | car
just type @OSU_STARTUP without worrying about the rest.) OSU doesn't require any special shutdown, bt
if you want to be sure it flushes its log files before it exits, use the privrequest program (discussed in the
following section) to issue a shutdown.

$ privrequest comm-port-number SHUTDOWN [port if not 80]

If you just want it to reread the configuration files, do
$ privrequest comm-port-number RESTART [port if not 80]

WASD startup is accomplished by invoking [HT_ROOT.LOCAL] STARTUP.COM, which invokes
[HT_ROOT. LOCAL]JSERVER_START UP.COM and in turn
[HT_ROOT.LOCALJLOCAL_STARTUP.COM to bring in local customizations.

If you're running multiple services on multiple nodes from the same [HT_ROOT], you can create
STARTUP_SERVER_nodename.COM or even STARTUP_SERVER_nodename_port.COM files to
customize which services to run from which nodes. The least—interruptible version is just to run all services
on all nodes in the cluster and use DNS load—balancing to direct the clients to the least heavily loaded
machine at any given moment, but there are legitimate reasons to run different services. (If you have two
production nodes and two development nodes in the cluster, you don't want the development nodes running
potentially broken versions of the services the outside world can see.)

You can also start WASD running in your process.
$ MC $HT_EXE:HTTPD_SSL

will start it up, and complaints about the configuration file will go directly to your screen. This is handy when
you're making radical configuration changes and want to debug them quickly, but this is a dangerous habit t
get into if you're running from a privileged account.

There are a number of possible command-line options that affect the behavior of the server if used at serve
startup; edit your STARTUP_LOCAL or your STARTUP_SERVER_nodename.com to bring these into play.
(This list is closely based on section 5.3 of the server documentation, with my own comments interleaved.)

/ACCEPT=hostl.domain.tld,host2.domain.tld

The argument is a comma-separated list of hosts/domains allowed to connect to the server; connects from
everywhere else are rejected.

/REJECT=host1.domain.tld,host2.domain.tld
Alternatively, use /REJECT to disallow certain hosts/domains and allow everybody else.
/ALL[=servergroupname]

At startup, this assigns a server to a specific group of servers (for clusterwide server control and proxy cach
management). If the string isn't specified, it becomes part of the cluster-wide ALL group.

/AUTHORIZATION=[SSL,ALL]

39

5.5 Starting and stopping

The "SSL" keyword causes all authentication (both SYSUAF and HTA database) to be available only via
"HTTPS:" requeststhus guaranteeing that no passwords will be exchanged in plain text. (Of course, this wor
only if you are using the SSL-enabled version of the server; see Chapter 6 for a fuller discussion of SSL an
Chapter 7 for authentication.)

The ALL keyword will make the server deny access to any path that isn't explicitly authorized, thus reversing
the default of allowing access to any path that isn't protected against access in some way.

/CGI_PREFIX=string

The value here will be used as the beginning of each CGI symbol name accessible to scripts. (Use this to
allow scripts written for other servers to get the symbol names they expect. Default is "WWW _", a tradition
established by the CERN VMS server.)

/DETACH=dcl-procedurename/USER=username

On VMS 6.2 and later, this causes the server to create a detached process executing the specified
dcl-procedurename operating as the specified user name.

[FILBUF=number

This specifies the number of bytes in the read buffer for files open for processing (i.e., menu files, image
mapping configuration files, preprocessed HTML files, etc., not direct file transfers), which you're likely to be
interested in tuning only if you have either extremely large preprocessor files or small available memory that
you need to conserve.

/FORMAT=formatstring

The format string overrides the configuration parameter [LogFormat]; see Chapter 12 for details.

/GBLSEC=DELETE=integer

At startup, the server creates a permanent global section named by the main port number the server is serv
This section stores accounting and request data and is visible to the server monitor utility, HTTPDMON. If
you're experimenting with configurations on different ports, you can burn up too much memory on these
global sections. Use this parameter to make them deleteable. This won't be used in a stable configuration.

/LOG[=name]

enables logging and optionally specifies the log file name. If the name is SYS$OUTPUT, the log entries will
show up on your screen. If you're experimenting with log file formats, the combination of /FORMAT and
/LOG=SYS$OUTPUT will let you see what you're getting before you edit your configuration files. (If not
specified in the config files, logging is disabled by default.)

/INOLOG

disables logging, overriding the logging directives in the configuration files.

/NOMONITOR

The HTTPDMON utility (discussed in section 5.6) displays information made available to it by the server.
This qualifier disables the update of those data, making HTTPDMON useless. This is of most use on an

40

5.5 Starting and stopping

over-loaded server, which needs every possible cycle.

INETBUF=number

gives the number of bytes to allocate for the network read buffer, allowing tuning if you run frequent large file
uploads.

/OUTBUF=number

gives the number of bytes in the output buffer (for direct file transfers, buffered output from menu
interpretation, HTML preprocessing), allowing tuning if you have buffer overruns from large transfers.

/PERIOD= DAILY]|
MONDAY|TUESDAY|WEDNESDAY|THURSDAY|FRIDAY|SATURDAY|SUNDAY/|
MONTHLY

overrides the configuration parameter [LogPeriod], which specifies how often to start a new log file: every
day, every week on the specified day, or every month.

/PERSONA[=rightslist-identifier]

enables detached process scripting. If you don't specify a rightslist identifier, scripts can be executed under
any accountif they're mapped to do so in the configuration file. If you do specify one, then scripts can be run
only under accounts that have been GRANTed that identifier

PORT=port-number

is primarily useful for command-line control with the /DO qualifier, discussed subsequently. At startup, it
overrides the configuration parameter [Port] but will be overridden both by any [Service] specified in the
configuration files and by any /SERVICE= qualifier.

/PRIORITY=number

Server process priority. By default, this is 4, which means the server competes on an equal basis with
interactive users at their default priority. If your interactive users aren't getting enough compute time, you ca
set this to 3, which is the default batch priority. Setting this to a higher priority than that of your interactive
users (if any) risks slow performance and apparent system lockup if some script gets into a tight loop. It wou
be extremely inadvisable to set this in the real-time priority range of 1732.

/[NOJPROFILE

allows (or, with /NOPROFILE, disallows) the use of rightslist-identifier—based file access for users
authenticated against the SYSUAF. (This is discussed more fully in Chapter 7. It is irrelevant unless the
ISYSUAF qualifier is also present.)

/PROMISCUOQOUS[=password]

If the password is omitted, this makes the server accept any user name/password pair for authentication; if ¢
password is included, it requires that to be the password used. This is used for testing, demonstration, and
initial server configuration via the Web-based interface. If you're going to do this when you have actual
material to serve and some authentication in place, it would be a good idea to use the /ACCEPT parameter

41

5.5 Starting and stopping

restrict connections to the system you plan to use for the demo or the configuration.

/ISERVICE=scheme://hostnamel:portl,scheme://hostname2:port2

The argument is a comma-separated service list, which overrides the [Service] configuration parameter,
primarily useful for starting with some services disabled. (In a cluster configuration in which you share
configuration files but offer different services on each node, you can specify services by node using this
parameter in the STARTUP_SERVER_nodename.COM file; the server will accept the configuration details
of the specified services from the configuration file.)

/NOSSL
/SSL[=version]

In the INOSSL form, this disables HTTPS/SSL support altogether. In the /SSL=[version], it directs the servel
to support SSL v2, v3, or (the default) both. It is irrelevant if you haven't built the server with SSL support.

/SUBBUF=number
gives the number of bytes in a script process's SYS$SOUTPUT buffer.
/INO]SWAP

controls whether the server process may be swapped out of the balance set. (/NOSWAP is the default.) It
doesn't disable the use of virtual memory altogether, but keeps the server process from being rolled out of
memory entirely, since there is a distinct detriment to response time if the system has to identify some other
victim process, swap it out to disk, copy every bit of the server process back from disk to memory, and only
then deliver the AST for the read on port 80. It's not inconceivable, on a slow and heavily loaded VAX, that
the browser would time out the connection by the time the process was ready to handle it. If your system is
really starved for memory and you don't care much about Web server response time, you can enable swapy.
for the server.

INOSYSUAF
/SYSUAF[=ID,PROXY,SSL,WASD]

The INOSYSUAF form (the default) disables SYSUAF authentication altogether. (You can still have
password support from the HTA database, but not the VMS user name/password from the SYSUAF.)
ISYSUAF=SSL enables SYSUAF authentication and forces the password dialog to HTTPS, guaranteeing
encryption and making it harder to snoop passwords. /ISYSUAF=PROXY enables SYSUAF proxying;
ISYSUAF=ID restricts SYSUAF authentication to accounts holding a particular identifier (see Chapter 7 for
some details); /ISYSUAF=WASD is deprecated; it makes the "hard-wired" WASD identifier environment
available.

/VERSION

displays the copyright notice and version of the executables.
INOWATCH

/WATCH="category-integer,[client-filter],[service—
filter],[path—filter]"

The WATCH facility (discussed subsequently) allows an in—browser view of server processing as it happens
If you want to use it, use neither one of these qualifiers. NOWATCH disables it altogether. /WATCH=

42

5.6 Command-line control

directs watch output to standard output if running from your process or to the server log if running detached.
The category—-integer is the bitwise—OR of the categories specified in the ADMIN.H source code header; the
easiest way to get it is to set up a WATCH with the categories you want in the Web-based admin program,
and then note the parenthetical category integer that shows on the screen in all the WATCH reports.

To shut down WASD, define the HTTPD foreign command (described in the next section), and issue either

$ HTTPD/PORT=port—number/DO=EXIT ! exit after finishing
I current requests

or
$ HTTPD/PORT=port—-number/DO=EXIT=NOW ! immediate shutdown.

To make WASD reread the configuration files freshly, do

$ HTTPD/PORT=port-number/DO=RESTART ! restart after
I finishing current requests

or

$ HTTPD/PORT=port-number/DO=RESTART=NOW ! immediate restart

5.6 Command-line control
Now you can start and stop the servers. What other control is available from the command line?
In Apache, all the available functions are implemented through SYS$SSTARTUP:APACHE$CONFIG.COM.
The command is the first parameter, so
SYS$STARTUP:APACHE$CONFIG command
The commands are as follows:
CONFIGURE
which runs the configuration dialog you had at server startup; you probably don't want to mess with that.
FLUSH

which gets the log files on disk up—to—date by telling the server to flush the buffered messages to disk.
(Implicit in SHUTDOWN.)

GRACEFUL

which tells the server to finish existing requests, then reread the configuration file.

NEW

43

5.6 Command-line control

which tells the server to flush the current buffers, then open new log files. (This can be issued from a batch
job to get new files daily, weekly, or monthly, but, in fact, the logging module in Apache lets you specify log
file turnover with considerable precision.)

READ

which reads the APACHE$CONFIG.COM configuration file and defines processwide logical names based o
that information. (This function is useful when you want multiple Apaches running with different
configuration files on the same system, but in a vanilla configuration you'll never use it.)

RESTART

which sends a restart signal to the server to reread APACHE$SROOT: [CONFJHTTPD.CONF immediately.

RUN

which runs the Web server in your current process. (This represents a s security exposure when you run fro
a privileged account.)

SHUTDOWN

which stops the Web server process immediately.

STOP

which stops the Web server process. (Same as SHUTDOWN.)

START
which starts the Web server as a detached process.

(Incidentally, if you're a UNIX person and you're wondering how a DCL script manages to send a signal to a
program, APACHE$CONFIG actually runs a small executable program to send whatever signals it needs to
be sending. If you're porting other signal-driven UNIX programs to VMS, you can borrow it; it's somewhat
frighteningly named APACHE_KILL and takes two parameters: the process—id to deliver the message to an
the message itself. A VMS hacker might be wondering why Apache didn't just declare a control mailbox
when it was started to which DCL could just write messages. | presume it was because making Apache cree
the mailbox and hang a read with read—complete AST on it would do excessively radical things to the
structure of the program, and the VMS changes are supposed to fold back into the Apache mainstream. It
already expects to get a signal.)

OSU offers the PRIVREQUEST program for some command-line control of the program. Unlike Apache,
which sends out-of-band signals to the executing server, PRIVREQUEST sends control messages on a po
the server is listening to anyway (80, by default) and gets responses on a port it specifies (usually 931). The
central port must be specified in the configuration file.

Define a foreign command, such as

$ privrequest :== $www_system:privrequest

(That's handy for the LOGIN.COM of the Webmaster's account.)

44

5.6 Command-line control

$ PRIVREQUEST 931 HELP

This brings back a list of the available commands. If the server isn't running on port 80, you have to specify
which port to talk to; for 8001, that command would look like

$ PRIVREQUEST 931 HELP 8001

(If you don't specify a port, it will use port 80, with unexpected results if you're running some other server on
port 80.)

Here are the commands, other than HELP.

DSPCACHE

displays the current entries in the cache. (See Chapter 11 for more information on caching.)

INVCACHE

invalidates the document cache. This means that the next request for any particular document will have to g
out to the disk and check the file headers, possibly resulting in fetching a new copy of the file into cache. I've
found this most useful when doing incremental changes to an HTML file on the server. If | want to see my
changes right away when the default cache expiration is set to three minutes, | need to invalidate the cache
get the most current version. (This whole area is somewhat problematic, since users tend to panic if they
upload a file and can't see it right away; this is one of the reasons for making a nocache port available, but t
nocache port has been commandeered to run SSL. It will be handy when the multiple port support in
3.10alpha has matured, since that will allow other nocache ports.)

NEWLOG

creates a new access log. The name and location of the access log is defined in the configuration file; you ¢
change it here, but you can make a new one run. This is a handy command to run in batch mode to get a ne
log file on a daily, weekly, or monthly basis.

NEWTRACE[/logger-level]

starts a new trace file. (This has the nhame given as the second parameter in the HTTP_STARTUP.COM. Tt
logger level specifies what you want details of and how you want them; higher levels include lower levels.
Use plain NEWTRACE to start a new log with the default log level/1 for connect/completion logging, /5 for
script diagnostics, and /11 for a detailed trace of requests as they pass through the rule file (so you can see
where you messed up in file mapping.) There are higher levels still, which were probably used for debuggin
problems in developing ISAPI and FastCGI modulesyou can basically find out about them only by reading tf
source code or by experimenting. NEWTRACE/11 and higher will make huge log files very quickly, so if
you're at all short on disk space watch this closely.

RESTART][/timeout]

restarts the server after allowing the specified number of seconds (or ten seconds if not specified) for curren
requests to complete.

SHUTDOWN[/timeout]

45

5.6.1 WASD

shuts down the server after allowing the specified number of seconds (or ten seconds if not specified) for
current requests to complete.

STATISTICS[/ZEROQO]

displays counters or resets them to zero. | find myself using this mostly when I'm trying to find out whether
my server is alive or not, but it's also useful for getting a handle on your current level of traffic without doing
extensive log—file analysis.

5.6.1 WASD

Define the foreign command $HTTPD to either "$HT_EXE:HTTPD" or "$HT_EXE:HTTPD_SSL"

depending on whether you're running the SSL-enabled server or not. If the main port for your server isn't 8C
your commands will need to include /PORT=whatever—the—main—port-is in order to be delivered. If you
want to control all the servers in the cluster, add the /ALL qualifier; if you've defined a group of servers with
/ALL=servergroupname in the server startup, you can address just that group by including
/ALL=servergroupname in the HTTPD command.

