
TEAM LinG - Live, Informative, Non-cost and Genuine!

Oracle Database 10

g

Data Warehousing

TEAM LinG - Live, Informative, Non-cost and Genuine!

Oracle 9iR2 Data Warehousing

, Hobbs, et al
ISBN: 1-55558-287-7, 2004

Oracle High Performance Tuning for 9i and 10g

, Gavin Powell,
ISBN: 1-55558-305-9, 2004

Oracle SQL Jumpstart with Examples

, Gavin Powell,
ISBN: 1-55558-323-7, 2005

Oracle Real Applications Clusters

, Murali Vallath,
ISBN: 1-55558-288-5, 2004

For more information or to order these and other Digital Press
titles, please visit our website at www.books.elsevier.com/digitalpress!

At www.books.elsevier.com/digitalpress you can:
•Join the Digital Press Email Service and have news about

our books delivered right to your desktop
•Read the latest news on titles

•Sample chapters on featured titles for free
•Question our expert authors and editors

•Download free software to accompany select texts

TEAM LinG - Live, Informative, Non-cost and Genuine!

Oracle Database 10

g

Data Warehousing

Lilian Hobbs
Susan Hillson
Shilpa Lawande
Pete Smith

Amsterdam • Boston • Heidelberg • London • New York • Oxford
Paris • San Diego• San Francisco • Singapore • Sydney • Tokyo

TEAM LinG - Live, Informative, Non-cost and Genuine!

Elsevier Digital Press
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2005, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
e-mail: permissions@elsevier.com.uk. You may also complete your request on-line
via the Elsevier homepage (http://elsevier.com), by selecting “Customer Support”
and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its
books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data
Application submitted.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 1-55558-322-9

For information on all Elsevier Digital Press publications
visit our Web site at www.books.elsevier.com

04 05 06 07 08 09 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

TEAM LinG - Live, Informative, Non-cost and Genuine!

 To Mum, Dad & Reggie, no longer with us, but always in my thoughts
—Lilian

For Aji and Ajoba, my grandparents
—Shilpa

To Family and Friends, Thanks!
—Pete

To Max, who can fix most anything
—Susan

TEAM LinG - Live, Informative, Non-cost and Genuine!

vii

Contents

Foreword xix

Preface xxi

Acknowledgments xxv

1 Data Warehousing 1

1.1 An Introduction to Oracle Database 10

g

1
1.1.1 The Economic Climate Influences Technology Spending 1
1.1.2 Consolidation 1
1.1.3 Consolidation of the Hardware 2
1.1.4 Consolidation of Data into a Single Company View 2
1.1.5 Consolidation of Applications 3
1.1.6 The g in Oracle Database 10

g

—The Grid 3
1.2 What Is a Data Warehouse? 4

1.2.1 Why Do You Need a Data Warehouse? 4
1.3 A Historical Perspective 5

1.3.1 The Rise of the Data Warehouse 6
1.3.2 Data Warehouses Evolved As Separate Systems 8
1.3.3 The Data Mart 11
1.3.4 Reporting, Query, and Analysis Tools Became

Browser Based 14
1.3.5 OLAP and Data Mining Functionality Are Embedded

in the Oracle Database 14
1.4 Data Warehousing Features in the Oracle Database 10

g

16
1.5 Building a Data Warehouse Poses Many Challenges 17

1.5.1 Managing the Warehouse 17
1.5.2 The Role of Metadata 18
1.5.3 Increasing Data Volume 19
1.5.4 Higher Availability 19

TEAM LinG - Live, Informative, Non-cost and Genuine!

viii Contents

1.5.5 More Users/Better Performance 20
1.5.6 New Types Of Applications 20

1.6 The Future of Data Warehousing 21
1.6.1 Real-Time Data Warehouses 21
1.6.2 The Disappearance of the Separate Data Warehouse 21

1.7 Summary 22

2 Designing a Warehouse 23

2.1 Designing a Warehouse 23
2.1.1 Don’t Use Entity Relationship (E-R) Modeling 25
2.1.2 Dimensional Modeling 25
2.1.3 Fact Table 26
2.1.4 Dimension Table 27
2.1.5 Warehouse Keys 28
2.1.6 Normalizing the Data Warehouse 28
2.1.7 Data Warehouse or Data Mart 30
2.1.8 The Easy Shopping Inc. Example 30

2.2 Other Design Considerations 31
2.2.1 Design to Manage 31
2.2.2 Design for Performance 33

2.3 Implementing the Design 34
2.3.1 Single Database or Many? 35
2.3.2 Naming Conventions 35
2.3.3 Database Configuration Assistant 36
2.3.4 Which Schema? 44
2.3.5 Data Files and Tablespaces 48
2.3.6 Creating the Fact and Dimension Tables 53
2.3.7 Constraints 55
2.3.8 Indexes 63
2.3.9 Partitioning 65
2.3.10 Materialized Views 66
2.3.11 Security 67
2.3.12 Using the Parallel Option 69

2.4 Testing the Design 70
2.5 The Schema for Easy Shopping Inc. 71

3 Architecture of a Data Warehouse 73

3.1 Introduction 73
3.2 Hardware Configurations for a Warehouse 74

3.2.1 Server Architectures 74

TEAM LinG - Live, Informative, Non-cost and Genuine!

Contents ix

Contents

3.2.2 The Oracle Database Architecture 80
3.3 Hardware Components 85

3.3.1 Memory 86
3.3.2 Processors 87
3.3.3 Storage Configurations for a Warehouse 87

3.4 Automatic Storage Management 94
3.4.1 ASM Overview 95
3.4.2 Administering ASM 97
3.4.3 Using ASM in the Warehouse 107

3.5 File Management in Oracle 108
3.5.1 Oracle Managed Files 108
3.5.2 Bigfiles and Big Databases 110

3.6 Summary 111

4 Physical Design of the Data Warehouse 113

4.1 Introduction 113
4.2 Data Partitioning 113

4.2.1 How to Partition Data? 114
4.2.2 Range Partitioning 115
4.2.3 Hash Partitioning 116
4.2.4 List Partitioning 118
4.2.5 Composite Partitioning 119
4.2.6 Multicolumn Partition Keys 123
4.2.7 Choosing the Partitioning Method 125
4.2.8 Partitioning Using Oracle Enterprise Manager 126
4.2.9 Partition Maintenance Operations 130

4.3 Indexing 131
4.3.1 B*tree Indexes 132
4.3.2 Bitmapped Indexes 133
4.3.3 Bitmapped Join Indexes 136
4.3.4 Function-based Indexes 138
4.3.5 Partitioned Indexes 139
4.3.6 Which Indexes to Create? 143
4.3.7 Using Oracle Enterprise Manager to Create Indexes 145

4.4 Index-Organized Tables 148
4.4.1 Creating an IOT 149
4.4.2 Partitioning and Indexing an IOT 150
4.4.3 Using an IOT in a Data Warehouse 151

4.5 Data Compression 151
4.5.1 Table Compression 151
4.5.2 Index Compression 153

TEAM LinG - Live, Informative, Non-cost and Genuine!

x Contents

4.6 Summary 154

5 Loading Data into the Warehouse 155

5.1 The ETL Process 155
5.2 Extracting Data from the Operational Systems 157

5.2.1 Identifying Data That Has Changed 159
5.2.2 Oracle Change Data Capture 161

5.3 Transforming the Data into a Common Representation 176
5.3.1 Integrating Data from Multiple Sources 177
5.3.2 Cleansing Data 177
5.3.3 Deriving New Data 178
5.3.4 Generating Warehouse Keys 178
5.3.5 Choosing the Optimal Place to Perform

the Transformations 180
5.4 Loading the Warehouse 181

5.4.1 Using SQL*Loader to Load the Warehouse 183
5.4.2 The Data File 185
5.4.3 Loading the Warehouse Using Data Pump 205
5.4.4 Loading the Warehouse Using External Tables 212
5.4.5 Loading the Warehouse Using

Transportable Tablespaces 220
5.4.6 Loading the Dimensions Using SQL MERGE 227

5.5 Transformations inside the Oracle Database 232
5.5.1 Transformations That Cleanse Data and

Derive New Data 233
5.5.2 Validating Data Using a Dimension 240
5.5.3 Looking up the Warehouse Key 240
5.5.4 Table Functions 242
5.5.5 Transformations That Split One Data Source into

Multiple Targets 245
5.5.6 Moving Data from a Staging Table into the Fact Table 246

5.6 Postload Operations 251
5.6.1 Step 1: Gather Optimizer Statistics for the Tables 251
5.6.2 Step 2: Verify the Dimensions 251
5.6.3 Step 3: Refresh the materialized views 252
5.6.4 Step 4: Gather Optimizer Statistics for

the Materialized Views 252
5.6.5 Step 5: Back up the Database Table, or Partition 252
5.6.6 Step 6: Publish the Data 252

5.7 Using Tools for the ETL process 253
5.8 Summary 253

TEAM LinG - Live, Informative, Non-cost and Genuine!

Contents xi

Contents

6 Querying the Data Warehouse 255

6.1 Introduction 255
6.2 The Query Optimizer 255

6.2.1 EXPLAIN PLAN 256
6.2.2 Join Method Basics 258
6.2.3 Star Transformation 260
6.2.4 Partition Pruning 262
6.2.5 Partition-Wise Join 265

6.3 Parallel Execution 267
6.3.1 SQL Statements That Can Be Parallelized 268
6.3.2 Setting up Parallel Execution 269
6.3.3 Hardware Requirements for Parallel Execution 270

6.4 SQL Features for Querying the Data Warehouse 271
6.4.1 SQL Extensions for Aggregation 272
6.4.2 SQL Functions for Analysis 281
6.4.3 The SQL Model Clause 308

6.5 Summary 320

7 Summary Management 321

7.1 Summary Tables 321
7.1.1 Why Do You Need Summary Management? 322
7.1.2 Summary Management with Oracle 323

7.2 Creating a Materialized View 325
7.2.1 Naming the Materialized View 326
7.2.2 The Physical Storage for the Materialized View 326
7.2.3 When Should the Materialized View Be

Populated with Data? 327
7.2.4 How Should the Materialized View Be Refreshed? 327
7.2.5 When should the Materialized View be refreshed? 328
7.2.6 Enabling the Materialized View for Query Rewrite 329
7.2.7 Specifying the Contents of the Materialized View 329
7.2.8 Creating a Materialized View in Enterprise Manager 331
7.2.9 Using Summary Management with

Existing Summary Tables 331
7.2.10 Partitioning the Materialized View 333
7.2.11 Indexing the Materialized View 334
7.2.12 Security of Materialized Views 335

7.3 Refresh 336
7.3.1 Using the DBMS_MVIEW Refresh Procedures 337
7.3.2 Using Enterprise Manager for Refresh 339

TEAM LinG - Live, Informative, Non-cost and Genuine!

xii Contents

7.3.3 Fast Refresh 340
7.3.4 Partition Change Tracking 345
7.3.5 Refresh Performance 351
7.3.6 Nested Materialized Views 353

7.4 EXPLAIN_MVIEW Utility 356
7.4.1 Running EXPLAIN_MVIEW procedure 357
7.4.2 Using Oracle Enterprise Manager to

run EXPLAIN_MVIEW 361
7.5 TUNE_MVIEW Utility 362
7.6 Summary 365

8 Dimensions 367

8.1 Concepts 367
8.2 Creating a Dimension 369

8.2.1 Defining a Dimension with a Single Hierarchy 369
8.2.2 Defining a Dimension with Multiple Hierarchies 371
8.2.3 Defining a Dimension with Attributes 372
8.2.4 Defining a Dimension with Normalized Tables 373
8.2.5 Creating Dimensions with Oracle Enterprise Manager 375

8.3 Describing a Dimension 379
8.4 Validating a Dimension 379
8.5 Summary 382

9 Query Rewrite 383

9.1 Setting up Query Rewrite 383
9.1.1 How Can We Tell If a Query Was Rewritten? 384

9.2 Types of Query Rewrite 385
9.2.1 SQL Text Match 385
9.2.2 Aggregate Rollup 387
9.2.3 Join-back 387
9.2.4 Computing Other Aggregates in the Query 389
9.2.5 Filtered Data 389
9.2.6 Rewrite Using Materialized Views with No Aggregation 391
9.2.7 Rewrite Using Dimensions 393
9.2.8 Rewrite Using Constraints 397

9.3 Query Rewrite Integrity Modes 398
9.3.1 Comparing ENFORCED and TRUSTED Modes 399
9.3.2 Comparing TRUSTED and STALE_TOLERATED Modes 400

9.4 Query Rewrite and Partition Change Tracking 403
9.4.1 Query Rewrite with PCT Using Partition Key 404

TEAM LinG - Live, Informative, Non-cost and Genuine!

Contents xiii

Contents

9.4.2 Query Rewrite Using PCT with Partition Marker 406
9.5 Troubleshooting Query Rewrite with EXPLAIN_REWRITE 407
9.6 Advanced Query Rewrite Techniques 409

9.6.1 Optimizer Hints for Query Rewrite 409
9.6.2 Query Rewrite and Bind Variables 411
9.6.3 Query Rewrite with Complex SQL Constructs 413
9.6.4 Query Rewrite Using Nested Materialized Views 422
9.6.5 Rewrite Equivalences 423
9.6.6 Using Query Rewrite during Refresh 426

9.7 Summary 427

10 Tuning Query Performance 429

10.1 Monitoring Performance 429
10.1.1 SQL Tuning Sets 431

10.2 Advisor Central 435
10.3 SQL Access Advisor 436

10.3.1 SQL Access Advisor Wizard 438
10.3.2 DBMS_ADVISOR PL/SQL Package 449
10.3.3 Templates 451
10.3.4 Quick_Tune 452

10.4 SQL Tuning Advisor 452
10.4.1 SQL Tuning Advisor in Enterprise Manager 453
10.4.2 The DBMS_SQLTUNE PL/SQL Package 457

10.5 Memory Advisor 459
10.5.1 Tuning PGA Memory 459
10.5.2 SGA Memory Advisor 466

10.6 Troubleshooting Parallel Execution 469
10.6.1 Using EXPLAIN PLAN to Display Parallel Plans 469
10.6.2 Problems Due to Resource Constraints 471

10.7 Plan Stability 474
10.7.1 Creating an Outline 474
10.7.2 Using an Outline 475

10.8 Summary 476

11 Managing the Warehouse 477

11.1 What Has to Be Managed 477
11.2 Managing Using Oracle Enterprise Manager 477

11.2.1 The Enterprise Manager Console 478
11.2.2 Overview of Enterprise Manager 479
11.2.3 Enterprise Manager Database Control 482

TEAM LinG - Live, Informative, Non-cost and Genuine!

xiv Contents

11.2.4 Enterprise Manager Grid Control 485
11.2.5 Enterprise Manager Administrators 489
11.2.6 Creating and Using Groups 491
11.2.7 Scheduling Jobs 494

11.3 Monitoring the Warehouse 505
11.3.1 Automatic Workload Repository (AWR) 505
11.3.2 Automatic Database Diagnostic Monitor (ADDM) 507
11.3.3 Using Alerts 510

11.4 Reorganizing the Warehouse 515
11.4.1 Why Reorganize? 515
11.4.2 Partition Maintenance 516
11.4.3 Index Changes 530
11.4.4 Online Redefinition of Tables 530
11.4.5 Online Segment Shrink 540

11.5 Refreshing the Warehouse 541
11.6 Gathering Optimizer Statistics 542

11.6.1 Automatic Statistics Collection 542
11.6.2 Manual Statistics Collection 543
11.6.3 Collecting System Statistics 545
11.6.4 Dynamic Sampling 545

11.7 Parallel Management Tasks 546
11.8 Maintaining Security 546

11.8.1 Virtual Private Database 549
11.9 Monitoring Space Usage 551

11.9.1 Automated Space Management 553
11.9.2 Resumable Space Allocation 553

11.10 Other Management Issues 556
11.10.1 Building a Test System 556
11.10.2 Testing New Software 557
11.10.3 Timing Data Loads 557
11.10.4 Evaluating/Practicing Management Tasks 558
11.10.5 Determine Query Response Times 558

11.11 Summary 558

12 Backup and Recovery 559

12.1 Strategy 559
12.1.1 Methods of Performing a Backup and Recovery 560
12.1.2 Simplifying Recovery with Flash Recovery Area 566

12.2 Backup 567
12.2.1 Creating a Backup Configuration 568
12.2.2 Full Backups 570

TEAM LinG - Live, Informative, Non-cost and Genuine!

Contents xv

Contents

12.2.3 Incremental Backups 574
12.2.4 Tablespace Backups 578
12.2.5 Backup File Sizes 580

12.3 The Recovery Catalog 581
12.3.1 Creating the Recovery Catalog 581
12.3.2 Registering the EASYDW database with RMAN 582

12.4 Restore and Recover 584
12.5 Summary 590

13 Oracle Warehousing Tools 591

13.1 Which Tool 591
13.2 Oracle Warehouse Builder 591

13.2.1 Setting up Warehouse Builder 593
13.2.2 Oracle Warehouse Builder Client 594
13.2.3 Data Sources and Targets 594
13.2.4 Defining the Tables in Our Data Warehouse 598
13.2.5 Creating Dimensions 599
13.2.6 Creating a Cube 600
13.2.7 Defining Source to Target Mappings 601
13.2.8 Validating the Design 606
13.2.9 Generating the Design 607
13.2.10 Deploying the Design 609

13.3 Oracle Discoverer 614
13.3.1 Why Discoverer? 615
13.3.2 Setting up the Environment 619
13.3.3 Query Using Discoverer Plus 634

13.4 Oracle Reports 10

g

644
13.4.1 Creating a Report Using the Report Builder 644
13.4.2 More Oracle Reports Examples 650
13.4.3 Publishing the Report 651

13.5 Summary 652

14 Data Warehousing and the Web 653

14.1 Overview 653
14.1.1 Internet and Intranet 653
14.1.2 Oracle Software for the Data Warehouse 656

14.2 Oracle Application Server 10

g

656
14.2.1 Why Set up a Portal? 658
14.2.2 OracleAS Portal 660
14.2.3 Getting Started with Oracle Application Server 10

g

 663

TEAM LinG - Live, Informative, Non-cost and Genuine!

xvi Contents

14.3 Publishing Data on the Web 664
14.3.1 Discoverer 665
14.3.2 Publishing a Portlet 665
14.3.3 Embedding a Static Report 667

14.4 Oracle Personalization 668
14.5 The Data Warehouse and E-Business Intelligence 669

15 OLAP 671

15.1 Why Do We Need the Oracle OLAP Option? 671
15.1.1 OLAP Applications 671
15.1.2 ROLAP and MOLAP 673
15.1.3 Oracle OLAP 674

15.2 Oracle OLAP Architecture 675
15.3 Analytic Workspaces 678

15.3.1 The Multidimensional Model 679
15.3.2 Creating Analytic Workspaces 682

15.4 The OLAP Catalog 683
15.4.1 Defining OLAP Metadata for a Relational Schema 684
15.4.2 OLAP Metadata Views and Validation 690

15.5 The Analytic Workspace Manager 693
15.5.1 The Create Analytic Workspace Wizard 695
15.5.2 Refreshing the Analytic Workspace 702
15.5.3 Creating an Aggregation Plan 704
15.5.4 Analytic Workspace Enablers 706

15.6 Querying Analytic Workspaces 707
15.6.1 OLAP DML 708
15.6.2 DBMS_AW package 720
15.6.3 SQL Access to Analytic Workspaces 721
15.6.4 OLAP API and BI Beans 723

15.7 Summary 724

16 Oracle Data Mining 725

16.1 Oracle Database 10

g

 Data Mining Option 726
16.2 Oracle Data Mining Techniques 727

16.2.1 Association Rules 727
16.2.2 Clustering 730
16.2.3 Feature Extraction 732
16.2.4 Classification 732
16.2.5 Regression 737
16.2.6 The PMML Standard 737

TEAM LinG - Live, Informative, Non-cost and Genuine!

Contents xvii

Contents

16.3 Preparing Data for Oracle Data Mining 738
16.3.1 Data Format 738
16.3.2 Data Preparation 739

16.4 Using Oracle Data Mining Interfaces 741
16.4.1 Installation and Configuration 741
16.4.2 Data Mining Analysis Flow 742
16.4.3 An Example Using the Java API 743
16.4.4 An Example Using the PL/SQL Procedures 749

16.5 Summary 755

17 High Availability and a Data Warehouse 757

17.1 Introduction 757
17.2 What Is a Highly Available System? 758

17.2.1 Characteristics of a highly available system 758
17.2.2 Role of Operational Best Practices 759

17.3 Overview of Oracle Database 10

g

 High Availability Features 760
17.4 Protecting against Hardware/Software Failures 761

17.4.1 Real-Application Clusters (RAC) 762
17.4.2 Reliable Storage 762
17.4.3 Failure Detection and Monitoring 763
17.4.4 Resource Management 763

17.5 Protecting against Data Loss 764
17.5.1 Recovering from Media Failure 764
17.5.2 Recovery from Human Errors with Flashback 765
17.5.3 Disaster Recovery Using Data Guard 771
17.5.4 Oracle Maximum Availability Architecture 787
17.5.5 Protecting Metadata 788

17.6 Managing Planned Downtime 788
17.6.1 Dynamic Instance Reconfiguration 789
17.6.2 Online Maintenance 789
17.6.3 Online Redefinition 789
17.6.4 Rolling Upgrades 790

17.7 Information Lifecycle Management 791
17.8 Summary 793

A The Schema for Easy Shopping Inc. 795

A.1 Creating the Tablespaces and Data Files 795
A.2 Creating the Tables, Constraints, and Indexes 797
A.3 Defining Security 801
A.4 Final Steps 802

TEAM LinG - Live, Informative, Non-cost and Genuine!

xviii Contents

B Product Information 803

B.1 Product Information 803

Index 805

TEAM LinG - Live, Informative, Non-cost and Genuine!

xix

Foreword

It was almost five years ago when I wrote the foreword to the first edition of
this book and over that time we have seen many changes. The challenge
now facing most organizations after the dot-com boom and economic slow-
down is how to deliver more, using fewer resources, without increasing
costs or affecting the bottom line.

Information today is a critical business asset, and the demands placed
upon it are rapidly changing. Historically, information was only kept for
short periods of time, but once the business benefits of retaining all this
information were realized, the Data Warehouse was born. Now they play a
very important part in the daily running of the business and assist during
tactical decision-making.

The user community who now regularly access the Data Warehouse
are demanding ever more complex analysis and reporting. Portals have
revolutionized access to the Data Warehouse because they provide easy
access, whilst allowing each user to create their own customised view and
set of reports.

New regulations and guidelines are now placing even more demands on
organizations as they try to understand how they can cost-effectively store
data for extremely long periods of time, whilst adhering to the rules as to
which data must be held and how changes, if allowed, may be applied to
the data. Today, Oracle Data Warehouses frequently contain many terabytes
of data, but the arrival of the petabyte warehouse is not far away.

With demands upon data constantly changing. Organizations need to
be able to easily change their configurations to support the extra demands
placed on the system. Oracle Database 10

g

 introduced grid computing,
where pools of computing resources can be shared.

In the future, the data centre will be part of the grid, but it will only take
from the grid the resources it needs to satisfy current demand, leaving those

TEAM LinG - Live, Informative, Non-cost and Genuine!

xx

resources available for other systems to use who may need extra processing
to satisfy their increase in demand.

Whether you are designing a large or small data warehouse, or looking
for tips on how to improve performance using Oracle Database 10

g

, this
book will provide you with advice and examples you can follow. It also
includes thorough coverage of the data warehouse features in Oracle Data-
base 10

g

, and the tools in Oracle Application Server 10

g

.

Chuck Rozwat

Executive Vice President

Server Technologies

Oracle Corporation

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxi

Preface

There was a time when it was rare for a company to have a Data Ware-
house, but now they are an essential source of information to ensure that
businesses make the right decisions. Initially data warehouses could only be
built and maintained by large corporations, but with the recent advances in
database software and computer hardware, any organization can now build
a data warehouse or a data mart.

This book introduces the reader to the subject of data warehousing
and data marts, with respect to implementing it using an Oracle Database
10

g

. It has been designed so that anyone new to this subject can gather a
basic understanding of data warehousing and what is involved in design-
ing, creating, implementing and managing this solution using Oracle
Database 10

g

.

The authors have endeavored to make the book easy to read and have
provided lots of examples to illustrate how various features can be used.
Each chapter focuses on a specific topic and by reading each chapter, you
will learn the flow and all the basic steps required to build a data warehouse
on Oracle Database 10

g

.

The structure of the chapters is as follows:

�

Chapter 1

 provides an introduction to the subject of data warehous-
ing, introducing terms, and the need for a data warehouse or data
mart. It also provides an overview of the major new features in Oracle
Database 10

g

.

�

Chapter 2

 shows how to design a data warehouse and illustrates how
to create dimensions and fact tables. The EasyDW Inc. example is
introduced which is used throughout this book.

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxii

�

Chapter 3

 describes the architecture of a warehouse environment and
talks about the hardware components and the different configura-
tions in which they may be deployed. New features such as Auto-
matic Storage Management are discussed along with how they are
used in the warehouse.

�

Chapter 4

 describes the physical design of the database and how dif-
ferent techniques such as indexing and partitioning are used in a data
warehouse database design.

�

Chapter 5

 shows how to extract data from your source system, trans-
form it, and then load it into the data warehouse.

�

Chapter 6

 describes various techniques that you can use to improve per-
formance when querying the data warehouse. Advice is given on how
to make best use of features such as join techniques, parallelism of the
underlying architecture and the powerful Oracle Analytic Functions.

�

Chapter 7

 introduces Summary Management, and shows how to cre-
ate and refresh materialized views to manage summary data.

�

Chapter 8

 illustrates the creation of dimensions, to represent the hier-
archies and relationships in your data.

�

Chapter 9

 shows how Query Rewrite transparently rewrites your que-
ries to use materialized views, dramatically speeding up the perfor-
mance of the warehouse queries.

�

Chapter 10

 describes new ways to tune your database for optimal
performance in Oracle Database 10

g

. It shows how the SQL Access
advisor is used to create the best set of materialized views and
indexes for the warehouse, how the SQL Tuning advisor can be used
to tune a poorly performing SQL statement, and how memory can
be best optimized.

�

Chapter 11

 discusses the techniques you can use to manage your data
warehouse, such as scheduling, managing partitions, and takes a more
detailed look at the new infrastructure of the Oracle Database 10

g

and Enterprise Manager.

�

Chapter 12

 describes how the important task of backup and recovery
is performed in order to protect the data in your warehouse.

�

Chapter 13

 looks at some of the Oracle tools you can use to build and
report upon in your data warehouse. Specifically described are Oracle
Warehouse Builder, Oracle Discoverer and Oracle Reports.

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxiii

Preface

�

Chapter 14

 shows how the web can play a key role with your data
warehouse and how it can be used to benefit your business. The
importance of Oracle Portal technology for the presentation on the
web is discussed.

�

Chapter 15

 discusses using the Oracle OLAP option to perform mul-
tidimensional analysis, forecasting, and allocation.

�

Chapter 16

 illustrates using the Oracle Data Mining option to gain
better insight into your business by finding hidden trends and pat-
terns in the data.

�

Chapter 17

 discusses high availability options and solutions for data
warehouses that can afford minimal downtime per year.

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxv

Acknowledgments

When one is writing a book, there are many people who are involved at var-
ious stages of the production cycle. The extremely important, but often
silent, contributors are those people who give up their valuable spare time
to review the book. The authors are extremely grateful to the following
people who reviewed numerous chapters in this book.

Ramu Arunachalam, Siddarth Velur, Jaganath Rai are developers in
the Oracle Warehouse Builder group, India Development Center,
Oracle Corporation.

Hermann Baer is the Product Manager for Oracle’s ETL capabilities
in the database.

Tammy Bednar is the Product Manager for Oracle’s backup and
recovery products.

Randy Bello is a Principal Software Engineer in Oracle Server Tech-
nologies, New England Development center, and is one of the main
architects of Query Rewrite with Materialized Views.

Paula Bingham is a Principal Software Engineer and the Project
Leader of Oracle Change Data Capture.

Ian Carney is a Senior Principal Consultant within Oracle UK Con-
sulting.

Larry Carpenter is a Principal Member of the Technical Staff in Ora-
cle Server Technologies, and has extensive experience working with
customers implementing Data Guard.

Xiaobin Chen is a Development Manager for Oracle Enterprise
Manager.

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxvi

Jean-Pierre Dijcks is the Product Manager for Oracle Warehouse
Builder, Oracle Corporation.

Mike Durran is the Discoverer Product Manager, Oracle Corporation

John Haydu is the Product Manager for SQL Analytics in the Oracle
database.

Ramkumar Krishnan, Mark Hornick, Margaret Taft, Xiafang Barr,
Bob Haberstroh, Sunil Venkayala, are from the Oracle Data Mining
group.

Paul Manning is the Senior Product Manager at Oracle for the Auto-
matic Storage Management feature.

David Martland is a Technical Architect with the Britannia Building
Society in the UK, who has many years experience using the Oracle
database.

Priya Panchapagesan is a Principal Software Engineer in Oracle
Server Technologies, New England Development Center, and is one
of the main developers of Partition Change Tracking for Summary
Management.

Ananth Raghavan is the Senior Development Manager for Partition-
ing Technology, Oracle Corporation.

Ashish Ray is the Senior Product Manager for Oracle Data Guard.

Mark Rittman is an Oracle Certified Professional and the Consulting
Manager at SolStone Plus in the UK.

Marilyn Saunders is a Principal Software Engineer and leader of the
QA team for Oracle Data Pump.

Michael D. Schmitz is the President of Business Knowledge Profes-
sionals Inc., in Bend, Oregon, and specializes in dimensional model-
ing and building warehouses in his consulting practice.

Kathy Taylor is a Principal Technical Writer in the OLAP Technolo-
gies group at Oracle Corporation.

Murali Thiyagarajan is a Principal Software Engineer in Oracle Server
Technologies, New England Development Center, and has worked
on several query rewrite algorithms.

Paul Tsien is a product manager specializing in High Availability,
Oracle Corporation.

TEAM LinG - Live, Informative, Non-cost and Genuine!

xxvii

Acknowledgements

Andy Witkowski, is an Architect in Oracle Server Technologies,
responsible for much of the ROLAP functionality in Oracle
RDBMS, including SQL analytic and aggregation functions and
SQL Model clause.

Min Xiao is a Senior Software Engineer in Oracle Server Technolo-
gies, New England Development center, and has worked extensively
on Dimensions.

The previous editions of this book was also reviewed by Srinivas Bala,
Jay Davison, Bud Endress, Jay Feenan, Abhinav Gupta, Ramkumar
Krishnan, James Lear, Lory Molesky, Judy Muller, Dennis Murray,
Simon Oxbury, Jack Raitto and Mike Rubino.

We also need to say a big thank you to:

Max Hillson whose e-commerce site coolstuffcheap.com, served as
the inspiration for many of the shopping examples.

Chuck Rozwat, Executive Vice President of Oracle Server Technolo-
gies, Steve Hagan, Vice President of the Oracle New England
Development Center, and Juan Loaiza, Vice President of Oracle
High Availability for their encouragement and support while writ-
ing this book.

Finally this book is dedicated to all the software developers at Oracle from
around the world who build the software which makes this book possible.

Our thanks also go Theron Shreve and Pam Chester at Reed Elsevier
and Alan Rose and his team for actually producing this book.

TEAM LinG - Live, Informative, Non-cost and Genuine!

1

1

Data Warehousing

1.1 An Introduction to Oracle Database 10

g

1.1.1 The Economic Climate Influences
Technology Spending

One of the challenges of the post-dot-com bubble era that many organiza-
tions are facing is being asked to deliver more with little or no budget
increase in order to improve the bottom line. You may find yourself looking
for new ways to reduce technology costs, while at the same time supporting
new applications and improving productivity.

In addition, in the wake of the recent corporate accounting scandals,
new regulations have been put into place to enhance corporate responsi-
bility, improve financial disclosures, and combat corporate accounting
fraud. The Sarbanes-Oxley Act mandates that companies improve the
overall control of the management and reporting of corporate financial
information, and places the responsibility for implementing these controls
on the CEO and senior management. This in turn places new demands on
the IT organization.

So, how are you able to cut costs, while at the same time improve the
overall view of critical business information? How can you use your data to
target opportunities, track performance, improve decision making, gain
competitive edge, increase profits, and provide better financial reporting?

1.1.2 Consolidation

One answer may be through consolidation. Many companies are streamlin-
ing their operations by consolidating their hardware, their information, and
their business practices and applications into a smaller number of central-
ized systems. Simplicity can then be achieved through one common infra-

TEAM LinG - Live, Informative, Non-cost and Genuine!

2

1.1

An Introduction to Oracle Database 10g

structure. The ability to pull together data from each part of the company
provides a complete enterprise view. The data warehouse plays a critical role
in this consolidation.

1.1.3 Consolidation of the Hardware

In the past, companies generally purchased dedicated systems for each
major new application. These needed to be sized to meet peak demands,
which meant that some resources sit idle the rest of the time. Wouldn’t it
be nice if those resources could be applied to another application that
needed them?

Consolidation involves both the reuse of existing hardware, and new
purchases. Today, many hardware vendors are selling cheaper, faster
machines, including server blades and networking equipment. Cost savings
can be achieved by switching from proprietary hardware and operating sys-
tems to less expensive commodity hardware using Intel processors running
the Linux operating system. The cost advantage of a blade farm running
Linux is significant compared with a symmetric multiprocessor (SMP) sys-
tem running a proprietary operating system.

The cost of storage is also continuing to decline each year, and it is now
possible to buy storage for considerably less money. Why spend a few mil-
lion dollars for a system when you can get the same capabilities for several
hundreds of thousands?

For a large company, consolidation may also involve combining many
decentralized data centers into fewer data centers. As a result of hardware
consolidation, there are fewer systems to manage—less software to install,
patch, and secure, further reducing expenses.

1.1.4 Consolidation of Data into a Single Company View

As a result of systems being consolidated, the data can also be consolidated
in one place, often into a data warehouse. Eliminating data redundancy
improves the quality and availability of the information. Many companies
have a large number of database instances, from Oracle and from other ven-
dors. By consolidating these, savings can be gained from reducing the num-
ber of adminstrators needed to support the systems.

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.1

An Introduction to Oracle Database 10g 3

Chapter 1

1.1.5 Consolidation of Applications

As the data is consolidated, self-service applications become possible, allow-
ing users to update their own information. As more business applications
are moved to the Web, portals give users access to central databases with a
Web browser or cell phone eliminating the need to purchase and install
special purpose desktop software.

Self-service applications are instrumental in reducing operating costs by
eliminating many administrative processes, reducing personnel costs, and
providing access on demand 24 hours a day. In addition to applications such
as store fronts, many traditionally back-office applications can also be made
self-service, including travel, payroll, and human resources.

1.1.6 The

g

 in Oracle Database 10

g—

The Grid

Consolidation sets the stage for the implementation of grid computing.
Oracle Grid Computing, is an integrated infrastructure made up of the
Oracle Database 10

g

, Oracle Application Server 10

g

, and Oracle Enterprise
Manager 10

g

. With grid computing, centralized pools of computing
resources are created that can be shared by many applications.

The term grid computing originated from an analogy to the electric
power grid. A variety of resources contribute power into a shared pool,
which many consumers access as they need it. Grid computing is a way to

consolidate

 hardware to improve utilization and efficiency of those
resources. To the end user, resources are available when they are needed,
without the need to know where the data resides or which computer pro-
cessed any given request.

As with the Internet, the idea of grid computing began in the academic
and research communities. One of the early implementations of a grid is
the SETI@home project, which is the “Search for Extraterrestrial Intelli-
gence” that originated in 1999 at the University of California at Berkeley.
Radio signal fluctuations are collected from the Arecibo Radio Telescope in
Puerto Rico; these, may indicate a sign of intelligent life from space. Every
day more data was received than the computers at the university could pro-
cess, so volunteers were asked to donate idle processing time on their home
computers. More than 5 million people from 226 countries have down-
loaded the software that makes their computers available whenever they are
idle. You may have already done something similar—scavenged spare
resources at off-peak times and used them to augment processing for one or
more of your applications.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4

1.2

What Is a Data Warehouse?

While the idea of grid or utility computing is not new, it is made possi-
ble today in part by advances in both hardware and software. Blade farms or
groups of fast computers form the basis of grid computing. Oracle Real
Application Clusters (RAC) serve as the foundation for enterprise grids by
enabling these low-cost hardware platforms to deliver the highest quality of
service levels of availability and scalability. You can buy just enough hard-
ware capacity for the system’s initial needs, knowing you can plug in addi-
tonal low-cost servers to handle temporary or permanent traffic surges.
When a new server is added to the cluster, it is automatically detected, and
the workload is balanced to incorporate the new system. If one node in the
cluster fails, the application can still function, with a surviving node taking
over the failed node’s workload.

Just as companies today have both an internal intranet and and external
Internet, in the future companies may have both internal grids and external
grids without having to purchase or own all the technology themselves. In
the data center of the future, you will have the ability to buy as much com-
puting power as you need, and just pay for what you use.

1.2 What Is a Data Warehouse?

So, after all that, just what is a data warehouse and how does it fit in? A
data warehouse is a database containing data from multiple operational
systems that has been

consolidated,

 integrated, aggregated, and structured
so that it can be used to support the analysis and decision-making process
of a business.

1.2.1 Why Do You Need a Data Warehouse?

Is all the information needed to run your business available when it’s needed,
in the form in which it’s needed, and in sufficient detail and with accuracy to
base decisions upon? Or, do two users arrive at a meeting with reports that
don’t match? One thinks sales for March are $500 million, and another says
they are $524 million. After much analysis, you determine that different
data has been used to calculate the sales in each report, and you spend con-
siderable time trying to figure out why and correcting the problem.

Does your company have multiple systems for the same function—the
old inventory system and the new one you just spent millions of dollars
building? Do you need to get data from both of these to combine for
reporting purposes? How well is this working? Do users need to understand

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.3

A Historical Perspective 5

Chapter 1

the differences between the two systems to query them on-line? This may
be an area that you want to consolidate.

Do you have sufficient historical detail for analysis purposes? How many
months of history are you able to keep on-line? Did you save the right level
of detail? Did you even save all of the historical data? Are you able to ana-
lyze the sales for each product for each geographical region before and after
a major reorganization of the sales force reporting structure? Data ware-
houses are built to help address these types of problems.

1.3 A Historical Perspective

In the 1970s the first commercial applications were built to computerize
the day-to-day operations of a business. These systems were built on main-
frame computers which were very expensive. Only large businesses could
afford the hardware, the programmers to program them, and the operations
staff to keep them running. These systems were focused on inserting new
data and reading it sequentially using magnetic tapes.

With the invention of disk storage, the data could be accessed directly.
This led to the first database management systems, which organized the
data either hierarchically or in a network. These database systems were very
complex. Programmers had to understand how the data was stored on the
disk and navigate through the data to generate reports. Application pro-
grammers used COBOL to create custom reports. It took several days or
even weeks to write the program for each new report. Reports were printed
on computer paper and manually distributed to the users. There were never
enough programmers, so there was always an application backlog. Once
data could be accessed directly, the first on-line transaction processing
(OLTP) systems were built.

In the late 1970s and early 1980s, minicomputers such as Digital’s
PDP-11 and VAX 11/780 brought the hardware costs down. Data was
often stored in the complex CODAYSL database, which was extremely dif-
ficult to change and hard to understand and design. All that changed with
the introduction of the relational database. In 1979, the Oracle database
became the first commercially available relational system.

With the relational model, data is organized into tables with columns
and rows. Rather than using pointers to maintain relationships among the
data, a unique value, such as customer number or student id, is stored in
multiple tables to identify the row. The relational model was much easier to
understand, and SQL, the language used to access the database, did not

TEAM LinG - Live, Informative, Non-cost and Genuine!

6

1.3

A Historical Perspective

require knowledge of how the underlying data was physically stored. It
became much easier to build applications, which led to widespread use of
database management systems. After the initial release of relational systems,
many companies began developing products used to access relational data-
bases, including adhoc query, reporting, and analysis tools.

With the introduction of the PC, computing moved from mainframes
to client/server systems. Oracle applications were introduced in the late
1980s. Companies no longer had to build their own custom applications,
but could now purchase software that provided basic functionality from
vendors, including Oracle, PeopleSoft, and SAP.

As relational databases matured in the 1980s, OLTP systems were built
using relational systems to automate the operational aspects of the busi-
ness. These included systems such as order processing, order entry, inven-
tory, general ledger, and accounting. OLTP systems automate processes
and represent the state of a system at a current point in time. In an inven-
tory application, there are transactions to insert new items into the inven-
tory, delete items when sold, and update the quantity on hand, while
always maintaining the balance on hand. A limited amount of history is
retained. It is easy to determine how many of product 111-45-222 is on
hand, for example, or on which date order number 45321 was shipped.
During this time, the relational database vendors focused on improving
performance for OLTP applications and competed with each other using
industry standard TPC-C benchmarks.

1.3.1 The Rise of the Data Warehouse

Once the OLTP systems were built to efficiently collect data, the challenge
became how to best interpret it. In the late 1980s and early 1990s, in an
effort to take a broader view across the entire business, the first enterprise
data warehouses (a term invented by Bill Inmon, the father of data ware-
housing) were built. Data was brought together from the many operational
systems used to run the day-to-day business operations in order to provide a
corporate-wide view.

Data warehouses were built to view the business over time and spot
trends. Many decisions require being able to look beyond the details of
today’s operations and take a broader view of the business. Typical ware-
house queries involve reporting on product sales over the last two years or
looking at the impact of a major snowstorm on retail sales versus Internet
sales. Queries involve looking at how values have changed over time and
what else also changed, and possibly discovering connections.

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.3

A Historical Perspective 7

Chapter 1

In order to perform this type of analysis, data in the warehouse needs to
be retained for long periods of time, often 5 to 10 years.

The Data Warehouse Is Used to Look beyond the Data to
Find Information

In a data warehouse, the primary activity is querying, or reading, the data.
The only update activity occurs when new data is loaded. Decision-support
systems (DSS), including Oracle Discoverer, provide interactive querying,
charting, graphs, and reporting capabilities. Oracle has specialized types of
access structures, such as bitmapped indexes, bitmapped join indexes, and
materialized views, to improve query performance.

OLAP software is used to analyze business data in a top-down hierarchi-
cal fashion. It assumes queries will be posed iteratively, where the results of
asking one question lead to asking many more questions.

It’s not enough to know just the profit made this year; analysts also need
to know profit over time of each product for each geographic region. This is
a three-dimensional query: the dimensions are products, time, and geo-
graphical region.

An analyst may need to compare this month’s sales to the same month
last year for each store versus the Internet site. He or she may drill down to
a more detailed level in the hierarchy to get the sales for individual stores to
determine which ones are most profitable and which may have lost money.

The Data Warehouse Requires a Different Database Design

Data warehouses are designed for quick retrieval, when the access path is
not known in advance. Information is often derived from other data, by
rolling up data into summaries, drilling down to get more detail, or looking
for patterns and trends.

In an OLTP system, entity relationship diagramming techniques (E-R)
are used to design the database schema. Each entity becomes a table,
attributes become columns, and relationships are represented by joining the
primary-key and foreign-key columns together at run time.

A normalized design provides optimal performance for OLTP systems;
it supports high volumes of transactions that frequently update data. Nor-
malization ensures that the tables are correctly formed by putting related
data together in one table and eliminating redundancy. By having only one
copy of the data, update anomalies are avoided consistency is maintained.
After normalizing the data, some redundancy may be reintroduced on col-
umns that are not updated to improve performance.

TEAM LinG - Live, Informative, Non-cost and Genuine!

8

1.3

A Historical Perspective

In order to optimize performance for a warehouse, where the primary
activity is querying the data, a new data model was needed. Ralph Kimball,
the primary industry spokesperson for dimensional modeling and author of

The Data Warehouse Toolkit

, introduced the star schema, a new way of
designing the database to facilitate OLAP processing. In order to optimize
performance for a warehouse, dimensional modeling techniques are used.

The dimensional approach to modeling organizes data into fact and
dimension tables. It represents data in a way that is easily understood by
users. Users often ask for reports of sales results on a quarterly basis, broken
down by store and geographical region. The sales numbers are the facts.
Store, region, and quarter are the dimensions the data is analyzed by and are
used to organize the data. With dimensional modeling, denormalization
and redundancy are introduced. In Chapter 2, we will see how to actually
create a design for Easy Shopping Inc., the example which will be used
throughout this book.

The logical design is converted to a physical representation that will best
optimize performance and manageability. Tables, constraints, indexes, and
partitions are defined.

Oracle has added several features to support dimensional designs. The
optimizer can recognize a star schema. In addition to creating tables and
columns, you can also define dimensions to help analyze your data in vari-
ous ways.

1.3.2 Data Warehouses Evolved As Separate Systems

You may already be wondering why you can’t use your operational produc-
tion systems for your data warehouse. You already have databases that are
accessible through your corporate network, so why can’t you just use those
to get the information you need to run your business more efficiently? Why
do you need to copy data from one system to another to build a warehouse?
Because operational systems may not contain historical data, the informa-
tion may not be available to analyze. Also, the schema is not designed and
the data is not structured for business intelligence queries.

In addition, queries in the warehouse typically access large amounts of
data, which requires a great deal of memory, CPU, and I/O resources. Run-
ning decision-support queries that require a large amount of computing
power to sort and summarize millions of rows will have an impact on the
performance of your operational systems.

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.3

A Historical Perspective 9

Chapter 1

To make it even more difficult, often the many different operational sys-
tems are running on different hardware platforms, with different operating
systems and database-management systems. Some applications may have
been purchased and others built in-house. On some, the source code may
no longer even be available to make changes to, and many of the systems
could be several years old.

It was once believed that distributed databases were going to allow you
to issue a query and that global query optimizers would locate the data
transparently, returning it to users fast enough so they never realized it was
located on a machine in a different geographical location. But systems of
this type never materialized.

As a result, data needs to be moved from the operational systems into a
separate data warehouse, where it is stored in a common format on a differ-
ent machine for analysis.

The Data Warehouse Is Built from the Operational Systems

Building a warehouse involves extracting data from operational systems,
sometimes combining it with additional information from third parties,
transforming it into a uniform format, and loading it into the database.

Once data is entered in the warehouse, it almost never changes, since it
records the facts of an event or state that existed at some moment in time,
such as a particular sale of a product that happened on 23-Dec-1998. If
there were another sale of a similar product on 24-Dec-1998, it would gen-
erally be recorded as a separate event.

Often, up to 80 percent of the work in building a data warehouse is
devoted to the extraction/transformation/load (ETL) process: locating the
data; writing programs to extract, filter, and cleanse it; transforming it to a
common encoding scheme; and loading it into the data warehouse.

Operational data must be extracted from the source operational systems
and copied to the staging area, a temporary location where the data is
cleansed, transformed, and prepared for the warehouse. Sometimes you
have direct access to the source systems; however, often access is severely
restricted, and you can only get files of data that have been extracted for
you. The operational systems frequently must be running on a 24

×

7

×

365
basis, and performance cannot be impacted in any way.

Data from multiple systems needs to be transformed into a common
format for use in the warehouse. A knowledge of the meaning of the data in
the operational system is required.

TEAM LinG - Live, Informative, Non-cost and Genuine!

10

1.3

A Historical Perspective

�

Each operational system may refer to the same item by a different
name or key. For example, a tool company in the United States might
call product_id “1234” a “wrench,” while a company in another
country may call the same product “1234” a “spanner.”

�

Each system might use a different encoding scheme. The product_id
may be represented as characters separated by dashes (xxx-xx-xxx) in
one system and characters separated by spaces (xxx xx xxx) in
another. The data must be transformed to a common encoding
scheme in the warehouse.

�

An attribute of a table may have different names. One system might
refer to a column in the customer table as gender, represented by
values “0” or “1.” Another system may call it sex, represented as
“M” or “F.”

�

Different systems may use different units of measure. The sales
amount might be in dollars in the United States, and the euro in the
European Union. The data must be transformed to a common mea-
sure in the warehouse.

In designing the transformation process, these different column names
from the operational systems are mapped into the common name chosen in
the warehouse and transformed into a common encoding scheme.

Once the data is transformed, it is ready to be loaded into the ware-
house. Often, the transformation area is on a machine separate from the
warehouse; thus, the data will need to be transported or moved to the
machine where the warehouse is located.

If the transformed data is stored in a flat file, it may be transported using
FTP and then loaded using the SQL*Loader utility or Oracle Data Pump.

If the data has been transformed in an Oracle database, transportable
tablespaces may be used to move a tablespace from one database to another.

New data is generally added to the warehouse on a periodic basis. It may
be loaded in batch in the evenings or at another time when the warehouse
is not being used heavily by the analysts. Oracle Database 10

g

 Asynchro-
nous Change Data Capture provides a mechanism to load data in near real
time, providing access to the most recent transactional changes.

In addition to the data you already own, you can purchase data from
external data providers to add to your warehouse. For example, you can buy
information about the weather, demographics, and socioeconomic data.

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.3

A Historical Perspective 11

Chapter 1

Examples of usage would be:

�

Adding data that tracks regional weather events on a daily basis: This
way, you can determine which products show an increase or decrease
in sales when there is a snowstorm.

�

Adding customer demographic data: Selective marketing can be per-
formed, targeting those customers most likely to respond to a sales
promotion.

�

Knowing which types of customers buy which types of products: You
can anticipate demand and increase profitability. Demographic data
can be used to help choose a location to place a new retail store.

�

Adding Dun and Bradstreet data: This contains information on com-
panies and products.

Many tools are available in the marketplace to help automate parts of
the ETL process. An overview of Oracle Warehouse Builder, which can be
used to help automate the extraction, transformation, transport, and load
aspects of the process, will be presented in Chapter 13.

1.3.3 The Data Mart

Building a warehouse can be very complex and often takes anywhere from
18 months to three years to deploy. Because a warehouse contains many
subject areas and crosses multiple organizations, it can also be highly politi-
cal. Many early data warehousing projects failed.

It was discovered that many of the same benefits of a warehouse could
be scaled down to the department or line of business, solving a particular
business problem. Data warehouses contain multiple subjects that provide
a consolidated enterprise view across all lines of business. Data marts are
subject-specific or application-specific data warehouses and contain data
for only one line of business, such as sales or marketing. The major differ-
ence between a data mart and a data warehouse is the scope of the infor-
mation they contain. Because the scope of a data mart is much smaller, the
data is obtained from fewer sources, and the typical time to implement it
is shorter.

TEAM LinG - Live, Informative, Non-cost and Genuine!

12

1.3

A Historical Perspective

Independent Data Marts Were Built

Data marts can be dependent or independent, based on the source of infor-
mation. The source of information for a dependent data mart is an existing
data warehouse. A data mart is considered independent when no enterprise
data warehouse exists, and the data is extracted directly from the opera-
tional systems.

Because independent data marts can be constructed very quickly, they
became quite popular in the mid to late 1990s, as each department in a
company created its own data mart for its own needs. Unfortunately, after
creating a few data marts, problems begin to arise. Each data mart is its own
“island of information.” It’s obviously a problem when there are two reports
with different answers to the same question.

One of the reasons independent data marts can be deployed so quickly is
that they postpone some of the critical decisions that later become necessary
as the number of marts grows. Only the data needed by an individual
department needs to be identified and understood. A complete understand-
ing of all the corporate data is not necessary. Creating independent data
marts avoids political issues related to the creation of common naming and
encoding standards.

Other problems arose from the fact that the individual data marts were
often built independently of one another by different autonomous teams.
These teams will often select different hardware, software, and tools to use.

Each independent data mart gets its data directly from the operational
system. If a company had five different data marts, each needing customer
information, there would be five separate programs

running to extract data
from the customer table in the operational system. You probably don’t have
enough spare cycles on your operational systems to run five extract pro-
grams today, and you certainly won’t be able to run more extract programs
in the future as you add more data marts.

Each does its own data cleansing and transformations, possibly each in a
slightly different way. It is very easy for the data to become inconsistent.
Redundant and inconsistent data leads to different answers, making it diffi-
cult to make decisions. Imagine trying to merge these different views at a
later point into a common data warehouse.

Operational Data Stores Appeared To Consolidate Reporting of
Recent Information

As discussed previously, there is a major distinction between the data in the
operational systems and that in the warehouse. Operational data is about

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.3

A Historical Perspective 13

Chapter 1

the current state of the company and is used to manage the daily opera-
tions. Data in the warehouse is informational, containing a historical record
about the past.

If there is a need to provide information about the current state of the
business to make tactical decisions to support day-to-day operations, an
operational data store (ODS) can be built as part of the information man-
agement architecture.

An ODS contains subject-oriented, integrated data that has been vali-
dated and cleansed. It is used to support operational queries and reports.
One example is a customer service organization’s need to access current
account balances and billing information.

The ODS may be updated in near real time, so that it reflects the cur-
rent state in time. The ODS may serve as the source of data for the ware-
house or data marts.

Incrementally Building The Data Warehouse With Dependent
Data Marts

To solve these problems, and still provide a timely return on investment,
rather than building a warehouse representing the entire corporation, peo-
ple began building the warehouse a functional area at a time using a phased
approach.

Figure 1.1 shows the most common architecture used today. Data is
extracted from the OLTP systems and external sources, loaded into oper-
ational data stores and enterprise data warehouses, and loaded into
dependent data marts.

Building a data warehouse is just like building software. You cannot do
everything in one release, and you will never be able to anticipate all of the
possible uses. Another problem with the “big bang” approach is that it is
often the case that in the years ahead things change, user requirements are
different, and the warehouse implementation is simply wrong. It is much
better to develop an overall architecture, building a framework with com-
ponents that allow the warehouse to be built in phases. Phased approaches
provide constant feedback to the business. Limit the scope, and plan for
enhancements every three to six months.

TEAM LinG - Live, Informative, Non-cost and Genuine!

14

1.3

A Historical Perspective

1.3.4 Reporting, Query, and Analysis Tools Became
Browser Based

In 1995, Larry Ellison, the founder and CEO of Oracle, first introduced his
vision of the network computer: a small, inexpensive device that makes it
easy to run applications that access information via the Internet. Although
the network computer never gained significant market share, the vision of
internet-centric business computing accelerated the rapid price decline of
PCs, meeting the demand for cheaper, simpler desktop computing.

The ability to publish reports on the Web can make information avail-
able to virtually anyone. It gives employees, partners, and customers real-
time access to critical information. No longer do you have to be in the
office to view a report. Just pop into the local Internet cafe or connect to
the Internet from your hotel room. Placing information on the Web (either
your company intranet or the World Wide Web) means that your office can
truly be almost anywhere.

1.3.5 OLAP and Data Mining Functionality Are
Embedded in the Oracle Database

OLAP was first defined by Dr. E. F. Codd, the father of relational databases.
He stated that relational databases were not originally intended to provide
data synthesis, analysis, and consolidation—functions being defined as

Figure 1.1

Enterprise Data Warehouse with Dependent Data Marts

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.3

A Historical Perspective 15

Chapter 1

multi-dimensional analysis. For many years separate analytical databases
such as Oracle Express were necessary to provide the functionality not avail-
able in relational databases.

Oracle has added many features that facilitate OLAP queries, and it is
now possible to use the Oracle server directly for OLAP. The SQL language
has been extended to provide analytical functions, such as ranking, moving
window aggregates, period-over-period comparisons, ratio to report, statis-
tical functions, inverse percentiles, hypothetical rank and distributions, his-
tograms, and first/last aggregates. Multiple levels of aggregation can be
calculated using cube, rollup, and grouping sets. Most calculations are done
directly within the server. These functions allow the OLAP queries to be
expressed without complex self-joins and subqueries and allow the opti-
mizer to choose a better execution plan.

Data mining functionality is provided with the Data Mining option of the
Enterprise Edition for making classifications, predictions, and associations.

Data mining is part of the knowledge discovery process. By using statis-
tical techniques, vast quantities of data can be transformed into useful
information. Data is like the raw material extracted from traditional mines:
when turned into information, it is like a precious metal.

Data mining extracts new information from data. It allows businesses to
extract previously unknown pieces of information from their warehouses
and use that information to make important business decisions.

The discovery process typically starts with no predetermined idea of
what the search will find. Large amounts of data are read, looking for simi-
larities that can be grouped together to detect patterns and trends.

OLAP and DSS tools look at predefined relationships associated with
the structure of the data. These are represented by constraints and dimen-
sions. Data mining detects relationships that are associated with the content
of the data, and not yet defined, such as which products are most likely to
be purchased together, known as market-basket analysis. When analyzing
data over time, it can be used to detect unexpected patterns in behavior.
The likelihood of an activity being performed some time after another
activity can be determined. Common applications for data mining include
customer retention, fraud detection, and customer purchase patterns. Data
can be mined looking for new market opportunities.

OLAP tools allow you to answer questions such as: Did sales of lava
lamps increase in November compared with last year? Data mining tools
help to identify answers to questions such as: What factors determine the
sales of lava lamps?

TEAM LinG - Live, Informative, Non-cost and Genuine!

16

1.4

Data Warehousing Features in the Oracle Database 10g

With OLAP tools, analysts start with a question or hypothesis and
query the warehouse to prove or disprove their theory. With data mining
tools, the work is shifted from the analyst to the computer. Data mining
tools use a variety of techniques to solve a number of different problems,
and can be used to answer questions such as: Which items is this person
most likely to buy or like, with what likelihood? and Which other item will
people who bought this item buy? This type of personalization can be seen
at Amazon.com and is becoming common at many other Web sites.

1.4 Data Warehousing Features in the Oracle
Database 10

g

Many new features have been introduced into the Oracle Database 10g spe-
cifically aimed at improving performance and manageability of the data
warehouse.

�

ETL processing

�

Oracle Change Data Capture (CDC) simplifies the process of
identifying the data that has changed since the last extraction.
Changes can be identified either synchronously with respect to
the transaction, by using a trigger-based mechanism, or asynchro-
nously by mining the archived logs.

�

Heterogeneous Transportable Tablespaces provide an efficient
mechanism for moving large amounts of data between Oracle
databases on different hardware platforms.

�

External tables allow data to be transformed as it is, either being
loaded or unloaded from the database.

�

Data Pump provides high-speed, bulk data and metadata move-
ment between Oracle databases and is the replacement for the
Export and Import utilities.

�

Analytical Analysis. Business intelligence calculations can require
extensive programming outside the SQL language. To eliminate this
problem, many analytical calculations have been added to the Oracle
database.

�

With the new SQL Model Clause, relational data can be viewed as
a multidimensional array to which spreadsheet-like calculations
can be applied for modeling applications such as budgeting and
forecasting.

�

 Automatic Advisors

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.5

Building a Data Warehouse Poses Many Challenges 17

Chapter 1

One of the most difficult parts of solving a problem is being able to repro-
duce it and capture what was happening on the system when the problem
occurred. In Oracle Database 10

g

, performance statistics that represent the
state of the system can be gathered periodically (once an hour by default) and
stored in the database in the Automatic Workload Repository (AWR).

This data is then analyzed by the Automatic Database Diagnostic Mon-
itor (ADDM) to detect and diagnose performance problems. It can detect
excessive I/O, CPU bottlenecks, excessive parsing, concurrency issues,
PGA, buffer-cache, or log buffer sizing issues.

Some problems can be fixed automatically. For example, Oracle Data-
base 10

g

 can automatically manage the shared memory area (SGA), elimi-
nating the need for you to determine the optimal memory allocations for
each of the components.

Recommendations may be provided to fix other problems. A suggestion
may be to run one of the new advisors, such as the SQL Tuning Advisor to
tune a poorly performing SQL statement, or the SQL Access Advisor to
determine which indexes or materialized views should be built to improve
the overall performance of the entire workload.

1.5 Building a Data Warehouse Poses
Many Challenges

Data warehouses have become a mainstream part of the business opera-
tions, managed by IT departments with service-level agreements for avail-
ability and performance. Thus, data warehouse developers are faced with
many challenges. They must ensure that performance is maintained as the
warehouse grows in size, evolve the warehouse to meet new business
requirements, manage it without bringing the system down, protect it from
unplanned downtime, and do all this while at the same time reducing over-
all costs.

1.5.1 Managing the Warehouse

As large data warehouses are growing to many terabytes in size, with
increasingly higher availability requirements, it is critical to maintain good
performance for large numbers of geographically distributed users. On-line
backup and recovery procedures must be established, and both the data
content and the usage or activity in the warehouse must be managed.

TEAM LinG - Live, Informative, Non-cost and Genuine!

18

1.5

Building a Data Warehouse Poses Many Challenges

The decision-support workload is highly variable. In an OLTP system,
an application is tuned to process many identical update transactions as
quickly as possible. In a data warehouse, performance must be tuned to
process as many variable queries as possible.

Usage patterns provide the foundation for tuning the warehouse for bet-
ter performance. Who is using which data? Which levels of summarization
are people looking at? Which data is not being used? Is the data structured
in the most efficient manner; is it indexed on the correct columns? Can the
summary tables be used for most queries? If many queries join data from
one table with another, it might be beneficial to denormalize the data, pre-
joining it. Workload information helps determine where indexes should be
added, where tables should be combined, and where summaries should be
created. The Oracle Database 10

g new diagnostics engine mentioned previ-
ously can offer enormous help in detecting and diagnosing performance
problems and also in recommending fixes.

Eventually, it may no longer be necessary or practical to keep all the
detail data on-line for immediate access. The data may be purged without
keeping a copy. Or it can be archived and moved to some low-cost medium
such as tape or CD-ROM, where it can later be retrieved if necessary.

1.5.2 The Role of Metadata

Metadata is data that describes the other data and operations on that data.
Metadata can be used for either technical or business purposes. As data
flows from the operational systems into the warehouse, it is extracted, trans-
formed, and summarized. Technical metadata is needed to describe this
process and is essential for proper “drill down” to finer levels of detail.

Business metadata allows end users to determine which data is available
in the warehouse or data mart and how it can be accessed. Metadata provides
the integration and uniformity of data across the corporation. It is the place
where the different departments describe their use of the term product.

Metadata is stored in a repository, which is typically a set of tables in an
Oracle database. It can then be shared by any user or tool.

In 2000 the Object Management Group (OMG) published the “Com-
mon Warehouse Metamodel” (CWM) specification, which defines a meta-
data format for all data warehouse and business intelligence products. The
specification was developed jointly by several companies including Oracle
and IBM Corporation. Since the publication of the specification, many of
the data warehousing products have evolved to adhere to the standard.

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.5 Building a Data Warehouse Poses Many Challenges 19

Chapter 1

1.5.3 Increasing Data Volume

One of the biggest technology issues facing enterprises today is the explo-
sion of data volumes. Data warehouses are “the” very large databases. In
fact, at the time of writing this book in 2004, the world’s largest commer-
cial data warehouse, identified by the 2003 Winter Corporation Top Ten
Survey, was built using Oracle, containing 30 terabytes of data. Many fac-
tors are contributing to this growth in data.

� With hardware improvements and storage costs continuing to decline
each year, it is economically feasible to keep more and more detailed
historical data. You may now be able to store a record of every prod-
uct a customer bought in the supermarket, not just the fact that he or
she bought five items for a total cost of $25.75.

� Businesses are storing more and more data for longer periods of time.

� Data is stored multiple times for different purposes. Indexes and
materialized views are created to improve query performance, but
these access structures require additional storage space, further
increasing the size of the database.

� Unstructured data can be integrated with traditional business intelli-
gence applications. Storing multimedia data increases the database
size. To store one hour of video requires about 1GB of storage. To
store one minute of audio requires a little less than 1MB. Images can
range from 20KB to as much as 60MB depending on the type and
quality of the image.

� Documents can be tagged with XML-based metadata and stored in
the Oracle database.

However, a data warehouse should not be viewed as a repository for
archived data; this is not its purpose.

1.5.4 Higher Availability

Ensuring the availability of the data warehouse is becoming more and more
mission critical for many businesses. As data warehouses are becoming
more operational in nature, feeding information back to the OLTP systems,
in businesses that operate globally users need access to the data warehouse
24×7, often 365 days per year.

TEAM LinG - Live, Informative, Non-cost and Genuine!

20 1.5 Building a Data Warehouse Poses Many Challenges

The Oracle database is designed to eliminate the need for planned
downtime and withstand any failure: system failure, storage failure, site fail-
ure, or human error. If a server goes down, your applications keep running.
Real Application Clusters (RAC) make applications scalable and highly
available and, as discussed previously, are the foundation for the grid. A sin-
gle database can be run on a group of servers clustered together. As addi-
tional servers are added to the cluster, applications can scale to support
increased throughput, with no modification. The Oracle Application Serv-
ers can act in a load balanced, clustered “farm” capacity, and the entire con-
figuration can be managed using Oracle Enterprise Manager Grid Control.

Data Guard can be used to maintain a standby database, which is a
transactionally consistent copy of the data warehouse and can be used to
ensure that operations continue with minimal interruption if there is a site
disaster, human error, or data corruption. It can also be used to minimize
downtime for planned maintenance, such as hardware upgrades, or rolling
upgrades of Oracle software.

1.5.5 More Users/Better Performance

The ability to publish reports on the Web makes information available to
many more people. As data warehouses and business intelligence tools make
more and better data available, the number of end users continues to grow.
The demand for better performance is more important than ever. In addi-
tion, the types of queries are increasing in complexity.

1.5.6 New Types Of Applications

Data warehouses are being used to support new types of e-business initiatives
including customer relationship management (CRM) and supply chain man-
agement. CRM helps attract new customers and develop customer loyalty,
important in the retention of existing customers. A data warehouse contains
the information about a company’s customers and is often the integration
point for sales, marketing, and customer care applications.

TEAM LinG - Live, Informative, Non-cost and Genuine!

1.6 The Future of Data Warehousing 21

Chapter 1

1.6 The Future of Data Warehousing

Where are we going from here? While no one can predict the future, some
trends seem to be underway.

1.6.1 Real-Time Data Warehouses

The data warehouse is evolving to support real-time analysis and decision
making. Rather than updating the warehouse periodically in batch, when a
transaction is committed on the OLTP system, it will become available in
the data warehouse, providing the capability of real-time decision making.

This allows the warehouse to be used to support tactical as well as strate-
gic decisions. It enables a credit card company to detect and stop fraud as it
happens, a transportation company to reroute its vehicles quickly after an
accident has taken place, and an on-line retailer to communicate special
offers based on a customer’s Web-surfing behavior.

Oracle Database 10g Asynchronous Change Data Capture provides a
mechanism to load data in near real time, providing access to the most
recent transactional changes. Once the data is in the warehouse, there is no
need to move it to another engine, since OLAP and data mining capabili-
ties are now native in the Oracle database.

1.6.2 The Disappearance of the Separate
Data Warehouse

One day we may be using a single database for both OLTP and data ware-
housing. Oracle is building capabilities into the database that allow a blend-
ing of operational and analytical capabilities. With this approach it would
no longer be necessary to have separate databases for the OLTP, ODS, data
warehouse, and data marts. This would eliminate the need for huge vol-
umes of data movement—the extraction, transformation, loading, and rep-
lication across these databases—and reduce the cost and complexity of
integrating and managing multiple databases.

In Oracle Applications, both OLTP and decision support and reporting
are being done in the same Oracle instance, using RAC. It is no longer nec-
essary to have a separate relational, OLAP, data mining, or ETL engine.
This greatly simplifies the operation and management of the data ware-
house infrastructure.

Of course, there is still the need to integrate data from many sources—
until all the data is stored within one Oracle database.

TEAM LinG - Live, Informative, Non-cost and Genuine!

22 1.7 Summary

1.7 Summary

We’ve gone from the mainframe in the 1970s to the minicomputers in the
1980s to client/server in the 1990s. In the late 1990s and early 2000s Inter-
net computing began to change the way we did everything, making it possi-
ble to deploy business intelligence applications to large, geographically
distributed user populations both within the enterprise and outside of it to
suppliers and customers.

After heavy technology investments in the late 1990s many companies
have found they have underutilized assets and are looking at ways to reduce
operating costs. Consolidation and grid computing, based on low-cost
commodity hardware, can provide substantial savings.

In this chapter, we’ve taken a look at what gave rise to data warehouses
and data marts, some of the highlights of Oracle Database 10g, some of the
many challenges facing warehouse developers, and what we think the future
holds. Now it’s time to see how we can use all of this technology to build
and access our data warehouse.

TEAM LinG - Live, Informative, Non-cost and Genuine!

23

2

Designing a Warehouse

2.1 Designing a Warehouse

Readers of this chapter probably fall into one of three categories. They have
either:

1. Never designed a database before

2. Designed a database for a transaction processing–type system

3. Built a data warehouse system

In the latter case, you could skip this chapter or use it as a refresher,
especially if your last database used Oracle. Therefore, this chapter is aimed
at readers who fall into categories one or two, which may surprise the per-
son who has previously designed a non-data warehouse database. Why?
Because the skills and techniques used to create a database for a data ware-
house will be different from those required for a transaction processing–
type (OLTP) system. Consequently, though you will have a head start
because some of the techniques are the same, it is very important to say to
yourself: I am designing a different type of database.

So what is different about designing a database in a data warehouse? In a
transaction-processing system, the designer’s goal is to make the transaction
complete very, very quickly, and the designer also has the benefit of hope-
fully knowing how the business will interrogate and use the data. Typically,
the data changed is just the specific individual records for the transaction,
and reports only look at the current day, month, or week. Contrast that
with a data warehouse, where, although queries must complete as quickly as
possible, they could still take hours. In the data warehouse, a much larger

TEAM LinG - Live, Informative, Non-cost and Genuine!

24

2.1

Designing a Warehouse

volume of data, both current and historical, is typically scanned in order to
fulfill the normal business intelligence types of queries.

Another major problem is determining what information should be held
in the warehouse and at what level of granularity it should be retained. This
book will not discuss the techniques that can be used to determine what
should be included in the warehouse or how to go about collecting that
data, because there are already many books available that discuss this topic
extensively.

However, the importance of trying to determine what should be
included in the data warehouse cannot be stressed enough. It is so impor-
tant because it may not be until a year after the warehouse is in production
use that you suddenly discover that the information is either not available
or held at an inappropriate level, and this will limit or prohibit the types of
queries that you can run on your warehouse

For example, a telephone company decides not to hold every call in its
database, but instead holds a total of what the customer spent by day. Then
someone in the company decides that he or she would like to offer custom-
ers a discount when certain numbers are called. Now, if the warehouse had
contained every single telephone call made by its customers, the company
would be able to find out exactly what this scheme would have cost if it had
been implemented over the last 12 months. Instead, it has no data available
and would either have to guess what the cost might be or postpone the
planned new system until sufficient data is available to accurately determine
the true cost to the company.

One of the difficult decisions for the designer is to determine at what
level data will be stored in the warehouse. Often, storing every transaction,
such as in our telephone example, may seem rather excessive, and, because
it could easily mean the warehouse grows to many terabytes, there is a
temptation to consolidate the data. Managing a terabyte warehouse requires
careful and stringently controlled procedures that must be followed. The
bigger the database becomes, the harder it is to manage and query it. How-
ever, with the easier availability of cheap storage devices, keeping vast quan-
tities of data at the detailed level is becoming much more feasible and
worthy of serious consideration.

Since aggregation is a major design decision, the designer would be wise
to seek approval from the users of the warehouse before adopting such a
strategy. It should also be clearly explained to these users the limitations
that are likely to occur due to aggregating the data. With disks declining in
price, hopefully most sites will store all of the data that they require.

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.1

Designing a Warehouse 25

Chapter 2

2.1.1 Don’t Use Entity Relationship (E-R) Modeling

The typical approach used to construct a transaction-processing system is to
construct an entity-relationship (E-R) diagram of the business. It is then
ultimately used as the basis for creating the physical database design,
because many of the entities in our model become tables in the database. If
you have never designed a data warehouse before but are experienced in
designing transaction-processing systems, then you will probably think that
a data warehouse is no different from any other database and that you can
use the same approach.

Unfortunately, that is not the case, and warehouse designers will quickly
discover that the entity-relationship model is not really suitable for design-
ing a data warehouse. Leading authorities on the subject, such as Ralph
Kimball, advocate using the dimensional model, and we have found this
approach to be ideal for a data warehouse.

An entity-relationship diagram can show us, in considerable detail, the
interaction between the numerous entities in our system, removing redun-
dancy in the system whenever possible. The result is a very flat view of the
enterprise, where hundreds of entities are described along with their rela-
tionships to other entities. While this approach is fine in the transaction-
processing world, where we require this level of detail, it is far too com-
plex for the data warehouse. If you ask a database administrator (DBA) if
he or she has an entity-relationship diagram, the DBA will probably
respond that he or she did once, when the system was first designed. But
due to its size and the numerous changes that have occurred in the system
during its lifetime, the entity-relationship diagram hasn’t been updated,
and it is now only partially accurate.

If we use a different approach for the data warehouse, one that results in
a much simpler picture, then it should be very easy to keep it up-to-date
and also to give it to end users, to help them understand the data ware-
house. Another factor to consider is that entity-relationship diagrams tend
to result in a normalized database design, whereas in a data warehouse, a
denormalized design is often used.

2.1.2 Dimensional Modeling

An alternative to using the entity-relationship model is the

dimensional

model, which views and models the data from a different perspective.
Instead of considering an entity, which represents a thing such as a product
or a place and the relationships between those entities, a dimensional

TEAM LinG - Live, Informative, Non-cost and Genuine!

26

2.1

Designing a Warehouse

model describes data using

dimensions

 and

facts

, which become actual
tables in the database and which we will describe in more detail in the next
two sections.

Dimensional models, as illustrated in Figure 2.1, despite sometimes
looking quite simple, provide a very effective way of holding historical and
current data in a form that makes it accessible to business users and that
enables them to make the right business decisions. A dimensional data
warehouse can be viewed as containing data that:

�

Has been validated (i.e., no invalid product codes)

�

Is historical (i.e., the last 36 months)

�

Is integrated—therefore the same key is used by all systems

�

Is easily accessible

2.1.3 Fact Table

The fact table, of which there could be more than one, contains factual
information, and it is usually the largest table in the data warehouse and is
often fast growing. The fact tables are typically where all of the detail data
that you want to keep in the data warehouse is stored, such as all of the tele-
phone calls made by a customer or the orders placed by your customer, as
shown in Figure 2.1.

Figure 2.1

Dimensional Modeling

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.1

Designing a Warehouse 27

Chapter 2

Therefore, if a customer made 20 telephone calls, then it is likely that
20 rows will be stored in the fact table for this customer. Consequently, the
fact tables will be by far the largest tables in the database, possibly contain-
ing hundreds of millions of rows in a large data warehouse. If you are
unsure as to whether data is factual, it is often numeric, and sometimes a
value that can be computed, such as the value of an order or the number of
items purchased.

The information contained in the fact table doesn’t have to be at the fin-
est level of detail; it could be summarized data, such as total telephone calls
made by a customer today. The level at which data is held in the fact table is
known as the

granularity

 and is one of the important decisions the ware-
house designer must make. In the example described here, the difference in
the number of records stored over a 24-month period would be huge. Con-
trast the storage requirements between a record stored for every telephone
call a customer made in a single day compared with a record for every tele-
phone call a customer makes.

When designing a data warehouse, depending on your business, you
may find that there are different types of fact tables, such as, transaction
level, transaction item level, event based, status, or even summarized data.

2.1.4 Dimension Table

When designing using the dimensional model, there may only be one or a
small number of fact tables, but there could be many dimension tables.
The dimension table can be seen as a reference table to the fact table,
where descriptions and more static information about a piece of data are
held. For example, product is considered a dimension because, in this
table, everything about the product is held, such as full product name,
suppliers, and pallet size. In the fact table, there would be a column called
“product_key,” which is used to retrieve all of the product information
from this dimension table.

If you are uncertain as to whether data is a dimension or a fact, ask these
questions: Is the data relatively static? and Is the data describing something?
Typically, dimensions such as a product_id do not change frequently,
whereas a fact table would contain the details of the products you had sold.
There is also usually at least an order of magnitude of difference between
the number of rows in the fact table, compared with the much fewer rows
in the dimension table. Also, the dimension tables tend to contain more
textual fields, which describe the dimension object, whereas fact tables tend
to contain more numeric measures.

TEAM LinG - Live, Informative, Non-cost and Genuine!

28

2.1

Designing a Warehouse

For example, a fact table can contain millions of rows, whereas a dimen-
sion table could have only a few rows (e.g., the time dimension could have
as few as 52 rows if data was stored weekly for one year). Or a region
dimension could contain only 15 rows, if the country had only 15 regions.
Dimensions don’t have to be small in size, because you could sell 50,000
products or have a customer dimension with 5 million rows. All of these are
examples of valid dimensions.

It is hard to say how many dimensions your design will require, but typ-
ically there will be less than 20 dimensions and at least 4. Therefore, our
data warehouse will comprise only a few tables, but it will have huge storage
demands because of the large number of rows in the fact table.

2.1.5 Warehouse Keys

Data in the warehouse will most likely come from a variety of sources, and
a product code in one system may not be the same as in another system.
Another problem is that when data is being stored over a period of time,
keys used in the production system could be reused. Therefore, the designer
should seriously consider implementing

surrogate keys

,

 so that they have
total control over how data is identified within the data warehouse. The
conversion of the production key to the data warehouse key will be handled
during the ETL process and incurs negligible overhead during data loading;
we will discuss this in Chapter 5. All keys are candidates for being trans-
formed into surrogate keys, and that even includes the keys to our time
dimension. Your surrogate keys do not have to be very sophisticated and
could simply start at one and increase sequentially using Oracle sequences.
There may also be data storage savings if surrogate keys are implemented.

However, we will retain the use of natural keys in the EASYDW schema,
because it assists the clarity of the examples in the book if the more mean-
ingful natural keys are used rather than the numerical surrogate keys.

2.1.6 Normalizing the Data Warehouse

When it comes to whether the data in the warehouse should be normalized,
not everyone agrees on the same approach. Some experts believe that the
warehouse should be normalized, while others think that using dimensional
normal form is more appropriate.

Dimensional normal form is rather interesting, because it looks like a
combination of normalization and denormalization. In Figure 2.2, we see
the difference between the two approaches for the Store dimension.

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.1

Designing a Warehouse 29

Chapter 2

The normalized case, is also referred to as

snowflaking

 and is where the
dimension tables are designed so that repeating data is removed to their
own tables, which are then linked via foreign keys. The dimension data is
normalized in the same way that you would normalize the database design
when performing entity-relationship modeling in an OLTP system. So a
Store record doesn’t contain the information about the county it is in but
contains the key to the parent County record. Therefore, the information
about a particular county will be recorded on only one County record.
Although Oracle Database 10

g

 will accept normalized dimensions, take
care using this approach. One of the disadvantages is that it may impact
performance, because more joins will be needed in queries, which will take
time to execute. Snowflaking the dimension is a good example of a tech-
nique used in transaction-processing systems, which is not always appro-
priate in the data warehouse.

You will notice that the dimensional normal form version duplicates or
triplicates the data or worse, depending on the levels in the dimension. The
Store records contain the information for both the parent County and
Region, so different Store records that are in the same county will duplicate
the county and region information. While this may seem an unacceptable

Figure 2.2

Normalized versus Dimensional Normal Form

TEAM LinG - Live, Informative, Non-cost and Genuine!

30

2.1

Designing a Warehouse

storage overhead, in reality, the number of rows in the dimensions is typi-
cally very small when compared with the size of the fact table. Therefore,
you will probably be surprised to learn that storing this extra data may only
cost you a few tens of megabytes. The advantage of this approach is that
now only two levels of navigation in the model are required to access infor-
mation, thus making it easier to construct queries that return data quickly.

2.1.7 Data Warehouse or Data Mart

An alternative to creating one large data warehouse is to create data marts,
where a data mart contains a subset of the data in the warehouse. Data
marts have the advantage of being focused into an area of the business, so
they could contain regional or departmental data. However, care should be
taken if the data mart approach is used, because instead of creating one data
source, many data sources may be required. Multiple data marts may be
easy to manage and ideal for reporting purposes, but trying to integrate that
data might be extremely difficult. Thus, the end result could be data marts
containing duplicated data that cannot communicate with each other.
However, it is not uncommon for an organization to first create data marts
and then use those as the basis for creating the enterprise data warehouse.

The other data mart approach is where the mart is created from the data
warehouse by subdividing the warehouse data by specific criteria for a busi-
ness requirement. For example, by geographical region so that the regional
headquarters can have a smaller set of data that just relates to its business
activities. The advantage of this approach is that all of the data is first inte-
grated correctly within the warehouse prior to creating the data mart.

2.1.8 The Easy Shopping Inc. Example

Throughout this book, we will use an example based on a fictitious com-
pany called Easy Shopping. It is an organization that has no retail outlets
and sells via its Internet site or via satellite or cable television. In Figure 2.3,
we can see our dimensional model for Easy Shopping Inc.

In this example, we have a fact table called Purchases, where we record
every item that our customers purchase. Four dimensions have been
defined: customer, product, time, and details of our daily special offers.
Although this may be a simple example for the purposes of this book, even
the ones that you create will not be that much more complex than the one
shown here. However, you will have more dimensions and many more col-
umns in your fact table.

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.2

Other Design Considerations 31

Chapter 2

Warehouse schemas are sometimes called star schemas, and Figure 2.3 is
an example of one. The center point is the fact table and the dimensions sit
around the fact table as the points of our star. As per our entity-relationship
diagram, once you have drawn the dimensional model, it can easily be
translated into a physical database design since each box represents a table.
Although in the text we refer to fact and dimension tables, inside the Oracle
database they are all tables and are treated as such. However, before you
jump in and create the physical database from this dimensional model,
there are a few more decisions to make before the design is complete.

2.2 Other Design Considerations

When you are constructing a data warehouse, it is easy to become focused on
ensuring that queries are processed quickly. However, blindly following this
approach could easily result in a database that is difficult to manage or use.

2.2.1 Design to Manage

It’s no good building a warehouse that answers all questions in under a
minute if the data inside it is at risk because the database cannot easily be
backed up. Therefore, always identify the crucial management tasks and
determine if they can be performed easily using this design when design-
ing a database. We will discuss in more detail the management tasks for a
data warehouse in Chapter 11 and 12, but let us briefly review some of
those tasks and see how they affect the design.

Figure 2.3

Dimensional Model for Easy Shopping Inc.

TEAM LinG - Live, Informative, Non-cost and Genuine!

32

2.2

Other Design Considerations

Some of the important management tasks include:

�

Backup

�

Loading new data

�

Aggregating new data

�

Data maintenance activities, such as indexing and archiving

All databases should be backed up regularly, and Oracle Database 10

g

has the RMAN utility, which allows on-line backups and incremental
backups of the data that has changed. On the surface, backup may seem a
trivial task, but backing up a terabyte warehouse takes time, even if it’s an
on-line backup. Therefore, the designer should carefully consider the
tablespaces where the data is stored to make tablespace backups of read-
only tablespaces, or use partitioning so that a full backup can be taken by
running parallel backup tasks; you might even consider using Data Guard
to protect the data warehouse against site disasters. In Chapter 12 and 17,
we will discuss backup and recovery and Data Guard in more detail.

Full database backups are still likely to be a luxury in very large ware-
houses; therefore, you should design the warehouse to allow incremental
backups to be taken that contain only the changes to the warehouse data.
Oracle Database 10

g

 includes new features with RMAN that enable incre-
mental backups to be made (of the changed data), these can then be subse-
quently rolled into the main, full backup. This provides the advantage of
being able to maintain full backups and perform full recovery by only tak-
ing incremental backups of the changed data. This will be discussed fur-
ther in Chapter 12. Due to the huge volumes of data in the warehouse, any
operation that can be performed in parallel will significantly reduce the
time required to complete the task, especially if there are many parallel
processes running concurrently. Most of the new data will have to be
stored in the fact table; therefore, during the design phase, the designer
should ascertain when and how much data is going to be loaded. Then cal-
culate the anticipated load time, and if it cannot all be loaded in the avail-
able time, techniques such as partitioning the fact table so that the data
could be loaded in parallel should be considered.

When the data warehouse is being tested by the design team, they
should not concentrate only on performance testing but also on the impact
of the data volumes, which will enable them to advise how long loads will

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.2

Other Design Considerations 33

Chapter 2

take and discuss with the operations department how backups will be per-
formed and how much time they’ll need.

In Chapter 7, we will see how summary management, which was intro-
duced in Oracle 8

i

, can be used to maintain aggregated data. One of the
performance techniques widely used in the warehouse is to create summary
tables of preaggregated data, known in Oracle Database 10

g

 as a

material-
ized view

. Then a query is

transparently

 redirected by the optimizer to read
the materialized view instead of having to read all of the detail data. Hence,
the performance improvements can be enormous, depending on the reduc-
tion in rows between the detail data and the materialized view.

Unfortunately, we get nothing in this world for free and materialized
views have to be maintained. This can involve considerable time, depend-
ing on how many new records are added and whether the materialized view
is created completely from the beginning or if it can be incrementally
refreshed. If many materialized views are defined and they are all refreshed
at the same time, consideration should be given to placing the materialized
views in different tablespaces on different disks. Failure to do this will result
in all I/O occurring on the same disk, thus slowing the refresh process con-
siderably. This may be an even more important consideration if the refresh
operations are to be performed in parallel.

2.2.2 Design for Performance

As we will see in Chapters 4, 6, and 7, there are various techniques that can
be employed by the designer to improve query performance. Some will
involve how queries are constructed, but many are actually in the database
design. For example, all databases benefit from indexes, and a data ware-
house is no exception. Therefore, do not forget to decide which type,
where, and how much space is to be allocated for indexes. In a data ware-
house, the designer does not have to worry about many users inserting new
entries into the index and the associated problems that can result. Instead,
the designer is now concerned with the time that is required to maintain or
build an index. For instance, recreating an index on a fact table with 100
million rows will take more than a few minutes to complete!

Oracle Database 10

g

 offers different types of indexes, and the designer
should select the one that is most appropriate. Different types of queries in
a data warehouse will use different access methods to the data that benefit
from the different index types. For example, a star transformation uses a
bit-mapped index.

TEAM LinG - Live, Informative, Non-cost and Genuine!

34

2.3

Implementing the Design

Physical placement of the data is another important consideration,
especially if it is used in conjunction with partitioning and parallel opera-
tions. If data is physically located on different disks, then queries or tasks
can be performed that do not saturate the I/O limits on a specific disk
drive. Oracle Database 10

g

 introduces Automatic Storage Management,
which is a powerful, new feature, where the database server takes the
responsibility for managing disks, disk groups, striping, mirroring, and
load balancing. This is described more fully in Chapter 3.

Significant performance gains can be obtained by using materialized
views, which are described in Chapter 7. Since they have to be created and
maintained, space must be reserved for this data, and the improvement in
query response time must be balanced against the time required to maintain
this data.

New data for a warehouse often arrives in batches. Hopefully, it will be
loaded into the database when it is not in use, but this cannot be guaran-
teed. Therefore, if, during your investigations of the proposed system, you
discover that data will be loaded into the warehouse while it is in use,
review techniques, such as partitioning, that allow you to insert data into an
area different from the one being used by the users.

Another consideration is whether the fact table is likely to be updated.
With so many records in the fact table, there could be a significant impact
on performance; therefore, procedures may have to be put into place to
stop unauthorized updates to the fact table.

2.3 Implementing the Design

Once we are satisfied with the database design, it is time to physically create
our database. Initially, you should create a small-scale version of the data-
base and test design ideas here before building the full-size production sys-
tem. There are various tools available to the designer to help create the
warehouse; these will be discussed in other chapters.

Database designers often prefer to create a script file containing the SQL
commands to create the database, and this is perfectly acceptable. An alter-
native approach is to use the Graphical User Interface (GUI) in Oracle
Enterprise Manager, which will be discussed here.

Hint:

If the SQL is complex, use these GUI tools to create the SQL, and

then paste the SQL into your text file.

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3

Implementing the Design 35

Chapter 2

In this section, we will walk through the various stages required to create
our data warehouse. First, we will see how to create the actual database, and
then learn how to create the tablespaces and data files where the actual data
is stored. That will be followed by illustrations of how to create the tables
and a brief introduction on creating the indexes, partitions, and material-
ized views. We will end with a discussion of security of objects within the
data warehouse.

2.3.1 Single Database or Many?

There was a time when the data warehouse was created in its own database.
However, times are changing, and now some companies prefer to have a
single database that contains all systems.

There are pros and cons with each approach, and whether you choose a
single database or multiple databases will depend upon your business
requirements. Creating a new database is not a difficult job, and the best
approach is to use the GUI tool, Oracle Database Configuration Assistant.
Once the database has been created, you can then add your own data files
and tablespaces using Oracle Enterprise Manager or via SQL scripts.

A database can be created directly from SQL, but if this approach is
used it should be performed with care, because you will need to run a num-
ber of script files that are required by Oracle Database 10

g

. If you use the
GUI, this work is done automatically, and there are even some prepackaged
databases that can be deployed.

2.3.2 Naming Conventions

Before anything is created in the database, the naming conventions used for
all database objects, such as data files, tablespaces, and table and column
names, should be reviewed. Depending on the tools available to your end
users, they may actually see these table and column names. Therefore, if
they do not have sensible names, these end users, who are generally not
computer literate, could be very confused.

In our Easy Shopping Inc. example, there is a column in the fact table
called time_key. Now, for people familiar with databases, it is obvious what
that field contains, but to our end users of the warehouse, it means nothing.
Therefore, in this instance, a better column name might be
date_time_of_purchase. The warehouse designer should also remember
that if end users will be using the warehouse, a more English-like column
name should be used.

TEAM LinG - Live, Informative, Non-cost and Genuine!

36

2.3

Implementing the Design

So far we have not discussed the topic of metadata, but in a data ware-
house it is very important. There should be one definition of a data item,
which in the ideal world would have only one set of values. For example, a
region code is supposed to be a three alphanumeric code, and it is in all sys-
tems except one, where it is defined as a number. Therefore, as part of the

ETL

process (which is

extraction

 from the source system,

transformation

 of
the data, and

load

 into the warehouse) the data should be cleansed and
made consistent.

These are some of the challenges for the team responsible for loading the
data into the warehouse, discussed further in Chapter 5, and they will apply
all the necessary conversions to the data to ensure that, when it is in the
warehouse, all values are the same.

2.3.3 Database Configuration Assistant

Oracle Database 10

g

 includes a number of GUI tools to assist with manag-
ing the database. A very useful one is the Oracle Database Configuration
Assistant (DBCA), from which you can create, delete, and modify a database
or manage the templates used to create a database. This tool runs standalone
(look for DBCA in the ORACLE_HOME/bin directory), and it does not
require Oracle Enterprise Manager to run. In Oracle Database 10

g

 it comes
with three pre-configured databases, and selecting one of these will signifi-
cantly reduce the time it takes to create the database. The alternative is to
create a new database from scratch, which is more time consuming because
all of the scripts to create the database data dictionary must be executed.

The subsequent steps will vary, depending on whether a preconfigured
or new database is built.

Using a Preconfigured Database

There are three types of preconfigured databases supplied with Oracle
Database 10

g

:

�

Data Warehouse

�

General Purpose

�

Transaction Processing

If you are uncertain as to which one is suitable for your environment,
the physical attributes of the database and installed components can be

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3

Implementing the Design 37

Chapter 2

seen by clicking on the

Show Details

 button, which will show the template
being used. (See Figure 2.4)

There are only a few screens requiring input when a preconfigured data-
base is used. The next is that for naming the database, as shown in Figure
2.5, where we have called the database EASYDW.

Figure 2.4

Oracle Database Configuration Assistant—Database Templates

Figure 2.5

Oracle Database Configuration Assistant—Database Identification

TEAM LinG - Live, Informative, Non-cost and Genuine!