That's actually the server image, so if you just type HTTPD you'll find yourself running a copy of the server
from the command line. (It won't do much if you've already got a started server process grabbing the IP
requests before your copy gets to them.) You need to use the /DO= qualifier to tell HTTPD to pass the
message along to the running server and exit. Again, this discussion follows the server documentation fairly
closely.

/DO=AUTH=LOAD

reloads the authorization rule file (HTTPD$AUTH), enabling any changes made since the last reload. (See
Chapter 7.)

/DO=AUTH=PURGE

The authentication cache may be purged, requiring all subsequent authorization—controlled accesses to
reauthenticate. This is helpful if you've disabled some authorizations and want them to lose access right aw;
or if you've enabled itfor example, when a user has been locked out by automatic break—in evasion for too
many invalid password attempts and you've cleared the intrusions.

/DO=CACHE=ON

enables the file cache (see Chapter 11).
/DO=CACHE=0OFF

disables the file cache.

/DO=CACHE=PURGE

invalidates the current contents of the file cache so that subsequent accesses will go out to the file system,
repopulating the cache with current versions of the file.

/DO=DCL=DELETE

46

5.6.1 WASD

deletes all scripting processes, whether they're doing work or not. (It may cause browsers to display errors.)

/DO=DCL=PURGE

deletes idle scripting processes immediately and deletes currently busy ones when they've completed the
requests they're working on. (Preferable, unless you've got a script process in a tight loop.)

/DO=DECNET=DISCONNECT

disconnects all DECnet connections, busy or not. (Relevant for OSU-compatible scripting.) Clients may lose
data.

/DO=DECNET=PURGE

disconnects idle DECnet connections immediately and disconnects currently busy ones once they're done.
(Generally preferable.)

/DO=LOG=FORMAT=string
/DO=LOG=PERIOD=string

changes, respectively, the format and period specification of the access log; this will take effect only after th

log file is opened or reopened. (See Chapter 12 for log—file format.) These commands are server—by-servei
the /ALL qualifier is not available.

/DO=LOG=CLOSE
closes the access log file(s).
/DO=LOG=0PEN
opens the access log file(s).
/DO=LOG=REOPEN
closes and then reopens the access log file(s).
/DO=LOG=FLUSH

All unwritten log records may be flushed to the access log file(s).

/DO=MAP

reloads the mapping file (HTTPD$MAP.CONF), enabling the changes made since the last load or reload. (S
Chapter 7.)

/DO=SSL=CA=LOAD

reloads the Certificate Authority verification listrelevant only if you're using X.509 authentication. (See
Chapter 7.)

/DO=SSL=KEY=PASSWORD
Enter private key password []:

47

5.7 Web—-based control

If your server key requires a password/passphrase to enable it, as described (and recommended against) ir
Chapter 6, this command allows you to enter the password.

/DO=THROTTLE=RELEASE
/DO=THROTTLE=TERMINATE

Request throttling is discussed in Chapter 7. Briefly, throttling allows the Webmaster to specify how many
simultaneous requests will be handled for a particular path. Requests in excess of that number go onto a FlI
gueue for later processing.

/DO=THROTTLE=RELEASE instructs the server to immediately start processing all queue requests. (You
might use this if you were throttling requests because you were running a big CPU-intensive job that has nc
finished and want to allow it all now, or if you just want to see what happens to the server load without
request throttling.)

/DO=THROTTLE=TERMINATE instructs the server to cancel all queued requests, sending them back a 50:
"server too busy" response.

/DO=ZERO

zeroes the server counters. (These are the counters that you'd see using HTTPDMON or the statistics ment
item in the Web—-based server admin menu. You'd want to do this to get an immediate handle on current
traffic; zero it now and check it a couple of minutes later.)

There are a couple of other command-line things that aren't exactly issuing server commands. You can do
proxy cache maintenance activities from the command line, using the /PROXY (not /DO=PROXY) qualifier;
I'll discuss this more fully in Chapter 11. The HTTPDMon utility ($HT_EXE:HTTPDMON) enables
real-time monitoring of WASD activity from the command line.

5.7 Web-based control

Apache has no built-in Web—-based configuration or control utility. (In the UNIX world, there are various
GUI configuration utilities provided by third parties, but they aren't part of the Apache distribution. It's
probably a bit much to ask VMS Engineering to port and then support TCL/TK so that we can use an existin
TCL/TK-based GUI configurator.) It should be fairly easy to write a CGl that could generate the commands
to @SYS$STARTUP:APACHE$CONFIG.COM to issue control messages to start/stop/restart the server, bu
then it would be fairly dangerous to run CGls in a sufficiently privileged context to actually do that.

OSU provides a Web-based server administration utility. (See Figure 5.2.) By default, this is configured as
http://yourserver.domain.tld/demo/servermaint.html (You can also look at
http:/lyourserver.domain.tld/demo/servermaint_userguide.html for advice on using the server maintenance
Web-based utility.)

48

5.7 Web—-based control

1#] Terver Coadguw san TiTe Witp e uq
B e 2 ax e
I l 'y i S 0 BOOON GRS b e et AN e/ O PRalN0 m

O uenmrey O aprtwmte O auntort O s twe O st tatgie Oren D oo fe Harten »

=
57 HTTP Server Maintenance

oddy B primnary configrtor B Qm_rman cond) By the ETTP swrver The confipnmon fle
sapicts of the sarver’s spanticn,

pre———

wrnas OSUS 10apha UCX
- s V122

T

v dhng . weseieny

:r‘:‘—.“’—"{‘ LA) lesrots) [sgtines

Yom mast restart seever (e hive configur stion chasges take effect E
F I J
Figure 5.2: OSU Web-based administration utilitymain page.

The user name and password for this are, by default, server and maint, respectively. (The first thing to do
when using it is to change the password for access on that page only to something elseyou don't want

everybody else who uses OSU to know the password that lets them update your configuration.)

Most of the screens simply allow you to update configuration files, but one screen allows the same kind of
server control you're able to do with PRIVREQUEST from the command line.

As you can see, from the Web you can stop or restart the server, start a new access log file, or start a new t
file with a different setting of how much information to trace.

Experienced OSU users typically do not use the Web-based configurator, and there are certain things that i
just won't do for youfor example, inserting rules into a local-address block if you're multihosting and want to
apply specific rules only to certain hosts. (Multihosting is discussed in Chapter 9.) Also, Web—based suppor
for new features tends to lag the release of the new features. New managers should definitely fire it up and
poke around, just to get an idea of what's available in the server configuration (although you won't learn muc
that you didn't get by reading this book).

WASD has an extensive on-line administration utility, which requires some configuration effort to make
work. (See Figure 5.3.) Alternatively, to get an idea of what's available, you can just break in.

$spawn/wait httpd /promiscuous=password/service=8010
/accept=node-you'll-use

49

5.7 Web—-based control

5] Server (v aratian | e MTp mansge

P & =u
A

Eestat sorver cuvest o gients e aboted afler § seconds Toriwind server wil wie biest yemen of configr woon Ses

T t

Figure 5.3: OSU Web-based administrative utility—server commands.

This brings up a new copy of HTTPD, willing to accept connections only from the node you specified,
running on the port you specified (8010, in the example), willing to authenticate any user name you give it
provided you give it the password specified.

This can give you a good idea of what capabilities are available in a fully configured server, which include nc
only everything you can do from the command line but also configuration file editing, reports, and
WATCHing the server processing in real time. However, until you do some authorization/authentication worl
(details are discussed in Chapter 7), you won't be able to edit the configuration files or save changes from tt
Web-based utility. (You will be able to run the reports.)

If you exit or restart at this point, with the server running in a spawned subprocess, the server will just go
away rather than restarting.

50

Chapter 6: Encrypted/Secure Communications:
HTTPS Protocol Support

6.1 HTTPS

6.1.1 Why?

The HyperText Transfer Protocol (HTTP) is intended for the easy interchange of information between
systems on multiple platforms. It was designed with the idea that the free sharing of information is good,
secrecy Is bad, and barriers to communication are to be avoided; overall, it does a good job in embodying
these ideals.

Material in HTTP comes over with no attempt at obscurity. Anybody listening inanyone on your network
using a sniffer, any system cracker who may have compromised a system on your network and put its
Ethernet card into promiscuous mode so it listens to all the traffic, or any systems person at your Internet
Service Provider who monitors your trafficcan see both ends of every dialog conducted over the Web.

This is fine when you're sharing information about the latest results in particle physics or publishing movie
times; it's not really a good idea when collecting credit card numbers, passwords, or other confidential
information. People found the Web just too attractive as a universal applications platform to leave it
exclusively for free sharing of information. Whether you're ordering something by credit card or trying to
remotely access your e—-mail, you need to provide some information you don't want random strangers to
know.

So, HTTPS (S for secure) was invented. This allows both sides of a Web dialog to be encrypted in a cipher
negotiated between the browser and the server. (There would be no point in a cipher that was the same for
every browser, because then everybody who got the traffic would know how to decipher it.) HTTPS uses the
secure session layer (SSL) software, which can use an assortment of different public—key algorithms having
colorful names (e.g., RSA, Blowfish, Twofish, and IDEA). SSL code also supports transport layer security
(TLS) software. If you're running PMDF-TLS encrypted SMTP you're already running OpenSSL. SSL has
been through several versions, and there are browsers that support both version 2 and version 3, so you're
off supporting both.

6.1.2 SSL and PKI

The idea of the secure session layer is to provide a secure wrapper for other protocols. Thus, the same SSL
code can support HTTPS and SSH (secure shell, which works like an encrypted Telnet), SCP (secure copy,
like an encrypted RCP), and SFTP (encrypted FTP); further, port forwarding in SSH can support X Windows
and potentially other protocols. However, "secure” doesn't just mean that it's encrypted (and thus hard for
eavesdroppers to understand). It also means that you're talking to who you think you're talking to. (Your cre
card information isn't safe if you have a strongly encrypted connection to the wrong site.) SSL supports
authentication as well as encryption, and this is where the confusion, annoyance, and expense associated v
HTTPS comes inthe rest, which I'm glad to say has eased lately, comes from patents and export restrictions

This whole system works on "public—key" encryption and authentication methods. (These methods,

introduced in 1976 by mathematicians Whitfield Diffie and Martin Hellman, are potentially useful in much
broader areas than just the Web and e—commerce, and | expect we'll see a lot more applications for them tt

51

Chapter 6: Encrypted/Secure Communications: HTTPS Protocol Support

we already have. The ones in use now include S/MIME for secure e—mail and code signing for Active—X
controls.) Entities are issued key pairs, a private key (which is never shared with anybody), and a public key
(which can be given out freely). These are cryptographic inverses of each other, which means that you can
encrypt with a public key and decrypt with a private key, but if the keys are of any substantial length, it takes
an unfeasibly long time to compute the private key from the public key. So, you can sign something with a
private key, and other people can verify that you signed it using your public key. You can encrypt stuff using
the recipient's public key, and they can decrypt it using their private key.

Each packet in a dialog is encrypted, but the keys are exchanged only at the beginning, so an eavesdroppe
would have to catch the whole thing, not just random packets, to even begin to be able to break the
encryption. An eavesdropper who has the whole dialog has only the public key, and it's supposed to be too
long and slow a process to get from public key to private key. Not an impossible task; just an unwieldy one.
(It's not that the encryption can't be broken; it can't be broken while the contents are still interesting. If your
traffic is still going to be interesting to the bad guys 30 years from now, you want to use channels you believ
can't easily be eavesdropped upon.)

The longer the key, the longer the process of breaking it will take, so a government that wants to be able to
read the traffic of its enemies in wartime might plausibly consider strong encryption a weapon that shouldn't
be exported. And so the U.S. government did, which led to all kinds of absurdities. This was a problem
because it assumed there were no people outside U.S. borders smart enough to code strong encryption
themselves; it meant that a T—shirt with a few lines of Perl code was technically a weapon. In addition, it kef
U.S. companies from selling strong encryption abroad while European firms could do so; and, relevantly for
this book, it meant that browser vendors were obliged to produce U.S. (128-bit encryption) and export
(40-bit encryption) versions of their products and servers have to support both. These restrictions were eas|
in 2000, but the 40-bit browsers are still out there. The usual means for a server to authenticate itself is to
present a digital certificatesometimes called an X.509 certificate because it complies with the X.509 standar
promulgated by the International Telecommunications Unionwhich says not only "this is my name" but also
points to a certificate authority (CA) that has validated the certificate by signing it with its private key. Note
that users and browsers can also present certificates to authenticate themselves, although this is fairly
uncommon within the general Web user population.

How does the browser know to trust the certificate authority? The browser vendor shipped a database of
certificate authorities and their public keys along with the browser, and users can also update that database
and add other CAs (although the vast majority of them have no idea how to do this or why they'd want to).
How did the CAs get in the database? They made deals with the browser vendors to ship their certificates w
the browsers. There are two reasons that there isn't a volunteer—run automated CA handing out certificates
free. First, none of the browsers currently deployed would acknowledge them as legitimate authorities, and
anybody who used the certificates they issued would have customers frightened by pop—up messages abou
problem with the digital certificatecertificate authority not recognized." (This is the same reason commercial
sites don't just generally make themselves a CA and issue themselves the necessary certificatesfrightening
messages from the browser tend to scare off the customers, despite the fact that the encryption is equally g
or bad regardless of the validity of the CA.) Second, it actually costs money and effort to verify the identity o
the person or organization who's asking you to certify that they are who they say they are, and without the C
making that effort, the authentication value of the certificate is nil.

As for frightening messages, incidentally, it's now generally considered to have been a bad idea that the
certificate—authority certificates distributed with Netscape version 3 all expired at midnight on December 31,
1999, making every HTTPS site users tried to access pop up a frightening message about an unknown or
expired certificate authority, and giving the people who had to support those users a totally unnecessary Y2
problem. (See Figure 6.1.) Since Netscape 3 was the DEC-supported browser on VMS at the time, this was
the only Y2K problem many VMS sites had.

52

6.1.3 Getting a certificate from a CA

—_— —

| Overvew Pacage Cwn IO G

Hierarchy For tent x209

Class Hierarchy

Interface Hicrarchy

Figure 6.1: Internet Explorer displays a frightening fnessage.
6.1.3 Getting a certificate from a CA

If all your users are technical people who won't panic at browser messages about unrecognized CAs or whc
can follow instructions to add your CA certificate to their browser database, or if you have control over the
machines they'll use to access your site (so you can update their browsers yourself), you can use a self-sig
certificate and not have to pay anybody any money. You might want to do this to provide access to your We
applications over insecure networks (e.g., the general Internet) without having passwords flying around in
plain text, or just to let people get at their mail using yahMAIL without compromising their passwords. If
your CA certificate is in the browser database, you're still safe from being impersonated by some other
serverthe bad guys shouldn't have your private key. If you teach your users just not to worry about the scary
messages, you make them vulnerable to impersonation attacks. Many universities, including MIT and
Columbia, have set up their own CAs and installed their certificates in the official university—distributed
browser Kkit.

Otherwise, you're going to have to get a certificate from a commercial provider. Find out whether your
organization already has a public key infrastructure (PKI) and arrangements already in place with a CA. If sc
you'll have to use whatever procedures the organization has in place for getting a digital certificate.
(Organizations can make arrangements with known CAs to receive the delegated authority to issue
certificates; the "chain of trust" on those certificates eventually works its way back to a known CA and the
browser accepts it without complaint.)

If your organization doesn't have anything in place, it's up to you to do it. Pick a commercial CA and check
out their requirements. As an example, I'll use Thawte, a South African company generally considered to ha
low prices and good service. (They were bought by VeriSign a while ago but still maintain a separate identity
and pricing schedule.)

Here's their recommended procedure. Get your documentation together, which means proof that you're the
organization you say you are and that you are entitled to use the domain name for which you want the
certificate. For incorporated commercial entities, articles of incorporation or state or city documents (busines
licenses) will work. Partnerships should provide "some form of verifiable proof of the partnership name,"
which ought to include business licenses. If you're doing business as a particular name, they need a copy o
the DBA forms. (All of these documents can be faxed.) Government departments, nongovernment
organizations, universities, and university departments need to physically mail an original signed letter on
organizational letterhead stationery from the department head (for government departments); the Chief
Executive, Chair, or Managing Director (for NGOs); or the Dean or Vice—Chancellor (for university
departments). Special interest groupswhich | would take to mean unincorporated hobby groups, clubs,

53

6.1.3 Getting a certificate from a CA

international criminal gangs, and the likeneed to get in touch with Thawte and discuss individual
requirements. Obviously, if you want to register for a certificate as SPECTRE, KAOS, or THRUSH, there'll
be some unique needs for verification.

To make a certificate request, you need to install OpenSSL. (More on this follows.) OpenSSL binaries come
with CSWS for mod_ssl, and can be downloaded in a separate kit for WASD; for HTTPS support in OSU
you'll need either to do a full OpenSSL installation or install the binaries from WASD. Since kits that come
from third parties are usually out of date, | recommend installing OpenSSL directly.

These OpenSSL instructions follow those provided by R. A. Byers on his Web site, at
http://lwww.ourservers.net/openvms_ports/openssl/openssl_contents.html; since he keeps them updated, yo
should go back and read them to see if anything has changed. | have made changes in his directions to ma
Thawte's requirements.

You have to fill out your configuration files before you can generate certificates or certificate requests. Set
your current directory to the SSLROOT directory (where you installed the OpenSSL files). If you've run the
OPENSSL_STARTUP.COM, this will be SSLROOT.

$ SET DEFAULT SSLROOT:[000000]
Create directories to store certificate requests and certificates.

$ CREATE/DIRECTORY [.CRL]
$ CREATE/DIRECTORY [.NEWCERTS]

You need a file with a few hundred bytes of random data to prime the random number generators in the
encryption libraries. A good place to put this is in your [.PRIVATE] directory under the name of
RANDFILE., but you could name it anything since you'll define a logical name to point at it. An easy way to
get this is to send the output of a long variable command into a file, for example, is as follows:

$ SHOW SYSTEM/FULL/OUTPUT=SSLROOT:[PRIVATE]JRANDFILE.;
$ DEFINE/SYSTEM/EXEC RANDFILE -
SSLROOT:[PRIVATE]RANDFILE.;

Create an empty INDEX.TXT in the SSL root directory.

$ CREATE SSLROOT:[000000]INDEX.TXT
"

Create a file SERIAL. with "01" in it in the SSL root directory.

$ CREATE SSLROOT:[000000]SERIAL.
01
N

Now bring up the OPENSSL.CNF file in your favorite editor and make these changes.

The line that says:

dir = sys\$disk:[.demoCA #Where everything is kept

should say:

54

6.1.3 Getting a certificate from a CA

dir = SSLROOT:[000000 #Where everything is kept

The line that says:

RANDFILE = $dir.private].rand # private random number
file

should look like

RANDFILE = $dir.private]RANDFILE.; # private random
number file

and the line that says
RANDFILE = $ENV::HOME/.rnd
should just be deleted.

Although there are other options, for SSL server certificates only, do this. Find the lines that say

This is OK for an SSL server.
nsCertType = server

and make them look like this:

This is OK for an SSL server.
nsCertType = server

Now you're ready to generate your certificate request.

$ @SSLROOT:[VMS]OPENSSL_UTILS.COM ! Defines the symbol
I for the OPENSSL utility

Use the OPENSSL utility to generate a certificate request.

$ OPENSSL
OpenSSL> req —config openssl.cnf —nodes —new —days 365
—keyout newreq_key.pem —out newreq.pem

Here's a description of what the parameters mean.
-req

This is a certificate request.
—config

Use this configuration file.

—-nodes

Don't DES encode the output key. (Because OSU won't let you specify a passphrase, it won't be able to use
DES-encoded key. Leave the parameter out if you want to use a passphrase on WASD or CSWS.)

55

6.1.3 Getting a certificate from a CA

—hew

This is a new request.
—days

The number of days the X.509 certificate will be good for.
—keyout

File to which to output the key.

—out
File to which to output the certificate request.

The program will prompt for some parameter values. For some CAs (not Thawte) you need to answer only
one:

Common Name (e.g., YOUR name) [:

This is not your personal name; this is the name you intend to use as the canonical name for the Web serve
So, use www.yourhost.domain.tld if you're going to be in the DNS as www.yourhost.domain.tld; if you expec
to be addressed as secure.domain.tld, use that. If you expect to just be called yourhost.domain.tld, use that.

For Thawte, make sure that the company name, state/province, and country that you enter here (or put in yc
openssl.cnf) exactly match the details in the documentation that you fax or mail to them.

After that, keep pressing return until you get the OpenSSL> prompt; then use CTRL-Z, exit, or quit to get
out. You should have two filesthe key file (newreq_key.pem) and the certificate request file (newreqg.pem).
The contents of newreg.pem will look something like this:

————BEGIN CERTIFICATE REQUEST———-
gibberishgibberishgibberishformanylines
—-———END CERTIFICATE REQUEST-——-

Despite the .PEM filetype, it's not actually a PEM (privacy—enhanced mail) file, it's just a BASE64-encoded
certificate signing request (CSR).

At this point go to the Thawte Web site, http://www.thawte.com/buy/contents.html. You'll cut and paste
NEWREQ.PEM into an on-line form at the Thawte site; save the key file, somewhere safe. (If you lose the
key file you can't use the certificate when you get it back; this will cost you money.) Also, it wouldn't be a ba
idea at this point to request a free test certificate, which will make sure you've got the process working befor
you spend money on it. Assuming you're going for the real certificate, the Thawte Web site will give you an
order number, which you shouldn't lose either, since you'll need it to track the status of your request, genera
a subscriber agreement, and download the certificate. Send Thawte the supporting documents by fax or
courier. When they're ready to issue the certificate, you'll get e-mail with a URL to download the certificate
from. Do so. When you've got it onto your VMS system, append your key to the end of the signed certificate

$ APPEND NEWREQ_KEY.PEM <certificate the CA signed>

56

6.1.4 Creating a self-signed certificate.

Then tell the server where to find the certificate (detailed in the following text), and you're set.
6.1.4 Creating a self-signed certificate.

If you're either not going to use a CA certificate or want to get going while you're waiting for your certificate
to arrive, you can use OpenSSL to create a self-signed certificate. Here's how. (Again, these instructions
follow those provided by R. A. Byers on his Web site at
http://lwww.ourservers.net/openvms_ports/openssl/openssl|_contents.html. Assume you've already installed
OpenSSL and have run @OPENSSL_STARTUP.) Run SSL-ROOT:[VMS]JOPENSSL_UTILS.COM file to
define the symbol for the OPENSSL utility.

$ @SSLROOT:[VMS]OPENSSL_UTILS.COM
Set your default to the SSL root directory.
$ SET DEFAULT SSLROOT:[000000]
Generate a certificate request using the OPENSSL utility.

$ OPENSSL
OpenSSL> req —config openssl.cnf —nodes —new —days 365
—x509 —keyout test_key.pem —out test.pem

Here's a description of what the parameters mean.
—config
This indicates which configuration file to use.

—-nodes

Don't DES encode the output key. (Because OSU won't let you specify a passphrase, it won't be able to use
DES-encoded key. Leave the parameter out if you want to use a passphrase on WASD or CSWS.)

—-new
This is a new certificate request.
—days
The number of days the X.509 certificate is good for.
-x509
Output an X.509 certificate instead of a regular certificate request.
—keyout
File to which to output the key.
-out
File to which to output the certificate.

57

6.1.5 HTTPS dialog

The program will prompt for some parameters, but there's only one you need to answer.

Common Name (e.g., YOUR name) []:

This is not your personal name, this is the name you intend to use as the canonical name for the Web serve
So, use www.yourhost.domain.tld if you're going to be in the DNS as www.yourhost.domain.tld; if you expec
to be addressed as secure.domain.tld, use that. If you expect to be called simply yourhost.domain.tld, use t

Exit the OPENSSL program. You should have two filesthe key file and the certificate file. You now need to
append the key file (the one you generated when you created the certificate) to the end of the certificate file.
(At least you do if you use OSU; Apache lets you specify key and certificate separately if you want.)

$ APPEND TEST_KEY.PEM TEST.PEM
Verify the certificate.

$ OPENSSL
OpenSSL> verify test.pem

If OpenSSL confirms that the certificate is okay, you have a working self-signed certificate, and you just nee
to tell the Web server where to find it. (If it doesn't verify, go back through all the steps and make a new one
that's quicker than trying to figure out what's gone wrong.)

6.1.5 HTTPS dialog

The browser is given an HTTPS URL. It looks the name up in the domain nhame server to get an IP address
and then initiates a dialog with the host at that address, requesting the site certificate. The host passes the
browser the site certificate, and the browser looks it over to see if it's acceptable. If the host name on the
certificate is different from the host name the browser looked up in the DNS, the browser will complain.

This means that you cannot successfully support name-based multihosting or virtual hosting on standard pc
with HTTPS. The certificate must be presented before the browser gets a chance to tell the host what serve
was looking for, so the server can't give different certificates based on host names. This is not a VMS
restriction and not a restriction of any particular Web server software; it's inherent in the design of the
protocol. If HTTPS is going to be a major concern, you'll need to have different numeric IP addresses for ea
domain you host. While you could try to centralize HTTPS services on one node name and make every
domain you host link to that one when HTTPS is desired, this is an unsatisfactory solution if the different
services belong to different noncooperating groups, or if you want to do password—based authentication
without having passwords flying around in plain text.

There's an ugly work—around, which may or may not actually work for all users. It will work only if the only
way users get to your HTTPS connections is by clicking links on the HTTP-served pages. The standard
HTTPS port is 443, and that's the only port you can expect the browser to use without your specifying it in tr
URL. You can run multiple copies of your servers on different ports, each one corresponding to a particular
name translation of your IP address; the URLs will have to specify the port (e.g., https://node.domain.tld:844
for port 8443).

The problem, as | learned when my site didn't allow me to specify port 443 and | had to do HTTPS service G

port 8443, is that while some sites leave all the unprivileged ports (ports with numbers greater than 1024)
open, other sites block access to ports that aren't the standard ports for wellknown services. This means the

58

6.2 Installation

you run on 8443, users at those other sites can't reach you. If you have any choice in the matter, run your
HTTPS service on port 443, and if you're an ISP hosting multiple noncooperating domains, get each one a
separate IP address and use IP-based virtual hosting.

If the certificate is acceptable, the server and browser have a dialog about which encryption algorithms at
what strength each one supports; choose a mutually agreeable one, and commence normal HTTP interchar
tunneled through the encryption algorithm. (This is, of course, expensive in compute cycles on both host an
client sides, in comparison with plain—text communications, so you should use HTTPS only when you need
if at all possible, especially on a heavily loaded server, or one on a slow pipe. But you need it whenever you
passing passwords back and forth.)

6.2 Installation

To use HTTPS, each server must connect with the SSL library. MOD_SSL interfaces the library with Apache
WASD has an equivalent hookup, and OSU can be connected either intimately (as an MST) or at arm's lenc
(with the SSL task running as a separate process connected to the main server via DECnet.)

6.2.1 CSWS/MOD_SSL

MOD_SSL installs automatically as part of the CSWS installation; that's the argument for calling it Compagq
SECURE Web Server. The installation procedure automatically creates a self-signed certificate for you,
which will last only 30 days.

Compag has provided some nice DCL procedures to interface to OpenSSL for certificate handling; these ar
in APACHE$COMMON: [OPENSSL.COM] and include OPENSSL_AUTO_CERT.COM for automatic
creation of a self-signed certificate (used at installation); OPENSSL_SELF_CERT.COM for interactive
creation of a self-signed certificate with prompting for organization name; and
OPEN-SSL_RQST_CERT.COM for interactively preparing a certificate request. You can substitute those fc
the more laborious instructions given above. Also, CSWS is now a recognized server type at VeriSign.

6.2.2 OSU

You need to install OpenSSL to use HTTPS with OSU. (OpenSSL started as SSLEAY, the EAY part becaus
it was coded by Eric A. Young, later joined by Tim Hudson. It became OpenSSL and is now supported on
many platforms by a multiperson development team that does regular releases. The code is very widely use
although it still isn't up to version 1.0 yet. If you see references to SSLEAY in documentation, mentally
replace them with OpenSSL.)

The installation process used to be quite annoying, but now Richard Levitte, who did the OpenSSL port to
VMS, is part of the OpenSSL development team and his changes are folded in to the standard OpenSSL
distribution, which includes a MAKEVMS.COM command file for compiling on VMS and an

INSTALL.COM for copying the relevant pieces to a production directory tree. Browse to www.openssl.org
and download the kit, which will have a name such as OPENSSL-0 9 6C.TAR-GZ;1. (That is, if you
download it with Netscape 3.03, which is older than the ODS-5 file system and doesn't know anything abou
it.) If you use a recent version of Mozilla and download to an ODS-5 disk, the file ends up named
openssl-0_9 6C.tar.gz, which also ends up being a problem because the GNU Zip program doesn't
understand ODS-5 and is looking for something named .tar—gz in order to work.

59

6.2 Installation

Get GZIP (installed as GUNZIP) and VMSTAR from the VMS freeware CD, either the copy that came with
your OS distribution or as a download from the www.openvms.compaq.com Web site, and install them.

Here's the routine for preparing and unpacking the kit:

$ dir openssl*

Directory DKBO:[CSWS_KITS]

OPENSSL-0_9 _6C.TAR-GZ;1 4202/4203 25-JAN-2002 02:53:08.95 (RWED,RWED,RE,)
Total of 1 file, 4202/4203 blocks.

$

$ gunzip openssl*.*

$ dir openssl|*.*

Directory DKBO:[CSWS_KITS]

OPENSSL-0_9 6C.TAR;1 22040/22041 25-JAN-2002 02:58:33.29 (RWED,RWED,RE,)
Total of 1 file, 22040/22041 blocks.

$ rename openssl-0_9_6C.TAR dkbO0:[openssl]

$ set def dkb0:[openssl]

$ dir

Directory DKBO:[OPENSSL]

OPENSSL-0_9 6C.TAR;1 22040/22041 25-JAN-2002 02:58:33.29 (RWED,RWED,RE,)
Total of 1 file, 22040/22041 blocks.