38

2.3

Implementing the Design

Oracle Database 10

g

 introduces the whole concept of Database Grids
and the centralized management of many databases. For the purpose of our
database we are going to manage our warehouse database with the local
database version of Enterprise Manager rather than the Grid Control ver-
sion. (See Figure 2.6)

The next step, shown in Figure 2.7, is to enable the passwords for the
critical Oracle accounts to be set. For simplicity in our warehouse, we will
use the same password for all accounts: In a true production system you

Figure 2.6

Oracle Database Configuration Assistant—Management Options

Figure 2.7

Oracle Database Configuration Assistant—Database Credentials

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3

Implementing the Design 39

Chapter 2

may well want to have different passwords to heighten the security on your
system.

Now comes one of the new steps in Oracle Database 10

g

 which gives us
our first flavor of some of the new Oracle Database 10

g features. In the next
step, shown in Figure 2.8, we must decide how we want our database files
stored on our disks.

There are three options:

1. Using the File System (i.e., stored as normal files)

2. Using Automatic Storage Management (ASM). For this option
you must identify a set of disks to Oracle, which it can use solely
for its database files.

3. Using Raw Devices. A disk option, where disks are used without
file systems, which is an option to enable Real Application Clus-
ters (RAC) to be used.

For now, we will use option 1 to store the database files in the file sys-
tem, but in Chapter 3 we will look more closely at both RAC and the new
ASM option.

Because we have chosen option 1 to use the file system, the next screen,
shown in Figure 2.9, provides us with some control over how and where the

Figure 2.8 Oracle Database Configuration Assistant—Storage Options

TEAM LinG - Live, Informative, Non-cost and Genuine!

40 2.3 Implementing the Design

files are placed in the file system. If we had chosen either option 2 or 3, then
we would get different screens at this stage.

Oracle Database 10g introduces new options for backup and recovery,
including Flashbackup to disk in the Flash Recovery Area, where the disk
usage is managed by Oracle. The next step, shown in Figure 2.10, enables
the specification of the disk area for Flash Recovery and the amount of disk
space to be allocated.

Figure 2.9 Oracle Database Configuration Assistant—Database File Locations

Figure 2.10 Oracle Database Configuration Assistant—Recovery Configuration

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 Implementing the Design 41

Chapter 2

The ORACLE_BASE notation shown for specifying the Flash Recov-
ery Area forms part of the directory structure of an Oracle installation.
ORACLE_BASE denotes the directory of the root of the Oracle subdirec-
tories, and ORACLE_HOME, which you will also see mentioned,
denotes the directory that contains the software specific to this Oracle
Database 10g installation—for example:

ORACLE_BASE = C:\oracle\product\10.1.0\

ORACLE_HOME = C:\oracle\product\10.1.0\Db_1\

You may also see ORACLE_HOME written as ORACLE_BASE\
Db_1\.

In Figure 2.10, the Flash Recovery Area is being placed in a subdirectory
off ORACLE_BASE. The Flash Recovery area on disk should normally be
distinct and separate from that used for the database files.

Along with these features there are some sample schemas that can be
installed, where examples are provided to help illustrate the functionality
available in these features. This is shown in the screen in Figure 2.11, where
there is also the option for some custom scripts to be executed.

The next step is to define some of the parameters used to configure the
database. Oracle Database 10g has a number of components that can be
configured. In Figure 2.12, we see step 5 of 7 from the Database Configura-

Figure 2.11 Oracle Database Configuration Assistant—Database Content

TEAM LinG - Live, Informative, Non-cost and Genuine!

42 2.3 Implementing the Design

tion Assistant, where we can define the parameters for the respective areas
by clicking on the appropriate tabs, which include:

� Memory

� Sizing, which enables the size of the database blocks to be specified
and the number of processes that can connect to the database

� Character set of the database

� Connection mode for how client connections connect to the database

� Database initialization parameters

For the sizing, the option to specify the database block size defines the
lowest level of granularity and control you have concerning the allocation of
space in the warehouse. It is recommended that your data warehouse be cre-
ated with a large block size, such as 16,384 bytes, which means that you can
store more records of the same type together in a single block, thus helping
to reduce our I/O demands.

The default parameters may be suitable for your environment. However,
if you need to amend them, perhaps if the memory available to you is lim-
ited—for example, you may have two databases running on one server—
then click on the Custom option and amend the memory being allocated.

Figure 2.12 Oracle Database Configuration Assistant—Initialization Parameters

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 Implementing the Design 43

Chapter 2

You can see the effect of your changes instantly by monitoring the Total
Memory for Oracle value.

Hint: If a parameter is set too low, you will be advised and given an oppor-
tunity to increase its value.

Clicking Next displays Figure 2.13 where one of the buttons is the File
Location Variables. When the database is created, the location of all the files
that comprise the database—that is, the data files, control files, initializa-

tion, redo log, and archiving files are located according to the values of
these parameters that you can configure for each database, as illustrated in
Figure 2.13. Also at this time you can define your own variables and use
these in the definition of your database.

Finally, we get to the point where we can hit the Finish key for the data-
base to be created. This screen also enables a template of your database cre-
ation script to be generated for future reference.

When using one of the preconfigured databases, you cannot control the
size of the database, only the location of the files, which is the screen
shown in Figure 2.13. By default all of the files are placed in one director;
therefore, if you want them on different disks, now is the time to specify
the new location.

Figure 2.13 Oracle Database Configuration Assistant—File Location Variables

TEAM LinG - Live, Informative, Non-cost and Genuine!

44 2.3 Implementing the Design

All the information needed to build the database has now been defined,
and you can now create the database (see Figure 2.14) or save this definition
as a template for use another time. You can monitor its progress as it is
being built. Once the build has finished, it is now available for use.

2.3.4 Which Schema?

Now that we have a database, all objects defined in an Oracle database must
reside inside a schema, a logical structure that describes a collection of
objects. Therefore, before any tables are created, you should decide how
many schemas you require. A data warehouse can contain anything from
only a few tables for a simple warehouse up to many tens of tables for a
complex, enterprise-wide warehouse, but it is still probably a good idea to
keep them all in one schema to assist with their management.

However, you may prefer to create multiple schemas by subject area, but
this approach will also increase the effort required to manage the database
to make the information in the tables available, because there will be extra
tasks to perform such as granting access to tables and defining synonyms.

Hint: It is very important to make this decision at the outset of the design,
because the schema name plays an integral part in the naming convention
used to retrieve information from the database.

Figure 2.14 Oracle Database Configuration Assistant—Creation Options

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 Implementing the Design 45

Chapter 2

A schema object is created every time a database user is defined. A user is
created via the SQL CREATE USER statement or from within Oracle
Enterprise Manager. To do this we must first logon to Enterprise Manager
using a DBA account. We will discuss this more fully in Chapter 11, but for
now, direct your browser to the following URL, which will display the
Enterprise Manager login screen.

http://<hostname>:<port>/em

For example, if you have installed Oracle on a standalone server and
opted for local management via Enterprise Manager as opposed to Grid
Management, then Enterprise Manager is accessed via the previous URL.
The normal port number on Windows is 5500, but this can vary depending
on other installations that may have reserved that port. So if the database is
on server “easydwsvr,” then the URL will be:

http://easydwsvr:5500/em

Once you have logged in, you see the initial database summary home
page shown in Figure 2.15.

Figure 2.15 Oracle Enterprise Manager—Database Home

TEAM LinG - Live, Informative, Non-cost and Genuine!

46 2.3 Implementing the Design

Most of the browser screens for Enterprise Manager contain in excess of
one typical screen’s worth of information and are normally accessed by use
of the scroll bar on the right-hand side. Our screen shots will generally only
show the top section of the browser screen. At the top left there are a num-
ber of links for tabs for various other screens. Select Administration and you
will see the screen shown in Figure 2.16. This may seem a little busy, but
you will notice that there is a logical grouping into areas for different opera-
tions and each link takes you to a specific screen for the administration of
that operation.

In the middle of the top row of groups entitled Security, select the Users
link to get to the screen shown in Figure 2.17. This screen shows you all of
the existing users in your database and enables you to select and modify
these user accounts. We want to create a new user account. Click on the
Create button on the right-hand side above the list of existing users to dis-
play the screen shown in Figure 2.18.

In our Easy Shopping example, we have decided to create a user called
EASYDW. Here we can specify how the user will be authenticated, and we
have selected the default mode of by password. This means a password must
be specified and is used for all subsequent database access. Oracle permits

Figure 2.16 Oracle Enterprise Manager—Administration Tab

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 Implementing the Design 47

Chapter 2

other options for authentication, which include external for authentication
via the operating system or network service, or global if performed by an
LDAP-type directory service. If, in the future, this password needs to be
changed, then it can be done from within Oracle Enterprise Manager, using
the screen shown in Figure 2.18 or via SQL.

Figure 2.17 Oracle Enterprise Manager—Users Screen

Figure 2.18 Oracle Enterprise Manager—Create User Screen

TEAM LinG - Live, Informative, Non-cost and Genuine!

48 2.3 Implementing the Design

We must also select a default area where objects created by this user,
such as tables and indexes, will reside. In a well-designed database, this is
not an issue, because every object will explicitly state the tablespace in
which it must be stored. There are a number of other options that can be
specified for a user, such as privileges. It is important to set these; otherwise,
you will not be able to retrieve data. As we progress through this book, you
will be advised about which privileges are required when a topic is dis-
cussed—for example, Summary Management.

When the user is created, a schema is automatically created with that
user name. However, you will not be able to see the schema name until the
first object, such as a table, is defined for that user.

The schema name is very important, because it is used to fully qualify an
object in the database. For example, we could have a table called TIME in
the EASYDW schema and also in our ORDERS schema. To advise the
optimizer which table you wish to retrieve data from, you specify the table
name as :

schema name.table name

Therefore, to retrieve all the records in our time dimension, the fully
qualified table name would be:

SELECT * FROM easydw.time;

You can create as many users of the database as you require, but it is
recommended that only one of them be used for the purpose of creating
objects, such as tables and indexes. Therefore, when the DBA connects as
user EASYDW, all the tables and indexes created will reside here. In sec-
tion 2.3.11, we will discuss enabling privileges for a user.

2.3.5 Data Files and Tablespaces

Once the database has been created, you can now add your own data files
and tablespaces. By default, you will find a number of data files; on a Win-
dows (e.g., NT, 2000, or XP) system, they will be located in:

<ORACLE_HOME>\Oradata\<database name>\

and will comprise three control files, two system spaces (system and sysaux),
the undo, the example, and the user areas. In Oracle Database 10g, the
SYSAUX tablespace is new and is an additional collective tablespace used

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 Implementing the Design 49

Chapter 2

by some Oracle components and products that require their own schema
and therefore have their own database objects. It should ease administration
by having the objects reside in the same tablespace. This is SYSAUX.

The tablespace is the logical name that is used within the database
schema to specify where objects must reside; a tablespace has one or more
data files associated with it, where objects are actually stored. Part of the
tablespace definition is physical location and size of these data files; there-
fore, an object placed in a tablespace is actually stored in these files.

In our Easy Shopping Inc. example, we have decided to implement the
following tablespaces:

� Dimensions—for all dimension data

� Default area, which users are assigned by default

� Summary—for the materialized views we will create

� One tablespace for each month of the year, named
Purchases_<month>_<year>, for example, PURCHASES_JAN_2003

� Indx tablespace—for indexes

� Temp area—for temporary space

In this example, we will create only one data file per tablespace, but, of
course, you can create more if required. Also, the files shown here will be
very small, and in the real world, they could be extremely large.

These tablespaces and their associated data files can be created either
directly from SQL or by using Enterprise Manager, illustrated as in Figure
2.19.

One of the advantages of using Enterprise Manager to manage your
database is that it means that you no longer have to keep querying the
metadata in the data dictionary tables and views to find out the state and
information on objects in your database. This information is already avail-
able via the graphical interface in Enterprise Manager.

In Figure 2.16, we saw the EASYDW database Administration screen.
We now select Tablespaces from the Storage group and we can see a list of
tablespaces, their size, current state, and space used. This is shown in Figure
2.19.

Creating a tablespace using Oracle Enterprise Manager is very easy.
From the Tablespaces screen click the Create button to navigate to the Cre-

TEAM LinG - Live, Informative, Non-cost and Genuine!

50 2.3 Implementing the Design

ate Tablespace screen shown in Figure 2.20 to create our Dimension
tablespace where the parameters for our tablespace can be specified.

Figure 2.19 Oracle Enterprise Manager Console—Tablespaces

Figure 2.20 Oracle Enterprise Manager Console—Create Tablespace

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 Implementing the Design 51

Chapter 2

The first step is to enter the name of the tablespace. It is wise to choose
sensible names, because you will be using these constantly throughout the
schema, and it helps if they mean something to you. For example, the
tablespace called DIMENSIONS will be used to hold the dimension tables,
whereas the purchases made in January are held in a tablespace called
PURCHASES_JAN2003. Another favorite approach is to suffix all data
tablespaces with a D and indexes with an X to identify the type of data that
is held in that tablespace.

Provide the new tablespace name in the top Name field and accept the
defaults in the other fields. The Locally Managed tablespaces and Dictio-
nary Managed options control how the space within the tablespace is man-
aged, either by using the database data dictionary or by storing the
information locally within the tablespace itself. It is becoming standard
practice to use locally managed tablespaces, because this removes the over-
head of accessing the data dictionary, which contains the metadata about
all of the objects in the database. Locally managed tablespaces are more
efficient than dictionary managed ones and hence should be preferred.

We also want our tablespace to be Permanent for our data (rather than
for temporary sort usage or for transaction undo information) and we also
want to be able to update, insert, and delete the objects in our tablespace.
Select Add in the Datafiles section to display the screen in Figure 2.21,
which enables us to add the actual files to the tablespace where our data
will reside.

Figure 2.21 Oracle Enterprise Manager Console—Add Datafile

TEAM LinG - Live, Informative, Non-cost and Genuine!

52 2.3 Implementing the Design

Complete the datafile information, which just consists of specifying the
“dimensions.f ” file name and a size of 5M. At this point you can also set
the file to automatic allocation. Some designers do not like files that auto-
matically extend; however, many do, because it means that a task will not
fail simply because there is no space left in the database. Instead, the data-
file will automatically extend itself, and you have control over how large
those extents are. Of course, when the disk is full, autoextend will fail
regardless. Selecting the Continue button returns you to the screen shown
in Figure 2.22.

If you prefer to create your tablespace directly from SQL, then you can
use either the SQL*Plus tool or the new browser-based i*SQLPlus tool
(accessed from the browser at url http://<server>:5560/isqlplus). If you are
uncertain of the SQL required to perform a task, you can click on the Show
SQL button in most of the Enterprise Manager screens and a new screen
containing the SQL will be displayed, as shown in Figure 2.23, for our
tablespace creation example.

Figure 2.22 Oracle Enterprise Manager Console—Tablespace With Datafile

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 Implementing the Design 53

Chapter 2

2.3.6 Creating the Fact and Dimension Tables

Now that we have a database, and the tablespaces and users are defined, we
are ready to create the fact and dimension tables. The fact and dimension
tables are created as if they were any ordinary tables inside the database.
Therefore, all the options that one would specify on a table, such as the ini-
tial and subsequent extent size, may be specified. Although we call them
“fact” and “dimension” tables, they are no different from any other table in
the database.

When defining the fact table, carefully select the column data types,
because selecting one that occupies too much space—when your fact table
contains hundreds of millions of rows—will result in a considerable waste
of disk space and also potentially result in performance problems if many
disk blocks must be accessed to satisfy a command.

Tables are created using the SQL CREATE TABLE command, but we
will now see how to create tables quickly using Enterprise Manager. For the
moment, a dimension table is defined as if it were any other table in the
database. In Chapter 8, we will see how to define an actual dimension
object, which will be based on the table that we create here. In fact, the
dimension table created at this stage is a prerequisite for creating a dimen-
sion object.

Figure 2.23 Oracle Enterprise Manager Console–Dimension Tablespace SQL

TEAM LinG - Live, Informative, Non-cost and Genuine!

54 2.3 Implementing the Design

When Oracle Enterprise Manager Console is started, go to the
Administration screen and in the Schema group select the Tables option, then
the Tables screen shown in Figure 2.24 is displayed.

Select the Create button on the right-hand side, and on the new Table
Organization screen (not shown) accept the default Standard, Heap Organ-
ized option and select Continue to get to the actual Create Table screen
shown in Figure 2.25. We will discuss an alternative organization, index-
organized tables, in Chapter 4.

In the screen in Figure 2.25, you specify the name of the table, TIME,
the schema in which it will reside, and the tablespace for this table. This is a
really nice screen for quickly creating the table. All you have to do is enter
the column name in the Column list in the lower half of the screen, and
select the data type and its size. If you run out of lines for defining your col-
umns, select the Add 5 Table Columns button and five new column lines
will be created for you.

Define each column using this approach, and don’t click on the OK but-
ton until you have defined all of the columns in the table.

Figure 2.24 Oracle Enterprise Manager Console—Tables

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 Implementing the Design 55

Chapter 2

Once all of the columns in the table have been defined, clicking on the
Constraints tab in the top left of this screen will allow you to create the con-
straints for this table.

Hint: If you do click on the OK button by mistake, you can always add the
additional table parameters, such as constraints, by reopening the Tables
page and selecting the table from the list and click the Edit button, where
you will be back in the main Edit Table screen again.

2.3.7 Constraints

The job of the constraint is to ensure that all data conforms to its rules,
such as a value corresponds to a specified range of values via a CHECK con-
straint. If a primary key is defined, then this guarantees that the value in the
primary-key columns in the table is unique. A foreign key will ensure that
all values correspond to one of the primary keys in another table.

Figure 2.25 Oracle Enterprise Manager Console—Create Table

TEAM LinG - Live, Informative, Non-cost and Genuine!

56 2.3 Implementing the Design

Mention constraints to designers, and they will probably tell you that
they do not want them in the database, because they are an overhead, espe-
cially when new data is being loaded. It is highly recommended that you
implement at least primary- and foreign-key constraints, especially if you
wish to use the Summary Management feature that is described in Chapter
7. One of the interesting aspects of Summary Management is the ability for
the database to transparently rewrite a query to use a materialized view. If
you have defined constraints in your database, then it will be possible to do
some complex forms of query rewrite.

In a data warehouse, there is often concern that, because the data can
come from many sources, it may not be as “clean” as normal data, and,
therefore, constraints may fail. Although this is a valid concern, clean data
should always be stored in the warehouse to ensure that accurate results are
returned.

Another argument put forward for not implementing constraints is that
validating every record when it is first inserted into the database imposes a
considerable burden on the load operation. Therefore, it takes considerably
longer than via a standard load, and if the loading window is very small,
then one way to reduce the time is not to have constraints.

In Oracle, many of these concerns can be overcome thanks to some
options on the constraint:

� ENABLE NOVALIDATE

� DISABLE NOVALIDATE

If you are still concerned about the overhead of having constraints and
worried that your data isn’t clean enough to get past the constraint checks,
you can use the ENABLE NOVALIDATE clause, which turns on a con-
straint and applies it against all new inserts and updates, but it doesn’t check
existing records. It is enabled immediately, but you should be aware that
incorrect results could be returned if existing rows in the table have violated
the constraint.

By using the ENABLE NOVALIDATE clause, as illustrated in the fol-
lowing code segment, we can turn on the constraint SYS_C001136 with-
out having to validate all of the data.

ALTER TABLE todays_special_offers

 ENABLE NOVALIDATE CONSTRAINT SYS_C001136;

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 Implementing the Design 57

Chapter 2

Therefore, if we know or want to assume that the data is clean, we can
just turn on the constraint immediately without incurring any overhead.
Using this approach, the database doesn’t spend time validating the con-
straint against all the rows in the table, but it does mean that the designer
had better be certain that the data is clean.

Hint: Use sensible constraint names, such as customer_pkey, which will
mean so much more than SYS_C001136.

Likewise, before data is loaded, the constraints can be quickly disabled
using the DISABLE clause, as shown in the following code segment:

ALTER TABLE todays_special_offers

 DISABLE CONSTRAINT SYS_C001136;

The ETL stage, when we load our warehouse, can also be used to pro-
grammatically validate the constraint candidates—for example, using PL/
SQL, resulting in the constraints being implemented as “disabled novali-
date.” This means that the data is already checked and the constraint is not
enabled for new inserts or updates and does not validate the data already in
the table.

Oracle Database 10g Enterprise Manager now supports the ability to
specify the ENABLE/DISABLE and VALIDATE/NOVALIDATE clauses.

There is an additional clause called RELY, which is used by the summary
management feature. This clause tells the optimizer that you can rely on the
accuracy of the constraint. An example of using the RELY clause is shown in
the following code on a constraint in the TODAYS_SPECIAL_OFFER
table. Chapter 9 will discuss how RELY constraints are used by summary
management.

ALTER TABLE purchases MODIFY CONSTRAINT special_offer RELY;

You can check the constraints that have been defined in your database
from the Tables screen. Select the table from the Tables screen list and then
the Edit button to navigate to the Edit Table screen; then click on the Con-
straint tab to get the screen shown in Figure 2.26.

TEAM LinG - Live, Informative, Non-cost and Genuine!

58 2.3 Implementing the Design

In Figure 2.27, we see how to create a primary key. Not every table in
our data warehouse, such as the fact table, will have a primary key, but some
of the columns may require that they are not null.

Figure 2.26 Oracle Enterprise Manager Console—Constraints

Figure 2.27 Oracle Enterprise Manager Console—Add Primary Constraint

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 Implementing the Design 59

Chapter 2

For the Constraints screen while editing the TIME table, ensure that
“PRIMARY” is displayed in the pick list box on the right-hand side and
select the Add button.

Enter the name to use as the constraint name. Again, a good naming
convention for constraint names is invaluable. We suggest using the follow-
ing suffixes or prefixes to indicate the constraint type:

� PK for primary key

� UK for a unique constraint

� FK for a foreign-key constraint

� CK for a check constraint

Enter PK_TIME in the Name field, then select the column that forms
the primary key from the Available Columns list, and select Move to move it
into the Selected Columns box. If more than one column forms the primary
key on your tables, then this operation is repeated for each of the required
columns.

Select the attributes that you want the new primary-key constraint to
have (enable/disable, validate/novalidate, etc.) and select Add to create the
constraint on the database.

From the same Constraints tab on the Edit Table screen, check, unique,
or foreign-key constraints can be similarly defined. A check constraint
enables you to specify a condition that must be true for the columns for
every row in the table. In our example in Figure 2.28, we have specified that
the column DAY_NUMBER may take only the values between 1 and 366.
Therefore, before a value is stored in this database, a check is automatically
made by the database server that the column takes one of these values.

An alternative to using the GUI to obtain information from Oracle
Database 10g is to query the many system data dictionary tables and views
that are available; these provide a wealth of information about the state of
your database and objects. In the following code, we can see the informa-
tion held about constraints in the view USER_CONSTRAINTS.

TEAM LinG - Live, Informative, Non-cost and Genuine!

60 2.3 Implementing the Design

SQL> DESCRIBE user_constraints

 Name Null? Type

 ----------------------------------- -------- ------------

 OWNER NOT NULL VARCHAR2(30)

 CONSTRAINT_NAME NOT NULL VARCHAR2(30)

 CONSTRAINT_TYPE VARCHAR2(1)

 TABLE_NAME NOT NULL VARCHAR2(30)

 SEARCH_CONDITION LONG

 R_OWNER VARCHAR2(30)

 R_CONSTRAINT_NAME VARCHAR2(30)

 DELETE_RULE VARCHAR2(9)

 STATUS VARCHAR2(8)

 DEFERRABLE VARCHAR2(14)

 DEFERRED VARCHAR2(9)

 VALIDATED VARCHAR2(13)

 GENERATED VARCHAR2(14)

 BAD VARCHAR2(3)

 RELY VARCHAR2(4)

 LAST_CHANGE DATE

 INDEX_OWNER VARCHAR2(30)

 INDEX_NAME VARCHAR2(30)

 INVALID VARCHAR2(7)

 VIEW_RELATED VARCHAR2(14)

Every constraint that you define for this schema will be recorded in this
data dictionary view. All of these views provided by Oracle will be prefixed

Figure 2.28 Oracle Enterprise Manager—Check Constraints

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 Implementing the Design 61

Chapter 2

either ALL_, USER_, or DBA_. Those prefixed DBA can only be accessed
by user accounts with the DBA role assigned to them, those prefixed USER
show information about your own accounts objects, and those prefixed
ALL show information about other users’ objects to which you have been
granted privileges.

For example, to see on which constraints you have used the RELY
clause, use the following query:

SQL> SELECT constraint_name, table_name, rely FROM all_constraints

 WHERE OWNER = 'EASYDW';

CONSTRAINT_NAME TABLE_NAME RELY

---------------------------- ------------------------- ----

COST_PRICE_NOT_NULL PRODUCT

FK_CUSTOMER_ID PURCHASES

FK_PRODUCT_ID PURCHASES

FK_TIME PURCHASES

NOT_NULL_CUSTOMER_ID PURCHASES

NOT_NULL_PRODUCT_ID PURCHASES

NOT_NULL_TIME PURCHASES

PK_CUSTOMER CUSTOMER

PK_PRODUCT PRODUCT

PK_SPECIALS TODAYS_SPECIAL_OFFERS

PK_TIME TIME

PUBLIC_HOLIDAY TIME

SELL_PRICE_NOT_NULL PRODUCT

SHIPPING_CHARGE_NOT_NULL PRODUCT

SPECIAL_OFFER PURCHASES RELY

Here we can see that the constraint SPECIAL_OFFER has the RELY
clause enabled, whereas constraint SHIPPING_CHARGE_NOT_NULL
does not. In Figure 2.29, we can see the constraints that have been defined
on the table TIME.

The main Constraint tab for a table will also show you the full status of
the constraints on your table. This information can also be determined by
querying one of the constraint system tables, such as ALL_CONSTRAINTS.
For example, to see which constraints have been enabled using the NOVALI-
DATE clause, use the following query:

TEAM LinG - Live, Informative, Non-cost and Genuine!

62 2.3 Implementing the Design

SQL> SELECT constraint_name, validated FROM all_constraints

 WHERE OWNER = 'EASYDW';

CONSTRAINT_NAME VALIDATED

------------------------------ -------------

PK_CUSTOMER VALIDATED

COST_PRICE_NOT_NULL VALIDATED

SELL_PRICE_NOT_NULL VALIDATED

SHIPPING_CHARGE_NOT_NULL VALIDATED

The definition of the table is almost complete. We have defined the col-
umns and the constraints that are required, and we could press the Finish
button, but there are two more categories of information that the table wiz-
ard requests, storage and partitioning, which will be described later.

If you are happy with the table definition that you have entered (and
you can check the SQL that will be applied by using the Show SQL button:
see Figure 2.30), then press the Apply button; otherwise, select the correct
tab and amend the entry accordingly.

Figure 2.29 Oracle Enterprise Manager—Viewing Constraints

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 Implementing the Design 63

Chapter 2

Hint: In order to create an object (e.g., table or index) in a tablespace, the
user must have a quota in that tablespace. Go to the Users screen and edit
the EASYDW user and select the Quotas tab: from here you can assign the
space quota EASYDW has on a tablespace.

When you click on the OK button on the Create Table screen, the table
is created, and you are now ready to create the next table. Hopefully, you
will agree that this is a very easy way to create a table, and, since a data
warehouse probably only has a few tables, you may prefer to use this
friendly approach as opposed to writing SQL commands, where you will
probably make many syntax errors that you will have to correct.

2.3.8 Indexes

A data warehouse is likely to contain a number of indexes, and, just like any
other database, the designer must choose the indexes that are most suitable.
Oracle offers several different types of indexes, but the ones that will be of
interest to the data warehouse designer are:

� B*tree index

� Bitmapped index

� Bitmapped join index

Figure 2.30 Table—Show SQL

TEAM LinG - Live, Informative, Non-cost and Genuine!

64 2.3 Implementing the Design

Indexes should be selected carefully, and the various options and reason-
ing behind certain choices will be described in detail in Chapter 4. Please
consult this chapter, because there you will learn whether to select a global
or local index and how to partition it, if required.

To set the scene for this section, a bitmapped index is ideally suited to
the data warehouse environment when you want to index a column that
takes only a few values. For example, suppose we wanted to index the col-
umn PUBLIC_HOLIDAY, which has only two values: Y or N. A bit-
mapped index will store this information in an extremely compact manner,
and this also has additional benefits for the way that the Oracle optimizer
accesses the data for typical warehouse queries.

Although indexes easily can be dropped and created, due to the time
required to create them, especially on a fact table with millions of rows,
careful planning at the outset of the project will ensure that you won’t have
to spend a lot of time creating the index. An index can be created by using
either the SQL CREATE INDEX command or Oracle Enterprise Manager.

Figure 2.31 shows the Indexes screen, which can be accessed from the
Schema section on the main EM Administration screen. Completing the
Schema and Object Name fields and selecting Go displays the indexes for
that object.

Figure 2.31 Oracle Enterprise Manager—Indexes

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 Implementing the Design 65

Chapter 2

2.3.9 Partitioning

Partitioning data is a design technique that is very important in the ware-
house, because it provides a means of managing large amounts of data and
controlling its placement on the disks. Rather than place all of the data
from a table in one tablespace, partitioning enables us to place the data in
many tablespaces. Partitioning enables easier management of our tables and
also enables the optimizer to use better techniques to access the data by only
accessing the relevant partitions; this results in better performance. To
determine how the data in a table is split into the different partitions (and
therefore in which tablespace the data is stored), a partition key is selected,
such as time_key, as illustrated in Figure 2.32.

In this example, we are partitioning by month, so January’s data goes in
one partition, February’s in another, and so forth. You must select the parti-
tion key carefully, although a common one is by time. Therefore, you could
partition data by month, and then each month would reside in its own
tablespace. This helps result in a more manageable partition, and it also has
the advantage that if you ever had to archive the data, it would be as simple
as dropping a partition. Of course, don’t forget to back up the partition
before you drop it! Dropping a partition is a very quick process and doesn’t
invalidate any of the data that is already in the fact table.

Oracle Database 10g provides several different types of partitioning
techniques, and, after reading the partitioning section in Chapter 4, you
can select the one that is most appropriate for your data warehouse. We will
defer walking through the table partition screens of Enterprise Manager
until Chapter 4, where the subject is dealt with in more detail.

Figure 2.32 Partitioning—Range Partitioning by Month

TEAM LinG - Live, Informative, Non-cost and Genuine!

66 2.3 Implementing the Design

2.3.10 Materialized Views

We have already seen that a data warehouse or data mart can hold a huge
number of records in the fact table. Even if we had the fastest machine in
the world and could cache some of the data warehouse in memory, the time
required to respond to queries could be days—and it would certainly be
minutes or hours.

To overcome this problem, warehouse designers use the technique of
creating summaries, a summary being a preaggregated table of results,
which Oracle calls a materialized view (MV). For example, suppose you
always query on the number of purchases of today’s special offer by day.
Rather than compute those results every time, a materialized view is created
that contains the required information. Then, whenever you make this
query, instead of querying the fact table, you query the materialized view.

Although it partially defeats the object of a warehouse when you make
unknown queries to the database, it is fair to say that quite a few queries
upon the warehouse are well known. If we can improve the response time
on those queries, then our users will be very grateful.

Oracle Database 10g includes a specific summary management compo-
nent, which will enable you to create materialized views rather than ordi-
nary tables, and then the optimizer will transparently rewrite your query to
use the materialized view. This feature is described in detail in Chapter 9.
At this stage of the design, if you can identify any queries that would lend
themselves to being created as materialized views, they should be recorded
now for subsequent creation. Some examples of the materialized views that
we might create for our Easy Shopping Inc. examples are:

� Sum of sales by product by day

� Count of products sold by day

� Sum of sales by week

� Profit by product by day

If you don’t know what materialized views you will need, then you can
use the SQL Access Advisor, which has a number of methods to assess and
create potential MVs: This is explained further in Chapter 10. Because
some materialized views can be large, the number that you expect to create
will impact how many tablespaces and data files should be defined for this

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 Implementing the Design 67

Chapter 2

data warehouse. For example, large materialized views may be partitioned
in the same manner as we have partitioned tables, and the ease of manage-
ment of these partitions is facilitated by using more than one tablespace in
the same way as it does for partitioned tables.

Hint: It’s not necessary to create a materialized view for every possible com-
bination; this will all be explained in Chapters 7 to 10.

2.3.11 Security

One should not forget that some data in the warehouse could be very sensi-
tive, and, therefore, for a variety of reasons, you may not want all of your
staff to have access to it. Oracle Database 10g provides various types of
security, which prevents users from changing the objects inside the database
and accessing data.

Object Privileges

Privileges can be granted on objects in our schema to permit the type of
access that other users have on these objects. For example, reading the data
in a table, updating the data, or deleting the data is provided by three differ-
ent privileges granted to a user on the table. Different object privileges can
be placed on a variety of objects, including the following:

� Tables

� Views

� Sequences

� Synonyms

� PL/SQL modules

� Types

� Queues

You will most likely place security on tables and views, by stating
whether a user can select, insert, and update the data, along with a number
of other options. If you decide to create a number of users, then always
ensure that sufficient privileges have been allocated so that everyone can
read the data. This can be achieved by using either the SQL command,

TEAM LinG - Live, Informative, Non-cost and Genuine!

68 2.3 Implementing the Design

GRANT SELECT ON for a table, or the GRANT SELECT ANY TABLE,
or these privileges can be allocated directly to the user name using Oracle
Enterprise Manager, within the Security section.

In Figure 2.33, we are giving a user of our warehouse, user EASY-
DWUSER, the rights to ALTER, INSERT, SELECT, and UPDATE the
TIME table in the EASYDW schema. This screen is accessed from the Tables
screen by selecting the EASYDW table TIME, selecting Grant Privileges in
the pick list box on the right, and selecting the Go button. Simply repeat this
process for each user and the tables that he or she is allowed to access.

Role

Alternatively, you could create a role. Then you assign all of the privileges to
the role, and the role is assigned to the user. This is the preferred approach,

Figure 2.33 Oracle Enterprise Manager—Object Security

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.3 Implementing the Design 69

Chapter 2

because it provides easier management and control of the privileges—espe-
cially if you create many users, because then you can create roles for the dif-
ferent job levels, and each user is granted one of those roles instead of
assigning the privileges individually. Using the role approach, you reduce
the likelihood of users accidentally being given access to data that they
shouldn’t have. It is also quicker if many users have to be defined. You can
either use existing roles or create your own role using the SQL CREATE
ROLE statement.

System Privileges

Most of the time will be spent granting object privileges to users and
maybe creating roles. However, some users will require system privileges. A
system privilege is one that gives you the right to perform high-level tasks,
such as creating or dropping a table. Since you will not want to grant this
right to many users, you shouldn’t have to spend too much time giving sys-
tem privileges.

The method used to define a system privilege is to select the target user
from the list on the Users screen, select the Edit button, and then select the
System Privileges tab on the Edit User screen. In a data warehouse, there are
some specific system privileges that you may want to grant to specific users,
such as CREATE DIMENSION and CREATE MATERIALIZED VIEW.
In this instance, you would only be granting this privilege to users who
would create dimensions and materialized views.

2.3.12 Using the Parallel Option

Our database is almost complete, but there is one other important feature
available in Oracle Database 10g that should be mentioned, and that is the
parallel clause. A number of the statements shown here can be executed in
parallel, and the use of this technique is very important in a data ware-
house, because it can significantly improve statement execution time. Paral-
lel operations are available on table scans, sorts, joins, aggregates, and some
table and index operations.

If you are using a symmetric multiprocessor system, then serious consider-
ation should be given to using the PARALLEL clause. When specified, a
statement, if eligible for parallel processing, will be decomposed into a num-
ber of parallel threads, and Oracle Database 10g will perform the job using
parallel tasks and coordinate their running and the results. Therefore, all the
user has to do is include the clause, and Oracle Database 10g does the rest.

TEAM LinG - Live, Informative, Non-cost and Genuine!

70 2.4 Testing the Design

The PARALLEL clause will expect you to specify the number of parallel
processes to use. Choose this value carefully. Some testing may be required
to determine the optimum value. For example, the following clause could
be added to the CREATE TABLE statement for our purchases fact table:

PARALLEL (DEGREE 2)

This would mean that any operations on this table should be done using
two server processes if they can be executed in parallel.

Data may also be loaded in parallel. The SQL*Loader facility, which we
will discuss later, allows you to request parallel operations. Obviously, this
can significantly improve the time required to store data; however, you
should be aware of the possible fragmentation of your data that could
occur. Therefore, it is suggested that, when data is being loaded in parallel,
you specify the number of parallel operations to be equivalent to the num-
ber of datafiles available for that tablespace. Therefore, referring to our Easy
Shopping Inc. example, if we decided to specify a value of:

PARALLEL (DEGREE 3)

on our purchases table, there should be three datafiles defined for every
tablespace.

More importantly, Oracle Database 10g also has the facility to automat-
ically control the degree of parallelism based on other criteria, such as num-
ber of users and other queries currently executing in the database. In this
case, a degree does not have to be specified and only the keyword PARAL-
LEL is used to activate parallelism for the particular object.

2.4 Testing the Design

None of us would write an application and send it live without testing it
first. But it is amazing how many database designs are constructed and then
unleashed on unsuspecting users. Your data warehouse is no different, espe-
cially since the business is relying on it for important information. There-
fore, it is very important that all aspects of the design and processes are
thoroughly tested prior to production release.

It is suggested that you initially load a small percentage of the data into
the warehouse, and then test the following areas:

TEAM LinG - Live, Informative, Non-cost and Genuine!

2.5 The Schema for Easy Shopping Inc. 71

Chapter 2

� Time required to load the data

� Data cleansing and transformation

� Query response times

� Summary data needs

� Time required for management tasks

If you are building a terabyte-size warehouse, then it is recommended that
you repeat this process again with even more data in the warehouse, just in
case there are any unexpected problems dealing with this volume of data.

Problems identified during testing are much easier to fix than trying to
resolve them once the warehouse has gone live. A phased implementation
to the user base is another way to test the warehouse if you don’t want to
wait until all of the testing is complete.

One very important point to remember is that, due to the size of the
data warehouse, it will not only take much longer to load the data, but it is
also unlikely that queries will complete quickly. Therefore, the entire testing
process will take much longer than, say, a traditional OLTP database.

2.5 The Schema for Easy Shopping Inc.

We have seen in this chapter how to create our database using the GUI
tools, but many readers may prefer to create the database directly from
SQL. The SQL to achieve this is shown in Appendix A.

Our database is now complete. We have a basic framework, and now
we will learn in the next chapter how to enhance our basic database
design to include and use the sophisticated features that are available in
Oracle Database 10g.

TEAM LinG - Live, Informative, Non-cost and Genuine!

73

3

Architecture of a Data Warehouse

3.1 Introduction

Data warehouses have evolved because, in order for businesses to remain
competitive in the marketplace, they need access to a wealth of information
to help them make the right business decisions. To assist with those deci-
sions, data may go back for many years and could entail keeping the details
of every item that a business ever sold. Performance optimizations for
update-centric OLTP systems are well understood; however, data ware-
houses, being query-centric, have vastly different requirements, and a single
business intelligence query may need to retrieve and aggregate many records
from the warehouse.

In order to understand how the database can efficiently access this large
amount of data, we need to look at a more fundamental aspect of the ware-
house implementation and that is the technical architecture and physical
hardware. Good performance in a data warehouse, and the ability to
retrieve and process the data quickly, is dependent on a sound physical
database design, which must be supported by a solid foundation of server
and infrastructure hardware. This hardware platform, in combination with
specific features and techniques within the Oracle Database 10

g

 database,
can be used to significantly improve query performance in a data ware-
house. This chapter introduces concepts about the technical architecture
of a data warehouse and discusses the significant changes that Oracle has
implemented with 10

g

 and how they can be beneficially deployed in the
data warehouse. In Chapter 4, we will look more at physical database
design techniques, such as partitioning, and how they can use the strengths
of the underlying architecture.

An important component of a data warehouse architecture is its ability
to scale. A data warehouse will grow with an increase of users and reporting
requirements and as more data is loaded to address new business areas. The

TEAM LinG - Live, Informative, Non-cost and Genuine!

74

3.2

Hardware Configurations for a Warehouse

architecture must be able to handle this growth to process the new data
without any detrimental impact to the query response to our increasing
user community. To grow our architecture normally means that we will
need to add more processors to handle the increased processing require-
ments, more memory to accommodate the extra processes, and more disks
to handle the larger data volumes.

There are various approaches that can be used to scale a system. Many
servers scale simply by allowing more processors and memory to be added,
though, ultimately, there is a physical limit as to what can actually be added
into the server box. An alternative method of scaling is clustering, where
multiple, possibly smaller, servers operate together in a coordinated fashion
to service the increased demands. Oracle provides the Real Application
Cluster (RAC) technology for clustering the database i.e., to have more
than one set of database processes executing on separate servers but operat-
ing together as a whole and with an effective pooling of the separate server
resources. Oracle Database 10

g

 includes significant enhancements to the
RAC technology and uses the RAC resources in an optimal fashion.

We will discuss RAC in more detail later in this chapter and show how
RAC helps the scalability and robustness of our data warehouse environment.
Next, we will look at the primary hardware components of our architecture.

3.2 Hardware Configurations for a Warehouse

Correct utilization of the available hardware is paramount to being able to
run resource intensive queries found in a typical production data ware-
house. As in the building industry, a solid foundation is critical.

3.2.1 Server Architectures

The Single-Processor, Single-Disk Architecture

In its simplest hardware deployment, the database can be implemented on a
single-processor server, as shown in Figure 3.1. This configuration may be
very viable for some small data warehouses or data marts and can provide
valuable benefits and should not be dismissed. However, this configuration
is obviously not going to run a large data warehouse and support the
demands of a large user population requiring a quick response time to their
queries.

This architecture has a number of inherent problems, not least of which
is the risk to the data with this deployment, because it is dependent upon a

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.2

Hardware Configurations for a Warehouse 75

Chapter 3

single disk with no built-in redundancy. In addition, because there is only
one CPU, there is no facility for true parallelism in the warehouse, where
more than one process is actually executing concurrently. There is a single
CPU running a single process at a time, pulling data from one disk through
one I/O channel from disk to server. Adding more disks does not necessar-
ily enable any improvement if the queries that are running at peak times are
already saturating that I/O channel. Therefore, we need to see how we can
improve the delivery of the data from the disks.

The Multidisk Architecture

Although the single-disk architecture will suffice for a very small data ware-
house, it is obviously totally unsuitable for a typical data warehouse with
very large volumes of data. Now we need to look at a configuration that
uses multiple disks and that uses a bigger capacity I/O channel between our
disks and our server in order to transfer more data. An example of this is
shown in Figure 3.2, where multiple separate controllers are used to inter-
face with our multiple disks. The advantage of this approach is that more
disks can be used to provide the data to answer the users’ queries and can
provide a bigger I/O channel, which enables more data to be communi-
cated between the disks and the server at the same time. There are a number
of technologies that can connect multiple disks to our server, from SCSI
and Ethernet to Fibre Channel, and there are different architectures, such as

storage area networks

and

network attached storage

,

for utilizing this connec-
tivity. We will look at these in more detail later in this chapter.

Figure 3.1

A Single-Processor Server

TEAM LinG - Live, Informative, Non-cost and Genuine!

76

3.2

Hardware Configurations for a Warehouse

We also need to consider carefully how we use our multiple disks. For
example, where do we put the data files for each of our tablespaces? Tradi-
tionally, the DBA, who has a number of separate disks, will try to split the
tablespaces onto different disks so that the I/O requirements don’t interfere
with each other. A typical approach used by many DBAs is to place index
tablespaces and data tablespaces on separate disks. In this way the I/O load
is spread over multiple disks, improving performance.

However, even with careful placement of tablespaces on disks to avoid
heavy loaded disks, we can still get hot spots, where certain disks are always
heavily in demand and other disks are rarely used; what we really want is to
smooth the I/O out across all of the disks. The sheer size of a typical data
warehouse will necessitate a large number of disks, resulting in this type of
manual placement quickly becoming an impractical and demanding chore
that is prone to errors.

A solution to these problems is to use some form of RAID. This will
transparently split our data files across multiple disks, improve response
times, and also provide a higher level of protection against disk failure. In
Oracle Database 10

g

, an important feature called Automatic Storage Man-
agement (ASM) is introduced and can be thought of as RAID within the
database. We will look at RAID and ASM in more detail later in this chapter.

Figure 3.2

A Single-Processor, Multidisk Architecture

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.2

Hardware Configurations for a Warehouse 77

Chapter 3

The Multiprocessor Server Architecture

Simply adding more disks is not sufficient for our large data warehouse if
we only have a single processor handling all of the user workload. We may
have multiple user queries being executed at the same time, but this paral-
lelism is actually an illusion if we have only a single processor, because the
processor can only really execute one process at a time. It provides the illu-
sion of parallelism by swapping between, and executing small increments
of, the processes in very quick succession. Adding more processors to the
server enables Oracle to actually run more of the operations truly in paral-
lel. This can be executing Oracle specific processes, running multiple sepa-
rate users’ queries or even just a single query that the database has
transparently split among multiple processing threads operating on differ-
ent parts of the warehouse data. Adding more disks and improving the I/O
channels between the disks and server improves the ability of these multiple
processing threads to concurrently access more data.

The server architecture, which uses multiple CPUs that are able to
address a common memory structure, is called a

symmetrical multiproces-
sor

 (

SMP

) architecture. The operating system runs across all CPUs concur-
rently and schedules and load balances its separate processes on all of its
CPUs. A normal dual processor PC is an example of an SMP architecture
server. Figure 3.3 shows a four-processor SMP system, where each processor
accesses the same system memory via the system bus.

Figure 3.3

A Multiprocessor, Multidisk Architecture

TEAM LinG - Live, Informative, Non-cost and Genuine!

78

3.2

Hardware Configurations for a Warehouse

Let’s look at an example of why multiple processors are required. The
Oracle database can run a query by transparently splitting it into a number
of cooperating parallel processes, where each operate on a different portion
of the warehouse data. Executing these processes in parallel needs multiple
processors if any speedup is to be achieved. Adding more disks and improv-
ing the I/O channels between the disks and server further improves the
ability of these multiple processing threads to concurrently access more
data. In addition, this parallelism in the database can be better utilized by
physical database structures such as table partitions. However, the improved

ability

 to use parallelism can only be realized if it is supported by the under-
lying hardware: multiple processors for the processing capability and han-
dling the multiple process threads, more memory to support the multiple
parallel processes, and multiple disks to maximize the available I/O and
deliver the data in parallel to those parallel processes.

All of our server architectures so far have been SMP architectures that
are limited in their ability to scale by the internal system bus, which must
handle all of the data traffic and which also limits the number of processors
because of the contention and demand that they place upon it. It is unusual
to see SMP servers having greater than 16 to 32 processors without necessi-
tating a more sophisticated, and therefore more expensive, internal system
bus design.

Clustered Servers

Another architecture to consider is

clustering

, which involves multiple
independent servers that work together to perform a common set of func-
tions and may appear to client users and applications as a single server. The
servers are physically connected by a network. We can identify two groups:

�

Those that have disks shared and accessible to all servers

�

Those that are “shared nothing” and do not have disks shared
between the servers

In Figure 3.4, we have shown a simple two-node cluster that is accessing
a common disk bus. We have shown our cluster nodes as having only two
processors, but, of course, there is nothing preventing them from having
more, as previously discussed. There are a number of technologies to share
and connect external disks to our servers, and we will look at some of these
in more detail later in this chapter.

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.2

Hardware Configurations for a Warehouse 79

Chapter 3

Clustering provides the benefits of:

�

Improved scalability. Within limits, new nodes can be added to scale
the architecture.

�

Improved availability. If one node fails, then the other nodes are
available to take over.

Massively Parallel Processor Architectures

Another alternative architecture is the

massively parallel processor

 (

MPP

)
architecture, where separate nodes or servers, each consisting of their own
CPUs, memory, and which may or may not have their own disk, are con-
nected to each other by a high-speed interconnect. Each node runs its own
operating system, and the application typically coordinates its processing
across the nodes in an MPP architecture utilizing the inter-node connectiv-
ity. Figure 3.5 shows just seven nodes in an MPP architecture using a single
common interconnect, but large systems can have hundreds of nodes,
which can be interconnected in a variety of different topologies.

Figure 3.4

A Two-Node Cluster Using Shared External Disks

TEAM LinG - Live, Informative, Non-cost and Genuine!

80

3.2

Hardware Configurations for a Warehouse

3.2.2 The Oracle Database Architecture

Before we proceed, now is the time to explain some of the various compo-
nents of the Oracle database architecture.

The Oracle Instance and Database

An Oracle

database

 is the set of database files that comprise the data ware-
house, including the data files, control files, and redo log files. An Oracle

instance

, as shown in Figure 3.6, consists of the memory area (known as
the

System Global Area

 or

SGA

) and background processes—for example,
SMON, PMON, and ARCH. The background processes access data files
and manage user sessions. Background processes are shared by all database
users.

The background processes each perform a specific set of tasks for the
database. For example:

�

SMON is the System Monitor and, among other things, performs
instance recovery, cleans up the database transactions, and tidies up
space utilization.

Figure 3.5

A Massively Parallel Architecture

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.2

Hardware Configurations for a Warehouse 81

Chapter 3

�

PMON is the Process Monitor and cleans up failed user processes
and their resources.

�

DBW

n

 are the Database Writer processes, and they write the changed
data blocks from the SGA cache to the data files. There can actually
be more than one of these background processes.

�

LGWR is the Log Writer Process and is responsible for writing to,
and managing, the redo logs.

�

ARC

n

 are the Archiver processes, which copy completed redo log files
to a separate disk location.

�

CKPT is the Checkpoint Process. When a special database event
called a

checkpoint

 occurs, this process synchronizes all of the headers
of the data files with the new checkpoint information.

This is only a partial list. There are quite a number of Oracle processes,
and each has its own area of responsibility and interacts with its own part of
the Oracle database. For example, only the DBW

n

 processes are responsible
for writing out to the data files. A diagram of a single instance on a server
and an overview of the background processes is shown in Figure 3.6.

Figure 3.6

The Oracle SGA and Background Processes

TEAM LinG - Live, Informative, Non-cost and Genuine!

82

3.2

Hardware Configurations for a Warehouse

When an Oracle instance is started, the database initialization parameter
file is read and the SGA memory area is allocated from the server’s main
memory and configured, the background processes are started, and the
database files are opened. The SGA is where all the important information
in the database is held when the instance is running. It contains the buffer
and dictionary caches used internally by Oracle and the redo logs. However,
it contains more than just data; it also contains the memory regions for the
shared pool for SQL and PL/SQL and the Java pool for Java objects.

The Scalable Database: Oracle Database 10

g

 RAC

When one database and instance are running on a single server, even on a
very powerful multiprocessor server with a lot of memory, performance is still
inherently limited by the server itself and by the number of processors and
memory that it can contain. In order to scale our database beyond one server,
we need to be able to cluster the database using Oracle Database 10

g

 RAC.

Clustering the Oracle database requires more than one Oracle instance
to access the same database data files and therefore uses the shared disk type
of server cluster we identified previously. A clustered Oracle database offers
a number of benefits:

�

More CPU and memory resources are available for running the que-
ries.

�

The architecture is more robust: if one server falls over, then the oth-
ers are available to continue to provide some system availability, albeit
a reduced one.

The simplest example of this is shown in Figure 3.7, with two servers,
each with their own CPUs, running their own database instance but both
instances accessing

the same

 database files stored on disks shared between
the servers.

RAC was introduced in Oracle 9

i

 as a replacement technology for Ora-
cle Parallel Server. A key component of the Oracle RAC architecture is
Cache Fusion. This uses a dedicated, high-speed interconnect to coordinate
nodes in a RAC cluster and to keep data in each node’s memory synchro-
nized. Cache Fusion effectively enables the individual caches from the sepa-
rate instances to act as a single cache.

Cache Fusion significantly improves the ability for clustered database
instances to scale. Prior to Cache Fusion, one of the major problems

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.2

Hardware Configurations for a Warehouse 83

Chapter 3

involved with more than one Oracle instance accessing the same database
files concerned the interinstance communication, such as for passing Oracle
data blocks between nodes. For example, if the same disk block were being
accessed and updated by two separate database instances on different servers
at the same time, then, in order for the second instance to access the block,
it had to be transferred, via disk, from the first instance. Block pinging (as
this was known) could occur repeatedly, since blocks were frequently writ-
ten to disk in order to transfer them between instances and disk accesses are
relatively slow in a database. To solve this without Cache Fusion necessi-
tated clever partitioning of the data, often by splitting the user community
between the two instances by the data that they were accessing. Partitioning
in this fashion was not often a realistic possibility, was time consuming, and
required skilled planning.

Cache Fusion, with its dedicated high-speed communication link,
improves the communication between the instances. A number of technol-
ogies can be used for the interconnect. For example, the simplest, but still
effective, one is a high-speed gigabit, or 10G Ethernet. If Ethernet is used
then the Cache Fusion network should be dedicated to just the intercon-
nect traffic and kept separate from the Ethernet network used for the nor-
mal LAN network to connect the users to the servers. There are also other

Figure 3.7

Overview of a two-node Oracle RAC Architecture

TEAM LinG - Live, Informative, Non-cost and Genuine!

84

3.2

Hardware Configurations for a Warehouse

new technologies, such as Infiniband, that offer a low latency and high
speed interconnectivity. This improved, faster communication of the blocks
between the instances in a RAC cluster removes the need for the slower
block communication via the disks and therefore almost always removes the
need for the careful partitioning of the data. This enables real applications,
i.e., normal third-party applications and not just highly tuned and balanced
ones, to be deployed on RAC and to fully use the benefit of the scalable
architecture.

To scale the RAC architecture involves the addition of a new server and
Oracle RAC instance into an existing cluster. This makes available a new set
of CPU and memory resources to be utilized by the cluster. As new nodes
are added, then the RAC cluster exhibits very good scalability and queries
are transparently run across all of the nodes in the cluster to utilize any free
resource on other nodes.

An additional benefit to our warehouse architecture from Oracle RAC is
in the improved reliability of the whole environment. With RAC, instead of
a single instance on a single server accessing our database, we have multiple
instances on multiple servers. So, if one server fails, we still have the other
servers in the RAC cluster that are able to pick up and continue the failed
database sessions. For a production system that cannot afford downtime
due to server failures, this is a very attractive and important feature.

Oracle Database 10g Grid

With Oracle Database 10

g

, Oracle has based its Database Grid upon the
RAC architecture concept and has rearchitected many of its components as
a consequence.

Declining hardware costs, leading to the increased availability of power-
ful, lower-cost servers, coupled with the easier availability and access within
the Enterprise architecture to shared storage, make the appearance and use
of interacting servers and clusters cheaper and therefore more likely. This
means that isolated servers, with their isolated pools of storage and with
their own application systems, can be consolidated into a lower-cost cluster
offering better performance and reliability. This has evolved into the grid
concept in Oracle Database 10

g

.

But plugging many servers and shared storage together to create a large
cluster does not automatically provide you with the computing power that
you need or use the computing resources to their best effect. The ability to
harness and manage the power of this grid of multiple servers and storage
comes from the sophistication of the management software to specifically
address the issues that this type of environment presents. Oracle Database 10

g

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.3

Hardware Components 85

Chapter 3

Grid is a new, integrated software infrastructure that enables the improved
management and use of resources provided by a grid of servers and storage.

Previously, we have been administering our database using Enterprise
Manager Database Control, but the new Oracle Enterprise Manager Grid
Control administers and manages multiple database components in the
grid as well as Oracle Application Server 10

g

 components. The 10

g

 Grid
management by Enterprise Manager provides new features, such as:

�

A unified management environment. A single environment to man-
age database servers as well as Oracle Database 10

g

 AS application
servers, to manage groups of the servers as easily as you could manage
a single server and to manage storage across the grid.

�

Improved management of the grid by simplifying and improving the
management of the individual database nodes in the grid. Oracle
Database 10

g

 includes a whole new framework for monitoring, advis-
ing, and managing the administration of the separate databases.

�

Software provisioning to automate the installation and configuration
of the Oracle software across the multiple nodes in the grid, and also
to automate the application of patches and upgrades.

�

Dynamic Provisioning, which enables the balancing of the comput-
ing demands in one part of the grid with the availability of resources
in another part by the use of

policies

 to control and balance the allo-
cation of resources.

�

Integrated software. The new Oracle Database 10

g clusterware,
which enables the services and communication between servers in a
cluster, is provided for all operating system platforms and eliminates
the need to purchase and integrate with third-party clusterware. Hav-
ing one software version from one vendor simplifies the environment
and reduces the possibility of cluster failure.

We will examine Enterprise Manager in more detail in Chapter 11.

3.3 Hardware Components

Now that we have a better understanding of the different types of architec-
tures that we need to build our data warehouse, let’s take a step back and
consider what our warehouse is trying to do:

TEAM LinG - Live, Informative, Non-cost and Genuine!

86 3.3 Hardware Components

� Support multiple users

� Execute large queries, in parallel and possibly split each query into
smaller parallel threads automatically by the database

� Access very large volumes of data

� Load large quantities of data from operational systems

Therefore, the next step is to determine the requirements for the follow-
ing three important components of our architecture:

� Memory

� Processing power (i.e., CPUs)

� Storage

We will now have a look at these components in more detail.

3.3.1 Memory

Our database will be servicing queries from users, running reports, and exe-
cuting batch jobs to refresh the warehouse. Each of these queries may be
split into multiple parallel processes by the database, and each of these proc-
esses will require a certain amount of memory. The main area here is the
memory required for:

� The SGA, for storing all of the cache of the database data blocks and
other memory structures

� The Program Global Area (PGA), which is a private memory space
used by Oracle code for each user’s server process for example, for
sorts and hash operations

On top of the memory that Oracle needs, we must also ensure that there
is sufficient memory for the operating system and for any other applications
that must also execute on our warehouse server.

Oracle Database 10g has the new Automatic Shared Memory Manage-
ment for dynamically tuning the memory used by the SGA and PGA (and
which we will look at in more detail in Chapter 10). Memory requirements

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.3 Hardware Components 87

Chapter 3

can grow quickly and become large. Imagine 50 users running parallel que-
ries. Each parallel process may require around 10Mb of memory. If each
query were split into four parallel threads, then the server would require
2Gb of memory to support these 50 users.

3.3.2 Processors

We have looked at the different server architectures that enable us to have
different numbers, and configurations, of processors, but what about the
processors themselves? It is not necessarily the case that we must have the
newest, fastest processors. Significant warehouse performance can be
obtained from using servers with processors that are not the fastest ones
available, particularly if we also deploy them in a clustered architecture
using RAC, which minimizes the contention and use of the internal system
bus on a single server.

An equally important criteria for a processor is the amount of memory
that it can address. Thirty-two-bit processors can address up to 4G of mem-
ory, but 64-bit processors can address significantly more. Even though it is
unlikely to ever need the maximum addressable space, many databases can
benefit from the increased memory capacity provided by 64-bit addressing.

3.3.3 Storage Configurations for a Warehouse

Now that we have seen the various architectures that are available to us to
implement our data warehouse, the next step is to decide upon the storage
requirements for our data warehouse.

The I/O Subsystem

One of the main objectives with our I/O subsystem is to keep the proces-
sors in our server constantly supplied with data when processing queries.
With data warehouses, this is much more relevant than with OLTP sys-
tems, because in a warehouse the queries are typically spanning a much
larger set of the data, whereas in an OLTP the data access is generally
more specific record oriented. This means that both the disk subsystem
and the I/O subsystem must have sufficient bandwidth to transport the
data to the warehouse quickly enough to support the processing needs.
This requirement is made more severe in a parallel environment, where
multiple processes are accessing data at the same time.

The other factor that must be considered for the I/O subsystem is the
latency of the technology used to connect the disks to the server. Latency is

TEAM LinG - Live, Informative, Non-cost and Genuine!

88 3.3 Hardware Components

the time it takes a packet of information to travel from the disks to the
server. Latency and bandwidth together define the speed and capacity of the
interconnectivity. In addition to this, there is the latency of the disk itself
which is the time the disk takes to position the disk head over the required
data block on disk before the data can actually be read.

When considering the number of disks for a warehouse, you must take
into account both the capacity and the maximum transfer rate. If we were
to base our disks for our warehouse purely on the disk capacity and go for a
small number of large disks, then we are inherently limiting the ability of
the disks to provide the data. Small numbers of disks may have sufficient
storage capacity but are unlikely to have sufficient I/O capacity to meet our
needs. For example, if we chose four disks, each with a 320Mbps transfer
rate, then the maximum data that can be transferred even if everything is
working ideally (which is probably not the case), is (4 * 320)Mbps. Alterna-
tively, if we select a larger number of smaller sized disks, then we have more
disks—each able to run up to their own maximum data transfer limit to
provide the data to the servers.

Following this simple rule, we should, therefore, be looking at using a
larger number of smaller disks that can deliver the data that we want “in
parallel.” However, the I/O subsystem should not be considered solely on
the basis of the ability of the disks to provide data: the capability of the
communication channel (the data bus and controllers) between the disks and
the servers and the I/O channels at the server end are equally as important.
One rule of thumb often seen is that there should be at least two disks per
processor. Considering that the size of a warehouse will typically be very
large, we will probably be using many times that multiplier.

The capability to use disks in this fashion in parallel comes from the
ability to stripe our data across many disks and for that we need to have a
brief look at RAID to understand how to use RAID and striping in our
data warehouse.

Striping and RAID

Striping, or RAID, is the ability to spread the I/O requests across multiple
disks in parallel. RAID is an acronym, which stands for Redundant Arrays of
Inexpensive Disks, and the basic concept of RAID is to combine small, inex-
pensive disks to yield improved performance and reliability and have them
appear to the server as a single, larger disk. We touched upon this problem
earlier in the chapter when we looked at adding more disks into our ware-
house architecture and where RAID provides a solution for better through-
put and reliability by using multiple disks.

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.3 Hardware Components 89

Chapter 3

RAID can be described as levels, which progress from 0 to 10. As you
progress through the levels, you get different performance and reliability.
For example, rather than storing all of the data on one file on a single disk,
the data is striped across multiple disks, which yields better performance
during reading, because all of the disks potentially get read in parallel rather
than just one.

Striping is the process where the disks are split into separate sections and
the sections are utilized round-robin style on each disk. So, for example, if
your stripe size is 1M, then the first 1M of your file is written to disk 1, the
second 1M stripe is written to disk 2, and so on. This splitting of the data
into stripes that are written to different disks is done either at the byte level
or the block level and is performed automatically and completely transpar-
ently to the applications, whether it is a file for a word processor or a
sophisticated database. Striping has the effect of reducing the contention
for disk areas and improving I/O throughput to the server. Figure 3.8 shows
a four disk RAID, where the stripe width is four and stripe size is the size of
the individual amounts of data written to each disk.

The process of mirroring the data across multiple disks involves dupli-
cating the information that we write to one disk by writing a complete copy
to a second disk so we always have a copy of our data.

The RAID levels are:

� RAID 0: striping (i.e., striping our files so that each successive stripe
occurs on a different disk in a group of disks)

� RAID 1: disk mirroring. Where an exact copy of each disk is auto-
matically maintained. If one disk fails, then the data is available on

Figure 3.8 Four-way RAID Showing Stripe Size and Width

TEAM LinG - Live, Informative, Non-cost and Genuine!

90 3.3 Hardware Components

the other disk until a new disk can be inserted and the copy made
while the system is on-line. The cost of this is that it doubles the
number of disks that are required.

� RAID 3: striping with parity at the byte level. Uses an additional
parity disk with other data, where parity data is simply a calculated
numerical value from using the data on the actual data disks, so that
if any one of the data disks fail, then the remaining data in conjunc-
tion with the parity data can rebuild the lost data. The parity infor-
mation is on a separate, dedicated disk, for example, five data disks
and one parity disk.

� RAID 4: block data striping with parity. Same as RAID 3 but work-
ing at the block and not byte level.

� RAID 5: block striping rotated parity. Both the parity and the data
are striped across the disks. This removes the need for a dedicated
parity disk, because the parity information is rotated across all disks.
Read performance is better, but write performance can be poor. At
least three disks are needed for a RAID 5 array.

� RAID 10: (also known as 0+1): mirrored stripe sets providing better
security from the mirroring and better performance from the striping.

RAID can be implemented either in hardware, via a RAID controller
for the disks, or in software, via a tool called a logical volume manager
(LVM). An LVM is a piece of software that could be provided either as
part of the operating system, from a third-party vendor (e.g., Veritas), or
from the disk storage vendor (e.g., from EMC). The LVM combines areas
on separate disks and makes them appear as a single unit to the operating
system, and in the process it provides software striping and mirroring. Per-
forming RAID in hardware may be easier, but there may be the disadvan-
tage that it can be more difficult to change at a later stage—for example, if
more disks are to be added; performing RAID in software can take advan-
tage of a number of powerful volume managers available. Regardless of the
mechanism, the I/O request from the server is transparently split by the
controller or LVM into separate I/Os for the individual disks.

From a performance perspective, the DBA and systems administrator
must carefully consider not just the type of RAID that they wish to employ
and on which disks, but they must also consider items such as the RAID
stripe size (i.e., the byte size of each stripe on the disks) and the number of
disks in the stripe set.

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.3 Hardware Components 91

Chapter 3

A high-level perspective of the operations needed to use a volume man-
ager to prepare the disks for Oracle can be seen in the following text. Differ-
ent hardware vendors will have their own volume managers and there are
third-party ones, and in addition, different operating systems may have a
slightly different approach, so the steps listed here are intended to be very
generic. The DBA and the system administrator must:

� Create or initialize the physical volumes. Define the disk as a physical
volume and write certain configuration information to it.

� Create the physical volume groups. This is the process where the
physical volumes are collected together to create the physical volume
group. A physical volume can only belong to one volume group, but
a volume group may contain many physical volumes. During this
step the physical volume is partitioned into units of space called phys-
ical extents: These are the smallest units of storage used on the disk,
and an extent is a contiguous section of the disk.

� Create logical volumes in the volume groups. This is the step when
striping and mirroring are implemented.

� Create the file systems on the logical volumes. The file system is the
structure on the disk necessary for storing and accessing the data.
Without the file system it is not possible to create directories and
files. For example, the file systems can be FAT32 or NTFS, which
will be familiar to Windows users, or Linux Ext2, Linux Ext 3, and
Linux Swap, which will be familiar to Linux users.

� Mount the file systems. Make the file systems known and usable to
the operating system.

� Then, finally, use the file systems for the database files (i.e., create the
database tablespaces using files on these file systems).

Stripe and Mirror Everything

After much research on the storage configurations that are optimal to the
Oracle database for both OLTP and warehouse configurations, Oracle rec-
ommends using the SAME (Stripe And Mirror Everything) method. This
method involves all of the disks being mirrored and striped using a 1M
stripe width and with all of the database files being placed on these disks.

TEAM LinG - Live, Informative, Non-cost and Genuine!

92 3.3 Hardware Components

� By striping all database files across all disks using a 1M stripe size, the
use of the bandwidth across all of the disks is maximized and the
occurrence of disk hotspots and bottlenecks is reduced. The stripe
size of 1M has been carefully analyzed as a balance point between the
access time for the disks to get to the data location on disk compared
with the transfer time for the data (i.e., 1M in this case).

� By mirroring, we increase the availability of the database by reducing
the risk due to data loss from disk failure.

Equally important, SAME is a very simple storage configuration con-
cept to grasp and is independent of any third-party’s storage product; it pro-
vides significant benefits to our warehouse database.

Shared Storage

Our choice of architecture selected for the data warehouse will influence the
type of storage that is needed. If we are using RAC, then we need to be able
to access the disks from more than one server. We can use technologies such
as SCSI, a bus technology that can connect up to 16 external devices (i.e.,
disks in the case of our warehouse) with our warehouse server. SCSI comes
in many forms and can offer transfer speeds up to 160 MBps (megabytes/
second); shared SCSI enables the bus to be shared between two servers. We
will now have a brief look at two alternative solutions, Storage Area Net-
works (SAN) and Network Attached Storage (NAS), which offer better capac-
ity, scalability, and robustness.

A Storage Area Network, or SAN, can be viewed as a dedicated high per-
formance network to connect servers and storage. An example of this is a
disk array accessed using a technology such as Fibre Channel to link the
disk array to the different servers (though other connection media, such as
optical fiber, can also be used).

Fibre Channel is a technology for transmitting data at a rate of Gbps
(giga-bits per second) between the devices in our warehouse architecture
(i.e., between servers and between servers and disks). In addition, Fibre
Channel technology allows a physical separation in terms of kilometers, so
this also enables a large physical separation of the hardware components for
our warehouse, if required. It may help to think of the Fibre Channel (or
other technology) as a specialist data bus between the servers and the shared
disk storage devices. High-availability systems will use multiple Fibre Chan-
nel routes from the servers to the disks and use hubs and switches to mini-
mize the chance of system failure if any part of the SAN fails.

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.3 Hardware Components 93

Chapter 3

An alternative shared storage technology is Network Attached Storage, or
NAS, which can be viewed as a set of disks running from its own special
server platform and accessed via a normal network to which it has been
assigned its own network IP address. For our warehouse architecture we
may prefer to keep the normal company LAN network traffic separate from
the warehouse server to NAS traffic and therefore use a separate LAN net-
work between our database servers and our NAS.

It can be seen that the SAN concept encapsulates NAS. The Ethernet-
connected disk devices in a NAS architecture are just a very specific exam-
ple of storage available on a dedicated network (which SAN is). NAS
performance, however, will be limited by the capacity of the network to
move the data between the NAS storage devices and the servers: typically
this limitation will be readily overcome by the network communication
technology used in a SAN. In addition, new protocols, such as i-SCSI, are
much more performant than old-style NFS.

The use of SAN and NAS in the Oracle warehouse architecture sepa-
rates the disk storage system from the servers. This also means that these
technologies are not just for the single-server environment. NAS and
SAN storage are attached to a network that can have multiple database
servers attached to it; therefore, it provides the required shared storage for
Oracle RAC.

An example RAC architecture with shared NAS storage is shown in
Figure 3.9. Taking our simple RAC architecture one stage further, for the
example, we’ll base the interconnects on Ethernet, add in the shared stor-
age using NAS, and include two separate connections between the servers
and the NAS storage, so if one fails, then the other is still present to
enable the RAC to operate. Of course, the same redundancy could be
introduced for the network providing the connection for the RAC Cache
Fusion interconnect as well. The reason that three separate networks are
used (i.e., the normal network to connect to the users, the RAC intercon-
nect, and the NAS storage) is to ensure that the three different types of
network traffic do not interfere with each other and degrade the overall
system performance. Of course, our example is very simplified to demon-
strate the point, and typical large warehouse production systems can be
significantly more complex.

In this section, we have discussed the various hardware components of
our architecture and how our storage can be configured and deployed. In
the next section, we will see how a new storage feature in Oracle Database
10g can build upon the strengths of the RAID striping and mirroring.

TEAM LinG - Live, Informative, Non-cost and Genuine!

94 3.4 Automatic Storage Management

3.4 Automatic Storage Management

Automatic Storage Management (ASM) is new in Oracle Database 10g and
provides the control and management of disks in conjunction with a pur-
pose-built file system for the database files. Essentially, you provide the
disks to Oracle and specify the degree of protection with mirroring that you
require (unmirrored, mirrored once, or mirrored twice) and ASM manages
the rest. ASM will also perform the striping by controlling the layout of the
blocks across the disks, and it will effectively balance the load for you auto-
matically. Furthermore, when new disks are added, removed, or simply fail,
Oracle ASM will automatically redistribute the blocks and the load so that
the database is open and available all the time. On top of this striped and
mirrored set of disks, a file system for the Oracle files is implemented.

Prior to Oracle Database 10g, if you wanted to spread your I/O across
multiple disks the DBA would work closely with the system administrator
to make careful configuration of the underlying disks, for example, to pro-
vide the required RAID level that we have just discussed. While doing this,
the administrator must plan and track the volume sizes, the striping sizes,

Figure 3.9 Overview of RAC and NAS Shared Storage

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.4 Automatic Storage Management 95

Chapter 3

and the extent sizes. There are a large number of steps in this process, the
complexity of which can increase with the number of disks being used, the
number and size of the logical volumes, and resultant file systems to be
placed on these volumes. Generally, the bigger the database (and ware-
houses can get very, very large) the more disks and mount points required
and, consequently, the greater the complexity.

This administration can quickly become a headache and a chore. What is
worse is that if the database subsequently needs to be expanded at some
point in the future, then the administrator will need to add more disks, and
hence physical volumes, into an existing volume group. This process of
rebuilding the underlying volumes may even necessitate our warehouse data-
base being off-line, and the contents of certain areas of the database may
need to be exported and reimported, which is a very undesirable situation.

The purpose of this task to implement RAID, is to stripe and mirror the
underlying disks to get the higher throughput and availability. It is easy to see
that it can be a complex and labor-intensive task and, even with a knowledge-
able and experienced administrator, it can still be prone to errors because of
its manual nature.

Now, it would be unfair to paint an overly negative picture, because
there are powerful logical volume managers and other tools available to help
the administrator with these tasks. There are also tools available to assist in
tracking where the database objects in our warehouse actually reside (on
which physical disks—Oracle File Mapper in 9i assists with this, for exam-
ple) and for adding new disks into the physical volumes. The good news is
that ASM in Oracle Database 10g, fundamentally, does the work of an
LVM and all of these tasks for you, and, even better, ASM is a standard part
of the Oracle Database 10g server and not a separately installed option.
Using ASM allows all of your disk infrastructure, configuration, and defini-
tion to be handled by software from one vendor, Oracle, without introduc-
ing another layer of software from a third party. You provide the disks to the
database and ASM, and the database will stripe and mirror the disks to pro-
vide the level of redundancy and protection that you require.

3.4.1 ASM Overview

There are two main concepts in understanding ASM:

� The disk group

� The ASM instance

TEAM LinG - Live, Informative, Non-cost and Genuine!

96 3.4 Automatic Storage Management

The disk group can be viewed as the basic unit of control of the disks
within ASM and is the logical collection of disks that you want to be man-
aged by Oracle. Disk groups are either created via a new SQL statement
(which we will look at shortly) or from Enterprise Manager and are then
used as the repository for Oracle database files. One thing to bear in mind is
that all of the disks in a disk group should have the same characteristics in
terms of size and performance (i.e., you want to group together the same
type of disks with the same performance characteristics). When you create
files on an ASM disk group, these are known as ASM files and the names
are automatically generated by Oracle (though you can retain some control
of the format of the names).

In order to use ASM, a special form of an Oracle instance, called an
ASM instance, must be up and running. The ASM instance is responsible
for:

� Discovering and acquiring the ASM disks at startup

� Managing the disk groups

� Automatically providing the I/O balancing

� Protecting the data within the disk group

An ASM instance is much smaller than a normal database instance and
it does not have a data dictionary: it has the very focused task of finding the
disks at startup, managing the disks, and presenting the disk groups to the
main database instances (i.e., our actual warehouse instance). You can have
multiple normal instances on a server, but a server will only contain one
ASM instance.

One important step that must be performed when the disk group is cre-
ated is to specify which of the following three redundancy methods is to be
used:

� External Redundancy—where Oracle will not mirror at all and mir-
roring is done externally and separately on the disk storage

� Normal Redundancy (i.e., mirror once)

� High Redundancy (i.e., mirror twice)

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.4 Automatic Storage Management 97

Chapter 3

In order to use either of the redundancy options, more than one failure
group must be specified. A failure group is some extra information that
indicates to Oracle how the disks may fail collectively due to a fault. For
example, consider Figure 3.3, which uses two disk controllers to access a
set of disks; a failure group would be those disks that are accessed through
the same I/O disk controller. The definition of failure groups enables Ora-
cle to know how to store the redundant data required to protect the data-
base data, or, in other words, the safe alternative disks to use for
redundancy (i.e., mirroring), because they are in a separate failure group.
Therefore, for the normal redundancy option, there must be at least two
failure groups, and for the high redundancy option, there must be at least
three failure groups.

3.4.2 Administering ASM

Now, we will show how to administer ASM either using the GUI interface
or from within SQL*Plus.

Setting up ASM

In Oracle Database 10g, ASM is an attractive alternative to using the previ-
ously described Logical Volume Manager (LVM), so let’s see how easy ASM
is to use to manage our disks. The first step is to ensure that the disks that
you want to use are made known to Oracle as candidate ASM disks, and
this is done by using the ASM Tool to stamp an ASM header on the disks.
On Windows systems you will find this in the bin directory as asmtool.exe
(the command-line version) or as asmtoolg.exe (the graphical version); on
UNIX based systems you will find oracleasm in the /etc/init.d directory. Our
examples are based on the Windows graphical version.

Hint: If you are creating an ASM-based database as part of the initial Ora-
cle installation, you must still remember to use the ASM tool to stamp the
disks; otherwise, they will not be visible to the installation program.

The ASM Tool marks the disks with a header, which identifies the disks
as ASM disks: to do this the disks need to be configured with a single disk
partition and without a file system. Figure 3.10 shows the initial ASM Tool
screen, where we will begin by adding the header to our ASM disks.

Clicking the Next button displays a list of the disks with their different
partitions, and what ASM Tool considers as potential candidates is shown
in Figure 3.11.

TEAM LinG - Live, Informative, Non-cost and Genuine!

98 3.4 Automatic Storage Management

In Figure 3.11, we have four disks available, shown as Harddisk0 to
Harddisk3, and ASM Tool has identified disks 2 and 3 (the last two in the
list) which are actually two small SCSI disks and are the ones we want to
use for ASM. Note that ASM Tool identifies and displays the file system on
the partition, but it has marked three of them as candidates. Actually, on
our system, this is a dual operating system machine and these partitions are
Linux partitions, not ones we want to use for ASM. Generally, you must

Figure 3.10 The ASM Tool

Figure 3.11 ASM Tool Disk Selection

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.4 Automatic Storage Management 99

Chapter 3

provide whole disks and not partitions of part of the disks to ASM, so you
should not get this situation. In particular, any production system will
probably not be a dual boot system. However, this example is used to make
the point that you do need to be very aware of your disk and partition lay-
out when you are using ASM.

Perform a multiple selection of both disks, click Next and you will see
the screen in Figure 3.12, which shows the ASM stamp that will be applied
to the disks. Note that the prefix stamp, DATA in our case, from the field in
Figure 3.11, is incorporated into the ASM link name.

Configuring ASM during Installation

If we were creating the database as an ASM database using DBCA or the
Universal Installer (during Oracle installation), then we could take a differ-
ent choice for the storage option of the file system selection that we made in
Chapter 2 (Figure 2.8). Now, we will choose ASM, as shown in Figure 3.13.

With ASM selected clicking the Next button displays the Backup choice
screen as before, but after that we get a different screen, as is shown in Fig-
ure 3.14, which enables us to select the ASM disks that we stamped with
the ASM Tool earlier. Because we are performing an actual installation at
this point, we will need to have previously invoked ASM Tool directly from
our installation disk and stamped our disks so that they are recognized as
ASM disks. For Windows installations, ASMTool can be found on the
installation disk in the ASM Tool subdirectory.

Figure 3.12 ASM Tool: Stamp Disks Confirmation Screen

TEAM LinG - Live, Informative, Non-cost and Genuine!

100 3.4 Automatic Storage Management

Here we have selected the External redundancy option, so no mirroring
will be performed and we can see and check the tick boxes for both of the

Figure 3.13 Database Creation: ASM Storage Option

Figure 3.14 Configure Automatic Storage Management

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.4 Automatic Storage Management 101

Chapter 3

disks that we previously stamped and that we want to be members of our
new ASM disk group. The disk group that we are creating is named DATA,
which we will also refer to later when we manage the disk group via SQL
and create tablespaces in it.

When we click Next and continue with the installation and database cre-
ation, these two ASM disks will now be used to hold our database files.

Managing ASM from the Command Line

The ASM disks and disk groups can also be created, deleted, and managed
manually and to do this we need to be logged on to the ASM instance and
not the normal warehouse instance. We will work through a simple exam-
ple, but if you try to run these commands on a normal warehouse instance
database, you will get Oracle error ORA-15000, saying, effectively, that it is
the wrong command for the instance type. This is because there is a new
database initialization parameter introduced with ASM called
instance_type, which takes the value RDBMS for a database instance and
the value ASM for an ASM instance. In our previous example, where we
created a database using an ASM disk group, the ASM instance was created
automatically for us as part of the database creation.

Before any ASM management tasks can be performed, you must first
logon to the ASM instance. To logon to the ASM instance from the Win-
dows operating system command line you, will need to reset your Oracle
SID environment variable to that for the ASM instance. By default, this
takes the value +ASM.

Hint: Note the + in front of ASM. If you omit this, you will not be able to
logon, because your SID will not be set correctly.

A disk group is created as follows:

C:\> SET ORACLE_SID=+ASM
C:\> sqlplus /nolog
SQL*Plus: Release 10.1.0.2.0 – Production on Thu May 27 19:51:13
2004

Copywright (c) 1982, 2004, Oracle. All rights reserved.

SQL> connect sys/password as sysdba

SQL> ALTER SYSTEM SET asm_diskstring = ‘\\.*:’ ;

SQL> CREATE DISKGROUP data
 NORMAL REDUNDANCY DISK ‘\\.\H:’, ‘\\.\I:’ ;

TEAM LinG - Live, Informative, Non-cost and Genuine!

102 3.4 Automatic Storage Management

Here, the disk group is being created with the name DATA with a nor-
mal redundancy, i.e. a single copy of the data will be maintained. The disk
group is formed from the two disks which are visible on our Windows sys-
tem as H and I.

The new ASM_DISKSTRING parameter controls and limits the disks
that Oracle discovers at the ASM instance startup; it is normally placed in
the ASM instance initialization parameter file. To illustrate its use, we have
specifically set this parameter using a wildcard. The format of this string, as
shown, is specific to the Windows platform and will be different for UNIX
and other platforms. So the \\. indicates the current server and the *: indi-
cates any disk on the server

If we want to add a new disk into our disk group, then we issue the fol-
lowing statement, which adds disks J and K into the precreated disk group
DATA.

SQL> ALTER DISKGROUP data ADD DISK ‘\\.\J:’, ‘\\.\K:’ ;

Then Oracle will automatically distribute our blocks and rebalance the
load from the initial set of two disks, which we specified earlier when the
database was created, to include the new disks. All the time, the database is
kept open to the users.

Creating tablespaces is now simplified, because we just need to refer to
the ASM disk group. For example, to create a tablespace on our new DATA
disk group we issue the following. The + used in +DATA for the datafile
name indicates that it is a disk group data file.

SQL> CREATE TABLESPACE easydw_asmtest DATAFILE ’+DATA’ SIZE 5M;

Furthermore, using ASM for your database doesn’t force the database to
only use ASM. Oracle Database 10g enables a database to use both the stan-
dard file system method and the new ASM method at the same time. For
example, previously we created our database as ASM during installation,
but if we had created our database using the file system and subsequently
decided that we wanted to start using ASM, then we would need to create
the ASM instance manually. On Windows this is done using the ORADIM
utility, which also creates the Windows service, and there are some new
ORADIM parameters in Oracle Database 10g for ASM for specifying the
ASM SID name and the ASM service name.

oradim -NEW -ASMSID +ASM -SYSPWD change_on_install

-PFILE c:\oracle\product\10.1.0\admin\+ASM\pfile\init+ASM.ora

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.4 Automatic Storage Management 103

Chapter 3

The init.ora file for the ASM instance is much simpler, and, if the
defaults for the parameters are used, it can be reduced to only the following
parameters:

INSTANCE_TYPE = ASM

DB_UNIQUE_NAME = +ASM

ASM_DISKSTRING = '\\.*:'

COMPATIBLE = 10.1.0.2.0

ASM_POWER_LIMIT = 1

USER_DUMP_DEST = ’c:\oracle\product\10.1.0\admin\+ASM\udump’

BACKGROUND_DUMP_DEST = ‘c:\oracle\product\10.1.0\admin\+ASM\bdump’

CORE_DUMP_DEST = ’c:\oracle\product\10.1.0\admin\+ASM\cdump’

Once the ASM instance is created, it is accessed and used in exactly the
same way described previously and an ASM-based tablespace can be created
alongside our file system tablespaces without any problems.

ASM is an important new feature, which is easy to administer once you
understand its deployment and operation. Two other areas indicate other
aspects of the administration to investigate for understanding ASM further:

� The ASM instance initialization parameters. There are a very small
number of parameters that control how ASM operates. For example,
ASM_POWER_LIMIT is used prioritize the disk rebalancing opera-
tion: The higher the number assigned to this parameter, the higher
the rebalancing priority (though a high priority can have a detrimen-
tal effect on other system operations due to the impact on processor
and I/O resource).

� Special views, which are part of the V$ set, in the data dictionary for
monitoring ASM operations and viewing the status of the disks and
disk groups. For example, VASM_DISK, VASM_DISKGROUP,
and V$ASM_OPERATION.

We think that you will agree that ASM is very easy to administer from
the command line, but, as we shall now show, it is even easier by using
Enterprise Manager.

Managing ASM from Enterprise Manager Grid Control

Now that we have a good understanding of how ASM operates and how it
is controlled from the command line, we will have a look at how ASM is
administered and controlled from Enterprise Manager.

TEAM LinG - Live, Informative, Non-cost and Genuine!

104 3.4 Automatic Storage Management

To administer ASM, either Enterprise Manager Database Control ver-
sion or Grid Control version can be used. We are going to use Grid Con-
trol for our ASM examples in this chapter, and in Chapter 11 we will
discuss more about how EM Grid Control is deployed, started, and used.
To complete this section on ASM we want to show how Enterprise Man-
ager also supports ASM and the screens that complement what we have
discussed so far.

From within EM Grid Control, you are able to drill down to view infor-
mation on individual servers and then drill further to the Oracle software
that is executing on the server. From the Hosts Target page within EM Grid
Control, clicking the link that identifies an ASM instance will drill you
down to the Home page (not shown) for that ASM instance, which displays
the general status and alerts for the instance. From this page we can follow
the Configuration link to display the screen shown in Figure 3.15, where
you can see the parameters for the instance, some of which we have talked
about earlier, and which can easily be set from this screen.

If the Administration link is followed, then we will see the screen shown
in Figure 3.16, where the disk groups handled by this ASM instance are
shown. Here we can see our DATA disk group, and we have expanded the
pick list on the right to show the operations that can be performed on it.
Mounting and dismounting a disk group makes it available or unavailable
to the database instances running on that server.

Figure 3.15 EM Grid Control ASM Instance Configuration

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.4 Automatic Storage Management 105

Chapter 3

The third option involves the distribution of the file blocks across the
disks in the group. When a disk is added or removed from the group, either
intentionally or due to disk failure, ASM automatically redistributes, or
rebalances, the file blocks. This Rebalance option enables you to manually
perform a rebalance operation, though, because it is generally done auto-
matically, you should rarely need to do this yourself.

By drilling down on the DATA disk group we see the screen in Figure
3.17.

Figure 3.16 EM Grid Control ASM Instance Administration

Figure 3.17 EM Grid Control ASM Disk Group Members

TEAM LinG - Live, Informative, Non-cost and Genuine!

106 3.4 Automatic Storage Management

This screen shows more information about the individual disks that
make up the disk group, their path on the server, status, and their capacity
and free space. It is a nice and comprehensive way to show you information
at a glance about your disk group members.

The final screen in our quick tour of ASM via Enterprise Manager is
that shown in Figure 3.18, which shows the hierarchical contents of the
disk group. Here you can expand the hierarchy to see the databases using
the disk group, their folders, and the files that they have created. This screen
also shows that the ASM is as much about implementing a file system on
the disk groups as it is about the mirroring and striping of the underlying
disks.

You can see that Enterprise Manager supports the easy configuration of
the ASM parameters, and its clear, logical screens allow you to traverse and
examine the ASM information with ease. You can drill up and down the
hierarchies of ASM information from the instance, to the disk group, to the
disks, and to the actual database files in the file system on the disk group in
order to fully appreciate the structure of your storage.

In this section, we have only touched upon ASM to demonstrate its
power and ease of use. The important question is how is it used to help us
in our data warehouse, and this is what we are going to look at in the next
section.

Figure 3.18 EM Grid Control ASM Disk Group Files

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.4 Automatic Storage Management 107

Chapter 3

3.4.3 Using ASM in the Warehouse

Now that we understand what ASM is, how does ASM help us in our data
warehouse physical architecture? Well, we can define different groups for
the different major areas of our warehouse:

� Staging

� Warehouse data

� Warehouse indexes

� Summary data and indexes

� Flash recovery disk area (for backup and recovery files, which must be
distinct from the disk areas for the database data, control, or on-line
redo log files)

� Temporary tablespace (for sorting)

� UNDO

� Redo logs and archived redo logs

One of the challenges in the data warehouse is determining what the
appropriate solution is for each of these areas. For example, staging is where
data is loaded from disk files and cleansed and transformed prior to loading
into the warehouse tables. Within staging we may not necessarily require
mirroring, because if a disk fails then the data on it can always be recovered
from the source data files and reloaded. However, for the warehouse data,
we will want it to be mirrored (and striped) in order to protect the data that
we have expended a lot of time and resources on getting into the ware-
house. In addition, following the guidelines for having disks with the same
characteristics in the same disk group and not mixing and matching, it may
be preferable to have the faster disks for the high I/O files (e.g., TEMP or
UNDO); other disks for the warehouse, index, or summary disk groups;
and the slower disks in the flash recovery disk group.

However, recall our earlier discussion on RAID and the existing Oracle
recommendation for the SAME method, which stands for Stripe And Mir-
ror Everything. In many ways ASM is an extension to the SAME concept in
that it is a transparent division of our Oracle data into 1M blocks, which
are automatically distributed and balanced across all disks in the group. The
reasoning behind SAME holds true for ASM, and we should be defining
one disk group into which we place all of our disks; this disk group contains

TEAM LinG - Live, Informative, Non-cost and Genuine!

108 3.5 File Management in Oracle

all of our database files. You may ask, in that case, why we need multiple
disk groups if we are only going to use one. Recall that an ASM instance on
a server manages the disk and disk groups for all database instances on that
server, and using multiple disk groups can help to segregate and manage
those disks that are specific to each of our database instances.

An exception to the rule about striping and mirroring everything in one
disk group would be the placement of the flash recovery area. The flash
recovery area can reside on ASM disk groups (as an alternative to the normal
file system), and, in order to protect our warehouse, these must be on a disk
group separate those used by the warehouse. This is an additional and sensi-
ble precaution to avoid any possibility of disk failure losing the main ware-
house data and the backup files. This is discussed further in Chapter 12.

An important consideration when using ASM is that the ASM file sys-
tem only manages Oracle database files. If your data warehouse receives files
from external sources, such as a flat file from another database or applica-
tion that is not integrated with the warehouse, these will need to be man-
aged via another solution, such as traditionally by the operating system.

Finally, note that the use of ASM to protect your disks via mirroring
does not remove the need for a carefully designed backup strategy and plan.
An individual disk may fail and be recoverable because of mirroring, but if a
disaster befell the entire data center—for example, fire or flood—then you
will need to have a proper backup and recovery strategy in place in order to
restore your warehouse onto another server environment.

3.5 File Management in Oracle

With ASM, Oracle manages the disks, but to complete the process of aiding
our DBA to manage the many different types of files typically found in a
data warehouse, we also need a better way to manage the files themselves.

3.5.1 Oracle Managed Files

With Oracle Managed Files (OMF), the database server takes on the man-
agement of the individual datafiles comprise the database; this removes a
considerable burden from the DBA. This is particularly true in a very large,
complex warehouse environment, which may have many hundreds of files.
In reality, OMF is not a true architectural consideration but a managerial
feature to aid the DBA; however, in many ways the path to ASM started
with OMF, so we are going to discuss OMF briefly in this chapter.

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.5 File Management in Oracle 109

Chapter 3

To use OMF there are a small number of initialization parameters that
specify the default location of the files that you want Oracle to manage.

If you perform a database operation that creates a file—for example, cre-
ating a tablespace—but do not specify a file name and location, then Oracle
will use the parameter relevant to the operation and create the file. It is now
an Oracle Managed File.

For example, try a simple test: Identify where your database files are cur-
rently residing and add a subdirectory “omf_test.” Then from SQL*Plus
alter the value of the DB_CREATE_FILE_DEST to use that subdirectory:

ALTER SESSION SET db_create_file_dest

 = ‘f:\oracle\product\10.1.0\oradata\easydw\test’;

Now create a test tablespace:

CREATE TABLESPACE omf_test DATAFILE SIZE 1m;

Within your new TEST directory, you should now have the subdirec-
tory “EASYDW/datafile” (where EASYDW will be the unique name of
your database) and within this directory a new datafile—for example,
o1_mf_omf_test_05r8ggy9_.dbf. The string “05r8ggy9” is, in fact, a
unique eight-character string generated by Oracle; it ensures that no two
files will have the same name.

If, at some point in the future, this datafile has to be removed from the
database, then when the tablespace is removed from the database the data-
files are removed from the server as well. To demonstrate this, now drop the
tablespace from within SQL*Plus and this new datafile is automatically
removed by the database server.

DROP TABLESPACE omf_test;

Initilization Parameter Brief Description

DB_CREATE_FILE_DEST The default file location for database datafiles

DB_CREATE_ONLINE_LOG_DEST_n The default file location for database redo logs
and control files.

DB_RECOVERY_FILE_DEST The default file location for database RMAN
backups

TEAM LinG - Live, Informative, Non-cost and Genuine!

110 3.5 File Management in Oracle

Other database operations (such as “ALTER DATABASE ADD LOG-
FILE”) will use the other OMF initialization parameters in a similar manner.

OMF is a very useful and powerful aid to the DBA. At the very least,
this automatic removal prevents unneeded, old files from proliferating on
your file system: it definitely helps to ensure that any manual removal, that
would otherwise be necessary, doesn’t inadvertently remove a wrong file
that is still actually being used by the database! As a bonus, Oracle will also
tidy up any partially created files, which may result from an operation that
errored; so with OMF you should never be in doubt as to the validity and
use of the Oracle datafiles found on your file system.

3.5.2 Bigfiles and Big Databases

Some data warehouses use terabytes of storage, and this means that the
database will consist of some very large datafiles. On many systems the sizes
of these files can be limited, and that results in a larger number of smaller
files, which consequently necessitate careful management. However, on
operating systems that support large files, Oracle is able to offer the facility
to use them in the database and replace the many files with a significantly
smaller number of much larger files.

Bigfile tablespaces are exactly that: tablespaces with a single, very large
datafile. A bigfile tablespace using 8K-sized blocks can have up to a 32 ter-
abyte datafile; if 32K block sizes are used, then this increases to a datafile
size of 128 terabytes. Since the database can have up to 65,536 datafiles
then the database size supported by Oracle Database 10g is extremely large
at 8 exabytes. Bigfile tablespaces are intended to be used with locally man-
aged tablespaces (which track space usage information in the tablespace
rather than in the Data Dictionary) and with ASM (to handle the underly-
ing mirroring and striping). Large files must obviously be supported on
your underlying operating system for bigfiles to be used.

A bigfile tablespace is created simply by including the keyword bigfile in
the create tablespace command:

CREATE BIGFILE TABLESPACE data_ts SIZE 20G;

Bigfile tablespaces can be resized and set to autoextend, as per normal,
but now this is done by controlling the tablespace and not the datafile—for
example:

ALTER TABLESPACE data_ts AUTOEXTEND ON;

TEAM LinG - Live, Informative, Non-cost and Genuine!

3.6 Summary 111

Chapter 3

3.6 Summary

In this chapter, we have looked at the range of architectures available for
our data warehouse and provided information to help you decide which is
the one that is most appropriate for your business. At the hardware level,
you should now have an appreciation of the storage issues and options
available both inside and outside of the data warehouse. Within the data-
base, you should now also be familiar with Oracle features to aid in the
administration and use of these storage options.

A well-designed warehouse, making proper use of these features, can
deliver excellent query performance for large amounts of data. In the next
chapter, we will discuss the physical database design of the various schema
objects and how these make use of the underlying technical architecture.

TEAM LinG - Live, Informative, Non-cost and Genuine!

113

4

Physical Design of the Data Warehouse

4.1 Introduction

In the previous chapters, we discussed the high-level architecture of a data
warehouse and logical design concepts such as dimensional modeling. We
also gave an overview of creating the database and all the different struc-
tures you will encounter in designing your database. Due to the large vol-
umes of data handled by a data warehouse, it is important to have a physical
design that supports both efficient data access and efficient data storage. In
this chapter, we will discuss various techniques for physical design, such as
partitioning and indexing, to improve the data access performance in a data
warehouse. We will also discuss data compression, which can help reduce
the storage requirements in a data warehouse.

4.2 Data Partitioning

We will begin this chapter by discussing data partitioning, a technique you
are very likely to use in your data warehouse, especially as the size of the
data grows, because it simplifies data maintenance and can improve query
performance.

Whenever any task seems daunting, breaking it up into smaller pieces
often makes it easier to accomplish. Imagine packing up your house and get-
ting ready to move: dividing it up room by room would make it easier. If
each member of the family packs a room at the same time, you could get the
entire house packed faster. This is the idea behind partitioning: It is a “divide
and conquer approach.” Database objects, such as tables, indexes and mate-
rialized views can be divided into smaller, more manageable partitions.

A significant benefit of partitioning the data is that it makes it possible
for data maintenance operations to be performed at the partition level.

TEAM LinG - Live, Informative, Non-cost and Genuine!

114

4.2

Data Partitioning

Many maintenance operations, such as loading data, building indexes,
gathering optimizer statistics, purging data, and backup and recovery can
be done at the granularity of a partition rather than involving the entire
table or index.

Another benefit of partitioning a table is that it can improve
performance of queries against that table. If a table is partitioned, the query
optimizer can determine if a certain query can be answered by reading only
specific partitions. Thus, an expensive full table scan can be avoided. This
feature is known as

Partition Elimination

or

 Dynamic Partition Prun-
ing

. For example, if a sales fact table were partitioned by month, and a
query asked for sales from December 1998, the optimizer would know
which partition the data was stored in and would just read data from that
partition. All other partitions would be eliminated from its search. Partition
pruning in conjunction with other query execution techniques, such as par-
tition-wise join and parallel execution, discussed in Chapter 6, can dramat-
ically improve response time of queries in a data warehouse.

Finally, partitioning can also improve the availability of the data ware-
house. For example, by placing each partition on its own disk, if one disk
fails and is no longer accessible, only the data in that partition is unavailable
and not the entire table. In this situation, Oracle can still process queries
that continue to access just the available disks; only those queries that access
the failed disk will give an error. Similarly, while maintenance operations
are being performed on one partition, users can continue to access data
from the other partitions in the table.

4.2.1 How to Partition Data?

Partitioning should be considered for large tables, over 2GB in size. Parti-
tioning is also useful for tables that have mostly read-only historical data. A
common example is a fact table containing a year’s worth of data, where
only the last partition has data that can change and the other partitions are
read-only.

A table can be partitioned using a column called the

partition key

,
whose value determines the partition into which a row of data will be
placed. In general, any column of numeric, character, or date data type can
be used as a partition key; however, you cannot partition a table by a
LONG or LOB column.

All partitions of a table or index have the same logical attributes, such as
columns and constraints, but can have different physical attributes, such as
the tablespace they are stored in.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.2

Data Partitioning 115

Chapter 4

Oracle Database 10g provides several methods to partition your tables:

�

By ranges of data values (range partitioning)

�

By via a hash function (hash partitioning)

�

By specifying discrete values for each partition (list partitioning)

�

By using a combination of these methods (composite partitioning)

We will now discuss each of these in detail.

4.2.2 Range Partitioning

One of the most frequently used partitioning methods is range partition-
ing, where data is partitioned into nonoverlapping ranges of data. In range
partitioning, each partition is defined by specifying the upper bound on the
values that the partition-key column can contain. As each row gets inserted
into the table, it is placed into the appropriate partition based on the value
of the partition key column. Range partitioning is especially suitable when
the partition-key is continuous, such as time. It allows the optimizer to per-
form partition pruning for queries asking for a specific value or a range of
partition-key values.

Figure 4.1 shows a table partitioned by range, using the TIME_KEY as
the partition key. Each partition has data for one month and is stored in its
own tablespace.

Figure 4.1

Range Partitioning by MONTH

TEAM LinG - Live, Informative, Non-cost and Genuine!

116

4.2

Data Partitioning

The SQL that would create this partitioned table is shown in the follow-
ing code. The VALUES LESS THAN clause specifies the upper bound on
the partition-key values in that partition. The lower bound is specified by
the VALUES LESS THAN clause of the previous partition, if any. In our
example, the purchases_feb_2003 partition has data values with time_key
>= '01-FEB-2003' and < '01-MAR-2003'.

CREATE TABLE easydw.purchases

(product_id varchar2(8),

 time_key date,

 customer_id varchar2(10),

 purchase_date date,

 purchase_time number(4,0),

 purchase_price number(6,2),

 shipping_charge number(5,2),

 today_special_offer varchar2(1))

PARTITION by RANGE (time_key)

 (partition purchases_jan2003

 values less than (TO_DATE('01-FEB-2003', 'DD-MON-YYYY'))

 tablespace purchases_jan2003,

 partition purchases_feb2003

 values less than (TO_DATE('01-MAR-2003', 'DD-MON-YYYY'))

 tablespace purchases_feb2003,

 partition purchases_mar2003

 values less than (TO_DATE('01-APR-2003', 'DD-MON-YYYY'))

 tablespace purchases_mar2003,

 partition purchase_catchall

 values less than (MAXVALUE)

 tablespace purchases_maxvalue);

Notice that the last partition in the PURCHASES table has a special
bound called MAXVALUE. This is an optional catchall partition, which
collects all rows that do not correspond to any defined partition ranges.

4.2.3 Hash Partitioning

With range partitioning, it is possible to end up with a situation where the
data is not evenly divided among the partitions. Some partitions may be
very large and others small. For example, if the data was partitioned by
month and some months experience peak sales (e.g., December due to
Christmas), then this would result in partitions that are very different in
size. When the data is skewed in this way, “hot spots” form where there is
contention for resources in one area.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.2

Data Partitioning 117

Chapter 4

Hash partitioning reduces this type of data skew by applying a hashing
function to the partitioning key. The resulting output value is used to deter-
mine which partition to store the row in. So instead of partitioning by
MONTH, if we hash partition the PURCHASES table by PRODUCT_ID,
all rows for a month would get scattered across several partitions, as shown in
Figure 4.2, resulting in more evenly sized partitions.

Notice that all products with the same PRODUCT_ID fall into the
same partition however, the user has no control or knowledge of which
products go into which partitions. You can only specify

how many

 parti-
tions you would like.

Hint:

To avoid data skew it is recommended that the number of hash parti-

tions be a power of 2.

In the following code, we illustrate the SQL required to create a hash-
partitioned table with four partitions using the PRODUCT_ID column as
the partitioning key.

CREATE TABLE easydw.purchases

 (product_id varchar2(8),

 time_key date,

 customer_id varchar2(10),

 purchase_date date,

 purchase_time number(4,0),

 purchase_price number(6,2),

 shipping_charge number(5,2),

 today_special_offer varchar2(1))

PARTITION BY HASH(product_id)

PARTITIONS 4;

Figure 4.2

Hash Partitioning by Product

TEAM LinG - Live, Informative, Non-cost and Genuine!

118

4.2

Data Partitioning

With hash partitioning, the optimizer can perform partition pruning if
the query is asking for a specific value or values of the partition key. For
example, if we had a query based on a specific product, such as “How many
tents did we sell each month?” the optimizer could determine which parti-
tion to look in to find “Tents.” However, if we had a query that asked for a
range of product ids, we would need to search all partitions.

Because hash partitioning reduces contention on the table, you may find
hash partitioning used in OLTP systems. However, recall that there is no
logical correlation between the partition and the values stored in it. In a
data warehouse maintenance operations often require knowledge of the
data values, such as deleting or archiving old data from the table. Hence, in
a data warehouse, hash partitioning is seldom used alone but instead is used
in conjunction with range partitioning. This technique is known as Com-
posite Partitioning and is discussed in section 4.2.5.

4.2.4 List Partitioning

In some cases, it may not be convenient to organize data into ranges of val-
ues. The data may not have a natural partitioning key such as time. For
business reasons, values that are far apart may need to be grouped together.
For instance, if we have sales data for the states of the United States, it is not
very easy to put data for all states in a given region, such as the Northeast,
into the same partition using range or hash partitioning. The partitioning
technique to solve this problem is List Partitioning, which allows data to be
distributed according to discrete column values. Figure 4.3 shows an exam-
ple of a list-partitioned table by discrete values of states.

Figure 4.3

List Partitioning by State

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.2

Data Partitioning 119

Chapter 4

The following SQL statement uses list partitioning to organize the
sales data by region. The last partition, which uses the keyword
DEFAULT, is a catchall partition that captures the rows that do not map
to any other partition.

CREATE TABLE easydw.regional_sales

(state varchar2(2),

 store_number number,

 dept_number number,

 dept_name varchar2(10),

 sales_amount number (6,2)

)

PARTITION BY LIST(state)

(

 PARTITION northeast VALUES ('NH', 'VT', 'MA', 'RI', 'CT'),

 PARTITION southeast VALUES ('NC', 'GA', 'FL'),

 PARTITION northwest VALUES ('WA', 'OR'),

 PARTITION midwest VALUES ('IL', 'WI', 'OH'),

 PARTITION west VALUES ('CA', 'NV', 'AZ'),

 PARTITION otherstates VALUES (DEFAULT));

List partitioning allows the query optimizer to perform partition prun-
ing on queries that ask for specific values of the partitioning key. For
instance, a query requesting data for Massachusetts (MA) or New Hamp-
shire (NH) only needs to access the Northeast partition.

4.2.5 Composite Partitioning

Oracle provides a two-level partitioning scheme known as composite parti-
tioning to combine the benefits of two partitioning methods. In composite
partitioning, data is divided into partitions using one partitioning scheme
and then each of those partitions is further subdivided into subpartitions
using another scheme. Currently, Oracle supports the following two types
of composite partitioning schemes:

�

Range-Hash

�

Range-List

Range-Hash Partitioning

We mentioned earlier that hash partitioning does not allow a user control
over the distribution of data. On the other hand, range partitioning suffers
from the potential problem of data skew. Range-Hash composite partition-
ing combines the benefits of both range and hash partitioning. The data is

TEAM LinG - Live, Informative, Non-cost and Genuine!

120

4.2

Data Partitioning

first partitioned by range and then further subdivided into subpartitions by
using a hash function. When partitioning by date, the last partition is often
a “hot spot.” Subpartitioning can eliminate such hot spots by placing each
subpartition on different tablespaces and on different physical devices if
required, thereby reducing the I/O contention.

In Figure 4.4, the data is first partitioned by the month and then further
partitioned by the product. Each partition has four subpartitions.

The SQL to create a composite partitioned table is shown in the follow-
ing code. The STORE IN clause allows you to name the tablespace where
each subpartition will reside. Each subpartition has been stored in its own
tablespace.

CREATE TABLE easydw.purchases

 (product_id varchar2(8),

 time_key date,

 customer_id varchar2(10),

 purchase_date date,

 purchase_time number(4,0),

 purchase_price number(6,2),

 shipping_charge number(5,2),

Figure 4.4

Range-Hash Composite Partitioning

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.2

Data Partitioning 121

Chapter 4

 today_special_offer varchar2(1))

PARTITION by RANGE (time_key)

SUBPARTITION BY HASH(product_id)

SUBPARTITIONS 4

 (partition purchases_jan2003

 values less than (TO_DATE('01-FEB-2003', 'DD-MON-YYYY'))

 STORE IN (purchases_jan2003_1,

 purchases_jan2003_2,

 purchases_jan2003_3,

 purchases_jan2003_4),

 partition purchases_feb2003

 values less than (TO_DATE('01-MAR-2003', 'DD-MON-YYYY'))

 STORE IN (purchases_feb2003_1,

 purchases_feb2003_2,

 purchases_feb2003_3,

 purchases_feb2003_4),

 partition purchases_mar2003

 values less than (TO_DATE('01-APR-2003', 'DD-MON-YYYY'))

 STORE IN (purchases_mar2003_1,

 purchases_mar2003_2,

 purchases_mar2003_3,

 purchases_mar2003_4));

To avoid data skew it is recommended that the number of hash subpar-
titions be a power of 2.

Range-List Partitioning

The Range-List composite partitioning method first range-partitions a table
by a continuous key, such as time_key, and then subpartitions each parti-
tion with discrete values, such as states. In the following example, we have a
SALES table range partitioned by MONTH and further list-partitioned by
STATE. A query that asks for sales for dates for the month of January for
the states in the Northeast region of the United States can be evaluated effi-
ciently if the sales table is partitioned using Range-List partitioning.

CREATE TABLE sales
(state varchar2(2),
 store_number number,
 dept_number number,
 dept_name varchar2(10),
 sales_amount number (6,2),
 sale_date date,
 item_number number (10)
)
PARTITION BY RANGE (sale_date)
SUBPARTITION BY LIST(state)
SUBPARTITION TEMPLATE

TEAM LinG - Live, Informative, Non-cost and Genuine!

122

4.2

Data Partitioning

(
 SUBPARTITION "NorthEast"
 VALUES ('NH', 'VT', 'MA', 'RI', 'CT')
 TABLESPACE sales_ne,
 SUBPARTITION "SouthEast"
 VALUES ('NC', 'GA', 'FL')
 TABLESPACE sales_se,
 SUBPARTITION "NorthWest"
 VALUES ('WA', 'OR')
 TABLESPACE sales_nw,
 SUBPARTITION "MidWest"
 VALUES ('IL', 'WI', 'OH')
 TABLESPACE sales_mw,
 SUBPARTITION "West"
 VALUES ('CA', 'NV', 'AZ')
 TABLESPACE sales_w)
(PARTITION sales_jan_2003
 VALUES LESS THAN (TO_DATE('01-FEB-2003', 'DD-MON-YYYY')),
 PARTITION sales_feb_2003
 VALUES LESS THAN (TO_DATE('01-MAR-2003', 'DD-MON-YYYY')),
 PARTITION sales_mar_2003
 VALUES LESS THAN (TO_DATE('01-APR-2003', 'DD-MON-YYYY')));

In this example, we show the use of the SUBPARTITION TEMPLATE
clause. The specification of Range-List partitioning can get quite verbose,
since you have to specify the detailed subpartition clause for each range par-
tition. It is common to have the same list subpartitioning within each of
your range partitions. In such cases, the SUBPARTITION TEMPLATE
makes it convenient to specify the same subpartition information for all
range partitions in the table. Oracle will generate the subpartition name
using a combination of the partition name and the name specified in the
template. It then generates the subpartitions according to the definition in
the template.

Hint:

The SUBPARTITION TEMPLATE clause can also be used when

defining Range-Hash partitioning.

The partition and subpartition information for a table can be obtained
from the USER_TAB_PARTITIONS and USER_TAB_SUBPARTITIONS
dictionary views. For our example, the partition and subpartition names are
as follows:

SELECT partition_name, subpartition_name

FROM user_tab_subpartitions

WHERE table_name = 'SALES';

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.2

Data Partitioning 123

Chapter 4

PARTITION_NAME SUBPARTITION_NAME

--------------------------- -------------------------

SALES_JAN_2003 SALES_JAN_2003_NorthEast

SALES_JAN_2003 SALES_JAN_2003_SouthEast

SALES_JAN_2003 SALES_JAN_2003_NorthWest

SALES_JAN_2003 SALES_JAN_2003_MidWest

SALES_JAN_2003 SALES_JAN_2003_West

SALES_FEB_2003 SALES_FEB_2003_NorthEast

SALES_FEB_2003 SALES_FEB_2003_SouthEast

SALES_FEB_2003 SALES_FEB_2003_NorthWest

SALES_FEB_2003 SALES_FEB_2003_MidWest

SALES_FEB_2003 SALES_FEB_2003_West

…

You can choose not to use the SUBPARTITION TEMPLATE but
instead explicitly specify the list subpartition values and names for each
range partition.

4.2.6 Multicolumn Partition Keys

A partition key used for range or hash partitioning can have multiple (up to
16) columns. Multicolumn partitioning should be used when the partition-
ing key is composed of several columns and subsequent columns define a
finer granularity than the preceding ones. We will illustrate this with an
example using range partitioning.

The following SQL creates a table with range partitioning using a multi-
column partitioning key, TIME_KEY, PRODUCT_ID.

CREATE TABLE easydw.purchases

(product_id varchar2(8),

 time_key date,

 customer_id varchar2(10),

 purchase_date date,

 purchase_time number(4,0),

 purchase_price number(6,2),

 shipping_charge number(5,2),

 today_special_offer varchar2(1))

PARTITION by RANGE (time_key, product_id)

 (

 partition purchases_jan2003_100

 values less than (TO_DATE('31-JAN-2003','DD-MON-YYYY'), 100)

 tablespace purchases_jan2003_100,

 partition purchases_jan2003_200

 values less than (TO_DATE('31-JAN-2003','DD-MON-YYYY'), 200)

 tablespace purchases_jan2003_200 ,

TEAM LinG - Live, Informative, Non-cost and Genuine!

124

4.2

Data Partitioning

 partition purchases_feb2003_all

 values less than (TO_DATE('28-FEB-2003','DD-MON-YYYY'), 100)

 tablespace purchases_feb2003,

 partition purchases_mar2003_all

 values less than (TO_DATE('31-MAR-2003','DD-MON-YYYY'), 100)

 tablespace purchases_mar2003

);

To understand how data gets mapped to partitions, let us now insert
some data values into this table and see which partitions they go into.

insert into purchases (product_id, time_key)

 values (1, TO_DATE('15-JAN-2003', 'DD-MON-YYYY'));

insert into purchases (product_id, time_key)

 values (150, TO_DATE('15-JAN-2003', 'DD-MON-YYYY'));

insert into purchases (product_id, time_key)

 values (101, TO_DATE('31-JAN-2003', 'DD-MON-YYYY'));

The first row obviously goes into the first partition. Intuitively, you
would expect that the second row with TIME_KEY = 15-JAN-2003 and
PRODUCT_ID = 150 would go into the second partition. However, this is
not the case. Let us issue the following query, which shows all the rows that
belong to the first partition. (Note the special PARTITION syntax, which
allows you to query data from a specific partition by specifying the partition
name.)

SELECT product_id, time_key

FROM purchases partition(purchases_jan2003_100);

PRODUCT_ID TIME_KEY

---------- -----------

1 15-JAN-2003

150 15-JAN-2003

What we find is that the row is actually in the first partition! The rea-
son for this is that the condition checked for the first partition is in fact
the following:

 (TIME_KEY < '31-JAN-2003')

OR (TIME_KEY = '31-JAN-2003' AND PRODUCT_ID < 100).

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.2

Data Partitioning 125

Chapter 4

In other words, the condition on the second column is checked only if
the value of the first column is

equal to

 the partition bound. Therefore, in
our example, the row with TIME_KEY = '15-JAN-2003' actually falls into
the first partition. On the other hand, the third row, which has TIME_KEY
= '31-JAN-2003' and PRODUCT_ID = 101, does not satisfy the condi-
tion for the first partition. It will go into the second partition, as shown by
the following query:

SELECT product_id, time_key

FROM purchases partition(purchases_jan2003_200);

PRODUCT_ID TIME_KEY

---------- -----------

101 31-JAN-2003

This is because the condition for the second partition is:

(time_key = '31-JAN-2003' and product_id < 200)

Multikey range partitioning can be useful if you have one TIME_KEY
value with lots of PRODUCT_ID values (e.g. lot of purchases may be made
on Christmas eve). In this case, you can use the second column to distribute
the data for the specific TIME_KEY value into multiple partitions.

Range partitioning with a multicolumn partition key must not be con-
fused with Range-Range composite partitioning. As of the time of writing,
Oracle does not support Range-Range composite partitioning. If it were
supported, the row with TIME_KEY = 15-JAN-2003 and PRODUCT_ID
= 150 would have mapped to the second partition in the previous example.

Now that we know all the partitioning methods, let us briefly review
how you would go about choosing the partitioning method.

4.2.7 Choosing the Partitioning Method

Range partitioning should be used when your table has a continuous key,
such as time. List partitioning is ideal for tables where you would like to
place specific discrete values in one partition. Hash partitioning distributes
data uniformly among all partitions and may be used alone or in combina-
tion with Range partitioning to avoid hot spots in the table. Finally, Range-
List partitioning can be used when the table stores data along multiple
dimensions, one continuous—for example, time—and the other discrete—
for example, product or geography.

TEAM LinG - Live, Informative, Non-cost and Genuine!

126

4.2

Data Partitioning

It is important to partition the data by a column that is not likely to
change. Consider if partitioning were done by PRODUCT_ID and the
business frequently changed the encoding scheme for its products. Every
time this change occurred, data would need to be moved to a different par-
tition, which can be a time-consuming operation.

In a data warehouse, it is a very common practice to partition by time.
For example, in EASYDW, we have range partitioned the PURCHASES
table by time_key, with each partition containing one month’s worth of
data. Partitioning by time allows us to perform a maintenance operation
called a

rolling window

 operation. This is a technique whereby the parti-
tioned table has a fixed number of partitions, each residing in its own
tablespace; as one set of partitioned data is aged out of the warehouse, this
frees a tablespace, which can be used to house the forthcoming partition
of data just being added. For example, assuming the PURCHASES table
contained one year’s worth of data, at the end of April 2004 we could add
a new partition with that month’s data and delete the data for April 2003.
Chapter 11 will discuss this technique for data maintenance in more
detail.

Next, we will look at Oracle Enterprise Manager, which provides simple
wizards to create partitioned tables.

4.2.8 Partitioning Using Oracle Enterprise Manager

In Chapter 2, we discussed the basic user interface to create a table, which is
available from the

Administration

 page of Oracle Enterprise Manager. The
create table interface has several tabs, which allow you to define the column
names, storage options, and constraints, which we have already discussed in
Chapter 2. In this section, we will take a look at the

Partitions

 tab, shown in
Figure 4.5.

Figure 4.5

Create Table: Partitions

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.2

Data Partitioning 127

Chapter 4

When you first get to this page, you will see a

Create

 button, which, when
clicked, will take you to the

Create Partitions

 screen shown in Figure 4.6. Here
you can choose the partitioning method: Range, Hash, List, Range-Hash, or
Range-List. In our example, we have chosen range partitioning.

The next step is to choose the partitioning column (or possibly multiple
columns for range partitioning). You will be shown a list of all the table col-
umns and a box for each, under the heading

Order

. For those columns that
you want to include in the partitioning key, you must enter their desired posi-
tion in the box. For instance, if we wanted to partition by PRODUCT_ID,
TIME_KEY, we would put a 1 in the Order box for PRODUCT_ID and 2
for TIME_KEY. In Figure 4.7, we have chosen to partition by TIME_KEY.

Figure 4.6

Choosing the Partitioning Method

Figure 4.7

Specifying the Partitioning Key

TEAM LinG - Live, Informative, Non-cost and Genuine!

128

4.2

Data Partitioning

For range partitioning using a single column partition key of date or
numeric type, this wizard provides a way to automatically generate the par-
tition bounds. You need only to specify the desired number of partitions,
the minimum value of the column, and the desired range of values in each
partition. For instance, in Figure 4.8, we have specified that we would like
five partitions with the earliest TIME_KEY value being 1/1/2003 and each
partition containing one month of data. Later, you will be given a chance to
edit the partition bounds and tablespaces; however, this is a very convenient
starting point.

The next screen (not shown here) asks you to pick tablespaces for the par-
titions. You can either specify a common tablespace for all partitions or a list
of tablespaces, which will be used in a round-robin fashion for the partitions.

The final screen, shown in Figure 4.9, shows the automatically gener-
ated partitions. Now you can edit partition names, bounds, and
tablespaces. You can also insert additional partitions or delete partitions.

Further, for each partition, you can click the

Advanced Options

 button,
which will bring you to the screen shown in Figure 4.10. Here you can
specify all the storage parameters and also indicate whether you would like
to turn on data segment compression, which we discussed previously. You
can also specify whether you would like to use the NOLOGGING option,
which will turn off redo logging during maintenance operations on that

Figure 4.8

Automatically Generating Range Partition Bounds

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.2

Data Partitioning 129

Chapter 4

partition; this can significantly improve performance. However, with the
NOLOGGING option you can no longer recover the data after a database
crash, so you must ensure that you have adequate backups of the data.

Figure 4.9

Editing Partition Definitions

Figure 4.10

Specifying Advanced Storage Options for a Partition

TEAM LinG - Live, Informative, Non-cost and Genuine!

130

4.2

Data Partitioning

If you chose any other partitioning method, the overall flow would be
very similar to what we have seen, except that you will not be able to gen-
erate partitioning bounds automatically. You must enter the bounds man-
ually in the final screen. For instance, Figure 4.11 shows a table using list
partitioning.

4.2.9 Partition Maintenance Operations

We mentioned earlier that partitioning simplifies data management in a
data warehouse. This is because you can manipulate partitions in various
ways to add, delete and reorganize data within the table more quickly than
performing individual INSERT or DELETE statements. Some of the oper-
ations you can perform with partitions are as follows:

�

ADD PARTITION to add a new empty partition to a table

�

DROP PARTITION to drop an entire partition for range or list par-
titioning

�

TRUNCATE PARTITION to quickly remove the contents of the
partition without dropping it

� MOVE PARTITION to change the tablespace or other physical
attributes of a partition

� SPLIT PARTITION to split one partition into two at a specified
boundary

Figure 4.11 List Partitioning

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.3 Indexing 131

Chapter 4

� MERGE PARTITION to merge two partitions into one

� EXCHANGE PARTITION to interchange the contents of a parti-
tion with those of a table

� COALESCE PARTITION to reduce the number of hash partitions

For composite partitions, similar operations are available at the subparti-
tion level also. These operations are available using the ALTER TABLE
SQL command. For example, to add a new partition to the PURCHASES
table, you would issue the following SQL:

ALTER TABLE purchases ADD PARTITION purchases_jan2005

values less than (TO_DATE('01-JAN-2005', 'DD-MON-YYYY'));

Using combinations of partition maintenance operations, you can speed
up loading new data and archiving old data in a data warehouse. We will
discuss various techniques using partition maintenance operations in Chap-
ter 11.

In this section, we have seen how use of partitioning provides great ben-
efits in a warehouse by improving query performance, manageability, and
availability of the data. Next we will discuss techniques for indexing a data
warehouse and how partitioning can be applied to indexes.

4.3 Indexing

Indexing has always been a very important technique for efficient query
processing in database systems. Unlike OLTP systems, which have mostly
update activity, data warehouses tend to read large amounts of data to
answer queries. Hence, it is important to understand the indexing needs of
a warehouse.

Deciding which indexes to create is an important part of the physical
design of a database. Indexes should be built on columns that are often part
of the selection criteria of a query. Columns that are frequently referenced
in the SQL WHERE clause are good candidates for indexing. Most deci-
sion support queries require specific rows from a dimension table, and so it
is important to have good indexing on the dimension tables.

For example, suppose we want to know how many customers we have in
the Northeast region, as shown in the following query. An index built on

TEAM LinG - Live, Informative, Non-cost and Genuine!

132 4.3 Indexing

the column REGION could be used to locate just those rows in the North-
east rather than reading every row in the table.

SELECT count(*) FROM customer WHERE region = 'Northeast';

An index is generally built on one or more columns of a table. These
columns are known as the index keys. For each key value, the index con-
tains a pointer to the location of the rows with that key value. Whenever
data in the table changes, the index is automatically updated to reflect the
changed data.

Oracle offers three types of indexes that are relevant to data warehousing:

� B*tree index

� Bitmap index

� Bitmap join index

4.3.1 B*tree Indexes

B*tree indexes are hierarchical structures that allow a quick search for a row
in a table having a particular value of the index keys. A B*tree index stores
pointers to rows of the table using rowids, which uniquely identify the
physical location of rows on disk. There are two varieties of B*tree indexes:

� Unique

� Nonunique

A unique index ensures that each row has a distinct value for its key—
no duplicates are allowed. A unique index is automatically created when a
PRIMARY KEY or UNIQUE constraint is enabled on a table. The follow-
ing SQL statement creates a unique index on the TIME_KEY column of
table TIME:

CREATE UNIQUE INDEX TIME_UK ON TIME(time_key);

B*tree indexes can also be nonunique. Nonunique indexes improve
query performance when a small number of rows are associated with each
column value. In the SQL statement for creating an index, if you do not
specify the UNIQUE keyword, the index is considered nonunique.

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.3 Indexing 133

Chapter 4

When multiple columns are used together in the WHERE clause, you
can build an index on that group of columns. Indexes made up of multiple
columns are called composite, multikey, or concatenated indexes. For
example, city and state are both needed to differentiate Portland, Maine,
from Portland, Oregon. The column that is used most frequently by itself
should be specified as the first column in the index. In the example, state
should be the leading column, since we can anticipate queries on state alone
or city and state used together.

Whenever a row is inserted, deleted, or when the key columns are
updated, the index is automatically updated to reflect the change. A B*tree
index is designed such that the time required to search any particular value
in the index is nearly constant. This design is called a balanced index. As
new index nodes are created, the B*tree is automatically rebalanced. Index
maintenance therefore adds overhead to the DML statement.

A B*tree index is most useful when the index key has many distinct val-
ues, each leading to a few rows in the table. For instance, a primary key
implies each value of the key corresponds to one row in a table. However, if
the index key column has only a few distinct values, then each value would
lead to retrieval of large numbers of rows in the table. This provides little, if
any, performance benefit. For instance, consider the query: How many
women who live in California buy tents? There are only two possible values
for the column GENDER. Since not all records with the same gender value
may be stored together, finding all the rows corresponding to women may
result in a random scan of nearly all data blocks in the table. In this case, a
full table scan may be more efficient. Also, for large tables, space require-
ments for B*tree indexes could become prohibitive.

Bitmapped indexes are designed to solve these problems and hence are
more commonly used in a warehouse.

4.3.2 Bitmapped Indexes

Bitmapped indexes are designed to answer queries involving columns with
few distinct values but potentially large numbers of rows for each value.
The number of distinct values of a column is known as its cardinality.
Unlike B*tree indexes, which store pointers to rows of the tables using row-
ids, a bitmapped index stores a bitmap for each distinct value of a column.

The bitmap for each distinct value has as many bits as the number of
rows in the table. The bit is set if the corresponding row has that value. Fig-
ure 4.12 shows a bitmapped index for the GENDER column (cardinality =
2, distinct values—M and F). Two bitmaps are created one for the value M

TEAM LinG - Live, Informative, Non-cost and Genuine!

134 4.3 Indexing

and one for the value F. In the bitmap for M, all rows with male customers
would have their bit set to 1 and all female customers would have their bit
set to 0.

Bitmapped indexes on two columns of a table can be combined effi-
ciently using the AND and OR Boolean operators. This allows them to be
used for queries involving multiple conditions on bitmapped columns of a
table. This gives the benefit that you can answer a wide variety of queries
with just a few single-column bitmapped indexes.

For instance, suppose we had a CUSTOMER table that contained the
customer name, gender, and occupation (teacher, engineer, self-employed,
housewife, doctor, etc.). We are looking at a new promotion targeted
toward self-employed women and would like to find out the cities to target.
This can be expressed as a query:

SELECT customer_id, city

FROM customer

WHERE gender = 'F' AND occupation = 'Self-Employed';

Figure 4.13 shows the bitmap for the occupation column.

The gender bitmap defined in Figure 4.12 and the occupation bitmap
defined in Figure 4.13 can be combined, as shown in Figure 4.14, to
quickly determine the rows in the customer table that satisfy this query.

The SQL statement used to create the bitmapped index on the CUS-
TOMER.GENDER column is as follows:

Figure 4.12 Gender Bitmapped Index

Row Gender Male Bitmap Female Bitmap

1 M 1 0

2 F 0 1

3 M 1 0

4 M 1 0

5 M 1 0

6 F 0 1

7 M 1 0

8 M 1 0

9 F 0 1

10 M 1 0

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.3 Indexing 135

Chapter 4

CREATE BITMAP INDEX easydw.customer_gender_index

ON customer(gender) tablespace indx;

Bitmapped indexes are automatically compressed and therefore require
much less space than a corresponding B*tree index. The space savings can
be significant if the number of distinct values of the bitmap is small com-
pared with the number of rows in the table.

The main disadvantage of bitmapped indexes is that they are expensive
to maintain when the data in the table changes. This is because the bitmaps
must be uncompressed, recompressed, and possibly rebuilt. Bitmapped
index maintenance is optimized for the common case of loading new data
into a warehouse via bulk insert. In this case, existing bitmaps do not need
change and are simply extended to include the new rows. In Oracle

Figure 4.13 Occupation Bitmapped Index

Row Occupation Teacher Engineer Self-Employed Housewife

1 Teacher 1 0 0 0

2 Engineer 0 1 0 0

3 Teacher 1 0 0 0

4 Teacher 1 0 0 0

5 Engineer 0 1 0 0

6 Self-Employed 0 0 1 0

7 Self-Employed 0 0 1 0

8 Housewife 0 0 0 1

9 Engineer 0 1 0 0

10 Housewife 0 0 0 1

Figure 4.14 Using a Bitmapped Index: How Many Customers Are Self-Employed Women?

Row Female Self-Employed Result

1 0 0 0

2 1 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 1 1 1 (Self-Employed Woman)

7 0 1 0

8 0 0 0

9 1 0 0

10 0 0 0

TEAM LinG - Live, Informative, Non-cost and Genuine!

136 4.3 Indexing

Database 10g, enhancements have been done to improve the performance
and space utilization of bitmapped indexes even when DML other than
bulk loads is done to the tables.

Another difference between B*tree and bitmapped indexes is that if a
B*tree index updates a row, it only locks that particular row; however, with
bitmapped indexes, a large part of the bitmap may need to be locked. Thus,
bitmapped indexes reduce the concurrency in the system, and so bitmapped
indexes are not suited for systems with lots of concurrent update activity.
High update activity is generally not a characteristic of data warehouses and
hence bitmapped indexes are very common there.

4.3.3 Bitmapped Join Indexes

A bitmapped join index is a bitmapped index that is created as the result of
a join between a fact table and one or more dimension tables. To illustrate
the concept of bitmapped join indexes, consider the following query, that
asks the question: How much did women spend in our store?

SELECT sum(p.purchase_price)

FROM purchases p, customer c

WHERE p.customer_id = c.customer_id

 AND c.gender = 'F';

We could create a bitmapped index on the CUSTOMER.GENDER
column, as discussed in the previous section, to find those customers who
are women quickly. However, we would still need to compute the join
between PURCHASES and CUSTOMERS to find the total purchases
made by women.

Instead, if we take the answer to the join and then create a bitmap to
identify rows corresponding to purchases made by men and women, we get
a bitmapped join index. Figure 4.15 shows the answer to the join between
PURCHASES and CUSTOMER table (only first 10 rows are shown).

The bitmapped join index has two bitmaps one for the value male and
another for the value female, as shown in Figure 4.16. Each row in the bit-
map corresponds to a single row in the PURCHASES table. Thus, we can
immediately identify the rows for purchases made by women from the bit-
map for value female.

The bitmapped join index on PURCHASES, joined with CUS-
TOMER, is created using the following SQL statement. The joining tables
and their join conditions are specified using the FROM and WHERE

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.3 Indexing 137

Chapter 4

clauses, similar to those in a SELECT statement. The table on which the
index is built is specified by the ON clause, as with any other index.

CREATE BITMAP INDEX easydw.purchase_cust_index

ON

purchases (customer.gender)

FROM purchases, customer

WHERE purchases.customer_id = customer.customer_id;

We can immediately note some differences between a bitmapped index
and a bitmapped join index. While a bitmapped index is created on col-

Figure 4.15 Join on Purchases and Customer Tables

Row Customer_id Gender Purchase_price

1 AB123456 F 28.01

2 AB123457 F 28.01

3 AB123457 F 28.01

4 AB123457 F 28.01

5 AB123456 F 67.23

6 AB123457 F 67.23

7 AB123458 M 67.23

8 AB123459 M 67.23

9 AB123460 F 67.23

10 AB123461 M 50.71

…

Figure 4.16 Bitmap Join Index on Purchases and Customer on Customer.gender Column

Row Gender Male Bitmap Female Bitmap

1 F 0 1

2 F 0 1

3 F 0 1

4 F 0 1

5 F 0 1

6 F 0 1

7 M 1 0

8 M 1 0

9 F 0 1

10 M 1 0

…

TEAM LinG - Live, Informative, Non-cost and Genuine!

138 4.3 Indexing

umns of a single table, a bitmapped join index is built on the fact table
(PURCHASES), but the index columns are from dimension tables (CUS-
TOMER).

As with a bitmapped index, columns included in a bitmapped join
index must be low-cardinality columns. For a bitmapped join index to
make sense, the result of the join should have the same number of rows as
the fact table on which it is created (in our example, the PURCHASES
table). To ensure this, a unique constraint must be present on the dimen-
sion table column that joins it to the fact table (in our example, the CUS-
TOMER.CUSTOMER_ID column).

Bitmapped join indexes put some restrictions on concurrent DML
activity on the tables involved in the index, but, again, this is not a major
issue for data warehouse applications.

4.3.4 Function-based Indexes

One of the common problems with indexes is that if the query involves a
function on the indexed column, then the optimizer will not use the index.
To solve this problem, B*tree and bitmapped indexes can be created to
include expressions and functions involving table columns, instead of simple
such as columns as the index key. Such indexes are known as function-based
indexes. Function-based indexes are useful when your queries contain a pred-
icate with a function, such as TO_UPPER() or TO_NUMBER(), or an
expression such as PURCHASE_PRICE+SHIPPING_CHARGE. To be able
to index a function, the function must be deterministic or, in other words,
must return the same result every time it is called with the same arguments.
For example, the built-in SQL function SYSDATE, which returns the current
date, cannot be used, because it gives a different value every time it is invoked.

The following example shows a function-based index on the column
PRODUCT_ID and the column CATEGORY, with the UPPER function
applied to it to capitalize its contents.

CREATE INDEX prod_category_idx

ON product (product_id, UPPER(category));

The function that we use in our index can also be a user-defined PL/
SQL function, provided that it has been tagged as DETERMINISTIC, as
shown in the following example:

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.3 Indexing 139

Chapter 4

CREATE OR REPLACE FUNCTION TAX_RATE(state IN varchar2,

 country IN varchar2)

RETURN NUMBER DETERMINISTIC IS

BEGIN

 …

END;

/

This function, TAX_RATE, can now be used in an index, as shown in
the following example:

CREATE INDEX customer_tax_idx

ON customer (TAX_RATE(state, country));

When creating a bitmapped index with a function, just as with columns,
you must ensure that the function has low cardinality or, in other words, a
few possible output values; otherwise, a bitmapped index is not very useful.
At the time of writing, bitmapped join indexes did not allow functions.

In the next section, we discuss how partitioning can be applied to
indexes.

4.3.5 Partitioned Indexes

As with tables, B*tree and bitmapped indexes can also be partitioned. Ora-
cle allows a lot of flexibility in how you can partition B*tree indexes. A
B*tree index can be partitioned even if the underlying table is not. Con-
versely, you can define a nonpartitioned B*tree index on a partitioned table,
or partition the index differently than the table. On the other hand, a bit-
mapped index must be partitioned in the same way as the underlying table.

Partitioned indexes can be of two types:

� Global, where the index partitioning is possibly different from the
underlying table

� Local, where the index partitioning must be the same as the underly-
ing table

Global Indexes

A global index cannot be partitioned at all, or, if it is partitioned, it can
have a completely partition key different from the table. In a partitioned
global index, the keys in an index partition need not correspond to any spe-

TEAM LinG - Live, Informative, Non-cost and Genuine!

140 4.3 Indexing

cific table partition or subpartition. Global indexes can be partitioned using
range or hash partitioning methods. However, a partitioned global index
must have the partitioning key of the index as the leading column of the
index key.

Hint: Any index that is not partitioned is automatically considered a global
index.

Figure 4.17 shows a global index, PURCHASE_PRODUCT_INDEX,
on the PURCHASES table. Here, the PURCHASES table is partitioned by
TIME_KEY, but the index is partitioned by PRODUCT_ID. The leading
column of the index is also PRODUCT_ID.

The SQL used to create this index is as follows:

CREATE INDEX easydw.purchase_product_index on purchases

 (product_id)

 GLOBAL

 partition by range (product_id)

 (partition sp1000 values less than ('SP1000') ,

 partition sp2000 values less than ('SP2000') ,

 partition other values less than (maxvalue));

Figure 4.17 shows why global indexes may not be very efficient for
query processing. Since there is no correlation between the table and index
partitions, accessing a specific value in a table may involve access to several

Figure 4.17 Global Index on Product, Partitioned by product_id

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.3 Indexing 141

Chapter 4

or all of the index partitions. On the other hand, if you would like a unique
index, which does not include the partitioning key of the table, you will
have no choice but to use a global index.

Another reason why global indexes can be expensive is that when the
data in an underlying table partition is moved or removed using a partition
maintenance operation (see section 4.2.9), all partitions of a global index
are affected, and the index must be completely rebuilt. The shortcomings of
a global index are addressed by local indexes.

Local Indexes

Local indexes are the preferred indexes to use when a table is partitioned. A
local index inherits its partitioning criteria from the underlying table. It has
the same number of partitions, subpartitions, and partition bounds as the
table. Because the index is partitioned identically to the table, when a parti-
tion maintenance operation is done on the table, the identical operation is
also done on the index. Thus, when partitions are added, dropped, split, or
merged in the underlying table, the corresponding index partitions are
automatically modified by Oracle as part of the same statement. This makes
maintenance of the local index extremely efficient, since the entire index
does not need to be rebuilt, unlike a global index.

You can define a local index on a table using any of the available meth-
ods: range, hash, list, or composite partitioned.

Hint: You cannot define a partitioned bitmapped index unless the underly-
ing table is partitioned. Further, the bitmapped index must be a local index
(i.e., must be partitioned identically to the underlying table).

There are two types of local partitioned indexes:

� Prefixed

� Nonprefixed

Prefixed Local Indexes

If the partitioning key of the index appears as a leading column of the index
keys, it is called a prefixed index. For example, suppose the PURCHASES
table is partitioned by the TIME_KEY and the index columns are
(TIME_KEY, CUSTOMER_ID). The partitioning key, TIME_KEY, is a
prefix of the index key and hence this is a prefixed index. Figure 4.18 illus-
trates a prefixed local index.

TEAM LinG - Live, Informative, Non-cost and Genuine!

142 4.3 Indexing

Here is the SQL required to create this index: Note that the LOCAL
keyword must be specified; otherwise, the index will be considered a global
index. The local index follows the same partitioning scheme as the table,
but you can name the partitions and also the tablespace where each parti-
tion resides.

CREATE INDEX easydw.purchase_time_index

 ON purchases (time_key, customer_id)

local

 (partition indexJan2003 tablespace purchases_jan2003_idx,

 partition indexFeb2003 tablespace purchases_feb2003_idx,

 partition indexMar2003 tablespace purchases_mar2003_idx);

With this index, if we wanted to know the purchases made by a certain
customer in January, we need only to search the index partition
indexJan2003.

Nonprefixed Local Indexes

Local indexes that do not include the partitioning key as the leading col-
umn of the index key are known as nonprefixed local indexes. Such indexes
are useful when we would like to partition by one column for ease of main-
tenance but index on other columns for data retrieval. For instance, we may
want our indexes and tables to be partitioned by TIME_KEY, so that it is
easy to add a new month’s data and rebuild the index partition for that
month. However, to get good performance for queries for sales by
PRODUCT_ID, we need an index on PRODUCT_ID.

Figure 4.19 shows a local nonprefixed index on the PRODUCT_ID
column of the PURCHASES table. The partitioning scheme is the same as
that of the PURCHASES table (i.e., on the TIME_KEY column) however,

Figure 4.18 Prefixed Local Index on time_key

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.3 Indexing 143

Chapter 4

there is a separate search tree on the PRODUCT_ID column, correspond-
ing to each table partition.

The following example shows the SQL to create this local index:

CREATE BITMAP INDEX easydw.purchase_product_index

ON purchases (product_id)

LOCAL

 (partition indexJan2003 tablespace purchases_jan2003_idx,

 partition indexFeb2003 tablespace purchases_feb2003_idx,

 partition indexMar2003 tablespace purchases_mar2003_idx);

Note the difference between the local nonprefixed index on
PRODUCT_ID, shown in Figure 4.19, and the global index on
PRODUCT_ID, shown in Figure 4.17. In the local nonprefixed index,
there is a separate search tree for each table partition, and so, when search-
ing for sales of some product—say Tents the optimizer is not able to per-
form partition elimination and must search for the data for all months. On
the other hand, in the global index, there is one common search tree for all
the table partitions. Thus, in this case, a global index can in fact provide
better performance, because multiple index search trees do not need to be
probed. However, when searching for Tents sold in January, the optimizer
can indeed eliminate the February and March partitions of the index and so
the local index will perform better.

4.3.6 Which Indexes to Create?

An index improves performance of a query but is associated with two types
of costs: First, it takes up disk space, and, second, it takes time to maintain
when the underlying data changes.

Figure 4.19 Nonprefixed Local Index on Product, Partitioned by Month

TEAM LinG - Live, Informative, Non-cost and Genuine!

144 4.3 Indexing

Space requirements for indexes in a warehouse are often significantly
larger than the space needed to store the data, especially for the fact table
and particularly if the indexes are B*trees. Hence, you may want to keep
indexing on the fact table to a minimum. Typically, you may have one or
two concatenated B*tree indexes on the fact table; however, most of your
indexes should be bitmapped indexes. Bitmapped indexes on the foreign-
key columns on the fact table are often useful for star query transformation,
as discussed later in Chapter 6. Bitmapped indexes also take up much less
space than B*tree indexes and so should be preferred. On the other hand,
dimension tables are much smaller compared with the fact table and could
be indexed much more extensively. Any column of the dimension table that
is frequently used in selections or is a level in a dimension object (to be
described in Chapter 8) is a good candidate for indexing.

Typical warehouses have low update activity, other than when the ware-
house data is refreshed, and usually you would have control over when and
how the refresh is performed. Hence, a warehouse can have many more
indexes than an OLTP system; however, you must ensure that they fit
within the maintenance window you have for your data warehouse. When
loading new data, it is often faster to drop indexes and rebuild them com-
pletely after the load is complete.

The maintenance window will also dictate whether you use partitioned
indexes, which can be faster and easier to maintain.

Deciding between Local and Global Indexes

Local prefixed indexes are the most efficient type of indexes for query per-
formance, since the optimizer can make best use of partition elimination to
avoid looking at unnecessary partitions. Local indexes support efficient
index maintenance.

Use global indexes when local indexes cannot meet your requirements.
One such situation is if you need to create a unique index that does not
include the partitioning key of the table. Unique local indexes must include
the partitioning key of the table, and so in this case you have to use a global
index. Global indexes can also provide better performance than local non-
prefixed indexes for some queries, because multiple index search trees do
not have to be searched.

Need Help Deciding Which Indexes to Create?

Determining the optimum set of indexes needed in your data warehouse is
not an easy task, and you may need to adjust the indexes regularly to meet
your application’s needs. To help with this, Oracle Database 10g has a new

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.3 Indexing 145

Chapter 4

tool called the SQL Access Advisor, which will recommend the best set of
B*tree and bitmap indexes and materialized views (to be discussed in
Chapter 7) to create for your application workload. Materialized views and
indexes can go hand in hand in improving performance of queries.
Depending on the query, the best choice may be a materialized view or an
index, or a combination of both. Because indexes and materialized views
both occupy storage and need to be maintained, it is important to strike
the right balance between the two types of structures. Otherwise, you may
end up with redundant structures, which can be a drain on precious stor-
age and maintenance resources. The SQL Access Advisor is discussed in
detail in Chapter 10.

4.3.7 Using Oracle Enterprise Manager to
Create Indexes

The wizard to create indexes can also be found in the Administration section
of Oracle Enterprise Manager. Figure 4.20 shows the first screen of the wiz-
ard, where you can create either a bitmapped or B*tree index. Once you have
entered the table name, you can click the adjoining Populate Columns button
to display a list of available columns. You can then indicate the columns you
would like to include in the index by specifying their ordinal position in the
index key. For example, in Figure 4.20 we are creating an index on
(PRODUCT_ID, TIME_KEY) of the PURCHASES table. It is not possible
to create a function-based index through this wizard at this time.

Figure 4.20 Creating an Index

TEAM LinG - Live, Informative, Non-cost and Genuine!

146 4.3 Indexing

Notice that in Figure 4.20 near the Tablespace box there is a button Esti-
mate Index Size. If you click this button, Oracle will estimate the storage the
index would occupy once created. For this computation to be done, you
must have at least specified the index columns. However, if you have speci-
fied storage options, such as the tablespace name and the PCTFREE value,
you will get a more accurate figure.

If you click on the Options tab in Figure 4.20, you will be able to set var-
ious index options, as shown in Figure 4.21. These options include whether
to build the index in parallel, with the specified degree of parallelism and
whether to do index key compression. You can indicate if the data for the
index is already sorted, which will speed up creation of the index.

If you are creating a partitioned index, you can define the index parti-
tions by clicking on the Partitions tab. You will get the screen shown in Fig-
ure 4.22, with the Enable Partitioning box unchecked. Once you check this
box, you will be able to choose the partitioning method: Local, Global
Range, or Global Hash. If you choose local, recall that the partition bounds
are identical to that on the underlying table. You can, therefore, either use
default partition names and tablespaces (which are same as for the table) or
choose Override Partition Defaults to edit them, as shown in Figure 4.22.

If you choose global partitioning, you will get the screen shown in Figure
4.23. You must first choose the partitioning key and specify the number of

Figure 4.21 Setting Index Options

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.3 Indexing 147

Chapter 4

partitions. Once you have done this, click the Add button to get a list of par-
titions with default names. You can then specify the partition bounds (for
range partitioning) and edit the partition names and the tablespaces to use.

Figure 4.22 Partitioning an Index

Figure 4.23 Global Partitioning

TEAM LinG - Live, Informative, Non-cost and Genuine!

148 4.4 Index-Organized Tables

Once you have chosen all the options, you can click OK to create the
index. The Show SQL button can be used to see the SQL statement for the
index.

4.4 Index-Organized Tables

An index-organized table (IOT) is an alternative way to store data. An IOT
requires that the table have a primary key. In a normal table, known as a
heap-organized table, the data is stored without maintaining any specific
order among rows. If you create a primary-key B*tree index on this table,
the index will store the index key columns and store rowids to point to the
table rows. Thus, the indexed columns are redundantly stored in both the
table and the index. On the other hand, in an index-organized table, the
table columns that form the primary key are directly stored in a B*tree
index structure (i.e., there is no separate table as such). Due to the index, an
index-organized table stores data ordered according to the primary key.
Because the primary-key columns are not stored redundantly, an index-
organized table can save storage space.

Figure 4.24 shows a conceptual picture of a heap-organized table with a
primary key and the equivalent index-organized table. In the heap-organ-
ized table, the index leaf blocks store rowids, which point to the table rows.
In the index-organized table, the index leaf blocks store the table columns,
category, and description.

Figure 4.24 Heap-Organized versus Index-Organized Table

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.4 Index-Organized Tables 149

Chapter 4

To keep the index to a reasonable size, only columns that are likely to be
used for querying should be kept in the index. Columns that are not often
used for querying are stored separately in an area known as an overflow seg-
ment. Access to columns in the overflow segment will be slower. In Figure
4.24, the detailed specs column has been placed in an overflow segment.

4.4.1 Creating an IOT

To create an IOT, you must specify the ORGANIZATION INDEX clause
in the create table statement. When creating the index, you can specify the
columns to include in the index using the INCLUDING clause. All other
columns will be stored in the overflow segment. The following example
shows the SQL to create an index-organized table:

CREATE TABLE prodcat

(product_id number,

 category varchar2(10),

 description CLOB,

 detailed_specs BLOB,

 constraint pk_prodcat PRIMARY KEY(product_id)

)

ORGANIZATION INDEX

INCLUDING category

PCTTHRESHOLD 30

TABLESPACE prodcat_idx

STORAGE (INITIAL 8k NEXT 8k PCTINCREASE 10)

OVERFLOW

STORAGE

(INITIAL 16k NEXT 16k PCTINCREASE 10);

The INCLUDING clause indicates that all columns after CATE-
GORY—namely, DESCRIPTION and DETAILED_SPECS—should be
placed in the overflow segment. Notice that there are two separate storage
clauses: one for the index segment and one for the overflow segment. You
can also specify a threshold value, known as PCTTHRESHOLD, which
indicates the maximum percentage of an index block to use to store non-
primary-key index columns. For each row, all columns that fit within the
threshold will get stored in the index segment, and the remaining will go
into the overflow segment. In this example, the PCTTHRESHOLD value
has been set to 30 percent.

Note that if the PCTTHRESHOLD value is not large enough to hold
the primary key, or if you have not specified an overflow segment and it is
needed, you will get an error.

TEAM LinG - Live, Informative, Non-cost and Genuine!

150 4.4 Index-Organized Tables

If you use Oracle Enterprise Manager to create your tables, one of the
very first choices you will need to make is whether you would like to create
a heap- or index-organized table, as shown in Figure 4.25.

4.4.2 Partitioning and Indexing an IOT

With Oracle 9i and 10g, IOTs have been significantly enhanced and now
support nearly all features that normal tables do. For example, you can par-
tition an IOT with range, hash, and list partitioning. However, at this time,
composite partitioning for an IOT is not supported. You can create B*tree
and bitmapped indexes on an IOT. These indexes are known as secondary
indexes and can be partitioned or nonpartitioned.

To create a bitmapped index on an IOT, the IOT must have a mapping
table that maps logical rowids to physical ones. You can add a mapping
table clause to the CREATE TABLE or add one later, as shown in the fol-
lowing examples:

-- create mapping table

ALTER TABLE prodcat MOVE MAPPING TABLE;

-- change mapping table storage options

ALTER TABLE prodcat MAPPING TABLE allocate extent (size 16k);

Figure 4.25 Choosing Table Organization—Heap versus Index

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.5 Data Compression 151

Chapter 4

4.4.3 Using an IOT in a Data Warehouse

In a data warehouse, an IOT can be useful when you have dimension tables
or lookup tables, such as product catalogs, where a small number of col-
umns form a primary key and are used for querying, whereas other col-
umns, such as product specifications or photos, are not frequently used and
occupy, significant amount of space. To keep the index small, these non-key
columns should be stored in the overflow segment of the index.

IOT organization for the fact table is not very common, because the fact
table typically does not have a primary key. Another reason is that a fact table
usually has several non-primary-key measure columns, which are frequently
accessed, and therefore the space advantages of an IOT may not be realized.
There are also a couple of other key differences between regular tables and
IOTs, which make them somewhat unsuitable as fact tables. The primary key
constraint on an IOT cannot be deferred or disabled. Checking validity of a
constraint is a time-consuming operation, and, hence, when loading new data
into the data warehouse, it is common practice to defer or disable all con-
straints and enable them only after the load is complete. This cannot be done
if the fact table is an IOT, which can make the load process more expensive.
Also, IOTs do not have physical rowids, which are necessary to use some
refresh features of materialized views (see Chapter 7).

4.5 Data Compression

With the vast amount of data that has to be stored in the data warehouse,
considerable demands can be placed on storage. Therefore, you should use
data compression techniques whenever possible to reduce your storage
requirements. Oracle performs data compression in a variety of ways to
reduce the storage occupied by indexes and tables. The benefits of compres-
sion are greatest when the data has many repeated values (such as tables
with foreign keys) and if data values are not updated frequently.

4.5.1 Table Compression

Oracle 9i, Release 2, introduced a technique for table compression known
as data segment compression. In the Oracle database, data is stored in seg-
ments, each of which ultimately consists of data blocks: A data block can be
thought of as the smallest unit of storage in the database, by default, 8K in
size. Data segment compression compresses a table by identifying repeated
values of data within each data block and places them in a lookup table at
the beginning of the block. The data rows then point to the value in the

TEAM LinG - Live, Informative, Non-cost and Genuine!

152 4.5 Data Compression

lookup table. This can significantly reduce storage used when the data con-
tains large repeating values, especially strings. It is especially useful for
materialized views with aggregation, since the data values for the grouping
columns are often repeated. Data segment compression can be done for a
table or a partition of a table.

When a query is issued against a table compressed in this manner, Oracle
will automatically uncompress the rows to return the result. Even though
this may appear to be an additional overhead, it is not very significant and
will be far outweighed by the I/O savings due to the reduced table size.

Table compression should be considered only if the table rows are not
very likely to change. If new rows are added to a compressed table using a
conventional INSERT statement, the new data is not compressed effi-
ciently. Similarly, DELETE and UPDATE statements cannot maintain
compression efficiently. However, if data is added using DIRECT PATH
insert (using SQL Loader or an INSERT /*+APPEND */ statement), the
new data is inserted into new blocks, which can be compressed. Hence, seg-
ment compression is well suited for data warehousing environments that do
batch loads of data or for partitions that are mostly read-only.

To enable data segment compression you must specify the COMPRESS
keyword when creating a tablespace, a table, or individual partitions of a
range- or list-partitioned table. Note that data segment compression is not
available for hash-partitioned tables, and, therefore, if reducing storage is
your primary concern, you should consider an alternative scheme for parti-
tioning. Data segment compression is also not available for index-orga-
nized tables.

The following example shows a range-partitioned table, PURCHASES,
whose first three partitions are compressed. We have left the last one
uncompressed, because more data may be added to this partition.

CREATE TABLE easydw.purchases

(product_id varchar2(8),

 time_key date,

 customer_id varchar2(10),

 purchase_date date,

 purchase_time number(4,0),

 purchase_price number(6,2),

 shipping_charge number(5,2),

 today_special_offer varchar2(1))

PARTITION by RANGE (time_key)

(

 partition purchases_jan2003

 values less than (TO_DATE('01-FEB-2003', 'DD-MON-YYYY'))

TEAM LinG - Live, Informative, Non-cost and Genuine!

4.5 Data Compression 153

Chapter 4

 tablespace purchases_jan2003 COMPRESS,

 partition purchases_feb2003

 values less than (TO_DATE('01-MAR-2003', 'DD-MON-YYYY'))

 tablespace purchases_feb2003 COMPRESS,

 partition purchases_mar2003

 values less than (TO_DATE('01-APR-2003', 'DD-MON-YYYY'))

 tablespace purchases_mar2003 COMPRESS,

 partition purchases_catchall

 values less than (MAXVALUE)

 tablespace purchases_maxvalue NOCOMPRESS);

If you are adding a partition with segment compression for the first time
to a previously uncompressed partitioned table, you need to rebuild any
bitmapped indexes on that table.

Hint: To achieve better compression when adding data into a new parti-
tion, sort the data first so that repeating values appear in the same block as
much as possible.

You may want to merge and compress partitions corresponding to older
data, since they are not likely to change very much. This allows you to keep
more data on-line. For instance, at the end of each month, you could com-
press the last month’s partition if it is unlikely to receive further updates. To
change the compress attribute of a table you need to issue an ALTER
TABLE MOVE command. For example, to compress the PURCHASE_
CATCHALL partition of the PURCHASES table, you would issue:

ALTER TABLE purchases MOVE PARTITION purchases_catchall COMPRESS;

4.5.2 Index Compression

For B*tree indexes, Oracle performs key compression by storing only once
the common prefix of index key values in an index block. Index key com-
pression must be enabled using the COMPRESS keyword on the CREATE
INDEX statement. Key compression is also possible for the index underly-
ing an index-organized table.

For bitmapped indexes, the bitmap for each data value is automatically
compressed by Oracle. For columns whose cardinality is much less than the
number of rows in the table, the bitmaps tend to be dense (having a lot of
1s) and can be compressed greatly. Thus, a bitmapped index can occupy
much less space than the corresponding B*tree index.

TEAM LinG - Live, Informative, Non-cost and Genuine!

154 4.6 Summary

4.6 Summary

In this chapter, we have discussed various considerations and techniques for
physical design of a data warehouse. We saw how data partitioning can be
used to improve manageability, performance, and availability of a data
warehouse. We explored various index types that are suitable for a data
warehouse and how they can be partitioned. One factor that will signifi-
cantly influence your physical design choices is how data will be loaded into
the warehouse. In the next chapter, we will look in depth at this very impor-
tant aspect of a data warehouse.

TEAM LinG - Live, Informative, Non-cost and Genuine!

155

5

Loading Data into the Warehouse

5.1 The ETL Process

Populating a data warehouse involves all of the tasks related to getting the
data from the source operational systems, cleansing and transforming the
data to the right format and level of detail, loading it into the target data
warehouse, and preparing it for analysis purposes.

Figure 5.1 shows the steps making up the extraction, transformation,
and load (ETL) process. Data is extracted from the source operational sys-
tems and transported to the staging area. The staging area is a temporary
holding place used to prepare the data. The staging area may be a set of flat
files, temporary staging tables in the Oracle warehouse, or both. The data is
integrated with other data, cleansed, and transformed into a common rep-

Figure 5.1

The ETL Process

TEAM LinG - Live, Informative, Non-cost and Genuine!

156

5.1

The ETL Process

resentation. It is then loaded into the target data warehouse tables. Some-
times this process is also referred to as ETT—extraction, transportation,
and transformation.

During the initial population of the data warehouse, historical data is
loaded that could have accumulated over several years of business opera-
tion. The data in the operational systems may often be in multiple formats.
If, for instance, the point-of-sales operational system was replaced two years
ago, the current two years of history will be in one format, while data older
than two years will be in another format.

After the initial historical load, new transaction and event data needs to
be loaded on a periodic basis. This is typically done on a regular time sched-
ule, such as at the end of the day, week, or month. During the load, and
while the indexes and materialized views are being refreshed, the data is
generally unavailable to warehouse users for querying. The period of time
allowed for inserting the new data is called the

batch window

. The batch
window is a continuously shrinking amount of time as more businesses are
on-line for longer periods of time. Currently, with the ability to refresh the
warehouse in real time, or near real time, batch windows are becoming a
higher priority and requirement as businesses want and need to react to
changes in a more immediate fashion. Higher availability can be achieved
by partitioning the fact table. While data is loaded into a new partition, or
being updated in an existing partition, the rest of the partitions are still
available for use.

A large portion of the work in building a data warehouse will be devoted
to the ETL process. Finding the data from the operational systems, creating
extraction processes to get it out, transporting, filtering, cleansing, trans-
forming, integrating data from multiple sources, and loading it into the
warehouse can take a considerable amount of time.

If you are not already familiar with the company’s data, part of the diffi-
culty in developing the ETL process is gaining an understanding of the
data. One object can have different names in different systems. Even worse,
two different things could have the same name. It can be a challenge to dis-
cover all of this, particularly in a company where the systems are not well
documented. Each column in the target data warehouse must be mapped to
the corresponding column in the source system. Some of the data will be
mapped directly; other data will need to be derived and transformed into a
different format.

Once the data is loaded into the warehouse, further processing to inte-
grate it with existing data, update indexes, gather statistics, and refresh

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.2

Extracting Data from the Operational Systems 157

Chapter 5

materialized views needs to take place prior to it being “published” as ready
for users to access. Once the data is published, it should not be updated
again until the next batch window, to ensure users do not receive different
answers to the same query asked at a different time.

5.2 Extracting Data from the Operational Systems

Once you have identified the data you need in the warehouse for analysis
purposes, you need to locate the operational systems within the company
that contain that data. The data needed for the warehouse is extracted from
the source operational systems and written to the staging area, where it will
later be transformed. To minimize the performance impact on the source
database, data is generally extracted without applying any transformations
to it.

Often the owners of the operational systems will not allow the ware-
house developers direct access to those systems but will provide periodic
extracts. These extracts are generally in the form of flat, sequential operating
system files, which will make up the staging area.

In order to extract the fields and records needed for the warehouse, spe-
cialized application programs may need to be developed. If the data is
stored in a legacy system, then these programs may require special logic—
for example, if written in COBOL—in order to handle things such as
repeating fields in the “COBOL occurs” clause. The data warehouse design-
ers need to work closely with the application developers for the OLTP sys-
tems that are building the extract scripts to provide the necessary columns
and formats of the data.

As part of designing the ETL process, you need to determine how fre-
quently data should be extracted from the operational systems. It may be at
the end of some time period or business event, such as at the end of the day
or week or upon closing of the fiscal quarter. It should be clearly defined
what is meant by the “end of the day” or the “last day of the week,” particu-
larly if you have a system used across different time zones. The extraction
may be done at different times for different systems and staged to be loaded
into the warehouse during an upcoming batch window. Another aspect of
the warehouse design process involves deciding which level of aggregation is
needed to answer the business queries. This also has an impact on which
and how much data is extracted and transported across the network.

Some operational systems may be in relational databases, such as Oracle
8

i

, 9

i

, or 10

g

; Oracle Rdb; DB2/MVS; Microsoft SQL Server; Sybase; or

TEAM LinG - Live, Informative, Non-cost and Genuine!

158

5.2

Extracting Data from the Operational Systems

Informix. Others may be in a legacy database format, such as IMS or Ora-
cle DBMS. Others may be in VSAM, RMS indexed files, or some other
structured file system.

If extracting and transporting the data from the source systems must be
done by writing the data to flat files, then there is also the issue of defining:

1. The file naming specification.

2. Which files constitute the batch—for example, if more than one
source table is being read from each source system, then data in
each table will probably be written to its own flat file. All of the
data extracted at the same time from the source system should
normally be batched together and transferred and loaded into the
data warehouse as a logical unit of work.

3. The method for transporting the files between the source system
and the warehouse—for example, is the data pushed from the
source system or pulled by the warehouse system? If FTP is being
used, then typically it may require a new operating system
account on the warehouse server if the source system is pushing
the data, but this new account will normally only be able to write
to a very restricted directory area that the warehouse load pro-
cesses can then read from.

Let’s consider the file naming convention, and, in particular, the situa-
tion if multiple different source systems provide their data using flat files.
With this situation, it is quite typical for the file naming convention to
incorporate the following:

1. The source system name

2. The date of extraction

3. A file batch number—particularly if there can be more than one
data extraction in a business day

4. The source table name

5. A single character indicator to show whether this is an original
extraction or a repeat—for example, if some corruption occurred
and the data had to be reextracted and resent

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.2

Extracting Data from the Operational Systems 159

Chapter 5

Alternatively, if you are able to access the source systems directly with-
out recourse to using flat files, you can retrieve the data by using a variety
of techniques, depending on the type of system it is. For small quantities
of data, a gateway such as ODBC can be used. For larger amounts of data,
a custom program directly connecting to the source database in the data-
base’s native Application Programming Interface (API) can be written.
Many ETL tools simplify the extraction process by providing connectivity
to the source.

5.2.1 Identifying Data That Has Changed

After the initial load of the warehouse, as the source data changes, the data
in the warehouse must be updated or refreshed to reflect those changes on a
regular basis. A mechanism needs to be put into place to monitor and cap-
ture changes of interest from the operational systems. Rather than rebuild-
ing the entire warehouse periodically, it is preferable to apply only the
changes. By isolating changes as part of the extraction process, less data
needs to be moved across the network and loaded into the data warehouse.

Changed data includes both new data that has been added to the oper-
ational system as well as updates and deletes to existing data. For example,
in the EASYDW warehouse, we are interested in all new orders as well as
updates to existing product information and customers. If we are no
longer selling a product, the product is deleted from the order-entry sys-
tem, but we still want to retain the history in the warehouse. This is why

surrogate keys

 are recommended for use in the data warehouse. If the
product_key is reused in the production system, it does not affect the data
warehouse records.

In the data warehouse, it is not uncommon to change the dimension
tables, because a column such as a product description may change. Part of
the warehouse design involves deciding how changes to the dimensions will
be reflected. If you need to keep one version of the old product description,
you could have an additional column in the table to store both the current
description and the previous description. If you need to keep all the old
product descriptions, you would have to create a new row for each change,
assigning different key values. In general, you should try to avoid updates to
the fact table.

There are various ways to identify the new or changed data. One tech-
nique to determine the changes is to include a time stamp to record when
each row in the operational system was changed. The data extraction pro-
gram then selects the source data based on the time stamp of the transac-

TEAM LinG - Live, Informative, Non-cost and Genuine!

160

5.2

Extracting Data from the Operational Systems

tion and extracts all rows that have been updated since the time of the last
extraction. For example, when moving orders from the order processing
system into the EASYDW warehouse, this technique can be used by
selecting rows based on the PURCHASE_DATE column, as illustrated
later in this chapter.

However, this technique does have some potential disadvantages:

1. If multiple updates have occurred to a record since the date and
time of the last extraction, then only the current version of the
record is read and not all of the interim versions. Typically, this
may not have a significant impact on the warehouse unless it is
necessary for analysis purposes to track all changes.

2. The query to select the changed data based on the time stamp can
have an impact on the source system.

3. If records are deleted in the source system, then this mechanism
is unsuitable because you cannot select a record that is no longer
present. Converting the delete into a “logical delete” by setting
a flag is normally not practical and involves considerable appli-
cation change. This is where the next technique using triggers
can help.

If the source is a relational database, triggers can be used to identify the
changed rows. Triggers are stored procedures that can be invoked before or
after an event, such as when an insert, update, or delete occurs on each
record. The trigger can be used to save the changed records into a separate
table from where the extract process can later retrieve the changed rows.
One advantage of triggers is that the same transaction is used for writing
the changed record to another table as is used to alter the source record
itself. If this transaction aborts and rolls back for any reason, then our
change record is also rolled back. However, be very careful of triggers in
high-volume applications, as they can add significant overhead to the oper-
ational system.

Sometimes it may not be possible to change the schema to add a time-
stamp or trigger. The system may already be heavily loaded, and you do not
want to degrade the performance in any way. Or the source may be a legacy
system, which does not have triggers. Therefore, you may need to use a file
comparison to identify changes. This involves keeping before and after
images of the extract files to find the changes. For example, you may need

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.2

Extracting Data from the Operational Systems 161

Chapter 5

to compare the recent extract with the current product or customer list to
identify the changes.

Changes to the metadata, or data definitions, must also be identified.
Changes to the structure of the operational system, such as adding or drop-
ping a column, impact the extraction and load programs, which may need
to be modified to account for the change.

5.2.2 Oracle Change Data Capture

Oracle Database 10

g

 uses a feature called

Change Data Capture

, often
referred to as CDC, to facilitate identifying changes when the source system
is also an Oracle 9

i

 or 10

g

 database. CDC was introduced in Oracle 9

i

 with
just the synchronous form, where generation of the change records is tied to
the original transaction. In Oracle Database 10

g

 the new asynchronous
form is introduced; this disassociates the generation of the change records
from the original transaction and reduces the impact on the source system
for collecting the change data. In this section, we will look at both forms
and work through examples of each mechanism.

With CDC, the results of all INSERT, UPDATE, and DELETE opera-
tions can be saved in tables called

change tables

.

The data extraction pro-
grams can then select the data from the change tables. CDC uses a publish-
subscribe interface to capture and distribute the change data, as illustrated
in Figure 5.2. The publisher, usually a DBA, determines which user tables
in the operational system are used to load the warehouse and sets up the
system to capture and publish the change data. A change table is created for
each source table with data that needs to be moved to the warehouse.

Figure 5.2

Change Data Capture Publish/Subscribe Architecture

TEAM LinG - Live, Informative, Non-cost and Genuine!

162

5.2

Extracting Data from the Operational Systems

The extract programs then

subscribe

 to the source tables; therefore,
there can be any number of subscribers. Each subscriber is given his or her
own view of the change table. This isolates the subscribers from each other
while they are simultaneously accessing the same change tables. The sub-
scribers use SQL to select the change data from their

subscriber views

.
They see just the columns that they are interested in and only the rows that
they have not yet processed. If the updates of a set of tables are dependent
on each other, the change tables can be grouped into a

change set

.

If, for
example, you had an order header and an order detail table, these two tables
would be grouped together in the same change set to maintain transactional
consistency. In order to create a change table, you must first, therefore, cre-
ate the parent change set. A

change source

 is a logical representation of the
source database that contains one or more change sets.

In Oracle 9

i

 only synchronous data capture existed, where changes on
the operational system are captured in real time as part of the source trans-
action. The change data is generated as DML operations are performed on
the source tables. When a new row is inserted into the user table, it is also
stored in the change table. When a row is updated in a user table, the
updated columns are stored in the change table.

The old values, new val-
ues, or both can be written to the change table.

When a row is deleted
from a user table, the deleted row is also stored in the change table. The
change data records are only visible in the change table when the source
transaction is committed.

Synchronous CDC is based on triggers, which fire for each row as the
different DML statements are executed. This simplifies the data extraction
process; however, it adds an overhead to the transaction performing the
DML. In Asynchronous Change Data Capture, which is introduced in
Oracle Database 10

g

, the capture of the changes is not dependent upon the
DML transaction on the source system. With asynchronous CDC, the
changes are extracted from the source system’s redo logs, which removes the
impact on the actual database transaction. The Oracle redo logs are special
files used by the database that record all of the changes to the database as
they occur. There are two forms of redo logs:

�

On-line redo logs

�

Archive redo logs

The on-line redo logs are groups of redo logs that are written to in a
round-robin fashion as transactions occur on the database. When a redo log

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.2

Extracting Data from the Operational Systems 163

Chapter 5

fills up, the database swaps to the next one, and if archiving of the logs is
turned on (which is practically a certainty on any production database),
then the database writes the completed redo log file to a specified destina-
tion where it can subsequently be safely stored. This is the archived redo
log. Asynchronous CDC reads redo logs to extract the change data for the
tables that we are interested in and therefore it is a noninvasive technique,
which does not need to alter the source schema to add triggers to tables.
The action of reading the logs in this fashion is often called mining the logs.
In addition, the mining of the log files for the change data is disassociated
from the source transaction itself, which reduces, but doesn’t remove, the
impact on the source system.

Asynchronous CDC needs an additional level of redo logging to be
enabled on the source system, which adds its own level of impact on the
source database, but this is much less than that of synchronous CDC.

Asynchronous CDC can be used in two ways:

1. HOTLOG, where the changes are extracted from the on-line
redo logs on the source database and then moved (by Oracle
Streams processes) into local CDC tables also in the source data-
base. The changed data in the CDC tables will still need to be
transported to our warehouse database.

2. AUTOLOG, where the changed data is captured from the redo
logs as they are moved between databases by the Log Transport
Services. The changes are then extracted from these logs and
made available in change tables on this other database. If this
other database is our data warehouse database, then, by using
AUTOLOG, we have removed the transportation step to make
our changed data available in the staging area of the warehouse.

Log Transport Services are a standard part of the operation of the data-
base—for example, they are used by Oracle Data Guard for moving the log
files to other servers in order to maintain standby databases and as such do
not add any additional impact to the source database operation.

The time between the change being committed by the transaction and it
being detected by CDC and moved into the change table is called the

latency of change

. This is smaller with the HOTLOG method than with
the AUTOLOG method. This is because HOTLOG is reading the on-line
redo logs and publishing to tables on the same source system, compared

TEAM LinG - Live, Informative, Non-cost and Genuine!

164

5.2

Extracting Data from the Operational Systems

with AUTO LOG, where the logs must first be switched and then trans-
ported between databases—in which case the frequency of transporting the
logs is the determining factor. For HOTLOG, mining the redo logs occurs
on a transaction-by-transaction basis when the source transaction commits.

Publishing Change Data

In the EASYDW warehouse, we are interested in all new orders from the
order-entry system. The DBA creates the change tables, using the
DBMS_CDC_PUBLISH.CREATE_CHANGE_TABLE procedure, and
specifies a list of columns that should be included. A change table contains
changes from only one source table.

In many of the examples in this chapter, we will use a schema named
OLTP, which represents a part of the operational database. In the following
example, the DBA uses the CREATE_CHANGE_TABLE procedure to
capture the changes to the columns from the ORDERS table in the OLTP
schema.

The next two sections provide an example of the two different methods
for setting up synchronous and asynchronous CDC and, following that, the
common mechanism for subscribing to the change data. To do this we are
going to use three new schemas:

�

OLTP for the owner of our warehouse source tables

�

OLTPPUB for the publisher of the change data that has occurred on
our OLTP tables

�

OLTPSUBSCR for the subscriber to the change data

Our source table for both methods is ORDERS, and the other two dif-
ferences between the methods to note are:

�

For synchronous, the change set is EASYDW_SCS and the change
table is ORDERS_SYNCH_CT

�

For asynchronous, the change set is EASYDW_ACS and the change
table is ORDERS_ASYNCH_CT

In the subscriber section, we will highlight what needs to change in
order to subscribe to the change data created by these two methods.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.2

Extracting Data from the Operational Systems 165

Chapter 5

From a DBA account, create the new accounts and create a source table
in the OLTP account:

CREATE USER oltp IDENTIFIED BY oltp

 DEFAULT TABLESPACE users

 TEMPORARY TABLESPACE temp

 QUOTA UNLIMITED ON users;

GRANT connect, resource TO oltp ;

CREATE USER oltpsubscr IDENTIFIED BY oltpsubscr

 DEFAULT TABLESPACE users

 TEMPORARY TABLESPACE temp

 QUOTA UNLIMITED ON users;

GRANT connect, resource TO oltpsubscr ;

CREATE USER oltppub IDENTIFIED BY oltppub

 QUOTA UNLIMITED ON SYSTEM

 QUOTA UNLIMITED ON SYSAUX;

GRANT CREATE SESSION TO oltppub;

GRANT CREATE TABLE TO oltppub;

GRANT CREATE TABLESPACE TO oltppub;

GRANT UNLIMITED TABLESPACE TO oltppub;

GRANT SELECT_CATALOG_ROLE TO oltppub;

GRANT EXECUTE_CATALOG_ROLE TO oltppub;

GRANT CREATE SEQUENCE TO oltppub;

GRANT CONNECT, RESOURCE, DBA TO oltppub;

CREATE TABLE oltp.orders

(order_id varchar2(8) NOT NULL,

 product_id varchar2(8) NOT NULL,

 customer_id varchar2(10) NOT NULL,

 purchase_date date NOT NULL,

 purchase_time number(4,0) NOT NULL,

 purchase_price number(6,2) NOT NULL,

 shipping_charge number(5,2) NOT NULL,

 today_special_offer varchar2(1) NOT NULL,

 sales_person_id varchar2(20) NOT NULL,

 payment_method varchar2(10) NOT NULL

)

TABLESPACE users ;

Synchronous CDC

For synchronous CDC, creation of the change set must use the predefined
change source, SYNC_SOURCE, which represents the source database.
The following PL/SQL block performs both of these steps:

TEAM LinG - Live, Informative, Non-cost and Genuine!

166

5.2

Extracting Data from the Operational Systems

BEGIN

 DBMS_CDC_PUBLISH.CREATE_CHANGE_SET

 (change_set_name =>'EASYDW_SCS',

 description => 'Synchronous Change set for EasyDW',

 change_source_name => 'SYNC_SOURCE'

);

 DBMS_CDC_PUBLISH.CREATE_CHANGE_TABLE

 (

 owner => 'oltppub',

 change_table_name => 'ORDERS_SYNCH_CT',

 change_set_name => 'EASYDW_SCS',

 source_schema => 'oltp',

 source_table => 'ORDERS',

 column_type_list =>

 'order_id varchar2(8),product_id varchar2(8),'

 ||'customer_id varchar2(10), purchase_date date,'

 ||'purchase_time number(4,0),purchase_price number(6,2),'

 ||'shipping_charge number(5,2), '

 ||'today_special_offer varchar2(1),'

 ||'sales_person varchar2(20), '

 ||'payment_method varchar2(10)',

 capture_values => 'both',

 rs_id => 'y',

 row_id => 'n',

 user_id => 'n',

 timestamp => 'n',

 object_id => 'n',

 source_colmap => 'y',

 target_colmap => 'y',

 options_string => 'TABLESPACE USERS'

);

END;

/

This script creates the change set EASYDW_SCS for changes to the
table ORDERS owned by account OLTP to publish the changes into the
change table ORDERS_SYNCH_CT owned by OLTPPUB. We must now
grant select privilege on the change table to the subscriber account, OLTP-
SUBSCR, so that it can see the contents of the table.

GRANT SELECT ON ORDERS_SYNCH_CT TO OLTPSUBSCR ;

When creating the change table, you must specify the column list,
which indicates the columns you are interested in capturing. In addition,
there are a number of other parameters that allow you to specify:

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.2

Extracting Data from the Operational Systems 167

Chapter 5

�

Whether you want the change table to contain the old values for the
row, the new values, or both

�

Whether you want a row sequence number, which provides the
sequence of operations within a transaction

�

The rowid of the changed row

�

The user who changed the row

�

The time stamp of the change

�

The object id of the change record

�

A source column map, which indicates the source columns that have
been modified

�

A target column map to track which columns in the change table
have been modified

�

An options column to append to a CREATE TABLE DDL statement

An application can check either the source column map or the target
column map to determine which columns have been modified.

A sample of the output will be seen later in the chapter. To see a list of
change tables that have been published, query the CHANGE_TABLES
dictionary table.

SQL> SELECT CHANGE_TABLE_NAME FROM CHANGE_TABLES;

CHANGE_TABLE_NAME

ORDERS_SYNCH_CT

The DBA then grants SELECT privileges on the change table to the
subscribers.

Asynchronous CDC

For the asynchronous CDC example, we will use the HOTLOG method,
where the change data is mined from the on-line redo logs of the source
system.

First, make sure that your source database is in ARCHIVELOG mode,
where the log files are being archived to a separate destination area on your
file system. It would be very unusual for a source production system not to
be already operating in archive log mode, because this is fundamental to

TEAM LinG - Live, Informative, Non-cost and Genuine!

168

5.2

Extracting Data from the Operational Systems

any recovery of the database in the event of failure. To put the database in
ARCHIVELOG mode, you will need to shut down the database and restart
it, as summarized in the following code segment. These commands are exe-
cuted from SQL*Plus using a sysdba account—for example, SYS:

shutdown immediate

startup mount

alter database archivelog ;

alter database open ;

Hint:

Simply changing the ARCHIVELOG mode like this may be fine on
a sandpit, test, or play system, but this operation can invalidate your back-
ups—so on any production or similarly important system, you will want to

redo your backups.

The next step requires altering the database in order to create the addi-
tional logging information into the log files.

ALTER DATABASE FORCE LOGGING;

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

ALTER TABLE oltp.orders

 ADD SUPPLEMENTAL LOG GROUP log_group_orders

 (order_id,product_id,customer_id,

 purchase_date,purchase_time,purchase_price,

 shipping_charge,today_special_offer) ALWAYS;

The FORCE LOGGING clause to the alter database statement specifies
that the database will always generate redo logs, even when database opera-
tions have been used with the NOLOGGING clause. This ensures that
asynchronous CDC always has the necessary redo log data to mine for the
changes. The SUPPLEMENTAL LOG DATA clause is adding minimal
supplemental logging, but this does not add a significant overhead to the
database performance and performing this enables the use of the Oracle log
mining features. This statement is creating an unconditional log group for
the data changes for those source table columns to be captured in a change
table. Without the unconditional log group, CDC records unchanged col-
umn values in UPDATE operations as NULL, making it ambiguous
whether the NULL means the value was unchanged or changed to be
NULL. With the unconditional log group, CDC records the actual value in
UPDATE operations for unchanged column values, so that a NULL always
means the value was changed to NULL.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.2

Extracting Data from the Operational Systems 169

Chapter 5

Asynchronous CDC utilizes Oracle Streams for the propagation of our
change data within the database and to use Streams we must be granted cer-
tain privileges. These privileges enable the user to use Streams and the
underlying Oracle Advanced Queue objects, such as queues, propagations,
and rules. Execute the following command from your SYSDBA (e.g., SYS)
account:

EXECUTE DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE

 (GRANTEE=>'oltppub');

Each source table must be instantiated with Oracle Streams in order that
Streams can capture certain information that it requires in order to record
the source table data changes. This is achieved from a DBA account by call-
ing the PREPARE_TABLE_INSTANTIATION procedure as shown here:

EXECUTE DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION

 (TABLE_NAME=>'oltp.orders');

Now we must create our change set, which we are going to call
EASYDW_ACS, using the predefined change source HOTLOG_SOURCE,
which represents the current redo log files of the source database. If we were
performing an AUTOLOG type of asynchronous CDC, then there would be
no predefined change source to be used in this step. Instead, the DBA on the
target staging database must define and create the change source using the
CREATE_AUTOLOG_CHANGE_SOURCE procedure in the DBMS_
CDC_PACKAGE. The call to this procedure uses:

1. The global name of the source database

2. The SCN number of the data dictionary build, which is deter-
mined by a call to DBMS_CAPTURE_ADM.BUILD() on the
source database

In order to interpret the redo logs—for example, in order to know
which internal reference number identifies what table—the log mining
functionality needs a version of the source system data dictionary. This
SCN number identifies a source system redo log, which contains the Log-
Miner dictionary and therefore the correct definition of the tables.

TEAM LinG - Live, Informative, Non-cost and Genuine!

170

5.2

Extracting Data from the Operational Systems

Execute the following from the OLTPPUB publisher account. This
command creates the change set and its associated Oracle Streams processes
but does not start them.

BEGIN

 DBMS_CDC_PUBLISH.CREATE_CHANGE_SET

 (

 change_set_name => 'EASYDW_ACS',

 description => 'Asynchronous Change set for purchases info',

 change_source_name => 'HOTLOG_SOURCE',

 stop_on_ddl => 'y');

END;

/

Now we can create the change table, ORDERS_CT, in the OLTPPUB
publisher account, which will contain the changes that have been mined from
the on-line redo log. Execute the following from the OLTPPUB account:

BEGIN

DBMS_CDC_PUBLISH.CREATE_CHANGE_TABLE

 (

 owner => 'oltppub',

 change_table_name => 'ORDERS_ASYNCH_CT',

 change_set_name => 'EASYDW_ACS',

 source_schema => 'OLTP',

 source_table => 'ORDERS',

 column_type_list =>

 'order_id varchar2(8),product_id varchar2(8),'

 ||'customer_id varchar2(10), purchase_date date,'

 ||'purchase_time number(4,0),purchase_price number(6,2),'

 ||'shipping_charge number(5,2),today_special_offer varchar2(1),'

 ||'sales_person varchar2(20), payment_method varchar2(10)',

 capture_values => 'both',

 rs_id => 'y',

 row_id => 'n',

 user_id => 'n',

 timestamp => 'n',

 object_id => 'n',

 source_colmap => 'n',

 target_colmap => 'y',

 options_string => 'TABLESPACE USERS');

END;

/

GRANT SELECT ON ORDERS_ASYNCH_CT TO OLTPSUBSCR ;

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.2

Extracting Data from the Operational Systems 171

Chapter 5

Finally, we will enable our change set EASYDW_ACS, which starts the
underlying Oracle Streams processes for moving our change data:

BEGIN

 DBMS_CDC_PUBLISH.ALTER_CHANGE_SET

 (

 change_set_name => 'EASYDW_ACS',

 enable_capture => 'y'

);

END;

/

To verify that everything is working, perform this simple test. Insert and
commit a record into your OLTP.ORDERS source table. After a few min-
utes you will be able to see the change record in the publisher table OLTP-
PUB.ORDERS_CT. We have now created the facility using database
asynchronous CDC mechanisms to capture changes on our ORDERS table
without needing to invasively alter the source schema to create triggers or
amend any application.