$

$ vmstar /extract openssl-0_9_6c.tar

$ set def [.openssl-0_9_6C]

$ dir

Directory DKBO:[OPENSSL.OPENSSL-0_9_6C]

APPS.DIR;1 5/6 25-JAN-2002 03:01:09.51 (RWE,RWE,RE,E)
BUGS.DIR;1 1/3 25-JAN-2002 03:01:24.13 (RWE,RWE,RE,E)
CERTS.DIR;1 2/3 25-JAN-2002 03:01:25.41 (RWE,RWE,RE,E)
CHANGES:.;1 52/354 20-DEC-2001 17:20:51.00 (RWED,RWED,RE,)
CHANGES.SSLEAY;1 4/84 22-DEC-1998 23:42:26.00 (RWED,RWED,RE,)
CONFIG.;1 32/33 19-DEC-2001 11:37:41.00 (RWED,RWED,RE,)
CONFIGURE.;1 15/117 6-DEC-2001 05:11:39.00 (RWED,RWED,RE,)
CRYPTO.DIR;1 3/3 25-JAN-2002 03:01:30.56 (RWE,RWE,RE,E)
DEMOS.DIR;1 1/3 25-JAN-2002 03:03:23.54 (RWE,RWE,RE,E)
DOC.DIR;1 1/3 25-JAN-2002 03:03:29.33 (RWE,RWE,RE,E)
E_OS.H;1 28/30 8-NOV-2001 06:36:49.00 (RWED,RWED,RE,)
E_OS2.H;1 2/3 2-MAY-2000 05:15:25.00 (RWED,RWED,RE,)
FAQ.;1 53/54 20-DEC-2001 17:21:03.00 (RWED,RWED,RE,)
INCLUDE.DIR;1 1/3 25-JAN-2002 03:04:00.60 (RWE,RWE,RE,E)
INSTALL.;1 22/24 16-MAY-2001 22:03:47.00 (RWED,RWED,RE,)
INSTALL.COM;1 6/6 11-NOV-1999 17:42:53.00 (RWED,RWED,RE,)
INSTALL.MACOS;1 7/9 1-OCT-2001 07:39:22.00 (RWED,RWED,RE,)
INSTALL.VMS;1 23/24 16-MAY-2001 22:03:47.00 (RWED,RWED,RE,)
INSTALL.W32;1 18/18 22-SEP-2000 19:06:08.00 (RWED,RWED,RE,)
LICENSE.;1 13/15 23-JAN-2001 18:56:13.00 (RWED,RWED,RE,)
MACOS.DIR;1 1/3 25-JAN-2002 03:04:08.96 (RWE,RWE,RE,E)
MAKEFILE.;1 1/3 20-DEC-2001 18:54:43.00 (RWED,RWED,RE,)
MAKEFILE.ORG;1 41/42 14-NOV-2001 02:44:11.00 (RWED,RWED,RE,)
MAKEFILE.SSL;1 41/42 20-DEC-2001 18:54:43.00 (RWED,RWED,RE,)
MAKEVMS.COM;1 49/51 29-0CT-2001 05:05:56.00 (RWED,RWED,RE,)
MS.DIR;1 2/3 25-JAN-2002 03:04:12.80 (RWE,RWE,RE,E)
NEWS.;1 16/18 20-DEC-2001 04:36:39.00 (RWED,RWED,RE,)
OPENSSL.DOXY;1 1/3 28-FEB-1999 09:41:51.00 (RWED,RWED,RE,)
OPENSSL.SPEC;1 16/18 13-NOV-2001 23:42:39.00 (RWED,RWED,RE,)
PERL.DIR;1 1/3 25-JAN-2002 03:04:16.91 (RWE,RWE,RE,E)
README.;1 14/15 20-DEC-2001 17:21:04.00 (RWED,RWED,RE,)
README.ENGINE;1 5/6 1-0OCT-2001 07:39:23.00 (RWED,RWED,RE,)
RSAREF.DIR;1 1/3 25-JAN-2002 03:04:19.64 (RWE,RWE,RE,E)
SHLIB.DIR;1 1/3 25-JAN-2002 03:04:20.65 (RWE,RWE,RE,E)

60

6.2 Installation

SSL.DIR;1 3/3 25-JAN-2002 03:04:22.15 (RWE,RWE,RE,E)
TEST.DIR;1 4/6 25-JAN-2002 03:04:29.17 (RWE,RWE,RE,E)
TIMES.DIR;1 4/6 25-JAN-2002 03:04:39.36 (RWE,RWE,RE,E)
TOOLS.DIR;1 1/3 25-JAN-2002 03:04:47.54 (RWE,RWE,RE,E)
UTIL.DIR;1 2/3 25-JAN-2002 03:04:48.76 (RWE,RWE,RE,E)
VMS.DIR;1 1/3 25-JAN-2002 03:04:54.25 (RWE,RWE,RE,E)

Total of 40 files, 974/1032 blocks.
$

Here's the actual compilation. In the old days (two years ago), the RSA algorithm was patented and could
legally be implemented only in some C code provided by RSA, Inc. The RSAREF parameter was used if yot
had the code from RSA on your system; NORSAREF if you didn't. Since the RSA patent expired in 2000
(two weeks after RSA, Inc., made it available for free use), RSAREF has become moot, so we compile with
NORSAREF. The fifth parameter, UCX, tells whether to link against NETLIB or the UCX library. (NETLIB

is a package that presented a uniform interface to the multifarious TCP/IP packages that used to run on VM
The only packages that make any sense to run now are TCP/IP Services, TCPware, and Multinet, all of whi
provide a UCX$IPC_SHR library that will work with OpenSSL).

Here's what the OPENSSL install looks like in outline.

$ set def [.openssl-0_9_6C]

$

$ @makevms all norsaref nodebug decc ucx

Using DECC 'C' Compiler.

Using UCX or an emulation thereof for TCP/IP

TCP/IP library spec: [-.VMS]JUCX_SHR_DECC.OPT/OPT

Creating [.CRYPTO]JOPENSSLCONF.H Include File.

Creating [.CRYPTO]BUILDINF.H Include File.

Rebuilding The '[.APPS]MD5.C' And [.APPS]RMD160.C' Files.

%DELETE-W-SEARCHFAIL, error searching for DKBO:[OPENSSL.OPENSSL-0_9 6C.APPS]MD5.C;*
-RMS-E-FNF, file not found

%DELETE-W-SEARCHFAIL, error searching for DKBO:[OPENSSL.OPENSSL_0_9_6C.APPS]RMD160.C;*
-RMS-E-FNF, file not found

Rebuilding The '[.TEST]*.C' Files.

Rebuilding The '[.INCLUDE.OPENSSL]' Directory.

Building The [, AXP.EXE.CRYPTO]LIBCRYPTO.OLB Library.

No Debugger Information Will Be Produced During Compile.

Compiling With Compiler Optimization.

Using DECC 'C' Compiler.

Compiling Without The RSAREF Routines.

Main C Compiling Command: CC/OPTIMIZE/NODEBUG/STANDARD=ANSI89/NOLIST/PREFIX=ALL/
INCLUDE=SYS$DISK:[//DEFINE=("FLAT_INC=1"VMS=1,TCPIP_TYPE_UCX,DSO_VMS)/
WARNING=(DISABLE=(LONGLONGTYPE,LONGLONGSUFX))

Main MACRO Compiling Command: MACRO/MIGRATION/NODEBUG/OPTIMIZE

TCP/IP library spec: [-.VMS]JUCX_SHR_DECC.OPT/OPT

Compiling On A AXP Machine.

Using Linker Option File SYS$DISK:[[VAX_DECC_OPTIONS.OPT.

Compiling The uid.c File. (LIBRARY,LIB)

Compiling The MD2 Library Files. (LIBRARY,LIB)

and so on, concluding with ...

Building The OPENSSL Application Program.
$

61

6.2 Installation

Here's the command to copy libraries, configuration files, and so on into another directory tree for productior
purposes. Once you've done this, you can nuke the SSL, tree if you need the disk space. Quite a lot of it is
code and scripts for non—-VMS platforms. When you get a later version of SSL you can build that one in its
own tree and use this same procedure to put it in your production SSL space. (But note, however, that if you
do, this will overwrite your configuration file; therefore, save it before you upgrade.)

$ @install dkbO:[production_ssl]

%CREATE-I-CREATED, WRK_SSLROOT:[000000] created
%CREATE-I-CREATED, WRK_SSLROOT:[VAX_EXE] created
%CREATE-I-CREATED, WRK_SSLROOT:[ALPHA_EXE] created
%CREATE-I-CREATED, WRK_SSLROOT:[VAX_LIB] created
%CREATE-I-CREATED, WRK_SSLROOT:[ALPHA_LIB] created
%CREATE-I-CREATED, WRK_SSLROOT:[LIB] created
%CREATE-I-CREATED, WRK_SSLROOT:[INCLUDE] created
%CREATE-I-CREATED, WRK_SSLROOT:[CERTS] created
%CREATE-I-CREATED, WRK_SSLROOT:[PRIVATE] created
%CREATE-I-CREATED, WRK_SSLROOT:[VMS] created
%COPY-S-COPIED, DKBO:JOPENSSL.OPENSSL-0_9 6C]E_OS.H;1
copied to WRK_SSLROOT:[INCLUDE]E_OS.H;1 (28 blocks)
%COPY-S-COPIED, DKBO:[OPENSSL.OPENSSL-0_9 6C]JE_0OS2.H;1
copied to WRK_SSLROOT:[INCLUDE]JE_OS2.H;1 (2 blocks)
%COPY-S—-NEWFILES, 2 files created

Installing CRYPTO files.

and so on, and so on, concluding with ...

Installing VMS files.

%OPEN-I-CREATED, WRK_SSLROOT:[VMS]JOPENSSL_STARTUP.COM;1
created.

%COPY-S-COPIED, DKBO:[OPENSSL.OPENSSL-

0_9 6C.VMS]JOPENSSL_UTILS.COM;1 copied to
WRK_SSLROOT:[VMS]JOPENSSL_UTILS.COM:;1 (3 blocks)

Installation done!

At this point you probably want to put

$dkbO:[production_ssl.vms]openssl|_startup.com "/system"

into your system startup so that your SSL root will be defined systemwide.

Your SSL library is built. Now comes the fun part of installing an SSL component into OSU. While there are
three different ways to do this, they all start out the same, so I'll go through the common part first. (Again, I'n
working from R. A. Byers's instructions at
http://www.ourservers.net/openvms_ports/openssl/openss|_contents.html. I've been using these instructions
run various versions of OSU with SSL in a separate task for several years, so | know they're good.)

You'll need to replace a few parts of the OSU server distribution. Point your browser to
http://lwww.ourservers.net/openssl/openssl4.html and follow the links to download newtserver.zip, osu_ssl.zi
and wwwssl.zip (unless you're going for the MST version of SSL, in which case you won't need WWWSSL.)
You'll also need to have either MMSthe Compaglicensed make utility, part of DECsetor the free compatible
MMK package, which you can get at ftp://ftp.madgoat.com/madgoat/MMK.zip. You'll need to have one of
these packages to install Perl extensions or modules later, anyway, so it's good to have this in your toolbox.

62

6.2.2 OSU

Unpack the osu_ssl.zip into the [BASE_CODE] subdirectory of your OSU directory. (This brings in
replacements for some of the linker .OPT files that are in the OSU distribution point to old SSLEAY files.) If
you didn't use the shareable—-image TCP library options when you built OSU originally, you need to rebuild i
using them.

$ MMS/MACRO=(SHARE_TCP=xxxx) ! or MMK/
MACRO=(SHARE_TCP=xxxx)

where the "xxxx" is one of the following:

CMUTCP CMU TCP/IP

MULTINET Multinet TCP/IP

TCPWARE TCPware TCP/IP

TWGTCP Pathway TCP/IP

UCXTCP DEC UCX TCP/IP

Next, unpack the newtserver.zip file into your [.SYSTEM] directory; this replaces the existing
tserver_tcpshr_install.com file. Unless you're building the MST version of SSL, unpack the WWWSSL.ZIP
file into the root OSU directory, making a WWWSSL.COM file. (This small pure—text file is sent as a ZIP
archive because some people have to download using PCs, and if they have Internet Explorer, which doesn
honor MIME-type specifications, it will assume that a .COM file is a PC binary executable and mess it up.
ZIPs are reasonably immune to this kind of nonsense.) Edit WWWSSL.COM so that the
SSL_SERVER_CERTIFICATE logical name is defined to point to the file the certificate is in. (Byers
recommends putting the certificate into SSLCERTS:as defined in the OpenSSL startup and the file name is
default SERVER.PEM.)

Your options are the TASK interface (which works with every combination of a 40— or 128-bit browser and ¢
self-signed or CA-signed server certificate, but which requires a trip through same-system DECnet to get t
the server); the ENGINE interface (which supports most browser/certificate combinations and which has the
same DEChnet trip to cover); and the message—based server thread (MST) interface, which is linked in with 1
server image and has the best performance but supports the fewest browser/certificate combinations. (As o
version 3.10, the MST interface has been altered to support authentication using client certificates; this is nc
the case with SSL_ENGINE or SSL_TASK.)

All three options work fine with nonexport browsers with 128-bit encryption. If you can rely on all your users
having that, you'll be fine. At my site, we need to support users all over the world, including staff who have
traveled to conferences in other countries and are using Internet cafes or other systems on which they aren’
allowed to install software. Flexibility was more important than getting absolutely optimal performance;
therefore, I've always used the TASK interface.

The TASK interface

If you want to use the SSL TASK interface (using the SSLTASK image compiled when you installed
OpenSSL), do the following. Compile the DEC—net interface to SSL.

$ CC TSERVER_SSL.C
$ CC SSL_SERVER_DNET.C

Link it.

$ MMS TSERVER_SSL.EXE/FORCE/MACRO=(SSL=SSL_SERVER_DNET)

63

6.2.3 The ENGINE interface

That should create a TSERVER_SSL.EXE in your [.SYSTEM] directory. Start the server; if
DISK$WORK:[HTTP_SERVER] is your OSU server root, a startup command such as

$ @DISK$WORK:[HTTP_SERVER.SYSTEM]JHTTP_STARTUP.COM
HTTP_SERVER -

DISK$WORK:[HTTP_LOGS]HTTP_ERROR.LOG -
DISK$WORK:[HTTP_SERVER.SYSTEM]HTTP_MAIN.CONF -

80 443

should start you up with an HTTPS service on port 443. If it doesn't work, look in WWWSSL.LOG for clues.
6.2.3 The ENGINE interface

To use the SSL ENGINE interface (using the SSL_ENGINE code provided with the server), do the following
Compile the DECnet interface to SSL and the SSL_ENGINE code.

$ CC TSERVER_SSL.C
$ CC SSL_SERVER_DNET.C
$ CC SSL_ENGINE.C

You now need to compile the SSL_THREADED.C and BSS_MST.C files as follows:

$ CC/STANDARD=ANSI89/PREFIX=ALL/WARNING=DISABLE=DOLLARID -
/INCLUDE=SSLINCLUDE:/DEFINE=("FLAT_INC=1","VMS=1") -
SSL_THREADED.C

$ CC/STANDARD=ANSI89/PREFIX=ALL/WARNING=DISABLE=DOLLARID -
/INCLUDE=SSLINCLUDE:/DEFINE=("FLAT_INC=1","VMS=1") -

BSS_MST.C

and link the SSL_ENGINE:

$ LINK/INOTRACEBACK/EXE=SSLEXE:SSL_ENGINE.EXE -
SSL_ENGINE.OPT/OPT

This puts the SSL_ENGINE code in your installed OpenSSL directory tree, not in your OSU tree. To work
properly, this needs to be world-readable, so set the protection:

$ SET FILE SSLEXE:SSL_ENGINE.EXE -
/PROTECTION=(S:RWED,O:RWED,G,W:RE)

and it needs SYSNAM privilege, so install it as follows:

$ INSTALL ADD SSLEXE:SSL_ENGINE.EXE/PRIVS=(SYSNAM)

(If you are upgrading OSU, that needs to be INSTALL REPLACE rather than ADD.) You should put this
INSTALL command into your server startup script so that it will be executed every time the server starts; if
you don't, your HTTPS service will stop working when you next reboot.