Subscribing to Change Data

The extraction programs create subscriptions to access the change tables. A
subscription can contain data from one or more change tables in the same
change set.

The ALL_SOURCE_TABLES dictionary view lists the source tables
that have already been published by the DBA. In this example, changes for
the ORDERS table in the OLTP schema have been published.

SQL> SELECT * FROM ALL_SOURCE_TABLES;

SOURCE_SCHEMA_NAME SOURCE_TABLE_NAME

------------------------------ ------------------

OLTP ORDERS

Creating a Subscription

There are several steps to creating a subscription.

1. Create a subscription.

2. List all the tables and columns the extract program wants to sub-
scribe to.

3. Activate the subscription.

TEAM LinG - Live, Informative, Non-cost and Genuine!

172 5.2 Extracting Data from the Operational Systems

The first step is to create a subscription. The following is performed
from the subscriber account OLTPSUBSCR. Note that for our example,
we are going to access the change data created by the asynchronous CDC
method via the EASYDW_ACS change set. If we wanted to access the syn-
chronous change data, then we would simply have to use the change set
that we created for synchronous CDC, i.e., EASYDW_SCS.

SQL> BEGIN

DBMS_CDC_SUBSCRIBE.CREATE_SUBSCRIPTION

 (SUBSCRIPTION_NAME => 'ORDERS_SUB',

 CHANGE_SET_NAME => 'EASYDW_ACS',

 DESCRIPTION => 'Changes to orders table');

END;

/

Next, specify the source tables and columns of interest using the SUB-
SCRIBE procedure. A subscription can contain one or more tables from
the same change set. The SUBSCRIBE procedure lists the schema, table,
and columns of change data that the extract program will use to load the
warehouse. In this example, the subscribe procedure is used to get changes
from all the columns in the ORDERS table in the OLTP schema. The sub-
scribe procedure is executed once for each table in the subscription, and in
this example we were only interested in changes from one table. However,
you could repeat this procedure to subscribe to changes to other tables in
the change set.

Instead of accessing the change tables directly, the subscriber creates a
subscriber view for each source table of interest. This is also done in the call
to the SUBSCRIBE procedure.

SQL> BEGIN

DBMS_CDC_SUBSCRIBE.SUBSCRIBE

 (SUBSCRIPTION_NAME => 'ORDERS_SUB',

 SOURCE_SCHEMA => 'oltp',

 SOURCE_TABLE => 'orders',

 COLUMN_LIST => 'order_id,product_id,'

 ||'customer_id, purchase_date,'

 ||'purchase_time,purchase_price,'

 ||'shipping_charge, today_special_offer,'

 ||'sales_person, payment_method',

 SUBSCRIBER_VIEW => 'ORDERS_VIEW'

);

END;

/

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.2 Extracting Data from the Operational Systems 173

Chapter 5

After subscribing to all the change tables, the subscription is activated
using the ACTIVATE_SUBSCRIPTION procedure. Activating a subscrip-
tion is done to indicate that all tables have been added, and the subscription
is now complete.

SQL> EXECUTE DBMS_CDC_SUBSCRIBE.ACTIVATE_SUBSCRIPTION

 (SUBSCRIPTION_NAME => 'ORDERS_SUB');

Once a subscription has been activated, as new data gets added to the
source tables it is made available for processing via the change tables.

Processing the Change Data

To illustrate how change data is processed, let us assume two rows are inserted
into the ORDERS table. As data is inserted into the ORDERS table, the
changes are also stored in the change table, ORDERS_ASYNCH_CT.

SQL> INSERT INTO oltp.orders

 (order_id,product_id,customer_id,

 purchase_date,

 purchase_time, purchase_price,shipping_charge,

 today_special_offer,

 sales_person_id,payment_method)

 VALUES ('123','SP1031', 'AB123495',

 to_date('01-JAN-2004', 'dd-mon-yyyy'),

 1031,156.45,6.95,'N','SMITH','VISA');

1 row created.

SQL> INSERT INTO oltp.orders

 (order_id,product_id,customer_id,

 purchase_date,

 purchase_time,purchase_price,shipping_charge,

 today_special_offer,

 sales_person_id,payment_method)

 VALUES ('123','SP1031','AB123495',

 to_date('01-FEB-2004', 'dd-mon-yyyy'),

 1031,156.45,6.95,'N','SMITH','VISA');

1 row created.

SQL> commit;

In order to process the change data, a program loops through the steps
described in the following text and illustrated in Figure 5.3. A change table
is dynamic; new change data is appended to the change table at the same

TEAM LinG - Live, Informative, Non-cost and Genuine!

174 5.2 Extracting Data from the Operational Systems

time the extraction programs are reading from it. In order to present a con-
sistent view of the contents of the change table, change data is viewed for a
window of source database transactions. Prior to accessing the data, the win-
dow is extended. In Figure 5.3, rows 1–8 are available in the first window.
While the program was processing these rows, rows 9–13 were added to the
change table. Purging the first window and extending the window again can
access rows 9–13.

Rather than accessing the change table directly, the program selects the
data from the change table using the subscriber view specified earlier in the
SUBSCRIBE procedure.

Step 1: Extend the window

Change data is only available for a window of time: from the time the
EXTEND_WINDOW procedure is invoked until the PURGE_WINDOW
procedure is invoked. To see new data added to the change table, the window
must be extended using the EXTEND_WINDOW procedure.

SQL> BEGIN

 DBMS_CDC_SUBSCRIBE.EXTEND_WINDOW

 (SUBSCRIPTION_NAME => 'ORDERS_SUB');

END;

/

Figure 5.3 Querying Change Data

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.2 Extracting Data from the Operational Systems 175

Chapter 5

Step 2: Select Data from the Subscriber View

In this example, the contents of the subscriber view will be examined.

SQL> describe ORDERS_VIEW

 Name Null? Type

 ----------------------- -------- ----------------

 OPERATION$ CHAR(2)

 CSCN$ NUMBER

 COMMIT_TIMESTAMP$ DATE

 RSID$ NUMBER

 SOURCE_COLMAP$ RAW(128)

 TARGET_COLMAP$ RAW(128)

 CUSTOMER_ID VARCHAR2(10)

 ORDER_ID VARCHAR2(8)

 PAYMENT_METHOD VARCHAR2(10)

 PRODUCT_ID VARCHAR2(8)

 PURCHASE_DATE DATE

 PURCHASE_PRICE NUMBER(6,2)

 PURCHASE_TIME NUMBER(4)

 SALES_PERSON VARCHAR2(20)

 SHIPPING_CHARGE NUMBER(5,2)

 TODAY_SPECIAL_OFFER VARCHAR2(1)

The first column of the output shows the operation: I for insert. Next,
the commit scn and commit time are listed. The new data is listed for each
row, and the row source id, indicated by RSID$, shows the order of the
statements in the transaction.

SQL> SELECT OPERATION$, CSCN$, COMMIT_TIMESTAMP$, RSID$,

 CUSTOMER_ID, ORDER_ID, PAYMENT_METHOD,

 PRODUCT_ID, PURCHASE_DATE, PURCHASE_PRICE,

 PURCHASE_TIME, SALES_PERSON, SHIPPING_CHARGE,

 TODAY_SPECIAL_OFFER

 FROM ORDERS_VIEW;

OP CSCN$ COMMIT_TIMESTAMP RSID$ CUSTOMER_ID

-- ---------- ---------------- ---------- -----------

ORDER_ID PAYMENT_METHOD PRODUCT_ID PURCHASE_DATE PURCHASE_PRICE PURCHASE_TIME

-------- -------------- ---------- ------------- -------------- -------------

SALES_PERSON SHIPPING_CHARGE TODAY_SPECIAL_OFFER

-------------------- --------------- -------------------

I 6848693 05-JUN-04 10001 AB123495

123 VISA SP1031 01-JAN-04 156.45 1031

 6.95 N

I 6848693 05-JUN-04 10002 AB123495

123 VISA SP1031 01-FEB-04 156.45 1031

 6.95 N

TEAM LinG - Live, Informative, Non-cost and Genuine!

176 5.3 Transforming the Data into a Common Representation

Step 3: Purge the Window

The window is purged when the data is no longer needed, using the
PURGE_WINDOW procedure. When all subscribers have purged their
windows, the data in those windows is automatically deleted.

SQL> EXECUTE DBMS_CDC_SUBSCRIBE.PURGE_WINDOW

 (SUBSCRIPTION_NAME => 'ORDERS_SUB');

Ending the Subscription

When an extract program is no longer needed, you can end the subscrip-
tion, using the DROP_SUBSCRIPTION procedure.

SQL> EXECUTE DBMS_CDC_SUBSCRIBE.DROP_SUBSCRIPTION

 (SUBSCRIPTION_NAME => 'ORDERS_SUB');

Transporting the Changes to the Staging Area

For synchronous and HOTLOG asynchronous CDC, now that the
changes have been captured from the operational system, they need to be
transported to the staging area on the warehouse database. The extract pro-
gram could write them to a data file outside the database, use FTP to copy
it, and SQL*Loader or external tables to load the change data into the
staging area. Alternatively, the changes could be written to a table and
moved to the staging area using transportable tablespaces. Both these tech-
niques are discussed later in this chapter. Of course, if we were using the
AUTOLOG form of asynchronous CDC, then we will have already
moved our changes to the warehouse database and into the staging area as
part of the CDC operation.

5.3 Transforming the Data into a
Common Representation

Once the data has been extracted from the operational systems, it is ready
to be cleansed and transformed into a common representation. Differences
between naming conventions, storage formats, data types, and encoding
schemes must all be resolved. Duplicates are removed, relationships are val-
idated, and unique key identifiers are added. In this section, various types of
transformations will be introduced; later in the chapter, we’ll see specific
examples of transformations.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.3 Transforming the Data into a Common Representation 177

Chapter 5

5.3.1 Integrating Data from Multiple Sources

Often the information needed to create a table in the warehouse comes
from multiple source systems. If there is a field in common between the sys-
tems, the data can be joined via that column.

Integrating data from multiple sources can be very challenging. Differ-
ent people may have designed the operational systems, at different times,
and using different styles, standards, and methodologies. They may use dif-
ferent technology (e.g., hardware platforms, database management systems,
and operating system software). If data is coming from an IBM mainframe,
the data may need to be converted from EBCDIC to ASCII or from big
endian to little endian or vice versa.

To compound the problem, there may not be a common identifier in
the source systems. For example, when creating the customer dimension,
there may not be a CUSTOMER_ID in each system. You may have to look
at customer names and addresses to determine that it is the same customer.
These may have different spacing, case, and punctuation. Oracle Ware-
house Builder helps address the customer deduplication problem.

5.3.2 Cleansing Data

The majority of operational systems contain some dirty data, which means
that there may be:

� Duplicate records

� Data missing

� Data containing invalid values

� Data pointing to primary keys that do not exist

Sometimes, business rules are enforced by the applications; other times,
by integrity constraints within the database; and sometimes there may be
no enforcement at all.

Data must be standardized. For example, any given street address, such
as 1741 Coleman Ave., can be represented in many ways. The word “Ave-
nue” may be stored as “Ave,” “Ave.,” “Avenue,” or “AVE.”. Search &
Replace transforms allow you to search for any of these values and replace
them with the standard value you’ve chosen for your warehouse.

TEAM LinG - Live, Informative, Non-cost and Genuine!

178 5.3 Transforming the Data into a Common Representation

You may want to check the validity of certain types of data. If a product
is sold only in three colors, you can validate that the data conforms to a list
of values, such as red, yellow, and green. This list may change over time to
include new values, for example in February 2002; the product may also be
available in blue. You may want to validate data against a larger list of values
stored in a table, such as the states within the United States.

Some types of cleansing involve combining and separating character
data. You may need to concatenate two string columns—for example,
combining LAST_NAME, comma, and FIRST_NAME into the
CUSTOMER_NAME column. Or you may need to use a substring oper-
ation to divide a string into separate parts, such as separating the area
code from a phone number.

An important data integrity step involves enforcement of one-to-one
and one-to-many relationships. Often these are checked as part of the trans-
formation process rather than by using referential integrity constraints in
the warehouse.

5.3.3 Deriving New Data

While loading the data, you may want to perform calculations or derive
new data from the existing data. For example, you may want to keep a run-
ning total or count of records as they are moved from the source to the tar-
get database.

During the design process, the appropriate level of granularity for the
warehouse is determined. It is often best to store data at various levels of
granularity with different retention and archive periods. The most fine-
grained transaction data will usually be retained for a much shorter period
of time than data aggregated at a higher level. Transaction granular sales
data is necessary to analyze which products are purchased together. Daily
sales of a product by store are used to analyze regional trends and product
performance.

Data may be aggregated as part of the transformation process. If you did
not want to store the detailed transactions in your data warehouse, the data
can be aggregated prior to moving it to the data warehouse.

5.3.4 Generating Warehouse Keys

Instead of using the keys that were used in the operational system, a com-
mon design technique is to make up a new key, called the surrogate or syn-

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.3 Transforming the Data into a Common Representation 179

Chapter 5

thetic key, to use in the warehouse. The surrogate key is usually a generated
sequence of integers.

Surrogate keys are used for a variety of reasons. The keys used in the
operational system may be long character strings, with meaning embedded
into the components of the key. Because surrogate keys are integers, the fact
tables and B*tree indexes are smaller, with fewer levels, and take less space,
improving query response time. Surrogate keys provide a degree of isolation
from changes in the operational system.

If the operational system changes the product-code naming conven-
tions, or format, all data in the warehouse does not have to be changed.
When one company acquires another, you may need to load products from
a newly acquired company into the warehouse. It is highly unlikely that
both companies used the same product encoding schemes. If there is a
chance that the two companies used the same product key for different
products, then the product key in the warehouse may need to be extended
to add the company id as well. The use of surrogate keys can greatly help
integrate the data in these types of situations.

Both the surrogate keys and operational system keys are stored in the
dimension table, as shown in Figure 5.4, where product code SR125 is
known in the data warehouse as PRODUCT_ID 1. Therefore, we can see
that in the fact table, the product key is stored as 1. However, users can

Figure 5.4 The Use of Surrogate Keys in the Warehouse

TEAM LinG - Live, Informative, Non-cost and Genuine!

180 5.3 Transforming the Data into a Common Representation

happily query using code SR125, completely unaware of the transforma-
tion being done within the data warehouse.

The surrogate key is used in the fact table as the column that joins the
fact table to the dimension table. In this example, there are two different
formats for product codes. Some are numeric, separated by a dash, “654-
123”. Others are a mix of alphanumeric and numeric characters, “SR125”.
As part of the ETL process, as each fact record is loaded, the surrogate key is
looked up in the dimension tables and stored in the fact table.

5.3.5 Choosing the Optimal Place to Perform
the Transformations

Transformations of the data may be done at any step in the ETL process.
You need to decide the most efficient place to do each transformation: at
the source, in the staging area, during the load operation, or in temporary
tables once the data is loaded into the warehouse. Several powerful features
are present in 9i and new in 10g to facilitate performing transformations.

� Transformations can be done as part of the extraction process. In
general, it is best to do filtering types of transformations whenever
possible at the source. This allows you to select only the records of
interest for loading into the warehouse and consequently this also
reduces the impact on the network or other mechanism used to trans-
port the data into the warehouse. Ideally, you want to extract only the
data that has been changed since your last extraction. While transfor-
mations could be done at the source operational system, an impor-
tant consideration is to minimize the additional load the extraction
process puts on the operational system.

� Transformations can be done in a staging area prior to loading
the data into the data warehouse. When data needs to be integrated
from multiple systems, it cannot be done as part of the extraction
process. You can use flat files as your staging area, your Oracle data-
base as your staging area, or a combination of both. If your incoming
data is in a flat file, it is probably more efficient to finish your staging
processes prior to loading the data into the Oracle warehouse. Trans-
formations that require sorting, sequential processing and row-at-a-
time operations can be done efficiently in the flat file staging area.

� Transformations can be done during the load process. Some
important types of transformations can be done as the data is being

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 181

Chapter 5

loaded using SQL*Loader—for example, converting the “endian-ness”
of the data, or, changing the case of a character column to uppercase.
This is best done when a small number of rows need to be added—for
example, when initially loading a dimension table. Oracle external
tables facilitate more complex transformations of the data as part of
the load process. Sections 5.4.1 and 5.4.3 discuss some examples of
transformations while loading the data into the warehouse.

If your source is an Oracle 8i, 9i, or 10g database, transportable
tablespaces make it easy to move data into the warehouse without
first extracting the data into an external table. In this case, it makes
sense to do the transformations in temporary staging tables once the
data is in the warehouse. By doing transformations in Oracle, if the
data can be processed in bulk using SQL set operations, they can be
done in parallel.

� Transformations can be done in the warehouse staging tables.
Conversion of the natural key to the surrogate key should be per-
formed in the warehouse where the surrogate key is generated. But, in
addition in Oracle Database 10g, a new SQL feature, called
REGEXP, is introduced for processing character data using regular
expressions. This new, powerful feature operates in addition to the
simpler, existing text search and replace functions and operators and
enables true regular expression matching, substitution, and manipu-
lation to be performed on character data.

5.4 Loading the Warehouse

When loading the warehouse, the dimension tables are generally loaded
first. The dimension tables contain the surrogate keys or other descriptive
information needed by the fact tables. When loading the fact tables, infor-
mation is looked up from the dimension tables and added to the columns
in the fact table.

When loading the dimension table, you need both to add new rows and
make changes to existing rows. For example, a customer dimension may
contain tens of thousands of customers. Usually, only 10 percent or less of
the customer information changes. You will be adding new customers and
sometimes modifying the information about existing customers.

When adding new data to the dimension table, you need to determine if
the record already exists. If it does not, you can add it to the table. If it does

TEAM LinG - Live, Informative, Non-cost and Genuine!

182 5.4 Loading the Warehouse

exist, there are various ways to handle the changes, based on whether you
need to keep the old information in the warehouse for analysis purposes.

If a customer’s address changes, there is generally no need to retain the
old address, so the record can simply be updated. In a rapidly growing com-
pany the sales regions will change often. For example, “Canada” rolled up
into the “rest of the world” until 1990, and then rolled up into the “Ameri-
cas,” after reorganization. If you needed to understand both the old geo-
graphical hierarchy as well as the new one, you can create a new dimension
record containing all the old data plus the new hierarchy, giving the record
a new surrogate key. Alternatively, you could create columns in the original
record to hold both the previous and current values.

One dimension that will usually be present in any data warehouse is the
time dimension, which contains one row for each unit of time that is of
interest in the warehouse. In the EASYDW shopping example, purchases
can be made on-line 365 days a year, so every day is of interest. For each
given date, information about the day is stored, including the day of the
week, the week number, the month, the quarter, the year, and if it is a holi-
day. The time dimension may be loaded on a yearly basis.

When loading the fact table, you typically append new information to
the end of the existing fact table. You do not want to alter the existing rows,
because you want to preserve that data. For example, the PURCHASES fact
table contains three months of data. New data from the source order-entry
system is appended to the purchases fact table monthly. Partitioning the
data by month facilitates this type of operation.

In the next sections, we will take a look at different ways to load data,
including:

� SQL*Loader—which inserts data into a new table or appends to an
existing table when your data is in a flat file that is external to the
database.

� Data Pump utilities for export and import.

� External Tables—inserts data into a new table or appends to an exist-
ing table when your data is in a flat file that is external to the database
and you want to transform it while loading.

� Transportable Tablespaces—used to move the data from between two
Oracle databases, such as the operational system and the warehouse,
which may reside on different operating system platforms.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 183

Chapter 5

5.4.1 Using SQL*Loader to Load the Warehouse

One of the most popular tools for loading data is SQL*Loader, because it
has been designed to load records as fast as possible. Its particular strength is
that the format of the records that it can load are fully user definable, which
can make it an ideal mechanism for loading data from non-Oracle source
systems. For example, one possible format is to use comma-separated value
(CSV) files. SQL*Loader can be used either from the operating system
command line or via its wizard in Oracle Enterprise Manager (OEM),
which we will discuss now.

Using Oracle Enterprise Manager Load Wizard

Figure 5.5 shows the Oracle Enterprise Manager Maintenance screen, from
where you can launch the load wizard from the Utilities section. Click on
the Load Data from File link. The wizard guides you through the process of
loading data from an external file into the database according to a set of
instructions in a control file and the subsequent submission of a batch job
through Enterprise Manager to execute the load.

The Control File

The control file is a text file that describes the load operation. The role of
the control file, which is illustrated in Figure 5.6, is to tell SQL*Loader

Figure 5.5 Accessing SQL*Loader from Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

184 5.4 Loading the Warehouse

which datafile to load, how to interpret the records and columns, and into
which tables to insert the data. At this point you also need to specify a host
server account, which Enterprise Manager can use to execute your
SQL*Loader job.

Hint: This is a server account and not the database account that you wish
to use to access the tables that you’re loading into.

The control file is written in SQL*Loader’s data definition language.
The following example shows the control file that would be used to add
new product data into the product table in the EASYDW warehouse. The
data is stored in the file product.dat. New rows will be appended to the
existing table.

- Load product dimension

LOAD DATA

INFILE 'product.dat' append

INTO TABLE product

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY "'"

(product_id,

 product_name,

 category,

Figure 5.6 Identifying the Control File

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 185

Chapter 5

 cost_price,

 sell_price,

 weight,

 shipping_charge,

 manufacturer,

 supplier)

5.4.2 The Data File

The following example shows a small sample of the datafile product.dat.
Each field is separated by a comma and optionally enclosed in a single
quote. Each field in the input file is mapped to the corresponding columns
in the table. As the data is read, it is converted from the data type in the
input file to the data type of the column in the database.

'SP1242', 'CD LX1','MUSC', 8.90, 15.67, 2.5, 2.95, 'RTG', 'CD Inc'

'SP1243', 'CD LX2','MUSC', 8.90, 15.67, 2.5, 2.95, 'RTG', 'CD Inc'

'SP1244', 'CD LX3','MUSC', 8.90, 15.67, 2.5, 2.95, 'RTG', 'CD Inc'

'SP1245', 'CD LX4','MUSC', 8.90, 15.67, 2.5, 2.95, 'RTG', 'CD Inc'

The datafile is an example of data stored in Stream format. A record sep-
arator, often a line feed or carriage return/line feed, terminates each record.
A delimiter character, often a comma, separates each field. The fields may
also be enclosed in single or double quotes.

In addition to the Stream format, SQL*Loader supports fixed-length
and variable-length format files. In a fixed-length file, each record is the
same length. Normally, each field in the record is also the same length. In
the control file, the input record is described by specifying the starting posi-
tion, length, and data type. In a variable-length file, each record may be a
different length. The first field in each record is used to specify the length of
that record.

In OEM, the screen shown in Figure 5.7 is where the datafile is speci-
fied, and here it is c:\easydw\load\products.dat. The alternative mechanism
to specify the data file location is within the control file, as shown previ-
ously by the INFILE parameter.

TEAM LinG - Live, Informative, Non-cost and Genuine!

186 5.4 Loading the Warehouse

SQL*Loader Modes of Operation

Figure 5.8 shows SQL*Loader’s three modes of operation:

� Conventional path

� Direct path

� Parallel direct path

Conventional path load should only be used to load small amounts of
data, such as initially loading a small dimension table or when loading data
with data types not supported by direct path load. The conventional path
load issues SQL INSERT statements. As each row is inserted, the indexes
are updated, triggers are fired, and constraints are evaluated. When loading
large amounts of data in a small batch window, direct path load can be used
to optimize performance.

Direct path load bypasses the SQL layer. It formats the data blocks
directly and writes them to the database files. When running on a system
with multiple processors, the load can be executed in parallel, which can
result in significant performance gains.

Figure 5.7 The Data File

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 187

Chapter 5

Data Load Options

In the next step in the wizard, you are presented with the screen shown in
Figure 5.9, which contains various options to control the execution of your
SQL*Loader operation.

A common method when extracting datafiles from the source system is
to have the first record in the file contain the names of the fields of the sub-
sequent data records. This mechanism helps to self-document the datafile,
which can be particularly useful when resolving errors for files with large
and complex record formats. However, we do not want to have to manually
remove this record prior to loading files of this format every single time this
datafile is received. The Skip Initial Rows option will instruct SQL*Loader
to do this removal for us automatically.

You can create additional files during the load operation to aid in the
diagnosis and correction of any errors that may occur during the load. A log
file is created to record the status of the load operation. This should always
be reviewed to ensure the load was successful. Copies of the records that
could not be loaded into the database because of data integrity violations
can be saved in a “bad” file. This file can later be reentered once the data
integrity problems have been corrected. If you receive an extract file with

Figure 5.8 SQL*Loader Modes of Operation

TEAM LinG - Live, Informative, Non-cost and Genuine!

188 5.4 Loading the Warehouse

more records than you are interested in, you can load a subset of records
from the file. The WHEN clause in the control file is used to select the
records to load. Any records that are skipped are written to a discard file.

Select which optional files you would like created using the advanced
option, as shown in Figure 5.9. In this example, we’ve selected a bad file, a
discard file and a log file.

In order to specify the database account that SQL*Loader will log on
with, you need to use the advanced options. Clicking on the Show
Advanced Options link displays a hidden part of the page, where you can

Figure 5.9 SQL*Loader Advanced Options

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 189

Chapter 5

specify the account and password in the Parameters, field using the
USERID parameter as shown.

Scheduling the Load Operation

Enterprise Manager’s job scheduling system allows you to create and man-
age jobs, schedule the jobs to run, and monitor progress. You can run a job
once or choose how frequently you would like the job to run. If you will
run the job multiple times, you can save the job in Enterprise Manager’s
jobs library so that it can be rerun in the future. In Figure 5.10, the job
will be scheduled to run immediately. Click on Next and you will see the

Figure 5.10 Scheduling the Load

TEAM LinG - Live, Informative, Non-cost and Genuine!

190 5.4 Loading the Warehouse

review screen (not shown) and clicking the Submit Job on this screen will
actually submit your job for execution and display a status screen. At this
point you will also have the option to monitor your job by clicking the
View Job button which displays the screen shown in Figure 5.11 for moni-
toring your job.

Monitoring Progress of the Load Operation

You can also monitor the progress of a job while it is running by going to
the bottom of the Administration screen and clicking on Jobs in the Related
Links section. The Job Activity page shown in Figure 5.11 lists all jobs that
are either running, are scheduled to run, or have completed.

The Results section contains a list of jobs and their status. You can check
to see if the job ran successfully after it has completed and look at the out-
put to see any errors when a job has failed. By selecting the job and clicking
on the View or Edit buttons you can view information about the job’s state
and progress, as shown in Figure 5.12.

Figure 5.11 Monitoring Jobs in Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 191

Chapter 5

Inspecting the SQL*Loader Log

When SQL*Loader executes, it creates a log file, which can be inspected.
The following example shows a log file from a sample load session that can
be accessed by clicking on the Load name on the screen shown in Figure
5.12. The log file is also written to the file system (by default into the direc-
tory where the loader control file is held). Four rows were appended to the
product table; one record was rejected due to invalid data. Copies of those
bad records can be found in the file products.bad.

SQL*Loader: Release 10.1.0.2.0 - Production on Sat Jul 31 11:43:56 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Control File: C:\easydw\load\products.ctl

Data File: c:\easydw\load\products.dat

 Bad File: C:\easydw\load\products.bad

 Discard File: none specified

 (Allow all discards)

Figure 5.12 Monitoring Jobs in Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

192 5.4 Loading the Warehouse

Number to load: ALL

Number to skip: 0

Errors allowed: 50

Bind array: 64 rows, maximum of 64512 bytes

Continuation: none specified

Path used: Conventional

Table PRODUCT, loaded from every logical record.

Insert option in effect for this table: APPEND

Column Name Position Len Term Encl Datatype

------------------------------ ---------- ----- ---- ---- --------

PRODUCT_ID FIRST * , O(') CHARACTER

PRODUCT_NAME NEXT * , O(') CHARACTER

CATEGORY NEXT * , O(') CHARACTER

COST_PRICE NEXT * , O(') CHARACTER

SELL_PRICE NEXT * , O(') CHARACTER

WEIGHT NEXT * , O(') CHARACTER

SHIPPING_CHARGE NEXT * , O(') CHARACTER

MANUFACTURER NEXT * , O(') CHARACTER

SUPPLIER NEXT * , O(') CHARACTER

value used for ROWS parameter changed from 64 to 27

Record 5: Rejected - Error on table PRODUCT, column PRODUCT_ID.

Column not found before end of logical record (use TRAILING
NULLCOLS)

Table PRODUCT:

 4 Rows successfully loaded.

 1 Row not loaded due to data errors.

 0 Rows not loaded because all WHEN clauses were failed.

 0 Rows not loaded because all fields were null.

Space allocated for bind array: 62694 bytes(27 rows)

Read buffer bytes: 64512

Total logical records skipped: 0

Total logical records read: 5

Total logical records rejected: 1

Total logical records discarded: 0

Run began on Sat Jul 31 11:43:56 2004

Run ended on Sat Jul 31 11:43:56 2004

Elapsed time was: 00:00:00.66

CPU time was: 00:00:00.08

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 193

Chapter 5

Optimizing SQL*Loader Performance

When loading large amounts of data in a small batch window, a variety of
techniques can be used to optimize performance:

� Using direct path load. Formatting the data blocks directly and writ-
ing them to the database files eliminate much of the work needed to
execute a SQL INSERT statement. Direct path load requires exclu-
sive access to the table or partition being loaded. In addition, triggers
are automatically disabled, and constraint evaluation is deferred until
the load completes.

� Disabling integrity constraint evaluation prior to loading the data.
When loading data with direct path, SQL*Loader automatically dis-
ables all CHECK and REFERENCES integrity constraints. When
using parallel direct path load or loading into a single partition, other
types of constraints must be disabled. You can manually disable eval-
uation of not null, unique, and primary-key constraints during the
load process as well. When the load completes, you can have
SQL*Loader reenable the constraints, or do it yourself manually.

� Loading the data in sorted order. Presorting data minimizes the
amount of temporary storage needed during the load, enabling opti-
mizations to minimize the processing during the merge phase to be
applied. To tell SQL*Loader which indexes the data is sorted on, use
the SORTED INDEXES statement in the control file.

� Deferring index maintenance. Indexes are maintained automatically
whenever data is inserted or deleted, or the key column is updated.
When loading large amounts of data with direct path load, it may be
faster to defer index maintenance until after the data is loaded. You can
either drop the indexes prior to the beginning of the load or skip index
maintenance by setting SKIP_INDEX_MAINTENANCE=TRUE on
the SQL*Loader command line. Index partitions that would have been
updated are marked “index unusable,” because the index segment is
inconsistent with respect to the data it indexes. After the data is loaded,
the indexes must be rebuilt separately.

� Disabling redo logging by using the UNRECOVERABLE option in
the control file. By default, all changes made to the database are also
written to the redo log so they can be used to recover the database
after failures. Media recovery is the process of recovering after the loss
of a database file, often due to a hardware failure such as a disk head
crash. By disabling redo logging, the load is faster.

TEAM LinG - Live, Informative, Non-cost and Genuine!

194 5.4 Loading the Warehouse

However, if the system fails in the middle of loading the data, you
need to restart the load, since you cannot use the redo log for recov-
ery. If you are using Oracle Data Guard to protect your data with a
logical or physical standby database, you may not want to disable
redo logging. Any data not logged cannot be automatically applied to
the standby site.

After the data is loaded, using the UNRECOVERABLE option, it
is important to do a backup to make sure you can recover the data in
the future if the need arises.

� Loading the data into a single partition. While you are loading a par-
tition of a partitioned or subpartitioned table, other users can con-
tinue to access the other partitions in the table. Loading the April
transactions will not prevent users from querying the existing data for
January through March. Thus, overall availability of the warehouse is
increased.

� Loading the data in parallel. When a table is partitioned, it can be
loaded into multiple partitions in parallel. You can also set up multi-
ple, concurrent sessions to perform a load into the same table or into
the same partition of a partitioned table.

� Increasing the STREAMSIZE parameter can lead to better direct
path load times, since larger amounts of data will be passed in the
data stream from the SQL*Loader client to the Oracle server.

� If the data being loaded contains many duplicate dates, using the
DATE_CACHE parameter can lead to better performance of direct
path load. Use the date cache statistics (entries, hits, and misses) con-
tained in the SQL*Loader log file to tune the size of the cache for
future similar loads.

SQL*Loader Direct Path Load of a Single Partition

Next, we will look at an example of loading data into a single partition. In
the EASYDW warehouse, the fact table is partitioned by date. At the end of
April, the April sales transactions are loaded into the EASYDW warehouse.

In the following example, we create a tablespace, add a partition to the
purchases table, and then use SQL*Loader direct path load to insert the
data into the January 2005 partition.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 195

Chapter 5

Step 1: Create a Tablespace
CREATE TABLESPACE purchases_jan2005

 DATAFILE

 'C:\ORACLE\PRODUCT\10.1.0\ORADATA\EASYDW\PURCHASESJAN2005.f'

 SIZE 5M

 REUSE AUTOEXTEND ON

 DEFAULT STORAGE

 (INITIAL 64K NEXT 64K PCTINCREASE 0 MAXEXTENTS UNLIMITED);

Step 2: Add a Partition

If our new partition is higher than the last partition in the table (i.e., based
on the boundary clauses), then we can add a partition, as follows:

ALTER TABLE easydw.purchases

 ADD PARTITION purchases_jan2005

 VALUES LESS THAN (TO_DATE('01-02-2005', 'DD-MM-YYYY'))

 PCTFREE 0 PCTUSED 99

 STORAGE (INITIAL 64K NEXT 64K PCTINCREASE 0)

 TABLESPACE purchases_jan2005;

Step 3: Disable All Referential Integrity Constraints and Triggers

When using direct path load of a single partition, referential and check con-
straints on the table partition must be disabled, along with any triggers.

SQL> ALTER TABLE purchases DISABLE CONSTRAINT fk_time;

SQL> ALTER TABLE purchases DISABLE CONSTRAINT fk_product_id;

SQL> ALTER TABLE purchases DISABLE CONSTRAINT fk_customer_id;

The status column in the USER_CONSTRAINTS view can be used to
determine if the constraint is currently enabled or disabled. Here we can see
that the special_offer constraint is still enabled.

SQL> SELECT TABLE_NAME, CONSTRAINT_NAME, STATUS

 FROM USER_CONSTRAINTS

 WHERE TABLE_NAME = 'PURCHASES';

TABLE_NAME CONSTRAINT_NAME STATUS

------------- ----------------------- --------

PURCHASES NOT_NULL_PRODUCT_ID DISABLED

PURCHASES NOT_NULL_TIME DISABLED

PURCHASES NOT_NULL_CUSTOMER_ID DISABLED

PURCHASES SPECIAL_OFFER ENABLED

PURCHASES FK_PRODUCT_ID DISABLED

PURCHASES FK_TIME DISABLED

PURCHASES FK_CUSTOMER_ID DISABLED

7 rows selected.

TEAM LinG - Live, Informative, Non-cost and Genuine!

196 5.4 Loading the Warehouse

The status column in the USER_TRIGGERS view can be used to
determine if any triggers must be disabled. There are no triggers on the
PURCHASES table.

SQL> SELECT TRIGGER_NAME, STATUS

 FROM ALL_TRIGGERS

 WHERE TABLE_NAME = 'PURCHASES';

no rows selected

Step 4: Load the Data

The following example shows the SQL*Loader control file to load new data
into a single partition. Note that the partition clause is used.

OPTIONS (DIRECT=TRUE)

UNRECOVERABLE LOAD DATA

INFILE 'purchases.dat' BADFILE 'purchases.bad'

APPEND

INTO TABLE purchases

PARTITION (purchases_jan2005)

(product_id position (1-6) char,

 time_key position (7-17) date "DD-MON-YYYY",

 customer_id position (18-25) char,

 ship_date position (26-36) date "DD-MON-YYYY",

 purchase_price position (37-43) decimal external,

 shipping_charge position (44-49) integer external,

 today_special_offer position (50) char)

The unrecoverable keyword is specified, disabling media recovery for the
table being loaded by disabling the redo logging for this operation; this also
necessitates that the DIRECT option be used as well. Database changes
being made by other users will continue to be logged. After disabling media
recovery, it is important to do a backup to make it possible to recover the
data in the future if the need arises. If you attempted media recovery before
the backup was taken, you would discover that the data blocks that were
loaded have been marked as logically corrupt. To recover the data, if you
haven’t performed the backup following the load operation, you would have
to drop the partition and reload the data.

Any data that cannot be loaded will be written to the file purchases.bad.
Data will be loaded into the PURCHASES_JAN2005 partition. This
example shows loading a fixed-length file named purchases.dat. Each field
in the input record is described by specifying the starting position, its end-
ing position, and its data type. Note: These are SQL*Loader data types rep-

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 197

Chapter 5

resenting the data formats in the file, not the data types in an Oracle table.
When the data is loaded into the tables, each field is converted to the data
type of the Oracle table column, if necessary.

The following example shows a sample of the purchases data file. The
PRODUCT_ID starts in column 1 and is six bytes long. “Time_key” starts
in column 7 and is 11 bytes long. The data mask “DD-MON-YYYY” is
used to describe the input format of the date fields.

12345678901234567890123456789012345678901234567890

 | | | | | |

SP100001-jan-2005AB12367501-jan-20050067.23004.50N

SP101001-jan-2005AB12367301-jan-20050047.89004.50N

The alternative method to invoke SQL*Loader direct path mode is from
the command line using DIRECT=TRUE. In this example, skip_index_
maintenance is set to true, so the indexes will need to be rebuilt after the load.

sqlldr USERID=easydw/easydw CONTROL=purchases.ctl
LOG=purchases.log DIRECT=TRUE SKIP_INDEX_MAINTENANCE=TRUE

Step 5: Inspect the Log

The following example shows a portion of the SQL*Loader log file from
the load operation. Rather than generating redo to allow recovery, invalida-
tion redo was generated to let Oracle know this table cannot be recovered.
The indexes were made unusable. The column starting position and length
are described.

SQL*Loader: Release 10.1.0.2.0 - Production on Mon Jun 7 14:59:24 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Control File: purchases.ctl

Data File: purchases.dat

 Bad File: purchases.bad

 Discard File: none specified

 (Allow all discards)

Number to load: ALL

Number to skip: 0

Errors allowed: 50

Continuation: none specified

Path used: Direct

Load is UNRECOVERABLE; invalidation redo is produced.

TEAM LinG - Live, Informative, Non-cost and Genuine!

198 5.4 Loading the Warehouse

Table PURCHASES, partition PURCHASES_JAN2005, loaded from every logical record.

Insert option in effect for this partition: APPEND

 Column Name Position Len Term Encl Datatype

------------------------------ ---------- ----- ---- ---- ---------------------

PRODUCT_ID 1:6 6 CHARACTER

TIME_KEY 7:17 11 DATE DD-MON-YYYY

CUSTOMER_ID 18:25 8 CHARACTER

SHIP_DATE 26:36 11 DATE DD-MON-YYYY

PURCHASE_PRICE 37:43 7 CHARACTER

SHIPPING_CHARGE 44:49 6 CHARACTER

TODAY_SPECIAL_OFFER 50 1 CHARACTER

Record 3845: Discarded - all columns null.

The following index(es) on table PURCHASES were processed:

index EASYDW.PURCHASE_CUSTOMER_INDEX partition PURCHASES_JAN2005 was made unusable
due to:

SKIP_INDEX_MAINTENANCE option requested

index EASYDW.PURCHASE_PRODUCT_INDEX partition PURCHASES_JAN2005 was made unusable due
to:

SKIP_INDEX_MAINTENANCE option requested

index EASYDW.PURCHASE_SPECIAL_INDEX partition PURCHASES_JAN2005 was made unusable due
to:

SKIP_INDEX_MAINTENANCE option requested

index EASYDW.PURCHASE_TIME_INDEX partition PURCHASES_JAN2005 was made unusable due
to:

SKIP_INDEX_MAINTENANCE option requested

Step 6: Reenable All Constraints and Triggers, Rebuild Indexes

After loading the data into a single partition, all references to constraints
and triggers must be reenabled. All local indexes for the partition can be
maintained by SQL*Loader. Global indexes are not maintained on single
partition or subpartition direct path loads and must be rebuilt. In the previ-
ous example, the indexes must be rebuilt since index maintenance was
skipped.

These steps are discussed in more detail later in the chapter.

SQL*Loader Parallel Direct Path Load

When a table is partitioned, the direct path loader can be used to load mul-
tiple partitions in parallel. Each parallel direct path load process should be
loaded into a partition of a table stored on a separate disk to minimize I/O
contention.

Since data is extracted from multiple operational systems, you will often
have several input files that need to be loaded into the warehouse. These

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 199

Chapter 5

files can be loaded in parallel, and the workload distributed among several
concurrent SQL*Loader sessions.

Figure 5.13 shows an example of how parallel direct path load can be
used to initially load the historical transactions into the purchases table. You
need to invoke multiple SQL*Loader sessions. Each SQL*Loader session
takes a different datafile as input. In this example, there are three data files,
each containing the purchases for one month: January, February, and
March. These will be loaded into the purchases table, which is also parti-
tioned by month. Each datafile is loaded in parallel into its own partition.

It is suggested that the following steps be followed to load data in paral-
lel using SQL*Loader.

Step 1: Disable All Constraints and Triggers

Constraints cannot be evaluated, and triggers cannot be fired during a par-
allel direct path load. If you forget, SQL*Loader will issue an error.

Figure 5.13 SQL*Loader Parallel Direct Path Load

TEAM LinG - Live, Informative, Non-cost and Genuine!

200 5.4 Loading the Warehouse

Step 2: Drop all Indexes

Indexes cannot be maintained during a parallel direct path load. However,
if we are loading only a few partitions out of many, then it is probably bet-
ter to skip index maintenance and have them marked as unusable instead.

Step 3: Load the Data

By invoking multiple SQL*Loader sessions and setting direct and parallel to
true, the processes will load concurrently. Depending on your operating
system, you may need to put an “&” at the end of each line (i.e., to be able
to invoke one sqlldr and immediately progress to invoking the second with-
out waiting for number one to complete).

sqlldr userid=easydw/easydw CONTROL=jan.ctl DIRECT=TRUE PARALLEL=TRUE

sqlldr userid=easydw/easydw CONTROL=feb.ctl DIRECT=TRUE PARALLEL=TRUE

sqlldr userid=easydw/easydw CONTROL=mar.ctl DIRECT=TRUE PARALLEL=TRUE

Step 4: Inspect the Log

A portion of one of the log files follows. Note that the mode is direct with
the parallel option.

SQL*Loader: Release 10.1.0.2.0 - Production on Sat Jun 5 18:30:43 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Control File: c:\feb.ctl

Data File: c:\feb.dat

 Bad File: c:\feb.bad

 Discard File: none specified

 (Allow all discards)

Number to load: ALL

Number to skip: 0

Errors allowed: 50

Continuation: none specified

Path used: Direct - with parallel option.

Load is UNRECOVERABLE; invalidation redo is produced.

Table PURCHASES, partition PURCHASES_FEB2004, loaded from every logical record.

Insert option in effect for this partition: APPEND

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 201

Chapter 5

Step 5: Reenable All Constraints and Triggers, Recreate All Indexes

After using parallel direct path load, reenable any constraints and triggers
that were disabled for the load. Recreate any indexes that were dropped.

Transformations Using SQL*Loader

If you receive extract files that have data in them that you do not want to
load into the warehouse, you can use SQL*Loader to filter the rows of
interest. You select the records that meet the load criteria by specifying a
WHEN clause to test an equality or inequality condition in the record. If a
record does not satisfy the WHEN condition, it is written to the discard
file. The discard file contains records that were filtered out of the load,
because they did not match any record-selection criteria specified in the
control file. Note that these records differ from rejected records written to
the BAD file. Discarded records do not necessarily have any bad data. The
WHEN clause can be used with either conventional or direct path load.

You can use SQL*Loader to perform simple types of transformations on
character data. For example, portions of a string can be inserted using the
substring function; two fields can be concatenated together using the CON-
CAT operator. You can trim leading or trailing characters from a string using
the trim operator. The control file in the following example illustrates both
the use of the WHEN clause to discard any rows where the PRODUCT_ID
is blank and how to uppercase the PRODUCT_ID column.

LOAD DATA

INFILE 'product.dat' append

INTO TABLE product WHEN product_id != BLANKS

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY "'"

(product_id "upper(:product_id)",

 product_name,

 category,

 cost_price,

 sell_price,

 weight,

 shipping_charge,

 manufacturer,

 supplier)

The discard file is specified when invoking SQL*Loader from the com-
mand line, as shown here, or with the OEM Load wizard, as seen previously.

sqlldr userid=easydw/easydw CONTROL=product.ctl

LOG=product.log BAD=product.bad DISCARD=product.dis DIRECT=true

TEAM LinG - Live, Informative, Non-cost and Genuine!

202 5.4 Loading the Warehouse

These types of transformations can be done with both direct path and
conventional path modes; however, since they are applied to each record
individually, they do have an impact on the load performance.

SQL*Loader Postload Operations

After the data is loaded, you may need to process exceptions, reenable con-
straints, and rebuild indexes.

Step 1: Inspect the Logs

Always look at the logs to ensure that the data was loaded successfully. Vali-
date that the correct number of rows have been added.

Step 2: Process the Load Exceptions

Look in the .bad file to find out which rows were not loaded. Records that
fail NOT NULL constraints are rejected and written to the SQL*Loader
bad file.

Step 3: Reenable Data Integrity Constraints

Ensure, referential integrity is reenabled, if you have not already done so.
Make sure that each foreign key in the fact table has a corresponding primary
key in each dimension table. For the EASYDW warehouse, each row in the
PURCHASES table needs to have a valid CUSTOMER_ID in the CUS-
TOMERS table and a valid PRODUCT_ID in the PRODUCTS table.

When using direct path load, CHECK and REFERENCES integrity
constraints were disabled. When using parallel direct path load, all con-
straints were disabled.

Step 4: Handle Constraint Violations

To find the rows with bad data, you can create an exceptions table. Create
the table named “exceptions” by running the script UTLEXCPT.SQL.
When enabling the constraint, list the table name the exceptions should be
written to.

SQL> ALTER TABLE purchases

 ENABLE CONSTRAINT fk_product_id

 EXCEPTIONS INTO exceptions;

In our example, two rows had bad PRODUCT_IDs. A sale was made
for a product that does not exist in the product dimension.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 203

Chapter 5

SQL> SELECT * FROM EXCEPTIONS;

ROW_ID OWNER TABLE_NAME CONSTRAINT

------------------ ---------- ----------- -------------

AAAOZAAAkAAAABBAAB EASYDW PURCHASES FK_PRODUCT_ID

AAAOZAAAkAAAABBAAA EASYDW PURCHASES FK_PRODUCT_ID

To find out which rows have violated referential integrity, select the rows
from the purchases table where the rowid is in the exception table. In this
example, there are two rows where there is no matching product in the
products dimension.

SQL> SELECT * from purchases WHERE rowid in (select row_id from
exceptions);

PRODUCT TIME_KEY CUSTOMER_ID SHIP_DATE PURCHASE SHIPPING TODAY_SPECIAL

 ID PRICE CHARGE OFFER

------- --------- ----------- --------- -------- -------- -------------

XY1001 01-JAN-05 AB123675 01-JAN-05 67.23 4.5 N

AB1234 01-JAN-05 AB123673 01-JAN-05 47.89 4.5 N

Hint: It is important to fix any referential integrity constraint problems,
particularly if you are using summary management, which relies on the cor-
rectness of these relationships to perform query rewrite.

Step 5: Enabling Constraints without Validation

If integrity checking is maintained in an application, or the data has already
been cleansed, and you know it will not violate any integrity constraints,
enable the constraints with the NOVALIDATE clause. Include the RELY
clause for query rewrite (which is discussed in Chapter 9). Since summary
management and other tools depend on the relationships defined by refer-
ential integrity constraints, you should always define the constraints, even if
they are not validated.

ALTER TABLE purchases ENABLE NOVALIDATE CONSTRAINT fk_product_id;

ALTER TABLE purchases MODIFY CONSTRAINT fk_product_id RELY;

Check for Unusable Indexes

Prior to publishing data in the warehouse, you should check to determine if
any indexes are in an unusable state. An index becomes unusable when it no

TEAM LinG - Live, Informative, Non-cost and Genuine!

204 5.4 Loading the Warehouse

longer contains index entries to all the data. An index may be marked unus-
able for a variety of reasons.

� You requested that index maintenance be deferred, using the
skip_index_maintenance parameter when invoking SQL*Loader.

� UNIQUE constraints were not disabled when using SQL*Loader
direct path. At the end of the load, the constraints are verified when
the indexes are rebuilt. If any duplicates are found, the index is not
correct and will be left in an “Index Unusable” state.

The index must be dropped and recreated or rebuilt to make it usable
again. If one partition is marked UNUSABLE, the other partitions of the
index are still valid.

To check for unusable indexes query the table USER_INDEXES, as
illustrated in the following code. Here we can see that the
PRODUCT_PK_INDEX is unusable. If an index is partitioned, its status
is N/A.

SQL> SELECT INDEX_NAME, STATUS FROM USER_INDEXES;

INDEX_NAME STATUS

CUSTOMER_PK_INDEX VALID

I_SNAP$_CUSTOMER_SUM VALID

PRODUCT_PK_INDEX UNUSABLE

PURCHASE_CUSTOMER_INDEX N/A

PURCHASE_PRODUCT_INDEX N/A

PURCHASE_SPECIAL_INDEX N/A

PURCHASE_TIME_INDEX N/A

TIME_PK_INDEX VALID

TSO_PK_INDEX VALID

9 rows selected.

Next, check to see if any index partitions are in an unusable state by
checking the table USER_IND_PARTITIONS. In the following example,
the PURCHASE_TIME_INDEX for the PURCHASES partitions for
April, May, and June 2004 are unusable.

SQL> SELECT INDEX_NAME, PARTITION_NAME, STATUS FROM

 USER_IND_PARTITIONS WHERE STATUS != 'VALID';

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 205

Chapter 5

INDEX_NAME PARTITION_NAME STATUS

------------------------- -------------------- --------

PURCHASE_TIME_INDEX PURCHASES_MAR2004 USABLE

PURCHASE_TIME_INDEX PURCHASES_APR2004 UNUSABLE

PURCHASE_TIME_INDEX PURCHASES_MAY2004 UNUSABLE

PURCHASE_TIME_INDEX PURCHASES_JUN2004 UNUSABLE

Rebuild unusable indexes

If you have any indexes that are unusable, you must rebuild them prior to
accessing the table or partition. In the following example, the
PURCHASES_PRODUCT_INDEX for the newly added PURCHASES_
APR2004 partition is rebuilt.

SQL> ALTER INDEX purchase_time_index

 REBUILD PARTITION purchases_apr2004;

5.4.3 Loading the Warehouse Using Data Pump

Data Pump is a new product in Oracle Database 10g that enables a very rapid
movement of data and metadata. In any data warehouse environment there
will be the problem of transporting data from the source database to the ware-
house database. When your source system is also on an Oracle Database 10g,
then it makes sense to use the fast database import and export utilities to
transport your data rather than resorting to character-based operating system
files. The performance increase afforded by Data Pump import and export
enables the necessary rapid transfer of data from one database to another,
which is very important when moving the large volumes found when sourc-
ing data for a warehouse. Data Pump reads and writes dump files in its own
binary file format; this is in contrast to SQL*Loader, which can use files of
different formats as defined by the control file.

If you have used the existing import and export utilities, imp and exp,
then the new Data Pump import and export will be very familiar to you.
However, in addition to the improved engine for shifting the data, they also
provide a lot more functionality and control.

Hint: The dump files created and used by imp and exp cannot be used by
the new Data Pump import and export.

Data Pump Import/Export—impdp and expdp

The first, and most important, thing to note about Data Pump impdp and
expdp is that they are client-side utilities, but the data movement is per-

TEAM LinG - Live, Informative, Non-cost and Genuine!

206 5.4 Loading the Warehouse

formed as a job running on the database that is accessing the dump file on
the database host server directories. This detachment of the client utility
from the server-side job means that more control, as well as independence,
from the job is now available. For example, as a client-side tool, impdp and
expdp no longer have to be dedicated to just one job on the server, but for
long running jobs can, for example, detach from the job and re-attach,
monitor and control a second job, or invoke a completely separate import/
export operation.

Let’s have a brief look at the main new features of Data Pump impdp
and expdp before working through an example of how they are used in our
warehouse.

� Restartability. The new utilities may stop and start the database server-
side job. The new commands are STOP_JOB and START_JOB.

� Attaching and detaching from a job. The client impdp and expdp can
attach and detach from the database job, which provides a much
needed improvement in the control over these potentially long-run-
ning operations.

� Performing a network import. A new parameter, NETWORK_LINK,
when used on an import, instructs a local database to access a remote
database, retrieve data from it, and insert it into the local database.

� Performing a network export. On export operations, NETWORK_
LINK allows data from a remote database to be written to dump files
on the local database server.

� Mapping of datafile names. For import operations it is now possible
to control the transformation of a datafile name on the source data-
base to a different datafile name on the import database. Of particu-
lar importance, this feature can be used to change the file name
formats used by different operating systems.

� Remapping of tablespaces during import.

� Filtering the objects that are exported and imported. Two new
parameters are provided, called INCLUDE and EXCLUDE, which
enable specification of the type of object and also control over the
name of the objects.

� Filtering the data that is exported. By using the Data Pump QUERY
parameter, a subset of the data can be exported via a WHERE clause.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 207

Chapter 5

� The ability to estimate the space an export job would use prior to
performing the export.

� The ability to use multiple dump files.

� To control the degree of parallelism by use of the PARALLEL param-
eter. If multiple dump files are used, then it is normal for PARALLEL
to be set to the number of the files.

Specifying the Location of the Datafile and Log Files for
Data Pump Tools

Before using Data Pump, a directory object must be created in the database
to specify the location of the dump files and log files. The dump and log
files must be on the same machine as the database server, or must be acces-
sible to the server (i.e., on a networked drive). This is different from
SQL*Loader, where the SQL*Loader client sends the data to the database
server. Directories are created in a single namespace and are not owned by
an individual’s schema. In the following example, the DBA creates directo-
ries for the data and log files.

CREATE OR REPLACE DIRECTORY data_file_dir AS 'C:\datafiles\';

CREATE OR REPLACE DIRECTORY log_file_dir AS 'C:\logfiles\';

Read and write access must be granted to the users that will be accessing
the dump files in the directory. In the example below, the DBA grants read
and write access to user easydw.

GRANT READ, WRITE ON DIRECTORY data_file_dir TO easydw;

GRANT READ, WRITE ON DIRECTORY log_file_dir TO easydw;

To find the directories defined in a database, check the
DBA_DIRECTORIES view.

SELECT * FROM DBA_DIRECTORIES;

OWNER DIRECTORY_NAME DIRECTORY_PATH

------------ ----------------------- ---------------

SYS LOG_FILE_DIR c:\logfiles\

SYS DATA_FILE_DIR c:\datafiles\

Moving Data between Databases

Suppose we want to export all of the OLTP ORDERS data for December
2004 from our OLTP database and move it to our warehouse database. Let

TEAM LinG - Live, Informative, Non-cost and Genuine!

208 5.4 Loading the Warehouse

us create a job to export the data using the new Data Pump export utility.
We will use a parameter file called expdp_par.txt for this, which will contain
all of the command-line arguments.

Hint: It is advisable to use a parameter file when the command contains
keywords with values that contain spaces or quoted strings, such as QUERY
and INCLUDE.

SCHEMAS=(OLTP)

INCLUDE=TABLE:"IN ('ORDERS')"

QUERY=OLTP.ORDERS:"WHERE purchase_date BETWEEN to_date('01-dec-
2004','dd-mon-yyyy') AND to_date('31-dec-2004','dd-mon-yyyy')"

DIRECTORY=data_file_dir

DUMPFILE=exp1.dmp

LOGFILE=log_file_dir:exporders2004.log

The QUERY clause allows us to specify a WHERE clause to filter the
data. If the source table ORDERS were partitioned by date with a partition
for each month, an alternative method to using the QUERY parameter
would be to use the TABLES clause to specify the partition, as shown here.

TABLES=OLTP.ORDERS:DEC04 where DEC04 is the name of the partition.

Now we launch Data Pump export with the following command:

expdp oltp/oltp@easydw parfile=expdp_par.txt

The output at the start of the expdp execution is shown below:

Export: Release 10.1.0.2.0 - Production on Thursday, 08 July, 2004
21:11

Copyright (c) 2003, Oracle. All rights reserved.

Connected to: Oracle Database 10g Enterprise Edition Release
10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

FLASHBACK automatically enabled to preserve database integrity.

Starting "OLTP"."SYS_EXPORT_SCHEMA_01": oltp/********@easydw
parfile=expdp_par.txt

Estimate in progress using BLOCKS method...

Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA

Total estimation using BLOCKS method: 64 KB

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 209

Chapter 5

Processing object type SCHEMA_EXPORT/TABLE/PROCACT_INSTANCE

Processing object type SCHEMA_EXPORT/TABLE/TABLE

Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT

Processing object type SCHEMA_EXPORT/TABLE/STATISTICS/
TABLE_STATISTICS

Here we can see that the Data Pump export will automatically use the
new Oracle Database 10g Flashback capability of the database to preserve
the integrity of our exported data. Flashback is part of a much larger feature
in Oracle Database 10g that enables earlier versions of the data to be
retrieved by rewinding the view of the data to an earlier point in time. We
will look at Flashback in more detail in Chapter 17 but for our export, Data
Pump is using Flashback to maintain a consistent view of the data at the
point where we issued the expdp command.

This should not be confused with the Data Pump export parameter
called FLASHBACK_TIME that enables export of data that is consistent
with an earlier point in time.

Another new item to note in the output from Data Pump export is that
an estimate of the export file size is provided for each of the tables exported.
There are two mechanisms that are used, BLOCKS and STATISTICS,
which are specified by the ESTIMATE parameter. Associated with this,
there is also the ability to cap the size of the generated dump file using the
FILESIZE parameter.

Now that we have exported our data, we can move the dump file
exp1.dmp between our source server and our warehouse server using any
conventional means such as FTP.

On the warehouse server, we must now import the data using impdp.
Let’s look at some new options that are available to us. During the import
we may want to put our source data in a different tablespace to keep it sep-
arated from the tablespaces that we are using for our warehouse tables. We
do this using the REMAP_TABLESPACE parameter, which is used to
specify the mapping between the tablespace on the source system (USERS)
and the tablespace on the warehouse (STAGE).

Similarly, we want to change the ownership of the table from the OLTP
account on the source system to the EASYDW account on the warehouse,
and this mapping is specified using the REMAP_SCHEMA parameter.

impdp easydw/easydw@easydw DIRECTORY=data_file_dir
DUMPFILE=exp1.dmp

LOGFILE=log_file_dir:imporders2004.log
REMAP_TABLESPACE=users:stage REMAP_SCHEMA=oltp:easydw

TEAM LinG - Live, Informative, Non-cost and Genuine!

210 5.4 Loading the Warehouse

In the same fashion that the control can be exercised over what is
exported by Data Pump export, import also has the same facility to control
the type of metadata this is imported. For example, by using the
EXCLUDE=GRANT parameter and keyword during Data Pump import,
it is possible to exclude object grants from being imported. In this way,
Data Pump import will not try to regrant privileges that were only valid on
the source database.

Improved Job Monitoring and Control

Let’s look in more detail at the new improvements to monitoring and con-
trolling our import and export jobs that the new impdp and expdp provide.

In Oracle Database 10g, impdp and expdp are client-side tools that
communicate with a database server-side job that is actually doing the
import and export. This provides the opportunity for the client to attach to
the job that is running on the database, monitor its status, suspend it or
alter some of its execution parameters, detach from it and reattach, and
monitor and control another job. This provides a lot more flexibility over
the preceding imp and exp utilities. Note that impdp and expdp can only
be attached and control; one server-side job at a time; however, you can
have multiple impdp/expdp clients running—each of which can be
attached to the same or different server-side jobs.

When these tools are running in normal noninteractive mode, you can
move into interactive mode by typing Control-C.

In interactive mode, the commands that we can issue are:

� ADD_FILE to add a new dump file for the export

� KILL_JOB to delete the job

� STOP_JOB, which will suspend the processing of our job and exit
back to the operating system

� PARALLEL to alter the degree of parallelism

If we want to reconnect Data Pump export to a suspended job, then we
can reinvoke expdp with the ATTACH command-line parameter. If we orig-
inally provided our export job with a job name (e.g., JOB_NAME=expfull),
then we can specifically name the job that we want to attach to. If there is
only one job executing for the database account, then Data Pump export
will automatically attach to it.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 211

Chapter 5

An example of this activity is shown in the following code. We are run-
ning Data Pump export using the JOB_NAME=expfull parameter.

C:\> expdp easydw/easydw@easydw full=y directory=data_file_dir dumpfile=

full_dump.dat job_name=expfull

Export: Release 10.1.0.2.0 - Production on Saturday, 10 July, 2004 10:32

Copyright (c) 2003, Oracle. All rights reserved.

Connected to: Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

FLASHBACK automatically enabled to preserve database integrity.

Starting "EASYDW"."EXPFULL": easydw/********@easydw full=y directory=data_file_dir
dumpfile=full_dump.dat job_name=expfull

Estimate in progress using BLOCKS method...

 � Issue a Control-C here
Export> stop_job=immediate

Are you sure you wish to stop this job ([y]/n): y

 � Returned to the operating system

C:\easydw\dp>expdp easydw/easydw@easydw attach=expfull� Restart expdp and name
 the job to attach to

Export: Release 10.1.0.2.0 - Production on Saturday, 10 July, 2004 10:32

Copyright (c) 2003, Oracle. All rights reserved.

Connected to: Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

Job: EXPFULL � Automatic report of the job status when we attach
 Owner: EASYDW

 Operation: EXPORT

 Creator Privs: FALSE

 GUID: F3A0628C541B4DD5B35F34C164A8408A

 Start Time: Saturday, 10 July, 2004 10:32

 Mode: FULL

 Instance: easydw

 Max Parallelism: 1

 EXPORT Job Parameters:

 Parameter Name Parameter Value:

 CLIENT_COMMAND easydw/********@easydw full=y directory=data_file_dir

 dumpfile=full_dump.dat job_name=expfull

 DATA_ACCESS_METHOD AUTOMATIC

 ESTIMATE BLOCKS

 INCLUDE_METADATA 1

 LOG_FILE_DIRECTORY DATA_FILE_DIR

TEAM LinG - Live, Informative, Non-cost and Genuine!

212 5.4 Loading the Warehouse

 LOG_FILE_NAME export.log

 TABLE_CONSISTENCY 0

 State: IDLING

 Bytes Processed: 0

 Current Parallelism: 1

 Job Error Count: 0

 Dump File: c:\easydw\external\full_dump.dat

 bytes written: 4,096

Worker 1 Status:

 State: UNDEFINED

Export> continue_client � Restart the job and the logging.
 Return to non-interactive mode

Job EXPFULL has been reopened at Saturday, 10 July, 2004 10:32

Restarting "EASYDW"."EXPFULL": easydw/********@easydw full=y
directory=data_file_dir dumpfile=full_dump.dat job_name=expfull

Estimate in progress using BLOCKS method...

Processing object type DATABASE_EXPORT/SCHEMA/TABLE/TABLE_DATA

 � Issue a Control-C here
Export> stop_job=immediate

Are you sure you wish to stop this job ([y]/n): y

We have only touched upon some of the new, powerful features avail-
able with Data Pump import and export, but it should be apparent that
the features provided are very important in a warehouse environment
when dealing with large data volumes. There are three main areas that
benefit our warehouse management from the new Data Pump import and
export utilities:

1. The significantly improved speed and performance from the new
Data Pump architecture used to move the data in and out of the
database

2. The new parameters, which provide additional control of the
import and export jobs

3. The new client architecture and commands, which provide better
monitoring and management of the jobs

5.4.4 Loading the Warehouse Using External Tables

An external table is a table stored outside the database in a flat file. The
data in an external table can be queried just like a table stored inside the
database. You can select columns, rows, and join the data to other tables

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 213

Chapter 5

using SQL. The data in the external table can be accessed in parallel just
like tables stored in the database.

External tables are read-only. No DML operations are allowed, and you
cannot create indexes on an external table. If you need to update the data
or access it more than once, you can load it into the database, where you
can update it and add indexes to improve query performance. By loading
the data into the database, you can manage it as part of the database.
RMAN will not back up the data for any external tables that are defined in
the database.

Since you can query the data in the external table you have just defined
using SQL, you can also load the data using an INSERT SELECT state-
ment. External tables provide an alternative to SQL*Loader to load data
from flat files. They can be used to perform more complex transformations
while the data is loaded and simplify many of the operational aspects while
loading data in parallel and managing triggers, constraints, and indexes.
However, in Oracle Database 10g, SQL*Loader direct path load may still
be faster in many cases. There are many similarities between the two meth-
ods, and if you’ve used SQL*Loader, you will find it easy to learn to use
external tables.

External tables require the same directory objects that we defined in
earlier.

Creating an External Table

In order to create an external table you must specify the following:

� The metadata, which describes how the data looks to Oracle, includ-
ing the external table name, the column names, and Oracle data
types. These are the names you will use in the SQL statements to
access the external table. The metadata is stored in the Oracle data
dictionary. In the example in Figure 5.14, the external table name is
NEW_PRODUCTS. The data is stored outside the database. This
differs from the other regular tables in the database, where the data
and metadata are both stored in the database.

� The access parameters, which describe how the data is stored in the
external file (i.e., where it’s located, its format, and how to identify
the fields and records). The access driver uses the access parameters.
An example of the access parameters is shown in the CREATE
EXTERNAL TABLE statement.

TEAM LinG - Live, Informative, Non-cost and Genuine!

214 5.4 Loading the Warehouse

In Oracle 9i, there was only one type of access driver, called
ORACLE_LOADER, which provides read-only access to flat files. In
Oracle Database 10g, a new ORACLE_DATAPUMP access driver is intro-
duced; provides greater performance, as we have already discussed, and new
features, which we will discuss later. The access driver is specified in the
TYPE clause on the CREATE EXTERNAL TABLE statement.

The following example shows the SQL to create an external table. In the
CREATE TABLE statement, the ORGANIZATION EXTERNAL clause
is used to specify the table as external, and the TYPE clause to specify the
type of access driver and which begins the description of the structure of the
file stored on disk. The metadata describing the column names and data
types is listed and looks very similar to what is stored in a SQL*Loader con-
trol file. The locations of the datafile, log file, and bad files are specified
here, and in this example we specify that each field be separated by a
comma and optionally enclosed in a single quote. By specifying the PAR-
ALLEL clause, the data will be loaded in parallel.

CREATE TABLE new_products

(product_id VARCHAR2(8),

 product_name VARCHAR2(30),

 category VARCHAR2(4),

 cost_price NUMBER (6,2),

Figure 5.14 External Table

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 215

Chapter 5

 sell_price NUMBER (6,2),

 weight NUMBER (4,2),

 shipping_charge NUMBER (5,2),

 manufacturer VARCHAR2(20),

 supplier VARCHAR2(10))

ORGANIZATION EXTERNAL

(TYPE ORACLE_LOADER

 DEFAULT DIRECTORY data_file_dir

 ACCESS PARAMETERS

 (RECORDS DELIMITED BY NEWLINE

 CHARACTERSET US7ASCII

 BADFILE log_file_dir:'product.bad'

 LOGFILE log_file_dir:'product.log'

 FIELDS TERMINATED BY ','

 OPTIONALLY ENCLOSED BY “'”)

 LOCATION ('product.dat')

)

REJECT LIMIT UNLIMITED PARALLEL;

A portion of the data file, product.dat is shown in the following exam-
ple. Each field is separated by a comma and optionally enclosed in a single
quote. As the data is read, each field in the input file is mapped to the corre-
sponding columns in the external table definition. As the data is read, it is
converted from the data type of the input file to the data type of the col-
umn in the database, as necessary.

'SP1000', 'Digital Camera','ELEC', 45.67, 67.23, 15.00, 4.50, 'Ricoh','Ricoh'

'SP1001', 'APS Camera','ELEC', 24.67, 36.23,5.00, 4.50, 'Ricoh','Ricoh'

'SP1010', 'Camera','ELEC', 35.67, 47.89, 5.00,4.50, 'Agfa','Agfa'

After executing the CREATE TABLE command shown previously, the
metadata for the NEW_PRODUCTS table is stored in the database. The
table is as follows:

SQL> DESCRIBE new_products;

 Name Null? Type

 --------------------- -------- -------------

 PRODUCT_ID VARCHAR2(8)

 PRODUCT_NAME VARCHAR2(30)

 CATEGORY VARCHAR2(4)

 COST_PRICE NUMBER(6,2)

 SELL_PRICE NUMBER(6,2)

 WEIGHT NUMBER(4,2)

 SHIPPING_CHARGE NUMBER(5,2)

 MANUFACTURER VARCHAR2(20)

 SUPPLIER VARCHAR2(10)

TEAM LinG - Live, Informative, Non-cost and Genuine!

216 5.4 Loading the Warehouse

The USER_EXTERNAL_TABLES dictionary view shows which exter-
nal tables have been created, along with a description of them. The
USER_EXTERNAL_LOCATIONS dictionary view shows the location of
the datafile.

SQL> SELECT * FROM USER_EXTERNAL_TABLES;

TABLE_NAME TYPE_OWNER TYPE_NAME

--------------- ---------- ------------------------------

DEFAULT_DIRECTORY_OWNER DEFAULT_DIRECTORY_NAME

----------------------- ------------------------------

REJECT_LIMIT ACCESS_TYPE

-- -----------

ACCESS_PARAMETERS

PROPERTY

NEW_PRODUCTS SYS ORACLE_LOADER

SYS DATA_FILE_DIR

UNLIMITED CLOB

RECORDS DELIMITED BY NEWLINE

 CHARACTERSET US7ASCII

 BADFILE log_file_dir:'product.bad'

 LOGFILE log_file_dir:'product.log'

 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY "'"

ALL

SQL> SELECT * FROM USER_EXTERNAL_LOCATIONS;

TABLE_NAME LOCATION DIR DIRECTORY_NAME

------------- ------------ --- ------------

NEW_PRODUCTS product.dat SYS DATA_FILE_DIR

Accessing Data Stored in an External Table

After defining the external table, it can be accessed using SQL, just as if it
were any other table in the database, although the data is actually being
read from the file outside the database. A portion of the output is as follows:

SQL> SELECT * FROM NEW_PRODUCTS;

PRODUCT PRODUCT_NAME CATE COST SELL WEIGHT SHIPPING MANUF SUPPLIER

ID PRICE PRICE CHARGE

------- --------------- ---- ----- ----- ------- -------- ----- --------

SP1000 Digital Camera ELEC 45.67 67.23 15 4.5 Ricoh Ricoh

SP1001 APS Camera ELEC 24.67 36.23 5 4.5 Ricoh Ricoh

SP1010 Camera ELEC 35.67 47.89 5 4.5 Agfa Agfa

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 217

Chapter 5

Loading Data From an External Table

The next example will use the INSERT/SELECT statement to load the
data into the PRODUCT dimension table. It is very easy to perform trans-
formations during the load using SQL functions and arithmetic operators.
In this example, after the datafile was created, the cost of fuel rose, and our
shipping company increased the shipping rates by 10 percent. In this exam-
ple, data is loaded into the EASYDW.PRODUCT table by selecting the
columns from the NEW_PRODUCTS external table. The shipping charge
is multiplied by 1.1 for each item as the data is loaded.

SQL> INSERT INTO easydw.product

 (product_id, product_name, category,

 cost_price, sell_price, weight,

 shipping_charge, manufacturer, supplier)

 SELECT product_id, product_name, category,

 cost_price, sell_price, weight,

 (shipping_charge * 1.10),

 manufacturer, supplier

 FROM new_products;

The data has now been loaded into the EASYDW.PRODUCT table,
and we can see here that the shipping charge increased from $4.50 to $4.95
for the items displayed.

SQL> select * from easydw.product;

PRODUCT PRODUCT_NAME CATE COST SELL WEIGHT SHIPPING MANUF SUPPLIER

ID PRICE PRICE CHARGE

------- --------------- ---- ----- ----- ------- -------- ----- --------

SP1000 Digital Camera ELEC 45.67 67.23 15 4.95 Ricoh Ricoh

SP1001 APS Camera ELEC 24.67 36.23 5 4.95 Ricoh Ricoh

SP1010 Camera ELEC 35.67 47.89 5 4.95 Agfa Agfa

Loading Data in Parallel Using External Tables

Another advantage of using external tables is the ability to load the data in
parallel without having to split a large file into smaller files and start multi-
ple sessions, as you must do with SQL*Loader. The degree of parallelism is
set using the standard parallel hints or with the PARALLEL clause when
creating the external table, as shown previously. The output of an
EXPLAIN PLAN shows the parallel access, as follows:

TEAM LinG - Live, Informative, Non-cost and Genuine!

218 5.4 Loading the Warehouse

SQL> EXPLAIN PLAN FOR

 INSERT INTO easydw.product

 (product_id, product_name, category,

 cost_price, sell_price, weight,

 shipping_charge, manufacturer, supplier)

 SELECT product_id, product_name, category,

 cost_price, sell_price, weight,

 (shipping_charge * 1.10),

 manufacturer, supplier

 FROM new_products;

The utlxplp.sql script is used to show the EXPLAIN PLAN output with
the columns pertaining to parallel execution, which have been edited and
highlighted for readability. Chapter 10 provides more of an explanation on
how to read parallel execution plans.

SQL> @c:\oracle\product\10.1.0\db_1\rdbms\admin\utlxplp.sql

PLAN_TABLE_OUTPUT
--

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	INSERT STATEMENT		8168	781K	13 (0)	00:00:01
1	PX COORDINATOR					
2	PX SEND QC (RANDOM)	:TQ10000	8168	781K	13 (0)	00:00:01
3	PX BLOCK ITERATOR		8168	781K	13 (0)	00:00:01
4	EXTERNAL TABLE ACCESS FULL	NEW_PRODUCTS	8168	781K	13 (0)	00:00:01
--

Using Data Pump External Tables to Move and Load Data

Data Pump external tables are another fast method available to us for mov-
ing data between databases; now we can actually write to the external file
during the creation of the external table, which we could not do with the
ORACLE_LOADER access driver. We will demonstrate this with an
example.

First, let’s create our external table based on the current PURCHASES
table. To do this we will use a database directory object called xt_dir, where
our external data file, called purch_xt.dmp, will reside.

CREATE TABLE purchases_xt ORGANIZATION EXTERNAL

(TYPE ORACLE_DATAPUMP

 DEFAULT DIRECTORY xt_dir

 LOCATION ('purch_xt.dmp')

)

AS SELECT * FROM purchases;

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 219

Chapter 5

This statement is creating the Data Pump dump file, purch_xt.dmp, as
the external table PURCHASES_XT is being created. Once it has been cre-
ated, you can select from this table just like any other however, because it is
now an external table, after the initial CREATE statement it is not possible
to perform any further alterations to the records. Any subsequent
DELETE, INSERT or UPDATE operations will result in an Oracle error,
as illustrated here.

SQL> desc purchases_xt

 Name Null? Type

 -------------------------- -------- -----------------------

 PRODUCT_ID NOT NULL VARCHAR2(8)

 TIME_KEY NOT NULL DATE

 CUSTOMER_ID NOT NULL VARCHAR2(10)

 SHIP_DATE DATE

 PURCHASE_PRICE NUMBER(6,2)

 SHIPPING_CHARGE NUMBER(5,2)

 TODAY_SPECIAL_OFFER VARCHAR2(1)

SQL> SELECT count(*) FROM purchases_xt;

 COUNT(*)

 94619

SQL> SELECT * FROM purchases_xt WHERE rownum < 3;

PRODUCT TIME_KEY CUSTOMER_I SHIP_DATE PURCHASE SHIPPING T

ID PRICE CHARGE

-------- --------- ---------- --------- -------- -------- -

SP1001 01-JAN-03 AB123899 01-JAN-03 36.23 4.5 N

SP1011 01-JAN-03 AB123897 01-JAN-03 47.89 4.5 N

SQL> UPDATE purchases_xt SET purchase_price=37 WHERE
product_id='SP1001';

UPDATE purchases_xt SET purchase_price=37 WHERE
product_id='SP1001'

 *

ERROR at line 1:

ORA-30657: operation not supported on external organized table

We can now move this Data Pump formatted dump file from our
specified directory to another server and access it from another database to
use it as the basis of a new external table. This time, however, to create our
external table we will need to specify the columns explicitly, as shown here.

TEAM LinG - Live, Informative, Non-cost and Genuine!

220 5.4 Loading the Warehouse

CREATE TABLE purchases_xt2

 (product_id VARCHAR2(8) ,

 time_key DATE ,

 customer_id VARCHAR2(10) ,

 ship_date DATE,

 purchase_price NUMBER(6,2),

 shipping_charge NUMBER(5,2),

 today_special_offer VARCHAR2(1)

)

 ORGANIZATION EXTERNAL

 (

 TYPE ORACLE_DATAPUMP

 DEFAULT DIRECTORY xt_dir

 LOCATION ('purch_xt.dmp')

);

Table created.

SQL> SELECT count(*) FROM purchases_xt2;

 COUNT(*)

 94619

By using a Data Pump external table, we have reaped the benefit of the
performance improvements from Data Pump for both the writing of the
dump file and also the reading of it on the target database. In addition, the
syntax of the commands for creating this version of an external table is very
succinct and readable.

Because the creation of the initial external table and the dump file can
use a CREATE TABLE AS SELECT operation, we also have the capability
to perform filtering with a WHERE clause and use joins when the external
table is created. This can form a powerful mechanism for being selective
and controlling the data that is transferred to the external table. For exam-
ple, for transferring the data from a refreshed warehouse schema into a data
mart, which requires a smaller subset of the fact data, the data is filtered
with a WHERE clause when the external table is created.

5.4.5 Loading the Warehouse Using
Transportable Tablespaces

The fastest way to move data from one Oracle database to another is using
transportable tablespaces. Transportable tablespaces provide a mechanism
to move one or more tablespaces from one Oracle database into another.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 221

Chapter 5

Rather than processing the data a row at time, the entire file or set of files is
physically copied from one database and integrated into the second data-
base by importing the metadata describing the tables from the files them-
selves. In addition to data in tables, the indexes can also be moved.

Because the data is not unloaded and reloaded, just detached, it can be
moved quickly. In Oracle 9i, you could only transport tablespaces between
Oracle databases that were on the same operating system. In Oracle
Database 10g, this limitation is removed, and transportable tablespaces can
be moved between different operating system platforms—for example,
from Windows to Linux.

Transportable tablespaces can be used to move data from the operational
database to the staging area if you are using an Oracle database to do your
staging. Transportable tablespaces are also useful to move data from the data
warehouse to a dependent data mart.

Figure 5.15 shows the steps involved in using transportable tablespaces.

These steps are as follows:

1. Create a new tablespace.

2. Move the data you want to transfer into its own tablespace.

3. Alter the tablespace to read-only.

4. Use the export utility to unload the metadata describing the
objects in the tablespace.

5. If moving between different operating systems, then convert the
files using RMAN (this conversion step can alternatively be per-
formed on the target platform after step 6).

6. Copy the datafiles and export dump file containing the metadata
to the target system.

7. Use the import utility to load the metadata descriptions into the
target database.

8. Alter the tablespace to read/write.

9. Perform transformations.

10. Move the data from the staging area to the warehouse fact table.

This section will discuss steps 1–8. In the following sections, we’ll look
at steps 9 and 10.

TEAM LinG - Live, Informative, Non-cost and Genuine!

222 5.4 Loading the Warehouse

One of the sources for data in the EASYDW Warehouse is an Oracle
Database 10g order-entry system. In this example, the order-entry system has
a record for every order stored in the ORDERS table. At the end of April, all
the orders for April 2004 will be copied into a new table, called
APR_ORDERS, in the ORDERS tablespace stored in the datafile “orders.f.”

Here are the steps that are required to transport a tablespace from one
database to another. In our example, our source OLTP system is on Linux
and our target warehouse system is on a Windows platform.

Step 1: Create a Tablespace in the OLTP System

Choose a name that is unique on both the source and target system. In this
example, the tablespace ORDERS is created, and its corresponding datafile
is “orders.f.”

Figure 5.15 Transportable Tablespaces in Oracle Database 10g

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 223

Chapter 5

SQL> CREATE TABLESPACE orders

 DATAFILE 'C:\ORACLE\PRODUCT\10.1.0\ORADATA\EASYDW\orders.f'

 SIZE 5M REUSE

 AUTOEXTEND ON

 DEFAULT STORAGE

 (INITIAL 64K PCTINCREASE 0 MAXEXTENTS UNLIMITED);

Step 2: Move the Data for April 2004 into a Table in the Newly
Created Tablespace

In this example, a table is created and populated using the CREATE
TABLE AS SELECT statement. It is created in the ORDERS tablespace. In
this example, there are 3,720 orders for April.

SQL> CREATE TABLE oltp.apr_orders TABLESPACE orders

 AS

 SELECT * FROM purchases

 WHERE ship_date BETWEEN to_date('01-APR-2004', 'dd-on-yyyy')

 AND to_date('30-APR-2004', 'dd-mon-yyyy');

SQL> SELECT COUNT(*) FROM apr_orders;

 COUNT(*)

 3720

Each tablespace must be self-contained and cannot reference anything
outside the tablespace. If there were a global index on the April ORDERS
table, it would not be self-contained, and the index would have to be
dropped before the tablespace could be moved.

Step 3: Alter the Tablespace So That It Is Read-Only

If you do not do this, the export in the next step will fail.

SQL> ALTER TABLESPACE orders READ ONLY;

Step 4: EXPORT the Metadata

By using the Data Pump expdp command, the metadata definitions for the
orders tablespace are extracted and stored in the export dump file “exp-
dat.dmp.”

expdp system/manager TRANSPORT_TABLESPACE=orders
DIRECTORY=data_file_dir

DUMPFILE=expdat.dmp

TEAM LinG - Live, Informative, Non-cost and Genuine!

224 5.4 Loading the Warehouse

When transporting a set of tablespaces, you can choose to include refer-
ential integrity constraints. However, if you do include these, you must
move the tables with both the primary and foreign keys.

Hint: When exporting and importing tablespaces, be sure to use an
account that has been granted the EXP_FULL_DATABASE role.

The following code is a copy of the run-time information generated by
the export. Only the tablespace metadata is exported, not the data.

$ expdp system/magic9 transport_tablespaces=orders

directory=data_file_dir dumpfile=expdat.dmp

Export: Release 10.1.0.2.0 - Production on Saturday, 10 July, 2004 8:01

Copyright (c) 2003, Oracle. All rights reserved.

Connected to: Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

Starting "SYSTEM"."SYS_EXPORT_TRANSPORTABLE_01": system/********

transport_tablespaces=orders directory=data_file_dir dumpfile=expdat.dmp

Processing object type TRANSPORTABLE_EXPORT/PLUGTS_BLK

Processing object type TRANSPORTABLE_EXPORT/TABLE

Processing object type TRANSPORTABLE_EXPORT/TABLE_STATISTICS

Processing object type TRANSPORTABLE_EXPORT/TTE_POSTINST/PLUGTS_BLK

Master table "SYSTEM"."SYS_EXPORT_TRANSPORTABLE_01" successfully

loaded/
unloaded**
**

Dump file set for SYSTEM.SYS_EXPORT_TRANSPORTABLE_01 is:

 /home/oracle/tt/expdat.dmp

Job "SYSTEM"."SYS_EXPORT_TRANSPORTABLE_01" successfully completed at 08:04

Step 5: Convert the Datafiles (Optional)

If you are transporting between different platforms and the endian formats
of your platforms are different, you will need to convert the data files. The
endian nature of your platform is the format in which multibyte data is
stored. Big endian platforms store the most significant byte in the lowest
address and little endian platforms store it in the highest address.

Oracle provides some tables and a simple query to determine the endian
nature of your source and target platforms.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 225

Chapter 5

SELECT d.PLATFORM_NAME, tp.ENDIAN_FORMAT

FROM V$TRANSPORTABLE_PLATFORM tp,

 V$DATABASE d

WHERE tp.PLATFORM_NAME = d.PLATFORM_NAME;

When the query is run on the source Linux platform database, we see
that the platform uses little endian format.

PLATFORM_NAME ENDIAN_FORMAT

-- --------------

Linux IA (32-bit) Little

When the query is run on the target warehouse database, we see that it is
also little endian.

PLATFORM_NAME ENDIAN_FORMAT

-- --------------

Microsoft Windows IA (32-bit) Little

If the endian format were different on the two platforms, then conver-
sion would be required. In our example, even though both of our platforms
are of the same endian format, we will still demonstrate the step for the
conversion, which uses the Recovery Manager utility RMAN.

$ rman target /

Recovery Manager: Release 10.1.0.2.0 - Production

 Copyright (c) 1995, 2004, Oracle. All rights reserved.

 connected to target database: ORCL (DBID=1058909169)

RMAN> convert tablespace orders

2> to platform 'Microsoft Windows IA (32-bit)'

3> FORMAT '/home/oracle/tt/%N_%f' ;

Starting backup at 10-JUL-04

using target database controlfile instead of recovery catalog

allocated channel: ORA_DISK_1

channel ORA_DISK_1: sid=244 devtype=DISK

channel ORA_DISK_1: starting datafile conversion

input datafile fno=00005 name=/u01/app/oracle/oradata/orcl/
orders.f

converted datafile=/home/oracle/tt/ORDERS_5

channel ORA_DISK_1: datafile conversion complete, elapsed time:
00:00:01

Finished backup at 10-JUL-04

TEAM LinG - Live, Informative, Non-cost and Genuine!

226 5.4 Loading the Warehouse

The conversion format mask '%N_%f' that was used will create a file
name in the directory specified using the original tablespace name (%N)
and the file id number on the database (%f).

If the conversion is performed on the source system, then RMAN can
reference the tablespaces by logging on to the database, but if the conver-
sion is performed after the files are transported to the warehouse server,
then RMAN can no longer access the database to use the tablespace names.
In this case, a slightly different format must be adopted, where the datafile
names are used, as follows:

RMAN> CONVERT DATAFILE

2> '/u01/app/oracle/oradata/easydw/orders.f'

3> TO PLATFORM='Microsoft Windows IA (32-bit)’

4> FROM PLATFORM=’Linux IA (32-bit)’;

Step 6: Transport the Tablespace

Now copy the data file, ORDERS_5, and the export dump file, exp-
dat.dmp, to the physical location on the system containing the staging data-
base. You can use any facility for copying flat files, such as an operating
system copy utility or FTP. These should be copied in binary mode, since
they are not ASCII files.

In our example, ORDERS_5 was copied to c:\oracle\product\10.1.0\
oradata\easydw\ORDERS_5 on the for the EASYDW warehouse database
using FTP.

Step 7: Import the Metadata

By importing the metadata, you are plugging the tablespace into the target
database, which is why you should take care to place it in the correct direc-
tory that is appropriate to your database. Note that we have also specified
that the tablespace contents be remapped from the OLTP schema used on
the source database to the EASYDW schema on our warehouse database.

impdp easydw/easydw@easydw TRANSPORT_DATAFILES=c:\oracle\product\
10.1.0\oradata\easydw\ORDERS_5 DIRECTORY=tt2 DUMPFILE=expdat.dmp
logfile=log_file_dir:imporders2004.log REMAP_SCHEMA=(oltp:easydw)

Check the run-time information or import log to ensure that no errors
have occurred. Note that only the transportable tablespace metadata was
imported.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 227

Chapter 5

Import: Release 10.1.0.2.0 - Production on Saturday, 10 July, 2004 8:45

Copyright (c) 2003, Oracle. All rights reserved.

;;;

Connected to: Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

Master table "EASYDW"."SYS_IMPORT_TRANSPORTABLE_01" successfully loaded/unloaded

Starting "EASYDW"."SYS_IMPORT_TRANSPORTABLE_01": easydw/********@easydw
TRANSPORT_DATAFILES=c:\oracle\product\10.1.0\oradata\easydw\ORDERS_5 DIRECTORY=tt2
DUMPFILE=expdat.dmp logfile=log_file_dir:imporders2004.log
REMAP_SCHEMA=(oltp:easydw)

Processing object type TRANSPORTABLE_EXPORT/PLUGTS_BLK

Processing object type TRANSPORTABLE_EXPORT/TABLE

Processing object type TRANSPORTABLE_EXPORT/TABLE_STATISTICS

Processing object type TRANSPORTABLE_EXPORT/TTE_POSTINST/PLUGTS_BLK

Job "EASYDW"."SYS_IMPORT_TRANSPORTABLE_01" successfully completed at 08:45

Check the count to ensure that the totals match the OLTP system.

SQL> SELECT COUNT(*) FROM orders;

 COUNT(*)

 3720

Step 8: Alter the Tablespace to Read/Write

Alter the ORDERS tablespace so that it is in read/write mode. You are
ready to perform your transformations!

SQL> ALTER TABLESPACE orders READ WRITE;

As you can see by following these steps, the individual rows of a table are
never unloaded and reloaded into the database. Thus, using transportable
tablespaces is the fastest way to move data between two Oracle databases.

5.4.6 Loading the Dimensions Using SQL MERGE

When loading new data into existing dimension tables, you may need to
add new rows and make changes to existing rows. In the past, special pro-
gramming logic was required to differentiate a new row from a changed
row, which typically involved separate INSERT and UPDATE statements.
A new capability was added in Oracle 9i, which makes this process much

TEAM LinG - Live, Informative, Non-cost and Genuine!

228 5.4 Loading the Warehouse

easier: the SQL MERGE. This says that if a row exists, update it; if it
doesn’t exist, insert it. This is often called an upsert operation.

In the following example, new data is added to the customer dimension.
The input file has both new customers who have been added and changes
to existing customer data. In this case, there is no need to retain the old cus-
tomer information, so it will be updated. An external table, named
CUSTOMER_CHANGES, is created for the file containing the updates to
the customer dimension.

CREATE TABLE easydw.customer_changes

(customer_id VARCHAR2(10),

 gender VARCHAR2(1),

 tax_rate NUMBER,

 city VARCHAR2(15),

 state VARCHAR2(10),

 region VARCHAR2(15),

 postal_code VARCHAR2(10),

 country VARCHAR2(20),

 occupation VARCHAR2(15))

ORGANIZATION EXTERNAL

(TYPE ORACLE_LOADER

 DEFAULT DIRECTORY data_file_dir

 ACCESS PARAMETERS

 (records delimited by newline

 characterset us7ascii

 badfile log_file_dir:'cus_changes.bad'

 logfile log_file_dir:'cust_changes.log'

 fields terminated by ','

 optionally enclosed by "'")

 LOCATION ('customer_changes.dat')

)

REJECT LIMIT UNLIMITED NOPARALLEL;

Instead of using an insert statement to load the data, the MERGE state-
ment is used to load the data. The MERGE statement has two parts. When
the customer_id in the customer table matches the customer_id in the
customer_changes table, the row is updated. When the customer_ids do
not match, a new row is inserted.

MERGE INTO easydw.customer c

USING easydw.customer_changes cc

ON (c.customer_id = cc.customer_id)

WHEN MATCHED THEN UPDATE SET

 c.city=cc.city, c.state=cc.state,

 c.postal_code=cc.postal_code,

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 229

Chapter 5

 c.gender=cc.gender, c.country=cc.country,

 c.region=cc.region, c.tax_rate=cc.tax_rate,

 c.occupation=cc.occupation

WHEN NOT MATCHED THEN INSERT

 (customer_id, city, state, postal_code,

 gender, region, country, tax_rate,

 occupation)

 VALUES

 (cc.customer_id, cc.city, cc.state, cc.postal_code,

 cc.gender, cc.region, cc.country, cc.tax_rate,

 cc.occupation) ;

Before merging the customer changes, we had 500 customers.

SQL> SELECT COUNT(*) FROM customer;

 COUNT(*)

 500

Once the external table is created, we can use SQL to look at the
customer_changes data file. The first two are rows that will be updated. The
first customer was previously an astronomer and is now returning to work as
an astrophysicist. The second customer moved from postal region W1 1QC
to W1-2BA. The last two rows are new customers who will be inserted.

SQL> SELECT * FROM customer_changes;

CUSTOMER_I G TAX_RATE CITY STATE REGION POSTAL_COD COUNTRY OCCUPATION
---------- - -------- --------- ---------- -------- ---------- ------- -----------
AB123459 M 5 Phoenix AZ AmerWest 85001 USA Astro-Physicist
AB123460 F 15 London London EuroWest W1-2BA UK Engineer
AA114778 M 40 Reading Berkshire EuroWest RG1 1BB UK Astronomer
AA123478 F 25 Camberley Surrey Eurowest GU14 2DR UK DB Consultant

Looking at the following portion of the customer dimension, we can see
the rows where the CUSTOMER_ID column matches the CUSTOMER_
ID column in the CUSTOMER_CHANGES external table. These rows
will be updated.

SQL> SELECT * FROM customer;

CUSTOMER_I CITY STATE POSTAL_COD G REGION COUNTRY TAX_RATE OCCUPATION

---------- ------- ------ ---------- - --------- ------- -------- -----------

AB123459 Phoenix AZ 85001 M AmerWest USA 5 Astronomer

AB123460 London London W1 1QC F EuroWest UK 15 Engineer

TEAM LinG - Live, Informative, Non-cost and Genuine!

230 5.4 Loading the Warehouse

After the MERGE, we now have 502 customers. A portion of the out-
put, just the rows that have changed from the customer table, is displayed
here.

SQL> SELECT COUNT(*) FROM customer;

 COUNT(*)

 502

SQL> SELECT * FROM customer;

CUSTOMER_I CITY STATE POSTAL_COD G REGION COUNTRY TAX_RATE OCCUPATION

---------- --------- --------- ---------- - --------- ------- -------- -----------

AB123459 Phoenix AZ 85001 M AmerWest USA 5 Astro-Physicist

AB123460 London London W1-2BA F EuroWest UK 15 Engineer

AA114778 Reading Berkshire RG1-1BB M EuroWest UK 40 Astronomer

AA123478 Camberley Surrey GU14 2DR F Eurowest UK 25 DB Consultant

In this example, the MERGE statement was used with external tables. It
can also be used with any user tables. By using the MERGE statement we
avoid multiple passes of our source data required for separate INSERT and
UPDATE statements; therefore, there is a significant potential saving in
terms of I/O and processor resources.

We can also use the MERGE statement and omit either the INSERT or
the UPDATE clauses. For example, if, in our warehouse, we are not allowed
to change data that is historical and can only insert new data, we can then
omit the UPDATE part of the MERGE statement, as follows:

MERGE INTO easydw.customer c

USING easydw.customer_changes cc

ON (c.customer_id = cc.customer_id)

WHEN NOT MATCHED THEN INSERT

 (customer_id, city, state, postal_code,

 gender, region, country, tax_rate, occupation)

 VALUES

 (cc.customer_id, cc.city, cc.state, cc.postal_code,

 cc.gender, cc.region, cc.country,

 cc.tax_rate, cc.occupation) ;

In addition, MERGE also provides the capability to conditionally exe-
cute the INSERT or UPDATE clauses on a record-by-record basis. For
example, you’ll notice that one of our records to be updated, as well as a
new record to be inserted, has the postal code in an illegal format using a

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.4 Loading the Warehouse 231

Chapter 5

hyphen “-” separator. We can add a conditional clause to both the update
and the insert parts of the merge, so that records with a hyphen are not
merged, as follows:

MERGE INTO easydw.customer c

USING easydw.customer_changes cc

ON (c.customer_id = cc.customer_id)

WHEN MATCHED THEN UPDATE SET

 c.city=cc.city, c.state=cc.state,

 c.postal_code=cc.postal_code,

 c.gender=cc.gender, c.country=cc.country,

 c.region=cc.region, c.tax_rate=cc.tax_rate,

 c.occupation=cc.occupation

 WHERE cc.postal_code not like '%-%'

WHEN NOT MATCHED THEN INSERT

 (customer_id, city, state, postal_code,

 gender, region, country, tax_rate, occupation)

 VALUES

 (cc.customer_id, cc.city, cc.state, cc.postal_code,

 cc.gender, cc.region, cc.country,

 cc.tax_rate, cc.occupation)

 WHERE cc.postal_code not like '%-%' ;

Now we have only one record inserted (AA123478), which had a valid
postal code in the change record, but our existing record (AB123460) was not
updated with its change; it had a bad postal code and remains W1 1QC.

CUSTOMER_I CITY STATE POSTAL_COD G REGION COUNTRY TAX_RATE OCCUPATION

---------- ---------- ---------- ---------- - --------- ------- -------- -----------

AA123478 Camberley Surrey GU14 2DR F Eurowest UK 25 DB Consultant

AB123459 Phoenix AZ 85001 M AmerWest USA 5 Astro-Physicist

AB123460 London London W1 1QC F EuroWest UK 15 Engineer

Finally, under certain circumstances, we can also use the MERGE state-
ment to delete rows in our target table. When the update fires (because the
match clause succeeds), we can add an additional clause to delete the matched
records when an additional delete criteria succeeds. For example, let’s assume
that our legacy system for the customer data cannot add a new field to the
table to indicate that a record has been deleted and instead the delete flag is
encoded into the tax rate. If the tax rate is –1, then the record is deleted on
the source system. Our new MERGE statement now looks like this:

TEAM LinG - Live, Informative, Non-cost and Genuine!

232 5.5 Transformations inside the Oracle Database

MERGE INTO easydw.customer c

USING easydw.customer_changes cc

ON (c.customer_id = cc.customer_id)

WHEN MATCHED THEN UPDATE SET

 c.city=cc.city, c.state=cc.state,

 c.postal_code=cc.postal_code,

 c.gender=cc.gender, c.country=cc.country,

 c.region=cc.region, c.tax_rate=cc.tax_rate,

 c.occupation=cc.occupation

 DELETE WHERE (cc.tax_rate=-1)

WHEN NOT MATCHED THEN INSERT

 (customer_id, city, state, postal_code,

 gender, region, country, tax_rate, occupation)

 VALUES

 (cc.customer_id, cc.city, cc.state, cc.postal_code,

 cc.gender, cc.region, cc.country,

 cc.tax_rate, cc.occupation) ;

If the update match succeeds, then the new delete criteria is tested; if
this also succeeds, then the customer record is deleted. Note, however, that
this is a delete under special circumstances and only the rows that are
updated are candidates for the delete.

The operation that MERGE performs is one of the most common in
warehouse ETL: insert if it does not exist; otherwise, update. Therefore,
instead of having to do this using a number of passes of your data, MERGE
enables you to perform this operation with one call to the database and one
pass over your data. A very useful feature in the warehouse!

5.5 Transformations inside the Oracle Database

Section 5.3 introduced transformations and discussed choosing the optimal
place to perform the transformations. We’ve seen examples of transforming
the data while loading it using both SQL*Loader and external tables. This
section will discuss performing transformations inside the Oracle server. If
you are doing transformations in the Oracle data warehouse, you typically
load data into temporary staging tables, transform the data, then move it to
the warehouse detail fact tables.

When using transportable tablespaces, as shown in the previous section,
the data was moved from the OLTP system to the staging area in the Oracle
warehouse. Data that was loaded using external tables or SQL*Loader, can
be further transformed in a staging area inside the Oracle server. Oracle
Database 10g provides tools that can be used to implement transformations
in SQL, PL/SQL, or Java stored procedures.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.5 Transformations inside the Oracle Database 233

Chapter 5

In this section, we will first look at the SQL to perform the following
simple transformations.

� Remove the hyphen from the product id and increase the shipping
charges by 10 percent.

� Check for invalid product_ids.

� Look up the warehouse key, and substitute it for the PRODUCT_ID.

We will look at a new SQL feature to use regular expressions for search-
ing and manipulating character data. Then, we will rewrite the first trans-
formation as a table function.

5.5.1 Transformations That Cleanse Data and Derive
New Data

The SQL UPDATE statement using built-in functions can be used to per-
form some simple transformations. Continuing with our example, the
APR_ORDERS table must be cleansed. Some of the PRODUCT_ID’S
contain a hyphen, which needs to be removed. The fuel costs have
increased, so we must add 10 percent to the shipping charges. Both of these
operations can be done in one step using the UPDATE statement. A few of
the rows are shown here before they are transformed.

SQL> SELECT * FROM apr_orders;

PRODUCT TIME_KEY CUSTOMER SHIP_DATE PURCHASE SHIPPING TODAY_SPECIAL

 ID ID PRICE CHARGE OFFER

------- --------- -------- --------- -------- -------- -------------

SP1001 02-APR-04 AB123457 02-APR-04 28.01 5.45 N

SP-1000 01-APR-04 AB123456 01-APR-04 67.23 5.45 N

SP-1000 01-APR-04 AB123457 01-APR-04 67.23 5.45 N

The SQL multiplication operator, *, will be used to update the shipping
charge, and the REPLACE function will be used to replace the hyphen, '-'
with an empty quote, '', thus removing it. The modified fields are high-
lighted. The shipping charge has increased from 5.45 to 6. The hyphen has
been removed from the PRODUCT_ID.

SQL> UPDATE apr_orders

 SET shipping_charge = (shipping_charge * 1.10),

 product_id=REPLACE(product_id, '-','');

TEAM LinG - Live, Informative, Non-cost and Genuine!

234 5.5 Transformations inside the Oracle Database

PRODUCT TIME_KEY CUSTOMER SHIP_DATE PURCHASE SHIPPING TODAY_SPECIAL

 ID ID PRICE CHARGE OFFER

------- --------- -------- --------- -------- -------- -------------

SP1001 02-APR-04 AB123457 02-APR-04 28.01 6 N

SP1000 01-APR-04 AB123456 01-APR-04 67.23 6 N

SP1000 01-APR-04 AB123457 01-APR-04 67.23 6 N

Processing With More Power: The REGEXP Functions

In Oracle Database 10g, a powerful set of text search and replace functions
are introduced; these use regular expressions and significantly improve our
capability to search on, and process, character data.

The new regular expressions extend our ability to define the rules for the
types of strings we are searching for and are also used in functions to
manipulate character data. This provides us with a new, powerful mecha-
nism for parsing more sophisticated strings in order to validate our ware-
house data. It also gives us greater control and flexibility with the operations
to transform and reorganize our source data to make it conform to the
warehouse rules and representation.

Prior to Oracle Database 10g, the fundamental ability to process textual
strings in the database was limited by relatively simple search and replace
functionality—for example, the LIKE operator and the INSTR, SUBSTR,
and REPLACE functions, which are really just based on either string
matching or simple wildcards. Even with the facility to define new, more
powerful functions in PL/SQL and call them from INSERT, UPDATE,
and SELECT clauses we still have the burden of creating the functions in
the first place. Having a more powerful set of text search and manipulation
functions as standard is extremely valuable in the warehouse.

Let’s look at an example, the criteria LIKE '%CARD%' searches for any
string of characters (represented by '%') followed by the string 'CARD' fol-
lowed by another string of any characters (the second '%'). We can also use
the underscore character '_' to represent a single character wildcard. But
other than that, this is more or less our standard search capability.

Regular Expression Basics and Searching

But what is a regular expression? Regular expressions operate by giving cer-
tain characters special meaning, which, when used in conjunction with nor-
mal characters, enables us to define an expression that represents the string
we want to search for. Often these special characters are called metacharac-
ters. For example, '%' and '_' in our previous simple example are the two
metacharacters that we had prior to Oracle Database 10g.

Some of the basic metacharacters in regular expressions are:

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.5 Transformations inside the Oracle Database 235

Chapter 5

If you are familiar with UNIX systems, you will recognize and feel comfort-
able with many of the constructs used in Oracle regular expressions, which
are based on the POSIX rules.

Let’s take a simple example based on the following table and rows.

SQL> CREATE TABLE regexp (chardata varchar2(50));

SQL> INSERT INTO regexp VALUES ('A theory concerning');

1 row created.

SQL> INSERT INTO regexp

 VALUES ('the origin of the universe, is the Big ');

1 row created.

SQL> INSERT INTO regexp VALUES ('Bang.');

SQL> COMMIT;

Commit complete.

Now let’s see how we define a search condition using the wildcard char-
acter '*':

SQL> SELECT * FROM regexp

 WHERE regexp_like (chardata, '*the*');

CHARDATA

--

A theory concerning

the origin of the universe is the

. A single character match

^ The start of a line or string

$ The end of a line or string

* Repeat the pattern 0 or more times

? Repeat the pattern 0 or 1 times

+ Repeat the pattern 1 or more times

{m} Repeat the pattern m times

{m,} Repeat the pattern at least m times

{m,n} Repeat the pattern m times but not more than n times

TEAM LinG - Live, Informative, Non-cost and Genuine!

236 5.5 Transformations inside the Oracle Database

The '*' metacharacter represents any string of characters, so we have
specified a criteria for any record where the CHARDATA column data con-
tains the string 'the'. The REGEXP_LIKE function can actually take three
parameters, as follows:

REGEXP_LIKE(search_string, pattern_string, match_parameter)

In our example, we have already seen how search_string and pattern_string
are used, but the match_parameter provides some extra functionality to add
to the power and flexibility of REGEXP_LIKE. This parameter can take a
small set of values, which changes the matching behavior:

'i' case-insensitive matching

'c' case-sensitive matching

'm' allows the period '.' to match the new line character

'n' allows the search_string to represent or contain multiple lines

Without this, Oracle treats each record as a separate line; by specifying
'n' Oracle will interpret search_string as containing multiple lines.

If we want to find the record where 'the' occurs only at the start of the
line, then we use the '^' character, which represents the start of the line:

SQL> SELECT * FROM regexp

 WHERE regexp_like (chardata, '^the*');

CHARDATA

--

the origin of the universe is the

So if we combine the use of the '.' to match any single character with the
'{}' repetition capability, we can show how we can easily construct a regular
expression to find a single character between 'B' and 'g' and exactly two
characters between the 'B' and 'g'.

SQL> SELECT * FROM regexp

 WHERE regexp_like(chardata, 'B.{1}g');

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.5 Transformations inside the Oracle Database 237

Chapter 5

CHARDATA
--
the origin of the universe, is the Big

SQL> SELECT * FROM regexp
 WHERE regexp_like(chardata, 'B.{2}g');

CHARDATA
--
Bang.

To take another example to demonstrate the power of regular expres-
sions, a construct for use in the pattern string is one to specify lists by
bracketing the list values using '[' and ']'. For example, to find the records
that contain the characters 'y' and 'v', the following list would be used,
'[yv]'. Now the real power of lists is where predefined lists are provided. For
example, lists representing all alphanumeric characters, all uppercase char-
acters, or control characters enable these sets of characters to be referenced
in one clear construct.

Regular Expressions and Substrings
We have shown the basic forms of regular expressions, and you can see that
very powerful searching capability can be defined with their use. But there
is also a REGEXP version equivalent to the existing INSTR function, called
REGEXP_INSTR, which can tell us at what position our pattern occurs in
the search string. For example:

SQL> SELECT regexp_instr(chardata, 'B.{1}g')
 FROM regexp
 WHERE regexp_like(chardata, 'B.{1}g') ;

REGEXP_INSTR(CHARDATA,'B.{1}G')

 36

Similarly, there is also a new regular expression version of the familiar
SUBSTR functions. For example, to extract the substring that we just iden-
tified in the preceding example:

SQL> SELECT regexp_substr(chardata, 'B.{2}g')
 FROM regexp
 WHERE regexp_like(chardata, 'B.{2}g') ;

REGEXP_SUBSTR(CHARDATA,'B.{2}G')

Bang

TEAM LinG - Live, Informative, Non-cost and Genuine!

238 5.5 Transformations inside the Oracle Database

If we had used '1' instead of '2', then we would have extracted the string
'Big' from our other record.

Regular Expressions to Manipulate Data

Finally, let’s take a look at the REGEXP_REPLACE function, which
extends the REPLACE functionality. Now that we understand regular
expressions a bit better, we will take an example that is closer to a warehouse
parsing and manipulation requirement and add some data to our table: U.S.
phone numbers. Some of our phone numbers are arriving with the area code
in parentheses, which is not the required format for our warehouse. By using
REGEXP_REPLACE, we can define a regular expression that matches the
parenthesized phone number and removes the parentheses.

This example will take a bit more explaining; it is also demonstrating
another powerful feature of the regular expression implementation called
back references, where subexpressions in our pattern string can be sepa-
rately referenced.

In our REGEXP_REPLACE() call, we have actually defined five subex-
pressions, as follows, to parse the string '(123)-456-7890':

SQL> SELECT regexp_replace('(123)-456-7890',

 '(\()(.*)(\))-(.*)-(.*)',

 '\2-\4-\5') AS transformed_string

 FROM dual ;

TRANSFORMED_STRING

123-456-7890

Where each of the five subexpressions is defined as follows:

(\() is the '(' character, where we have used the backslash to remove
the special meaning

(.*) for any string of characters

(\)) is the ')' character, from which we have also removed any spe-
cial meaning

(.*) any string of characters

(.*) any string of characters

The hyphens act as themselves and are not our subexpressions. There-
fore, in our replace string, we can refer to these subexpressions and reor-

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.5 Transformations inside the Oracle Database 239

Chapter 5

der them or even remove them entirely from our resulting string. The
string '\2-\4-\5' in our example means take the seconds, fourth, and fifth
sub-expressions and separate them with hyphens.

To run our new phone number transformation function using the data
within our table we will first add a few records containing some new
numbers.

SQL> INSERT INTO regexp VALUES ('123-456-7890');

1 row created.

SQL> INSERT INTO regexp VALUES ('(111)-222-3333');

1 row created.

SQL> INSERT INTO regexp VALUES ('333-444-5555');

1 row created.

SQL> COMMIT;

Commit complete.

SQL> SELECT regexp_replace(chardata,

 '(\()(.*)(\))-(.*)-(.*)',

 '\2-\4-\5') AS transformed_string

 FROM regexp;

TRANSFORMED_STRING

A theory concerning

the origin of the universe, is the Big

Bang.

123-456-7890

111-222-3333

333-444-5555

Hence, REGEXP_REPLACE has restructured just the strings that
match our regular expression, removed the parenthesis to make it conform
to our warehouse representation, and left alone all of the other records that
don’t match. Now, if you consider how to code that operation using normal
SQL functions, you can see that regular expressions are very powerful. We
have only touched the tip of the iceberg with some simple examples, but the
REGEXP functions use a succinct and convenient notation to encompass
some very useful functionality for our warehouse transformations.

TEAM LinG - Live, Informative, Non-cost and Genuine!

240 5.5 Transformations inside the Oracle Database

5.5.2 Validating Data Using a Dimension

Often the incoming data must be validated using information that is in the
dimension tables. While this is not actually a transformation, it is discussed
here, since it is often done at this stage prior to loading the warehouse
tables. In our example, we want to ensure that all the PRODUCT_ID’S for
the April orders are valid. The PRODUCT_ID for each order must match
a PRODUCT_ID in the product dimension.

This query shows that the April data does have an invalid
PRODUCT_ID, where there is no matching PRODUCT_CODE in the
product dimension. Any data that is invalid should be corrected prior to
loading it from the staging area into the warehouse.

SQL> SELECT DISTINCT product_id FROM apr_orders

 WHERE product_id NOT IN (SELECT product_id FROM product);

PRODUCT_ID

SP1036

Note that in many actual warehouse systems, the warehouse designer
sometimes makes a conscious decision to map unknown natural dimension
codes (SP1036 in our previous example) to a dimension record representing
“unknown.” For example, if the product surrogate key is in incrementing
integer sequence from 1, then the unknown dimension new records are
mapped to a record with the id -1. With this technique, we are always able
to map our new source products to a product dimension record, and, con-
sequently, the referential integrity constraints can always be activated, how-
ever, there is a necessary cleanup step required when the true dimensional
record arrives in the warehouse.

5.5.3 Looking up the Warehouse Key

Now that we have cleansed the PRODUCT_ID column, we will modify it
to use the warehouse key. For the next example, a PRODUCT_CODE has
been added to the product table; this will be used to look up the
PRODUCT_ID, which is the surrogate key for the warehouse. Figure 5.4
showed the use of surrogate keys in the warehouse. A portion of the prod-
uct dimension is displayed.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.5 Transformations inside the Oracle Database 241

Chapter 5

SQL> SELECT PRODUCT_ID, PRODUCT_CODE FROM PRODUCT;

PRODUCT_ID PRODUCT_CODE

---------- ------------

 1 SP1000

 2 SP1001

 3 SP1010

 4 SP1011

 5 SP1012

In this next transform, we are going to use the PRODUCT_ID in the
APR_ORDERS table to look up the warehouse key from the PRODUCT
dimension. The PRODUCT_ID column in the APR_ORDERS table will
be replaced with the warehouse key.

SQL> SELECT * FROM APR_ORDERS;

PRODUCT TIME_KEY CUSTOMER SHIP_DATE PURCHASE SHIPPING TODAY_SPECIAL

 ID ID PRICE CHARGE OFFER

------- --------- -------- --------- -------- -------- -------------

SP1001 01-APR-04 AB123456 01-APR-04 28.01 6 Y

SP1001 01-APR-04 AB123457 01-APR-04 28.01 6 Y

SP1061 01-APR-04 AB123456 01-APR-04 28.01 8.42 Y

SP1062 01-APR-04 AB123457 01-APR-04 28.01 3.58 Y

SQL> UPDATE APR_ORDERS A

 SET A.PRODUCT_ID = (SELECT P.PRODUCT_ID

 FROM PRODUCT P

 WHERE A.PRODUCT_ID = P.PRODUCT_CODE);

4 rows updated.

Note that the original PRODUCT_ID’S have been replaced with the
warehouse key.

SQL> SELECT * FROM APR_ORDERS;

PRODUCT TIME_KEY CUSTOMER SHIP_DATE PURCHASE SHIPPING TODAY_SPECIAL

 ID ID PRICE CHARGE OFFER

------- --------- -------- --------- -------- -------- -------------

2 01-APR-04 AB123456 01-APR-04 28.01 6 Y

2 01-APR-04 AB123457 01-APR-04 28.01 6 Y

54 01-APR-04 AB123456 01-APR-04 28.01 8.42 Y

55 01-APR-04 AB123457 01-APR-04 28.01 3.58 Y

TEAM LinG - Live, Informative, Non-cost and Genuine!

242 5.5 Transformations inside the Oracle Database

5.5.4 Table Functions

The results of one transformation are often stored in a database table. This
table is then used as input to the next transformation. The process of trans-
forming and storing intermediate results, which are used as input to the
next transformation, is repeated for each transformation in the sequence.

The drawback to this technique is performance. The goal is to perform
all transformations so that each record is read, transformed, and updated
only once. Of course, there are times when this may not be possible, and
the data must be passed through multiple times.

A table function is a function whose input is a set of rows and whose
output is a set of rows, which could be a table—hence, the name table func-
tion. The sets of rows can be processed in parallel, and the results of one
function can be pipelined to the next before the transformation has been
completed on all the rows in the set, eliminating the need to pass through
the data multiple times.

Table functions use Oracle’s object technology and user-defined data
types. First, new data types must be defined for the input record and output
table. In the following example, the PURCHASES_RECORD data type is
defined to describe the records in the PURCHASES table.

SQL> CREATE TYPE purchases_record as OBJECT

(product_id VARCHAR2(8),

 time_key DATE,

 customer_id VARCHAR2(10),

 ship_date DATE,

 purchase_price NUMBER(6,2),

 shipping_charge NUMBER(5,2),

 today_special_offer VARCHAR2(1));

Next, the PURCHASES_TABLE data type is defined. It contains a col-
lection of PURCHASES_RECORDS, which will be returned as output
from the function.

SQL> CREATE TYPE purchases_table

 AS TABLE of purchases_record;

Next, define a type for a cursor variable, which will be used to pass a set
of rows as input to the table function. Cursor variables are pointers, which
hold the address of some item instead of the item itself. In PL/SQL, a
pointer is created using the data type of REF. Therefore, a cursor variable

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.5 Transformations inside the Oracle Database 243

Chapter 5

has the data type of REF CURSOR. To create cursor variables, you first
define a REF CURSOR type.

SQL> CREATE PACKAGE cur_pack

 AS TYPE ref_cur_type IS REF CURSOR;

 END cur_pack;

Here is our table function, named TRANSFORM, which performs the
search and replace, removing the hyphen from the PRODUCT_ID and
increasing the shipping charge. There are some things that differentiate it
from other functions. The function uses PIPELINED in its definition and
PIPE ROW in the body. This causes the function to return each row as it is
completed, instead of waiting until all rows are processed. The input to the
function is a cursor variable, INPUTRECS, which is of type ref_cur_type,
defined previously. The output of the function is a table of purchase records
of type PURCHASES_TABLE, defined previously. The REF CURSOR,
INPUTRECS, is used to fetch the input rows, the transformation is per-
formed, and the results for each row are piped out. The function ends with
a RETURN statement, which does not specify any return value.

CREATE OR REPLACE FUNCTION

 transform(inputrecs IN cur_pack.ref_cur_type)

RETURN purchases_table

PIPELINED

IS

 product_id VARCHAR2(8);

 time_key DATE;

 customer_id VARCHAR2(10);

 ship_date DATE;

 purchase_price NUMBER(6,2);

 shipping_charge NUMBER(5,2);

 today_special_offer VARCHAR2(1);

BEGIN

LOOP

 FETCH inputrecs INTO product_id, time_key,customer_id,

 ship_date,purchase_price,shipping_charge,

 today_special_offer;

 EXIT WHEN INPUTRECS%NOTFOUND;

 product_id := REPLACE(product_id, '-','');

 shipping_charge :=(shipping_charge+shipping_charge*.10);

 PIPE ROW(purchases_record(product_id,

 time_key,

 customer_id,

TEAM LinG - Live, Informative, Non-cost and Genuine!

244 5.5 Transformations inside the Oracle Database

 ship_date,

 purchase_price,

 shipping_charge,

 today_special_offer));

END LOOP;

CLOSE inputrecs;

RETURN;

END;

We’ve rolled back the changes from the previous transforms and are
going to do them again using the table function instead. Here is the data
prior to being transformed.

SQL> SELECT * FROM apr_orders;

PRODUCT TIME_KEY CUSTOMER SHIP_DATE PURCHASE SHIPPING TODAY_SPECIAL
 ID ID PRICE CHARGE OFFER
------- --------- -------- --------- -------- -------- ----------
SP-1001 01-APR-04 AB123456 01-APR-04 28.01 5.45 Y
SP-1001 01-APR-04 AB123457 01-APR-04 28.01 5.45 Y
SP1061 01-APR-04 AB123456 01-APR-04 28.01 8.42 Y
SP1062 01-APR-04 AB123457 01-APR-04 28.01 3.58 Y

To invoke the function, use it as part of a SELECT statement. The
TABLE keyword is used before the function name in the FROM clause.
The changes are shown in bold in the following code. For example:

SQL> SELECT * FROM

 TABLE(transform(CURSOR(SELECT * FROM apr_orders)));

PRODUCT TIME_KEY CUSTOMER SHIP_DATE PURCHASE SHIPPING TODAY_SPECIAL
 ID ID PRICE CHARGE OFFER
------- --------- -------- --------- -------- -------- ----------
SP1001 01-APR-04 AB123456 01-APR-04 28.01 6 Y
SP1001 01-APR-04 AB123457 01-APR-04 28.01 6 Y
SP1061 01-APR-04 AB123456 01-APR-04 28.01 9.26 Y
SP1062 01-APR-04 AB123457 01-APR-04 28.01 3.94 Y

If we needed to save the data, the following example shows creating a
table to save the results of the table function.

SQL> CREATE TABLE TEST

 AS SELECT * FROM TABLE(transform(CURSOR(SELECT * FROM
apr_orders)));

Table created.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.5 Transformations inside the Oracle Database 245

Chapter 5

5.5.5 Transformations That Split One Data Source into
Multiple Targets

Sometimes transformations involve splitting a data source into multiple tar-
gets, as illustrated in Figure 5.16. The multitable INSERT statement facili-
tates this type of transformation.

In the following example, the APR_ORDERS will be split into two
tables. All orders that took advantage of today’s special offer will be written
to the SPECIAL_PURCHASES table. All regular sales will be written to
the PURCHASES table. This information could be used to target future
advertising. A new table, SPECIAL_PURCHASES, has been created with
the same columns as the APR_ORDERS and PURCHASES tables.

The INSERT statement specifies a condition, which is evaluated to
determine which table each row should be inserted into. In this example,
there is only one WHEN clause, but you can have multiple WHEN clauses
if there are multiple conditions to evaluate. If no WHEN clause evaluates
to true, the ELSE clause is executed.

By specifying FIRST, Oracle stops evaluating the WHEN clause when
the first condition is met. Alternatively, if ALL is specified, all conditions
will be checked for each row. ALL is useful when the same row is stored in
multiple tables.

SQL> INSERT FIRST WHEN today_special_offer = 'Y'

 THEN INTO special_purchases

 ELSE INTO purchases

 SELECT * FROM apr_orders;

15004 rows created.

The four rows with today_special_offer = 'Y' have been inserted into the
SPECIAL_PURCHASES table. The remaining rows have been inserted
into the PURCHASES table.

Figure 5.16 Multitable Insert

TEAM LinG - Live, Informative, Non-cost and Genuine!

246 5.5 Transformations inside the Oracle Database

SQL> SELECT COUNT(*) FROM purchases;

 COUNT(*)

 15000

SQL> SELECT COUNT(*) FROM special_purchases;

 COUNT(*)

 4

From the following queries, we can see that the data has been split
between the two tables. Purchases made with the value of N in
TODAY_SPECIAL_OFFER are stored in the PURCHASES table. Those
with the value of Y are stored in the SPECIAL_PURCHASES table.

SQL> SELECT DISTINCT(today_special_offer) FROM purchases;

TODAY_SPECIAL_OFFER

N

SQL> SELECT DISTINCT(today_special_offer) FROM special_purchases;

TODAY_SPECIAL_OFFER

Y

5.5.6 Moving Data from a Staging Table into the
Fact Table

Once the data has been transformed, it is ready to be moved to the ware-
house tables. For example, if the orders data for January 2005 has been
moved into temporary staging tables in the warehouse, then, once the data
has been cleansed and transformed, it is ready to be moved into the pur-
chases fact table, as shown in Figure 5.17.

Figure 5.17 Moving Data from a Staging Table into the Fact Table

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.5 Transformations inside the Oracle Database 247

Chapter 5

When the fact table is partitioned, new tablespaces are created for the
datafile and indexes, a new partition is added to the fact table, and the data
is moved into the new partition. The steps are illustrated using the
EASYDW example.

Step 1: Create a New Tablespace for the Jan Purchases and the Jan
Purchases Index

Since the purchases table is partitioned by month, a new tablespace will be
created to store the January purchases. Another tablespace is created for the
indexes.

CREATE TABLESPACE purchases_jan2005

DATAFILE

'C:\ORACLE\PRODUCT\10.1.0\ORADATA\EASYDW\purchasesjan2005.f'

SIZE 5M REUSE AUTOEXTEND ON

DEFAULT STORAGE (INITIAL 64K NEXT 64K PCTINCREASE 0

 MAXEXTENTS UNLIMITED)

CREATE TABLESPACE purchases_jan2005_idx

DATAFILE

'C:\ORACLE\PRODUCT\10.1.0\ORADATA\EASYDW\purchasesjan2005_IDX.f'

SIZE 3M REUSE AUTOEXTEND ON

DEFAULT STORAGE (INITIAL 16K NEXT 16K PCTINCREASE 0

 MAXEXTENTS UNLIMITED)

Step 2: Add a Partition to the Purchases Table

The PURCHASES table is altered, and the purchases_jan2005 partition is
created via an add partition operation.

SQL> ALTER TABLE purchases ADD PARTITION purchases_jan2005

VALUE LESS THAN (to_date('01-feb-2005', 'dd-mon-yyyy'))

PCTFREE 0 PCTUSED 99 STORAGE (INITIAL 64k NEXT 64k PCTINCREASE 0)

TABLESPACE purchases_jan2005;

Figure 5.18 shows the new partition that has been added to the PUR-
CHASES table (this page can be accessed from the standard Tables page
for EASYDW tables, clicking on the View button for the PURCHASES
table, and scrolling down the resultant page—there is actually more infor-
mation above and below than we have shown—the Options information
extends further down the page). For the corresponding PURCHASE_
PRODUCT_INDEX, you can view the index in a similar fashion by
selecting Indexes on the Administration tab, selecting the indexes for

TEAM LinG - Live, Informative, Non-cost and Genuine!

248 5.5 Transformations inside the Oracle Database

EASYDW and, again, selecting the View button. The presentation for the
index information is similar to that shown for the table.

Step 3: Move the table into the new partition

There are a variety of ways to move the data from one table to another in
the same database:

� Exchange Partition (when the fact table is partitioned)

� Direct Path Insert

� Create Table as Select

Moving Data Using Exchange Partition

The ALTER TABLE EXCHANGE PARTITION clause is generally the
fastest way to move the data of a nonpartitioned table into a partition of a
partitioned table. It can be used to move both the data and local indexes
from a staging table into a partitioned fact table. The reason it is so fast is

Figure 5.18 Viewing a Table’s Partitions Using Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.5 Transformations inside the Oracle Database 249

Chapter 5

because the data is not actually moved; instead, the metadata is updated to
reflect the changes.

If the data has not previously been cleansed, it can be validated to ensure
it meets the partitioning criteria, or this step can be skipped using the
WITHOUT VALIDATION clause. Figure 5.19 shows moving the data
from the APR_ORDERS staging table into the PURCHASES fact table
using exchange partition.

The following example shows moving the data from the
JAN_ORDERS into the PURCHASES_JAN2005 partition of the
EASYDW.PURCHASES table.

SQL> ALTER TABLE easydw.purchases

 EXCHANGE PARTITION purchases_jan2005 WITH TABLE jan_orders

 WITHOUT VALIDATION;

Assuming that the PURCHASES_JAN2005 partition was newly cre-
ated and empty at the start, then, after exchanging the partition, it will be
full and there will be no rows left in the JAN_ORDERS table. The
JAN_ORDERS table can now be dropped.

SQL> SELECT * FROM jan_orders;

no rows selected

SQL> DROP TABLE jan_orders;

Table dropped.

Figure 5.19 Exchange Partition

TEAM LinG - Live, Informative, Non-cost and Genuine!

250 5.5 Transformations inside the Oracle Database

We discuss table partition operations more extensively in Chapter 11
where we also look at the Enterprise Manager screens to support these oper-
ations.

Moving Data Between Tables Using Direct Path Insert

If the fact table is not partitioned, you can add more data to it by using
direct path insert. A direct path insert enhances performance during insert
operations by formatting and writing data directly into the datafiles with-
out using the buffer cache. This functionality is similar to SQL*Loader
direct path mode.

Direct path insert appends the inserted data after existing data in a
table; free space within the existing table is not reused when executing
direct path operations. Data can be inserted into partitioned or nonparti-
tioned tables, either in parallel or serially. Direct path insert updates the
indexes of the table.

In the EASYDW database, since the purchases table already exists and is
partitioned by month, we could use the direct path insert to move the data
into the table. Direct path INSERT is executed when you include the
APPEND hint and are using the SELECT syntax of the INSERT statement.

SQL> INSERT /*+ APPEND */ INTO easydw.purchases

 SELECT * FROM jan_orders

In our example, the purchases fact table already existed, and new data
was added into a separate partition.

Hint: Be sure you have disabled all reference constraints before executing
the direct load insert. If you do not, the append hint will be ignored, no
warnings will be issued, and a conventional insert will be used. Plus, the
insert will take a long time if there is a lot of data. Conventional path is
used when using the INSERT...with the VALUES clause even if you use the
APPEND hint.

Creating a New Table Using Create Table As Select

If the detail fact table does not yet exist, you can create a new table selecting
a subset of one or more tables using the CREATE TABLE AS SELECT
statement. The table creation can be done in parallel. You can also disable
logging of redo. In the following example, TEMP_PRODUCTS is the
name of the staging table. After performing the transformations and data

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.6 Postload Operations 251

Chapter 5

cleansing, the products table is created by copying the data from the
TEMP_PRODUCTS table.

SQL> CREATE TABLE products

 PARALLEL NOLOGGING

 AS

 SELECT * FROM temp_products;

5.6 Postload Operations

After the data is loaded, you may need to validate its quality, reenable con-
straints and triggers, rebuild indexes, update the cost-based optimizer statis-
tics, and refresh the materialized views prior to making the data available to
the warehouse users. Some of these tasks have been discussed previously in
this chapter.

5.6.1 Step 1: Gather Optimizer Statistics for the Tables

Run the DBMS_STATS package to update the optimizer statistics on any
tables where you have added a significant amount of data. Statistics can be
gathered for an index, index partition, table, partition or subpartition, and
a materialized view.

Since we added an entire partition to the purchases fact table, the fol-
lowing example will gather statistics for the purchases_jan2005 partition.

SQL> EXECUTE DBMS_STATS.GATHER_TABLE_STATS('easydw','purchases',
'purchases_jan2005',DBMS_STATS.AUTO_SAMPLE_SIZE);

5.6.2 Step 2: Verify the Dimensions

If using summary management, run the DBMS_OLAP.VALIDATE_
DIMENSION procedure for each dimension to verify that the hierarchical,
attribute, and join relationships are correct. It can also be used to determine
if any level columns in a dimension are NULL. You can either verify the
newly added rows or all the rows. Any exceptions are logged in the table
MVIEW$_EXCEPTIONS, which is created in the user’s schema.

In the following example, the product dimension (parameter 1) in the
EASYDW schema (parameter 2) is verified for correctness. All rows will be
validated (parameter 3 is set to false), and we’ll check for nulls (parameter 4
is set to true).

TEAM LinG - Live, Informative, Non-cost and Genuine!

252 5.6 Postload Operations

SQL> EXECUTE
dbms_olap.validate_dimension('product','easydw',false,true);

SQL> SELECT * FROM mview$_exceptions;

no rows selected

5.6.3 Step 3: Refresh the materialized views

After loading the new data into the PURCHASES table, the
PRODUCT_SUM materialized view became stale. It only contains infor-
mation for the existing data and must be refreshed to incorporate the newly
loaded data. The operations and options for refreshing materialized views is
discussed extensively in Chapter 7.

5.6.4 Step 4: Gather Optimizer Statistics for the
Materialized Views

Next, update the optimizer statistics on any materialized views that may
have significantly changed in size. If you used Oracle Enterprise Manager
to refresh your materialized views, you have the option of analyzing the
materialized view by using the Analyze button on the Materialized View
General tab.

To gather optimizer statistics outside of Oracle Enterprise Manager, use
the DBMS_STATS package. In this example, table statistics will be gath-
ered from the PRODUCT_SUM materialized view in the EASYDW
schema.

SQL> EXECUTE
DBMS_STATS.GATHER_TABLE_STATS('easydw','product_sum');

5.6.5 Step 5: Back up the Database Table, or Partition

Back up the database, table or partition after the load is complete, if you
used the UNRECOVERABLE option. Since media recovery is disabled for
the table being loaded, you will not be able to recover in the event of media
failure. Refer to Chapter 12 for a discussion on backup techniques.

5.6.6 Step 6: Publish the Data

Notify the users about which data has been loaded the previous day and is
ready for their use.

TEAM LinG - Live, Informative, Non-cost and Genuine!

5.8 Summary 253

Chapter 5

5.7 Using Tools for the ETL process

Several tools are available on the marketplace to help automate parts of the
ETL process, including Oracle Warehouse Builder and tools from Infor-
matica, AbInitio, Ascential, and Sagent. These tools provide the mecha-
nisms to connect to the heterogeneous data sources, generally to either
relational databases or flat files, and perform the data extraction functions.
They control the transfer of data across a network, provide data transfor-
mation services, data cleansing capabilities, and load the data into your
data warehouse. We discuss Oracle Warehouse Builder in more detail in
Chapter 13.

5.8 Summary
In this chapter, we looked at the ETL process. Various techniques were dis-
cussed to identify rows that changed on the source system as part of the
extraction process, and both synchronous and asynchronous forms of Change
Data Capture were introduced. A number of types of transformations that are
common to a data warehouse were discussed. Examples were shown perform-
ing transformations during the load process, using staging tables inside the
Oracle database, and using the new regular expression functionality. Tech-
niques used to load the warehouse were illustrated, including SQL*Loader,
Data Pump, external tables, and transportable tablespaces. Moving data from
the staging system to the warehouse tables can be done using a variety of tech-
niques, such as exchange partition, direct path insert, or create table as select.
In Chapter 13, we’ll look at Oracle Warehouse Builder, which uses many of
the functions discussed in this chapter, to help you load your data warehouse.

In the next chapter, we will discuss more about how to query the data
we have taken so much care in loading.

TEAM LinG - Live, Informative, Non-cost and Genuine!

255

6

Querying the Data Warehouse

6.1 Introduction

A data warehouse is primarily used to organize data so queries about the
business can be answered quickly. As data warehouses grow in size, it is not
uncommon to find a fact table several gigabytes or even terabytes in size. In
order to obtain fast query response, it is extremely important for the data-
base to retrieve and process such large amounts of data efficiently.

In Chapter 4, we discussed several physical design techniques, including
partitioning, compression, and bitmapped indexing, that are suited for data
warehouses. In this chapter, we’ll look at query optimizations, such as parti-
tion pruning, partition-wise join, and star transformation, that are specifi-
cally designed to improve query performance in a data warehouse. We will
also describe how to use parallel execution for queries.

Finally, we will discuss several SQL functions that are useful for deci-
sion-support applications to answer business queries, which typically per-
form computations such as period-over-period comparisons and cumulative
aggregations. These SQL functions allow users to express complex queries
simply and process them efficiently. We will also look at the new spread-
sheet technology in Oracle Database 10

g

.

We will begin with the query optimizer, which is the heart of query
processing in a database.

6.2 The Query Optimizer

Anyone who has worked with a database is familiar with the query opti-
mizer. The job of the optimizer is to determine a plan to execute a query
in the fastest possible time. For instance, the optimizer may decide to use
an index, or, if the table is small, it might be faster to perform a full table

TEAM LinG - Live, Informative, Non-cost and Genuine!

256

6.2

The Query Optimizer

scan. The query optimizer in Oracle Database 10

g

 is known as the

cost-
based optimizer

.

The cost-based optimizer uses various statistics, such as the cardinality
of the table (i.e., number of rows), number of distinct values of a column
and the distribution of column values, to determine the method and the
cost of accessing a table. The method used to access a table is called its

access path

 and can use one or more

access structures

, such as indexes and
materialized views, or scan the entire table. The optimizer first identifies for
each table, the access path with the least cost. It then determines the cheap-
est way to join the tables, includes the cost of other operations such as sorts,
and in this manner picks the strategy to execute the query with the cheapest
cost. We refer to this strategy as the

query execution plan

 and the cost is a
measure of how much I/O, CPU time, and memory will be required to exe-
cute the query using this execution plan. To use the cost-based optimizer
effectively, statistics describing the cardinality and data distribution must be
collected for each table, index, and materialized view. Chapter 11 will
describe the use of the DBMS_STATS package to collect statistics and will
explain how you can set up automatic statistics collection. Note that if a
table does not have statistics, Oracle Database 10

g

 employs a feature called
dynamic sampling, which will automatically sample the data to collect sta-
tistics. This is also discussed in Chapter 11.

Note:

Prior to Oracle Database 10

g

, there was an alternative approach of
using the rule-based optimizer; however, this is not suitable for a data ware-
house, and, in fact, starting in Oracle Database 10

g

, the rule-based opti-

mizer is no longer supported by Oracle.

Next, we will talk about some of the features of the cost-based query
optimizer and how they work for queries in a data warehouse. We will
begin by reviewing the EXPLAIN PLAN facility to view the query execu-
tion plan generated by the query optimizer. This will be used extensively by
the examples in this book.

6.2.1 EXPLAIN PLAN

Oracle provides several tools to display the execution plan. You can use the

autotrace

option of SQL*Plus to display the plan when you execute the
query. Alternatively, to just get the query plan without executing the query,
you can use EXPLAIN PLAN. The output of EXPLAIN PLAN is placed in
a table called the PLAN_TABLE. Before you can start using EXPLAIN

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.2

The Query Optimizer 257

Chapter 6

PLAN, you must create the PLAN_TABLE in the schema where you will
execute the query by running the script ORACLE_HOME/rdbms/admin/
utlxplan.sql. You can also ask EXPLAIN PLAN to place the output in some
other table, but it must have the same columns as the PLAN_TABLE. To
display the plan you would use the script ORACLE_HOME/rdbms/
admin/utlxpls.sql.

Let us look at the output of an EXPLAIN PLAN statement. The output
consists of the access path for each table, the cost of the access path, and the

estimated

 number of rows retrieved. The plan output is indented so that
tables that are being joined are shown at the same level of indentation;
operations that are performed earlier are indented further.

EXPLAIN PLAN FOR
SELECT t.month, t.year, p.product_id,
 SUM (purchase_price) as sum_of_sales,
 COUNT (purchase_price) as total_sales,
 COUNT(*) as cstar
FROM time t, product p, purchases f
WHERE t.time_key = f.time_key AND
 f.product_id = p.product_id
GROUP BY t.month, t.year, p.product_id;

PLAN_TABLE_OUTPUT
--
Plan hash value: 419515211
--
|Id|Operation |Name |Rows |Bytes |Cost|Psta|Pstp|
--
0	SELECT STATEMENT		3936	169K	494		
1	SORT GROUP BY		3936	169K	494		
*2	HASH JOIN		81167	3487K	121		
3	TABLE ACCESS FULL	TIME	731	12427	3		
*4	HASH JOIN		81167	2140K	115		
5	INDEX FULL SCAN	PRODUCT_PK	164	1148	1		
6	PARTITION RANGE ALL	_INDEX	81167	1585K	111	1	24
7	TABLE ACCESS FULL	PURCHASES	81167	1585K	111	1	24
--
Predicate Information (identified by operation id):

 2 - access("T"."TIME_KEY"="F"."TIME_KEY")
 4 - access("F"."PRODUCT_ID"="P"."PRODUCT_ID")
20 rows selected.

In this example, the innermost operation is a hash join between the
tables, PURCHASES and PRODUCT (rows 4–7). Note that an index,
PRODUCT_PK_INDEX (row 5), is used to access the table, PRODUCT.
The output of this is joined with the table, TIME, using a hash join (rows
2–4). The final operation is a sort in order to perform the GROUP BY. The

TEAM LinG - Live, Informative, Non-cost and Genuine!

258

6.2

The Query Optimizer

plan display also shows the predicates being applied during each operation.
In the previous examples, the predicates being applied are the join predi-
cates. Later in this chapter, we will discuss partition pruning, wherein Ora-
cle will automatically avoid scanning partitions that are not needed by the
query. The PARTITION RANGE clause (row 6) indicates the first and last
partitions being scanned. The keyword ALL means that no partition prun-
ing was done and all 24 partitions were scanned, which is shown by column
values 1 for Pstart and 24 for Pstop. The plan also shows information about
temporary space and estimated time for each operation, which are not
shown here due to lack of space. The plan hash value shown at the top is
used by various tuning tools to uniquely identify a specific execution plan
for a query.

EXPLAIN PLAN can also be used to display the detailed query plan
involving parallel execution, which we will discuss later in Chapter 10.

Next, we will discuss various query optimization techniques used to effi-
ciently process queries in a data warehouse. We will start with the basic join
methods used by the query optimizer, and then discuss some advanced
techniques, such as star transformation, partition pruning, and partition-
wise join.

6.2.2 Join Method Basics

One of the most common operations in a query is a join between two
tables. A join operation combines data from two or more tables, based on a
condition (known as the join predicate) involving columns from the tables.

The Oracle query optimizer uses one of the following three join meth-
ods to execute a join.

�

Nested Loops Join

�

Sort-Merge Join

�

Hash Join

Nested Loops Join

In nested loops join, one table is chosen as the outer table and the other as
the inner table. For each row in the outer table, all matching rows that sat-
isfy the join condition in the inner table are found. A nested loop join can
be extremely efficient if the inner table has an index on the join column and

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.2

The Query Optimizer 259

Chapter 6

there are few rows in the outer table. However, if indexes are missing it can
also be a very resource- and time-intensive method of performing joins.

Sort-Merge Join

A sort-merge join is useful when joining two large tables or when the join is
based on an inequality predicate. In a sort-merge join, the data from each
table is sorted by the values of the columns in the join condition. The
sorted tables are then merged, such that each pair of rows with matching
columns is joined. If there is an index on the join columns of either table,
the optimizer may use it to directly retrieve the data in sorted order, thereby
avoiding the sort for that table.

Hash Join

Given the ad hoc nature of decision-support queries, it is not always possi-
ble for the DBA to index all the columns the users may use to join tables
together. Hash joins are especially useful when there are no indexes on the
columns being joined and hence are a very commonly seen join technique
in a data warehouse.

 In a hash join, a hashing function is applied to the join columns of the
smaller table to build a hash table. Then, the second table is scanned, and
its join columns are hashed and compared with the hash table to look for
matching rows. A hash join performs best if the hash table can fit entirely
into memory. If the hash table does not fit into memory, then parts of it
need to be written to disk, causing multiple passes over the data, which is
not very efficient. Hash joins can only be used for joins based on equality
predicates (i.e., table1.column1 = table2.column2).

How to Pick the Join Method?

You may be wondering how you would pick the join method—fortunately,
you don’t need to pick one! The query optimizer will automatically choose
the most efficient join method for each join within a query. In some cases,
usually due to bad statistics or a skewed data distribution, the query opti-
mizer may choose the incorrect join method. So it is extremely important
to have accurate statistics on the data. It is possible to explicitly specify a
join method to use by including an optimizer hint in the query; however,
this is not recommended. Instead, we recommend running the SQL Tuning
Advisor, described in Chapter 10, to tune slow-running queries. This will
attempt to correct any mistakes made by the query optimizer and thereby
improve the execution plan.

TEAM LinG - Live, Informative, Non-cost and Genuine!

260

6.2

The Query Optimizer

Another important point to note is that sort and hash joins are memory-
intensive operations and may require temporary space if not enough mem-
ory is available. Chapter 10 also describes the PGA Memory Advisor, which
can be used to automatically tune memory for these operations.

Next, we will look at some advanced query optimization techniques
used in a data warehouse.

6.2.3 Star Transformation

A star query is a typical query executed on a star schema. Each of the
dimension tables is joined to the fact table using the primary-key/foreign-
key relationship. If the fact table has bitmapped indexes on the foreign-
key columns, Oracle can optimize the performance of such star queries
using an algorithm known as the

star transformation

. Star transforma-
tion is based on combining bitmapped indexes on the fact table columns
that correspond to the dimension tables in the query. First, bitmapped
indexes are used to retrieve the necessary rows from the fact table. The
result is then joined to the dimension tables to get any columns required
in the final answer.

If your data warehouse has a star schema, you should enable star trans-
formation. This is done by setting the initialization parameter,
STAR_TRANSFORMATION_ENABLED, to TRUE. Alternatively, you
can use the STAR_TRANSFORMATION hint on queries that join the
fact and dimension tables. The optimizer will weigh the execution plans,
with and without star transformation, and pick the most efficient plan.

Suppose there were bitmapped indexes on each of the foreign-key col-
umns of the PURCHASES table (i.e., CUSTOMER_ID, TIME_KEY, and
PRODUCT_ID). The following example shows a query that can benefit
from star transformation. This query joins the fact (PURCHASES) table
and dimension tables (PRODUCT, TIME, CUSTOMER) in a star schema
and has selections on each of the dimension tables (MONTH = 200301,
and STATE = 'MA', and CATEGORY = 'HDRW'), representing a small
fraction of the entire data.

EXPLAIN PLAN FOR
SELECT c.city, t.quarter, p.product_name,
 SUM(f.purchase_price) sales
FROM purchases f, time t, customer c, product p
WHERE f.time_key = t.time_key and
 f.customer_id = c.customer_id and
 f.product_id = p.product_id and
 t.month = 200301 and c.state = 'MA' and
 p.category = 'HDRW'
GROUP BY c.city, t.quarter, p.product_name;

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.2

The Query Optimizer 261

Chapter 6

The execution plan is as follows:

--
|ID | Operation | Name |Rows| Bytes|Cost|
--
0	SELECT STATEMENT		54	3834	715
1	SORT GROUP BY		54	3834	715
* 2	HASH JOIN		328	23288	712
* 3	TABLE ACCESS FULL	PRODUCT	54	1188	2
* 4	HASH JOIN		984	48216	709
5	MERGE JOIN CARTESIAN		3	78	4
* 6	TABLE ACCESS FULL	CUSTOMER	1	12	2
7	BUFFER SORT		1	14	2
* 8	TABLE ACCESS FULL	TIME	1	14	2
9	TABLE ACCESS BY INDEX ROWID	PURCHASES	7030	157K	703
10	BITMAP CONVERSION TO ROWIDS				
11	BITMAP AND				
12	BITMAP MERGE				
13	BITMAP KEY ITERATION				
*14	TABLE ACCESS FULL	CUSTOMER	1	12	2
*15	BITMAP INDEX RANGE SCAN	CUST_IDX			
16	BITMAP MERGE				
17	BITMAP KEY ITERATION				
*18	TABLE ACCESS FULL	TIME	2	28	2
*19	BITMAP INDEX RANGE SCAN	TIME_IDX			
20	BITMAP MERGE				
21	BITMAP KEY ITERATION				
*22	TABLE ACCESS FULL	PRODUCT	54	1188	2
*23	BITMAP INDEX RANGE SCAN	PROD_IDX			
--

To understand how star transformation works, notice that the rows cor-
responding to category = 'HDRW' can be retrieved using the following
subquery (this is also known as a semijoin):

SELECT *
FROM purchases
WHERE product_id IN (SELECT product_id
 FROM product
 WHERE category = 'HDRW');

This query is executed to retrieve the product ids corresponding to the
HDRW category, and then the PROD_IDX bitmapped index on PUR-
CHASES.PRODUCT_ID is used to retrieve the rows from the PUR-
CHASES table corresponding to these product id values. In star
transformation, similar subqueries are generated for each of the dimension
tables to obtain a bitmap for the rows of the PURCHASES table corre-
sponding to that dimension table. Next, these bitmaps are combined using

TEAM LinG - Live, Informative, Non-cost and Genuine!

262

6.2

The Query Optimizer

a bitmap AND operation into a single bitmap. This is shown in the execu-
tion plan in rows 10 through 23. This bitmap is then used to retrieve the
relevant rows from the PURCHASES tables. Finally, a join is done back to
the dimension tables (shown in plan rows 0 through 9) to obtain the other
column values (CITY, QUARTER, and PRODUCT_NAME). Note that if
the query did not select any columns from the dimension table, then the
optimizer will not need to perform this join back. Star transformation turns
out to be efficient when the fact table is large, because only a small subset of
the table (in our example 7,030 rows out of 421K rows in the PUR-
CHASES table) is now involved in the join.

Hint:

Creating bitmapped indexes on foreign-key columns in the fact table

will allow the optimizer to consider star transformation for your star queries.

A bitmapped join index can also be used instead of a combination of
bitmapped indexes. Star transformation is also possible if only some of the
foreign key columns have bitmapped indexes.

6.2.4 Partition Pruning

In Chapter 4, we mentioned that if a table is partitioned, the query opti-
mizer could determine if a certain query can be answered by reading only
specific partitions of the table. This can dramatically reduce the amount of
data read to answer a query and hence speed up the query execution. This
feature is known as

Partition Elimination

or

 Dynamic Partition Pruning

.

We will now look at examples of partition pruning with different types
of partitioning.

Range Partitioning

In range partitioning, data is partitioned into nonoverlapping ranges of
data. In this case, the optimizer can perform partition pruning if the query
has range, IN list, or LIKE predicates on the partition keys. For example, in
the EASYDW schema, the PURCHASES table is partitioned on the
TIME_KEY column, such that each partition corresponds to one month’s
data. The following query asks for sales of November and December 2003.
The optimizer will therefore eliminate from its search all partitions except
those containing these two months.

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.2

The Query Optimizer 263

Chapter 6

EXPLAIN PLAN FOR
SELECT t.time_key, SUM(f.purchase_price) as sales
FROM purchases f, time t
WHERE f.time_key = t.time_key
 AND t.time_key BETWEEN TO_DATE('1-Nov-2003', 'DD-Mon-YYYY')
 AND TO_DATE('31-Dec-2003', 'DD-Mon-YYYY')
GROUP BY t.time_key;

--
|Id|Operation |Name |Rows|Cost|Pstart|Pstop|
--
0	SELECT STATEMENT		62	15		
1	SORT GROUP BY		62	15		
*2	HASH JOIN		585	14		
*3	INDEX FAST FULL SCAN	TIME_PK_				
		INDEX	62	2		
4	PARTITION RANGE ITERATOR		6893	11	11	12
*5	TABLE ACCESS FULL	PURCHASES	6893	11	11	12
--

Predicate Information (identified by operation id):

 2 - access("F"."TIME_KEY"="T"."TIME_KEY")
 3 - filter("T"."TIME_KEY"<=TO_DATE('2003-12-31 00:00:00',
 'yyyy-mm-dd hh24:mi:ss') AND
 "T"."TIME_KEY">=TO_DATE('2003-11-01 00:00:00',
 'yyyy-mm-dd hh24:mi:ss'))

 5 - filter("F"."TIME_KEY"<=TO_DATE('2003-12-31 00:00:00',
 'yyyy-mm-dd hh24:mi:ss'))
20 rows selected.

Note that the output of EXPLAIN PLAN includes columns Pstart and
Pstop, which indicate the range of partitions used to answer the query. Note
that for multicolumn range partitioning, only predicates on the first col-
umn in the partition key are used for partition pruning.

Hash Partitioning

Hash partitioning allows partition pruning only when a query involves
equality or IN-list predicates on the partitioning column. This is because
with hash partitioning, the values are distributed randomly among parti-
tions and so contiguous values may not fall into a single partition.

List Partitioning

If a table is list partitioned, the optimizer can perform partition pruning if
the query asks for a range or list of partition-key values. For instance, the
REGIONAL_SALES table in Chapter 4 (Figure 4.3) is partitioned by states

TEAM LinG - Live, Informative, Non-cost and Genuine!

264

6.2

The Query Optimizer

in each region. Now, if a query asks for sales for states NH, MA, CT, CA,
AZ, the optimizer can prune all partitions except the Northeast and West.

EXPLAIN PLAN FOR
SELECT store_number, dept_number, SUM(sales_amount) as q1_sales
FROM regional_sales
WHERE state in ('NH', 'MA', 'CT', 'CA', 'AZ')
GROUP BY store_number, dept_number;

--
|Id|Operation |Name |Rows|Cost|Pstart| Pstop|
--
0	SELECT STATEMENT		500	4		
1	SORT GROUP BY		500	4		
2	PARTITION LIST INLIST		500	3	KEY(I)	KEY(I)
*3	TABLE ACCESS FULL	REGIONAL_SALES	500	3	KEY(I)	KEY(I)
--

Predicate Information (identified by operation id):

 3 - filter("STATE"='AZ' OR "STATE"='CA' OR "STATE"='CT' OR
 "STATE"='MA' OR "STATE"='NH')

In case of a query with IN operator, you will see the KEY(I) term in the
Pstart and Pstop columns in the output of EXPLAIN PLAN, rather than
actual partition numbers.

Also note that in some cases the actual partitions to be accessed are
determined only during the execution of the query, in which case you also
will not see actual partition numbers but instead see the value KEY in the
Pstart and Pstop columns in the EXPLAIN PLAN output.

Composite Partitioning

For a composite-partitioned table, in addition to pruning at the partition
level, the optimizer can also prune subpartitions within the partitions using
predicates on the subpartitioning columns. This can further reduce the data
accessed to answer a query.

For example, suppose we have a table, SALES, composite-partitioned
using range partitioning on SALE_DATE and list subpartitioning on
STATE. The following query asks for total sales for NH, MA, and CT states
for a range of sales dates. The optimizer will determine that this query can be
answered quickly by reading the partitions for February and March. Further,
within these two partitions, only the first subpartition needs to be accessed.
The Pstart and Pstop values in the output of EXPLAIN PLAN show the
range of partitions used to answer the query, in this case partitions 2 and 3.

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.2

The Query Optimizer 265

Chapter 6

Note that KEY keyword in the last line of the output indicates that the
actual subpartition numbers will be determined at query execution time.

EXPLAIN PLAN FOR
SELECT store_number, dept_number, SUM(sales_amount) as q1_sales
FROM sales
WHERE sale_date between TO_DATE('15-Feb-2003', 'DD-Mon-YYYY')
 AND TO_DATE('15-Mar-2003', 'DD-Mon-YYYY')
 AND state in ('NH', 'MA', 'CT')
GROUP BY store_number, dept_number;

|Id| Operation |Name |Rows|Cost| Pstart | Pstop |

0	SELECT STATEMENT		1	41		
1	SORT GROUP BY		1	41		
2	PARTITION RANGE ITERATOR		1	40	2	3
3	PARTITION LIST INLIST		1	40	KEY(I)	KEY(I)
4	TABLE ACCESS FULL	SALES	1	40	KEY	KEY

Predicate Information (identified by operation id):

4 - filter(("STATE"='CT' OR "STATE"='MA' OR "STATE"='NH') AND
 "SALE_DATE">=TO_DATE('2003-02-15 00:00:00',
 'yyyy-mm-dd hh24:mi:ss') AND

 "SALE_DATE"<=TO_DATE('2003-03-15 00:00:00',
 'yyyy-mm-dd hh24:mi:ss'))

If the query optimizer chooses an index to access the table, then, in
addition to pruning on table partitions, Oracle will also prune index parti-
tions. If the index is local and hence partitioned identically to the table,
then Oracle will only access the index partitions corresponding to the table
partitions being accessed. If the index is global and partitioned differently
than the table, Oracle can still eliminate index partitions that are not
needed provided there is a predicate on the partitioning key of the index.

Partition pruning is one of the many benefits of partitioning and can
provide huge performance gains in a data warehouse. When designing your
queries, include predicates on partitioning columns whenever possible to
obtain the benefits of partition pruning.

6.2.5 Partition-Wise Join

When the tables being joined are partitioned, the optimizer may choose to
perform a

partition-wise

join

.

 Rather than performing a large join

TEAM LinG - Live, Informative, Non-cost and Genuine!

266

6.2

The Query Optimizer

between two tables, the join operation is broken up into a series of smaller
joins between the partitions or subpartitions. These smaller joins can be
executed in parallel, which can make the entire join operation significantly
faster. Note that a partition-wise join can use any of the join methods dis-
cussed earlier—sort merge, hash, or nested loops join. Recall that a hash
join performs best when the hash tables fit into memory—with a partition,
wise join, hash joins can be made more efficient, because the hash tables for
each partition are much smaller and hence more likely to fit into memory.

A

full partition-wise join

, illustrated in Figure 6.1, can be done when
the tables being joined are equipartitioned on the join key in the query.
Equipartitioning means that the two tables have identical partitioning crite-
ria (i.e., partition method and partition bounds), which means that there is
a correspondence between the partitions (or subpartitions) or one table
with the partitions (or subpartitions) of the other. So every partition (or
subpartition) of the first table needs to be joined only to its corresponding
partition (or subpartition) in the other table. In Figure 6.1, the PUR-
CHASES and ORDERS tables are both partitioned by a date column, and
each partition contains data for a month. In a full partition-wise join

between these two tables, using the partition keys as the join columns, the
January partition of PURCHASES will be joined to the January partition

Figure 6.1

Full Partition-Wise Join

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.3

Parallel Execution 267

Chapter 6

of ORDERS, the February partition of PURCHASES will be joined to the
February partition of ORDERS, and so on. When executing the query in
parallel, each piece of the join (separated by the dotted lines in the figure)
can be executed on a separate processor.

If only one of the tables is partitioned on the join key, a

partial parti-
tion-wise

join

 can be done when executing the query in parallel. The table
that is not partitioned by the join key is dynamically partitioned to match
the partitioning criteria of the partitioned table. Each pair of partitions
from the two tables is now joined, as in a full partition-wise join.

The decision to perform a partition-wise join or any of its variants is
taken by the optimizer based on the cost of the execution plan. Note that if
the query only requires some of the partitions of any table, then only those
partitions will participate in the partition-wise join. Thus, a query execu-
tion can benefit from both partition pruning and partition-wise joins.

In this section, we mentioned executing queries in parallel. We will dis-
cuss the important technique of parallel execution in more detail next.

6.3 Parallel Execution

Many operations in a data warehouse involve processing large amounts of
data. Bulk loads, large table scans, creating indexes and materialized views,
sorting, and joining data from multiple tables can all take a considerable
amount of time. Parallel execution can be used to reduce the time it takes to
execute these operations.

With parallel execution certain SQL statements can be divided transpar-
ently into smaller concurrently executing operations. By dividing the work
among several processes on different processors, the statement can be com-
pleted faster than with only a single process.

In Oracle, parallel execution is performed using a parallel execution coor-
dinator process and a pool of parallel execution servers. The Oracle process
that handles the user’s query becomes the coordinator process for that query.
The coordinator process partitions the work to be done among the required
number of parallel execution servers. It ensures that the load is balanced
among the processes and redistributes work to any process that may have fin-
ished before the others. The coordinator receives the results from the parallel
execution servers and assembles them into the final result. For example, in
Figure 6.2, parallel execution is used to concurrently read partitions for four
months from a table—for example, to calculate total sales.

TEAM LinG - Live, Informative, Non-cost and Genuine!

268

6.3

Parallel Execution

The operation to be executed in parallel is divided up into smaller units,
known as

granules

 of parallel execution. A granule corresponds to the work
performed assigned to each parallel execution server. If a table or index is
partitioned, the granule can be a partition or a subpartition. Alternatively,
the granule can be a range of physical data blocks. Oracle will automatically
determine the best granule to use to parallelize a statement.

6.3.1 SQL Statements That Can Be Parallelized

Many operations can benefit from parallel execution. SELECT statements
with various operations, such as joins, aggregation, sorts, set operations
(e.g., UNION and UNION ALL), and SELECT DISTINCT, can use par-
allel execution. Partition pruning and partition-wise join in conjunction
with parallel execution can provide huge performance improvements.

DML statements—INSERT, UPDATE, DELETE, and MERGE—can
be done in parallel on partitioned as well as nonpartitioned tables. You
must use the ALTER SESSION ENABLE PARALLEL DML in the session
to allow DML statements to be parallelized. Bulk loads done using
SQL*Loader can be parallelized using the PARALLEL=TRUE option.

Parallel execution is also possible for DDL statements, such as CREATE
TABLE, CREATE INDEX and CREATE MATERIALIZED VIEW, and
partition maintenance operations, such as TRUNCATE, EXCHANGE,
MERGE, and SPLIT PARTITION.

Figure 6.2

Parallel Query

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.3

Parallel Execution 269

Chapter 6

PL/SQL functions, user-defined aggregates, and table functions issued
as part of SQL statements can also be parallelized.

6.3.2 Setting up Parallel Execution

At database startup, Oracle will start as many parallel execution servers as
specified by the PARALLEL_MIN_SERVERS initialization parameter.
These are available for use by any parallel operation. The query coordina-
tor obtains the required number of parallel execution servers from the
pool when needed to execute a parallel operation. When processing is
complete, the coordinator returns the parallel execution servers to the
pool. If there are a large number of concurrent users executing parallel
statements, additional parallel execution servers can be created. The ini-
tialization parameter, PARALLEL_MAX_SERVERS, specifies the maxi-
mum number of server processes to create. When they are no longer
needed, the parallel execution servers that have been idle for a period of
time are terminated. The pool is never reduced below the
PARALLEL_MIN_SERVERS parameter.

The number of units into which a statement gets divided is known as
the

degree of parallelism

 (DOP). You can set the DOP when creating or
altering a table, index, or materialized view using the PARALLEL clause in
the DDL statement, as shown in the following example:

-- set DOP to 4 for a table
ALTER TABLE purchases PARALLEL 4;

For a given query the DOP of the query is defined as the maximum
DOP of all tables and indexes involved in the execution of the query. You
can override the value of DOP for a SQL statement with the PARALLEL
hint or by setting it for the entire session using the ALTER SESSION
FORCE PARALLEL statement. This is shown in the following examples.

--set DOP to 6 for a session for parallel DML or query
ALTER SESSION FORCE PARALLEL DML PARALLEL 6;
ALTER SESSION FORCE PARALLEL QUERY PARALLEL 6;

-- set DOP to 2 for just this SQL statement
SELECT /*+ PARALLEL (2)*/ * FROM purchases;

If the DOP is not specified using the previous methods, Oracle will cal-
culate it automatically using the number of CPUs or number of partitions.
For good performance, the number of partitions should be a multiple of the

TEAM LinG - Live, Informative, Non-cost and Genuine!

270

6.3

Parallel Execution

DOP. Otherwise, some parallel execution servers may remain idle waiting
for others to complete a certain operation before beginning the next one.

During query execution, Oracle will try to use the requested degree of
parallelism, but if several queries are competing for resources, it may adjust
it to a lower value. Note that Oracle may use up to 2

×

 DOP number of
execution servers for a query. If no parallel execution servers are available,
the operation will execute serially. Sometimes a parallel operation cannot be
executed efficiently unless a certain number of servers are available. The ini-
tialization parameter, PARALLEL_MIN_PERCENT, is used to specify the
minimum percentage of requested parallel execution servers needed for the
operation to succeed. If this percentage is not met, Oracle will return an
error and you need to try the operation again later.

You may be wondering how to go about setting the different parallel
execution parameters. Fortunately, since Oracle 9

i

, you can just set one ini-
tialization parameter,

PARALLEL_AUTOMATIC_TUNING

 to TRUE,
which will automatically set good defaults for all parallel execution–related
parameters based on available resources on your system.

6.3.3 Hardware Requirements for Parallel Execution

It is important to have the right hardware and system characteristics to get
the benefits of parallel execution. The system must have adequate spare
CPU time, memory, and I/O bandwidth to allow parallel execution. In
Chapter 3, we discussed various hardware and storage architectures for a
warehouse. SMP, MPP, and Cluster architectures make parallel execution
possible. Obviously, uni-processor machines cannot make use of parallel
processing, since there is only one CPU.

When using Oracle Real Application Clusters technology (RAC), paral-
lel execution of a query may distribute the work across slave processes run-
ning on multiple database instances. Oracle will determine at run time
whether to run the query on a single instance or multiple instances to keep
internode communication to a minimum. Also, when possible, Oracle will
try to assign a node to work on a tablespace or partition that is on a local
device for that node—this is known as

affinity

. Using affinity improves per-
formance by reducing the communication overhead and I/O latency,
because a node only accesses local devices, and also by ensuring that multi-
ple nodes do not try to access the same device at the same time.

In this chapter, so far we have discussed several query execution tech-
niques that improve query performance in a data warehouse. Next, we will
delve into SQL language features that Oracle provides specially for data

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4

SQL Features for Querying the Data Warehouse 271

Chapter 6

warehousing applications. The following section would be most useful to
application developers and readers who need to write SQL to issue business
queries. If you use an end-user tool such as Discoverer, you may skip over
the detailed SQL examples in this section.

6.4 SQL Features for Querying the Data Warehouse

The primary purpose of building a data warehouse is to obtain information
about your business so that you can improve business processes and better
understand the buying habits of your customers.

For instance, you may need to answer questions such as:

�

What were the top-10 selling products this year?

� How do the sales this year compare against last year?

� What are the cumulative sales numbers for each month this year?

� What are the sales numbers for each region and subtotals for each city
within it?

This type of analysis is referred to as business intelligence or decision
support analysis. Although these questions sound quite simple, the SQL
queries needed to answer these questions can be extremely complex. These
queries are very hard to optimize and may require multiple scans over the
data. They may perform poorly or may require application layer processing.
A few years ago, several database vendors started an initiative to provide
SQL extensions to concisely represent these types of queries and execute
them efficiently. The extensions are now part of the SQL99 standard. Ora-
cle’s BI tools, such as Discoverer, which are tightly integrated with the data-
base, take advantage of the SQL functions in the database to deliver high
performance for end-user queries.

The SQL extensions for business intelligence can be broadly classified
into three categories—extensions for aggregation; such as calculating totals
and subtotals; functions for analysis, such as finding the top-N products or
cumulative sales and spreadsheet-like functionality for modeling (statisti-
cal analysis functions). We will provide a detailed look at each of these
SQL extensions.

TEAM LinG - Live, Informative, Non-cost and Genuine!

272 6.4 SQL Features for Querying the Data Warehouse

6.4.1 SQL Extensions for Aggregation

Aggregation is the most basic operation in a business intelligence query.
Suppose we wanted to know the total sales by month for the current year.
In this example, we are summing up the detailed data for each day, to give
the total sales for each month. An operation where many detailed rows are
combined using an operator such as SUM, to give a single value, is called
aggregation. We have already seen several examples of aggregation in this
chapter. You can recognize aggregation in a SQL query when you see a
GROUP BY clause or operators such as SUM, AVG, COUNT, MIN,
MAX, STDDEV, and VARIANCE.

The GROUP BY clause allows you to perform aggregation at a single
level within a dimension, such as by month or by year. However, often you
may want to see totals and subtotals in the same query—for instance, total
sales by each month and further by quarter and by year. In the past, these
types of operations were done using report-writing tools. Now, you can per-
form such multilevel aggregations within the database using the CUBE,
ROLLUP, and GROUPING SETS operators. The ROLLUP operator is
used to compute subtotals along a dimension hierarchy, and the CUBE
operator is used to compute aggregations across all possible combinations
for a set of GROUP BY columns (we refer to each combination as a group-
ing). The GROUPING SETS operator is used to compute aggregates for
only specific groupings. By executing these aggregations within the data-
base, they can be executed in parallel and benefit from the various query
optimizations discussed earlier.

CUBE, ROLLUP, and GROUPING SETS can be used with all the sup-
ported aggregate operators in Oracle and also with other analysis functions
discussed later in this chapter.

We will now take a detailed look at these extensions.

CUBE
The CUBE operator computes aggregates for all possible combinations of
the columns in the GROUP BY clause. For example, suppose you wanted
to analyze the sales of your products according to the product category and
the year and also see total sales by category, by year, and a grand total. This
corresponds to a CUBE operation, as shown in the following example.

SELECT p.category, t.year, SUM(purchase_price) total_sales
FROM product p, purchases f, time t
WHERE p.product_id = f.product_id AND
 t.time_key = f.time_key
GROUP BY CUBE (p.category, t.year);

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 273

Chapter 6

CATE YEAR TOTAL_SALES
---- ---------- -------------------
ELEC 2003 9380600.38 <- (category, year)
ELEC 2004 9515598.19
HDRW 2003 105098.69
HDRW 2004 105130.03
MUSC 2003 107026.10
MUSC 2004 106399.30
ELEC 18896198.60 <- (category)
HDRW 210228.72
MUSC 213425.40
 2003 9592725.17 <- (year)
 2004 9727127.52
 19319852.70 <- (grand total)

12 rows selected.

As we can see, the answer to this query includes the total sales for the
four groupings—(CATEGORY, YEAR), (CATEGORY), (YEAR)—and a
grand total. We have highlighted with arrows the first row in each group.

As the number of columns increases, computing the CUBE operator
can consume a lot of time and space. Notice that the number of groupings
for a CUBE with two columns is four, with three columns eight, and so on.
Often, you are only interested in totals along a specific dimension, which is
accomplished by the ROLLUP operator.

ROLLUP

The ROLLUP operator is useful for totaling data across a hierarchical
dimension such as time. In a ROLLUP, you specify a list of columns and
Oracle performs GROUP BY on steadily smaller subsets of the list, working
from the rightmost column toward the left.

We will illustrate this operator using the following example, which com-
putes the ROLLUP operation for category, year columns. To compute
ROLLUP, we first group by (CATEGORY, YEAR) and then group by
(CATEGORY), thereby aggregating over the rightmost column, YEAR,
and finally produce a grand total. We have highlighted the first row of each
grouping in the output with arrows.

SELECT p.category, t.year, SUM(purchase_price)
FROM product p, purchases f, time t
WHERE p.product_id = f.product_id AND
 t.time_key = f.time_key
GROUP BY ROLLUP (p.category, t.year);

TEAM LinG - Live, Informative, Non-cost and Genuine!

274 6.4 SQL Features for Querying the Data Warehouse

CATE YEAR SUM(PURCHASE_PRICE)
---- ---------- -------------------
ELEC 2003 9380600.38 <- (category, year)
ELEC 2004 9515598.19
HDRW 2003 105098.69
HDRW 2004 105130.03
MUSC 2003 107026.10
MUSC 2004 106399.30
ELEC 18896198.60 <- (category)
HDRW 210228.72
MUSC 213425.40
 19319852.70 <- (grand total)

10 rows selected.

To ROLLUP along a hierarchy correctly, we must order the columns
from the highest to the lowest level of the hierarchy from left to right. For
instance, to ROLLUP along a time hierarchy the column ordering would
be (YEAR, MONTH, DAY).

If we compare the output of the CUBE and ROLLUP, you will notice
that ROLLUP only computes some of the possible combinations of group-
ings in a CUBE. In the previous example, the grouping (YEAR) is present
in the CUBE but not in the ROLLUP output. The output of a CUBE
always includes the output of a ROLLUP. The ROLLUP is thus a much
simpler and more efficient operation: for two columns, a rollup produces
three groupings, for three columns, four, and so on.

GROUPING SETS is a generalization of the ROLLUP operator that
allows you to specify which particular groupings you would like to compute.

GROUPING SETS

In a data warehouse, aggregating data involves accessing a lot of detail data
and therefore, to avoid repeating such expensive computations, it is com-
mon practice to precompute and store aggregations using materialized
views. Now, if we were to store the result of a CUBE operator, computing
all possible groupings, the space requirements could get too large. It is not
uncommon for the output of a CUBE to be several times larger than the
size of the fact table! This problem is overcome by using GROUPING
SETS, which provide the capability to selectively compute only interesting
combinations of groupings instead of the entire CUBE. Note that even
though we introduced GROUPING SETS in the context of stored aggre-
gates, it is a normal SQL operator and can be used in any query, just like
the CUBE or ROLLUP operators.

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 275

Chapter 6

For example, suppose we only wanted to calculate sales for the following
groupings—(CATEGORY, YEAR), (CATEGORY, STATE), (YEAR,
REGION)—and the grand total of sales, denoted by (). We choose not to
calculate other combinations such as the detailed sales for each category,
year, and state. This is accomplished in the following SQL query using a
GROUPING SETS operator.

SELECT p.category as cat, t.year, c.region, c.state as st,
 SUM(f.purchase_price) sales
FROM product p, purchases f, time t, customer c
WHERE p.product_id = f.product_id AND
 t.time_key = f.time_key AND
 c.customer_id = f.customer_id AND
 c.country = 'USA' and c.region in ('AmerWest', 'AmerSouth')
GROUP BY GROUPING SETS ((p.category, c.state),
 (t.year, c.region),
 (p.category, t.year),());

CAT YEAR REGION ST SALES
---- ------ ---------- ---- ----------
ELEC AZ 1198445.49 <- (category, state)
ELEC CA 1392898.24
ELEC TX 1186616.83
HDRW AZ 15466.29
HDRW CA 12912.08
HDRW TX 12739.71
MUSC AZ 12771.05
MUSC CA 14870.83
MUSC TX 14886.50
 2003 AmerWest 1317728.13 <- (year, region)
 2003 AmerSouth 604485.20
 2004 AmerWest 1329635.85
 2004 AmerSouth 609757.84
ELEC 2003 1880405.77 <- (category, year)
ELEC 2004 1897554.79
HDRW 2003 20229.97
HDRW 2004 20888.11
MUSC 2003 21577.59
MUSC 2004 20950.79
 3861607.02 <- (grand total)

Note that ROLLUP is a special case of GROUPING SETS. For exam-
ple, ROLLUP(CATEGORY, YEAR) is equivalent to GROUPING SETS
((CATEGORY, YEAR),(CATEGORY), ()).

You may specify multiple GROUPING SETS in a query. This offers a
concise notation to specify a cross-product of groupings across multiple
dimensions. For example, suppose we would like to compute sales for each
product category along the (STATE, REGION) columns in the customer

TEAM LinG - Live, Informative, Non-cost and Genuine!

276 6.4 SQL Features for Querying the Data Warehouse

dimension and along the (YEAR, QUARTER) columns in the time dimen-
sion. Instead of specifying all combinations of groupings involving these
four columns, we could simply use the following query. This is known as
concatenated grouping sets.

SELECT p.category as cat, t.quarter as quart, t.year,
 c.state as st, c.region, SUM(f.purchase_price) sales
FROM purchases f, time t, customer c, product p
WHERE p.product_id = f.product_id AND
 t.time_key = f.time_key AND
 c.customer_id = f.customer_id AND
 c.country = 'USA' and c.region in ('AmerWest', 'AmerSouth')
GROUP BY p.category,
 GROUPING SETS (c.state, c.region),
 GROUPING SETS (t.quarter, t.year);

CAT QUART YEAR ST REGION SALES
---- ------- ------ ----- ---------- ----------
ELEC 200301 AZ 130219.58 <- (quarter,state)
ELEC 200302 AZ 154613.90
ELEC 200303 AZ 153216.43
....
HDRW 200402 TX 1770.71
HDRW 200403 TX 1504.32
HDRW 200404 TX 1661.02
...
ELEC 200301 AmerWest 296382.05 <- (quarter,region)
ELEC 200302 AmerWest 329691.54
ELEC 200303 AmerWest 338017.87
...
MUSC 200401 AmerSouth 1833.39
MUSC 200402 AmerSouth 1661.02
MUSC 200403 AmerSouth 1817.72
...
ELEC 2003 AZ 596005.79 <- (year, state)
ELEC 2004 AZ 602439.70
...
MUSC 2003 TX 7599.95
MUSC 2004 TX 7286.55
ELEC 2003 AmerWest 1289725.84 <- (year, region)
ELEC 2004 AmerWest 1301617.89
...
MUSC 2004 AmerSouth 7286.55

150 rows selected.

The CATEGORY column that is outside the GROUPING SETS is
present in all the groupings. Thus, the previous query computes the four
groupings: (CATEGORY, QUARTER, STATE), (CATEGORY, QUAR-
TER, REGION), (CATEGORY, YEAR, STATE), and (CATEGORY,
YEAR, REGION).

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 277

Chapter 6

GROUPING and GROUPING_ID Functions

We have seen how CUBE, ROLLUP, and GROUPING SETS operators all
compute multiple levels of aggregations in one query. Now the problem is
that in order to display the result appropriately for the end user, your appli-
cation needs to know which rows in the answer correspond to which level.
This is where the GROUPING and GROUPING_ID, functions come in
handy. The SQL functions, GROUPING and GROUPING_ID provide a
mechanism to identify the rows in the answer that correspond to each level
of aggregation.

The following query illustrates the behavior of the GROUPING()
function.

SELECT t.year, p.category as cat,
 SUM(f.purchase_price) sales,
 GROUPING(t.year) grp_y, GROUPING(p.category) grp_c
FROM product p, purchases f, time t
WHERE p.product_id = f.product_id AND
 t.time_key = f.time_key
GROUP BY ROLLUP (t.year, p.category);

 YEAR CAT SALES GRP_Y GRP_C
----- --------- --------------- ----- -----
 2003 ELEC 9380600.38 0 0 <- (year,category)
 2004 ELEC 9515598.19 0 0
 2003 HDRW 105098.69 0 0
 2004 HDRW 105130.03 0 0
 2003 107026.10 0 0 *
 2004 106399.30 0 0
 2003 9592725.17 0 1 * <- (year)
 2004 9727127.52 0 1
 19319852.70 1 1 <- (grand total)

10 rows selected.

For each grouping, the function GROUPING(CATEGORY) returns a
value 0 if the CATEGORY column is in the group and 1 otherwise. Simi-
larly, GROUPING(YEAR) returns a value 0 if the YEAR column is in the
group and 1 otherwise. Thus, each level of aggregation can be identified
from the values of the GROUPING function. The group (YEAR, CATE-
GORY) has grouping function values (0,0); the group (YEAR) has group-
ing function values (0,1). Note that the grand total row can be easily
identified as the row where each grouping function column has the value 1.

The GROUPING function also serves another purpose. In the output
of CUBE or ROLLUP, the rows that correspond to higher level of aggrega-
tion have value NULL for the columns that have been aggregated away. The

TEAM LinG - Live, Informative, Non-cost and Genuine!

278 6.4 SQL Features for Querying the Data Warehouse

GROUPING function can be used to distinguish this NULL from actual
NULL values in the data itself. For example, look carefully at the two rows
in the preceding output, marked with an asterisk. Both these rows have a
value NULL in the TIME_KEY column. The first of these corresponds to
products where the value of product category was unavailable (NULL). In
the second one, we have aggregated away the category values and hence this
row corresponds to aggregation at the year level. The GROUPING func-
tion distinguishes these two similar-looking rows. In the first case, the
GROUPING(CATEGORY) is 0; in the second, it is 1.

Instead of using GROUPING for each column, you can use
GROUPING_ID with all the columns together, as follows:

SELECT t.year, p.category as cat,
 SUM(f.purchase_price) sales,
 GROUPING_ID(p.category,t.year) gid
FROM product p, purchases f, time t
WHERE p.product_id = f.product_id AND
 t.time_key = f.time_key
GROUP BY ROLLUP (t.year, p.category);

 YEAR CAT SALES GID
----- --------- --------------- ---------
 2003 ELEC 9380600.38 0 <- (year, category)
 2004 ELEC 9515598.19 0
 2003 HDRW 105098.69 0
 2004 HDRW 105130.03 0
 2003 107026.10 0
 2004 106399.30 0
 2003 9592725.17 1 <- (year)
 2004 9727127.52 1
 19319852.70 3 <- (grand total)

10 rows selected.

If you concatenate the outputs of all the individual GROUPING func-
tions, you create a binary number, which represents the complete grouping
information for each row. The GROUPING_ID function performs this
task and returns the decimal number corresponding to this binary value.
Thus, in the previous example, if GROUPING(CATEGORY) is 0 and
GROUPING(YEAR) is 1, then GROUPING_ID(CATEGORY, YEAR) is
the binary number formed by 01, which is the decimal number 1. For the
grand total row, GROUPING(CATEGORY) is 1 and GROUP-
ING(YEAR) is 1; hence, the GROUPING_ID(CATEGORY, YEAR) is the
binary number 11, which is the decimal number 3. The GROUPING_ID
is thus a much more compact representation than individual GROUPING

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 279

Chapter 6

functions but is not as straightforward to interpret as separate GROUPING
functions on each column.

In addition to the built-in aggregate functions, such as SUM or AVG,
you can define your own custom aggregate functions, which we will discuss
next.

User-Defined Aggregates

Some applications, usually financial ones, may use proprietary aggregation
algorithms that cannot be computed using the built-in SQL aggregate oper-
ators. Or the data representation may be complex, involving objects or
LOB columns. In such situations, you can define custom aggregate func-
tions, which can be used in SQL queries just like regular aggregates.

User-defined aggregates are part of Oracle’s extensibility framework. To
define a user-defined aggregate, you must first define a type that imple-
ments the ODCIAggregate interface. You then declare a function that uses
this type to perform aggregation. The implementation of the aggregate
functions can be in any procedural language, such as C, PL/SQL, or Java.

The ODCIAggregate interface consists of the following functions:

� ODCIAggregateInitialize() initializes the aggregate value at the start
of processing.

� ODCIAggregateIterate() updates the aggregate for new row of data.

� ODCIAggregateTerminate() returns the aggregate value and ends
processing.

� ODCIAggregateMerge() is used to support parallel computation of
the aggregation. The aggregate is computed on different pieces of the
data and finally the ODCIAggregateMerge() is called to combine the
results. The PARALLEL_ENABLE clause must be specified on the
aggregate function to enable this.

For instance, suppose you have a proprietary sales forecasting algorithm
that takes the sales numbers for the past five years and comes up with an
estimate for sales for the next year. You can define a user-defined aggregate
for this as follows. The SalesForecastFunction type implements the ODCI-
Aggregate interface. (We omit the implementation here for lack of space.
Please see the Appendix for instructions to obtain the full example.) The

TEAM LinG - Live, Informative, Non-cost and Genuine!

280 6.4 SQL Features for Querying the Data Warehouse

function SalesForecast() is declared as an aggregate function using the Sales-
ForecastFunction.

CREATE OR REPLACE TYPE SalesForecastFunction AS OBJECT (
 data number,
 STATIC FUNCTION ODCIAggregateInitialize
 (ctx IN OUT SalesForecastFunction)
 RETURN number,
 MEMBER FUNCTION ODCIAggregateIterate
 (self IN OUT SalesForecastFunction,
 value IN number) RETURN number,
 MEMBER FUNCTION ODCIAggregateTerminate
 (self IN OUT SalesForecastFunction,
 returnValue OUT number,
 flags IN number) RETURN number,
 MEMBER FUNCTION ODCIAggregateMerge
 (self IN OUT SalesForecastFunction,
 ctx2 IN OUT SalesForecastFunction)
 RETURN number
);
/

CREATE OR REPLACE TYPE BODY SalesForecastFunction
IS
…
END;
/

CREATE or REPLACE FUNCTION SalesForecast(x number) RETURN number
PARALLEL_ENABLE AGGREGATE USING SalesForecastFunction;
/

This function can then be used in a SQL query in place of any aggre-
gate, as follows. You can also use the DISTINCT flag to remove duplicate
column values prior to aggregation.

SELECT p.category, SUM(f.purchase_price) sales,
 SalesForecast(f.purchase_price) as salesforecast
FROM purchases f, product p
WHERE f.product_id = p.product_id
GROUP BY p.category;

CATE SALES SALESFORECAST
---- ----------- -------------
ELEC 33327213.90 36659935.30
HDRW 2962332.61 3258565.87
MUSC 3223204.06 3545524.47

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 281

Chapter 6

Hint: Before you implement a user-defined aggregate, check if your aggre-
gate can be handled by existing SQL aggregates, since they would give bet-
ter performance. The CASE function can be used to handle a wide variety
of complex computations.

If aggregation were all we needed, life would be simple. However, busi-
ness intelligence queries usually involve more complex analysis than just
aggregation. For example, if you wanted to find the top-selling products or
compare sales of one month with the previous one, you will need to use
SQL functions for analysis; these are discussed next.

6.4.2 SQL Functions for Analysis

The analytical functions in Oracle provide very powerful SQL constructs to
represent many typical decision-support queries. By using the analytical
functions in the database, these calculations can take advantage of parallel-
ism and other optimization techniques in the database.

Analytical functions fall into many categories, some of which are:

� Ranking functions can be used to answer queries for top-N items,
such as: What were the top-10 best-selling products this year?
Examples of ranking functions include RANK, DENSE_RANK,
and NTILE.