Start the server (with the command shown for the TASK interface) and see if it works; if it doesn't, check
WWWSSL.LOG for clues. A common problem is having the ownership or the protection on the server
certificate set wrong. Remember, you can't make it W:R, because your private key is attached to it, but the
OSU account (usually HTTP_SERVER) has to able to read it; anybody else who gets the file can use it to
impersonate your server.

64

6.2.4 The MST interface
6.2.4 The MST interface

In the [.BASE_CODE] directory, compile the TSERVER_SSL.C and SSL_SERVER_MST.C files.

$ CC TSERVER_SSL.C
$ CC SSL_SERVER_MST.C Message-based Server Thread

Compile the SSL_THREADED.C and BSS_MST.C files as follows:

$ CC/STANDARD=ANSI89/PREFIX=ALL/WARNING=DISABLE=DOLLARID -
/INCLUDE=SSLINCLUDE:/DEFINE=("FLAT_INC=1","VMS=1") -
SSL_THREADED.C

$ CC/STANDARD=ANSI89/PREFIX=ALL/WARNING=DISABLE=DOLLARID -
/INCLUDE=SSLINCLUDE:/DEFINE=("FLAT_INC=1","VMS=1") -

BSS_MST.C

It's normal in this case to get some warnings (-W-) and informational (—-I-) compile messages; don't worry
about it. Link the MST SSL server.

$ MMS TSERVER_SSL.EXE/FORCE/MACRO=(SSL=SSL_SERVER_MST) ! or
MMK

You should now see the file TSERVER_SSL.EXE in your OSU [.SYSTEM] directory.

6.2.5 WASD

There isn't really a separate SSL installation process for WASD. At installation time, you need to use the
optional WASD OpenSSL kit and install against that as described in Chapter 4, section 4.2.4 or link against
your site's existing OpenSSL installation to provide an SSL-enabled WASD image. The WASD OpenSSL ki
includes a self-signed test certificate so SSL can be deployed immediately. The [.WASD)] directory includes
some DCL procedures that make it easy to generate self-signed CA, server, and client certificates.

6.3 Configuration

6.3.1 CSWS/MOD_SSL

MOD_SSL offers global directives that affect the entire Apache installation; per—server directives that apply
to either the default server configuration or within a VirtualHost container; and per—directory directives,
which can appear not just in the main server config files but in the .htaccess files you may choose to locate |
particular directories.

Here's a tip that will save you a little annoyance: mod_ssl.conf is included at the end of HTTPD.CONF by th
installation. If you leave it there, any container configuration such as SSLRequireSSL that appears above it
will keep your server from starting. Move the include of mod_ssl.conf near the top of your HTTPD.CONF, or
append all your system configuration below it.

Apache allows different certificates for different IP—based virtual hosts. You can specify those in the
mod_ssl.conf include file. The default mod_ssl.conf, incidentally, uses a virtual host container for the default
host (with port 443 specified), and has a document root specification in that container. It's a little surprising
when you've pointed your document root in the default server to where your actual files are and then go to

65

6.2.4 The MST interface

your site with HTTPS and still see the Apache documentation page.

It is my strongly held opinion that you don't want certificates that require you to enter a passphrase, even
though Apache supports it. This would mean that your site couldn't run SSL if the people who knew the
passphrases weren't available; if everybody knows the passphrases, they aren't secret, and there's no point
having them. Passphrases make sense if you don't trust the security of your file systemsince the encrypted
certificate is no good without the passphraseor the ability of the operating system to keep untrusted users fr
getting privileges to access resources they're not supposed to. The robust security model of VMS is one of t
reasons you're running it; set up your files correctly and don't mess with passphrases. You shouldn't
compromise the ability of the platform to boot unattended by requiring operator input to make SSL services
work.

(Apache also gives the option of running an arbitrary program to provide the passphrase input, but, in fact, if
you're going to have a program know the phrases, or have a program read a file that has the phrases in it, y
subvert the point of having passphrases at all.) Apache provides quite a few knobs to twiddle in SSL; on
VMS, you mostly don't want to touch them. If you're curious, you can go to modssl.org and read their
documentation in detail.

Here are the parameters you care about. (I'll give a brief discussion later of the parameters you don't care
about, and why.) In general they can be included at the main server configuration level or in a VirtualHost
container.

SSLEnNgine on|off (default off)

You need this to use HTTPS at all. This enables or disables use of the SSL/TLS protocol engine for this
VirtualHost (or, if you do it for the default server configuration, the main server). Typically, you'd use only
the SSLEnNgine on format.

SSLCertificateFile pathto/certificatefilename
SSLCertificateKeyFile pathto/keyfilename

As you'd guess, these directives allow you to specify where your certificate file is located. (If your key is
combined with the certificate file, you need only the SSL CertificateFile directive; if not, you need the
SSLCertificateKeyFile directive to tell Apache where the key file is.) If you include these directives in
IP-address—based VirtualHost containers, you can specify a different certificate for each VirtualHost. (As
already mentioned, this won't work for name—-based virtual hosts with the same numeric IP address, becaus
the SSL dialog occurs before the browser can tell the server what host it's looking for.)

SSLLog /pathto/filename
SSLLogLevel none | error | warn | info | trace | debug

If you want a dedicated log that shows only HTTPS transactions, use SSLLog to specify where you want it. .
typical path would be logs/ssl_engine_log (and that's what's in the CSWS MOD_SSL file by default).
SSLLogLevel specifies what information you want to see in the SSL log file; if not specified, the default is
none. Each level incorporates all the levels shown to the left of it; CSWS gives you info by default. Even if
you don't have an SSL log, errors will be written to the main Apache log. trace is interesting to watch how ar
SSL dialog unfolds, but you don't want to leave it on all the timeit'll burn a lot of disk space. That's even mor
true for debug.

SSLRequireSSL
SSLRequire [arbitrarily—complex boolean—expression]

66

6.2.4 The MST interface

SSLRequireSSL, included in any container directive or .htaccess file, forbids non—-SSL access to the stuff
specified therein. If you use password—based authentication for access to the contents, the password dialog
will be SSL-encrypted, which is a good thing.

SSLRequire, on the other hand, is like Require, the directive that lets you limit access to anything unless an
conditions you can specify are met. Potentially, however, it is considerably more complicated, because it ha
lot more environment variables to play with. If you want to require that only a particular IP address can get a
this container, or get at it only between 9:00 A.M. and 5:00 P.M., or use only SSL version 3 with the
Blow-fish cipher and a 512-bit key, this is the command you want. | include it here for completeness, but I'l
discuss this (and the Require command) more fully in Chapter 7.

SSLOptions [+-] StdEnvVars | CompatEnvVars | ExportCertData |
FakeBasicAuth | StrictRequire | OptRenegotiate

This can go in a server config, VirtualHost, container, or .htaccess file; if the options specified are preceded
with + or —, they are merged with the options already in effect from any higher—level SSLOptions
specification.

StdEnvVars tells Apache to create the standard set of SSL-related environment variables (symbols), which
you usually want to do only if you're going to be using them in CGls or SSls or possibly in SSLRequire
statements.

CompatEnvVars produces the environment variables for backward compatibility with pre—-mod_ssl Apache
SSL environments; you're unlikely to need this on VMS unless you've imported CGls from an old UNIX
installation.

ExportCertData and FakeBasicAuth apply only if you're using client certificates for authentication, which is
fairly rare (and is discussed in Chapter 7). ExportCertData makes the certificate information available as
symbols in the CGI/SSI environment, while FakeBasicAuth takes the subject distinguished name (DN) of the
client certificate and pretends that the client was authenticated as that user under basic authorization, allowi
regular Apache access controls to be used. Since no password is collected, the user name has to be entere
the authorization filenot the SYSUAF but an .htauth file with the password xxj31ZMTzkVA, which is the
DES-encoded version of the word "password."

StrictRequire is designed to keep a Satisfy any with other authorized accesses specified from working when
SSLRequire or SSLRe—quireSSL forbids access; it forces an access failure without looking at the other
options permitted in the Satisfy command.

OptRenegotiate should be used only on per—container specs; it enables optimized SSL connection
renegotiation handling. Without this, a full new SSL handshake will occur every time a container is specified
that has an SSL directive in it; with it, mod_ssl does parameter checks less often, but still often enough to be
safe.

CustomLog pathto/filename logformat

mod_ssl enhances the CustomLog directive (which is technically from mod_log_config, one of the core
modules of Apache/CSWS), allowing it to log SSL-related environment variables. The CSWS-distributed
mod_ssl.conf has a CustomLog defining an SSL_REQUEST_LOG., tracking which protocols and which
ciphers were used; it looks like this:

CustomLog logs/ssl_request_log \

67

6.2.4 The MST interface

"%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b"
The resulting log entries (with the IP address sanitized) look like:

[27/Jan/2002:03:29:05 -0800] [IP] TLSv1l EDH-RSA-DES-CBC3-
SHA "GET / HTTP/1.1" 2673

Now for the parameters you probably don't want to, or shouldn't, mess with, either because you're unlikely t
need them at all or because the default values are good ones. (I don't actually expect good system manage
believe that they aren't important on my word alone, so | explain them anyway.)

SSLPassPhraseDialog

| don't really believe in passphrases for VMS; they can compromise availability without giving much of an
increase in security. Don't use encrypted keys that require passphrases.

SSLSessionCache none | dbm:/pathtoffile | [c]shm:/pathto/
file[(size)]

SSLSessionCacheTimeout number—of-seconds
SSLMutex none | /pathto/lockfile | | [c]sem

If it's told to, Apache will maintain a cache of currently open SSL sessions, which is available to all of the
Apache server processes. Modern browsers may issue multiple parallel requests, which can be satisfied by
different server processes. If the credentials are cached, each server process doesn't have to go through th
whole dialog over again, and you get much better throughput, resulting in pages that load faster. So you wa
to have a session cache, thus ruling out the none option. The dbm: parameter isn't actually telling CSW to u
a dbm file, but it does let you specify a disk—based table, which is slower than having the session cache in
shared memory, which is what shm: gives you; this is what's in the mod_ssl.conf file when you install CSWS
(If you get really, really, heavy SSL use and see performance suffer, you might want to increase the SSL
cache size from the default 512,000 bytes, but I'd expect you to do more for SSL performance by splitting th
encryption load across more CPUSs.)

With version 1.2, there's support for a clusterwide session cache. If your cluster is in a Galaxy box, the sess
cache can be in Galactic shared memory; specify cshm: rather than shm: and make sure the size of the dat:
is the same everywhere it's referred to. If your cluster combines multiple systems, you can use shared disk
storage by specifying dbm:/pathto/data—file to a cluster-visible disk and use

SSLMutex csem

to specify cluster semaphore control. This gives you the performance benefit of a clusterwide shared cache
along with the performance drawbacks of having to do disk 1/O to get to it. Whether you save or lose time by
using disk—-based clusterwide SSL session cache is probably highly dependent both on load and I/O speed,
and it might be worth some experimentation.

SSLSessionCacheTimeout says how many seconds to hold the SSL data in the cache if there's room; the
CSWS default is 300 (five minutes), which is what mod_ssl.org suggests. If your users typically put data tha
are secret enough to require encryption up on their screens and leave it sit for longer than five minutes, you
can accommodate that behavior by increasing the SSLSessionCacheTimeout.

Since every Apache process can update the SSL Session Cache, they need some way to keep from tripping
over each other. SSLMutex tells Apache whether to use nothing to direct trafficwhich is silly, since it will

68

6.3.2 OSU

result in cache corruption the first time two processes try to update the cache at the same timeor a lock file
(which is the traditional pathetic UNIX work—around for not having a lock manager and which fails to result
in cripplingly bad 1/0 performance only because the heavily cached file system doesn't guarantee that the fil
will actually get out to disk when it signals that a write is complete)or a semaphore if the operating system
provides that advanced construct. VMS has had a lock manager for a long, long time, and the sem setting («
the csem variant) is, therefore, the only one that makes sense; it's the one that CSWS provides out of the b

SSLRandomSeed startup | connect builtin |
/pathto/pseudodevice |/pathto/exe

UNIX servers offer pseudodevices that are supposed to provide random values based on events meant to b
nondeterministic (e.g., the number and content of I/O operations the system has performed so far); they hav
names such as /dev/random and /dev/urandom. Those devices have more randomness available when the
system has been running awhileor at least can provide more random bytesthan they do at startup, so on tho
systems you might want to use different sources of randomness at startup than you do at each new SSL
connection. The devices aren't available on VMS, so you either need to use the built—in pseudorandom
number generator or roll your own and tell Apache to use it. I'm guessing that nearly everybody will go with
the built—in option, and that's what's configured in the CSWS mod-ssl.conf. This works only in the
whole—server context, incidentally, not in VirtualHosts.

SSLProtocol All | +| =SSLv2 | +|-SSLv3 | + |-TLSv1

allows you to specify which SSL protocols you'll support. Unless you want to keep customers or users from
talking to you, you'll pick All, which is the default. (Mozilla supports TLSv1; Netscape 4.73 and up supports
SSLv3, as does Internet Explorer 5.5 and up.) The + or apply when this command appears in VirtualHost,
container, or .htaccess mode, in which the parameters can be merged with those inherited from higher level

SSLCipherSuite cipher-spec

This lets you restrict which ciphers you're willing to support with which SSL protocols, in per-server and
per—container contexts and also in .htaccess files. My belief is that most sites want to embrace as many as
possible, which is the default. Look up the cipher table on modssl.org if you want to get involved with this.

SSL CertificateChainFile pathto/certificatechainfile

If your certificate doesn't come directly from a known CA, but rather from an entity that has been delegated
the authority by a known CA, you can provide a file consisting of the certificates from the entity that issued
your certificate all the way up to a known CA; this directive tells Apache where to find that file.

SSLCACertificatePath /path
SSLCACertificateFile filename

MOD_SSL supports X.509 client authentication; this is discussed more fully in Chapter. 7

6.3.2 OSU

The SSL configuration for OSU is minimal, and it was covered in the instructions for building in SSL support
For SSL_TASK or SSL_ENGINE, make sure the WWWSSL.COM file specifies where to find the certificate.
For MSTs, insert $ DEFINE/SYSTEM/EXEC statements for the following logicals into the
HTTP_STARTUP.COM file so that they're defined whenever you start the server.

69

6.3.3 WASD

WWWSSL_MST_THREAD_LIMIT Maximum number of SSL threads allowed. (Default is 10)
WWWSSL_MST_STACK_SIZE The stack size for SSL server threads. (Default is 60000)
WWWSSL_MST_QUEUE_FLAG To wait for next available thread or not. (TRUE or FALSE value)
WWWSSL_MST_CERTIFICATE Location of the server's SSL certificate.

WWWSSL_MST_LOGFILE Location to put the MST SSL log file.
WWWSSL_MST_VERSION Which versions of SSL to use: 2, 3, or 23 (Default is 2; 23 supports
both.)