� Moving window aggregates can be used to answer queries such as:
What were the cumulative sales for Asia for each month this year?
These functions calculate quantities, such as cumulative sum or mov-
ing average, that involve continuous computations over a period of
time.

� Reporting aggregates can be used to see the aggregated value side by
side with the detailed rows that contributed to it. You would use a
reporting aggregate if you wanted to compare sales of each product
with the average sales of all products.

� Lag and Lead functions can be used to do period-over-period com-
parisons—for example, comparing sales of one year to the previous
year.

TEAM LinG - Live, Informative, Non-cost and Genuine!

282 6.4 SQL Features for Querying the Data Warehouse

We will now look at these SQL functions in more detail with some
examples.

Ranking Functions

Ranking functions allow you to answer queries such as: Who are my top 15
percent customers? or What were my worst- or best-selling products? Take,
for example, that we are trying to streamline our product line and would
like to take the 10 worst-selling products off the market at the end of the
year. To answer this question, we must first compute the sales for each prod-
uct and order the products according to their sales (least sales first) and
finally pick the first 10.

The following SQL statement identifies the worst-selling 10 products
using the RANK function. The RANK function assigns ranks from 1 to N,
skipping ranks in case of ties. Thus, if there were two products with the
same sales with rank 3, then the next rank would be 5.

SELECT *
FROM
(SELECT p.product_id p_id, SUM(f.purchase_price) as sales,
 RANK() OVER (ORDER BY SUM(f.purchase_price)) as rank
 FROM purchases f, product p
 WHERE f.product_id = p.product_id
 GROUP BY p.product_id)
WHERE rank <= 10;

P_ID SALES RANK
-------- ---------- ----------
SP1247 7082.84 1
SP1264 7145.52 2
SP1220 7223.87 3 <- tie for rank 3
SP1260 7223.87 3
SP1224 7239.54 5
SP1245 7302.22 6
SP1262 7333.56 7
SP1238 7364.90 8
SP1256 7380.57 9
SP1243 7474.59 10
SP1257 7474.59 10

11 rows selected.

This query has two parts—an inner subquery ranks the products by
their sales and the outer query selects the rows corresponding to the first 10
ranks. Let us concentrate on the inner subquery for the moment. If you
ignore the RANK function, this subquery simply performs the familiar
aggregation SUM(f.purchase_price) to determine the total sales for each

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 283

Chapter 6

product. The RANK function then ranks the result according to the order-
ing criteria SUM(f.purchase_price) (i.e., the sales for that product).

If, instead of the worst-selling products, you wanted to determine the
best-selling products, you simply need to change the ORDER BY clause
from the default (ascending) to descending using the DESC keyword.
However, you need to be aware of a small nuance due to NULL values. In
the SQL ORDER BY clause, you can specify whether NULL values should
be ordered before (FIRST) or after (LAST) any non-null values. NULLS
LAST is the default for ascending order and NULLS FIRST for descending
order. Obviously, in our case, we don’t want products with NULL sales
(perhaps they were damaged and had to be written off) to appear first in the
list, so we must specify NULLS LAST. The resulting SQL is as follows:

SELECT p.product_id p_id, SUM(f.purchase_price) as sales,
 RANK() OVER (ORDER BY SUM(f.purchase_price)
 DESC NULLS LAST) as rank
FROM purchases f, product p
WHERE f.product_id = p.product_id
GROUP BY p.product_id;

P_ID SALES RANK
-------- --------- ------
SP1052 675785.37 1
SP1056 669445.92 2
SP1036 668178.03 3
SP1040 665642.25 4
SP1060 655499.13 5
...
SP1300 56.02 164
SP1255 165 <- nulls last

A variant of RANK is the DENSE_RANK function that assigns contig-
uous ranks despite ties. For instance, if two products had the same rank, 3,
DENSE_RANK would assign the next rank to be 4. Thus, the
DENSE_RANK function does not skip ranks, whereas the RANK function
does. The following query illustrates the difference between RANK and
DENSE_RANK. We could have decided to use one or the other depending
on the business policy.

SELECT p.product_id p_id, SUM(f.purchase_price) as sales,
 RANK() OVER (ORDER BY SUM(f.purchase_price)) as rank,
 DENSE_RANK() OVER (ORDER BY SUM(f.purchase_price)) as drank
FROM purchases f, product p
WHERE f.product_id = p.product_id
GROUP BY p.product_id;

TEAM LinG - Live, Informative, Non-cost and Genuine!

284 6.4 SQL Features for Querying the Data Warehouse

P_ID SALES RANK DRANK
-------- ---------- ---------- ----------
SP1247 7082.84 1 1
SP1264 7145.52 2 2
SP1220 7223.87 3 3 <- tie for rank 3
SP1260 7223.87 3 3
SP1224 7239.54 5 4 <- note the difference
SP1245 7302.22 6 5
…

All analytical functions follow a similar syntax, consisting of the
OVER() clause, which can include an ORDER BY condition. To under-
stand analytic functions better, it helps to remember that these functions
are applied after the WHERE, GROUP BY, and HAVING clauses of the
query have been computed and before ORDER BY and SQL Model clauses
(explained in section 6.4.5). Consequently, any aggregate functions such as
SUM(f.purchase_price), computed by the query, are available as ordering
criteria to the analytical function.

PARTITION BY Clause

Now that we have computed the worst-selling products overall, we would
like to identify the worst-selling products in each product category. This
can be achieved by making a slight change to the OVER() clause in the ear-
lier example, to include the PARTITION BY clause, as follows:

SELECT p.category, p.product_id, SUM(f.purchase_price) as sales,
 RANK() OVER (PARTITION BY p.category
 ORDER BY SUM(f.purchase_price)) as rank
FROM purchases f, product p
WHERE f.product_id = p.product_id
GROUP BY p.category, p.product_id;

CATE PRODUCT_ SALES RANK
---- -------- ---------- ----------
ELEC SP1078 11695.32 1
ELEC SP1065 11820.27 2
ELEC SP1063 11823.29 3
ELEC SP1066 11845.26 4
...
HDRW SP1220 7223.87 1
HDRW SP1224 7239.54 2
HDRW SP1238 7364.90 3
...
MUSC SP1247 7082.84 1
MUSC SP1264 7145.52 2
MUSC SP1260 7223.87 3
...
164 rows selected.

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 285

Chapter 6

In this example, the query first computes the sales for each product. The
PARTITION BY clause then divides the result into groups according to the
CATEGORY column. Note that we must select category in the GROUP
BY clause so that it is available to the PARTITION BY clause. Finally, for
each category, the RANK function assigns a rank to the products within
that category, ordered according to their sales. The rank is reset to 1 within
each product category. Figure 6.3 illustrates the computation of RANK
with the PARTITION BY clause.

You can use the RANK function multiple times using different PARTI-
TION and ORDER BY expressions in the same query. Note that the PAR-
TITION BY clause used by analytical functions is completely unrelated to
partitioning for tables, discussed in Chapter 4.

Relative Ranking Functions

In the previous section, we computed the worst-selling products, however,
we did not get a sense of the relative standing of a product with respect to
all of the products. For instance, if we had 1,000 products, then a rank of
10 would be pretty close to the top of the worst-selling list. However, if we
only had 15 products, then a rank of 10 is not that bad—in fact, if we

Figure 6.3 PARTITION BY clause

TEAM LinG - Live, Informative, Non-cost and Genuine!

286 6.4 SQL Features for Querying the Data Warehouse

removed the 10 worst-selling products from our store, we would have elim-
inated 75 percent of our products, which may not be what we set out to do!
The analytical functions PERCENT_RANK, CUME_DIST, and NTILE
give us a way to interpret where any given product stands in comparison to
the entire set. You can think of these functions as relative ranking functions
whereas RANK and DENSE_RANK are absolute ranking functions. Rela-
tive ranking functions help us understand the placement of values in the
distribution of data, so they are also known as distribution functions.

Suppose we wanted to answer the question: Show me the 25 percent
worst-selling products with sales less than $7,500? To answer this question
we need to compute the NTILE(4) of sales within each product category.
The NTILE(N) function orders the data using a specified criterion and
then divides the result into N buckets, assigning the bucket number to all
rows in each bucket. Thus, NTILE(4) assigns a number (also called the
quartile) between 1 and 4 to each row. You can use quartile to determine
whether a value falls within the ranges of 0–25 percent, 25–50 percent, 50–
75 percent or 75–100 percent with respect to all values in the set. You may
be familiar with the term percentile used to compare test scores for school
admissions. This is a special case of the NTILE function where N is 100, so
if a student is in the 98 percentile, then only 2 percent of students per-
formed better than this student.

The following query answers the business question we posed earlier. The
25 percent worst-selling products correspond to the first quartile—that is,
those with an NTILE value of 1 (marked with an asterisk in the following
output). Note that the condition sales < 7,500 specified in the HAVING
clause will be evaluated before the analytical function.

SELECT p.category, p.product_id, SUM(f.purchase_price) as sales,
 NTILE(4) OVER (PARTITION BY p.category
 ORDER BY SUM(f.purchase_price)) as quartile
FROM purchases f, product p
WHERE f.product_id = p.product_id
GROUP BY p.category, p.product_id
HAVING SUM(f.purchase_price) < 7500;

CATE PRODUCT_ SALES QUARTILE
---- -------- ---------- ----------
HDRW SP1220 7223.87 1 *
HDRW SP1224 7239.54 2
HDRW SP1238 7364.90 3
MUSC SP1247 7082.84 1 *
MUSC SP1264 7145.52 1 *
MUSC SP1260 7223.87 2
MUSC SP1245 7302.22 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 287

Chapter 6

MUSC SP1262 7333.56 3
MUSC SP1256 7380.57 3
MUSC SP1243 7474.59 4
MUSC SP1257 7474.59 4

The buckets generated by the NTILE(4) function all have almost the
same number of rows: The function allocates rows so the count per
bucket differs by no more than one. However, the range between the low-
est and highest value in each bucket may differ. This is called an
equiheight histogram.

Note that with NTILE(4), you only got a coarse distribution of the
product, such as whether it was in the top 25 percent, the bottom 50 per-
cent, and so on. Instead, if you wanted to see the finer-grained ranking of
each product relative to the whole set, you could use a high number, such
as 1,000, as the argument to NTILE or use the CUME_DIST or
PERCENT_RANK functions.

The CUME_DIST function computes the cumulative distribution of
product sales, which answers the question: What percentage of products
have sales less than a given product? For instance, in the following example,
37.5 percent of products have sales value less than or equal to SP1260 in
the music category. PERCENT_RANK answers the question: What per-
centage of products rank lower than a given product based on their total
sales? For instance, in the following example, 28.5 percent of products rank
lower than SP1260.

SELECT p.category, p.product_id, SUM(f.purchase_price) as sales,
 CUME_DIST() OVER (PARTITION BY p.category
 ORDER BY SUM(f.purchase_price)) as cume_dist,
 PERCENT_RANK() OVER (PARTITION BY p.category
 ORDER BY SUM(f.purchase_price)) as pct_rank
FROM purchases f, product p
WHERE f.product_id = p.product_id
GROUP BY p.category, p.product_id
HAVING SUM(f.purchase_price) < 7500 ;

CATE PRODUCT_ SALES CUME_DIST PCT_RANK
---- -------- ---------- ---------- ----------
HDRW SP1220 7223.87 .333333333 0
HDRW SP1224 7239.54 .666666667 .5
HDRW SP1238 7364.90 1 1

MUSC SP1247 7082.84 .125 0
MUSC SP1264 7145.52 .25 .142857143
MUSC SP1260 7223.87 .375 .285714286 *
MUSC SP1245 7302.22 .5 .428571429
MUSC SP1262 7333.56 .625 .571428571

TEAM LinG - Live, Informative, Non-cost and Genuine!

288 6.4 SQL Features for Querying the Data Warehouse

MUSC SP1256 7380.57 .75 .714285714
MUSC SP1243 7474.59 1 .857142857
MUSC SP1257 7474.59 1 .857142857

Both these functions are calculated with respect to all the elements in the
set and have a value between 0 and 1. To convert to a percentage, you simply
need to multiply it by 100. One characteristic of PERCENT_RANK is that
the first value will always be 0 (since there are no ranks lower than the first
rank!), and the last value will always be less than or equal to 1. On the other
hand, CUME_DIST will always have the first entry greater than 0 and the
last entry equal to 1. Note that in case of a tie (i.e., when two rows have the
same value of sales), they will get the identical value of CUME_DIST and
PCT_RANK—for example, the last two rows, SP1243 and SP1257 in the
preceding output. If you are interested, PERCENT_RANK of an element
with rank R is computed as (R–1) / (Total Ranks–1) and CUME_DIST of
an element with value V is computed as (Number of values before V in the
given order) / (Total number of values).

Note that the examples in this section use the PARTITION BY clause,
which means that the analytical function would be applied to each parti-
tion, or in this case each product category.

Other functions in the RANK family are FIRST_VALUE,
LAST_VALUE, and ROW_NUMBER. All of these provide different ways
to choose data from ordered groups.

WIDTH_BUCKET Function

We have seen how we can do comparative analysis using ranking functions.
Another common form of comparative analysis is frequency distribution
(i.e., to classify items into different categories based on some quantity and
then count how many would fall into each category). For instance, we
would like to classify products that have sales between $0 and $100,000
into five equal-sized buckets, as shown in Figure 6.4.

This type of classification called as an equiwidth histogram, because
each bucket has roughly the same range but can have differing number of
rows. The WIDTH_BUCKET function can be used to generate this classi-

Figure 6.4 WIDTH_BUCKET Bucket Distribution

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 289

Chapter 6

fication, as shown in the following example. This function takes a range (in
this example, 0–10,000) and number of buckets (in this example, four)
and assigns a bucket from 1 to 4 to each value. Any values lower than the
lower bound will go into an underflow bucket, numbered 0, and any values
higher than the upper bound go into an overflow bucket, numbered 5. To
get the frequency distribution, we have an outer query that counts all val-
ues with a given bucket number using a GROUP BY on the width_bucket
value. We also show the minimum and maximum actual sales value, in
each bucket.

SELECT width_bucket, min(sales) , max(sales), COUNT(*)
FROM
(SELECT p.product_id, SUM(f.purchase_price) as sales,
 WIDTH_BUCKET(SUM(f.purchase_price), 0, 100000, 4)
 as width_bucket
FROM purchases f, product p
WHERE f.product_id = p.product_id
GROUP BY p.product_id)
GROUP BY width_bucket;

WIDTH_BUCKET MIN(SALES) MAX(SALES) COUNT(*)
------------ ---------- ---------- ----------
 1 56.02 24854.91 95
 2 25333.81 37236.57 30
 3 73531.50 4783.10 4
 4 75252.45 83387.85 9
 5 573086.28 675785.37 26
 1 <- no sales

From this analysis, we can tell that most of our products (95) had total
sales less than $25,000. We also see that we have a significant number of
products (26) that had total sales over $100,000. Note also that products
with NULL sales value do not get counted in this analysis and get a bucket
number NULL.

This type of analysis can also be used to concisely report statistics such
as customer demographics or income-level surveys. The WIDTH_
BUCKET function only allows you to create buckets of equal sizes. If you
need a more customized distribution of buckets, you should take a look at
the CASE expression discussed in section 6.4.4.

Period-over-Period Comparison Functions—LAG and LEAD

Period-over-period comparisons, such as comparing sales to those a year ago,
are often part of business reporting. The two simple analytic functions, LAG
and LEAD, allow you to perform such comparisons. For instance, suppose

TEAM LinG - Live, Informative, Non-cost and Genuine!

290 6.4 SQL Features for Querying the Data Warehouse

we need to compare monthly sales to the sales six months ago. In this case
we would use the LAG function, as shown in the following query:

SELECT t.month, SUM(f.purchase_price) as monthly_sales,
 LAG(SUM(f.purchase_price),6)
 OVER (ORDER BY t.month) as sales_6_months_ago
FROM purchases f, time t
WHERE f.time_key = t.time_key
GROUP BY t.year, t.month;

 MONTH MONTHLY_SALES SALES_6_MONTHS_AGO
---------- ------------- ------------------
 200301 747376.33
 200302 677746.09
 ...
 200306 847609.93
 200307 905908.19 747376.33 <- LAG(sales,6) = 200301
 200308 762608.21 677746.09
 ...
 200401 883351.03 905908.19
 200402 841068.94 762608.21
 200403 779704.31 745532.66
 200404 833190.58 886877.84
 200405 906714.58 733383.72
 200406 736279.04 754124.30
 200407 758762.01 883351.03 <- LAG(sales,6) = 200401
 200408 900208.87 841068.94
 200409 732996.94 779704.31
 ...

For each row returned by a query, LAG and LEAD functions provide
the values at a row at a known offset from the current row. In this example,
since each row corresponds to one month, the term 6 months ago would
translate to a LAG offset of 6. For example, LAG(sales,6) for July 2004 is
the sales for January 2004. Similarly, monthly sales last quarter would trans-
late to LAG(sales,3) and monthly sales for the following year would trans-
late to LEAD(sales, 12).

Note that if the lagging (or leading) row specified by the function is not
present, LAG (or LEAD) returns the NULL value or a default you specify.
In the EASYDW data warehouse, we keep data for two years, 2003 and
2004, and hence LAG(sales,6) for 200301 through 200306 will have a
value of NULL, because data for six months prior is unavailable.

These functions are extremely simple to use and very powerful. Without
these functions, such apparently simple computations would require a join
of a table to itself, possibly multiple times, or a number of subqueries,
which would make the query extremely inefficient.

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 291

Chapter 6

Window Aggregate Functions

One of the most powerful tools provided by the analytical functions is to
aggregate over a moving window. These functions allow you to answer
questions such as: What are the cumulative sales numbers for each month
this year? Window aggregate functions let you compute a function such as
SUM over a specified window of rows relative to the current row.

The following example calculates the monthly cumulative sales for the
year 2003. The query first computes the SUM(purchase_price) (i.e., sales for
each month in 2003). Then, for each month, it sums up the sales for all
months up to and including the current month. This is indicated by the
expression SUM(SUM(f.purchase_price)). Note that the ORDER BY clause
indicates how to order the rows to determine the window; in this example
the window is determined by the order of the months. The ROWS
UNBOUNDED PRECEDING clause specifies that the window is all rows
before and including the current row. A window specified using number of
rows preceding or following the current row is known as a physical window.

SELECT t.month, SUM(f.purchase_price) as sales,
 SUM(SUM(f.purchase_price))
 OVER (ORDER BY t.month ROWS UNBOUNDED PRECEDING)
 as cumulative_sales
FROM purchases f, time t
WHERE f.time_key = t.time_key and t.year = 2003
GROUP BY t.month;
 MONTH SALES CUMULATIVE_SALES
------- --------- ----------------
 200301 747376.33 747376.33
 200302 678003.47 1425379.80
 200303 899322.05 2324701.85
 200304 871402.28 3196104.13
 200305 758742.80 3954846.93
 200306 848080.03 4802926.96
 200307 906190.25 5709117.21
 200308 762764.91 6471882.12
 200309 745689.36 7217571.48
 200310 887175.57 8104747.05
 200311 733383.72 8838130.77
 200312 754594.40 9592725.17

Another common example of a moving window function is a moving
average. In the next example, we are computing, for each month, the mov-
ing average of the sales for that month and the two months preceding it.
This is specified by the ROWS 2 PRECEDING clause.

TEAM LinG - Live, Informative, Non-cost and Genuine!

292 6.4 SQL Features for Querying the Data Warehouse

SELECT t.month, SUM(f.purchase_price) as sales,
 AVG(SUM(f.purchase_price))
 OVER (ORDER BY t.month ROWS 2 PRECEDING) as mov_avg
FROM purchases f, time t
WHERE f.time_key = t.time_key and t.year = 2003
GROUP BY t.month;

 MONTH SALES MOV_AVG
------- --------- ----------
 200301 747376.33 747376.330
 200302 678003.47 712689.900
 200303 899322.05 774900.617
 200304 871402.28 816242.600
 200305 758742.80 843155.710
 200306 848080.03 826075.037
 200307 906190.25 837671.027
 200308 762764.91 839011.730
 200309 745689.36 804881.507
 200310 887175.57 798543.280
 200311 733383.72 788749.550
 200312 754594.40 791717.897

If, instead, we wanted the window to include the current month and
two months following it, the window expression would simply change to
ROWS 2 FOLLOWING.

Specifying a Logical Window

One of the most common moving window analyses is a time-series analysis,
where the ordering expression is a date. For this special case, you can specify
the window using logical entities such as INTERVAL DAY, MONTH, or
YEAR. Such window expressions are called logical windows and are only
allowed when the ORDER BY expression has a numeric, date, or interval
data types. For instance, suppose you wanted to know the daily sales totaled
over a moving five-day window including two days before and two days
after the current date. The SQL to answer this query is as follows. The win-
dow is specified using a RANGE BETWEEN clause and INTERVAL DAY
expressions for the upper and lower bounds.

SELECT t.time_key, SUM(f.purchase_price) as sales,
 SUM(SUM(f.purchase_price)) OVER (ORDER BY t.time_key
 RANGE BETWEEN INTERVAL '2' DAY PRECEDING AND
 INTERVAL '2' DAY FOLLOWING) as sales_5_day
FROM purchases f, time t
WHERE f.time_key = t.time_key and t.year = 2003
GROUP BY t.time_key
HAVING SUM(f.purchase_price) < 25000;

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 293

Chapter 6

TIME_KEY SALES SALES_5_DAY
--------- ---------- -----------
01-JAN-03 23345.03 71195.91
02-JAN-03 24572.88 94636.72
03-JAN-03 23278 119209.60 ---
04-JAN-03 23440.81 119142.57 |
05-JAN-03 24572.88 118010.50 <- current row |logical window
06-JAN-03 23278 1193058.00 |
07-JAN-03 23440.81 119142.50 ---
08-JAN-03 24572.88 118010.50
09-JAN-03 23278 119305.38
10-JAN-03 23440.81 119142.57
...
27-JAN-03 23278 72423.76
29-JAN-03 24572.88 71128.88 ---
30-JAN-03 23278 69999.47 <- current row | logical window
01-FEB-03 22148.59 70191.14 ---
03-FEB-03 24764.55 68977.70
...
152 rows selected.

In this example, the computation for the date 5-Jan-03 consists of sales
from five consecutive dates from 3-Jan-03 through 7-Jan-03. However, the
calculation for 30-Jan-03 consists only of three dates: 29-Jan-03, 30-Jan-
03, and 01-Feb-03, because dates 28-Jan-03 and 31-Jan-03 are missing.
Instead, if this were a physical window, the window would have included
27-Jan-03 and 01-Feb-03, which is not really what we want. This highlights
an important issue with using physical windows, which is that a physical
window is good only if you have dense data (i.e., no gaps in the ordering
values). Fortunately, the Oracle Database 10g provides a solution to this
problem, which is what we will discuss next.

Converting Sparse Data into Dense Form

A logical window can only be used for a restricted set of data types. A phys-
ical window is often the most convenient for time-series calculations, such
as comparing year over year or quarterly sales. However, as mentioned ear-
lier if the data is not dense we cannot use a physical window for analysis.
For instance, the following query shows sales for each product by month. In
this example, a product, CD LX1 was not sold in February 2003, and so
the result would be missing a row for 200302, CD LX1. Therefore, a phys-
ical window expression such as a three-month moving average would give
incorrect results.

SELECT t.month, p.product_name, SUM(f.purchase_price) as sales
FROM purchases f, time t, product p
WHERE f.time_key = t.time_key
 AND f.product_id = p.product_id
GROUP BY p.product_name, t.month;

TEAM LinG - Live, Informative, Non-cost and Genuine!

294 6.4 SQL Features for Querying the Data Warehouse

 MONTH PRODUCT_NAME SALES
---------- --------------- ----------
 200301 CD LX1 485.77
 <- missing 200302
 200303 CD LX1 470.10
 200304 CD LX1 313.40
 200305 CD LX1 313.40
 200306 CD LX1 313.40
 200307 CD LX1 470.10
 200308 CD LX1 501.44
 200309 CD LX1 470.10
 200310 CD LX1 250.72
 200311 CD LX1 56.70
 ...

3417 rows selected.

Would it not be easier if, instead of having no row, we had a “dummy”
row for 200302, CD LX1 with sales of 0? We could then simply use a phys-
ical window, such as ROWS PRECEDING 1, for the previous month or
ROWS FOLLOWING 1 for the next month. Oracle Database 10g intro-
duced a new operation, known as a PARTITION OUTER JOIN, which
can be used to convert sparse data into dense data, thus enabling the use of
physical windows even with sparse data. Before we discuss, let us briefly
review what an outer join is.

OUTER JOIN

In this chapter, we have seen several queries where we calculate the total
sales by product. The joins used in these examples were inner joins, where
rows appear in the result only if the joining column value is present in both
tables. However, if we also wanted to see those products that did not sell at
all, we would need to use an outer join. These products would have
PRODUCT_ID values that appear in the PRODUCT table but not in the
PURCHASES table. For such rows, a NULL value is output instead of col-
umns in the PURCHASES table. The SQL statement for this query is as
follows. As you can see, this query has two rows marked with an asterisk,
corresponding to products that did not sell, which would not be in the
inner join. These extra rows are called the antijoin.

SELECT p.product_name, SUM(f.purchase_price) as sales
FROM purchases f RIGHT OUTER JOIN product p
 ON (f.product_id = p.product_id)
GROUP BY p.product_name;

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 295

Chapter 6

PRODUCT_NAME SALES
------------------------------ ----------
APS Camera 17064.33
CD LX1 7772.32
…
XYZ 56.02
Tents Half Dome 1999 *
Tents Half Dome 2000 *

Note that this query uses a RIGHT OUTER JOIN clause, which is the
ANSI standard syntax for a join. Here the join is represented in the FROM
clause rather than in the WHERE clause, which is an Oracle specific syn-
tax. An outer join can be a LEFT OUTER JOIN or RIGHT OUTER
JOIN. The RIGHT OUTER JOIN between PURCHASES and PROD-
UCT gave us rows from the PRODUCTS (right) table, which had no cor-
responding rows in the PURCHASES (left) table. If we used a LEFT
OUTER JOIN in the previous example, we would get those rows in the
PURCHASES (left) table, for which PRODUCT_ID was not in the
PRODUCTS (right) table. For instance, these may be transactions for dis-
continued or special products or maybe where the actual products sold was
not known.

Now that we know what an outer join is, we can see how the partition
outer join is used.

Partition Outer Join

Recall the problem we are trying to solve: We would like to find sales by
product and month for each product; if there were no sales for that prod-
uct in some month, we would like to generate a row with sales of 0 for that
product and month. This is done by the following SQL statement, which
uses the PARTITION OUTER JOIN. The PARTITION OUTER JOIN
is an extension of the outer join where the outer join is done against each
partition identified by a PARTITION BY clause. (Note that we are talking
about the PARTITION BY clause shown in Figure 6.5 and not physical
data partitioning.) We will explain this SQL in more detail in a moment,
but for now notice that rows marked with an asterisk indicate that we have
filled in the missing rows with a sales value of 0.

SELECT v2.month, v1.product_name, nvl(v1.sales,0)
FROM
(SELECT t.month, p.product_name, SUM(f.purchase_price) as sales
 FROM purchases f, time t, product p
 WHERE f.time_key = t.time_key
 AND f.product_id = p.product_id
 GROUP BY p.product_name, t.month) v1 PARTITION BY (product_name)

TEAM LinG - Live, Informative, Non-cost and Genuine!

296 6.4 SQL Features for Querying the Data Warehouse

 RIGHT OUTER JOIN
(SELECT DISTINCT t.month
 FROM time t) v2
ON v1.month = v2.month;

 MONTH PRODUCT_NAME NVL(V1.SALES,0)
---------- ------------------------------ ---------------

 200301 CD LX1 485.77
 200302 CD LX1 0 *
 200303 CD LX1 470.10
 200304 CD LX1 313.40
 200305 CD LX1 313.40
 200306 CD LX1 313.40
 200307 CD LX1 470.10
 200308 CD LX1 501.44
 200309 CD LX1 470.10
 200310 CD LX1 250.72
 200311 CD LX1 156.70
 200312 CD LX1 0 *
 ...

3816 rows selected.

Now let us try to understand this query. The query has two views in the
FROM clause, v1 and v2. The first view, v1, is simply the query for sales by
product and month we saw earlier. The second view, v2, obtains the distinct
values of month in the table, TIME. The PARTITION BY clause on

Figure 6.5 PARTITION OUTER JOIN

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 297

Chapter 6

PRODUCT_NAME will take the result of v1 and divide it into partitions
one for each product. The query then joins each such partition of v1 to the
view v2 using a RIGHT OUTER JOIN. For each product, the antijoin
portion will correspond to rows (months) from v2 that do not join with any
rows in the partition of v1 for that product. This exactly corresponds to the
months where there were no sales for the particular product! The expression
nvl(sales,0) will put a value of 0, rather than NULL for such rows. And,
Voilà—we have converted the sparse data into a dense form. Figure 6.5 can
help visualize this PARTITION OUTER JOIN operation.

If you are wondering why we need the PARTITION OUTER JOIN
and cannot do this with just an OUTER JOIN, remember that we would
be joining v1 and v2 on month. As long as every value of month in v2
appears in v1 for some product, a simple outer join will be same as an inner
join and will leave the result of v1 unchanged. If some value of month does
not appear in v1 at all, it means that in this month we did not sell any
products at all, which is not what we were looking for in this example! The
interested reader may find it to be an instructive exercise to use outer joins
to find those months where we did not sell any products and those prod-
ucts that did not sell in any month. Hint: The query is very similar to the
example given here but you do not need the PARTITION OUTER join
to do this.

Reporting Aggregates

Continuing on with our product analysis, suppose we want to answer the
question: What is the percentage contribution of each product category to
the overall sales? You can visualize this result as a pie chart, with each slice
being sales of one product category. To generate this pie chart, what we
need to compute is the ratio of each product category’s sales to the total
sales of all categories combined.

You will find that with conventional SQL it is very cumbersome to do
this type of calculation. This is because when you ask for a simple aggregate
such as SUM or MAX in SQL, you lose the individual rows contributing to
the aggregate. Only one row, which is the aggregate, is returned. So you will
need to do two queries: one to get the sales for each individual category and
another to compute the total sales of all categories and then calculate the
ratio within the application outside of SQL. Reporting aggregates solve this
problem by reporting the computed aggregate value side by side with all the
detail rows that contributed to it.

The following query uses a reporting aggregate to answer our question.
In this example, the aggregate sales is a regular aggregate, whereas sales_total

TEAM LinG - Live, Informative, Non-cost and Genuine!

298 6.4 SQL Features for Querying the Data Warehouse

is a reporting aggregate that computes the total sales for all products. You can
identify a reporting aggregate by its use of an OVER() clause. Notice how
the same value 19312425.1 appears in all the rows. To generate the pie chart
we simply use the ratio between sales and total_sales for each category, com-
puted as ratio_sales in this example.

SELECT category, SUM(f.purchase_price) as sales,
 SUM(SUM(f.purchase_price)) OVER () as sales_total,
 SUM(f.purchase_price)/SUM(SUM(f.purchase_price)) OVER()
 as ratio_sales
FROM product p, purchases f
WHERE f.product_id = p.product_id
GROUP BY p.category;

CATE SALES SALES_TOTAL RATIO_SALES
---- ---------- --------------- -----------
ELEC 18896198.6 19312425.1 .978447733
HDRW 210228.72 19312425.1 .010885672
MUSC 205997.82 19312425.1 .010666595

In fact, there is a built-in reporting aggregate called RATIO_TO_
REPORT, which does this particular computation automatically. Thus, we
could have written the query as follows to get the same ratio as the previous
query:

SELECT category, RATIO_TO_REPORT(SUM(f.purchase_price))
 OVER () as ratio_sales
FROM product p, purchases f
WHERE f.product_id = p.product_id
GROUP BY p.category;

CATE RATIO_SALES
---- ------------
ELEC .978447733
HDRW .010885672
MUSC .010666595

The preceding examples used an empty OVER() clause, which simply
means that the reporting aggregate is being computed without any PARTI-
TION BY clause (i.e., over all rows). However, as with other analytical
functions, you can use the PARTITION BY clauses to divide the data into
partitions before computing the reporting aggregate. For example, if we
wanted to see the products whose sales are below the average sales in their
category, we would use the following query:

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 299

Chapter 6

SELECT *
FROM (SELECT p.category, p.product_id prod_id,
 SUM(f.purchase_price) prod_sales,
 AVG(SUM(f.purchase_price))
 OVER (PARTITION BY p.category) category_avg
 FROM product p, purchases f
 WHERE f.product_id = p.product_id
 GROUP BY p.category, p.product_id)
WHERE prod_sales < category_avg;

CATE PROD_ID PROD_SALES CATEGORY_AVG
---- -------- ---------- ------------
ELEC SP1000 34085.61 170237.033
ELEC SP1001 17064.33 170237.033
ELEC SP1010 22699.86 170237.033
…
HDRW SP1217 7740.98 7786.24889
HDRW SP1220 7223.87 7786.24889
HDRW SP1221 7552.94 7786.24889
…
MUSC SP1242 7772.32 7922.99308
MUSC SP1243 7474.59 7922.99308
MUSC SP1244 7740.98 7922.99308
…

In this example, the inner query computes the sales of each product as a
regular aggregate and the average sales for each category as a reporting
aggregate using the PARTITION BY category. The outer query then sim-
ply selects the products with sales below the category average.

First and Last Functions

While we are streamlining our product portfolio, we have decided to
revamp our pricing model as well and to do so we must determine how
prices affect our sales. For instance, we would like to find the number of
purchases made for the costliest and cheapest products in each category.
This involves first ranking all products, by their selling price, picking the
cheapest and costliest products and then aggregating using COUNT(*) all
the purchases made for these products. The FIRST and LAST aggregation
functions allow you to do such operations in a concise manner, as illus-
trated in the following query. In our example, we find that total sales for the
costliest items are about the same as for the cheaper ones.

SELECT p.category cat, SUM(f.purchase_price) total_sales,
 MIN(p.sell_price) cheap_prod,
 COUNT(*) KEEP (DENSE_RANK FIRST
 ORDER BY p.sell_price) cheap_sales,
 MAX(p.sell_price) costly_prod,

TEAM LinG - Live, Informative, Non-cost and Genuine!

300 6.4 SQL Features for Querying the Data Warehouse

 COUNT(*) KEEP (DENSE_RANK LAST
 ORDER BY p.sell_price) costly_sales
FROM purchases f, product p
WHERE f.product_id = p.product_id
GROUP BY p.category;

CAT TOTAL_SALES CHEAP_PROD CHEAP_SALES COSTLY_PROD COSTLY_SALES
---- ----------- ---------- ----------- ----------- ------------
ELEC 18896198.60 24.99 13888 1267.89 12770
HDRW 210228.72 15.67 13416 15.67 13416
MUSC 205997.82 15.67 13620 15.67 13620

Note that the ranking of an item as FIRST or LAST is done using the
DENSE_RANK function we discussed earlier.

A common use of FIRST and LAST is to return the value of a column
other than the column used to order the group. For instance, you can order
by column A yet return the MIN(column B). This approach increases
query performance by avoiding subqueries or other processing that is
required without FIRST and LAST. The FIRST and LAST functions can
also be used as reporting aggregates.

Inverse Percentile

Previously, we mentioned the CUME_DIST function, which can be used
to determine the cumulative distribution of a quantity, also known as its
percentile. Given this distribution, an inverse percentile function looks up
the data value that corresponds to a given percentile value in an ordered set
of rows. You can use this to ask the question—what product falls into the
50th percentile?

To illustrate this function, we will use the output of the following
query, which we saw previously. Recall that the rows are ordered by
SUM(purchase_price) and each row is assigned a value between 0 and 1.

SELECT p.category, p.product_id, SUM(f.purchase_price) as sales,
 CUME_DIST() over (PARTITION BY p.category
 ORDER BY SUM(f.purchase_price))
 as cume_dist
FROM purchases f, product p
WHERE f.product_id = p.product_id
GROUP BY p.category, p.product_id
HAVING SUM(f.purchase_price) < 7500 ;

CATE PRODUCT_ SALES CUME_DIST
---- -------- ---------- ----------
HDRW SP1220 7223.87 .333333333
HDRW SP1224 7239.54 .666666667 <- PERCENTILE_DISC(0.5)

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 301

Chapter 6

HDRW SP1238 7364.90 1

MUSC SP1247 7082.84 .125
MUSC SP1264 7145.52 .25
MUSC SP1260 7223.87 .375
MUSC SP1245 7302.22 .5 <- PERCENTILE_DISC(0.5)
MUSC SP1262 7333.56 .625
MUSC SP1256 7380.57 .75
MUSC SP1243 7474.59 1
MUSC SP1257 7474.59 1

There are two flavors of inverse percentile. PERCENTILE_DISC
assumes that the sales values are discrete and returns the value that corre-
sponds to the nearest CUME_DIST value greater than the percentile
specified. PERCENTILE_CONT assumes that the values are continuous
and returns the interpolated value corresponding to the given percentile.
In the previous example, the sales value that corresponds to
PERCENTILE_DISC(0.5) for the HDRW category is 7239.54 and for
MUSC category it is 7302.22.

The following example illustrates the use of the inverse percentile func-
tions. This example returns the median sales amount for products within each
category. Note that PERCENTILE_DISC and PERCENTILE_CONT
functions always return a single data value. An ORDER BY criterion must be
specified and must consist of a single expression.

SELECT p.category, p.product_id, SUM(f.purchase_price) as sales,
 PERCENTILE_DISC(0.5) WITHIN GROUP
 (ORDER BY SUM(f.purchase_price))
 OVER (PARTITION BY p.category) as pct_disc,
 PERCENTILE_CONT(0.5) WITHIN GROUP
 (ORDER BY SUM(f.purchase_price))
 OVER (PARTITION BY p.category) as pct_cont
FROM purchases f, product p
WHERE f.product_id = p.product_id
GROUP BY p.category, p.product_id
HAVING SUM(f.purchase_price) < 7500;

CATE PRODUCT_ SALES PCT_DISC PCT_CONT
---- -------- ---------- ---------- ----------
HDRW SP1220 7223.87 7239.54 7239.54
HDRW SP1224 7239.54 7239.54 7239.54
HDRW SP1238 7364.90 7239.54 7239.54
MUSC SP1247 7082.84 7302.22 7317.89
MUSC SP1264 7145.52 7302.22 7317.89
MUSC SP1260 7223.87 7302.22 7317.89
MUSC SP1245 7302.22 7302.22 7317.89
MUSC SP1262 7333.56 7302.22 7317.89
MUSC SP1256 7380.57 7302.22 7317.89
MUSC SP1243 7474.59 7302.22 7317.89
MUSC SP1257 7474.59 7302.22 7317.89

TEAM LinG - Live, Informative, Non-cost and Genuine!

302 6.4 SQL Features for Querying the Data Warehouse

In this example, PERCENTILE_DISC and PERCENTILE_CONT
have been used as reporting aggregates.

Hypothetical RANK and Distribution Functions

Business intelligence often involves what-if analysis, where you make a
hypothetical change to the business and analyze its impact. For instance, we
are introducing a new product in the HDRW category and have a projected
sales figure of $7,600 based on market surveys. Based on this information,
we would like to know how this product would rank among other products
in its category. Oracle provides a family of hypothetical rank and distribu-
tion functions for this purpose. With these functions, you can ask to com-
pute the RANK, PERCENT_RANK, or CUME_DIST of a given value, as
if it were hypothetically inserted into a set of values.

To illustrate this, we will use the following query, showing the sales for
different products in the HDRW category in ascending order of sales and
their respective ranks.

SELECT p.product_id, SUM(f.purchase_price) sales,
 RANK() OVER (ORDER BY SUM(f.purchase_price)) as rank
FROM purchases f, product p
WHERE f.product_id = p.product_id and p.category = 'HDRW'
GROUP BY p.product_id;

PRODUCT_ SALES RANK
-------- ---------- ----------
SP1220 7223.87 1
SP1224 7239.54 2
SP1238 7364.90 3
SP1221 7552.94 4
SP1222 7568.61 5
SP1237 7568.61 5
SP1239 7568.61 5
 <- Insert hypothetical value 7600.00
SP1230 7646.96 8
SP1235 7725.31 9
SP1217 7740.98 10
SP1223 7787.99 11
SP1233 7787.99 11
SP1218 7819.33 13
...

Now, suppose we want to find the hypothetical rank of a product with
sales of $7,600. From the previous output, we can see that this value, if
inserted into the data would get a rank of 8. The following query asks for
the hypothetical rank:

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 303

Chapter 6

SELECT RANK(7600.00)
 WITHIN GROUP (ORDER BY SUM(f.purchase_price)) as hrank
FROM purchases f, product p
WHERE f.product_id = p.product_id and p.category = 'HDRW'
GROUP BY p.product_id;

 HRANK

 8

Hypothetical rank functions take an ordering condition and a constant
data value to be inserted into the ordered set. The way to recognize a hypo-
thetical rank function in a query is the WITHIN GROUP clause and a
constant expression within the RANK function. Similarly, you can use
CUME_DIST or PERCENT_RANK to find the distribution or percentile
of a quantity inserted hypothetically into a result.

Statistical Analysis Functions

Statistical analysis is a key tool for business intelligence. Business decisions
may often be influenced by relationships between various quantities. For
instance, earlier we wanted to know if the price of an item influences how
many items are sold. A common technique used in such analyses is linear
regression analysis, which is a statistical technique used to quantify how
one quantity affects or determines the value of another. The idea is to fit the
data for two quantities along a straight line, as accurately as possible. This
line is called the regression line. Some of the quantities of interest are the
slope of the line, y-intercept of the line and the coefficient of determination
(which is how closely the line fits the points). Oracle provides various diag-
nostic functions commonly used for this analysis, such as standard error
and regression sum of squares.

The linear regression functions are all computed simultaneously in a sin-
gle pass through the data. They can be treated as regular aggregate functions
or reporting aggregate functions.

The following example illustrates the use of some of these functions.
Here, we are analyzing, for each manufacturer, whether the price of a prod-
uct has a relationship to the number of items sold. To do so we compute the
slope, intercept, and coefficient of determination of the regression line for
the quantities sell_price and total_purchases.

SELECT manufacturer,
 REGR_SLOPE(sell_price, total_purchases) slope,
 REGR_INTERCEPT(sell_price, total_purchases) intercept,
 REGR_R2(sell_price, total_purchases) coeff_determination

TEAM LinG - Live, Informative, Non-cost and Genuine!

304 6.4 SQL Features for Querying the Data Warehouse

FROM
(
SELECT p.manufacturer , p.product_id,
 f.purchase_price sell_price,
 count(f.purchase_price) as total_purchases
FROM purchases f, product p
WHERE f.product_id = p.product_id
GROUP BY p.manufacturer, p.product_id, f.purchase_price
)
GROUP BY manufacturer;

MANUFACTURER SLOPE INTERCEPT COEFF_DETERMINATION
--------------- ---------- ---------- -------------------
Dell 2.39415728 89.6207996 0.946392646
RTG -.00712584 35.922917 0.000745027
Ricoh .86111111 -369.35333 1
…

From this analysis, we can see that a straight line can closely model the
relationship between selling price and total purchases for the products man-
ufactured by Dell but not for those made by RTG.

Oracle also provides aggregate functions to compute other quantities of
interest to a linear regression analysis, such as covariance of a population
(COVAR_POP) or sample (COVAR_SAMP) and correlation (CORR)
between variables.

DBMS_STATS_FUNC Package

In Oracle Database 10g, there is a new package, DBMS_STATS_FUNC,
that includes several statistical functions. One function that is particularly
convenient is the SUMMARY function, which computes several useful sta-
tistics, such as mode, median, TOP 5, and so on, on a given column in a
table. The results are returned in a PL/SQL record of type SummaryType.

The following example shows the SUMMARY function on the
PURCHASE_PRICE column of the PURCHASES table and prints the
values that correspond to various quantiles and the median.

set serveroutput on;
DECLARE
 srec dbms_stat_funcs.summaryType;
BEGIN
 dbms_stat_funcs.summary(p_ownername=>'EASYDW',
 p_tablename=>'PURCHASES',
 p_columnname=>'PURCHASE_PRICE',
 s=>srec);
 dbms_output.put_line('Quantile 5 => ' || srec.quantile_5);
 dbms_output.put_line('Quantile 25 => ' || srec.quantile_25);
 dbms_output.put_line('Median => ' || srec.median);

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 305

Chapter 6

 dbms_output.put_line('Quantile 75 => ' || srec.quantile_75);
 dbms_output.put_line('Quantile 95 => ' || srec.quantile_95);
END;
/

Quantile 5 => 15.67
Quantile 25 => 15.67
Median => 24.99
Quantile 75 => 72.87
Quantile 95 => 1267.89

PL/SQL procedure successfully completed.

Other functions in this package allow you to test if your data conforms
to a particular distribution, such as Uniform, Exponential, Poisson, or Nor-
mal. Detailed explanation of these statistical concepts can be found in any
textbook on statistics and is beyond the scope of this book.

CASE Expression

Earlier, we saw how we can generate a frequency distribution using the
WIDTH_BUCKET function. However, instead of equally sized buckets, if
we wanted a more customized classification, you could use a CASE expres-
sion. The CASE expression allows you to return different expressions based
on various conditions. The simple CASE statement is identical to a
DECODE statement, where you can return different values depending on
the value of an expression. The searched CASE statement allows you more
flexibility, as illustrated by this example:

SELECT f.product_id, SUM(f.purchase_price) as sales,
 CASE WHEN SUM(f.purchase_price) > 150000 THEN 'High'
 WHEN SUM(f.purchase_price)
 BETWEEN 100000 and 150000 THEN 'Medium'
 WHEN SUM(f.purchase_price)
 BETWEEN 50000 and 100000 THEN 'Low'
 ELSE 'Other' END as sales_value
FROM purchases f
GROUP BY f.product_id;

PRODUCT_ SALES SALES_VALUE
-------- ---------- -----------
SP1023 75252.45 Low
SP1024 82136.25 Low
...
SP1053 613658.76 High
SP1054 654231.24 High
...
SP1268 7584.28 Other
SP1269 14197.02 Other

164 rows selected.

TEAM LinG - Live, Informative, Non-cost and Genuine!

306 6.4 SQL Features for Querying the Data Warehouse

You can use the CASE expression anywhere you use a column or expres-
sion, including inside aggregate functions. The combination of aggregates
and CASE expressions can be used to compute complex aggregations and
for what-if analysis. For instance, suppose we wanted to provide free ship-
ping on orders greater than $50. However, for customers who live in Cali-
fornia the minimum order would be $100 and for customers who live in
the United Kingdom the minimum order would be $250, and they would
only get 10 percent off shipping. The following statement computes the
current and projected shipping costs paid by a customer:

SELECT AVG(f.shipping_charge) as current_avg_shipcosts,
 AVG(CASE WHEN c.state = 'CA' and f.purchase_price > 100
 THEN 0
 WHEN c.country = 'UK' and f.purchase_price > 250
 THEN 0.9 * f.shipping_charge
 WHEN f.purchase_price > 50 THEN 0
 ELSE f.shipping_charge
 END) projected_shipping_costs
FROM purchases f, customer c
WHERE f.customer_id = c.customer_id;

CURRENT_AVG_SHIPCOSTS PROJECTED_SHIPPING_COSTS
--------------------- ------------------------
 4.55426569 2.45110852

Thus, we can see that with this scheme, on the average, customers will
end up paying around $2 less for shipping.

WITH Clause

Even with all the analytical functions, business intelligence queries could be
very complex and contain complex subqueries. In fact, the same subquery
can appear multiple times in the query. The WITH clause, introduced in
Oracle 9i, can improve the readability of such complex queries and also
improve performance for queries needing repeated computation.

For example, suppose we wanted to determine for each product category
the month for which the sales were the highest. One way of doing this is by
using the following query:

SELECT s.category, s.month, s.monthly_prod_sales
FROM (SELECT p.category, t.month,
 SUM(f.purchase_price) as monthly_prod_sales
 FROM product p, purchases f, time t
 WHERE f.product_id = p.product_id
 AND f.time_key = t.time_key
 GROUP BY p.category, t.month) s

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 307

Chapter 6

WHERE s.monthly_prod_sales
 IN (SELECT MAX(v.monthly_sales)
 FROM (SELECT p.category, t.month,
 SUM(f.purchase_price) as monthly_sales
 FROM product p, purchases f, time t
 WHERE f.product_id = p.product_id
 AND f.time_key = t.time_key
 GROUP BY p.category, t.month) v
 GROUP BY v.month);

We can see that this is a very complex SQL statement, and, moreover,
the subqueries with alias s and v are identical. The WITH clause can be
used to simplify such queries, as we will demonstrate shortly.

The WITH clause allows you to name a subquery and then subse-
quently use the name instead of that sub-query within a statement. If the
same sub-query appears multiple times in a query, then Oracle will auto-
matically materialize that subquery into a temporary table and reuse it
when executing the query. The temporary table will live only for the dura-
tion of the query and will be automatically deleted when the execution is
complete.

Let us rewrite the preceding SQL statement to use the WITH clause.
First, we will pull out the common subquery and give it a name, such as
PRODUCT_SALES_BY_MONTH. Then, wherever we used this subquery
before, we will instead use this name, resulting in the following statement:

WITH product_sales_by_month <- name the subquery
AS
(
 SELECT p.category, t.month,
 SUM(f.purchase_price) as monthly_prod_sales
 FROM product p, purchases f, time t
 WHERE f.product_id = p.product_id
 AND f.time_key = t.time_key
 GROUP BY p.category, t.month
)
SELECT s.category, s.month, s.monthly_prod_sales
FROM product_sales_by_month s <- use name here
WHERE s.monthly_prod_sales
 IN (SELECT MAX(v.monthly_prod_sales)
 FROM product_sales_by_month v <- use name here
 GROUP BY v.month);

This makes the query execute more efficiently, since Oracle can choose
to materialize the result of the subquery into a temporary table and reuse it
in both places, thereby saving repeated computation. Also, the query is now
much easier to read. The careful reader may have noted that this particular

TEAM LinG - Live, Informative, Non-cost and Genuine!

308 6.4 SQL Features for Querying the Data Warehouse

query could also have been done efficiently using reporting aggregates, dis-
cussed previously, or using the FIRST or LAST functions of Section First
and Last Functions, as also discussed previously. Analytical functions pro-
vide great flexibility in expressing business queries.

6.4.3 The SQL Model Clause

Every one of us has used a spreadsheet such as Excel to perform calcula-
tions. Often, calculations that may be extremely simple to do in a spread-
sheet can be surprisingly difficult and slow in SQL. For example, you can
add the second column of the third row to the fifth column of the fifth
row as C2 + E5. This is very cumbersome to do in conventional SQL.
Some such calculations could be performed with SQL but not without
using several self-joins and union operations with abysmal performance.
The underlying reason for this is that a spreadsheet allows you to address
every row and column of data and use it in a formula. Conventional SQL
completely lacks this very simple but extremely powerful interrow and
intercell calculation functionality. Hence, it is not uncommon to find that
many businesses pull data out of the database into myriad spreadsheets just
to perform calculations required for modeling their business performance
or revenue forecasts. When it is time to upgrade the accounting model, all
users of the spreadsheets must be notified to use the newer version. Even a
small discrepancy could lead to serious accounting inconsistencies. In this
era of financial accounting scandals, compliance laws are getting stricter
and so managing their accounting procedures is becoming a major concern
for businesses.

Oracle Database 10g introduced a new feature known as the SQL
Model Clause, which adds this calculation capability into SQL. The SQL
Model Clause gives you all the power of a conventional spreadsheet. Some
of the benefits of this feature are as follows:

� Within this clause you can address the result of a query as if it were a
multidimensional array. In fact, instead of the ordinal addressing
scheme (using row and column number) in a spreadsheet, you use
dimension values. For example, instead of saying C5 or D3, which
can be very error-prone, you can simply say sales[May] or pur-
chases[March].

� Calculations are done in the database and therefore have the added
benefit of a scalable data processing engine, which can optimize and
parallelize the calculations.

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 309

Chapter 6

� The result of calculations done using the model produce rows like
any SQL query and so you can do further processing on this result or
save it into a table.

� Last, but not least, you can store the model itself in the same database
as the data, using a view. So when it is time to change the model, just
change the view and all users automatically run with the newer
model!

Let us now look at how to do a simple calculation.

A Simple Calculation

The following query calculates the total sales by each month and produces
an additional row for “Holidays,” which gives the total sales for November
and December. This is quite like a calculation you may have done in a
spreadsheet previously.

SELECT month_name, sales
FROM (SELECT t.month, t.month_name, SUM(f.purchase_price) sales
 FROM purchases f, time t
 WHERE f.time_key = t.time_key AND t.year = 2003
 GROUP BY t.month, t.month_name)
MODEL
MAIN holiday_sales_model
DIMENSION BY (month_name)
MEASURES (sales)
RULES
(sales['Holidays'] = sales['November'] + sales['December']);

MONTH_NAME SALES
---------- ----------
January 747376.33
February 677690.07
March 899008.65
April 870947.85
May 758257.03
June 847609.93
July 905908.19
August 762608.21
September 745532.66
October 886877.84
November 733383.72
December 754124.30
Holidays 1487508.02 <- new row computed by the model clause

The SQL looks quite complex and has a lot of new syntax; however, we
will break it down into simpler pieces as we move along. The careful reader
will notice that the answer to this calculation has a value of “Holidays”
under month, which obviously did not come from the month table. This
row was created by execution of the RULES section of the model clause.
The rule defines a calculation to add the sales for November and December

TEAM LinG - Live, Informative, Non-cost and Genuine!

310 6.4 SQL Features for Querying the Data Warehouse

and assign it under a new value, “Holidays.” This type of calculation is
referred to as a calculated member. The notation sales['November'] is used
to identify a specific element in the result of the query. The quantity, sales,
which is used in numerical calculations, is called a measure and is concep-
tually the same as a measure from a fact table. The elements within square
brackets, specified within the DIMENSION BY clause, are called dimen-
sions. In this example, we have a single dimension, month. For those of
you who have worked with a MOLAP product or even arrays in any pro-
gramming language, this notation should be very intuitive to you. Finally,
notice that the MODEL has an optional name, holiday_sales_model.

In addition to this, a model clause can also specify a PARTITION BY
clause. This is the same concept as we discussed previously. If a PARTITION
clause is present, the calculation is done for each partition. If it is not present,
the entire query is treated like one partition.

Figure 6.6 shows the operation of a model pictorially. Imagine the
result of the query without the model clause. For each partition created
by the partition by clause, picture an array of the measure columns,
addressed by dimensions. Rules are then applied to each array to produce
the calculations.

The following example shows the SQL query for Figure 6.6. As in the
previous example, the query shown in the figure calculates the sales for the
holiday season for each region. After applying the model clause, you can
choose to return only the new rows that were inserted or updated by the

Figure 6.6 SQL Model Clause Operation

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 311

Chapter 6

rules using the RETURN UPDATED ROWS option. If not specified, the
default behavior is RETURN ALL ROWS, which will return the rows from
the original query in addition to those computed by the rules.

SELECT region, month_name, sales
FROM (SELECT t.month_name, c.region, SUM(f.purchase_price) sales
 FROM purchases f, time t, customer c
 WHERE f.time_key = t.time_key
 AND c.customer_id = f.customer_id
 GROUP BY c.region, t.month_name)
MODEL
RETURN UPDATED ROWS <- returns only the updated rows
MAIN holiday_sales_model
PARTITION BY (region)
DIMENSION BY (month_name)
MEASURES (sales)
RULES
(sales['Holiday'] = sales['November'] + sales['December'])
ORDER BY region;

REGION MONTH_NAME SALES
--------------- ---------- ----------
AMerNorthEast Holiday 207454.07
AmerMidWest Holiday 435140.11
AmerNorthEast Holiday 611232.13
AmerNorthWest Holiday 185404.61
AmerSouth Holiday 197293.73
AmerWest Holiday 435254.48
EuroWest Holiday 1027255.94

Note that the SQL Model Clause is executed after the SELECT,
WHERE GROUP BY, and HAVING clauses but before the ORDER BY
clause. Hence, any aggregates and analytic functions computed by the
query may be used in the DIMENSION BY, PARTITION BY, and MEA-
SURES clauses of the SQL Model Clause. One restriction with the SQL
Model clause is that the query block containing the model clause must not
contain any aggregation in the SELECT list, so we need to use a subquery
(or view) in the FROM clause to do the aggregation.

Hint: If you have several SQL models that use the same base query, you
could create a materialized view for this query (see Chapter 7) to avoid
repeat computation. Further, you can create regular database views to store
the definition of each model.

Now that we understand the basics, let us see what else we can do with
RULES.

TEAM LinG - Live, Informative, Non-cost and Genuine!

312 6.4 SQL Features for Querying the Data Warehouse

More about RULES

The SQL Model Clause uses an array-like notation to identify an element
at a given row and column in the result of the query. This is called a cell-
reference. There can be several different ways of addressing cells, as we shall
see. Each RULE is an assignment expression, where the cell(s) referenced on
the left-hand side of the = are assigned the result of the expression on the
right-hand side. Thus, in the previous example, the rule assigns to the cell
sales['Holiday'] the value of sales['November'] + sales['December'].

For the following examples, we will define a view, which computes sales
by month and region, which we will use as our base query.

CREATE VIEW sales_region_month
AS
SELECT t.month, t.month_name, c.region, t.year,
 SUM(f.purchase_price) sales
FROM purchases f, time t, customer c
WHERE f.time_key = t.time_key
 AND c.customer_id = f.customer_id
GROUP BY t.month, t.month_name, c.region, t.year;

Cell Referencing

A cell-reference that uses only constant values of each dimension to identify a
cell is called a positional reference. For instance, if the model had DIMEN-
SION BY (month_name), then sales['November'] is a positional reference.
Similarly, if the model clause had DIMENSION BY (region, month_name),
then sales['Northeast', 'January'] is also a positional reference. The ordering
of dimensions is specified by the DIMENSION BY clause.

On the other hand, you can use a symbolic reference, where you specify
an expression involving each dimension column. For example, sales[month
IN ('January', 'February'), region IN ('NorthEast', 'NorthWest')]. This
actually translates into four cells: sales['NorthEast', 'January'], sales['North-
East', 'February'], sales['NorthWest', 'January'], and sales['NorthWest',
'February']. Note that when a cell reference expression refers to one cell, for
example, sales['November']—it is called a single-cell reference. When it
refers to multiple cells—for example, sales[month in ('November', 'Decem-
ber')], it is called multicell reference.

In any cell-reference on the left hand side of a rule, you can use the ANY
keyword as a wildcard to refer to all values of a dimension, as illustrated in
the following example. The CV function on the right-hand side refers to
the current value of the dimension on the left-hand side. This shorthand
notation allows us to specify the same rule for all region values, rather than

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 313

Chapter 6

repeating the rule for each region value. In this example, the rule computes,
for every region, the percentage growth in sales in that region in the year
2004, compared with the sales in that region in 2003.

SELECT region, year, sales
FROM (SELECT region, year, SUM(sales) as sales
 FROM sales_region_month
 GROUP BY region, year)
MODEL
RETURN UPDATED ROWS
MAIN sales_growth_2004
DIMENSION BY (region, year)
MEASURES (sales)
RULES
(sales[region IS ANY, 2004]
= (sales[CV(region), 2004] - sales[CV(region), 2003])*100
 /sales[CV(region), 2003])
ORDER BY region;

REGION YEAR SALES
--------------- ---------- -----------
AMerNorthEast 2004 1.734760870
AmerMidWest 2004 1.103745720
AmerNorthEast 2004 1.529564870
AmerNorthWest 2004 2.465897740
AmerSouth 2004 .872252952
AmerWest 2004 .903655293
EuroWest 2004 1.466177920

If your rule requires multiple-cell references on the right-hand side to
compute a single-cell value on the left-hand side, you must use an aggrega-
tion operator to collapse the multiple values to a single value. For instance,
in the previous example, if you wanted to compute sales growth for all
regions combined, you would use the following rule. The SUM operator is
used to aggregate the multicell reference on the right-hand side to one
value, which is then assigned to sales['All Regions', 2004]. Note that the
ANY keyword here is used to specify all values for the region on the right-
hand side.

sales['All Regions', 2004] = (SUM(sales) [region IS ANY, 2004)] -
SUM(sales) [region IS ANY, 2003)]) *100/SUM(sales) [region IS ANY, 2003]

UPDATE versus UPSERT

In the case of positional references used on the left-hand side, the rules can
have either UPDATE or UPSERT semantics. With UPSERT semantics, if
the cell does not exist, it is inserted; otherwise, the existing value is updated.
However, if the rule is specified with UPDATE semantics, the cell is

TEAM LinG - Live, Informative, Non-cost and Genuine!

314 6.4 SQL Features for Querying the Data Warehouse

updated only if it already exists; otherwise, no action is taken. For instance,
suppose we had a rule that computed sales['All Regions'] as the sum of sales
of each region. If we specified update semantics for this rule, then unless
there already exists a cell named 'All Regions', this rule will not do any-
thing, as shown in the following example! If, on the other hand, we had a
region value called 'All Regions', its value would have been updated.

SELECT region, sales
FROM (SELECT region, SUM(sales) as sales
 FROM sales_region_month
 GROUP BY region)
MODEL
RETURN UPDATED ROWS
MAIN holiday_sales_model
DIMENSION BY (region)
MEASURES (sales)
RULES UPDATE <- update semantics
(sales['All Regions'] = SUM(sales) [region is ANY])
ORDER BY region;

no rows selected <- does nothing

Alternatively, if you used the upsert semantics, you would get a new row
for “All Regions” as shown in the following example.

SELECT region, sales
FROM (SELECT region, SUM(sales) as sales
 FROM sales_region_month
 GROUP BY region)
MODEL
RETURN UPDATED ROWS
MAIN holiday_sales_model
DIMENSION BY (region)
MEASURES (sales)
RULES UPSERT <- upsert semantics
(sales['All Regions'] = SUM(sales) [region is ANY])
ORDER BY region;

REGION SALES
--------------- ----------
All Regions 19312425.1

Note that while symbolic references are a powerful construct in a model
clause, if you specify a symbolic reference on the left-hand side of a rule, you
will only get UPDATE semantics, even if you say RULES UPSERT. This
can be cumbersome in some cases. One case when you may want UPSERT
semantics with a symbolic reference is as a shorthand notation to combine

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 315

Chapter 6

multiple identical or similar rules into one rule. Fortunately, this can be
achieved using the FOR keyword, as shown in the example that follows.

SELECT region, month_name,sales
FROM (SELECT region, month_name, sales
 FROM sales_region_month
 WHERE year = 2003)
MODEL
RETURN UPDATED ROWS
MAIN holiday_sales_model
DIMENSION BY (region, month_name)
MEASURES (sales)
RULES UPSERT
(sales[FOR region IN ('AmerNorthEast', 'AmerMidWest'), 'Winter']
= SUM(sales) [CV(region),
 month_name IN ('November', 'December',
 'January', 'February', 'March')],
 sales[FOR region IN ('AmerWest', 'AmerSouth'), 'Winter']
= SUM(sales) [CV(region),
 month_name IN ('January', 'February')])
ORDER BY region, month_name;

REGION MONTH_NAME SALES
--------------- ---------- ----------
AmerMidWest Winter 539398.81
AmerNorthEast Winter 747304.58
AmerSouth Winter 81210.68
AmerWest Winter 182327.29

Instead of writing the same rule for each region separately, we have writ-
ten one rule. If you omitted the FOR keyword in the rules, you will get no
rows returned.

Hint: To get UPSERT semantics with a symbolic reference on the left-hand
side of a rule, use the FOR keyword. Note that the use of the ANY keyword
in the left-hand side of a rule precludes UPSERT semantics for that rule.

Rule Ordering

If your SQL model specifies multiple rules, there may be dependencies
among the rules. You can specify the AUTOMATIC ORDER option to
indicate that Oracle should automatically determine in which order to
apply the rules. In the following example, we want to compute the total
sales for Americas, and Europe, and also the grand total. We can see that
RULE 1 depends on RULE 2 and RULE 3, and by specifiying AUTO-

TEAM LinG - Live, Informative, Non-cost and Genuine!

316 6.4 SQL Features for Querying the Data Warehouse

MATIC ORDER we let Oracle decide to first evaluate RULES 2 and 3 and
then RULE 1.

SELECT region, sales
FROM (SELECT region, SUM(sales) sales
 FROM sales_region_month
 WHERE year = 2003
 GROUP BY region)
MODEL
RETURN UPDATED ROWS
MAIN holiday_sales_model
DIMENSION BY (region)
MEASURES (sales)
RULES AUTOMATIC ORDER
(sales['Total']
 = sales['TotalAmericas']
 + sales['TotalEurope'], <- RULE 1
 sales['TotalAmericas']
 = SUM(sales)[region like 'Amer%'], <- RULE 2
 sales['TotalEurope']
 = SUM(sales)[region like 'Eur%']) <- RULE 3
ORDER BY region;

REGION SALES
--------------- ----------
Total 8938839.16
TotalAmericas 5758817.19
TotalEurope 3180021.97

On the other hand, you can also specify that the rules must be executed
in the order specified, using the SEQUENTIAL ORDER option.

Iteration

The rules in a SQL Model Clause can be applied multiple times. You can
specify the exact number of iterations to apply the rules or specify that the
rules be applied until a given stopping condition is satisfied. You can use the
ITERATION_NUMBER keyword in a rule to refer to the current iteration
number. Note that ITERATION_NUMBER starts from 0. The following
example shows a sales forecasting model for 10 years. It iterates the rule 10
times. Each iteration computes the forecast for the next year using the val-
ues computed in the previous iteration.

SELECT year, sales
FROM (SELECT year, SUM(sales) sales
 FROM sales_region_month
 WHERE year = 2003
 GROUP BY year)

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 317

Chapter 6

MODEL
RETURN ALL ROWS
MAIN forecast_over_10_years
DIMENSION BY (year)
MEASURES (sales)
RULES ITERATE (10) <- # of iterations
(sales[2003+ITERATION_NUMBER+1]
 = sales[2003+ITERATION_NUMBER] * 0.15
 + AVG(sales)[year in (2003+ITERATION_NUMBER,
 2003+ITERATION_NUMBER-1)]);

 YEAR SALES
---------- ----------
 2003 9589380.8
 2004 11027787.9
 2005 11962752.5
 2006 13289683.1
 2007 14619670.3
 2008 16147627.3
 2009 17805792.9
 2010 19647579.0
 2011 21673822.8
 2012 23911774.3
 2013 26379564.7

Instead of the number of iterations, you can also specify a condition
such that the iteration stops when that condition is satisfied.

In the following section, we will look at couple of complex examples of
using the SQL Model Clause.

Some Examples of the SQL Model Clause

The first example uses the SQL Model Clause to do a pivot operation.
This is a very common operation in decision-support applications. In a
pivot operation, you take the dimension values along one column of data
and convert them into columns in a report. This is useful to display a
result in a cross-tabulation along two or more dimensions. For example,
the following query combines the monthly sales for each region by quarter
and then pivots the result so that each quarter appears as a column. We
have declared a measure variable, Q1sales, Q2sales, and so on, for sales of
each quarter. The rules assign values to each of these measures for each
region. Recall that the ANY keyword precludes the upsert semantics for
rules. Hence, we use the existing cell for the month January, since we are
really only interested in the final values.

TEAM LinG - Live, Informative, Non-cost and Genuine!

318 6.4 SQL Features for Querying the Data Warehouse

SELECT region, Q1sales, Q2sales, Q3sales, Q4sales
FROM
(SELECT region,month_name, Q1sales, Q2sales, Q3sales, Q4sales
 FROM (SELECT region, month_name, SUM(sales) sales
 FROM sales_region_month WHERE year = 2003
 GROUP BY region, month_name)
 MODEL
 RETURN ALL ROWS
 MAIN holiday_sales_model
 DIMENSION BY (region, month_name)
 MEASURES (sales,
 0 as Q1sales, 0 as Q2sales, 0 as Q3sales, 0 as q4sales)
 RULES AUTOMATIC ORDER
 (
 Q1sales[region is ANY, 'January']
 = SUM(sales)[CV(region), month_name
 IN ('January', 'February', 'March')],
 Q2sales[region is ANY, 'January']
 = SUM(sales)[CV(region), month_name
 IN ('April', 'May', 'June')],
 Q3sales[region is ANY, 'January']
 = SUM(sales)[CV(region), month_name
 IN ('July', 'August', 'September')],
 Q4sales[region is ANY, 'January']
 = SUM(sales)[CV(region), month_name
 IN ('October', 'November','December')]
)
) WHERE month_name = 'January'
ORDER BY region;

REGION Q1SALES Q2SALES Q3SALES Q4SALES
--------------- ---------- ---------- ---------- ----------
AMerNorthEast 168666.12 163446.74 164542.86 153829.90
AmerMidWest 336162.46 352213.10 340611.21 329105.92
AmerNorthEast 447266.04 477220.90 464554.97 471557.18
AmerNorthWest 158393.71 163313.59 147821.03 148383.75
AmerSouth 140683.64 162605.99 151958.09 149237.48
AmerWest 303449.22 336507.99 345210.40 332560.52
EuroWest 769453.86 821506.50 799350.50 789711.11

The next example uses a SQL Model Clause to compute the net sales for
the year 2003 for various states based on different state tax rates. This exam-
ple uses a feature called a REFERENCE model to identify the sales tax rates
for each state. The reference model also uses the DIMENSION BY and
MEASURE clauses; however, its cells cannot be modified and hence it
serves the purpose of a read-only lookup table which can be used in the cal-
culations in the main model. The reference model cannot have a PARTI-
TION by clause.

TEAM LinG - Live, Informative, Non-cost and Genuine!

6.4 SQL Features for Querying the Data Warehouse 319

Chapter 6

SELECT year, state, sales, net_sales
FROM (SELECT t.year, c.state, SUM(f.purchase_price) sales
 FROM purchases f, time t, customer c
 WHERE f.time_key = t.time_key
 AND c.customer_id = f.customer_id
 AND c.country = 'USA'
 GROUP BY t.year, c.state)
MODEL
REFERENCE state_tax_model
 ON (SELECT distinct state, tax_rate FROM customer)
 DIMENSION BY (state) MEASURES (tax_rate) IGNORE NAV
MAIN
DIMENSION BY (year, state)
MEASURES (sales, 0 as net_sales) IGNORE NAV
RULES SEQUENTIAL ORDER
(net_sales[ANY, ANY] = sales[CV(year), CV(state)] *
 (1 - state_tax_model.tax_rate[CV(state)]/100));

 YEAR STATE SALES NET_SALES
---------- ---------- ---------- ---------
 2004 AZ 616558.37 585730.45
 2004 CA 713077.48 656031.28
 2004 CT 627492.12 596117.51
 2004 IL 740107.36 703101.99
 2004 MA 661769.99 628681.49
 2004 NH 628569.43 628569.43
 2004 NY 632996.61 588686.85
 2004 OH 632975.22 601326.46
 2004 TX 609757.84 609757.84
 2004 WA 633149.16 633149.16
 2003 AZ 610124.46 579618.24
 2003 CA 707603.67 650995.38
 2003 CT 613003.5 582353.32
 2003 IL 740373.37 703354.70
 2003 MA 650485.62 617961.34
 2003 NH 622458.88 622458.88
 2003 NY 625136.71 581377.14
 2003 OH 617719.32 586833.35
 2003 TX 604485.2 604485.20
 2003 WA 617912.08 617912.08

The IGNORE NAV option allows you to treat missing cell values as 0
for purposes of calculations. For instance, the CUSTOMERS table does
not store states with no tax rate, and this option will set the cells for tax
rates for these states to 0.

We have only skimmed the surface of what we can do with the SQL
Model Clause, but we can already see the power it can bring to business
intelligence applications. Obviously, there are a lot of concepts and new
syntax to learn here and it may take you some time to master it; however,
once you do, you will find that this feature can indeed be very convenient

TEAM LinG - Live, Informative, Non-cost and Genuine!

320 6.5 Summary

and useful. So the next time you plan to use a spreadsheet, consider using
the SQL Model Clause instead and reap the benefits of a scalable and more
manageable modeling solution.

6.5 Summary

In this chapter, we looked at several features in the Oracle database for que-
rying and analysis in a data warehouse. Oracle provides several mechanisms
to improve query performance, such as star transformation, partition-wise
join, partition pruning, and parallel execution. Complex aggregation and
reporting needs can be met through the new aggregation and analytical
functions in the database. The new SQL Model Clause can be used instead
of conventional spreadsheets for calculations and modeling applications.

With good physical design and proper use of these querying features, a
data warehouse can deliver excellent query performance for large amounts of
data. In the next chapter, we will discuss materialized views, which are indis-
pensable when it comes to boosting query performance in a data warehouse.

TEAM LinG - Live, Informative, Non-cost and Genuine!

321

7

Summary Management

7.1 Summary Tables

A common technique used in data warehouses is to precompute and store
results of frequent queries. This is especially beneficial when the queries
involve aggregation, because the result is usually much smaller than the
detailed data used to produce the result. An example of such a query is a
monthly sales report for a business. Since multiple users are interested in
the total sales of each product for each month, the data would be selected,
joined, sorted, and aggregated over and over again for each user. Rather
than wasting resources reexecuting the same query repeatedly the result
could be precomputed and saved in a table. Such precomputed results are
often called

summaries

 or

summary tables

.

Figure 7.1 shows a summary containing the total number of items sold
for each month of the year. Summary tables are usually much smaller than

Figure 7.1

Summary Table

TEAM LinG - Live, Informative, Non-cost and Genuine!

322

7.1

Summary Tables

the tables containing the detail data. In this example, 17 rows of detailed
sales transaction data are summarized into 10 rows. Depending on the data,
the reduction in size and therefore the improvement in query performance
can be quite significant.

Oracle 8

i

, with its

summary

management

 feature, made a huge
advance in the way people used summary tables by letting the database
manage and use summaries

transparently

. Summary tables in Oracle are
called

Materialized Views

.

7.1.1 Why Do You Need Summary Management?

To understand why summary management is needed, let us first look at
some of the tasks involved in managing summary tables.

A summary is the precomputed result of a SQL query. Once a summary
has been created, the result of the query can be obtained from the summary.
A summary can also be used to answer other related queries. For instance, if
we were interested in the total sales of each product for each year, the result
can be obtained by adding the months for that year together, since months
roll up into years. To use a summary, the query has to be modified some-
how to reference that summary. In some situations this would mean that
application SQL must be modified. Alternatively, users must be informed
of the existence of summarized data and trained on which summary tables
to use for each particular query. Thus, while summary tables improve query
performance, managing these summaries can be quite a task.

As new detail data is loaded into the warehouse, the data in the sum-
mary is no longer synchronized with the detail tables. When this happens,
the summary is said to be

stale

. Figure 7.2 shows a stale summary. In order
to bring it up-to-date with the detail data, the stale summary must be

refreshed

. A summary can be rebuilt when new data is loaded into the
warehouse. This is known as

complete refresh.

In some cases, it is possible
to

incrementally refresh

 the summary with only the new or changed data.
Before summary management with Oracle 8

i

, refreshing summaries
involved complex, custom-built procedures.

Choosing which summaries to create requires an understanding of the
workload—which types of questions users are asking and how often the
same information is being requested. The number of possible summary
tables that could be created is very large. Since summaries consume disk
space and take time to refresh, it is important to select few summaries that
produce the most performance benefits.

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.1

Summary Tables 323

Chapter 7

In other words, before using summaries, the following questions must
be addressed:

1. What is the best set of summaries to create?

2. Do users have to be aware of summaries? If so, how will the users
know which summaries exist and when to use them? If summa-
ries are later determined not to be that useful and are dropped,
users also need to know about this.

3. As the detail data changes, how will the summaries be kept up-to-
date?

Oracle’s Summary Management has the answer to all these questions.

7.1.2 Summary Management with Oracle

Summary management provides a complete environment to manage and
use summary tables. With this feature, summaries can be created directly in
the Oracle database. Mechanisms are provided to keep your summaries up-
to-date with changes in underlying data. Further, Oracle will transparently

Figure 7.2

Stale Summary

TEAM LinG - Live, Informative, Non-cost and Genuine!

324

7.1

Summary Tables

rewrite your queries to use these summaries, so users do not have to be
aware of the summaries. Summary management in Oracle includes the fol-
lowing components:

�

A database object, known as a

Materialized View

, which stores pre-
computed results, such as a summary table.

�

A mechanism to refresh the materialized views using either

Complete

or

 Incremental Refresh

.

�

Query Rewrite

, which transparently rewrites SQL queries to use
materialized views.

�

A database object called

Dimension,

 which provides an ability to
declare hierarchical relationships, such as rollups in the data, to assist
query rewrite.

�

The SQL Access Advisor,

a tool that can recommend which materi-
alized views to create.

Let us see how summary management answers the questions we had
posed earlier:

1.

What is the best set of summaries to create?

 Using the SQL
Access Advisor you can easily determine the materialized views to
create for a given set of queries to fit a specified amount of space.

2.

Do users have to be aware of summaries?

 Once the materialized
views have been created and enabled for query rewrite, queries
will automatically use these materialized views. A significant ben-
efit of this is that the end users and database applications no
longer need to be aware of the existence of the summary tables.
Query rewrite in Oracle is not limited to star schemas or queries
with aggregation. Any client tool can take advantage of this fea-
ture in the database server to provide aggregate navigation capa-
bilities. For instance, Oracle Discoverer uses the summary
management features in the Oracle database to improve query
response time.

3.

How are summaries kept up-to-date?

 Summary management
provides procedures for complete and fast refresh, so that the
materialized views can be updated when new detail data is loaded

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.2

Creating a Materialized View 325

Chapter 7

into the warehouse. This eliminates the need to write customized
refresh programs.

In this chapter, we will discuss how to create and refresh materialized
views. The dimension object is described in Chapter 8, query rewrite is dis-
cussed in Chapter 9, and the SQL Access Advisor is described in Chapter 10.

7.2 Creating a Materialized View

A

Materialized View

 (MV) is a database object that precomputes and
stores the result of a SQL query, akin to a summary table. Note that a sum-
mary is typically an aggregate query; however, materialized views can be
created for any query—for example, one just involving a join. In this
respect, a materialized view is quite similar to a conventional view. The dif-
ference is that by materializing the view, you save the results in the data-
base. In the remainder of this chapter, we will use the term

materialized
view

 instead of summary.

Hint:

Materialized views can also be used for replication of data. Before
Oracle 8

i

, such materialized views were called snapshots. Materialized
views include all the features that were available with snapshots and more.
In this book, we will only focus on the application of materialized views

to data warehousing.

A materialized view is created using the

CREATE MATERIALIZED
VIEW

 SQL statement. The following example creates a materialized view
named MONTHLY_SALES_MV, which contains the total sales of each
product for each month.

CREATE MATERIALIZED VIEW MONTHLY_SALES_MV

PCTFREE 0 TABLESPACE summary

STORAGE (initial 64k

 next 64k pctincrease 0) <- storage parameters

BUILD IMMEDIATE <- when to populate it

REFRESH FORCE <- how to refresh it

ON DEMAND <- when to refresh it

ENABLE QUERY REWRITE <- use in query rewrite or not

AS <- query result it contains

SELECT t.month, t.year, p.product_id,

 SUM (f.purchase_price) as sum_of_sales,

 COUNT (f.purchase_price) as total_sales,

TEAM LinG - Live, Informative, Non-cost and Genuine!

326

7.2

Creating a Materialized View

 COUNT(*) as cstar

FROM time t, product p, purchases f

WHERE t.time_key = f.time_key AND

 f.product_id = p.product_id

GROUP BY t.month, t.year, p.product_id;

The materialized view definition specifies the following properties, high-
lighted with arrows in the example:

�

How to physically store the materialized view (i.e., the storage clause).

�

When to populate it—immediately upon creation or later. Or, if it is
an existing table that must be registered as a materialized view.

�

How to refresh it when data in the underlying detail tables has
changed.

�

When to refresh it—at the end of each transaction or when explicitly
requested.

�

Whether to use it for query rewrite or not.

�

A SELECT statement, which describes the contents of the material-
ized view.

We will now explain each clause of the materialized view creation state-
ment in detail.

7.2.1 Naming the Materialized View

As with any database object, a materialized view has a name and a schema
that owns it. It is good practice to follow a naming convention for material-
ized views, so that you can easily identify them later and differentiate them
from tables and views. For example, you could use the suffix _MV when
naming materialized views.

7.2.2 The Physical Storage for the Materialized View

The materialized view has a storage specification where you can specify the
tablespace to store the data in, the initial allocation size and the size, of its
extents. The syntax and semantics of the storage specification are the same
as for any other object in the database

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.2

Creating a Materialized View 327

Chapter 7

In the MONTHLY_SALES_MV example, the materialized view is
being placed in the tablespace called MVIEW, its first extent will be 64K,
and all subsequent extents will be 64K.

7.2.3 When Should the Materialized View Be Populated
with Data?

The materialized view definition describes when you would like the mate-
rialized view to be populated with data. If you specify BUILD IMMEDI-
ATE (the default), as in the example, the materialized view is populated
immediately upon creation. If you specify BUILD DEFERRED, then the
materialized view will be populated when you perform the refresh opera-
tion. If you have an existing summary table that you would like to manage
using Oracle’s summary management, you can use the ON PREBUILT
TABLE clause. This indicates to the database that the existing table should
be treated like a materialized view and makes it available to query rewrite,
if desired.

Hint:

A materialized view is not considered by query rewrite until it has

been populated with data

7.2.4 How Should the Materialized View Be Refreshed?

As new detail data is periodically loaded into the data warehouse, the mate-
rialized views have to be refreshed to reflect the changes. Four refresh
options are available:

�

Complete

�

Fast

�

Force

�

Never

A materialized view can be completely rebuilt by specifying REFRESH
COMPLETE. Or, it can be incrementally updated by specifying the
REFRESH FAST option. It is usually faster to perform a fast refresh than a
complete refresh; however, if there are a lot of changes, it may be faster to
perform a complete refresh. The REFRESH FORCE option (the default),

TEAM LinG - Live, Informative, Non-cost and Genuine!

328

7.2

Creating a Materialized View

means that Oracle will perform a fast refresh if possible and only do a
COMPLETE refresh if necessary. Materialized views that use the NEVER
REFRESH option will never be refreshed by any of the procedures supplied
by Oracle. This option can be useful if you have custom-built refresh proce-
dures or would like to store some historical data that must not be updated.
The materialized view MONTHLY_SALES_MV, in our example, is cre-
ated using the REFRESH FORCE clause, which means that Oracle will
decide whether to perform fast or complete refresh.

7.2.5 When should the Materialized View be refreshed?

As the underlying detail data changes, the materialized views that are based
on those detail tables become stale and no longer reflect the results of sum-
marizing all the detail data. The most common ways of refresh are ON
COMMIT or ON DEMAND (the default).

If your business is such that it requires the materialized view be kept up-
to-date with the detail data at the transaction level, the materialized view
can be refreshed at the end of each transaction by specifying the ON
COMMIT option. This is rarely used in a data warehouse.

Hint:

Adding materialized views with the ON COMMIT option will
lengthen the time required to commit a transaction, because the material-

ized views must be refreshed as part of the commit processing.

On the other hand, with ON DEMAND refresh you must manually
request that the materialized view be refreshed using procedures in the
DBMS_MVIEW PL/SQL package. ON DEMAND refresh allows you to
control when the materialized view will be refreshed. This is useful in a
warehouse, where new data is loaded in a batch after which the materialized
views must be refreshed.

You can also specify that a materialized view be refreshed on a periodic
schedule by specifying a start date and subsequent refresh intervals using
the START WITH and NEXT clauses.

The facilities for refreshing materialized views will be discussed later in
the chapter.

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.2

Creating a Materialized View 329

Chapter 7

7.2.6 Enabling the Materialized View for
Query Rewrite

One of the major benefits of using Oracle’s summary management is query
rewrite. Once a materialized view has been registered as being eligible for
use by query rewrite, Oracle will transparently rewrite user queries to access
the data in the materialized view, without the need for any application
changes. If you would like the materialized view to be considered for query
rewrite, then it must be defined with the clause ENABLE QUERY
REWRITE, as shown in the example. If you don’t want a materialized view
to be used for query rewrite, use the DISABLE QUERY REWRITE clause
(the default).

7.2.7 Specifying the Contents of the Materialized View

The materialized view definition includes a SELECT statement, which
describes its contents. The tables referenced in a materialized view’s query
are referred to as

detail

 tables or

base

 tables of the materialized view.

A typical query for a materialized view used in a data warehouse includes
the following:

�

A WHERE clause, which joins the fact table and one or more dimen-
sion tables. In this example, the fact table, PURCHASES, is joined
with the dimension tables, TIME and PRODUCTS. The WHERE
clause may also contain selection criteria to restrict the data in the
materialized views.

�

One or more aggregate operators. In our example, COUNT is used
to obtain the total sales. You can include any of the built-in aggregate
operators in Oracle, such as SUM, MIN, MAX, AVG, COUNT(*),
COUNT, COUNT(DISTINCT x), VARIANCE, and STDDEV.
You can also use analytical functions, moving window aggregates, and
user-defined aggregates, which were discussed in Chapter 6.

�

A GROUP BY clause. In the example, we are counting the total items
sold by the columns YEAR, MONTH, and PRODUCT_ID. You
can also use the CUBE, ROLLUP, or GROUPING SETS features
described in Chapter 6.

The materialized view, MONTHLY_SALES_MV, discussed in the pre-
ceding example was a materialized view involving aggregation. A material-

TEAM LinG - Live, Informative, Non-cost and Genuine!

330

7.2

Creating a Materialized View

ized view can also be used to join two or more tables

without

 any
aggregation. Such a materialized view is used to precompute expensive joins
and can be used in lieu of a bitmapped join index (see Chapter 4). A bit-
mapped join index is useful for star queries and will work better than mate-
rialized views if you want to compute combinations of selections against the
index keys. On the other hand, a materialized view can be used to answer a
wider class of queries using query rewrite.

The next example shows a materialized view that is used to compute the
join between two tables, PURCHASES and CUSTOMER, without any
aggregation.

CREATE MATERIALIZED VIEW customer_purchases_mv

BUILD IMMEDIATE

REFRESH COMPLETE

AS

SELECT c.gender, c.occupation, f.purchase_price

FROM purchases f, customer c

WHERE f.customer_id = c.customer_id;

In general a materialized view can be defined using an arbitrarily com-
plex SQL query; however, the fast refresh and query rewrite capabilities
would be limited. For example, the following materialized view, which
stores the sales for customers who spent the most money in our store in the
year 2003, contains a HAVING clause with a subquery.

CREATE MATERIALIZED VIEW customers_maxsales2003_mv

ENABLE QUERY REWRITE

AS

SELECT c.customer_id, SUM(f.purchase_price) AS dollar_sales

FROM purchases f, customer c

WHERE f.customer_id = c.customer_id

GROUP BY c.customer_id

HAVING SUM(f.purchase_price)

 IN (SELECT max(f.purchase_price) dollar_sales

 FROM purchases f, time t

 WHERE f.time_key = t.time_key

 AND t.year = 2003

 GROUP BY f.customer_id);

However, as we will see later, this materialized view cannot be incremen-
tally refreshed.

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.2

Creating a Materialized View 331

Chapter 7

7.2.8 Creating a Materialized View in
Enterprise Manager

You can use Oracle Enterprise Manager to create and edit materialized
views by following the

Materialized Views link from the Warehouse section
of the Administration page (see Figure 2.16 in Chapter 2). When you get to
the Materialized Views screen, click the Create button to bring up the screen
shown in Figure 7.3. Here, we are creating a materialized view named
MONTHLY_SALES_MV.

All the options for a CREATE MATERIALIZED VIEW statement may
be specified via this graphical interface. It is also possible to collect statistics
on the materialized view upon creation.

7.2.9 Using Summary Management with Existing
Summary Tables

If you already have a data warehouse with summaries stored in regular data-
base tables and do not want to completely recreate them, summary manage-
ment can still be used to manage them and to perform query rewrite.

Figure 7.3 Creating a Materialized View in Oracle Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

332 7.2 Creating a Materialized View

To register your summary table with summary management, create a
materialized view using the ON PREBUILT TABLE clause. If you specify
the ENABLE QUERY REWRITE clause, the materialized view can be
used for query rewrite.

For example, suppose you have a table named MONTHLY_
CUSTOMER_SALES, which summarizes the amount each customer
spent each month, as represented by the following query:

SELECT t.year, t.month, c.customer_id,
 SUM(f.purchase_price) as dollar_sales
FROM time t, purchases f, customer c
WHERE f.time_key = t.time_key AND
 f.customer_id = c.customer_id
GROUP BY t.year, t.month, c.customer_id;

The MONTHLY_CUSTOMER_SALES table is described as follows:

describe monthly_customer_sales;

Name Null? Type

--- -------- ------------

YEAR NUMBER(4)

MONTH NUMBER(2)

CUSTOMER_ID VARCHAR2(10)

DOLLAR_SALES NUMBER

If you would like to use this table as a materialized view and make it eli-
gible for query rewrite, you can issue the following statement:

CREATE MATERIALIZED VIEW monthly_customer_sales

ON PREBUILT TABLE

ENABLE QUERY REWRITE

AS

SELECT t.year, t.month, c.customer_id,

 SUM(f.purchase_price) AS dollar_sales

FROM time t, purchases f, customer c

WHERE f.time_key = t.time_key AND

 f.customer_id = c.customer_id

GROUP BY t.year, t.month, c.customer_id;

The ON PREBUILT TABLE clause creates the necessary metadata for
the data in the existing table, which allows it to be used by query rewrite
and to be refreshed using Oracle’s supplied refresh procedures.

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.2 Creating a Materialized View 333

Chapter 7

Hint: When creating the materialized view using an existing table, the
materialized view must have the same name as the table.

A word of caution when creating materialized views with the PRE-
BUILT clause—Oracle will not verify that the data in the existing table cor-
responds to the result of the query used to define the materialized view. You
must ensure that the contents of the existing table correctly represent the
summarization of the detail data. Otherwise, you may see incorrect results
with query rewrite.

Hint: For query rewrite to use a materialized view with the PREBUILT
option, you must set the initialization parameter QUERY_REWRITE_
INTEGRITY level to TRUSTED or STALE_TOLERATED, as explained
in Chapter 9.

7.2.10 Partitioning the Materialized View

You can partition a materialized view as you would a table, using any of the
partitioning methods described in Chapter 4. In a warehouse, it is common
to partition materialized views in the same way as the fact table. Range-List
partitioning may also be a good way to partition a materialized view when it
contains multiple dimensions, such as time (range) and geography (list).

In the following example, the materialized view is partitioned using
range partitioning:

CREATE MATERIALIZED VIEW Q12003_SALES_MV

PARTITION by RANGE(time_key)

(

 partition purchases_jan2003

 values less than (TO_DATE('01-FEB-2003', 'DD-MON-YYYY'))

 tablespace purchases_jan2003,

 partition purchases_feb2003

 values less than (TO_DATE('01-MAR-2003', 'DD-MON-YYYY'))

 tablespace purchases_feb2003,

 partition purchases_mar2003

 values less than (TO_DATE('01-APR-2003', 'DD-MON-YYYY'))

 tablespace purchases_mar2003

)

BUILD IMMEDIATE

REFRESH FORCE

TEAM LinG - Live, Informative, Non-cost and Genuine!