Here's an example:

$ DEFINE/SYSTEM/EXEC WWWSSL_MST_THREAD_LIMIT 15

$ DEFINE/SYSTEM/EXEC WWWSSL_MST_STACK_SIZE 90000
$ DEFINE/SYSTEM/EXEC WWWSSL_MST_QUEUE_FLAG TRUE
$ DEFINE/SYSTEM/EXEC WWWSSL_MST_CERTIFICATE -
SSLCERTS:SERVER.PEM

$ DEFINE/SYSTEM/EXEC WWWSSL_MST_LOGFILE -
DISK$HTTP:[HTTP_LOGS]SSL_MST.LOG

$ DEFINE/SYSTEM/EXEC WWWSSL_MST_VERSION 23

If you put these define statements in your OSU HTTP startup file, you won't be surprised if your HTTP
service fails when you next reboot. Start up the HTTPD server (same command as seen in the TASK versio
and HTTPS should work. If not, check the file you defined in WWWSSL_MST_LOGFILE for clues.

OSU doesn't need SSL cache configuration directives, because it isn't sharing the information among multip
processes, just multiple threads with the same environment available.

OSU supports the use of exactly one certificate, so don't try to support multiple domains. (There's an ugly
hack that allows you to run multiple versions of OSU on different ports, tweaking all the SYSTEM-level
logical names into GROUP-level tables; this might let you run the MST SSL version, although only one cop
of OSU could be listening to port 443, and the rest would have to specify a nonstandard port. To run multiple
copies of SSL_TASK or SSL_ENGINE, you'd need to run OSU under multiple user names so that the
DECnet task created to run SSL could have different environments.)

Until the just-released (end of January 2002) 3.10alpha version, OSU did not support authentication througl
the use of client certificates at all. That version supports it in the MST version only, and the support is
described in the release notes as "experimental”; I'll discuss configuration for that in Chapter 7.

6.3.3 WASD

If the WASD server startup finds a certificate in HT_ROOT: [LOCAL]JHTTPD.PEM, the startup will
automatically define HTTPD$ SSL_CERT to point to the certificate file specified. (You can also specify a
WASD_SSL_CERT symbol to point to a certificate file before running the startup, and HTTPD$SSL_CERT
will end up pointing to that value.) If you do no further configuration, all SSL services will use that certificate.
If the key is in a separate file rather than appended to the certificate, you can manually define
HTTPD$SSL_KEY to point to the key file. If the key requires a passphrasewhich, as I've said previously, |
don't think is a good ideathe server will issue a status message saying that it needs to be told the phrase, ei
to the HTTPDMON utility or, if you've enabled OPCOM logging, to OPCOM. The passphrase can then be
entered by a privileged user running the command-line interface to the server:

$ HTTPD /DO=SSL=KEY=PASSWORD
Enter private key password []:

70

6.3.3 WASD

(The passphrase isn't echoed; you get three tries to get it right before the server carries on with the startup v
that service disabled. If there are multiple services with multiple keys with multiple passphrases specified, y«
need to repeat this dialog and be sure to get it in the right order.)

To specify different SSL services in WASD, you can use a command-line parameter in the server startup
(/SERVICE=), the [Service] header in the file pointed to by the logical HTTPD$CONFIG (which is, by
default, HTTPD$CONFIG.CONF), or a separate HTTPD$SERVICE file. (If the startup sees an
HT_ROOT:[LOCALJHTTPD$SERVICE.CONF, it'll define an HTTPD$SERVICE logical name.)

In the HTTPD$CONFIG variant, you define on one line the service name (and port, if it's not the default) for
each service you want to support. If no service type is given, it's assumed to be HTTP. If no port is given, it'
assumed to be 80 for HTTP and 443 for HTTPS. After the service name, insert a semicolon and then give a
cert parameter to locate the appropriate certificate. (This still requires different numeric IP addresses for the
different HTTP services, at least the ones on the same ports.)

[Service]

yourserver.yourdomain.tld
https://yourserver.yourdomain.tld;cert=ht_root:[locallyourserver.pem
https://otherserver.yourdomain.tld;cert=ht_root:[locallotherserver.pem
https://otherportserver.yourdomain.tld:8443;cert=ht_root:[local] otherport.pem

In the HTTPD$SERVICE variant, there are more directives available. In the HTTPD$SERVICE file, the
headers are the service names:

[[http:/lyourserver.yourdomain.tld:80]]

[[https://yourserver.yourdomain.tld:443]]
[ServiceSSLcert]ht_root:[local]servicename.pem
[ServiceSSLkey]ht_root:[local]servicename_key.pem

As shown, SSLcert points to the location (as a VMS file name, not a UNIXified string with slashes) of the
server certificate for this service; SSLkey points to the location of the private key file, if you didn't bundle it
with the server certificate in a single file.

WASD also supports X.509 certificate authentication and authorization on a per-resource basis. This is
discussed more fully in Chapter 7.

71

Chapter 7: Managing Access to Your Server
Resources

Overview

There are two sides to managing access to server resources: the outside and the inside. You need to contrc
who (and how many) entities from outside the system can get at what's on the inside in what way. This bring
up the issues of user identification, either anonymously (people coming from particular subnets or domains)
identifiably (through some kind of authentication procedure).

Presented with a URL by the client, the server has to map that into a resource name recognizable by the
operating system; determine whether there are any access restrictions on that resource; and, if the access i
restricted to particular users, authenticate the requester as one of the users. Resource mapping, access cor
and authentication are closely enough intertwined that they should be discussed together.

On the inside, there's presentation, so I'll start by discussing how you map URLS to particular resources alor
with some related path— or URL-oriented commands. File protection and access control are right in the
middle and require some understanding of both sides, so I'll discuss that last.

7.1 Mapping resources

In the basic configuration for each of the servers (discussed in Chapter 5), | described how to specify the
document root for each server. (In Apache, that's a DocumentRoot directive; in the other servers, it's a PAS.
mapping rule, which specifies how /* is interpreted.)

If you just want to serve everything from one document tree, with a URL that exactly matches the
subdirectory structure of that document tree and do nothing else, then you may not need to use other mappi
rules at all. This is unlikely for any Web site of significant size. In a larger site Webmasters find themselves
mapping short URLSs rather than long paths, making CGI programs look like HTML files and redirecting
requests for documents that have moved to other servers.

In general, on the inside you want to map URLSs into file specifications (or sometimes into other URLS). The
easiest way is to point "/" at the top of a directory tree and map URLSs to file names according to the
file—system mapping, but very often you want to do more than that.

The cleanest, most efficient, easiest-to—maintain layout for your file structure may not produce the cleanest
layout for URLs, which can get very long very quickly. You can provide easier access and hide your internal
structures, which makes life easier for anybody who has to type in a URL and also makes it possible to
reorganize your internal structures without disturbing customer bookmarks.

If you're multihosting (see Chapter 9) and want to present different content for each host, you need to point
the server—root to different places, which may or may not be in the same directory tree. You can present
content from different deviceseven from different systemswithout exposing that fact to the world. You can
send browsers off to other systems to look for content that used to be on yours.

Sometimes it's handy to run scripts without it being obvious that you're doing so. Scripts that generate page:

72

7.1.1 Apache

dynamically can be mapped so they look to browsers (and indexers) like indexable static pages.

7.1.1 Apache
Mapping

CSWS 1.2 gives us mod_rewrite, which has an amazing set of capabilities in file mapping. Prior to 1.2,
mod_alias was available, and is still useful for bringing in additional document trees that aren't under the
document root, as well as handling redirects (and script aliases, which | will discuss later in the book). All of
these commands go into HTTPD.CONF. Here are the mod_alias directives.

Alias url-prefix filename—prefix

This maps URL-prefix (e.g., /tree2) to filename—prefix (e.g., /$disk2/wwwtree). Any URL coming in with
ltree2/anyname will be resolved as /$disk2/wwwtree/anyname rather than looking for /tree2 in your main
document tree.

AliasMatch url-pattern file—system—path

This is similar to Alias but uses a regular expression for the URL pattern, rather than matching just on the
prefix, and substitutes the matched components into the file—system path. Regular expressions are a very
nuanced version of wildcarding, which allows you to specify matching on various components. They are a
complicated topic; there's an entire O'Reilly book dedicated to them (Mastering Regular Expressions by
Jeffrey Friedl). Learning about them will repay the Apache Webmaster, but any detailed discussion is beyon
the scope of this book. A good tutorial introductionin the context of Perl programmingcan be found at
http://lwww.perldoc.com/perl5.6.1/pod/perlretut.html.

Redirect [status] url-prefix [redirect—prefix]
Possible values for status are permanent, temp, seeother, and gone.

This catches URLSs starting with a URL prefix (e.g., /temporary) and replaces that with the redirect—prefix
(e.g., http://ivww.otherserver.tld/temporary) and sends that redirection instruction back to the client. The first
argument, status, is optional (defaulting to 302temporary redirect), but if gone is used, you shouldn't include
redirect—prefix. You can also give numeric status values instead of the names; include a redirect—prefix for ¢
3xx status code and omit it for anything else.

RedirectMatch [status]
url—pattern
redirect-URL

This is similar to Redirect but with a regular expression instead of a plain prefix match.

ScriptAlias url-prefix file—system-path
This has the same syntax as Alias, but marks the directory as containing executable CGI scripts. A typical
usage example would be a URL prefix of /cgi—bin and a file—system—path corresponding to
/$cgi—disk/cgi-bin. (You could achieve the same effect by using Alias and specifying Options +ExecCGl in ¢

container directive for that directory or path.)

ScriptAliasMatch url-pattern file—system—path

73

7.1.1 Apache

This has the same meaning as ScriptAlias but uses regular expression for the URL pattern.

Mod_rewrite is a very capable module indeed. For a comprehensive series of examples displaying its
capabilities, check out http://httpd.apache.org/docs/misc/rewriteguide.html; and for a full manual, look at
http://httpd.apache.org/docs/mod/mod_rewrite.html. One surprising feature is that mod_rewrite directives ca
be put in per—directory .HTACCESS files (discussed in section 7.3). This is surprising, because it means
mod_rewrite hooks into Apache URL processing twice, once at the URL interpretation level and then again
after the URLs have been mapped to the file system. Here's a brief introduction to some of the mod_rewrite
directives.

RewriteEngine on|off

This enables or disables the run—time rewrite engine, which is off by default. You must turn this on. The
setting is not inherited across virtual hosts (see Chapter 9), so you need to specify this for each virtual host
where you intend to use it.

RewriteOptions inherit

In the future there may be more options specified, but at present only "inherit" is implemented. If used in an
.HTACCESS file, it means that RewriteCond and RewriteRule directives of the parent directory are inheritec
in a virtual host it means that these directives are inherited from the main server, along with RewriteMap
(which I will not discuss here).

RewriteLog logdfile

The log—file specification uses the same syntax as that for any Apache log file, so a typical value would be
"logs/rewrite_log". What gets logged depends on RewriteLogLevel.

RewriteLogLevel 0|1]2|3|4|5]6|7]8]|9

The argument to RewriteLogLevel is a verbosity level, where 0 is "log nothing” and 9 is "log everything
including debug info."

RewriteBase url

This is useful for per—directory rewriting (implemented in an .HTACCESS file). Because the .HTACCESS
files are processed after Apache mapping has worked its way down to the current directory, the RewriteRule
directives in it apply only to local files; the directory—path prefix is stripped off. If you do redirects, the value
of the RewriteBase will be prefixed back on to the front of the result of the RewriteRule directives, unless the
result begins with HTTP: or HTTPS:, since that's probably a redirect to a different server and should be fully
specified. (For example, if files that had formerly been in a user directory (see Chapter 8) were moved to a
new directory in the main server root, the user directory could get an .HTACCESS file that specifies a
RewriteBase of "/newdir/" and a RewriteRule that matches all the moved files and says to redirect.
mod_rewrite would combine the file specification with the RewriteBase for any file accessed and issue a
redirect from the old URL to the new.

RewriteCond test-value pattern [[NC|nocase,OR|ornext...]]

If a RewriteRule is preceded by one or more RewriteCond directives, it will be executed only if the condition:
specified in the RewriteCond have been met and the URL matches the predicate of the RewriteRule. The te
string can be a server variable (%{variable—name}) or various other items that require some knowledge of
regular expressions to understand. This would let you provide different content for users coming from

74

7.1.1 Apache

America Online than for everybody else, using a RewriteCond %{REMOTE_HOST} AOL.COM (You can
also negate the pattern with an exclamation point; |AOL.COM would mean "if REMOTE_HOST doesn't
match AOL.COM do the next RewriteRule.")

The "NC" or "nocase" flag value makes the comparison with the pattern case insensitive. The "OR" or
"ornext" flag means that the truth value of this RewriteCond is ORed with that of the next RewriteCond,
rather than the implicit AND that would otherwise be in effect; this makes it easier to have multiple cases the
end up executing the same rule.

RewriteRule url-pattern new-template [[flag[,flag]]]

The instruction says to rewrite everything that matches the URL pattern to match the new template (which
may include specific pieces of the URL pattern) and do things according to the flags specified. Among these
flags are:

« "R" or "redirect," which terminates rewrite processing and forces the issue of a redirect to the value
made from the new-template

« "F" or "forbidden," which generates a 403 error

« "P" or "proxy," which passes the mapped URL on to mod-proxy to be fetched from another system
(see Chapter 11)

« "L" or "last," which terminates rewrite processing

« "N" or "next," which bails out of the current round of rewrite processing and starts again from the top
with the new URL

« "T" or "type," which can force a particular MIME type

* "NC" or "nocase," which makes the comparison case insensitive

» "S" or "skip," which skips the next rule
« "E" or "env," which lets you set an environment variable that can then be used in subsequent
RewriteCond or access control checks
An example
Case-insensitive redirect of any URL containing "othersite" to another site.
RewriteRule othersite http://www.othersite.com/ [R,NC]
Force a redirect of anything starting with /shortname (including the rest of the path) to /longpath/to/shortnam
plus the rest of the path, which bails out of rewrite processing immediately. (The $ and $1 syntax are regulal
expression stuff; $1 refers to the value matched by the .* in the original pattern.)
RewriteRule shortname(.*)$ /longpath/to/shortname$1 [L,R,NC]
Simply rewrite /shorthame to /longpath/to/shortname and restart mapping processing from the top:

RewriteRule shortname(.*)$ /longpath/to/shortname$1 [N,NC]

Since the file names that URL paths map to are, in fact, case insensitive on VMS, it seems silly not to make
any URL mappings case insensitive as well; that's why all my examples include the NC flag.

75

7.1.1 Apache

Content type

Another important component of server presentation is what the server does with files once they're identifiec
Apache uses the MIME.TYPES file to tell what content type to send back based on the file extension. This
can be tweaked or extended by using the AddType directive in HTTPD.CONF.

AddType content-type .extension [.extension]

To tell Apache that files named something.letter are plain—text files, use

AddType text/plain .letter

Some files need to be processed by something before they can be presented. The AddHandler directive is L
to identify the handling program.

AddHandler handler-type .extension [.extension]

To tell Apache that . HTMLX files (the standard extension for the OSU preprocessor) and .SHTML (a
standard extension for the Apache preprocessor) should both be preprocessed by Apache and presented tc
browser as regular HTML files, use the following directives:

AddType text/html .shtml .htmlix
AddHandler server—parsed .shtml .htmlx

Other values for handler-type include send-as—is (used for documents that contain all the HTTP headers tt
need) and imap-file (used for image maps).