334 7.2 Creating a Materialized View

ON DEMAND

ENABLE QUERY REWRITE

AS

SELECT t.time_key, p.product_id,

 SUM(f.purchase_price) as sum_of_sales

FROM time t, product p, purchases f

WHERE t.time_key = f.time_key AND

 f.product_id = p.product_id AND

 t.time_key BETWEEN TO_DATE('01-JAN-2003', 'DD-MON-YYYY') AND

 TO_DATE('31-MAR-2003', 'DD-MON-YYYY')

GROUP BY t.time_key, p.product_id;

Partitioning a materialized view can speed up refresh, because refresh
can now use parallel DML. We will see later how some partitioning tech-
niques may allow a materialized view to take advantage of optimizations
during refresh. Partitioning also enables queries that use the materialized
view to take advantage of optimizations such as partition pruning.

7.2.11 Indexing the Materialized View

You can also build indexes on your materialized view to improve the
performance of your queries. The techniques used to index materialized
views are similar to those for any table.

In the following example, a concatenated index is created on the group-
ing columns of the MONTHLY_SALES_MV materialized view, shown
earlier in this chapter. Also, bitmapped indexes are created on the grouping
columns. These indexes will improve performance of queries that get
rewritten to use the materialized view.

CREATE INDEX easydw.products_by_month_concat_index

ON MONTHLY_SALES_MV (month, year, product_id)

pctfree 5

tablespace indx

storage (initial 64k next 64k pctincrease 0) ;

CREATE BITMAP INDEX easydw.total_products_by_month_index

ON monthly_sales_mv (month, year);

CREATE BITMAP INDEX easydw.total_products_by_id_index

ON monthly_sales_mv (product_id);

Oracle automatically creates an index on materialized views with aggre-
gates to speed up fast refresh. To suppress creation of this index, use the NO
INDEX clause in the CREATE MATERIALIZED VIEW statement.

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.2 Creating a Materialized View 335

Chapter 7

Hint: You could use the SQL Access Advisor tool, discussed in Chapter
10, to determine the best materialized views and indexes on materialized
views to create for your application.

7.2.12 Security of Materialized Views

Some information in the data warehouse may have restricted access, and it is
important to ensure that the appropriate security policies are implemented
regarding access to materialized views. You may want to allow users access to
a materialized view, but not allow them to see the underlying detail data.
For example, you may allow a user to see the average salary by department,
but not to see an individual employee’s salary. On the other hand, you want
to ensure that materialized views and query rewrite are not used as a mecha-
nism for bypassing security. As with all database objects, Oracle provides a
privilege model for creating and altering materialized views.

To create a materialized view in a user’s own schema, the user must have
the CREATE MATERIALIZED VIEW privilege. To create a materialized
view in another user’s schema, the creator must have the CREATE ANY
MATERIALIZED VIEW privilege. The owner of the schema where the
materialized view will be placed must have the CREATE TABLE and CRE-
ATE INDEX privilege and must be able to execute the materialized view’s
defining query.

Hint: It is helpful to remember that most privilege checks for a material-
ized view are applied to the owner of the schema in which the material-
ized view is placed. The creator only needs the CREATE/ALTER (or
CREATE/ALTER ANY) MATERIALIZED VIEW privilege. Also, the
privilege checks are applied during creation and altering and not during
query rewrite.

To enable a materialized view for query rewrite, the owner of the materi-
alized view must have the QUERY REWRITE object privilege on any
tables (referenced in the materialized view) that are outside the owner’s
schema. Alternatively, the owner must have the GLOBAL QUERY
REWRITE system privilege.

TEAM LinG - Live, Informative, Non-cost and Genuine!

336 7.3 Refresh

To refresh a materialized view in another schema, the user issuing the
refresh procedure must have the ALTER ANY MATERIALIZED VIEW
privilege.

To create a materialized view with REFRESH ON COMMIT option,
the owner must have the ON COMMIT object privileges on all tables (ref-
erenced in the materialized view) outside the schema or have the ON
COMMIT system privilege.

In the following example, the user EASYDW is granted the following
privileges to create materialized views and to allow these to be used for
query rewrite.

-- Add privileges

GRANT select any table to easydw;

GRANT execute any procedure to easydw;

-- Add privileges for materialized views and query rewrite

GRANT create materialized view to easydw;

GRANT drop materialized view to easydw;

GRANT alter materialized view to easydw;

GRANT global query rewrite to easydw;

7.3 Refresh

As new data is loaded into the warehouse, any materialized view based on
that data must be updated. This operation is known as refresh.

In section 7.2, we discussed the two refresh policies—ON COMMIT
and ON DEMAND in the context of creating a materialized view. To
recap, refresh can be performed ON COMMIT or ON DEMAND. A
materialized view with the refresh ON COMMIT option is automatically
refreshed at the end of every transaction that updates the detail tables. A
materialized view with the ON DEMAND refresh option must be explic-
itly refreshed using procedures in the DBMS_MVIEW package.

The frequency of refresh determines how recent the data in the material-
ized view is with respect to the detail data. The refresh operation can be
very time consuming depending on the amount of data involved. You must
carefully determine your refresh policy based on available resources and
your application’s need for current data. If your application needs the mate-
rialized view to be synchronized with the detail data at all times, choose the
ON COMMIT option. With this option, Oracle will automatically refresh
the materialized view when the changes to detail data get committed. If

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.3 Refresh 337

Chapter 7

your warehouse gets new data only once a day during a specified mainte-
nance window, deferring the refresh until then would be the right choice.

The refresh policy must be chosen when creating the materialized view;
however, it can be altered at a later time by issuing an ALTER MATERIAL-
IZED VIEW statement.

7.3.1 Using the DBMS_MVIEW Refresh Procedures

Oracle provides three procedures for ON DEMAND refresh in the
DBMS_MVIEW–supplied PL/SQL package:

� DBMS_MVIEW.REFRESH

� DBMS_MVIEW.REFRESH_DEPENDENT

� DBMS_MVIEW.REFRESH_ALL_MVIEWS

If you want to refresh all your materialized views, typically after bulk
loading new detail data into the warehouse, you can use the
DBMS_MVIEW.REFRESH_ALL_MVIEWS procedure. If you have
materialized views that are refreshed at different times—for example, some
weekly and others monthly—you can specify a list of materialized views to
refresh using the DBMS_MVIEW.REFRESH procedure. If you want to
refresh all materialized views that are based on a particular detail table that
has changed, use the DBMS_MVIEW.REFRESH_DEPENDENT proce-
dure, specifying the detail table.

Before we look at some examples of using these procedures, let us briefly
look at some of the parameters that can be specified to control the behavior
of refresh:

� method: Recall that at the time of creating the materialized view, you
specify a default refresh method of COMPLETE, FAST, or FORCE.
You may override this refresh method when issuing the refresh com-
mand by specifying the method parameter as C (complete), F (fast),
or ? (force). If you don’t specify it, the refresh method given at the
time of creating the materialized view will be used. In Oracle Data-
base 10g, you can also specify a special method, P, which requests that
refresh should be done using Partition Change Tracking, which is dis-
cussed in detail in section 7.3.4. Note that at the time of writing,

TEAM LinG - Live, Informative, Non-cost and Genuine!

338 7.3 Refresh

there is no syntax to choose Partition Change Tracking as a refresh
method when creating the materialized view.

� atomic_refresh: If atomic_refresh is specified (default), all opera-
tions during refresh are performed within one transaction, which
means that any error will rollback the entire refresh operation. Other-
wise, Oracle may choose to partially commit some of the work done
during refresh.

The setting of this parameter can have some effect on refresh per-
formance, as we will discuss in section 7.3.5.

� refresh_after_errors: When refreshing multiple materialized views,
this parameter indicates whether or not refresh should stop if it
encounters an error, or if it should continue on to the next material-
ized view. The default behavior is to stop when the first error is
encountered. Note that if the atomic_refresh parameter is set to
TRUE, then any errors will roll back the refresh, regardless of the
setting of the refresh_after_errors parameter.

� nested: This parameter is used to control the refresh of nested mate-
rialized views and will be described in section 7.3.6.

Hint: There are several other parameters, such as rollback_segment,
push_deferred_rpc, heap_size, purge_option, and parallelism, that are spe-
cific to replication and should not be used in a data warehouse.

The first example shows the use of the REFRESH_ALL_MVIEWS pro-
cedure. Here, the refresh method is not specified, which means each materi-
alized view will be refreshed using the method specified when creating it.
The bind variable, :failures will return the number of failed refreshes. (You
can identify the materialized views that failed to refresh using the
last_refresh_date field in the dictionary view, USER_MVIEWS, or from
the error messages in the Oracle alert.log file.)

VARIABLE failures number;

EXECUTE DBMS_MVIEW.REFRESH_ALL_MVIEWS(:failures);

In the following example, the materialized view MONTHLY_
SALES_MV, defined earlier as REFRESH FORCE, is being refreshed using
COMPLETE refresh:

EXECUTE DBMS_MVIEW.REFRESH('MONTHLY_SALES_MV', 'C');

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.3 Refresh 339

Chapter 7

In the following example, the REFRESH procedure is used to refresh two
materialized views, MONTHLY_SALES_MV and Q12003_SALES_MV,
using atomic_refresh.

EXECUTE DBMS_MVIEW.REFRESH('MONTHLY_SALES_MV, Q12003_SALES_MV',

 atomic_refresh=>TRUE);

The following statement can be used to refresh FORCE (as indicated by
refresh method of ?) all materialized views that have changed when the
CUSTOMER table is updated. We have requested that the refresh should
continue even after errors. On completion of this procedure, the :failures
bind variable will indicate the number of failed refreshes.

EXECUTE DBMS_MVIEW.REFRESH_DEPENDENT(:failures, 'customer', '?',

 refresh_after_errors=>true);

7.3.2 Using Enterprise Manager for Refresh

Alternatively, you can use Oracle Enterprise Manager to refresh your mate-
rialized views. From the Administration page (see Chapter 2, Figure 2.16),
click on the Materialized Views link and then search for the materialized
view you want to refresh. Once you find the materialized view, click on the
link for its name and you will get the screen shown in Figure 7.4.

Figure 7.4 Refreshing a Materialized View in Oracle Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

340 7.3 Refresh

In this page, you can check the refresh status of the materialized view by
looking at the Refresh State field. If the materialized view is STALE, you can
refresh it by pressing the Refresh button.

To get an accurate picture of the refresh state, the Compile State field
must say VALID. If it says NEEDS_COMPILE, it means that some internal
metadata needs to be updated, and you must press the Compile button to
validate the materialized view first.

Pressing the Refresh button will bring up a refresh options screen (as
shown in Figure 7.5) from which you can choose the refresh type, such as
fast or complete, and choose to optionally update the statistics on the mate-
rialized view after refresh. Pressing the OK button will refresh the material-
ized view.

Once the refresh has completed, you can once again check the status of
the materialized view in the Refresh State field, shown in Figure 7.4.

7.3.3 Fast Refresh

As the volume of data in a warehouse increases, rebuilding the entire mate-
rialized view after each new data load can get prohibitive. Oracle provides
the capability to refresh materialized views without a complete rebuild. This
is known as fast refresh. There are two mechanisms for fast refresh—either

Figure 7.5 Refreshing a Materialized View in Oracle Enterprise Manager—Options

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.3 Refresh 341

Chapter 7

using materialized view logs, described in the next section, or using Parti-
tion Change Tracking, which is described in section 7.3.4.

Fast Refresh Using Materialized View Logs

One way to fast refresh a materialized view is by capturing the individual
changes done to the detail tables by DML statements (INSERT, UPDATE,
DELETE, and MERGE statements) and then applying these changes to the
materialized view. A materialized view log is a mechanism used to capture
these changes and must be created on each of the detail tables of the materi-
alized view. During fast refresh, Oracle will use the materialized view log to
identify the changes that have occurred since the last refresh and apply
them to the materialized view. Once all materialized views have been
refreshed to include the changes, the relevant rows will be automatically
purged from the materialized view log. You must never modify the materi-
alized view log manually, as you will be forced to completely rebuild the
materialized view.

You may be concerned about the overhead of materialized view logs on
the transaction issuing the DML statements. While this may indeed be a
problem for a transaction-processing system, in a data warehouse this is not
a major issue, because DML statements are not heavily used. The more typ-
ical method used to load new data is using a bulk load using SQL*Loader
or using an INSERT /*+ APPEND */ statement. Fortunately, the individ-
ual changes made by these methods are not recorded in the materialized
view log but are tracked internally in a compressed fashion.

Materialized View Log Options

A materialized view log can be created with several options; depending on
the materialized views you need to be fast refreshed, you will need one or
more of these options. Some of these options include:

� ROWID, which will log the rowids of the rows changed by DML
statements.

� INCLUDING NEW VALUES clause, which indicates that both the
old and new version of a row changed by an update statement should
be logged.

� SEQUENCE, which causes a sequence number to be logged for each
change.

TEAM LinG - Live, Informative, Non-cost and Genuine!

342 7.3 Refresh

Hint: You must create the materialized view logs before creating the materi-
alized views; otherwise, you will have to completely refresh the materialized
views once before fast refresh can be performed.

The following example shows a fast refreshable materialized view along
with the materialized view logs on its detail tables. Note that for a material-
ized view with aggregates, the options ROWID, SEQUENCE, and
INCLUDING NEW VALUES must be specified for the materialized view
logs. If you omit the SEQUENCE option, you can still get fast refresh but
only under specific conditions (i.e., either when only one detail table has
been changed or when only inserts have been performed). Also, all detail
table columns referenced in the materialized view’s query must be included
in the materialized view log.

CREATE MATERIALIZED VIEW LOG on time

 WITH ROWID, SEQUENCE (time_key, month, year)

 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG on purchases

 WITH ROWID, SEQUENCE (time_key, product_id,

 purchase_price)

 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG on product

 WITH ROWID, SEQUENCE (product_id)

 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW monthly_sales_mv

 PCTFREE 0 TABLESPACE summary

 STORAGE (initial 64k next 64k pctincrease 0)

 BUILD IMMEDIATE

 REFRESH FAST

 ON DEMAND

 ENABLE QUERY REWRITE

 AS

 SELECT t.month, t.year, p.product_id,

 SUM (ps.purchase_price) as sum_of_sales,

 COUNT (ps.purchase_price) as total_sales, COUNT(*)

 FROM time t, product p, purchases ps

 WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id

 GROUP BY t.month, t.year, p.product_id;

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.3 Refresh 343

Chapter 7

The next example shows a materialized view without aggregation that is
fast refreshable with the ON COMMIT option. To make this type of a
materialized view fast refreshable, the materialized view logs only need to
have the ROWID option. However, you must include a ROWID column for
each table in the SELECT clause of the materialized view. In this example,
we are assuming that the materialized view logs for PRODUCT and PUR-
CHASES, created earlier for the MONTHLY_SALES_MV, are available.

CREATE MATERIALIZED VIEW LOG on customer WITH ROWID;

CREATE MATERIALIZED VIEW product_customer_mv

BUILD IMMEDIATE

REFRESH FAST ON COMMIT

AS

SELECT c.rowid r1, c.gender, p.rowid r2, p.product_id,

 f.rowid r3, f.purchase_price

FROM purchases f, product p, customer c

WHERE f.customer_id = c.customer_id

 AND f.product_id = p.product_id;

Hint: There is only one materialized view log on a given table, and this
materialized view log is used for all materialized views that reference that
table. Therefore, be sure to specify options to satisfy all the materialized
views. If you use the SQL Access Advisor to determine which materialized
views to create, the appropriate materialized view logs will also be recom-
mended for you.

Using Oracle Enterprise Manager to Define Materialized View Logs

You can use Oracle Enterprise Manager to create and edit your materialized
view logs, as shown in Figure 7.6. You get to this screen by clicking on the
Materialized View Logs link on the Administration page and then clicking
on the Create button. The first step is to enter the table name, such as
EASYDW.CUSTOMER. Note that you can only specify the name of the
table on which the materialized view log is being defined—the name of the
materialized view log itself is automatically determined by Oracle and can-
not be modified by the user. Pressing the Go button will give you a list of
available columns. From this list, you can choose the columns you would
like to add to the materialized view log. Once you have made your choices,
you can click the Show SQL button to see the SQL command or click OK
to create the materialized view log.

TEAM LinG - Live, Informative, Non-cost and Genuine!

344 7.3 Refresh

Other Requirements for Fast Refresh

In addition to requiring materialized view logs on the detail tables, the defin-
ing query of a materialized view to be fast refreshed must adhere to certain
rules. For example, if the materialized view contains an aggregate operator, it
must also include some additional supporting aggregates—if the materialized
view had SUM(x) or AVG(x), it must also have COUNT(x); if it had STD-
DEV(x), it must also include SUM(x), COUNT(x), and SUM(x * x). In the
previous section, we saw an example of the PRODUCT_CUSTOMER_MV,
where we needed to include ROWID columns for the detail tables in the
materialized views.

Rather than trying to remember such detailed rules for when a particu-
lar materialized view is fast refreshable, we would recommend that you sim-
ply use the EXPLAIN_MVIEW and TUNE_MVIEW tools provided for
this purpose. The EXPLAIN_MVIEW tool will explain which operations
(such as fast refresh or query rewrite) the materialized view can or cannot
support and the reasons why not. The TUNE_MVIEW tool will suggest
modifications to the materialized view to fix any problems reported by
EXPLAIN_MVIEW. These tools will be discussed later in this chapter.

Figure 7.6 Creating a Materialized View Log in Oracle Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.3 Refresh 345

Chapter 7

7.3.4 Partition Change Tracking

Partitioned tables are a common feature in a warehouse. In Chapter 5, we
saw the use of partitioning to load data into the warehouse. In Chapter 6,
we discussed how partitioning can help improve query performance using
partition pruning.

Oracle 9i introduced a new feature known as Partition Change Track-
ing (PCT). With this feature, whenever any DML or partition mainte-
nance operation occurs to a partitioned detail table referenced by a
materialized view, Oracle keeps track of the updated partitions. Then, dur-
ing refresh, Oracle can identify which portion of the materialized view cor-
responds to the updated partitions in the detail tables, and recompute only
that portion of the materialized view. This is referred to as PCT refresh.

Figure 7.7 shows a conceptual picture of how data changes are tracked
in Partition Change Tracking. In this example, the PURCHASES table is
partitioned by month into Jan2002, Feb2002, and Mar2002 partitions.

The materialized view MONTHLY_SALES_MV stores the total sales for
each month. The materialized view is defined in such a way that there is a
correspondence between the partitions of the PURCHASES table and the
data in the materialized view, as shown by the dotted lines. (We will dis-
cuss how to create such a materialized view shortly.) If the Feb2002 parti-
tion is updated, only the corresponding portion of the materialized view is

Figure 7.7 Partition Change Tracking

TEAM LinG - Live, Informative, Non-cost and Genuine!

346 7.3 Refresh

stale. During refresh, only the portion of the materialized view that refers
to the stale partition needs to be refreshed and hence the refresh can be
much faster.

When and How to Perform PCT Refresh

You may be wondering why you should learn about Partition Change
Tracking when you can refresh using materialized view logs. There are three
main reasons why you may consider using PCT refresh:

1. If you have performed any partition maintenance operations,
such as adding a new partition or dropping an old one, then fast
refresh using materialized view logs is not possible. In this situa-
tion, which is quite common when loading data into the fact
table, you will be forced to perform a complete refresh—unless
your materialized view supports PCT.

2. Some materialized views do not allow fast refresh with material-
ized view logs—for example, if the materialized view included
analytical functions such as RANK, discussed in Chapter 6.
However, the materialized view may still support PCT refresh.

3. If a lot of changes have been done to the partitioned detail table,
PCT refresh may perform much faster than fast refresh using
materialized view logs.

If you specified refresh FAST or FORCE either when creating the mate-
rialized view or using the DBMS_MVIEW procedures, Oracle Database
10g will automatically determine the best refresh method to use. However,
if your materialized view supports PCT, you can explicitly request PCT
refresh using the DBMS_MVIEW procedure, as follows:

EXECUTE DBMS_MVIEW.REFRESH('monthly_sales_mv', 'P');

Next, we will discuss how to create a materialized view that can support
PCT refresh.

Creating a Materialized View That Supports PCT Refresh

One of the advantages of PCT is that the materialized view itself does not
have to be partitioned at all! To allow PCT, the materialized view must have
at least one partitioned detail table, which may be partitioned by Range,

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.3 Refresh 347

Chapter 7

List, Range-Hash or Range-List composite partitioning. The partition key
must consist of a single column.

There are three techniques that can be used to define a materialized view
so that it can be refreshed using PCT refresh. Each of these techniques pro-
vides a mechanism to associate a row in the materialized view with a specific
table partition.

� Join dependency expression: The materialized view includes a join
between the partitioned table and another table using the partition-
ing key, and a column from the latter table is included in the
SELECT clause of the materialized view. This technique is new in
Oracle Database 10g, and several materialized views may automati-
cally satisfy this condition.

� Partition key: The partition key of the partitioned detail table is
included in the SELECT clause of the materialized view.

� Partition marker: A special column known as the partition marker,
using the DBMS_MVIEW.PMARKER() function, is included in the
SELECT clause of the materialized view.

We will illustrate how each of these techniques can be used.

Join Dependency Expression

Consider the MONTHLY_SALES_MV materialized view used in several
examples in this chapter. This materialized view stores the total sales for
each product by month. Suppose we used partition maintenance operations
to load new data into the PURCHASES table at the end of each month and
hence would like to refresh this materialized view using PCT refresh after
data loads.

CREATE MATERIALIZED VIEW monthly_sales_mv

AS

SELECT t.month, t.year, p.product_id,

 SUM (ps.purchase_price) as sum_of_sales,

 COUNT (ps.purchase_price) as total_sales, COUNT(*)

FROM time t, product p, purchases ps

WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id

GROUP BY t.month, t.year, p.product_id;

TEAM LinG - Live, Informative, Non-cost and Genuine!

348 7.3 Refresh

It so happens that this materialized view automatically supports PCT
using a join dependency expression. To see why, recall that in the EASYDW
schema, the PURCHASES table is partitioned by TIME_KEY. In this
materialized view, the partitioned table, PURCHASES, is joined to the
table, TIME, using the partitioning-key column, TIME_KEY. As long as
the materialized view’s SELECT list now includes a column or expression
from table, TIME, PCT will be supported on this materialized view. Here,
the table TIME is said to be a join-dependent table and the column or
expression from TIME, which is included in the materialized view, is
known as a join dependency expression. The best way to determine if
your materialized view supports PCT in this manner is to use the
EXPLAIN_MVIEW procedure, discussed in section 7.4.

Now, suppose we had another materialized view, REGIONAL_
SALES_MV, which had the total sales by region.

CREATE MATERIALIZED VIEW regional_sales_mv

AS

SELECT c.region, SUM(ps.purchase_price) as sum_of_sales,

 COUNT (ps.purchase_price) as total_sales

FROM customer c, purchases ps

WHERE c.customer_id = ps.customer_id

GROUP BY c.region;

In this materialized view, join dependency is not possible, because the
joining keys (CUSTOMER_ID and PRODUCT_ID) are different from
the partitioning key (TIME_KEY). In this case, you can use either the par-
tition key or partition marker methods, described next.

Partition Key

The simplest way to modify the REGIONAL_SALES_MV to allow PCT
refresh is to include in it the partition key of the PURCHASES table. The
resulting materialized view, REGIONAL_SALES_PARTKEY_MV, will
appear as follows:

CREATE MATERIALIZED VIEW regional_sales_partkey_mv

AS

SELECT c.region, ps.time_key,

 SUM (ps.purchase_price) as sum_of_sales,

 COUNT (ps.purchase_price) as total_sales

FROM customer c, purchases ps

WHERE c.customer_id = ps.customer_id

GROUP BY c.region, ps.time_key;

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.3 Refresh 349

Chapter 7

Note that this materialized view has the TIME_KEY column (shown
underlined), in the SELECT and the GROUP BY clauses.

Hint: If the materialized view has a GROUP BY clause, the partition key
must be included in both the SELECT and the GROUP BY clauses; other-
wise, it is not a legal SQL query.

Let us compare the contents of this modified materialized view with the
original one, by selecting from the two materialized views, as follows:

SELECT * FROM regional_sales_mv;

REGION SUM_OF_SALES TOTAL_SALES

--------------- ------------ -----------

AmerNorthEast 1314778.48 5658

AmerMidWest 2731175.27 10849

AmerNorthEast 3752117.44 16370

…

7 rows selected.

SELECT * FROM regional_sales_partkey_mv;

REGION TIME_KEY SUM_OF_SALES TOTAL_SALES

--------------- --------- ------------ -----------

AMerNorthEast 04-JAN-03 4536.39 17

AMerNorthEast 05-JAN-03 2950.63 11

AMerNorthEast 06-JAN-03 4412.16 16

…

810 rows selected.

You will notice that for each region there is a row for every value of
TIME_KEY. Thus, even though this materialized view is supposed to have
total sales for each region, the inclusion of the TIME_KEY column has
resulted in it having daily sales for each region. In other words, including
the partition key has significantly increased the size of the materialized view
from 7 rows to 810 rows!

Including a partition key is suitable provided the partition key has only
a few distinct values, which means that including it will not have a signifi-
cant impact on the size of the resulting materialized view. In our case, the
partition key is TIME_KEY and so a more appropriate alternative may be
to use a partition marker, discussed next.

TEAM LinG - Live, Informative, Non-cost and Genuine!

350 7.3 Refresh

Partition Marker

A partition marker is an alternative to using the partition key and results in
a much smaller materialized view than one using a partition key. The fol-
lowing example shows the regional sales materialized view in the previous
example, except that instead of the TIME_KEY, it includes a special func-
tion, DBMS_MVIEW.PMARKER.

CREATE MATERIALIZED VIEW regional_sales_marker_mv

REFRESH FORCE

AS

SELECT c.region, DBMS_MVIEW.PMARKER(ps.rowid) as pmark,

 SUM(ps.purchase_price) as sum_of_sales,

 COUNT (ps.purchase_price) as total_sales

FROM customer c, purchases ps

WHERE c.customer_id = ps.customer_id

GROUP BY c.region, DBMS_MVIEW.PMARKER(ps.rowid);

Let us now select the data from this materialized view as follows:

select * from regional_sales_marker_mv;

REGION PMARK SUM_OF_SALES TOTAL_SALES

--------------- ---------- ------------ -----------

AmerWest 50539 101431.57 431

AmerWest 50540 80895.72 414

AmerWest 50541 121121.93 465

…

168 rows selected.

The partition marker function produces a different value for each parti-
tion, but all rows in the same partition get the same value. Thus, by includ-
ing the partition marker in the SELECT (and GROUP BY clause), for each
region you will get at most as many rows as the number of partitions. In the
EASYDW data warehouse, we have two years of data, partitioned by month,
and so we have 24 partitions. Thus, for each region, we will get 24 rows.
Therefore, while the original REGIONAL_SALES_MV had seven rows (for
seven regions), the modified REGIONAL_SALES_MARKER_MV will
now have 7 * 24 = 168 rows. This is still preferable to the 810 rows with the
partition key.

To summarize, first check if your materialized view already supports
PCT using a join dependency expression. If this is not the case, include the
partition key if there are few distinct values in each partition. If there are

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.3 Refresh 351

Chapter 7

many distinct values for the partition key, such as time_key, use a partition
marker instead, to keep the materialized view to a reasonable size.

PCT can only track changes done to a partitioned table if the material-
ized view satisfies the conditions (using one of the previous techniques) for
that specific table. In other words, if the materialized view had multiple par-
titioned tables, for each of those tables you must have the partition key, par-
tition marker, or a join dependency expression in the materialized view. You
could use different techniques for each table—for example, if you had two
partitioned tables, CUSTOMER and PURCHASES, you could use parti-
tion marker for one and partition key for the other, as appropriate. Note
that if changes have occurred to any nonpartitioned tables or partitioned
tables not enabled for PCT, you will not be able to perform a PCT refresh.

7.3.5 Refresh Performance

Good performance of materialized view refresh is extremely crucial because of
the limited maintenance windows available in data warehouses today. Here
are some tips for getting the best performance out of your refresh procedures.

Optimizer Statistics

In order to get good refresh performance, it is important to have accurate
statistics on the data. The package DBMS_STATS should be used to
gather optimizer statistics on the detail tables after each data load and
prior to creating or refreshing the materialized views. It is also important
to gather statistics on the materialized views themselves—both upon cre-
ation and after refresh. This will ensure that the optimizer has accurate sta-
tistics during refresh and when optimizing queries that are rewritten to use
materialized views.

Set the Parameter atomic_refresh to FALSE

We mentioned that DBMS_MVIEW refresh procedures have a parameter
known as atomic_refresh. If this parameter is set to TRUE (which is the
default), all operations during refresh are performed as a single atomic
transaction. This means that in case of a failure, the entire refresh opera-
tion will be rolled back. However, to achieve this, the refresh operation has
to disable use of some operations, such as parallel execution and bulk
inserts, which are critical to refresh performance in a data warehouse.
Therefore, we recommend you use the atomic_refresh setting of FALSE.
In the worst case of a failure, you may have to refresh the particular mate-
rialized view with a complete refresh; however, refresh performance will be
much better in general.

TEAM LinG - Live, Informative, Non-cost and Genuine!

352 7.3 Refresh

Another benefit of setting atomic_refresh to FALSE is that when doing a
complete refresh, Oracle Database 10g will automatically disable all indexes
on the materialized view prior to refresh and rebuild them after the refresh.
This is much faster than maintaining the indexes during refresh.

Use PCT Refresh and Partitioned Materialized Views

It can be advantageous to enable PCT on your materialized views so that
you can avoid a complete refresh in many situations. Although PCT does
not require that the materialized view be partitioned, if the materialized
view is partitioned on the partition key or the join dependency expression
used to enable PCT, this can further improve PCT refresh performance.
This is because Oracle can use some optimizations during refresh. Note
that to take advantage of these optimizations, the atomic_refresh parameter
must be set to FALSE.

Use Parallel Execution

Using parallel execution during refresh can significantly improve perform-
ance. To do so, you must include the PARALLEL clause when creating the
materialized view and enable parallel DML (as discussed in Chapter 6) in
the session performing refresh.

Build and Refresh Multiple Materialized Views Using REFRESH_ALL

In Oracle Database 10g, significant enhancements have been made to allow
refresh of multiple materialized views simultaneously. If you specify multi-
ple materialized views in the DBMS_MVIEW procedures and use the
atomic_refresh parameter setting of FALSE, Oracle can refresh multiple
materialized views concurrently. Note that to do so, the initialization
parameter JOB_ QUEUE_PROCESSES must be set to a nonzero value,
indicating how many refreshes can proceed simultaneously. When refresh-
ing multiple materialized views, Oracle Database 10g will automatically
determine the best order to refresh the materialized views. It will take into
account dependencies among the materialized views, the degree of parallel-
ism needed for each refresh, and the number of available job processes, so as
to provide the best refresh performance.

To take advantage of this feature, when you first create materialized
views, use the BUILD DEFERRED option rather than BUILD IMME-
DIATE. You can then use REFRESH_ALL to concurrently populate all
the materialized views. Similarly, when refreshing materialized views in
the data warehouse, use the DBMS_MVIEW.REFRESH_ALL or
DBMS_MVIEW.REFRESH_DEPENDENT procedures.

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.3 Refresh 353

Chapter 7

When refreshing multiple materialized views, you can see the status of
jobs using the DBA_JOBS dictionary view, as shown in the following
example:

SELECT what job_description, this_date, total_time

FROM dba_jobs

WHERE what like '%REFRESH%';

JOB_DESCRIPTION THIS_DATE TOTAL_TIME

------------------------------ --------- ----------

BEGIN DBMS_SNAPSHOT.REFRESH_MV 12-JUN-04 1725

 ('MV_RF$JPIPE_007F01880001',2

,'EASYDW','CUSTOMER_PURCHASES_

MV2','?','',0,6,1); END;

Enable Query Rewrite during Refresh

Performance of complete refreshes and PCT refreshes can be significantly
improved by using query rewrite during refresh. In Chapter 9, we will dis-
cuss query rewrite and also see how you can use it to speed up refresh.

7.3.6 Nested Materialized Views

All the materialized views we have seen so far are based on queries involving
detail tables; however, it is also possible to create materialized views using
queries involving other materialized views. Recall that a materialized view is
a stored result and hence can be used in lieu of a table. A materialized view
that is based on another materialized view is known as a nested material-
ized view. In the following example, the materialized view
QUARTERLY_SALES_MV is created using the MONTHLY_CUST
_SALES_MV.

CREATE MATERIALIZED VIEW monthly_cust_sales_mv
ENABLE QUERY REWRITE
AS
SELECT t.year, t.quarter, t.month, c.customer_id,
 SUM(f.purchase_price) AS dollar_sales
FROM time t, purchases f, customer c
WHERE f.time_key = t.time_key AND
 f.customer_id = c.customer_id
GROUP BY t.year, t.quarter, t.month, c.customer_id;

CREATE MATERIALIZED VIEW quarterly_sales_mv
ENABLE QUERY REWRITE
AS
SELECT m.year, m.quarter, SUM(m.dollar_sales) AS dollar_sales
FROM monthly_cust_sales_mv m
GROUP BY m.year, m.quarter;

TEAM LinG - Live, Informative, Non-cost and Genuine!

354 7.3 Refresh

Why Use Nested Materialized Views?

You can use nested materialized views as shown in our previous example to
compute the aggregates at a higher level in a hierarchy from a lower
level—for example, from month to quarter. Similarly, if several of your
materialized views need to use the same join in their defining queries but
different aggregates, you could separate the join into one materialized view
and then build different aggregate materialized views using this common
materialized view. This may provide you better performance for material-
ized view creation and complete refresh, because you only need to com-
pute the join once.

Another reason to use nested materialized views is to improve your fast
refresh capabilities. Often, there is some complex clause in the materialized
view’s defining query that may make it not fast refreshable. In such cases, it
may be possible to split the materialized view into two or more simpler
materialized views, some of which are fast refreshable. The refresh
performance of this partially fast refreshable group of materialized views
may be much better than a complete refresh. For example, consider the fol-
lowing materialized view, SALES_MV1, that uses a subquery to find the
customers who spent the most money in our store in January 2003.

CREATE MATERIALIZED VIEW sales_mv1

ENABLE QUERY REWRITE

AS

SELECT c.customer_id, SUM(f.purchase_price) AS dollar_sales

FROM purchases f, customer c

WHERE f.customer_id = c.customer_id

GROUP BY c.customer_id

HAVING SUM(f.purchase_price)

 IN (SELECT max(f.purchase_price) dollar_sales

 FROM purchases f, time t

 WHERE f.time_key = t.time_key

 AND t.month_name = 'January'

 AND t.year = 2003

 GROUP BY f.customer_id);

Ordinarily, this materialized view is not fast refreshable using either
materialized view logs or using PCT, because of the subquery in the HAV-
ING clause. Now, let us split this materialized view as follows into two fast
refreshable materialized views.

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.3 Refresh 355

Chapter 7

CREATE MATERIALIZED VIEW sales_submv1

REFRESH FAST

ENABLE QUERY REWRITE

AS

SELECT c.customer_id, SUM(f.purchase_price) AS dollar_sales,

COUNT(f.purchase_price) as cnt_sales, COUNT(*) cstar

FROM purchases f, customer c

WHERE f.customer_id = c.customer_id

GROUP BY c.customer_id;

CREATE MATERIALIZED VIEW sales_submv2

REFRESH FAST

ENABLE QUERY REWRITE

AS

SELECT f.customer_id, max(f.purchase_price) max_sales

FROM purchases f, time t

WHERE f.time_key = t.time_key

 AND t.month_name = 'January' and t.year = 2003

GROUP BY f.customer_id;

The first, SALES_SUBMV1, computes the result of SALES_MV1 with-
out including the subquery—in other words, the sales by customer. The
second one, SALES_SUBMV2, computes the result of the subquery
itself—in other words, the maximum amount spent by any customer in
January 2003. These two materialized views are much simpler and are fast
refreshable. We can now write SALES_MV1 in terms of SALES_SUBMV1
and SALES_SUBMV2, as follows:

CREATE MATERIALIZED VIEW sales_mv1

REFRESH COMPLETE

ENABLE QUERY REWRITE

AS

SELECT customer_id, dollar_sales

FROM sales_submv1

WHERE dollar_sales IN (SELECT max_sales FROM sales_submv2);

Note that the resulting materialized view still includes a subquery and
cannot be fast refreshed directly; however, its complete refresh would be
much faster.

This may sound very complicated, but there are two simple tools that
will assist you in modifying your materialized view! The
EXPLAIN_MVIEW utility, discussed section 7.4 will tell you if your mate-
rialized view is not fast refreshable for some reason. The TUNE_MVIEW
utility, discussed in section 7.5 will automatically split your materialized

TEAM LinG - Live, Informative, Non-cost and Genuine!

356 7.4 EXPLAIN_MVIEW Utility

view, if needed, into nested materialized views to maximize its fast refresh
capabilities. Before we look at these tools, let us briefly discuss how to
refresh nested materialized views.

Refreshing Nested Materialized Views

The DBMS_MVIEW refresh procedures can be used to refresh nested
materialized views. When using the REFRESH procedure, if you set the
parameter nested to TRUE, then any underlying materialized view is
refreshed first before refreshing the nested materialized view. This parameter
is new in Oracle Database 10g.

For instance, in the following example, referring to the nested material-
ized views created in the preceding section, Oracle will first refresh
SALES_SUBMV1 and SALES_SUBMV2 before refreshing the nested
materialized view, SALES_MV1.

execute dbms_mview.refresh('sales_mv1', nested=>TRUE);

Similarly, when using REFRESH_DEPENDENT, if nested is set to
TRUE, Oracle will refresh all nested materialized views dependent on the
table. For instance, if REFRESH_DEPENDENT is issued on the table
TIME, as follows, Oracle will refresh SALES_SUBMV1, SALES_SUBMV2,
and SALES_MV1. If nested had been set to FALSE, only SALES_SUBMV2
would be refreshed, since only this materialized view refers directly to the
TIME table.

execute dbms_mview.refresh_dependent(:failures,'time',
nested=>TRUE);

If the procedure REFRESH_ALL is used, Oracle will automatically
determine the dependencies among all the materialized views and refresh
them in the correct order.

7.4 EXPLAIN_MVIEW Utility

As we have seen so far, in order to get the most benefit out of a material-
ized view, the materialized view must conform to some rules. For
instance, you may need to create materialized view logs to make fast
refresh possible or add a partition marker to allow Partition Change
Tracking. The EXPLAIN_MVIEW interface is designed to help you
determine what these rules are. Before creating the materialized view, you

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.4 EXPLAIN_MVIEW Utility 357

Chapter 7

can run its defining query through the EXPLAIN_MVIEW utility. If a
capability such as fast refresh is not possible, EXPLAIN_MVIEW will
point out the offending construct or the missing columns. You now have
the opportunity to fix these problems before expending precious resources
to create the materialized view. EXPLAIN_MVIEW is invoked via the
PL/SQL procedure DBMS_MVIEW.EXPLAIN_MVIEW or by using
Oracle Enterprise Manager.

The DBMS_MVIEW.EXPLAIN_MVIEW PL/SQL procedure comes
in two flavors:

� You can provide the procedure, the name of an existing materialized
view, and it will display the refresh and query rewrite capabilities of
the materialized view.

� You can provide the procedure with the SELECT statement that
defines the materialized view and it will project its capabilities, if it
has been created.

Prior to using this procedure, you must create the
MV_CAPABILITIES_TABLE table in the current schema by running the
utlxmv.sql script found in the ORACLE_HOME/rdbms/admin directory.
The results of EXPLAIN_MVIEW will be placed in this table.
EXPLAIN_MVIEW also has interfaces to return the results in a PL/SQL
varray rather than in a table.

The output of EXPLAIN_MVIEW first lists all the capabilities of a
materialized view and whether each one is possible (Y) or not (N). It then
presents detailed information regarding each capability and the reason, if
any, why it is not possible, as we will demonstrate in the next section.

7.4.1 Running EXPLAIN_MVIEW procedure

In the following example, we illustrate the first flavor of the
EXPLAIN_MVIEW utility, which uses the SELECT statement of the
materialized view, yet to be created. To illustrate how EXPLAIN_MVIEW
can be used, we have deliberately introduced two problems with the materi-
alized view logs—first, we have dropped the materialized view log on the
PRODUCT table, and, second, we have removed the INCLUDING NEW
VALUES clause from the materialized view log on the TIME table.

TEAM LinG - Live, Informative, Non-cost and Genuine!

358 7.4 EXPLAIN_MVIEW Utility

DROP MATERIALIZED VIEW LOG on PRODUCT;

ALTER MATERIALIZED VIEW LOG on TIME EXCLUDING NEW VALUES;

BEGIN

 dbms_mview.explain_mview (

 'SELECT t.month, t.year, p.product_id,

 SUM (f.purchase_price) as sum_of_sales,

 COUNT (f.purchase_price) as total_sales,

 COUNT(*) as cstar

 FROM time t, product p, purchases f

 WHERE t.time_key = f.time_key AND

 f.product_id = p.product_id

 GROUP BY t.month, t.year, p.product_id');

END;

/

The following query shows the output of the procedure:

SELECT capability_name, possible p, related_text obj,

 msgtxt explanation

FROM MV_CAPABILITIES_TABLE;

CAPABILITY_NAME P OBJ EXPLANATION

------------------------------ --------------- -------------------

PCT Y

REFRESH_COMPLETE Y

REFRESH_FAST Y

REWRITE Y

PCT_TABLE N TIME relation is not a

 partitioned table

PCT_TABLE N PRODUCT relation is not a

 partitioned table

PCT_TABLE Y PURCHASES

REFRESH_FAST_AFTER_INSERT N EASYDW.PRODUCT the detail table

 does not have a

 materialized view

 log

REFRESH_FAST_AFTER_INSERT N EASYDW.TIME mv log must have

 new values

REFRESH_FAST_AFTER_ see the reason why

 ONETAB_DML N REFRESH_FAST_

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.4 EXPLAIN_MVIEW Utility 359

Chapter 7

 AFTER_INSERT is

 disabled

REFRESH_FAST_AFTER_ANY_DML N see the reason why

 REFRESH_FAST_

 AFTER_INSERT is

 disabled

REFRESH_FAST_PCT Y

REWRITE_FULL_TEXT_MATCH Y

REWRITE_PARTIAL_TEXT_MATCH Y

REWRITE_GENERAL Y

REWRITE_PCT N general rewrite is

 not possible or PCT

 is not possible on

 any of the detail

 tables

PCT_TABLE_REWRITE N TIME relation is not a

 partitioned table

PCT_TABLE_REWRITE N PRODUCT relation is not a

 partitioned table

PCT_TABLE_REWRITE N PURCHASES PCT is enabled

 through a join

 dependency

From this output, we can see that the PCT_TABLE capability for the
PURCHASES table is possible because of a join dependency (because of
the column month from the TIME table, which is joined to PURCHASES
using the partition key). The TIME table is not partitioned, and hence
PCT refresh is not possible if this table has been updated.

Fast refresh may be possible in some situations and not others. Hence,
the fast refresh capabilities are presented at three levels, so if the first one is
not possible, the remaining ones are also not possible and so on:

� REFRESH_AFTER_INSERT (only inserts were done to the tables)

� REFRESH_AFTER_ONETABDML (only one table is modified at
a time)

� REFRESH_AFTER_ANY_DML (there is no restriction on the type
of DML)

TEAM LinG - Live, Informative, Non-cost and Genuine!

360 7.4 EXPLAIN_MVIEW Utility

The output of EXPLAIN_MVIEW indicates that the materialized view
log on the TIME table was missing the INCLUDING NEW VALUES
clause, and hence fast refresh using materialized view logs is not possible.

EXPLAIN_MVIEW also indicates if query rewrite has been enabled
and if it is possible in general or only using text match mode.

Hint: To find out the detailed reasons why a particular query did not
rewrite using a certain materialized view, use the EXPLAIN_REWRITE
utility, which is discussed in Chapter 9.

Let us now correct the problems with the materialized view logs and re-
run the utility. You can see that fast refresh is now possible, as indicated by
REFRESH_FAST_AFTER_INSERT Y.

CREATE MATERIALIZED VIEW LOG on product

 WITH ROWID, SEQUENCE (product_id)

INCLUDING NEW VALUES;

ALTER MATERIALIZED VIEW LOG on TIME including new values;

BEGIN

 dbms_mview.explain_mview (

 'SELECT t.month, t.year, p.product_id,

 SUM (f.purchase_price) as sum_of_sales,

 COUNT (f.purchase_price) as total_sales,

 COUNT(*) as cstar

 FROM time t, product p, purchases f

 WHERE t.time_key = f.time_key AND

 f.product_id = p.product_id

 GROUP BY t.month, t.year, p.product_id');

END;

/

SELECT capability_name, possible

FROM MV_CAPABILITIES_TABLE

WHERE capability_name LIKE 'REFRESH%';

CAPABILITY_ P

------------------------------ -

REFRESH_COMPLETE Y

REFRESH_FAST Y

REFRESH_FAST_AFTER_INSERT Y

REFRESH_FAST_AFTER_ONETAB_DML Y

REFRESH_FAST_AFTER_ANY_DML Y

REFRESH_FAST_PCT Y

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.4 EXPLAIN_MVIEW Utility 361

Chapter 7

If you wanted to look at the capabilities of an existing materialized view—
for example, MONTHLY_SALES_MV—you would use EXPLAIN_
MVIEW, as follows:

EXECUTE dbms_mview.explain_mview('EASYDW.MONTHLY_SALES_MV');

The output will be similar to that shown in the previous example.

7.4.2 Using Oracle Enterprise Manager to
run EXPLAIN_MVIEW

The CREATE MATERIALIZED VIEW screen in Oracle Enterprise Man-
ager (Figure 7.3) has an Explain button, which can be clicked to run
EXPLAIN_MVIEW. This allows you to immediately identify and correct
any problems with the materialized view. Figure 7.8 is the screen showing
the output of EXPLAIN_MVIEW.

 You can also issue EXPLAIN_MVIEW on an existing materialized
view by using the Explain button shown in Figure 7.4.

The EXPLAIN_MVIEW utility will identify the capabilities of a mate-
rialized view and point out which ones are missing. The TUNE_MVIEW
tool, which is discussed next, can then be used to fix the materialized view
to enhance its capabilities.

Figure 7.8 EXPLAIN_MVIEW in Oracle Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

362 7.5 TUNE_MVIEW Utility

7.5 TUNE_MVIEW Utility

The TUNE_MVIEW utility is new in Oracle Database 10g and is available
using the DBMS_ADVISOR.TUNE_MVIEW procedure. (There is no
graphical interface for this utility at this time.) You supply to it the SQL for
the materialized view to be created and it will fix the defining query of the
materialized view so that it is fast refreshable and supports as many types of
query rewrite as possible. In order to achieve fast refresh, the materialized
view may be modified to include additional columns or decomposed into
several simpler fast refreshable nested materialized views (see section 7.3.6).
Additionally, TUNE_MVIEW will also recommend materialized view logs
if they are necessary for fast refresh.

To illustrate this utility, consider the following materialized view state-
ment:

CREATE MATERIALIZED VIEW monthly_cat_sales_mv

REFRESH FAST ON DEMAND

ENABLE QUERY REWRITE

AS

SELECT distinct p.category, t.month

FROM product p, purchases ps, time t

WHERE ps.product_id = p.product_id

 AND ps.time_key = t.time_key;

If we run EXPLAIN_MVIEW on it, we will see that the DISTINCT key-
word has made this materialized view not fast refreshable. It may not be obvi-
ous to you how to modify this materialized view to make it fast refreshable.

BEGIN

 dbms_mview.explain_mview (

 SELECT distinct p.category, t.month

 FROM product p, purchases ps, time t

 WHERE ps.product_id = p.product_id

 AND ps.time_key = t.time_key;

);

END;

/

SELECT capability_name, possible p, msgtxt explanation

FROM MV_CAPABILITIES_TABLE

WHERE CAPABILITY_NAME LIKE 'REFRESH%';

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.5 TUNE_MVIEW Utility 363

Chapter 7

CAPABILITY_NAME P EXPLANATION
------------------------------ - -------------------------
REFRESH_COMPLETE Y
REFRESH_FAST N
REFRESH_FAST_AFTER_INSERT N DISTINCT clause in select
 list in mv

REFRESH_FAST_AFTER_INSERT N DISTINCT clause in select
 list in mv

REFRESH_FAST_AFTER_INSERT N one or more joins present
 in mv

REFRESH_FAST_AFTER_ONETAB_DML N see the reason why REFRES
 H_FAST_AFTER_INSERT is
 disabled

REFRESH_FAST_AFTER_ANY_DML N see the reason why REFRES
 H_FAST_AFTER_ONETAB_DML
 is disabled

REFRESH_FAST_PCT N see the reason why REFRES
 H_FAST_AFTER_INSERT is
 disabled

Now, let us pass this materialized view to TUNE_MVIEW. To indicate
to TUNE_MVIEW that we would like to optimize the materialized view
for fast refresh and/or query rewrite, the CREATE MATERIALIZED
VIEW statement must include the REFRESH FAST and/or ENABLE
QUERY REWRITE clauses, respectively. The results of the analysis are
saved under a user-specified taskname identifier and will consist of the SQL
for the modified materialized view(s) and any required materialized view
logs. If you do not specify REFRESH FAST, then TUNE_MVIEW will
not recommend materialized view logs.

DECLARE
 taskname varchar2(20);
BEGIN
 taskname := 'MY_TUNE_MVIEW_TASK';

 dbms_advisor.tune_mview(taskname,
 'CREATE MATERIALIZED VIEW monthly_sales_mv
 REFRESH FAST ON DEMAND
 ENABLE QUERY REWRITE
 AS
 SELECT distinct p.category, t.month
 FROM product p, purchases ps, time t
 WHERE ps.product_id = p.product_id
 AND ps.time_key = t.time_key');
END;
/

TEAM LinG - Live, Informative, Non-cost and Genuine!

364 7.5 TUNE_MVIEW Utility

We can now generate a SQL script for this analysis, which can later be
executed to create the materialized view. To generate this script, you must
specify a database DIRECTORY object where the script will be placed and
you must have been granted write privileges to that directory, as shown in
the following example:

CREATE DIRECTORY TUNE_RESULTS AS '/oracle/scripts';

BEGIN

 DBMS_ADVISOR.CREATE_FILE

 (DBMS_ADVISOR.GET_TASK_SCRIPT('MY_TUNE_MVIEW_TASK'),

 'TUNE_RESULTS',

 'mv_create.sql');

END;

/

An excerpt from the script is shown below:

Rem SQL Access Advisor: Version 10.1.0.1 - Production
Rem
Rem Username: EASYDW
Rem Task: MY_TUNE_MVIEW_TASK
Rem Execution date:
Rem

set feedback 1
set linesize 80
set trimspool on
set tab off
set pagesize 60

whenever sqlerror CONTINUE

ALTER MATERIALIZED VIEW LOG FORCE ON
 "EASYDW"."PRODUCT"
 ADD ROWID, SEQUENCE("PRODUCT_ID","CATEGORY")
 INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW EASYDW.MONTHLY_SALES_MV
REFRESH FAST WITH ROWID
ENABLE QUERY REWRITE
AS
SELECT EASYDW.PRODUCT.CATEGORY C1, EASYDW.TIME.MONTH C2,
 COUNT(*) M1 FROM EASYDW.PURCHASES,
 EASYDW.PRODUCT, EASYDW.TIME
WHERE EASYDW.PRODUCT.PRODUCT_ID = EASYDW.PURCHASES.PRODUCT_ID
 AND EASYDW.TIME.TIME_KEY = EASYDW.PURCHASES.TIME_KEY
GROUP BY EASYDW.PRODUCT.CATEGORY, EASYDW.TIME.MONTH;
…

TEAM LinG - Live, Informative, Non-cost and Genuine!

7.6 Summary 365

Chapter 7

We can see that the utility has modified the materialized view definition
to convert the DISTINCT keyword to an equivalent GROUP BY clause
(underlined) and has added a COUNT(*) aggregate, which makes it fast
refreshable. It has also recommended the necessary changes to the material-
ized view logs.

Because TUNE_MVIEW may create several materialized views to
achieve fast refresh of the given materialized view, it is advisable to also gen-
erate an UNDO script from TUNE_MVIEW, which can be used to
remove the materialized views as a group, when no longer needed.

BEGIN

 DBMS_ADVISOR.CREATE_FILE

 (DBMS_ADVISOR.GET_TASK_SCRIPT('MY_TUNE_MVIEW_TASK', 'UNDO'),

 'TUNE_RESULTS',

 'mv_undo.sql');

END;

/

With TUNE_MVIEW, a novice materialized view user can now very
easily take advantage of all the powerful and even the most advanced fea-
tures of materialized views without having to deal with the complexity.

7.6 Summary
In this chapter, we discussed how materialized views could be used to pre-
compute the results of frequently asked queries. Summary management in
Oracle provides a complete framework to manage materialized views. Fast
refresh and Partition Change Tracking allows materialized views to be kept
up-to-date when your warehouse gets loaded. Tools such as
EXPLAIN_MVIEW and TUNE_MVIEW make it extremely simple to
create and use materialized views.

In the next two chapters, we will discuss two more key components of
summary management—dimensions and query rewrite.

TEAM LinG - Live, Informative, Non-cost and Genuine!

367

8

Dimensions

In Chapter 7, we described materialized views, which can be used to pre-
compute and store results of frequently used queries. A major benefit of
doing this is that you can use query rewrite to transparently rewrite queries
to use these materialized views, thus significantly reducing the query
response time. One important type of metadata for query rewrite is a data-
base object called a dimension, which allows you to declare relationships in
your data warehouse and allows the optimizer to rewrite more queries to use
materialized views. In this chapter, we will discuss how to create dimensions
as part of the logical design of your data warehouse. In Chapter 9, we will
then discuss how these dimensions can be used by query rewrite.

8.1 Concepts

In Chapter 2, we discussed the logical design of a data warehouse, using a
schema based on a dimensional model such as a star or a snowflake. The
relationships between tables in this logical model are typically represented
in the data warehouse using referential integrity constraints. Constraints
usually signify join relationships between fact and dimension tables, with
primary keys on the dimension tables and foreign keys on the fact tables.
Another type of a logical relationship in a dimensional model is a

hierar-
chy

, which expresses rollup or aggregation relationships within the columns
of a dimension table. The concept of a hierarchy is commonly used by anal-
ysis tools to roll up data from a finer to a coarser level of granularity and to
drill down to see more detail. For example, a time hierarchy, shown in Fig-
ure 8.1, may indicate that data at a daily grain can be aggregated to a
monthly level and from the monthly to the yearly level.

TEAM LinG - Live, Informative, Non-cost and Genuine!

368

8.1

Concepts

The

dimension

database object can be used to define logical relation-
ships within and across dimension tables, such as hierarchies, which often
cannot be expressed using referential integrity constraints.

In particular, dimensions are used to define the following types of rela-
tionships:

�

The hierarchical relationships among the columns within dimension
tables, such as the one in Figure 8.1. The hierarchy may be contained
within a single dimension table in case of a star schema and within
multiple dimension tables in a normalized snowflake schema. For
example, in a snowflake schema, there may be separate dimension
tables for day and month. The dimension object supports both these
models. Each column that participates in a hierarchy is called a

level

.

�

Functional dependencies between two columns in a dimension table.
A

functional dependency

 from column A to B means that for every
value of A, there is only one value of B. So if you know the value of A,
then you can determine the value of B. This is useful for looking up
the value of one column based on the value of another column in the
table. For example, given a state, we can determine the tax rate. This
type of relationship is also referred to as an

attribute

relationship.

Defining a dimension to declare hierarchical relationships in the data
makes it possible for the optimizer to rewrite more queries to use material-
ized views. It also allows tuning tools, such as the SQL Access Advisor, to
recommend the best set of materialized views to create and the best OLAP
analysis tools to perform rollup and drill-down operations.

Figure 8.1

Concept of a Hierarchy : Time

TEAM LinG - Live, Informative, Non-cost and Genuine!

8.2

Creating a Dimension 369

Chapter 8

Note that a dimension is a metadata object, such as a constraint, and
should not be confused with a dimension table, which stores data. How-
ever, unlike a constraint, which can be automatically checked and validated,
relationships declared by a dimension are not automatically verified when
the dimension is created. They are assumed to be “trusted” information
supplied by the DBA. The significance of this will become clearer in Chap-
ter 9, when we discuss how dimensions are used by query rewrite. In the
remainder of this chapter, when we say dimension or dimension object, we
refer to the metadata object and not to a dimension table.

8.2 Creating a Dimension

Designing dimensions should be part of the logical design of your data
warehouse. Once the dimension tables have been created, you can create
DIMENSION objects, using the CREATE DIMENSION SQL statement.
Within the CREATE DIMENSION statement, hierarchical relationships
are described using the HIERARCHY clause, and functional dependencies
are defined using the ATTRIBUTE clause.

As with other database objects, you need certain privileges to manage
dimensions. To create a dimension in your own schema, you must have the
CREATE DIMENSION privilege, and to create one in someone else’s
schema, you must have the CREATE ANY DIMENSION privilege. You
must also have SELECT access to any tables referenced in the dimension.
We assume that the EASYDW user has been granted the following privi-
leges, allowing it to create, alter, and drop dimensions.

GRANT create any dimension to easydw;

GRANT alter any dimension to easydw;

GRANT drop any dimension to easydw;

We will now look at the specifics of the CREATE DIMENSION state-
ment and how it can be used to define hierarchies and attributes.

8.2.1 Defining a Dimension with a Single Hierarchy

In the EASYDW schema, we have a geography hierarchy within the CUS-
TOMER table, where postal codes roll up into cities, which roll up into
states, which, in turn, roll up into countries. One technique that makes it
easy to construct the CREATE DIMENSION statement is to draw a
bubble diagram, such as the one in Figure 8.2, showing these rollup rela-

TEAM LinG - Live, Informative, Non-cost and Genuine!

370

8.2

Creating a Dimension

tionships within a hierarchy. The direction of the arrows indicates how
rollup can be done.

To convert the diagram in Figure 8.2 into a SQL dimension definition,
each bubble in the diagram becomes a LEVEL in the dimension, as shown
in the following example:

CREATE DIMENSION geography_dim

LEVEL postal_code IS customer.postal_code

LEVEL city IS customer.city

LEVEL state IS customer.state

LEVEL country IS customer.country

HIERARCHY loc_rollup (

 postal_code CHILD OF

 city CHILD OF

 state CHILD OF

 country

);

Each level is specified using a name and the underlying column in the
dimension table. For example, the level named CITY corresponds to the
column CITY in the CUSTOMER table. The relationships between the
levels are described with the HIERARCHY clause. The hierarchy is also
given a name, LOC_ROLLUP in our example. The bubbles with arrows
coming out of them in Figure 8.2 are described with the CHILD OF
clause. In our example, postal code rolls up into city; therefore, postal_code

Figure 8.2

Bubble Diagram for a Geography Dimension

TEAM LinG - Live, Informative, Non-cost and Genuine!

8.2

Creating a Dimension 371

Chapter 8

is a CHILD OF city. City rolls up into state; therefore, city is a CHILD OF
state and so on.

Hint:

Note that in the HIERARCHY clause you must use level names

rather than the underlying column names.

Note that the definition of a hierarchy signifies that for any value of a
child column in a hierarchy, there must be one and only one value of its
parent column. In our customer table, a postal code is unique to any given
city; therefore, it satisfies this rule. For example, postal code 02134 is in the
city of Boston. The code 02134 refers to addresses in Boston only; it cannot
also be used to refer to addresses in San Francisco.

8.2.2 Defining a Dimension with Multiple Hierarchies

Sometimes it may be possible to logically roll up the same data in different
ways. In our sample schema, EASYDW, as in many businesses, we use both a
regular calendar and a fiscal calendar. In the regular calendar, days roll up
into months, which roll up into years. In the fiscal calendar, days roll up into
weeks, which roll up into fiscal quarters. This type of a logical model can also
be represented in the dimension object by defining multiple hierarchies.

Figure 8.3 shows a diagram for this TIME dimension. It contains two
hierarchies, describing the two ways by which the data can be rolled up from
the TIME_KEY (i.e., daily) level, using the regular and the fiscal calendars.

Figure 8.3

Bubble Diagram for the Time Dimension

TEAM LinG - Live, Informative, Non-cost and Genuine!

372

8.2

Creating a Dimension

In the CREATE DIMENSION statement, each way of rolling up the
data will be described using a HIERARCHY clause, as shown in the follow-
ing example. The two hierarchies are called CALENDAR_ROLLUP and
FISCAL_ROLLUP. Each arrow coming out of a bubble in Figure 8.3 is
described in a CHILD OF clause. There are two arrows coming out of the
TIME_KEY bubble, and hence there are two CHILD OF statements, one
in each hierarchy. From a given date (TIME_KEY), the FISCAL_ROLLUP
hierarchy tells us the week and fiscal quarter this date is in and the other,
CALENDAR_ROLLUP, tells us the month and year.

CREATE DIMENSION time_dim

 LEVEL time_key IS time.time_key

 LEVEL month IS time.month

 LEVEL quarter IS time.quarter

 LEVEL year IS time.year

 LEVEL week_number IS time.week_number

 HIERARCHY calendar_rollup (

 time_key CHILD OF

 month CHILD OF

 year

)

 HIERARCHY fiscal_rollup (

 time_key CHILD OF

 week_number CHILD OF

 quarter

);

At the top of every bubble diagram is the special level “ALL,” represent-
ing the “grand total” level for that dimension. All levels of a hierarchy can
be rolled up to ALL. We don’t always define the ALL level in the CREATE
DIMENSION statement explicitly.

Again, for each value of a child column in a hierarchy, there is only one
parent value. Any given date—for example, 21-Mar-2003—falls into one
and only one fiscal week and in a specific quarter.

8.2.3 Defining a Dimension with Attributes

In a dimension definition, the ATTRIBUTE clause is used to define any
functional dependencies between columns within the same table that are
not hierarchical in nature.

In the EASYDW schema, in the PRODUCT table we have two col-
umns, PRODUCT_ID and PRODUCT_NAME, such that given a
PRODUCT_ID, there is only one PRODUCT_NAME. The following

TEAM LinG - Live, Informative, Non-cost and Genuine!

8.2

Creating a Dimension 373

Chapter 8

example shows the definition of a dimension with the attribute clause, rep-
resenting this relationship. Note, however, that this relationship is true only
in one direction (i.e., it does not mean that given the PRODUCT_NAME
we can determine the PRODUCT_ID).

CREATE DIMENSION product_dim

 LEVEL product_id IS product.product_id

 LEVEL category IS product.category

 HIERARCHY merchandise_rollup (

 product_id CHILD OF

 category

)

 ATTRIBUTE product_id DETERMINES (product_name)

 ATTRIBUTE prod_manufacturer

 LEVEL product_id DETERMINES (manufacturer);

In the ATTRIBUTE clause, the name on the left side of the DETER-
MINES keyword should be a level name—for example, PRODUCT_ID.
To the right of the DETERMINES keyword are the dependent columns—
for example, PRODUCT_NAME. Note that you can either specify multi-
ple dependent columns within the same attribute clause or specify different
attribute clauses for each one—both ways convey equivalent semantics.

Note that you can also specify a name for the attribute relationship;
however, this is optional. To do this, you need to use the extended clause
with the LEVEL keyword. For example, in the preceding example, the rela-
tionship between PRODUCT_ID and MANUFACTURER is given a
name, PROD_MANUFACTURER.

8.2.4 Defining a Dimension with Normalized Tables

If you have a snowflake or other normalized schema, then your hierarchy
may refer to columns in multiple dimension tables. The CREATE
DIMENSION statement allows you to declare such relationships as well.
Figure 8.4 shows a bubble diagram for a normalized TIME dimension. The
bubbles and bold arrows define the rollup relationships as before. The dot-
ted rectangles represent the tables where the levels come from. The dotted
arrows show how the tables join to each other. In this example, there is a
separate table for time, week, month, quarter, and year. The TIME table
joins to the WEEK table using the join condition time.week_number =
week.week_number and to the MONTH table using the condition
time.month = month.month.

TEAM LinG - Live, Informative, Non-cost and Genuine!

374

8.2

Creating a Dimension

To convert this diagram to a CREATE DIMENSION statement, you
would first define a level for each of the bubbles, specifying both the table
name and column name for that level. For example, the level WEEK corre-
sponds to the column WEEK.WEEK_NUMBER, which is the
WEEK_NUMBER column from the WEEK table. Next, you would define
your hierarchy using the level names as before. Finally, you would specify
any joins that must be performed when traversing up the hierarchy using
the JOIN KEY clause. Thus, you would get the following CREATE
DIMENSION statement:

CREATE DIMENSION time_dim

 LEVEL time_key IS time.time_key

 LEVEL month IS month.month

 LEVEL quarter IS quarter.quarter

 LEVEL year IS year.year

 LEVEL week IS week.week_number

 HIERARCHY calendar_rollup (

 time_key CHILD OF

 month CHILD OF

 year

 JOIN KEY time.month REFERENCES month

 JOIN KEY month.year REFERENCES year

)

 HIERARCHY fiscal_rollup (

 time_key CHILD OF

Figure 8.4

A Normalized Dimension

TEAM LinG - Live, Informative, Non-cost and Genuine!

8.2

Creating a Dimension 375

Chapter 8

 week CHILD OF

 quarter

 JOIN KEY time.week_number REFERENCES week

 JOIN KEY week.quarter REFERENCES quarter

)

 ATTRIBUTE time_key DETERMINES time.day_of_the_week

 ATTRIBUTE time_key DETERMINES month.month_name;

In the fiscal_rollup hierarchy in this example, the join key,
TIME.WEEK_NUMBER column, is used to join the table TIME to the
WEEK level in the WEEK table.

Hint:

In a normalized dimension, remember to qualify column names with

the table name; otherwise, you may get an error.

You can also specify attribute clauses in a normalized dimension. For
example, the level TIME_KEY determines the column
DAY_OF_THE_WEEK from the TIME table and the column
MONTH_NAME from the MONTH table.

As discussed in Chapter 2, normalized dimension tables incur the over-
head of extra joins during query processing and hence must be used with care.

8.2.5 Creating Dimensions with
Oracle Enterprise Manager

You can use Oracle Enterprise Manager as an alternative to SQL to manage
dimensions. To create a new dimension, from the

Administration

 page,
select the

Dimensions

 link and click the

Create

 button. You will see a screen
such as the one shown in Figure 8.5. You need to name the dimension and
identify which schema it will reside in. In our example, we are creating a
dimension, EASYDW.TIME_DIM. We recommend that you use an
appropriate naming convention to easily identify dimensions in the data-
base and to differentiate them from dimension tables.

The screen in Figure 8.5 has several tabs for creating levels, hierarchies,
and attributes for the dimension. Each tab will have an

Add

 button, which
you can use to create the requisite levels, hierarchies, and attributes. For
example, Figure 8.6 shows the levels tab, where you can see several levels we
have created.

TEAM LinG - Live, Informative, Non-cost and Genuine!

376

8.2

Creating a Dimension

At any stage, you can see the current SQL statement for the dimension
by pressing the

Show SQL

 button. Figure 8.7 shows the screen for adding a
new level.

Figure 8.5

Creating a Dimension

Figure 8.6

Creating a Dimension—the Levels Tab

TEAM LinG - Live, Informative, Non-cost and Genuine!

8.2

Creating a Dimension 377

Chapter 8

You must name the level and choose a table, which must be in the form
of schema.tablename—for example, EASYDW.TIME. If you are creating a
normalized dimension, then different levels could come from different
tables. Once you pick a table, press the

Populate Columns

 button to see the
table columns in the

Available Columns

 list. Click on the

Move

 arrow keys
to choose the columns for the level. In Figure 8.7, we are creating a level
named TIME_KEY, based on the TIME_KEY column from the
EASYDW.TIME table. Once you are done filling in all the information and
press the

OK

 button, the newly created level will now show up.

Once you have added all the levels, you can move on to creating hierar-
chies. Figure 8.8 shows the screen to create a new hierarchy, where we are
adding a hierarchy named CALENDAR_ROLLUP.

To build the hierarchy, use the

Move

 keys to move levels from the

Avail-
able Levels

 list to the

Selected Levels

 list. One important point to note is that
you must correctly order the levels in the

Selected Levels

 list to reflect the
hierarchy. The columns in the

Selected Levels

 list are ordered from the high-
est to the lowest level in the hierarchy.

Hint:

You must ensure that the levels in the hierarchy are in the correct order;
otherwise, you may get unexpected results when you use this dimension with
query rewrite. Before creating the dimension, you can use the

Show SQL

 but-

ton in Figure 8.5 to see the SQL statement with the hierarchy definition.

Figure 8.7

Creating a Dimension—Adding a Level

TEAM LinG - Live, Informative, Non-cost and Genuine!

378

8.2

Creating a Dimension

Finally, if you would like to create any attributes, click on the

Attributes

tab in Figure 8.5

and you will get a screen such as that in Figure 8.9. In this
example, we are creating an attribute named MONTH_NAME. You must
choose the level for which the attribute is being defined (MONTH in our

Figure 8.8

Creating a dimension—Adding a Hierarchy

Figure 8.9

Creating a Dimension—Adding an Attribute

TEAM LinG - Live, Informative, Non-cost and Genuine!

8.4

Validating a Dimension 379

Chapter 8

example) and choose, from the drop-down box, the column the attribute
determines (MONTH_NAME in our example).

Note that when you first go to the

Attributes

 tab, you will find two pre-
defined attributes, called long-description and short-description, which are
used by the OLAP Option. You can edit these attributes from the

OLAP
Options

 tab, which we will discuss in Chapter 15.

Once you have created all the levels, hierarchies, and attributes, press the

OK

 button in Figure 8.5 to create the dimension.

8.3 Describing a Dimension

As we can see, a dimension definition can be quite involved, and before
Oracle Database 10

g,

there was no easy way to examine the structure of a
dimension from SQL*Plus. This has been rectified in Oracle Database 10

g,

which provides a convenient way to view a dimension with a call to the pro-
cedure DBMS_DIMENSION.DESCRIBE_DIMENSION. The following
example shows the PRODUCT_DIM dimension we had defined earlier:

set serveroutput on;

execute dbms_dimension.describe_dimension('EASYDW.product_dim');

DIMENSION EASYDW.PRODUCT_DIM

LEVEL CATEGORY IS EASYDW.PRODUCT.CATEGORY

LEVEL PRODUCT_ID IS EASYDW.PRODUCT.PRODUCT_ID

HIERARCHY MERCHANDISE_ROLLUP (

PRODUCT_ID CHILD OF

CATEGORY

)

ATTRIBUTE PROD_MANUFACTURER LEVEL PRODUCT_ID

 DETERMINES EASYDW.PRODUCT.MANUFACTURER

ATTRIBUTE PRODUCT_ID LEVEL PRODUCT_ID

 DETERMINES EASYDW.PRODUCT.PRODUCT_NAME

PL/SQL procedure successfully completed.

8.4 Validating a Dimension

One of the major differences between referential integrity constraints and
dimensions is that the relationships declared by the dimension are not
automatically checked or enforced by Oracle. In order to get accurate
results with query rewrite, you must ensure that these relationships are
correct. For example, if you incorrectly defined a dimension to indicate

TEAM LinG - Live, Informative, Non-cost and Genuine!

380

8.4

Validating a Dimension

that weeks roll up into months, when they actually did not, you may get
incorrect data when rolling up data from weekly to the monthly level. To
help ensure that the data in the dimension table actually conforms to the
dimension definition, Oracle provides a procedure named
DBMS_DIMENSION.VALIDATE_DIMENSION. This procedure
should be run every time new data is loaded into your dimension tables to
ensure data integrity.

Hint:

Prior to Oracle Database 10

g

, the dimension validation procedure
was in the DBMS_OLAP package. This has now been subsumed by the
VALIDATE_DIMENSION procedure in the new DBMS_DIMENSION

package.

For example, suppose we had the following customer dimension.

CREATE DIMENSION customer_dim
 LEVEL customer IS customer.customer_id
 LEVEL city IS customer.city
 LEVEL state IS customer.state
 HIERARCHY customer_zone (
 customer CHILD OF
 city CHILD OF
 state
)
 ATTRIBUTE city DETERMINES postal_code
 ATTRIBUTE customer DETERMINES (gender, occupation);

According to this dimension, town determines the postal_code, and
every city should have a unique postal code. Now suppose some bad data
got inserted into the customer table. The postal code for Boston was
mistyped as 01210 instead of 01201.

INSERT INTO customer (customer_id, city, state,
 postal_code, gender, region,
 country, tax_rate, occupation)
VALUES ('AB130000', 'Boston', 'MA',
 '01210', 'F', 'AmerNorthEast', 'USA', 0.05, 'Doctor');

INSERT INTO customer (customer_id, city, state,
 postal_code, gender, region,
 country, tax_rate, occupation)
VALUES ('AB130001', 'Boston', 'MA',
 '01210', 'F', 'AmerNorthEast', 'USA', 0.05, 'Doctor');

COMMIT;

TEAM LinG - Live, Informative, Non-cost and Genuine!

8.4

Validating a Dimension 381

Chapter 8

If we run DBMS_DIMENSION.VALIDATE_DIMENSION, it will
verify the integrity of the data and detect that there is a discrepancy in the
HIERARCHY and ATTRIBUTE relationships declared by the
CUSTOMER_DIM dimension.

variable stmt_id varchar2(30);

execute :stmt_id := 'CUST_DIM_VAL';

execute dbms_dimension.validate_dimension ('EASYDW.CUSTOMER_DIM',

 FALSE, TRUE, :stmt_id);

Any exceptions found are placed in the DIMENSION_EXCEPTIONS
table. You must create this table

prior to

 running the procedure, by execut-
ing the script utldim.sql from the rdbms/admin directory.

SELECT distinct owner,table_name,dimension_name,relationship

FROM dimension_exceptions

WHERE statement_id = :stmt_id;

OWNER TABLE_NAME DIMENSION_NAME RELATIONSHIP

---------- ---------- -------------------- -------------------

EASYDW CUSTOMER CUSTOMER_DIM ATTRIBUTE

The BAD_ROWID column of DIMENSION_EXCEPTIONS gives
the table rowids with the discrepancy (i.e., all rows corresponding to the
violated relationship). In our example, it would return all rows correspond-
ing to the city of Boston. We can now look at the actual data values by
looking up the customer table, as follows. We can see that the
CUSTOMER_ID values, AB130000 and AB130001, have mismatched
values for CITY and POSTAL_CODE with respect to the remaining data.

SELECT customer_id, city, state, postal_code FROM customer
WHERE rowid IN (SELECT bad_rowid FROM dimension_exceptions
 WHERE statement_id = :stmt_id);

CUSTOMER_I CITY STATE POSTAL_COD
---------- --------------- ---------- ----------
AB123410 Boston MA 01201
AB123420 Boston MA 01201
AB123440 Boston MA 01201
AB123450 Boston MA 01201
AB123470 Boston MA 01201
...
AB130000 Boston MA 01210 <- bad data
AB130001 Boston MA 01210

TEAM LinG - Live, Informative, Non-cost and Genuine!

382

8.5

Summary

It is extremely important that the relationships declared by the dimen-
sion are valid; otherwise, you may see unexpected results when using query
rewrite.

8.5 Summary

In this chapter, we have discussed a new metadata object called a dimen-
sion, which allows you to declare logical relationships between columns of
your dimension tables. With dimensions, you can represent hierarchies and
attribute relationships in your data. We also discussed procedures to vali-
date a dimension to ensure that the underlying data conforms to the
dimension definition.

In the next chapter, we will look at how query rewrite can be used to
transparently rewrite queries with materialized views. We will also see how
dimension objects can significantly enhance the ability of the optimizer to
rewrite a large number of queries using few materialized views.

TEAM LinG - Live, Informative, Non-cost and Genuine!

383

9

Query Rewrite

In Chapter 7, we described materialized views, which can be used to pre-
compute and store results of frequently used queries. A major benefit of
doing this is that you can use query rewrite to transparently rewrite queries
to use these materialized views, thus significantly reducing the query
response time. With this feature, queries that used to take hours to return
results can now return them in minutes or even instantly.

As with indexes, materialized views and query rewrite should be consid-
ered an essential part of query tuning in a data warehouse. Just as the query
optimizer considers all available indexes when determining the fastest way
to answer the query, it also considers any available materialized views that
may have already precomputed part or all of the answer to the query. This
means that no application changes are needed in order to use materialized
views. If the optimizer determines that the materialized view is insufficient
to answer the query, it uses the detail data. Therefore, end users do not have
to be aware of the existence of materialized views and hence they can be cre-
ated and modified without impacting users.

In this chapter, we will describe various techniques used by Oracle to
rewrite queries using materialized views.

9.1 Setting up Query Rewrite

There are three steps that must be followed to enable queries to be rewritten
to use materialized views.

�

The materialized views must be created with the ENABLE QUERY
REWRITE clause, discussed in Chapter 7.

TEAM LinG - Live, Informative, Non-cost and Genuine!

384

9.1

Setting up Query Rewrite

�

The initialization parameter QUERY_REWRITE_ENABLED must
be set to TRUE. This is the default in Oracle Database 10

g

.

 -- enable query rewrite

 ALTER SESSION SET QUERY_REWRITE_ENABLED=TRUE;

�

The initialization parameter QUERY_REWRITE_INTEGRITY
must be set to an appropriate level for the application. This parameter
indicates to the optimizer what type of metadata information (e.g.,
dimensions) may be used to rewrite queries. We will discuss this
parameter in detail later in this chapter.

Query rewrite uses the cost-based optimizer, which automatically com-
pares the cost of the query execution plan with and without query rewrite
and uses the one with the lower cost. To ensure that the optimizer makes
the correct choices, you need to collect statistics both on the detail tables
involved in the query and on the materialized views using the
DBMS_STATS package.

Occasionally, your application may require that the query must only use
the materialized view and must never use the base tables. In such cases, you
can override the optimizer’s cost-based decision making by setting the
QUERY_REWRITE_ENABLED parameter to FORCE. In this mode, if
there is a materialized view that satisfies the query, the optimizer will use it
without comparing the cost of the plan with and without rewrite. You can
disable query rewrite by setting this parameter to FALSE.

9.1.1 How Can We Tell If a Query Was Rewritten?

To determine if the query was rewritten, we use the EXPLAIN PLAN utility
(described in Chapter 6) to look at the query execution plan. Specifically, if
the query was rewritten, the output of EXPLAIN PLAN will include the spe-
cial operation,

MAT_VIEW REWRITE

, and the name of the materialized
view used to rewrite the query. If you find that query rewrite is not occurring
as expected, you should use the DBMS_MVIEW.EXPLAIN_REWRITE,
utility discussed later in this chapter, to diagnose the problem.

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.2

Types of Query Rewrite 385

Chapter 9

9.2 Types of Query Rewrite

Oracle supports several types of query rewrite transformations, allowing a
single materialized view to be used to answer several queries. We will illus-
trate several of these in the following sections, including:

�

SQL text match

�

Aggregate rollup

�

Join-back

�

Computing aggregates from other aggregates

�

Filtered data

�

Rewrite using dimensions and constraints

Our first few examples will use the following materialized view, which
computes the sum of sales and total sales for products by month.

CREATE MATERIALIZED VIEW monthly_sales_mv

 ENABLE QUERY REWRITE

 AS

 SELECT t.year, t.month, p.product_id,

 SUM (ps.purchase_price) as sum_of_sales,

 COUNT (ps.purchase_price) as total_sales

 FROM time t, product p, purchases ps

 WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id

 GROUP BY t.year, t.month, p.product_id;

9.2.1 SQL Text Match

The simplest type of query rewrite is when the SQL text of the material-
ized view’s defining query exactly matches that of the incoming query.
The text match is not case-sensitive and ignores any comments and
whitespace differences.

The execution plan that follows shows that the optimizer chose to access
the materialized view MONTHLY_SALES_MV via a full table scan.

-- exact text match

EXPLAIN PLAN FOR

SELECT t.year, t.month, p.product_id,

TEAM LinG - Live, Informative, Non-cost and Genuine!

386

9.2

Types of Query Rewrite

 sum (ps.purchase_price) as sum_of_sales,

 count (ps.purchase_price) as total_sales

FROM time t, product p, purchases ps

WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id

GROUP BY t.year, t.month, p.product_id;

PLAN_TABLE_OUTPUT

--

|Id| Operation |Name | Rows |Cost|

--

| 0| SELECT STATEMENT | | 3522 | 7|

| 1| MAT_VIEW REWRITE ACCESS FULL|MONTHLY_SALES_MV | 3522 | 7|

--

Oracle will also try a text match starting from the FROM keyword of
the query. This allows for differences in column ordering in the SELECT
list and computation of expressions. In the following example,
SUM(purchase_price) and COUNT(purchase_price) have been used to
compute the average, and, also, the order of columns in the SELECT list is
changed. You can see from the execution plan that the materialized view has
been used to rewrite this query.

EXPLAIN PLAN FOR

SELECT t.month, p.product_id, t.year,

 AVG(ps.purchase_price) avg_of_sales

FROM time t, product p, purchases ps

WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id

GROUP BY t.year, t.month, p.product_id;

PLAN_TABLE_OUTPUT

--

|Id| Operation |Name | Rows |Cost|

--

| 0| SELECT STATEMENT | | 3522 | 7|

| 1| MAT_VIEW REWRITE ACCESS FULL|MONTHLY_SALES_MV | 3522 | 7|

--

If the text of the query and materialized view does not match, Oracle
will then compare the join conditions, GROUP BY clauses, and aggregates
in the query and materialized view to determine if the query can be rewrit-
ten using the materialized view. We will illustrate these rules in the follow-
ing sections.

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.2

Types of Query Rewrite 387

Chapter 9

9.2.2 Aggregate Rollup

An

aggregate rollup

 occurs when the aggregates in the materialized view
can be further aggregated to supply the aggregates requested by the query. A
simple example of this is when the query contains only some of the group-
ing columns from the materialized view. For instance, the following query
asks for the sum of sales and total number of sales by product and year. The
materialized view contains the sum of sales by product by year and month.
During query rewrite, the monthly sales are added together to compute the
yearly totals.

-- rollup over month column

EXPLAIN PLAN FOR

SELECT t.year, p.product_id,

 SUM (ps.purchase_price) as sum_of_sales,

 COUNT (ps.purchase_price) as total_sales

 FROM time t, product p, purchases ps

 WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id

 GROUP BY t.year, p.product_id;

PLAN_TABLE_OUTPUT

--

|Id| Operation | Name |Rows |Cost|

--

| 0| SELECT STATEMENT | | 232 | 9|

| 1| SORT GROUP BY | | 232 | 9|

| 2| MAT_VIEW REWRITE ACCESS FULL| MONTHLY_SALES_MV | 3522 | 7|

--

When a rollup occurs, the rewritten query will contain a GROUP BY
clause, as shown in the previous execution plan.

A more interesting case of rollup is when your data has a hierarchy
described by a dimension object. In this case, query rewrite can roll up data
from a lower level to a higher level in the hierarchy. We will explain this in
more detail in section 9.2.7.

9.2.3 Join-back

For query rewrite to occur, all the columns in the query must either appear
in the materialized view or must be derivable from some column in the
materialized view. In the latter case, the materialized view must be joined to
the base table to obtain the required column. This is called a

join-back

. In

TEAM LinG - Live, Informative, Non-cost and Genuine!

388

9.2

Types of Query Rewrite

the simple case, for a join-back to occur, the materialized view must contain
either the primary key or the rowid of the detail table.

For instance, suppose, in addition to the sum of sales by product id,
we would also like to see the product name. The column PRODUCT_ID
is the primary key of the PRODUCT table; therefore, the following
query, asking for PRODUCT_NAME, can be answered using the
MONTHLY_SALES_MV materialized view and using a join-back. The
optimizer’s plan shows that the query has been rewritten to use the mate-
rialized view MONTHLY_SALES_MV with a join to the PRODUCT
table. The predicate information printed by EXPLAIN PLAN can be
used to see that the join-back is done using the PRODUCT_ID column
in the materialized view.

-- join-back to product table using primary key constraint

EXPLAIN PLAN FOR

SELECT t.year, t.month, p.product_name,

 SUM (ps.purchase_price) as sum_of_sales

FROM time t, product p, purchases ps

WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id

GROUP BY t.year, t.month, p.product_name;

PLAN_TABLE_OUTPUT

--

|Id| Operation | Name |Rows |Cost|

--

| 0| SELECT STATEMENT | | 3522| 4|

| 1| SORT GROUP BY | | 3522| 4|

|*2| HASH JOIN | | 3522| 1|

| 3| TABLE ACCESS FULL | PRODUCT | 164| |

| 4| MAT_VIEW REWRITE ACCESS FULL| MONTHLY_SALES_MV | 3522| |

--

Predicate Information (identified by operation id):

 2 - access("P"."PRODUCT_ID"="MONTHLY_SALES_MV"."PRODUCT_ID")

The advantage of using the materialized view with a join-back, even
though there is an extra join, is that this join is likely to be based on a
smaller number of records and so will be usually much faster than using the
detail data.

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.2

Types of Query Rewrite 389

Chapter 9

9.2.4 Computing Other Aggregates in the Query

Aggregates in the query can be computed from different aggregates in the
materialized view. We have already seen a simple example of this in the SQL
text match section, where SUM and COUNT were used to compute the
AVG. However, the power of query rewrite comes from the fact that many
different transformations can be combined together. For instance, in the fol-
lowing query, we want to know the average purchase price of each item by
year. The materialized view has the sum and count of the purchase price at
the monthly level. The average can be computed by first doing a rollup of
months to years and then dividing the sum by the count of the purchase
price. The query is therefore rewritten to use the MONTHLY_SALES_MV
materialized view.

-- aggregate computability

EXPLAIN PLAN FOR

SELECT t.year, p.product_id, AVG(ps.purchase_price) as ave_sales

FROM time t, product p, purchases ps

WHERE t.time_key = ps.time_key AND

ps.product_id = p.product_id

GROUP BY t.year, p.product_id;

PLAN_TABLE_OUTPUT

--

|Id| Operation | Name |Rows |Cost|

--

| 0| SELECT STATEMENT | | 232 | 9|

| 1| SORT GROUP BY | | 232 | 9|

| 2| MAT_VIEW REWRITE ACCESS FULL| MONTHLY_SALES_MV | 3522 | 7|

--

To compute aggregates in the query with a rollup, the materialized view
may need to contain additional aggregates. For instance, to roll up AVG, the
materialized view must have SUM and COUNT or AVG and COUNT.

9.2.5 Filtered Data

The materialized view MONTHLY_SALES_MV defined previously con-
tained data for all products for each month and year. Sometimes you may
only want to summarize data for a certain product or year or have separate
materialized views for each region. In this case, the materialized view will
only contain a subset of data indicated by a selection condition in the
WHERE clause of its query. Sophisticated query rewrites are possible with

TEAM LinG - Live, Informative, Non-cost and Genuine!

390

9.2

Types of Query Rewrite

one or more such materialized views. Oracle will determine if the data in
the query can be answered by a materialized view by analyzing and compar-
ing the WHERE clauses of the materialized view and the query.

The following materialized view contains sum of sales and the total
number of sales for the electronics category for the months from January
2003 through June 2003.

CREATE MATERIALIZED VIEW sales_elec_1_6_2003_mv

 ENABLE QUERY REWRITE

 AS

 SELECT t.month, t.year, p.product_id,

 SUM(ps.purchase_price) as sum_of_sales,

 COUNT (ps.purchase_price) as total_sales

 FROM time t, product p, purchases ps

 WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id AND

 p.category = 'ELEC' AND

 t.month >= 200301 AND t.month <= 200306

 GROUP BY t.month, t.year, p.product_id;

This materialized view can be used to answer the following query, which
requests the sum of sales and number of sales for the Electronics category
for May 2003. The predicate information section, which is output by
EXPLAIN PLAN shows the predicates applied during each step of the exe-
cution plan. From this, we can see that the MV data is filtered to select only
the row for May 2003.

EXPLAIN PLAN FOR
SELECT t.month, p.product_id,
 SUM(ps.purchase_price) as sum_of_sales,
 COUNT (ps.purchase_price) as total_sales
 FROM time t, product p, purchases ps
 WHERE t.time_key = ps.time_key AND
 ps.product_id = p.product_id AND
 p.category = 'ELEC' AND t.month = 200305
 GROUP BY t.month, t.year, p.product_id;

PLAN_TABLE_OUTPUT
--
|Id|Operation |Name |Rows|Cost|
--
| 0|SELECT STATEMENT | | 100| 2|
|*1| MAT_VIEW REWRITE ACCESS FULL|SALES_ELEC_1_6_2003_MV| 100| 2|
--
Prdicate Information (identified by operation id):
--
 1 - filter("SALES_ELEC_1_6_2003_MV"."MONTH"=200305)

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.2

Types of Query Rewrite 391

Chapter 9

A query can have additional conditions not mentioned in the material-
ized view. For instance, in the following query, we are looking for monthly
sales of digital camera products in the electronics category for Jan 2003.
The materialized view has all products within this category and we can
determine the PRODUCT_NAME from PRODUCT_ID using a join-
back. Hence, the query will be rewritten to use the materialized view with a
join to the product table.

EXPLAIN PLAN FOR

SELECT t.month, SUM(ps.purchase_price) as sum_of_sales,

 COUNT (ps.purchase_price) as total_sales

 FROM time t, product p, purchases ps

 WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id AND p.category = 'ELEC' AND

 t.month = 200301 AND product_name = 'Digital Camera'

GROUP BY t.month;

PLAN_TABLE_OUTPUT

--

|Id|Operation |Name |Row|Cst|

--

| 0|SELECT STATEMENT | | 1| 5|

| 1| SORT GROUP BY NOSORT | | 1| 5|

|*2| HASH JOIN | | 1| 5|

|*3| TABLE ACCESS FULL |PRODUCT | 1| 2|

|*4| MAT_VIEW REWRITE ACCESS FULL|SALES_ELEC_1_6_2003_MV| 96| 2|

--

Predicate Information (identified by operation id):

 2 -
access("P"."PRODUCT_ID"="SALES_ELEC_1_6_2003_MV"."PRODUCT_ID")

 3 - filter("PRODUCT_NAME"='Digital Camera')

 4 - filter("SALES_ELEC_1_6_2003_MV"."MONTH"=200301)

This example illustrates how two rewrite mechanisms can be applied
together—namely, join-back and filtered data.

9.2.6 Rewrite Using Materialized Views with
No Aggregation

The examples in the previous sections all involve materialized views with
aggregation. Materialized views are sometimes used to precompute expen-
sive joins and may not involve any aggregation. Query rewrite can use

TEAM LinG - Live, Informative, Non-cost and Genuine!

392

9.2

Types of Query Rewrite

such materialized views to rewrite queries, which may or may not contain
aggregation.

Consider the following materialized view, which stores the information
about purchases made by customers, including the customer gender and
occupation. This materialized view has a join between the CUSTOMER
and PURCHASES table but no aggregation.

CREATE MATERIALIZED VIEW customer_purchases_mv

ENABLE QUERY REWRITE

AS

SELECT c.gender, c.occupation, f.purchase_price

FROM purchases f, customer c

WHERE f.customer_id = c.customer_id;

The following query, which asks for the purchases made by doctors, can
be answered using this materialized view.

EXPLAIN PLAN FOR

SELECT c.gender, f.purchase_price

FROM purchases f, customer c

WHERE f.customer_id = c.customer_id

 AND c.occupation = 'Doctor';

PLAN_TABLE_OUTPUT

--

|Id|Operation |Name |Cost|

--

| 0|SELECT STATEMENT | | 54|

| 1| MAT_VIEW REWRITE ACCESS FULL|CUSTOMER_PURCHASES_MV | |

--

Prdicate Information (identified by operation id):

--

 1 - filter("CUSTOMER_PURCHASES_MV"."OCCUPATION"='Doctor')

The same materialized view can also be used to answer the following
query, which asks for the total purchases made by women.