7.1.2 OSU
Mapping rules

The mapping directives in OSU are found in HTTP_PATHS.CONF. They can be included inside local
address blocks and will apply only to that particular host. Full VMS-style wildcardingwhere the asterisk
matches anything and can be placed anywhere in the stringis supported in fail, protect, hostprot, localaddre:
and filecache rules. In most other cases, the only wildcard allowed is a single asterisk at the end of the strin

You can get a trace log of mapping activity in detail by using PRIVRE-QUEST; the command to pass is
NEWTRACE/11. Examining the HTTP_ERROR.LOG file (or whatever you've named that file) will give you
a good idea of the mapping process and will probably show you why any particular mapping rule isn't having
the effect you expected. The order of commands in the file is important; the first match on a PASS comman
will bail out of rules file interpretation and look up the file on disk.

redirect url-template redirect-template

causes the server to issue a redirect if the URL-template is matched. If a wildcard is included in the URL
template, the value it matched is replaced in the redirect template. If you've moved the whole /elsewhere
directory elsewhere, do

redirect /elsewhere/* http://name-of-elsewhere-server.tld/*

and the file name in the elsewhere directory gets plugged into the redirect. This can also be used to insist th
certain files be accessed only through HTTPS, with

76

7.1.1 Apache

redirect http://www.myserver.tld/needsSSL \
https://iwww.myserver.tld:443/needsSSL
map url-template filesystem—path—template

The map rule rewrites an incoming URL into another form but does not terminate processing. (What you've
mapped it into can fall through to subsequent pass or map commands.) Again, each template can include a
wildcard. If you've moved everything from old—directory to new—directory, use the following:

map /old—directory/* /new-directory/*

to keep from breaking anybody's old bookmarks. To make what appears to be a static Web page actually
invoke a script, do

map /static-Web-page.html /htbin/scriptname

You can use multiple map directives to resolve multiple URLs down to the same file or directory, and then
have a single pass (or protect or hostprot) statement to address the whole thing.

pass url-template filesystem-template

The pass rule operates the same way as the map rule but terminates mapping processing for that URL. If th
pass rule is defined incorrectly, it'll send the server out to the file system looking for a file that doesn't exist.
Another possibility for the pass rule is to convert URL specs to file specifications that actually refer to files ot
other systems to which the server has access via a DECnet or NFS proxy. For example,

pass /othervax/* /othervax::$disk1/Web_content/*

(This will certainly fail if your OSU Web server account doesn't have default proxy access to othervax::. This
approach enables you to display current sky images from the VAX controlling the telescope while keeping
that VAX safely inside your firewall and not dedicating resources to running a Web server itself.)

fail url-template

Anything matching the template terminates map processing and returns a 403 error. In the default
configuration for the server, a

pass / desired—-welcome—page
pass /www/* document-root/*
fail /*

maps / to the welcome page, causes any /www/* URL to pass to the file system, and anything else to fail.
(Other mapping is done with map and pass statements between the first pass and the final fail.) Because
there's a separate mapping for the "/" root, any images or pages referenced in that root can't just specify the
file name; they have to specify "/www/filename". | find this sufficiently hard to explain to my users that |
configure OSU with a catchall

pass /* document-root/*

at the end of my HTTP_PATHS.CONF and let access to files that aren't really there fail with a 404 (file not
found) instead of a 403 (access ruled out); | end up not using the fail directive at all. If you have enough
traffic that the disk 1/0O to look up nonexistent directories becomes an issue, you may prefer the /www/ and
catchall fail configuration, despite the drawbacks I've mentioned.

77

7.1.2 OSU

Content type

OSU uses MIME types defined in the HTTP_SUFFIXES.CONF file to determine the content-type header it
will send. The command for a particular type is

suffix .extension representation encoding qualifier

So the command to specify the GIF (binary image file) format is
suffix .gif image/gif BINARY 1.0

(.GIFs, along with most common filetypes, come prespecified by default.)

PHP template pages include
suffix .php text/php 8BIT 1.0

If the filetype needs to be processed by something else, you use a presentation rule to define the script.
presentation content—-type processor

For PHP template pages, which need the PHP processor run on them before they go to the browser, that's
presentation text/php PHP

(if the PHP command is defined systemwide or in the OSU account's login.com).

Image maps are specified by default with
presentation application/imagemap www_root:[binjmapimage

PDFs or other large files can be usefully downloaded in chunks by some clients if you use the byterange
script.

presentation application/pdf byterange

7.1.3 WASD

Mapping

WASD's mapping rules go in HTTPD$MAP.CONF. They'll look familiar if you're used to OSU mapping.
What will look unfamiliar is the addition of conditional mapping statements. They fall somewhere between
access control and mapping but are included here for the sake of consistency.

REDIRECT template result

For a URL that matches the template, substitute the result string. There are four different formats for the res
string, all but one of which will generate genuine external redirects. If the result string is just a path
specification with no scheme or host name specified (starting with a single slash), the server restarts the
request internally.

78

7.1.2 0SU

If the result is a full URL (scheme://server.domain.tld/path with or without a trailing query string "?a=b"), the
server instructs the browser to try that new URL as it stands.

If the result string leaves out the scheme: (giving a URL such as //server.domain.tld/path with two leading
slashes), the current scheme is defaulted in, so the same redirect statement can redirect HTTP requests to
HTTP and HTTPS requests to HTTPS.

If the result includes the scheme but leaves out the host name, the server will default in the current host nan
which allows you to redirect requests from HTTP: to HTTPS: for documents that require it, or, if for some
reason you want to, you can go the other way and have the same redirect rule work across virtual hosts.

If the result string leaves out the host name as well, giving a URL such as (///path, with three leading slashe
the server defaults in both scheme and host name from the current request, so the same redirect rule can b
used for multiple hosts.

If you need to pass query strings in any of the redirects, make the last character of the result string a questic
mark ("?"). Without that, query strings will be dropped from the redirect.

MAP template result

(See the foregoing discussion of the map rule for OSU.) Both template and result must be absolute, not
relative pathsthey must start with a single slash. As with OSU, a match on a map statement doesn't terminal
map processing.

PASS template [result | "numeric—status [alphanumeric—explanation]"]

The pass rule extends the OSU map rule. The form where it's just the template is permitted if file—name
translation isn't required (e.g., /ht_root/ docs/*, where /ht_root/ is translated as the directory referred to by th
system logical HT_ROOT). The WASD pass rule can also return a numeric status and an explanatory string
if desired, or can just refuse the connection.

For example, if you discovered that one of your users had put some inappropriate but popular material in a
user directory (see Chapter 8) on your server, you could forestall user—-name translation and file access witt

PASS /~username/* "403 very naughty"

or, if you want to frustrate the attempted users, you can use a 1xx or 2xx status code without explanation,
which will just drop the connection immediately. (You could also use this version of the pass command to dc
redirections, by substituting a 3xx code and a URL to redirect, perhaps, to a page describing the institution's
policy on inappropriate materials.)

FAIL template

Similar to the OSU fail, this will terminate map processing and reject the request with an access denied
failure.

WASD offers three mapping rules that relate to CGl scripting. Exec and uxec rules map script directories; th
script rule maps a specific script.

EXEC][+] template [[RTEname)]result

79

7.1.2 OSU

The template should include a wildcard so that named scripts will be matched (e.qg., "/htbin/*"). The result ca
have the wildcard substituted in (e.g., "/ht_root/bin/*"). This instructs the server both where to look for files in
htbin and that those files should be treated as executables. This means that any script in the directory can b
executed, which means that anybody who can contrive to put a file in that directory can get the server to
execute anything he or she wants. Make sure permissions are set appropriately.

If the "exec+" form is used, the CGlplus persistent scripting environment will be used. If a Run-Time
Environment name is given, that environment (e.g., a persistent Perl process) will be used. (More discussiot
on CGlplus and RTEs can be found in Chapter 17.)

UXEC[+] template [(RTEname)]result

works like exec, except that it maps script execution for users (running as that user if the Persona services ¢
enabled). Template looks like "/~*/directory/*", and result looks like "/*/www/cgi—bin/*". (Template could

also be "/~specificusername/directory/*", and result would be "/specificdirectory/ www/cgi—bin/*".) The first
wildcard is for user name, and the second is for the script name. Uxec must always be preceded by a SET
rulefor example,

SET /~*/www/cgi—bin/* script=as=~

(The set rule is discussed subsequently, but this is what instructs the server to run scripts from that directory
the persona of the user it belongs to.)

SCRIPT template file—system—path—-to—script

The script rule maps a URL to a particular file and makes that file executable. This can be used (as in my
earlier example) for making a script look like a static Web pagefor example,

SCRIPT /status.html /cgi—bin/status.pl

or for making sure only specific named scripts in particular locations are run. Typically the template will look
like "/scriptname/*", and the path to script like "/Web/myscripts/bin/scriptname.exe*"; the wildcards here are
to pass along path names on which the scripts should operate.

The final rule, and it's a doozy, is the set rule. Set doesn't actually do any mapping, but it fits logically with th
mapping rules because it acts on path ames, instructing the server to adjust the characteristics of the specif
path in a wide variety of ways.

SET pathname characteristic [characteristic—2 ...characteristic—n]

You can have multiple characteristics for a path in a single SET command; just separate them with a space.
You can also have multiple SET commands with additional characteristics. They're processed in the order
they appear in the HTTPD$MAP.CONF file, so you can turn a characteristic on for a large tree and then,
below it, turn the characteristic off for a subtree within it.

Many of the characteristics are binary, turned on with the characteristic name and off with NOcharacteristic.

Some of these characteristics mention attributes we haven't discussed yet, but it makes sense to put a full
reference for the set rule in one place.

AUTHONCE, NOAUTHONCE

80

7.1.2 0SU

When a request path has both a script and a resource the script acts upon, the server ordinarily checks acc
to both the script and the resource. AUTHONCE makes the server authorize only the original path.
NOAUTHONCE restores the original behavior.

CACHE, NOCACHE

When caching is enabledsee Chapter 11files are cached by default. NOCACHE turns off caching for this pa
CACHE can turn it back on for a subtree. Of course, a path can be specified down to the level of a particulal
document.

CGIPREFIX="desired—prefix"

Chapter 14 discusses CGI environment variable names. By default, these are prefixed with WWW_, but the
prefix can be changed for compatibility with scripts written for other servers. To remove the prefix altogether
use CGlprefix= with no value.

CHARSET="charset-specifier"

This setting can override the default character set parameter ([Charset—-Default]), which is sent in the
character set parameter of the content-type header for text files. You must specify what charset you want tc
identify for example, "charset=1SO-8859-5".

CONTENT="content-type/parameter"

Ordinarily the server chooses what content type to put in the header based on the file extension (determinec
by the [AddType] directive in the HTTPD$CONF or an external MIME types file specified in
[AddMime-TypesFile]). This setting allows that mapping to be overridden for files in the path you specified,
as, for example, when you have a lot of text files with a .DOC extension in one particular directory tree; you
can specify "/path—-to—DOC-files/*.DOC" as the template and "content=text/plain”, while letting all other
.DOC files on the system be served as DECwrite files (the default) or MS—Word files (which is how IE will
interpret them regardless of the content-type header).

EXPIRED, NOEXPIRED

Files in the path will be sent with headers indicating that they are already expired, so that the browser will
automatically fetch them again when they're accessed, rather than coming up with the old version from the
browser cache. (This is useful on very dynamic documents; you likely want to use it in conjunction with
NOCACHE.)

INDEX="format string"

The value here is the directory listing format string for directories in the specified path. (See Chapter 13 for
more on directory listings.)

LOG, NOLOG

If you're logging at all, by default you log all accesses. NOLOG will suppress logging to this path. (If you
want to know what pages are being loaded but don't particularly want a log entry for every button, ball, or lin
graphic, you can set NOLOG on the path containing those images. This not only speeds up your logging, it
can speed up your log-file analysis.)

MAPONCE, NOMAPONCE

81

7.1.2 OSU

Once the application of a script, exec, or uxec rule has identified a particular request as a script and mappec
to a path, that path takes another trip through the mapping process in case it needs to be translated again.
can suppress this with a SET path MAPONCE. (You might do this to save some processing effort when an
exec directory can be located without further mappingfor example, /ht_root/bin/*.)

PROFILE, NOPROFILE

If the server has been started with /PROFILE and /SYSUAF (see Chapter 5), it uses SYSUAF authenticatiot
and rightslist—-based access to server resources. NOPROFILE will enable you to ignore rightslist-based acc
for the specific path; PROFILE will reenable it. (If the server hasn't been started with the relevant qualifiers,
this setting won't do anythingall access is NOPROFILE.)

REPORT=[BASIC|DETAILED]
This setting changes server—generated reports between BASIC and DETAILED for a particular path.
ODS-5, ODS-2

ODS-5 warns the server that a path maps to files on an ODS-5 volume and may thus have names that use
Extended File Specification and need to be treated differently; for example, the RMSCHAR setting won't be
applied. ODS-2 is the default, so you never actually need to specify it, but it may help you make the mappir
rules read more more clearly.

RMSCHAR=invalid-replacement-character

For ODS-2 paths, the server will replace RMS—-invalid characters or syntax with this replacement character.
By default, a $ is used; other plausible choices are underscore ("_") and hyphen ("-"), but this will let you
specify any alphanumeric character. If you've got files moved from a UNIX system or even NFS served frormr
another system, this may enable you to serve them.

SCRIPT=AS=[~|$|username]

This applies only if the server was started with the /PERSONA qualifier. This setting instructs the server to
run scripts from this path under a user name different from than that of the server. Tilde will run the script as
the user specified in the URL after the tilde; dollar sign will run the script as the SYSUAF-authenticated use
accessing the script; a user name will run the script as the specified user name. | urge caution in the use of
of these options (and strongly suggest using the /PERSONA=identifier variant, which limits scripting
capabilities to accounts that hold the specified identifier).

SCRIPT=BIT-BUCKET=hh:mm:ss

tells the server how long to allow a script to execute if the client disconnects prematurely, overriding the
HTTPD$CONFIG.CONF [DCLBItBucket-Timeout] directive.

SCRIPT=CPU=hh:mm:ss

directs the server to whack script processes in the specified path that have used more than the specified
guantity of CPU time, preventing runaway scripts from running forever.

SCRIPT=FIND|NOFIND

82

7.1.2 OSU

The server ordinarily makes sure scripts exist before trying to run them. However, a script might be execute
by a process that knows how to find it by means not available to the serverfor example, if the scripts are sto
as procedures in a relational database. NOFIND tells the server not to bother looking for it, but just to go
ahead and execute it.

SSI=PRIV|NOPRIV

Server-side includes documents (discussed in greater detail in Chapter 13) can contain directives (e.g.,
<——#exec command-name-—>) that are considered privileged, because they could do damage through
running a program in server context. The server won't run those directives unless the documents are owned
SYSTEM or the path they're in is set as PRIV to allow these directives. Caution is strongly recommended
here.

SSLCGI=none|Apache_mod_SSL|Purveyor

If you're running a CGlI script (see Chapter 14) under SSL (see Chapter 6) and the script needs environmen
variables set to tell it about the SSL environment, this setting tells the server which style of CGI variable
should be created: none, Apache's mod-ssl style, or Process Software's Purveyor style. If you need this, go
back to HTTPD$CONFIG.CONF and add 2048 to the values of the [BufferSizeDclCommand] and
[BufferSize—CgiPlusin] directives to account for the extra room taken by the variables.

STMLF, NOSTMLF

specifies paths for files to be automatically converted to Stream—LF format. Default is no conversion.

THROTTLE=parameters

controls the concurrent number of scripts to be processed on the path. (This is discussed more fully in Chap
14.) Options are:

"THROTTLE=n,[n,n,n,hh:mm:ss,hh:mm:ss]"
"THROTTLE=FROM=n"

"THROTTLE=TO=n"
"THROTTLE=RESUME=n"
"THROTTLE=BUSY=n"
"THROTTLE=TIMEOUT=QUEUE=hh:mm:ss"
"THROTTLE=TIMEOUT=BUSY=hh:mm:ss"

TIMEOUT=KEEPALIVE=hh:mm:ss

overrides the [TimeoutKeepAlive] HTTPD$CONFIG.CONF directive for this path.
TIMEOUT=NOPROGRESS=hh:mm:ss

overrides the [TimeoutNoProgress] HTTPD$CONFIG.CONF directive for this path.
TIMEOUT=0OUTPUT=hh:mm:ss

overrides the [TimeoutOutput] in the HTTPD$CONFIG.CONF file.

TIMEOUT=hh:mm:ss,hh:mm:ss,hh:mm:ss

83

7.1.3 WASD

overrides the [TimeoutKeepAlive], [TimeoutNoProgress], [Timeout—Output] directives, in that order, for this
path.

Conditional mapping

You can use conditional mapping on paths in the HTTPD$MAP file. Rules using conditional mapping are
applied only if criteria other than just the URL path match are met, which offers immense flexibility and
power to the administrator, as well as an opportunity to get really confusing results if you forget what you've
done. Conditional processing adds some overhead to the URL path translation. (Because the mapping can
control access to the resources, a case could be made for including this in section 7.3, but I've left it here in
mapping section. Possibly, this is the wrong choice.)

Conditionals appear on the same line as the mapping rule to which they refer, following the rule. They are s
off by square brackets. A conditional is in the form "specific thing":pattern, and can usefully be read as "if
specific thing matches pattern." A rule whose conditional(s) is not met is ignored and doesn't affect
subsequent processing. The patterns are specified in the same way as patterns you'd give to the VMS $
DIRECTORY command: a simple, case-insensitive, string comparison, using the asterisk to match any
number of characters and a percent sign to match a single character. If the string you're looking to test has :
space, tab, asterisk, or left or right square bracket in it, substitute a % signyou can't match those characters
other than by single—character wildcard matchthere are no escape characters or encoding.

Multiple conditionals inside one set of square brackets are treated as "OR" conditions; if any of the matches
are true, the whole conditional is true. Multiple conditionals in separate sets of square brackets on a single |i
are treated as "AND" conditions; all must be true for the rule to be applied. An exclamation point preceding
the conditional negates it (changes it from "if it matches" to "if it doesn't match"); you can put an exclamatior
point outside the square brackets to negate the entire sense of a multipart conditional. Here are the
conditionals and what they match against.

['JAC:accept-string

Contents of the HTTP Accept: header coming from the browser, which details content types the browser is
willing to render.

['JAL:accept-language—-string

Contents of the HTTP Accept-Language: header coming from the browser; you could choose to map differe
directories or file names to support different languages.

['JAS:accept—charset-string

Contents of the HTTP Accept—Charset: header. Again, map to different versions of files to support different
character sets.

['JCK:cookie

Contents of cookie returned by browser.

[EX:

This is actually a Boolean, rather than a pattern match. EX matches if this path has been set ODS-5 with a
SET directive.

84

7.1.3 WASD

['JFO:host—-name/address

Contents of the "Forwarded:" header, seen if the request is coming to you through a proxy or gateway. You
can test for specific values in this header or just put in an * if you want to do something different for all
proxied requests.

['JHO:host-name/address
That's host—-name/address of the client, not the server.
['IHM:host network mask (client mask, see immediately below)

To directly quote the WASD documentation, "The host-mask ("HM') directive is a dotted—decimal IP addres:
a slash, then a dotted—decimal mask. For example, [HM:131.185.250.0/255.255.255.192]. This has a 6— bit
subnet. It operates by bitwise—ANDing the client host address with the mask, bitwise—ANDing the network
address supplied with the mask, and then comparing the two results for equality. Using this example the ho:s
131.185.250.250 would be accepted, but 131.185.250.50 would be rejected.

['JME:http—method
GET, POST, PUT, and so on.
['1QS:query-string

This is the request query string, the part that comes after the "?" in the URL. It's particularly fun to combine
the capability of the PASS command to return a status and message you specify with conditional mapping
capability against the values in the query string.

[']SC:request-scheme

HTTP or HTTPS. Handy for ensuring that certain pages are always viewed encrypted (by using it on a
redirect to HTTPS with an SC:HTTP).

[']SN:server-name

The name of this server. This is helpful when multiple cluster nodes share the same configuration files. It's
potentially confusing if they're all responding to the same cluster alias.

[']SP:server—port
The port the browser connected to.
['|RF:referring—URL

This is the contents of the (curiously misspelled in the standard) "Referer:" header. If you only want people t
be able to get to the download page after getting the "you have successfully filled out the application page,"
you can use this. Remember, however, that while headers are hard to spoof using standard browsers, they'
easy using tools such as wget or the Perl lib-WWW programs, so don't rely on this for anything really
important.

[JUA:user—agent

85

7.1.3 WASD

The contents of the "User—Agent:" header. This can let you map old browsers off to a version of your pages
they can handle. (Let me insert a plea here not to map them off to the "you need the latest and greatest vers
to see our site at all; download it here!" page, on behalf of everybody who used Netscape 3 on VMS for yea
and kept getting those pages, which never had a VMS version.) You can also use this conditional to play
practical jokes on search engine robots, mapping them each by name to a page very different from the one
their users will get when they click on the link back to your site. | can't in good conscience recommend this
practice either.

['VS:host-name/address

The host—-name header for a name—based virtual server or the numeric IP the client connected to. (This is a
synonym for the obsolete HH: conditional, in case you're looking at an old HTTPD$MAP file and trying to
figure it out.) Here are some examples.

PASS /content/* /browserspecific/MOZILLA/*
[UA*MOZILLA*[TUA*MSIE*]

PASS /content/* /browserspecific/IE/* [UA*MSIE?*]
PASS /content/* /generic/*

If your pages are optimized for specific browsers (a bad practice, but sometimes the Web designers feel an
urgent need for control, which can be obtained only by using browser—specific extensions), you can have
multiple versions of your site. Each one has links relative to the "content” directory, which will be where the
HTML resides. This will map "content" back to the appropriate directory. IE identifies itself as Mozilla
compatible, so it would match the Mozilla mapping if we didn't include the negated Explorer match (althougt
we could avoid this problem by changing the order of the lines). Read the first line as "Pass /content/* as
/browserspecific/ MOZILLA/* if user—agent matches MOZILLA AND user—agent doesn't match MSIE."

PASS /images/* IMaclmages/* [UA:*Mac*]
PASS /images/* /PCimages/* [UA:*Mac*]

Because of design and display differences, images optimized on PCs tend to look darker and dingier on
Macintoshes. For your site to look its best on each platform, you should have two versions of each image: o
optimized for Mac, one for PC. The foregoing example will allow the links in the HTML to refer to the
fimages/ directory, so you need only one copy of the HTML code, but it will map the /images/links to the
right directory, depending on what the user agent says about the platform in identifying itself. There's no
consistency here; some say "Mac_PowerPC," some say "Macintosh PPC," but "*MAC*" will match any of
them. We can't test for PCs that way, obviously, since *PC* will match the PC in PowerPC and PPC. You
could test for *Windows*, but other OSs run on the same hardware and have the same issues.

PASS /doc/* /\Web/doc/english/* [al:en*]

PASS /doc/* /\Web/doc/french/* [ho:*.fr al:fr*]
PASS /doc/* /Web/doc/swedish/* [ho:*.se al:se*]
PASS /doc/* /\Web/doc/english/*

This example (modified from the WASD documentation) demonstrates mapping based on country—oriented
domain or accept-language header. Wherever they are, if English is their first—choice language, they get
English. If the host is in France or France is their first—choice language, make it French; similarly for Swedel
and Swedish. Otherwise, fall through to English because it's better than nothing, even though not the first
choice.

PASS /companyspecific/* "403 You can't see that!"
I[ho:*.mydomain.TLD]

86

7.1.3 WASD

If somebody from a host that isn't in my domain tries to look at my company-specific material, they get told
not to. See the WASD documents for more examples.

Content type

WASD uses the [AddType] directive in HTTPD$CONFIG.CONF or can use a MIME.TYPES file if specified
in the [AddMimeTypeskFile] directive. The syntax for [AddType] is .extension content-type [; charset]
description. That looks like

.HTML "text/html; charset=ISO-8859-1" HyperText Markup
Language

.HTM text/html HyperText Markup Language

.GIF image/gif image (GIF)

MIME.TYPES specifications are compatible with those used by Apache. The basic format is content-type
extension(s), which looks like

application/msword doc
application/octet—-stream bin dms lha Izh exe class
application/oda oda

but there are some WASD-specific extensions (which are used for descriptions in server—generated
directories, among other things). These are hidden in comments; WASD knows they're there because the h:
mark (#) comment indicator is followed by an exclamation point. The comments follow the line to which they
refer.

#! file description
A single blank indicates that what's coming is free—form text for directory listings.
#l/cgi—bin/script

A slash indicates that what follows is the name of a script that should be run automatically whenever the file
type is requestedthe same thing as an Apache handler or an OSU presentation script.

#1[alt-tag—text] /path/to/icon.gif

A left square bracket is used to specify an icon to be used in directory listings. Since these are mapped agai
content type, not suffix, they have to be specified only once per content type. The contents of the square
brackets will be used as the alt-tag for the icon, so they should be brief.

7.2 Authentication

There are several types of authentication available to Web servers. Structurally, they all work the same way
The client requests a resource that has access controls that require authentication; the Web server asks the
client to authenticate (by sending it a "401 Authentication Required" header along with a "realm" or
"authentication name"). The browser then asks the user for user name and password (typically in a separate
small window on graphical browsers) or gets them from some other sourcelnternet Explorer running Windov
NT talking to an IS server in the same Windows domain will pass along your authenticated login name
without requiring you to enter it, although that example is irrelevant for a VMS—-based serverand then
assembles a credentials packet, which it sends back to the server. The browser caches the contents of the

87

7.1.3 WASD

credentials packet, based on realm and fully qualified server name, so it doesn't have to ask the user over a
over again.

Since HTTP is a stateless protocol, the server needs authentication information for each protected page anc
will ask the browser for it every time. If the browser has the credentials for that realm in its cache, it supplies
them.

Unfortunately, there's no way for either the server or the user to tell the browser to forget the credentials it h
cachedthat is, to log out from the session with the server. If you've provided a user name/password to a Wel
browser at an Internet cafe, you need to shut down the browser program altogether to be sure that the next
person doesn't use your cached authentication to impersonate you. If it's a kiosk with a browser you can't st
down, don't use it for anything for which you have to put in credentials. Another unfortunate effect of cachinc
credentials by server name is that if you refer to a system by different namesfoo.bar.tld and
www.foo.bar.tldthe browser won't realize these refer to the same system and will have to ask the user for
credentials for each of them separately. Of course, if the browser cached by numeric IP address, it would dc
the wrong thing with multihosted domains that share the same numeric IP, thinking they were all the same
server, and it would do a different wrong thing with servers that respond to a cluster alias with different
numeric IPs.

The server takes the credentials packet and looks up the user name and password in some authentication
database. If it matches and if access to the page isn't disallowed by some other access control, the server
returns the page to the browser.

In the BASIC authentication mode the credentials packet with the user name and password is encoded (not
encrypted!) in BASE-64. There's nothing secret about thisBASE-64 can be decoded by anybody who want:
to. BASIC authentication makes passwords vulnerable to anyone with a sniffer on the line anywhere betwee
the browser and the server. If you're going to use BASIC authentication, it's a particularly good idea to use
SSL encryption for it.

DIGEST authentication returns a cryptographic digest of the password using the MD5 algorithm. Not all
browsers support this; curiously, the most recent Mozilla does and Netscape 6.2 apparently doesn't. Netsca
4.78 on Macintosh appears to. Basically, you can't count on DIGEST working unless you have control of
which browsers the users will use. Anyway, a person with a network sniffer can't just pick the password up
from the DIGEST packet, but, by catching the digest of the password, he or she could write a program to
pretend to be a browser and resubmit the same credentials. (This class of attack is referred to by security
specialists as a "replay" attack. OSU and WASD, at least, defeat this by including a "nonce" value in the
credentials request that's used in the encoding of the reply. The next time the request is issued it will have a
different nonce value, so replay is ineffectual.)

Furthermore, that same individual with the sniffer can catch everything the server sends; therefore, if the
content that comes back is unencrypted, the intruder can read it all, with little difficulty. Even with DIGEST
authentication, if you care about the security of your content, use SSL encryption for the whole dialog.

In X.509 authentication the server requests and the browser presents a digital certificate (see Chapter 6 for
more on digital certificates), and the server decides whether to accept it based on whether it has expired or
whether it was issued by a Certificate Authority the server recognizes (or, at any rate, whether up the chain
issuers there is, somewhere, a CA the server recognizes). If the certificate is accepted, the server can then
accept the identity of the person at the other end as authenticated. (Of course, the person at the other end c
be a random visitor if a user walked away from his or her PC leaving it logged on, but that's more of a user
education issue than a technological one.) The necessary configuration here is to let the server know where
find a file or database of recognized certificate authorities, and how far up the chain you're willing to go. You

88

7.2.1 Apache

may want to honor only self-signed certificates, for example, and you don't care if they're presenting a
certificate signed by some other system that is also known to Verisign or Thawte.

There are other authentication schemes that allow a single sign—on into a security domain (e.g., Kerberos),
require possession of a physical token, or do a retinal scan or fingerprint check. These are not directly
supported by any VMS-based Web servers, but | expect such support will be coming as these technologies
become more popular. (Most likely, such access systems will have modes in which they can present
authentication information to the browser, which will then use one of the authentication methods already in
place. Thus, the servers won't have to explicitly contend with new authentication schemes.)

The server may be using one or more of many different authentication databases, regardless of the method
used to present the credentials packet. It can validate against the SYSUAF, so the credentials are the same
user name and password you can use to log in. It can validate against a special-purpose database that con
Web-only user names and passwords, either in some binary form or as a simple ASCI| file.

On UNIX systems Apache modules have been written to check credentials against entries in relational
databases, such as Oracle, but these are not currently available on VMS systems. This makes it harder to ri
pay-for—content sites on VMS without human intervention. If you can authenticate against a relational
database, the same CGI script that accepts and validates the credit card information can easily insert the
credentials into the database; it's somewhat harder to programmatically update the special-purpose
authentication databases. Database access for large numbers of users thousands or millionsscales well unc
good relational database, whereas the plain—text lookup supported by OSU does not. If you're planning to rt
a pay—for—content site, you might want to look into porting one of the database authorization modules. VMS
also doesn't support mod_auth_dbm, which uses the semigeneric DBM file format, for UNIX. VMS never
needed the DBM file format because it had indexed files provided for free by RMS; as a result, however, toc
layered on top of DBM can require significant porting effort.

In theory, you could authenticate against an LDAP (lightweight directory access protocol) server or by using
remote authentication against an NT domain controller (which works for Pathworks and Advanced Serve