EXPLAIN PLAN FOR

SELECT c.occupation, SUM(f.purchase_price)

FROM purchases f, customer c

WHERE f.customer_id = c.customer_id

 AND c.gender = 'F'

GROUP BY c.occupation;

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.2

Types of Query Rewrite 393

Chapter 9

PLAN_TABLE_OUTPUT

--

|Id|Operation |Name |Cost|

--

| 0|SELECT STATEMENT | |62 |

| 1| SORT GROUP BY | |62 |

| 2| MAT_VIEW REWRITE ACCESS FULL|CUSTOMER_PURCHASES_MV|53 |

--

Predicate Information (identified by operation id):

 2 - filter("CUSTOMER_PURCHASES_MV"."GENDER"='F')

Note that even though the materialized view does not contain aggrega-
tion, it can still be used to answer a query with aggregation.

All the query rewrites we have seen so far have not required any addi-
tional information from the user. However, to get the most out of query
rewrite, you must inform query rewrite about relationships between data
columns using constraints and dimensions.

9.2.7 Rewrite Using Dimensions

One of the powerful features of query rewrite is the ability for a single mate-
rialized view to be used to satisfy a wide range of queries. The Dimension
object, discussed in Chapter 8, is extremely useful in this respect. By allow-
ing you to declare relationships within columns of dimension tables, it pro-
vides query rewrite with information to roll up from a lower to a higher
level of a hierarchy. For example, suppose your users want to know the sum
of sales by day, month, or year. You could create three materialized views to
answer these queries, or you could create one at the level of day and then
define a dimension object that contains a hierarchy to show the relationship
between time, month and year. Now, when the query asks for data at the
month level, the materialized view at the daily level will be used to roll up
the data to the monthly level.

Using the HIERARCHY Clause

Consider the following definition for a TIME dimension. The HIERAR-
CHY clause tells query rewrite that the TIME_KEY rolls up into
WEEK_NUMBER, which, in turns, rolls up into QUARTER. This means
that if we knew the TIME_KEY value for some row in the TIME table, we
know which week it belonged to. Similarly, if we knew the MONTH (say
January 2004), we know which YEAR it belonged to: 2004.

TEAM LinG - Live, Informative, Non-cost and Genuine!

394

9.2

Types of Query Rewrite

CREATE DIMENSION time

 LEVEL time_key is time.time_key

 LEVEL month is time.month

 LEVEL quarter is time.quarter

 LEVEL year is time.year

 LEVEL week_number is time.week_number

 HIERARCHY fiscal_rollup (

 time_key CHILD OF

 week_number CHILD OF

 quarter)

 HIERARCHY calendar_rollup(

 time_key CHILD OF

 month CHILD OF

 year);

Suppose our materialized view MONTHLY_SALES_MV was defined to
report the total sales by product and month, as shown in the following code.
Note that we have

not

 included the year column in the materialized view.

CREATE MATERIALIZED VIEW monthly_sales_mv

 ENABLE QUERY REWRITE

 AS

 SELECT t.month, p.product_id,

 SUM(ps.purchase_price) as sum_of_sales,

 COUNT (ps.purchase_price) as total_sales

 FROM time t, product p, purchases ps

 WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id

 GROUP BY t.month, p.product_id;

In the following query, we want to know the total sales by product by
year. Since we have a materialized view with the total sales by product by
month, and months can be rolled up into years, as specified in the
calendar_rollup hierarchy in the time dimension, the optimizer will rewrite
the query to use the materialized view, MONTHLY_SALES_MV. Note
that in order to determine the YEAR value for the MONTH, a join-back is
done from the materialized view to the TIME table.

-- rollup to higher LEVEL in the HIERARCHY

EXPLAIN PLAN FOR

SELECT t.year, p.product_id,

 COUNT (ps.purchase_price) as total_sales

FROM time t, product p, purchases ps

WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.2

Types of Query Rewrite 395

Chapter 9

GROUP BY t.year, p.product_id;

PLAN_TABLE_OUTPUT

|Id| Operation |Name |Rows |Cost|

| 0| SELECT STATEMENT | | 2| 11|

| 1| SORT GROUP BY | | 2| 11|

|*2| HASH JOIN | | 4990| 9|

| 3| VIEW | | 34| 4|

| 4| SORT UNIQUE | | 34| 4|

| 5| TABLE ACCESS FULL |TIME | 731| 3|

| 6| MAT_VIEW REWRITE ACCESS FULL|MONTHLY_SALES_MV| 3522| 4|

Using the ATTRIBUTE Clause

When defining a data warehouse, the dimension object is often overlooked,
because its value to query rewrite is not fully appreciated. However, a
dimension object gives you tremendous query rewrite power at no extra
cost. We have already seen how query rewrite can take advantage of the
HIERARCHY clause to rewrite several queries with one materialized view.
Query rewrite can also make use of the ATTRIBUTE clause of dimension.
In the following example, we want to know the sum of sales by customer
based on gender and occupation.

SELECT c.gender, c.occupation,

 SUM(ps.purchase_price) as sum_of_sales

FROM purchases ps, customer c

WHERE c.customer_id = ps.customer_id

GROUP BY c.gender, c.occupation;

We could have put the columns GENDER and OCCUPATION into a
materialized view. But we know that given the CUSTOMER_ID, we can
find information such as the customer’s name, gender, and occupation.
Such relationships within a table that are not hierarchical in nature are
defined by the ATTRIBUTE clause in a dimension.

Suppose we have the following dimension, which defines the relation-
ships within the customer table.

CREATE DIMENSION customer_dim

 LEVEL customer IS customer.customer_id

 LEVEL city IS customer.city

 LEVEL state IS customer.state

HIERARCHY customer_zone

 (customer CHILD OF

TEAM LinG - Live, Informative, Non-cost and Genuine!

396

9.2

Types of Query Rewrite

 city CHILD OF

 state)

ATTRIBUTE customer DETERMINES (customer.gender,

 customer.occupation);

Now that we have this dimension object, we only need to include the
CUSTOMER_ID in the materialized view.

CREATE MATERIALIZED VIEW cust_sales_mv

ENABLE QUERY REWRITE

AS

SELECT c.customer_id, SUM(ps.purchase_price) as sum_of_sales,

 COUNT (ps.purchase_price) as total_sales

FROM customer c, purchases ps

WHERE c.customer_id = ps.customer_id

GROUP BY c.customer_id;

The execution plan of the query shows that the query was rewritten to
use the materialized view. Note that a join-back was done to the customer
table to retrieve the values of the OCCUPATION and GENDER columns.

PLAN_TABLE_OUTPUT

--

| Id|Operation |Name |Rows |Cost |

--

| 0 |SELECT STATEMENT | | 9 | 7|

| 1 | SORT GROUP BY | | 9 | 7|

|*2 | HASH JOIN | | 500 | 6|

| 3 | MAT_VIEW REWRITE ACCESS FULL|CUST_SALES_MV| 500 | 2|

| 4 | TABLE ACCESS FULL |CUSTOMER | 500 | 3|

--

When designing your data warehouse, you should try to identify rela-
tionships between your dimension tables and define dimensions, wherever
possible. This will lead to significant space savings and increase query
rewrite opportunities, thereby improving your query performance.

Recall that the relationships declared by dimensions are not validated
automatically by Oracle. Hence, to take advantage of dimensions, you must
set the QUERY_REWRITE_INTEGRITY parameter to TRUSTED or
STALE_TOLERATED, as we will discuss shortly in section 9.3.

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.2

Types of Query Rewrite 397

Chapter 9

9.2.8 Rewrite Using Constraints

In a data warehouse, constraints may be used to define the join relation-
ships between the fact and dimension tables. Typically, a primary-key con-
straint is defined on the unique key column on each dimension table. A
foreign-key constraint and a NOT NULL constraint are defined on each
corresponding key in the fact table. For example, The EASYDW schema
has primary-key constraints on each of the dimension tables: CUS-
TOMER, PRODUCT, and TIME. Also, there are foreign key and NOT
NULL constraints on the foreign-key columns of the PURCHASES table
that join to these dimension tables.

The relationship defined by these constraints indicates to query rewrite
that a join between the PURCHASES table and, for example, the TIME
table will produce exactly one row for every row in the PURCHASES table.
Rows from the PURCHASES table cannot be lost during the join, because
the NOT NULL and foreign key constraints mean that there

must

 be a
parent TIME record for every row in the PURCHASES table. Also, because
of the primary-key constraint on TIME, each row in PURCHASES will
join to a single parent TIME record and so no rows can be duplicated. Such
a join is known as a

loss-less join,

because no rows in the PURCHASES
table will be lost or duplicated by the join process.

The benefit of a loss-less join is that if a materialized view has more joins
than the query, but the

extra

 joins in the materialized view are

loss-less

joins,
then the query can be rewritten using the materialized view. For instance, in
the following example, the query does not have the TIME table. However,
we can still rewrite the query with the MONTHLY_SALES_MV material-
ized view (which has tables PURCHASES, PRODUCT, and TIME). This
is because the extra join in the materialized view, between tables PUR-
CHASES and TIME, is a loss-less join.

EXPLAIN PLAN FOR
SELECT p.product_id, SUM(ps.purchase_price) as sum_of_sales
FROM product p, purchases ps
WHERE ps.product_id = p.product_id
GROUP BY p.product_id;

PLAN_TABLE_OUTPUT
--
|Id |Operation |Name | Rows |Cost|
--
0	SELECT STATEMENT		164	6
1	SORT GROUP BY		164	6
2	MAT_VIEW REWRITE ACCESS FULL	MONTHLY_SALES_MV	3522	4
--

TEAM LinG - Live, Informative, Non-cost and Genuine!

398

9.3

Query Rewrite Integrity Modes

Using the NOVALIDATE and RELY Clauses on Constraints

As described in Chapter 2, when a constraint is enabled, you can choose to
have Oracle validate the integrity of the data. If you are concerned about
the overhead of maintaining the constraint, or if you have already validated
the data during the ETL process, you could use the NOVALIDATE clause
to tell Oracle that the data has already been validated.

ALTER TABLE purchases ENABLE NOVALIDATE CONSTRAINT fk_customer_id;

An additional RELY clause should be used to tell Oracle that it can rely
on the constraint being correct and can use it in query rewrite even when
the constraint has not been validated. It allows the Database Administrator
(DBA) to say: “Trust me. I’ve already checked the data validity. Query
rewrite can rely on the relationship being correct.”

ALTER TABLE purchases MODIFY CONSTRAINT fk_customer_id RELY;

Hint:

Use constraints to define the relationship between your fact and
dimension tables. Use the dimension object to declare the relationships

within your dimension tables, such as a time or a region hierarchy.

As with dimensions, in order to use RELY constraints, you must set the
QUERY_REWRITE_INTEGRITY parameter to TRUSTED. The next
section explains this parameter in detail.

9.3 Query Rewrite Integrity Modes

We have mentioned the QUERY_REWRITE_INTEGRITY parameter
several times in our examples. This parameter indicates to Oracle the
extent to which the rewritten queries must reflect the data in the detail
tables and what metadata can be used to rewrite queries. This parameter
can take three values:

�

ENFORCED

: In this mode (which is the default), Oracle will guar-
antee that the rewritten query will return the same results as the orig-
inal query when executed without query rewrite.

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.3

Query Rewrite Integrity Modes 399

Chapter 9

� TRUSTED: In this mode, Oracle will use data and relationships that
have been “blessed” by the DBA—namely, dimension objects, RELY
constraints, and materialized views created from PREBUILT tables.
Oracle does not validate that the relationships declared by the dimen-
sion are indeed valid in the data or that a prebuilt table is the same as
the materialized view’s query.

� STALE_TOLERATED: In this mode, Oracle will use stale material-
ized views, which may not contain the very latest data, because they
have not yet been refreshed. This is appropriate if the business users
do not need to have the most up-to-date data in order to perform
their analyses.

You must decide what query rewrite integrity level is appropriate for
your application. In the following sections, we will discuss the differences
between the three modes and the motivation behind using one versus the
other.

9.3.1 Comparing ENFORCED and TRUSTED Modes

Setting the parameter to ENFORCED guarantees that you will see the
same results from using the materialized view or querying the detail tables.
You are probably thinking that this is the best mode to use! However, the
problem is that this mode also requires that all defined relationships, such
as constraints, be validated. This can be a huge overhead in a data ware-
house. Another issue with the ENFORCED mode is that dimension
objects are not used. This greatly limits the power of query rewrite, and you
may need a large number of materialized views to answer all your queries.
For example, the query rewrites with dimensions shown in section 9.2.7
will never occur in ENFORCED mode. Also, you cannot use materialized
views defined using the PREBUILT TABLE clause, unless they have been
completely rebuilt.

Unlike ENFORCED mode, in TRUSTED mode constraints are used
even though they are not validated, provided they have the RELY clause
and dimensions are also considered. Therefore, in a warehouse you will
more likely use the TRUSTED mode.

A note of caution: Query rewrite in TRUSTED mode depends on the
integrity of your dimension and constraint definitions. Does each product
in the product table roll up to one and only one category, as specified in
your dimension definition? Does each product in the PURCHASES table

TEAM LinG - Live, Informative, Non-cost and Genuine!

400 9.3 Query Rewrite Integrity Modes

have a corresponding product_id in the products table, as specified by your
referential integrity constraints? If your data does not reflect the relation-
ships defined by the constraint or dimension, then you may get unexpected
results. The same holds for materialized views on prebuilt tables: If the pre-
built table does not reflect the materialized view’s query accurately, then
results can be unexpected.

The last mode is STALE_TOLERATED, and it is even more relaxed
than the TRUSTED mode, as discussed in the next section

9.3.2 Comparing TRUSTED and
STALE_TOLERATED Modes

The STALE_TOLERATED mode also allows use of trusted relationships
like the TRUSTED mode. However, the key difference with the
STALE_TOLERATED mode is that it allows use of materialized views even
if they are stale. In both TRUSTED and ENFORCED modes, the opti-
mizer will use the detail table if necessary but will never return stale data.

Hint: You can determine if a materialized view is FRESH or STALE by
using the STALENESS column of the catalog view USER_MVIEWS.

Most of the time, you would like to get the result the fastest way possi-
ble, rewriting your queries to use materialized views. However, if your
materialized views have become stale and no longer represent the summari-
zation of all your detail data, depending on your application, you may pre-
fer to get the results from the detail tables until you can perform your next
refresh. If so, then the TRUSTED mode is the right choice.

On the other hand, if the results obtained from a materialized view are
“close enough” for your application, you may want to use the materialized
view even if it is stale. For example, to determine the month-over-month
growth rate of on-line sales, you do not need every single sales transaction
in the materialized view. As long as the data is reasonably recent, you could
still get an answer that was close enough. Or, if the application knew that
the missing data was beyond the scope of the query, it may still want to use
the materialized view. For instance, if the missing data is for the last month
but your query does not need it, you can use the materialized view. Or, it
may be appropriate to use the materialized view when the fact table is stale,
but not when a dimension is updated. The decision to use stale data or not
should be made after consulting business users who would be using the data
for analysis.

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.3 Query Rewrite Integrity Modes 401

Chapter 9

If you would like the optimizer to use the materialized view even if it is
stale, set the QUERY_REWRITE_INTEGRITY parameter to STALE_
TOLERATED.

Hint: When first testing a materialized view to see if query rewrite will
occur, set QUERY_REWRITE_INTEGRITY to STALE_TOLERATED,
because if the query does not rewrite in this mode, it will not rewrite in any
other mode. Once you know it works, you can try setting the parameter
mode to your desired level.

The following example shows the difference between the two integrity
modes STALE_TOLERATED and TRUSTED (or ENFORCED) with
regard to stale data. Suppose we introduced a new product code, SP1300
and inserted two new rows into the purchases fact table corresponding to it.

INSERT INTO product VALUES ('SP1300', 'XYZ', 'ELEC', '75.0',
 '100.0', 15, 4.50, 'ABC', 'UVW');
COMMIT;

INSERT INTO purchases VALUES ('SP1300','1-FEB-2003',
 'AB123456','1-FEB-2003', 28.01, 4.50, 'Y');

INSERT INTO purchases VALUES ('SP1300','2-FEB-2003',
 'AB123457','1-FEB-2003', 28.01, 4.50, 'Y');
COMMIT;

The MONTHLY_SALES_MV materialized view is now stale, which
means all the data in the detail table is not reflected in the materialized
view.

SELECT staleness FROM user_mviews

WHERE mview_name = 'MONTHLY_SALES_MV';

STALENESS

STALE

Suppose we had the following query, which requests sales by month for
product SP1300. If you set QUERY_REWRITE_INTEGRITY to
STALE_TOLERATED, then we see that no rows are returned in the result.
This is because the materialized view was created before the new rows were
inserted and so the data about SP1300 is not in the materialized view.

TEAM LinG - Live, Informative, Non-cost and Genuine!

402 9.3 Query Rewrite Integrity Modes

ALTER SESSION SET QUERY_REWRITE_INTEGRITY=STALE_TOLERATED;

SELECT t.month, p.product_id,

 SUM(ps.purchase_price) as sum_of_sales,

 COUNT(ps.purchase_price) as total_sales

FROM time t, product p, purchases ps

WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id

GROUP BY t.month, p.product_id

HAVING p.product_id = 'SP1300';

no rows selected

The execution plan shows that the materialized view was indeed used for
this query.

PLAN_TABLE_OUTPUT

--

|Id|Operation | Name | Rows |Cost|

--

|0 | SELECT STATEMENT | | 21 | 4|

|1 | MAT_VIEW REWRITE ACCESS FULL| MONTHLY_SALES_MV | 21 | 4|

--

On the other hand, if you set the QUERY_REWRITE_INTEGRITY
to TRUSTED, Oracle will use the detail tables, PURCHASES, PROD-
UCT, and TIME, rather than the materialized view and the sales numbers
include the new rows we just inserted.

ALTER SESSION SET QUERY_REWRITE_INTEGRITY=TRUSTED;

SELECT t.month, p.product_id,

 SUM(ps.purchase_price) as sum_of_sales,

 COUNT(ps.purchase_price) as total_sales

FROM time t, product p, purchases ps

WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id

GROUP BY t.month, p.product_id

HAVING p.product_id = 'SP1300';

 MONTH PRODUCT_ SUM_OF_SALES TOTAL_SALES

---------- -------- ------------ -----------

 200302 SP1300 56.02 2

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.4 Query Rewrite and Partition Change Tracking 403

Chapter 9

The execution plan indicates that the materialized view was not used for
this query.

PLAN_TABLE_OUTPUT

--

|Id|Operation |Name | Rows |Cost |

--

|0 |SELECT STATEMENT | | 1 | 143|

|1 | FILTER | | | |

|2 | SORT GROUP BY | | 1 | 143|

|3 | HASH JOIN | | 81169 | 121|

|4 | TABLE ACCESS FULL |TIME | 731 | 3|

|5 | HASH JOIN | | 81169 | 115|

|6 | INDEX FULL SCAN |PRODUCT_PK_INDEX| 164 | 1|

|7 | PARTITION RANGE ALL| | 81169 | 111|

|8 | TABLE ACCESS FULL |PURCHASES | 81169 | 111|

--

To summarize, in a data warehouse it is recommended to use either
TRUSTED or STALE_TOLERATED modes. Use the TRUSTED mode if
your applications require up-to-date data at all times. If you can tolerate a
materialized view that does not contain all the latest data, use the
STALE_TOLERATED mode instead, to get the most benefit. Note that
when using either of these modes, you must ensure that all the data satisfies
the relationships declared in the RELY constraints and dimensions; other-
wise, you may get unexpected results.

9.4 Query Rewrite and Partition Change Tracking

In Chapter 7, we discussed the Partition Change Tracking (PCT) feature,
which allows materialized views to be fast refreshed after partition mainte-
nance operations. PCT also increases the query rewrite capabilities of the
materialized view. As discussed in the previous section, when a detail table
is updated, the materialized view becomes stale and cannot be used by
query rewrite in ENFORCED or TRUSTED integrity levels. However, if
the detail table is partitioned and the materialized view supports PCT on
that table, Oracle can determine which portion of the materialized view is
fresh and which is not. Now, if a query can be answered by using only the
fresh portion of the materialized view, query rewrite will use the material-
ized view. For example, in Figure 7.7, in Chapter 7, the data for Feb 2002
was updated, and a new partition with data for Apr 2002 was added. The
fresh portion of the materialized view corresponds to the Jan 2002 and Mar
2002 data. If a query only required data for these partitions, the material-

TEAM LinG - Live, Informative, Non-cost and Genuine!

404 9.4 Query Rewrite and Partition Change Tracking

ized view can be used. The materialized view cannot be used for Feb 2002
(updated partition) or Apr 2002 (new partition).

Query rewrite is supported when PCT is enabled using either the parti-
tion key or partition marker techniques described in Chapter 7. Query
rewrite currently does not take advantage of PCT using the join depend-
ency technique.

9.4.1 Query Rewrite with PCT Using Partition Key

Consider the following materialized view containing sales data for products.
The PURCHASES table is partitioned by TIME_KEY, which is included
in the materialized view.

CREATE MATERIALIZED VIEW product_category_sales_mv

 ENABLE QUERY REWRITE

 AS

 SELECT ps.time_key, p.category,

 SUM(ps.purchase_price) as sum_of_sales

 FROM product p, purchases ps

 WHERE ps.product_id = p.product_id

 GROUP BY ps.time_key, p.category;

If we query the view USER_MVIEWS, we will see that the materialized
view is FRESH.

SELECT staleness FROM user_mviews

WHERE mview_name = 'PRODUCT_CATEGORY_SALES_MV';

STALENESS

FRESH

The PURCHASES table has data through Dec 2004, so the material-
ized view only contains data through Dec 2004. Now, suppose we added a
new partition to the PURCHASES table and loaded data for Jan 2005.

ALTER TABLE purchases ADD PARTITION purchases_jan2005
 values less than (TO_DATE('01-02-2005', 'DD-MM-YYYY'));

INSERT INTO purchases VALUES ('SP1063','2-JAN-2005',
 'AB123457','7-JAN-2005', 28.01, 4.50, 'N');

INSERT INTO purchases VALUES ('SP1064','2-JAN-2005',
 'AB123457','8-JAN-2005', 28.01, 4.50, 'N');

COMMIT;

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.4 Query Rewrite and Partition Change Tracking 405

Chapter 9

If we query the view user_mviews now, we will see that the materialized
view is STALE.

SELECT staleness FROM user_mviews

WHERE mview_name = 'PRODUCT_CATEGORY_SALES_MV';

STALENESS

STALE

Now consider the following query, which asks for the sum of sales for
the last quarter of 2004: October through December 2004. The optimizer
will determine that the query only needs to access partitions for Oct, Nov,
and Dec 2004 of the PURCHASES table. Since the materialized view is
enabled for partition change tracking for this table, Oracle will track that
the materialized view is fresh with respect to these partitions. Hence, it can
rewrite with the materialized view, as shown in the following execution
plan.

 EXPLAIN PLAN FOR

 SELECT ps.time_key, p.category,

 SUM(ps.purchase_price) as sum_of_sales

 FROM product p, purchases ps

 WHERE ps.product_id = p.product_id and

 ps.time_key BETWEEN TO_DATE('01-10-2004', 'DD-MM-YYYY')

 AND TO_DATE('31-12-2004', 'DD-MM-YYYY')

 GROUP BY ps.time_key, p.category;

PLAN_TABLE_OUTPUT

--

|Id |Operation |Name |Cost|

--

| 0|SELECT STATEMENT | | 3|

| 1| MAT_VIEW REWRITE ACCESS FULL|PRODUCT_CATEGORY_SALES_MV| 3|

--

Predicate Information (identified by operation id):

1 - filter("PRODUCT_CATEGORY_SALES_MV"."TIME_KEY">=

 TO_DATE('2004-10-01 00:00:00','yyyy-mm-ddhh24:mi:ss')

 AND "PRODUCT_CATEGORY_SALES_MV"."TIME_KEY"<=

 TO_DATE('2004-12-31 00:00:00','yyyy-mm-dd hh24:mi:ss'))

TEAM LinG - Live, Informative, Non-cost and Genuine!

406 9.4 Query Rewrite and Partition Change Tracking

On the other hand, a query that requests the sum of sales for Oct 2004
through Mar 2005 cannot be answered using the materialized view.

9.4.2 Query Rewrite Using PCT with Partition Marker

Query rewrite can also take advantage of partition change tracking using
the partition marker. The following query illustrates how rewrite can be
used if the PRODUCT_CATEGORY_SALES_MV had a partition
marker for the PURCHASES table instead of the partition key
(TIME_KEY).

CREATE MATERIALIZED VIEW product_category_sales_mv
ENABLE QUERY REWRITE
AS
SELECT DBMS_MVIEW.PMARKER(ps.rowid) pmarker, p.category,
 SUM(ps.purchase_price) as sum_of_sales
FROM product p, purchases ps
WHERE ps.product_id = p.product_id
GROUP BY DBMS_MVIEW.PMARKER(ps.rowid), p.category;

The following query asks for data for the last quarter of 2004. Note that
for rewrite to work, the bounds specified by the filter condition must match
exactly with partition boundaries.

EXPLAIN PLAN FOR
SELECT p.category,
 SUM(ps.purchase_price) as sum_of_sales
FROM product p, purchases ps
WHERE ps.product_id = p.product_id and
 ps.time_key >= TO_DATE('01-10-2004', 'DD-MM-YYYY')
 AND ps.time_key < TO_DATE('01-01-2005', 'DD-MM-YYYY')
GROUP BY p.category;

PLAN_TABLE_OUTPUT
--
|Id|Operation |Name |Cost |
--
0	SELECT STATEMENT		3
1	SORT GROUP BY		3
*2	MAT_VIEW REWRITE ACCESS FULL	PRODUCT_CATEGORY_SALES_MV	2
--

Predicate Information (identified by operation id):

 2 - filter("PRODUCT_CATEGORY_SALES_MV"."PMARKER"=52520 OR
 "PRODUCT_CATEGORY_SALES_MV"."PMARKER"=52521 OR
 "PRODUCT_CATEGORY_SALES_MV"."PMARKER"=52522)

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.5 Troubleshooting Query Rewrite with EXPLAIN_REWRITE 407

Chapter 9

As we can see, partition change tracking is a very useful technique—not
only to speed up refresh of your materialized views but also to improve the
ability of the optimizer to rewrite queries with those materialized views.

Oracle query rewrite is a very powerful feature but with this power
comes some complexity. The next section explains how you can identify
and fix common problems in query rewrite.

9.5 Troubleshooting Query Rewrite with
EXPLAIN_REWRITE

In the examples in this chapter, we have used EXPLAIN PLAN to see if a
query was rewritten to use a materialized view. However, sometimes you may
find that the query did not rewrite with the materialized view as you had
expected. In some cases, the reason is extremely trivial, such as the parameter
QUERY_REWRITE_ENABLED not being set to TRUE. In other cases, the
reason could be more subtle, such as a constraint that was not present or vali-
dated or some column required by the query not being present in the materi-
alized view. The rules governing query rewrite can be extremely complex and
the reasons for not using a materialized view may not be obvious. To diagnose
the reasons for such missed rewrites, you should use the PL/SQL procedure
DBMS_MVIEW.EXPLAIN_REWRITE.

To use EXPLAIN_REWRITE, you provide the query and, optionally,
the materialized view it is supposed to rewrite with. The procedure will tell
you if the query will use that materialized view and, if not, then the reason
for not doing the rewrite. Prior to using the procedure, you must create a
table named REWRITE_TABLE in your schema, using the script utlxrw.sql
in the rdbms/admin directory. The results of EXPLAIN_REWRITE are
placed in this table. There is also a varray interface, which allows you to
access the results through a PL/SQL program instead.

We will now illustrate how to use this utility. In the first example, the
user forgot to set the QUERY_REWRITE_ENABLED parameter to
TRUE. To diagnose the problem you issue EXPLAIN_REWRITE and
select the results from the REWRITE_TABLE. The message column in the
REWRITE_TABLE indicates the reason why query rewrite did not happen
with the materialized view, specified in the MV_NAME column.

TEAM LinG - Live, Informative, Non-cost and Genuine!

408 9.5 Troubleshooting Query Rewrite with EXPLAIN_REWRITE

BEGIN

dbms_mview.explain_rewrite('

SELECT t.month, t.year, p.product_id,

 SUM (ps.purchase_price) as sum_of_sales,

 COUNT (ps.purchase_price) as total_sales

 FROM time t, product p, purchases ps

 WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id

 GROUP BY t.month, t.year, p.product_id', 'MONTHLY_SALES_MV');

END;

/

SELECT mv_name, message FROM rewrite_table;

MV_NAME MESSAGE

------------------------- ------------------------------------

MONTHLY_SALES_MV QSM-01001: query rewrite not enabled

EXPLAIN_REWRITE can be used to check why a specific materialized
view was not used to rewrite the query. For example, consider the following
query, which is asking for the total sales by quarter, which is not possible to
compute using the MONTHLY_SALES_MV because the QUARTER col-
umn is not in the materialized view.

BEGIN

dbms_mview.explain_rewrite('

SELECT p.product_id, t.quarter,

 SUM (ps.purchase_price) as sum_of_sales,

 COUNT(ps.purchase_price) as total_sales

 FROM product p, purchases ps, time t

 WHERE p.product_id = ps.product_id

 AND t.time_key = ps.time_key

 GROUP BY p.product_id, t.quarter', 'MONTHLY_SALES_MV');

END;

/

SELECT mv_name, message FROM rewrite_table;

MV_NAME MESSAGE

---------------------- -----------------------------------

MONTHLY_SALES_MV QSM-01082: Joining materialized

 view, MONTHLY_SALES_MV, with

 table, TIME, not possible

MONTHLY_SALES_MV QSM-01102: materialized view,

 MONTHLY_SALES_MV, requires join

 back to table, TIME, on column,

 QUARTER

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.6 Advanced Query Rewrite Techniques 409

Chapter 9

The EXPLAIN_REWRITE output clearly indicates that it is not possi-
ble to do the rewrite because of the missing quarter column.

Sometimes query rewrite may be possible with the requested material-
ized view; however, there may be a more optimal materialized view that can
be used. Suppose we create a materialized view, PRODUCT_SALES_
EXACT_MATCH, for the following query, matching its text exactly.
Query rewrite now uses this materialized view instead, since it is more opti-
mal. EXPLAIN_REWRITE will tell you that this is the case.

BEGIN

dbms_mview.explain_rewrite('

SELECT p.product_id,

 SUM(ps.purchase_price) as sum_of_sales,

 COUNT(ps.purchase_price) as total_sales

 FROM product p, purchases ps, time t

 WHERE p.product_id = ps.product_id

 AND t.time_key = ps.time_key

 GROUP BY p.product_id', 'MONTHLY_SALES_MV');

END;

/

SELECT mv_name, message FROM rewrite_table;

MV_NAME MESSAGE
-------------------------- ----------------------------------

MONTHLY_SALES_MV QSM-01009: materialized view,

 PRODUCT_SALES_EXACT_MATCH, matched

 query text

EXPLAIN_REWRITE can also be used with very large queries by
declaring them using a character large object (CLOB) data type.

9.6 Advanced Query Rewrite Techniques
In the preceding sections, we have discussed the most commonly used types
of query rewrites. In this section, we will discuss some advanced topics in
query rewrite. If you are just getting familiar with query rewrite, the preced-
ing sections may be enough to get you started and you can come back to
the remainder of this chapter as you get more familiar with using it.

9.6.1 Optimizer Hints for Query Rewrite

Ordinarily, the query optimizer will automatically decide whether or not to
rewrite a query, and if there are several materialized views that are eligible to

TEAM LinG - Live, Informative, Non-cost and Genuine!

410 9.6 Advanced Query Rewrite Techniques

rewrite the query, it will pick the best one. You can, however, influence this
behavior using the following optimizer hints:

� REWRITE(mv) hint request the optimizer to use a specific material-
ized view.

� NO_REWRITE hint to not use query rewrite for the query.

� REWRITE_OR_ERROR to throw an error when it is not possible to
rewrite.

For instance, suppose we had two eligible materialized views:
MONTHLY_SALES_MV, which computes sum of sales by month, and
YEARLY_SALES_MV, which computes the sum of sales by year. If we
wanted to know the sum of sales by year, as shown in the following query, you
would expect query rewrite to pick the latter, since it would read less data.

SELECT t.year, p.product_id, SUM(ps.purchase_price) sum_of_sales
FROM time t, product p, purchases ps
WHERE t.time_key = ps.time_key AND
 ps.product_id = p.product_id
GROUP BY t.year, p.product_id;

PLAN_TABLE_OUTPUT
--
|Id |Operation | Name | Rows |Cost |
--
| 0|SELECT STATEMENT | | 329 | 2|
| 1| MAT_VIEW REWRITE ACCESS FULL| YEARLY_SALES_MV | 329 | 2|
--

You could, however force query rewrite to use MONTHLY_SALES_
MV with a hint.

SELECT /*+ REWRITE(monthly_sales_mv) */ t.year, p.product_id,

 SUM(ps.purchase_price) as sum_of_sales

FROM time t, product p, purchases ps

WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id

GROUP BY t.year, p.product_id;

|Id| Operation |Name |Rows |Cost|

| 0| SELECT STATEMENT | | 2| 11|

| 1| SORT GROUP BY | | 2| 11|

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.6 Advanced Query Rewrite Techniques 411

Chapter 9

|*2| HASH JOIN | | 4990| 9|

| 3| VIEW | | 34| 4|

| 4| SORT UNIQUE | | 34| 4|

| 5| TABLE ACCESS FULL |TIME | 731| 3|

| 6| MAT_VIEW REWRITE ACCESS FULL|MONTHLY_SALES_MV| 3522| 4|

Forcing an Error When Query Rewrite Is Not Possible

For some applications, query rewrite is critical to achieve good perfor-
mance; it is preferable for a query to fail rather than execute against the
detail data, because it may take too long to complete. In Oracle Database
10g, you can specify the REWRITE_OR_ERROR hint to force the query
to fail if query rewrite is not possible. In the following example, the query
asking for the sum of sales by day cannot rewrite against the available
monthly or yearly summaries and hence will fail.

SELECT /*+ REWRITE_OR_ERROR */ t.time_key,

 SUM(ps.purchase_price) as sum_of_sales

FROM time t, product p, purchases ps

WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id

GROUP BY t.time_key, p.product_id;

ORA-30393: a query block in the statement did not rewrite

9.6.2 Query Rewrite and Bind Variables

You may use bind variables in your queries to allow the query plan to be
shared by multiple invocations of the query. However, in certain cases, use
of bind variables can prohibit query rewrite. First of all, when the optimizer
makes its decisions to rewrite a query, the bind variable values are generally
not available. Further, the bind values can change for subsequent execu-
tions, without again going through the query rewrite process. Therefore, if
the value of the bind variable could influence the correctness of query
rewrite, then the query will not be rewritten.

For example, consider the following query, which asks for total sales for
a specific product by month. This query has a bind variable on
PRODUCT_ID. Now, if we had a materialized view with all product val-
ues, such as MONTHLY_SALES_MV defined earlier, the optimizer could
safely use query rewrite for this query, regardless of the actual value of the
bind variable, as shown in the execution plan.

TEAM LinG - Live, Informative, Non-cost and Genuine!

412 9.6 Advanced Query Rewrite Techniques

EXPLAIN PLAN FOR

SELECT t.month, p.product_id,

 SUM(ps.purchase_price) as sum_of_sales,

 COUNT (ps.purchase_price) as total_sales

 FROM time t, product p, purchases ps

 WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id AND

 p.product_id = :1

 GROUP BY t.month, p.product_id;

PLAN_TABLE_OUTPUT

--

|Id|Operation |Name |Rows |Cost|

--

| 0|SELECT STATEMENT | | 35| 4|

| 1| MAT_VIEW REWRITE ACCESS FULL|MONTHLY_SALES_MV| 35| 4|

--

Predicate Information (identified by operation id):

--

 1 - filter("MONTHLY_SALES_MV"."PRODUCT_ID"=:1)

However, recall the materialized view SALES_ELEC_1_6_2003_MV,
defined earlier in section 9.2.5, which only has data for the ELEC category
for the months January through June 2003. Suppose we had the following
query instead; with a bind variable for the CATEGORY value, the optimizer
cannot safely determine if your query can be answered using the materialized
view. For example, if the bind variable :1 had the value MUSC, then the
materialized view would not contain the data and query rewrite is not possi-
ble. However, if the value were ELEC, query rewrite would be possible.
Because the actual value of the bind variable is not available when the deci-
sion to rewrite the query is made, the optimizer is unable to use the material-
ized view, as indicated by the execution plan output.

EXPLAIN PLAN FOR

SELECT t.month, t.year, p.product_id,

 SUM(ps.purchase_price) as sum_of_sales,

 COUNT (ps.purchase_price) as total_sales

 FROM time t, product p, purchases ps

 WHERE t.time_key = ps.time_key AND

 ps.product_id = p.product_id AND

 p.category = :1 AND

 t.month >= 200301 and t.month <= 200306

GROUP BY t.month, t.year, p.product_id;

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.6 Advanced Query Rewrite Techniques 413

Chapter 9

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows |Cost |

| 0 | SELECT STATEMENT | | 6628 | 207|

| 1 | SORT GROUP BY | | 6628 | 207|

|* 2 | HASH JOIN | | 6628 | 122|

|* 3 | TABLE ACCESS FULL | PRODUCT | 55 | 2|

|* 4 | HASH JOIN | | 20004 | 119|

|* 5 | TABLE ACCESS FULL | TIME | 181 | 3|

| 6 | PARTITION RANGE ITERATOR| | 80790 | 113|

| 7 | TABLE ACCESS FULL | PURCHASES | 80790 | 113|

Instead of bind variables, if the previous query had literal values, such as
ELEC, Oracle may internally replace these values with bind variables
known as internal bind variables. This allows queries differing only in
these literal values to reuse or share compiled execution plans. This reuse of
execution plans is called cursor sharing in Oracle. (To enable this feature
the initialization parameter CURSOR_SHARING must be set to a value
other than EXACT.) Just as with user-specified bind variables, the decision
to rewrite the query may depend on the value of the internal bind variable.
The difference here is that unlike user-specified bind variables, Oracle
knows the values of internal bind variables at the time of query rewrite and
so the query will be rewritten as expected. However, because the query plan
now depends on the value of the literal, you may not see the expected
amount of cursor sharing you may have otherwise seen.

To summarize, if your application would like to use query rewrite, you
must carefully design the use of bind variables in your queries, otherwise
you may not be able to take full advantage of query rewrite.

9.6.3 Query Rewrite with Complex SQL Constructs

The examples discussed so far used the more common constructs in SQL,
such as joins, selections, and aggregation operators. However, query rewrite
can also work in the presence of complex SQL expressions, including set
operators, subqueries in the FROM clause, analytical functions, and
GROUPING SETS.

Set Operators

A set operator is a SQL operation such as UNION ALL, UNION,
MINUS, and INTERSECT. If a query has multiple subqueries, such as in a
UNION ALL, the optimizer will try to rewrite each branch of the UNION

TEAM LinG - Live, Informative, Non-cost and Genuine!

414 9.6 Advanced Query Rewrite Techniques

ALL individually using a simple materialized view. In addition, Oracle
Database 10g supports query rewrite using a materialized view with the set
operators. If the query has a UNION ALL, then query rewrite will try to
match each branch in the query with appropriate branches in the material-
ized view. This is best illustrated with an example.

The following materialized view has a UNION ALL with two branches.
Each branch also has a special column known as a subselect marker, which
is required by query rewrite to identify rows for each branch. The marker
can be any constant column (numeric or string) with a distinct value for
each branch of the UNION ALL operation. In this example, the marker
column has been aliased as um.

CREATE MATERIALIZED VIEW muscelec_mv

ENABLE QUERY REWRITE

AS

SELECT 'M' um, p.product_id, p.manufacturer,

 SUM(ps.purchase_price)

FROM purchases ps, product p

WHERE ps.product_id = p.product_id AND p.category = 'MUSC'

GROUP BY p.product_id, p.manufacturer

UNION ALL

SELECT 'E' um, p.product_id, p.manufacturer,

 SUM(ps.purchase_price)

FROM purchases ps, product p

WHERE ps.product_id = p.product_id AND p.category = 'ELEC'

GROUP BY p.product_id, p.manufacturer;

The following query can now be rewritten with this materialized view.
Note that the order of the branches for ELEC and MUSC in the query has
been reversed and one of the branches has an additional selection.

EXPLAIN PLAN FOR

SELECT p.product_id, SUM(ps.purchase_price)

FROM purchases ps, product p

WHERE ps.product_id = p.product_id AND p.category = 'ELEC'

GROUP BY p.product_id

UNION ALL

SELECT p.product_id, SUM(ps.purchase_price)

FROM purchases ps, product p

WHERE ps.product_id = p.product_id AND p.category = 'MUSC' AND

 p.manufacturer = 'ABC'

GROUP BY p.product_id;

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.6 Advanced Query Rewrite Techniques 415

Chapter 9

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows |Cost |

--

| 0 | SELECT STATEMENT | | 112 | 4|

| 1 | UNION-ALL | | | |

|* 2 | MAT_VIEW REWRITE ACCESS FULL| MUSCELEC_MV | 111 | 2|

|* 3 | MAT_VIEW REWRITE ACCESS FULL| MUSCELEC_MV | 1 | 2|

--

Unlike UNION ALL, other set operators, UNION, MINUS, and
INTERSECT, are not commutative (cannot be reordered) and do not pre-
serve duplicates in the query. So for a query to be rewritten, it must match
the materialized view exactly.

Subqueries in the FROM Clause

Applications often need to use subqueries in the FROM clause due to secu-
rity reasons (e.g., they do not want to expose table names) or because the
query is dynamically generated by a tool. If a query has sub-queries in the
FROM clause, the optimizer can replace subqueries with the underlying
tables and then query rewrite can take place as usual. In addition, in Oracle
Database 10g, query rewrite will look for materialized views that have the
identical subquery in the FROM clause (i.e., the text of the subquery in the
query and materialized view match exactly). If any such matching material-
ized views are found, all the normal rules of query rewrite will then be
checked. The subquery can be arbitrarily complex.

For example, suppose we have a materialized view, as follows, that con-
tains the total sales by category for the manufacturer ABC:

CREATE MATERIALIZED VIEW prodcat_sales_mv

 ENABLE QUERY REWRITE

 AS

 SELECT v.category, SUM(ps.purchase_price) as sum_of_sales

 FROM (SELECT * FROM product p

 WHERE p.manufacturer = 'ABC') v, purchases ps

 WHERE ps.product_id = v.product_id

 GROUP BY v.category;

Now, the following query, which is asking for the total sales for the
ELEC category for the manufacturer ABC, can be rewritten to use this
materialized view.

TEAM LinG - Live, Informative, Non-cost and Genuine!

416 9.6 Advanced Query Rewrite Techniques

EXPLAIN PLAN FOR

SELECT v.category, SUM(ps.purchase_price) as sum_of_sales

 FROM (SELECT * FROM product p

 WHERE p.manufacturer = 'ABC') v, purchases ps

 WHERE ps.product_id = v.product_id and v.category = 'ELEC'

 GROUP BY v.category;

PLAN_TABLE_OUTPUT

--

|Id|Operation |Name |Rows |Cost|

--

| 0|SELECT STATEMENT | | 1| 2|

| 1| MAT_VIEW REWRITE ACCESS FULL|PRODCAT_SALES_MV| 1| 2|

--

Multiple Occurrences of a Table in the FROM Clause

Occasionally, queries may need to include the same table multiple times in
the FROM clause. For instance, in the following query, we are finding the
total monthly sales for orders that took at most one week to ship. We are
using two date columns from the PURCHASES table: TIME_KEY and
SHIP_DATE. So in order to determine any auxiliary information for that
date, such as WEEK_NUMBER, MONTH, from the TIME dimension
table, you will need to join with TIME separately for each of these columns.

EXPLAIN PLAN FOR

SELECT ot.month, SUM(ps.purchase_price) as sum_of_sales

FROM purchases ps, time ot, time st

WHERE ps.time_key = ot.time_key AND ps.ship_date = st.time_key

 AND st.week_number ñ ot.week_number <= 1

GROUP BY ot.month;

In Oracle Database 10g, query rewrite can automatically analyze the
joins in the query and correctly match multiple instances of tables with
their corresponding instances in a materialized view. So the preceding query
can rewrite with the following materialized view (we have deliberately
changed table aliases to rule out any simple text match rewrite).

CREATE MATERIALIZED VIEW sameweek_sales_mv

ENABLE QUERY REWRITE

AS

SELECT od.month ord_mon, sd.month ship_mon,

 od.week_number ord_week, sd.week_number ship_week,

 SUM(ps.purchase_price) as sum_of_sales

FROM purchases ps, time od, time sd

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.6 Advanced Query Rewrite Techniques 417

Chapter 9

WHERE ps.time_key = od.time_key AND ps.ship_date = sd.time_key

GROUP BY od.month, sd.month, sd.week_number, od.week_number;

The following execution plan shows the query rewritten:

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name |Cost|

--

| 0 | SELECT STATEMENT | | 3|

| 1 | SORT GROUP BY | | 3|

|* 2 | MAT_VIEW REWRITE ACCESS FULL| SAMEWEEK_SALES_MV | 2|

--

Predicate Information (identified by operation id):

 2 - filter("SAMEWEEK_SALES_MV"."SHIP_WEEK"-

 "SAMEWEEK_SALES_MV"."ORD_WEEK"<=1)

So for all practical purposes, query rewrite will work as if the multiple
occurrences were different tables.

Grouping Sets

The SQL aggregation operators, CUBE, ROLLUP, and GROUPING
SETS, described in Chapter 6, provide a mechanism to compute multiple
levels of aggregation in a single query. You can create a materialized view
using a query with these operators to store multiple levels of aggregation,
instead of separate materialized views for each level. Query rewrite can be
used to rewrite a query that asks for any of these levels of aggregation.

The following example shows a materialized view with grouping sets that
computes the sum of sales for the 3 groupings: (category, time_key), (cate-
gory, time_key, state), and (time_key, country). Note that the materialized
view must have a GROUPING_ID or GROUPING function on the group
by columns to distinguish rows that correspond to different groupings.

CREATE MATERIALIZED VIEW sales_mv

ENABLE QUERY REWRITE

AS

SELECT p.category, t.time_key, c.country, c.state,

 SUM(f.purchase_price) sales,

 GROUPING_ID(p.category, t.time_key, c.country, c.state) gid

FROM product p, purchases f, time t, customer c

WHERE p.product_id = f.product_id AND

 t.time_key = f.time_key AND

TEAM LinG - Live, Informative, Non-cost and Genuine!

418 9.6 Advanced Query Rewrite Techniques

 c.customer_id = f.customer_id

GROUP BY GROUPING SETS ((p.category, t.time_key),

 (p.category, t.time_key, c.state),

 (t.time_key, c.country));

This materialized view can be used to rewrite a query that asks for any
grouping that is present in the materialized view or one that can be
derived using a rollup. For example, the following query, which asks for
total sales by category and time_key, can be rewritten to use the
SALES_MV materialized view.

EXPLAIN PLAN FOR

SELECT p.category, t.time_key, SUM(f.purchase_price) sales

FROM product p, purchases f, time t, customer c

WHERE p.product_id = f.product_id AND

 t.time_key = f.time_key AND

 c.customer_id = f.customer_id

GROUP BY p.category, t.time_key;

From the predicate information in the EXPLAIN PLAN output, we see
that rewrite was done by selecting rows for the grouping (p.category,
t.time_key), which corresponds to gid = 3.

PLAN_TABLE_OUTPUT

| Id | Operation | Name | Rows |Cost |

| 0 | SELECT STATEMENT | | 2194 | 18|

|* 1 | MAT_VIEW REWRITE ACCESS FULL| SALES_MV | 2194 | 18|

Predicate Information (identified by operation id):

 1 - filter("SALES_MV"."GID"=3)

If the query itself has multiple groupings, Oracle will try to find a
materialized view that satisfies all the groupings. If Oracle cannot find a
single materialized view to answer a GROUPING SETS query, it will try
to rewrite each grouping separately. (Note that a query with GROUPING
SETS can be expressed using a UNION ALL of queries with the individ-
ual groupings.) As a result, several materialized views may get used to
rewriting the query and some groupings may remain unrewritten and use
the detail data.

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.6 Advanced Query Rewrite Techniques 419

Chapter 9

The next query cannot be rewritten using SALES_MV alone. The
grouping (p.category, t.time_key) is present in the SALES_MV material-
ized view, and the grouping (t.time_key, c.state) can be derived using a
rollup of (p.category, t.time_key, c.state). However, the grouping (p.cate-
gory, c.country, t.year) is not present in this materialized view.

EXPLAIN PLAN FOR

SELECT p.category, t.time_key, c.country, t.year, c.state,

 SUM(f.purchase_price) sales

FROM product p, purchases f, time t, customer c

WHERE p.product_id = f.product_id AND

 t.time_key = f.time_key AND

 c.customer_id = f.customer_id

GROUP BY GROUPING SETS ((p.category, t.time_key),

 (t.time_key, c.state),

 (p.category, c.country, t.year));

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows |Cost |

--

| 0 | SELECT STATEMENT | | 16052 | 189|

| 1 | VIEW | | 16052 | 189|

| 2 | UNION-ALL | | | |

| 3 | SORT GROUP BY | | 6 | 150|

|* 4 | HASH JOIN | | 80569 | 129|

| 5 | TABLE ACCESS FULL | CUSTOMER | 500 | 3|

|* 6 | HASH JOIN | | 80569 | 122|

| 7 | TABLE ACCESS FULL | TIME | 731 | 3|

|* 8 | HASH JOIN | | 80679 | 116|

| 9 | TABLE ACCESS FULL | PRODUCT | 164 | 2|

| 10 | PARTITION RANGE ALL | | 81171 | 111|

| 11 | TABLE ACCESS FULL | PURCHASES| 81171 | 111|

| 12 | SORT GROUP BY | | 13852 | 22|

|* 13 | MAT_VIEW REWRITE ACCESS FULL| SALES_MV | 13852 | 18|

|* 14 | MAT_VIEW REWRITE ACCESS FULL | SALES_MV | 2194 | 18|

--

Predicate Information (identified by operation id):

 4 - access("C"."CUSTOMER_ID"="F"."CUSTOMER_ID")

 6 - access("T"."TIME_KEY"="F"."TIME_KEY")

 8 - access("P"."PRODUCT_ID"="F"."PRODUCT_ID")

 13 - filter("SALES_MV"."GID"=2)

 14 - filter("SALES_MV"."GID"=3)

TEAM LinG - Live, Informative, Non-cost and Genuine!

420 9.6 Advanced Query Rewrite Techniques

The EXPLAIN PLAN output shows that rewrite was done using
SALES_MV for two groupings (gid = 3 and gid = 2) and using the detail
tables for grouping (p.category, c,county, t.year).

If we had another simple materialized view, SALES_MV2 (not shown
here), that had the missing grouping (p.category, c.county, t.year), the opti-
mizer would use it to rewrite the remaining grouping, as shown in the fol-
lowing execution plan.

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows |Cost |

--

| 0 | SELECT STATEMENT | | 16059 | 42|

| 1 | VIEW | | 16059 | 42|

| 2 | UNION-ALL | | | |

| 3 | MAT_VIEW REWRITE ACCESS FULL | SALES_MV2 | 13 | 2|

| 4 | SORT GROUP BY | | 13852 | 22|

|* 5 | MAT_VIEW REWRITE ACCESS FULL| SALES_MV | 13852 | 18|

|* 6 | MAT_VIEW REWRITE ACCESS FULL | SALES_MV | 2194 | 18|

--

Predicate Information (identified by operation id):

 5 - filter("SALES_MV"."GID"=2)

 6 - filter("SALES_MV"."GID"=3)

Analytical Functions

Oracle Database 10g supports limited query rewrite with the analytical
functions, which were discussed in Chapter 6. If an analytical function in
the query matches exactly with one in the materialized view, and the query
and the materialized view aggregate at the same level (i.e., there is no need
for a rollup), then query rewrite can occur. For example, the following
materialized view includes the RANK() function and contains the ranks for
products, ordered by their total sales, with the worst-selling products first.

CREATE MATERIALIZED VIEW rank_mv

ENABLE QUERY REWRITE

AS

SELECT p.product_id p_id, SUM(f.purchase_price) as sales,

 RANK() over (ORDER BY SUM(f.purchase_price)) as rank

FROM purchases f, product p

WHERE f.product_id = p.product_id

GROUP BY p.product_id;

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.6 Advanced Query Rewrite Techniques 421

Chapter 9

The following query, asking for the 10 worst-selling products, can now
rewrite against this materialized view.

EXPLAIN PLAN FOR

SELECT * FROM

(SELECT p.product_id p_id,

 RANK() over (ORDER BY SUM(f.purchase_price)) as rank

 FROM purchases f, product p

 WHERE f.product_id = p.product_id

 GROUP BY p.product_id)

WHERE rank < 10;

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows |Cost |

--

| 0 | SELECT STATEMENT | | 9 | 2|

|* 1 | MAT_VIEW REWRITE ACCESS FULL| RANK_MV | 9 | 2|

--

Predicate Information (identified by operation id):

 1 - filter("RANK_MV"."RANK"<10)

If the analytical function is not present or does not match the one in the
materialized view, but the underlying aggregate is present in the material-
ized view, then query rewrite can happen. In this case, the analytical func-
tion will be computed from the aggregate in the materialized view. This is
indicated by a window sort operation in the execution plan. In the follow-
ing example, the query computes the DENSE_RANK() and also computes
RANK() in descending order.

EXPLAIN PLAN FOR

SELECT p.product_id p_id,

 DENSE_RANK() over (ORDER BY SUM(f.purchase_price)) as drank,

 RANK() over (ORDER BY SUM(f.purchase_price) DESC) as
rev_rank

FROM purchases f, product p

WHERE f.product_id = p.product_id

GROUP BY p.product_id;

Since SUM(purchase_price) is present in the materialized view, query
rewrite takes place, as shown in the following execution plan.

TEAM LinG - Live, Informative, Non-cost and Genuine!

422 9.6 Advanced Query Rewrite Techniques

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name | Rows |Cost |

--

| 0 | SELECT STATEMENT | | 165 | 4|

| 1 | WINDOW SORT | | 165 | 4|

| 2 | WINDOW SORT | | 165 | 4|

| 3 | MAT_VIEW REWRITE ACCESS FULL| RANK_MV | 165 | 2|

--

9.6.4 Query Rewrite Using Nested Materialized Views

In Chapter 7, we discussed how nested materialized views could be used to
share common joins across several materialized views or to materialize dif-
ferent levels in a hierarchy. After a query has been rewritten using a materi-
alized view, the optimizer will check if it can be further rewritten using a
nested materialized view. To illustrate this, consider the following query,
which asks for total product sales.

EXPLAIN PLAN FOR

SELECT p.product_id, SUM(ps.purchase_price) as ave_sales

FROM product p, purchases ps

WHERE ps.product_id = p.product_id

GROUP BY p.product_id;

In section 9.2.8, we saw how this query can be rewritten using
MONTHLY_SALES_MV. Now, suppose we had a nested materialized
view on top of this materialized view, which computed the total sales by
product_id as follows:

CREATE MATERIALIZED VIEW YEARLY_PROD_SALES_MV

ENABLE QUERY REWRITE

AS

SELECT m.product_id, SUM(m.sum_of_sales) as yearly_sales

FROM monthly_sales_mv m

GROUP BY m.product_id;

After the query has been rewritten using the MONTHLY_SALES_MV
materialized view, the optimizer will further rewrite this query to use
YEARLY_PROD_SALES_MV, as illustrated in the following execution
plan output.

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.6 Advanced Query Rewrite Techniques 423

Chapter 9

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name |Cost|

--

| 0 | SELECT STATEMENT | | 2|

| 1 | MAT_VIEW REWRITE ACCESS FULL| YEARLY_PROD_SALES_MV | 2|

--

Thus, the answer to the query is directly obtained from the smaller
YEARLY_PROD_SALES_MV nested materialized view without using the
larger intermediate MONTHLY_SALES_MV materialized view.

9.6.5 Rewrite Equivalences

The optimizer can rewrite a query using a materialized view, provided it
can determine that the answer is contained in the materialized view.
However, to do so, it can only rely on available metadata in the database.
Sometimes it may be not possible to rewrite the query in general, but
with some specific application knowledge, it may indeed be possible to
rewrite the query. Oracle Database 10g has a new feature called rewrite
equivalence, which allows you to declare an alternative equivalent form
of a given query. You can use this feature to do a user-defined query
rewrite using your application knowledge. To use this feature you must
use the procedure DBMS_ADVANCED_REWRITE.DECLARE_
REWRITE_EQUIVALENCE to declare to Oracle that two statements
are identical. We will illustrate this concept with an example.

Suppose we had the following materialized view, which computes a
monthly sales forecast using the user-defined aggregate function, SalesFore-
cast(), which was discussed in Chapter 6.

CREATE MATERIALIZED VIEW SALES_FORECAST_MV

ENABLE QUERY REWRITE

AS

SELECT t.month, t.year,

 SalesForecast(ps.purchase_price) sales_forecast

FROM time t, purchases ps

WHERE t.time_key = ps.time_key

GROUP BY t.month, t.year;

Some simple query rewrites are possible with user-defined aggregates—
for example, you can use this materialized view to return the precomputed
sales forecast by month. However, it is not possible to do a rollup of a user-
defined aggregate—for instance, from monthly to yearly level. In other

TEAM LinG - Live, Informative, Non-cost and Genuine!

424 9.6 Advanced Query Rewrite Techniques

words, if we wanted to calculate the sales forecast on a yearly basis, we
would ordinarily have to use the detail data or create a separate materialized
view for it.

Now, suppose that, because of the nature of this aggregate function, it is
possible to roll up to a yearly level by simply doing a SUM over the
monthly forecasts. Obviously, this is not generally true with all user-defined
aggregates; however, in this specific case, we know this to be the case based
on “insider” knowledge of its implementation. In this case, we can declare a
rewrite equivalence, as follows:

BEGIN

SYS.DBMS_ADVANCED_REWRITE.DECLARE_REWRITE_EQUIVALENCE (

 'SALES_FORECAST_ROLLUP',

 'SELECT t.year, SALESFORECAST(ps.purchase_price) sales_forecast

 FROM time t, purchases ps

 WHERE t.time_key = ps.time_key

 GROUP BY t.year',

 'SELECT year, SUM(sales_forecast) yearly_forecast

 FROM sales_forecast_mv

 GROUP BY year'

);

END;

/

This procedure has three required parameters: a name (which can later
be used to drop or edit the equivalence), a source statement, and a destina-
tion statement. With this declaration, if you now ask the query on the
source statement, Oracle will automatically use the equivalent query speci-
fied by the destination statement.

Hint: The optimizer only uses rewrite equivalences provided the
QUERY_REWRITE_INTEGRITY parameter is set to the TRUSTED or
STALE_TOLERATED modes.

In our example, if we issue the query on the yearly level, it will be trans-
parently replaced with the query using the SALES_FORECAST_MV, as
shown in the following execution plan. Thus, we have done a user-defined
query rewrite!

EXPLAIN PLAN FOR

SELECT t.year, SALESFORECAST(ps.purchase_price) sales_forecast

FROM time t, purchases ps

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.6 Advanced Query Rewrite Techniques 425

Chapter 9

WHERE t.time_key = ps.time_key

GROUP BY t.year;

PLAN_TABLE_OUTPUT

--

| Id | Operation | Name |Cost|

--

| 0 | SELECT STATEMENT | | 3|

| 1 | SORT GROUP BY | | 3|

| 2 | MAT_VIEW ACCESS FULL| SALES_FORECAST_MV | 2|

--

Hint: If there is a choice between using a rewrite equivalence and a materi-
alized view to rewrite a query, the optimizer will prefer the equivalence to
the materialized view.

When declaring the equivalence, if you set the parameter validate to true,
Oracle will execute both the source and destination queries and verify that
they return the same results or otherwise give an error. However, as the under-
lying data changes, it is possible that the two statements may no longer return
identical results. Oracle will not check the validity of the equivalence as the
data changes. It is up to the user who created the equivalence to ensure that
the two queries are equivalent for the application; otherwise, it may produce
unexpected results. You can check the validity of the equivalence at any time
by issuing the procedure DBMS_ADVANCED_REWRITE.VALIDATE_
REWRITE_EQUIVALENCE.

As you can see, this is an extremely powerful feature; hence, this package
is owned by SYS and its use is not enabled by default. The DBA needs to
explicitly grant access to the package to trusted users who can create these
equivalences, as follows:

GRANT EXECUTE ON DBMS_ADVANCED_REWRITE TO <user>;

You can disable a rewrite equivalence using the following procedure:

EXECUTE DBMS_ADVANCED_REWRITE.ALTER_REWRITE_EQUIVALENCE

 ('SALES_FORECAST_ROLLUP', mode=>'disabled');

Rewrite equivalences should only be used if absolutely necessary and
should be made available only to the most advanced users of query rewrite.

TEAM LinG - Live, Informative, Non-cost and Genuine!

426 9.6 Advanced Query Rewrite Techniques

Incorrect use of this powerful feature can wreak havoc, since users could get
unexpected or bogus results.

9.6.6 Using Query Rewrite during Refresh

Another new feature in Oracle Database 10g is using query rewrite when
populating or refreshing a materialized view. This means that to populate or
refresh one materialized view, Oracle will try to reuse the precomputed data
in another materialized view, using query rewrite. This can be much
quicker than refreshing the materialized view directly from the detail data!
For example, if you had a materialized view at a monthly grain and another
one at a daily grain, Oracle can use the materialized view at the daily grain
to refresh the monthly one.

Note that only fresh materialized views will be used for query rewrite
during refresh so that the materialized view being refreshed always sees the
most up-to-date data. In addition, by default query rewrite will be per-
formed with the QUERY_REWRITE_INTEGRITY parameter setting of
ENFORCED, which means trusted relationships such as dimensions will
not be used by query rewrite. However, if you would like to have refresh use
the QUERY_REWRITE_INTEGRITY setting of TRUSTED, you may
specify the USING TRUSTED CONSTRAINTS clause on the CREATE
MATERIALIZED VIEW statement, as shown in the following example.

CREATE MATERIALIZED VIEW product_category_sales_mv

REFRESH FORCE

USING TRUSTED CONSTRAINTS <- constraints clause

 ENABLE QUERY REWRITE

 AS

 SELECT ps.time_key, p.category,

 SUM(ps.purchase_price) as sum_of_sales

 FROM product p, purchases ps

 WHERE ps.product_id = p.product_id

 GROUP BY ps.time_key, p.category;

If you do not specify this clause, the default clause is USING
ENFORCED CONSTRAINTS.

This allows refresh to take advantage of trusted information, such as
RELY constraints, dimensions, and materialized views on prebuilt tables, to
rewrite the internal queries issued during refresh. Note, however, that, as
discussed in section 9.3, it is the DBA’s responsibility to guarantee correct-
ness of the trusted information; otherwise, your materialized view could
have incorrect data.

TEAM LinG - Live, Informative, Non-cost and Genuine!

9.7 Summary 427

Chapter 9

Hint: To enable use of query rewrite during refresh, set the initialization
parameter, QUERY_REWRITE_INTEGRITY, to TRUE in the session
performing the refresh.

When refreshing materialized views, it is recommended that you refresh
multiple materialized views simultaneously and enable query rewrite. This
allows Oracle Database 10g to optimize the ordering of the refresh opera-
tions such that it can make best use of query rewrite during refresh. For
example, if you have two materialized views, one at a monthly level and
one at a daily level, Oracle will first refresh the materialized view at a daily
grain and then use this materialized view to refresh the one at a monthly
grain, using query rewrite.

Using query rewrite during refresh can significantly improve performance
of refreshing your materialized views.

9.7 Summary

Summary management in Oracle provides a very powerful set of tools to
improve query performance in your warehouse. With query rewrite, the
queries will be transparently rewritten to use the materialized views. We
have seen how you can use the same materialized view to rewrite a large
class of queries, thereby reducing the space and maintenance resources
required for materialized views. We have also seen how to troubleshoot
problems with query rewrite and how to use query rewrite to improve per-
formance of refreshing the materialized views.

This brings us to the question: How do you know which materialized
views to create? Determining the optimal set of materialized views to create
for a large number of queries can be tricky, and, if not done correctly, the
disk space requirements and refresh overhead could soon get prohibitive.
Fortunately, Oracle Database 10g provides a tool called the SQL Access
Advisor, which is designed to choose the best set of materialized views and
indexes for an application.

The next chapter discusses the SQL Access Advisor and various other
query techniques and tools to tune query performance in a data warehouse.

TEAM LinG - Live, Informative, Non-cost and Genuine!

429

10

Tuning Query Performance

Query performance tuning is an ongoing process, which is needed through-
out the life cycle of any database application. A data warehouse is no excep-
tion, and, in fact, good query performance is extremely crucial to the
success of any data warehouse. It is important when the application is first
designed that the SQL statements are well written and all requisite access
structures, such as indexes and materialized views, are created to obtain
good execution plans. However, even after the application is deployed, as
the data and query workload changes, you will find that you will need to
tune the SQL and modify the access structures periodically in order to meet
your performance goals.

There are many different reasons why a query may perform poorly. Per-
formance issues may arise due to resource constraints such as inadequate
memory or inadequate processing resources. Over time the data distribu-
tion may change and the current execution plan may not be optimal. A
DBA faces a challenging task of constantly monitoring performance, identi-
fying poorly performing queries, determining the reason for the poor per-
formance, and finally fixing the problem. Therefore, performance tuning
can be a very difficult and time-consuming task for even the most experi-
enced DBA.

Fortunately, with Oracle Database 10

g

, the task of performance tuning
is greatly simplified by using several new tools available for this purpose.
In this chapter, we will take a look at various aspects of tuning query per-
formance in a data warehouse and the tuning tools available in Oracle
Database 10

g

.

10.1 Monitoring Performance

The first step in tuning query performance is to be able to monitor the
database and identify queries that are not performing adequately. Oracle

TEAM LinG - Live, Informative, Non-cost and Genuine!

430

10.1

Monitoring Performance

Database 10

g

 Enterprise Manager provides a simple interface to monitor
such queries. Figure 10.1 shows the

Performance

 page of Oracle Enterprise
Manager, which monitors various metrics of performance for the database,
such as the waiting sessions, user versus system I/O and instance through-
put. To get to this page, after logging into Oracle Enterprise Manager, click
on the

Performance

 link at the top of the initial (

Home

) page.

Figure 10.1

Performance Page in Oracle Enterprise Manager

Figure 10.2

Top SQL Page

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.1

Monitoring Performance 431

Chapter 10

Near the bottom of this page is a link called

Top SQL

, which will bring
you to the page shown in Figure 10.2. On this page, you can monitor the
SQL statements that consumed (or are currently consuming) significant
resources in the database. The graph on the top shows the CPU, I/O, and
Wait activity in the system over time. The shaded box on the graph corre-
sponds to a five-minute window, and the table below the graph displays the
SQL statements that were executed in that window. Click on the rectangle
below the graph to move the shaded box to pick a specific five-minute win-
dow you are interested in. The page will automatically refresh every 15 sec-
onds by default, though this can be altered by changing the value in the

View Data

box in the top right of the screen.

The table below the graph in Figure 10.2 shows the SQL statements
sorted by a statistic such as by percentage of CPU consumed. Click on the
links in the SQL ID column to view the detailed SQL statement, its execu-
tion plan, and statistics, as shown in Figure 10.3. From this page it is possible
to peruse the execution history and tuning history of the SQL statement.

10.1.1 SQL Tuning Sets

Once you have identified the poorly performing SQL, you can create a col-
lection, called a

SQL Tuning Set

, to save these SQL statements persistently
in the database. The benefit of creating this collection is that you can keep
track of your problematic SQL over a period of time and can use it as input

Figure 10.3

SQL Details

TEAM LinG - Live, Informative, Non-cost and Genuine!

432

10.1

Monitoring Performance

to the tuning tools, SQL Access Advisor and SQL Tuning Advisor, which
we will discuss in sections 10.3 and 10.4 respectively.

A SQL Tuning Set can be created either using Oracle Enterprise Man-
ager or by the DBMS_SQLTUNE PL/SQL package.

Creating a SQL Tuning Set in Oracle Enterprise Manager

To create a SQL Tuning Set simply select one or more statements from the
table in Figure 10.2, and press the

Create SQL Tuning Set

button to bring
up the screen shown in Figure 10.4. Here you can provide a name and
description for the SQL Tuning Set and then press

OK

 to create it.

The available SQL Tuning Sets will then be listed in the screen shown in
Figure 10.5. From this page, we can manage the SQL Tuning Sets and also
run the SQL Access and SQL Tuning Advisors.

Creating a SQL Tuning Set Using the DBMS_SQLTUNE Package

SQL Tuning Sets can also be created using the DBMS_SQLTUNE pack-
age. The DBMS_SQLTUNE package allows you to create SQL Tuning Sets
from the SQL Cache, or any user table as long as it includes some specific
columns. In Chapter 5, we discussed how SQL Table functions can be used
in the FROM clause instead of an actual table. The SQL Tuning Set proce-
dures provide built-in table functions that allow you to load a workload
from the SQL Cache (also called the

Cursor Cache

), from the

Automatic

Figure 10.4

Creating a SQL Tuning Set

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.1

Monitoring Performance 433

Chapter 10

Workload Repository

 (described in Chapter 11), or from any user table
with the SQL statements.

Hint:

In order to use the DBMS_SQLTUNE package to create SQL Tun-
ing Sets, you must be familiar with programming using PL/SQL cursors

and SQL Table functions.

To avoid creating the SQL Tuning Set with too many statements, you
can specify a filter condition restricting the SQL statements to be consid-
ered. You can also specify up to three ranking measures used to prioritize
(i.e., order) the SQL statements and then request that only the top-N state-
ments or only the ones contributing up to a certain percentage of the rank-
ing measures should be included. When creating a SQL Tuning Set from
the SQL Cache, you can use any column from the V$SQL view as a filter
condition, and the numeric ones can be used as ranking measures. This
should become clearer from the following example, which shows how to
create a SQL Tuning Set from the SQL Cache:

DECLARE
 sqlsetname VARCHAR2(30);
 sqlsetcur dbms_sqltune.sqlset_cursor;
BEGIN
 sqlsetname := 'MY_STS_WORKLOAD';
 dbms_sqltune.create_sqlset(sqlsetname, 'SQL Cache STS');

Figure 10.5

Listing of SQL Tuning Sets

TEAM LinG - Live, Informative, Non-cost and Genuine!

434

10.1

Monitoring Performance

 OPEN sqlsetcur FOR
 SELECT VALUE(P)
 FROM TABLE(
 dbms_sqltune.select_cursor_cache(
 'SQL_TEXT like ''%purchases%''',
 NULL,
 'CPU_TIME', NULL, NULL, -- ranking measures
 NULL, 10) -- limit to 10
) P;
 dbms_sqltune.load_sqlset(sqlsetname, sqlsetcur);
end;
/

In this example, the CREATE_SQLSET procedure creates a SQL Tun-
ing Set with the given name (MY_STS_WORKLOAD) and description
(SQL Cache STS). The OPEN statement opens a cursor using the built-in
table function, SELECT_CURSOR_CACHE. We have specified a filter,
which says that the SQL_TEXT must include the word “purchases,” a
ranking measure as CPU_TIME, and a maximum limit of 10 statements.

You can now view the SQL Tuning Set by either using the list in Oracle
Enterprise Manager (Figure 10.5) or by using the dictionary views,
DBA_SQL_SET and DBA_SQLSET_STATEMENTS, as follows:

select substr(name,1,15) name,substr(owner,1,6) owner,

 substr(sql_text,1,30) description, sql_id

from dba_sqlset d, dba_sqlset_statements s

where id = sqlset_id and name = 'MY_STS_WORKLOAD';

NAME OWNER SQL_TEXT SQL_ID

--------------- ------ ------------------------- -------------

MY_STS_WORKLOAD EASYDW SELECT t.month, t.year, p 4bw858yjjb11x

MY_STS_WORKLOAD EASYDW SELECT count(distinct pro 4rt9sqw6tnrzz

MY_STS_WORKLOAD EASYDW SELECT sqlset_row (sql_id 5ts120q1a40b5

MY_STS_WORKLOAD EASYDW SELECT VALUE(P) FROM TABL 5z0pw0x58fj88

MY_STS_WORKLOAD EASYDW SELECT VALUE(P) FROM TABL 5zs8b269g338s

…

10 rows selected.

This is a very powerful interface and can be used when you need more
functionality and flexibility than are available in the graphical interface in
Oracle Enterprise Manager.

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.2

Advisor Central 435

Chapter 10

10.2 Advisor Central

Oracle Database 10

g

 Enterprise Manager includes several tools called

advi-
sors

 to aid in performance tuning of the system. The advisors can be
launched from a number of locations within Enterprise Manager. However,
the most convenient way to find and run any advisor is to follow the

Advi-
sor Central

 link, which can be found at the bottom of the

Performance

page in Figure 10.1.

Hint:

The performance tuning tools require the tuning pack of Oracle

Enterprise Manager.

Figure 10.6 shows the Advisor Central page, where you can find links to
the following advisors related to query performance tuning:

�

SQL Access Advisor, which gives advice on index and materialized
views

�

SQL Tuning Advisor, which identifies problems such as missing sta-
tistics, possibly bad SQL construction, and so on.

�

Memory Advisor, for tuning SGA and PGA memory

Figure 10.6

Advisor Central

TEAM LinG - Live, Informative, Non-cost and Genuine!

436

10.3

SQL Access Advisor

Additional advisors, such as Segment Advisor and ADDM, are discussed
separately in Chapter 11.

Hint:

To run the advisors in Oracle Database 10

g

 you must be granted the
ADVISOR system privilege, which you will already have if you have the

DBA role.

Many of the advisors in Oracle Database 10

g

, including the SQL Access
Advisor and the SQL Tuning Advisor, use a common container known as
an

Advisor Task

 to store their tuning parameter settings and the results.
On the Advisor Central page, you can monitor currently executing advisor
tasks and press the

View Result

 button in Figure 10.6 to look at recommen-
dations of completed tasks.

Hint:

By default, a task will be automatically deleted after 30 days, but
you can change the expiration date by using the

Change Default Expira-

tion

 button.

We will now look at each of the advisors in detail, starting with the SQL
Access Advisor.

10.3 SQL Access Advisor

One of the most critical aspects of tuning any query is to ensure that it is
making use of appropriate access structures such as indexes and materialized
views. In Chapter 4, we discussed various indexing techniques for a data
warehouse, and in Chapter 9, we saw how you could use a materialized
view to answer many different queries using query rewrite. Determining the
optimal set of materialized views and indexes to create for the application’s
workload of queries is often a difficult exercise. The materialized views must
work cooperatively with indexes defined on the base tables and may also
need additional indexing. If not done correctly, the application may be
slowed down and you could be wasting space and incur overhead to main-
tain unnecessary structures. The SQL Access Advisor in Oracle Enterprise
Manager is an invaluable tool for this purpose. This tool will take a given
workload of SQL statements and recommend the ideal set of materialized
view and indexes for that workload.

The SQL Access Advisor is available as a wizard in Oracle Enterprise
Manager. We recommend using the graphical interface; however, if you pre-

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.3

SQL Access Advisor 437

Chapter 10

fer to use the command-line interface, you could use the
DBMS_ADVISOR PL/SQL package. We will illustrate both of these
mechanisms.

Hint:

In the previous versions of Oracle, there was a tool called the Sum-
mary Advisor, which only recommended materialized views but no indexes.
This tool has now been replaced by the SQL Access Advisor, which also rec-

ommends indexes.

Figure 10.7 shows the overall flow of the SQL Access Advisor.

The SQL Access Advisor takes as input a workload of SQL statements
and some optional tuning parameters. It recommends indexes, materialized
views, and any materialized view logs to make the recommended material-
ized views fast refreshable (see Chapter 7). As mentioned in section 10.2,
the analysis parameters and the recommendations resulting from the analy-
sis are stored in an Advisor Task and can be monitored from the Advisor
Central page (see Figure 10.6). Note that many of these steps are transpar-
ently done for you by the Oracle Enterprise Manager wizard; therefore, you
do not need to even know these details unless you plan to use the PL/SQL
procedures.

The workload used by the SQL Access Advisor can come from one of
the following sources:

Figure 10.7

SQL Access Advisor Flow

TEAM LinG - Live, Informative, Non-cost and Genuine!

438

10.3

SQL Access Advisor

1.

A SQL Tuning Set

: In section 10.1.1, we discussed how to col-
lect SQL statements from the Top SQL page into a SQL Tuning
Set. Once you have created a SQL Tuning Set, you can specify it
as a workload source to the SQL Access Advisor.

2.

The SQL Cache

: This consists of the current contents of the
SQL Cache.

3.

A user-specified table

: The workload table may be a table in any
schema, which contains the text of the SQL statements.

4.

A Hypothetical Workload

: The SQL Access Advisor can gener-
ate hypothetical SQL statements using dimension and constraint
information from a schema. This can be very useful when you are
designing your application schema and cannot run the queries
yet.

5.

An Oracle 9

i

 Summary Advisor Workload:

If you have used
the Summary Advisor in Oracle 9i and have some existing work-
load, you can reuse this workload for the SQL Access Advisor. To
do this, you must provide the SQL Access Advisor with the work-
load id of the Summary Advisor workload. Note that this option
is not available in the graphical interface.

We will now walk through the various steps of the SQL Access Advisor
wizard in Oracle Enterprise Manager.

10.3.1 SQL Access Advisor Wizard

The SQL Access Advisor can be launched from the Advisor Central page
shown in Figure 10.6. Alternatively, it may be launched by specifying a
SQL Tuning Set as a workload source and then pressing the

Run SQL
Access Advisor

 button in Figure 10.5.

Choosing a Workload Source

If the SQL Access Advisor is launched from Advisor Central, you will first
see the screen shown in Figure 10.8, where you must choose a workload
source. (When the SQL Access Advisor is launched directly on a SQL Tun-
ing Set, this screen is skipped.)

In Figure 10.8, we have decided to specify a user-defined workload that
is contained in the table EASYDW.USER_WORKLOAD. The table used

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.3

SQL Access Advisor 439

Chapter 10

for a SQL Access Advisor workload can be any user table but must have col-
umns, as shown in the following example:

CREATE TABLE user_workload
(MODULE VARCHAR2(48),
 ACTION VARCHAR2(32),
 BUFFER_GETS NUMBER,
 CPU_TIME NUMBER,
 ELAPSED_TIME NUMBER,
 DISK_READS NUMBER,
 ROWS_PROCESSED NUMBER,
 EXECUTIONS NUMBER,
 OPTIMIZER_COST NUMBER,
 LAST_EXECUTION_DATE DATE,
 PRIORITY NUMBER,
 SQL_TEXT CLOB,
 STAT_PERIOD NUMBER,
 USERNAME VARCHAR2(30))

Although this table has many columns, only a couple of them are man-
datory columns—namely, the sql_text, which is the complete text of the
SQL statement, and the username, which is the name of the user who will
execute that SQL statement. The PRIORITY column is a user-settable pri-
ority for each SQL statement (1 = HIGH, 2 = MEDIUM, or 3 = LOW).
The analysis will make trade-offs in favor of the high-priority SQL state-
ments. If not specified, all statements are treated on an equal footing. All

Figure 10.8

SQL Access Advisor: Choosing a Workload Source

TEAM LinG - Live, Informative, Non-cost and Genuine!

440

10.3

SQL Access Advisor

other columns are optional but provide useful statistics for the analysis and
will improve the quality of the recommendations.

Alternatively, we can choose the workload source to be a SQL Tuning
Set, the current contents of the SQL Cache, or a hypothetical workload
generated from a given set of schemas and tables.

At the bottom of Figure 10.8 is a link named

Show Advanced Options

.
Clicking on this link will allow you to set additional options, as shown in
Figure 10.9.

Here, you can indicate whether the workload is for a primarily read-only
application; in this case, the analysis will ignore the impact of index and
materialized view maintenance. Otherwise, the SQL Access Advisor will try
to identify the maintenance impact from the DML statements in the work-
load. Unless you are in the initial design phase of the application, it is wise
to allow the Advisor to consider the maintenance impact.

Hint:

In order for the SQL Access Advisor to correctly consider mainte-
nance impact of the recommended indexes and materialized views, the
workload must include a representative sample of DML statements, such as

INSERT, UPDATE, DELETE, and MERGE.

Figure 10.9

SQL Access Advisor: Specifying Workload Filtering Options

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.3

SQL Access Advisor 441

Chapter 10

It is also possible to specify if the SQL Access Advisor should consider
dropping existing access structures and replacing them with new ones. If
you are unsure if your workload covers all relevant SQL for the application,
you should choose not to recommend dropping any access structures.

When using a workload source such as the SQL cache, it is possible to
have a large number of SQL statements not interesting to the application
you are trying to tune. In order to achieve a more focused tuning, it is
advisable that you should specify various criteria to narrow down the rele-
vant SQL statements in the workload. By restricting the workload in this
manner, the SQL Access Advisor can work in a more focused manner and
thereby its analysis would be faster.

In the example, shown in Figure 10.9, we have specified that only SQL
statements executed by the user EASYDW and containing tables in the
EASYDW schema should be considered for analysis. You could also specify
that the top-N most resource consuming SQL be analyzed, or that only
SQL from a certain application (specified using the MODULE and
ACTION attributes) should be considered.

Specifying Tuning Parameters

Once the workload has been chosen, press the

Next

 button to proceed to
the screen shown in Figure 10.10, where you can pick various recommen-
dation options for the SQL Access Advisor, as follows.

Figure 10.10

SQL Access Advisor: Recommendation Options

TEAM LinG - Live, Informative, Non-cost and Genuine!

442

10.3

SQL Access Advisor

Recommendation Types

: The SQL Access Advisor can recommend
Indexes, Materialized Views, or both. If the

Indexes

 option is chosen, it will
recommend either B*tree or bitmap indexes. If the

Materialized Views

option is chosen, it will recommend materialized views and also any materi-
alized view logs required for fast refresh. If both

 Indexes

and

 Materialized
Views

 are chosen, it will recommend all of these, as well as indexes on the
materialized views.

Advisor Mode:

The SQL Access Advisor has two modes:

Limited

 and

Comprehensive

. In the comprehensive mode, it will perform an exhaustive
analysis of the entire workload; however, this can take significantly longer
to run, depending on the size of the workload. If you would like a quick
analysis of the workload, you can specify the limited mode; however, you
may not get the best possible recommendations. Use the comprehensive
mode as much as possible, unless you have a really large workload.

If you click the

Show Advanced Options

 link in Figure 10.10, you can set
some additional recommendation options, as shown in Figure 10.11. The
advanced options allow you to specify a storage limit (in megabytes) that
the recommended access structures should fit within (if created) and also to
pick the tablespace and schema where any recommended materialized views
and indexes should reside. Note that this information is used when imple-
menting the recommendations, as we will see later.

Figure 10.11

SQL Access Advisor: More Recommendation Options

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.3 SQL Access Advisor 443

Chapter 10

Generating Recommendations

Pressing the Next button will bring up the screen shown in Figure 10.12,
where you can name the advisor task that will contain the results of the
analysis. It’s worth choosing a sensible name, because you will need this to
retrieve your recommendations from Advisor Central, especially if you wish
to come back at a later date and review them. The analysis can be scheduled
to execute immediately or at a specified later date.

On pressing the Next button, you will see the review screen shown in
Figure 10.13, where you can see all your choices at a glance. To make any
changes, go back to the previous screens by using the Back buttons.

Once you are satisfied with the settings, you click the Submit button,
which will bring you back to Advisor Central; from here you can monitor
the status of your job (see Figure 10.6).

Hint: You will need to click the Refresh button on the top right corner in
Figure 10.6 to check if the status has changed.

Figure 10.12 SQL Access Advisor: Schedule

TEAM LinG - Live, Informative, Non-cost and Genuine!

444 10.3 SQL Access Advisor

Viewing the Results of the Analysis

Once the status of the task in Advisor Central indicates Completed, you can
select the task and click the View Result button, which will bring you to the
recommendations page, shown in Figure 10.14.

Figure 10.13 SQL Access Advisor: Review Page

Figure 10.14 SQL Access Advisor: Recommendations

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.3 SQL Access Advisor 445

Chapter 10

There are two ways to view the results of the SQL Access Advisor:

� Recommendations View: This view shows each recommendation, con-
sisting of indexes and/or materialized views, along with the estimated
performance improvement obtained from that recommendation.

� SQL Statement View: This view shows each SQL statement in the
workload along with the specific recommendation for that statement
and the performance improvement for that statement.

Hint: To switch between these two views choose the required view from the
drop-down box labeled View in Figure 10.14. We will look at each of these
views in detail.

Recommendations View

Figure 10.14 shows the recommendations view, where you can see a bar
graph of the estimated improvement in your workload for each recommen-
dation. You can also see the estimated space required to implement that rec-
ommendation and the number of SQL statements benefited by that
recommendation.

Each recommendation consists of a series of actions to CREATE new
materialized views or indexes or to DROP or RETAIN existing ones. There
may also be actions to CREATE or ALTER materialized view logs for the
recommended materialized views. You can see the actions for each recom-
mendation by clicking on the link in the Recommendation ID column for
that recommendation. For example, recommendation ID 4, shown in Figure
10.15, consists of a materialized view and two associated materialized view
logs. There is also an auxiliary action to gather statistics on the materialized
view once it is created. You can also see the SQL statement(s) that it benefits.

The text of the materialized view can be seen by clicking on the
CREATE MATERIALIZED VIEW link in the Action column. Or you can
see the SQL for all the actions in a recommendation by clicking the Show
SQL button in Figure 10.14. The SQL for Recommendation ID 4 is shown
in Figure 10.16.

Recommendation ID 3 consists of an index, as shown in Figure 10.17.
Clicking on the CREATE INDEX link will show the detailed columns in
the index key.

TEAM LinG - Live, Informative, Non-cost and Genuine!

446 10.3 SQL Access Advisor

In both Figure 10.15 and Figure 10.17, you can edit the names of the
recommended structures and the tablespace and schema where they reside.

Figure 10.15 SQL Access Advisor: Recommendation Details

Figure 10.16 SQL Access Advisor: Recommendation SQL

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.3 SQL Access Advisor 447

Chapter 10

SQL Statement View

The alternate way to view the recommendations is by the SQL statements
in the workload, as shown in Figure 10.18.

Figure 10.17 SQL Access Advisor: Index Recommendation

Figure 10.18 Recommendation: SQL View

TEAM LinG - Live, Informative, Non-cost and Genuine!

448 10.3 SQL Access Advisor

This view shows the SQL statements that contribute the most improve-
ment in the overall performance of the workload. It also shows the original
optimizer cost (as shown by an EXPLAIN PLAN) and the estimated reduc-
tion in cost (and thereby increase in performance), if the recommendation
were implemented. For example, SQL statement ID 95 was improved by
75 percent. Just as in the recommendations view, you can see the detailed
actions in the recommendation by clicking on the links in the Recommenda-
tion ID column.

Implementing the Recommendations

To choose the recommendation(s) you would like to implement simply
click on the check boxes in the Select column in Figure 10.14. Creating the
access structures can be time consuming and therefore you may want to
schedule the implementation during an appropriate maintenance window.
Pressing the Schedule Implementation button will bring you to the page
shown in Figure 10.19, where you can specify parameters to schedule the
implementation. Once you press the Submit button, the implementation
job will be scheduled and you will be returned to the Advisor Central page
where the status of the job can be monitored.

As we have seen, the SQL Access Advisor wizard is extremely simple to
use, and, with a few simple choices, you can tune your application for

Figure 10.19 SQL Access Advisor: Schedule Implementation

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.3 SQL Access Advisor 449

Chapter 10

materialized views and indexes. Next, we will take a brief look at the com-
mand-line interface for the SQL Access Advisor.

10.3.2 DBMS_ADVISOR PL/SQL Package

The SQL Access Advisor can also be run using the PL/SQL procedures in
the DBMS_ADVISOR package. The flow for using the command-line
interface is the same as the graphical interface. The following example
shows the various steps involved in running the SQL Access Advisor on a
workload from the SQL Cache.

Step 1: Creating a Workload Named MY_WORKLOAD

The first step is to invoke the CREATE_SQLWKLD procedure to create a
workload object, which will store the SQL statements in the workload. In
this example we are creating a workload object named MY_WORKLOAD.

variable workload_name varchar2(255);
execute :workload_name := 'MYWORKLOAD';
execute dbms_advisor.create_sqlwkld(:workload_name);

Step 2: Specifying Workload Parameters for Filtering

You can also specify various criteria to narrow down the workload using the
SET_SQLWKLD_PARAMETER procedure. For example, you can specify
that the statements in the SQL Cache should be ordered using their
ELAPSED_TIME, and only the top-10 statements should be considered.

execute dbms_advisor.set_sqlwkld_parameter(:workload_name,
 'ORDER_LIST',
 'ELAPSED_TIME');
execute dbms_advisor.set_sqlwkld_parameter(:workload_name,
 'SQL_LIMIT', 10);

Step 3: Load Workload Statements

The next step is to load the SQL statements into the workload. We are
loading the workload from the SQL Cache. The filter parameters described
in step 2 will be used to determine the statements being loaded.

variable saved_stmts number;
variable total_stmts number;
variable failed_stmts number;

execute dbms_advisor.import_sqlwkld_sqlcache(:workload_name,
 'APPEND', 2,
 :total_stmts,
 :saved_stmts,
 :failed_stmts);

TEAM LinG - Live, Informative, Non-cost and Genuine!

450 10.3 SQL Access Advisor

Step 4: Create a SQL Access Advisor Task and Set Parameters

The next step is to use the CREATE_TASK procedure to create a SQL
Access Advisor Task to store the analysis parameters and the recommenda-
tions. This is the time to set various parameters such as whether the execu-
tion should be INDEX_ONLY and whether the analysis should be limited
or comprehensive.

variable task_id number;
variable task_name varchar2(255);

execute :task_name := 'MYTASK';
execute dbms_advisor.create_task('SQL Access Advisor',
 :task_id, :task_name);

execute dbms_advisor.set_task_parameter(:task_name,
 'EXECUTION_TYPE',
 'INDEX_ONLY');

Step 5: Create a Link between Workload and Task

Once both the workload and the task are created, they must be linked using
the ADD_SQLWLKD_REF procedure.

execute dbms_advisor.add_sqlwkld_ref(:task_name, :workload_name);

Step 6: Execute the Task to Generate Recommendations

Finally, execute the task to generate the recommendations. To obtain a
SQL script for the recommended access structures, use the
GET_TASK_SCRIPT procedure. This can be run later to create the
access structures. Note that you must specify a DIRECTORY object (in
this example, ADVISOR_RESULTS) where the script will be placed and
you must have write permissions on this directory object.

execute dbms_advisor.execute_task(:task_name);

execute dbms_advisor.create_file(
 dbms_advisor.get_task_script(:task_name),
 'ADVISOR_RESULTS', 'advisor_script.sql');

The following is an excerpt from a SQL Access Advisor script:

Rem SQL Access Advisor: Version 10.1.0.1 - Production
Rem
Rem Username: EASYDW
Rem Task: MYTASK
Rem Execution date: 19/06/2004 23:59

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.3 SQL Access Advisor 451

Chapter 10

Rem

…
CREATE BITMAP INDEX "EASYDW"."_IDX$$_0188000E"
 ON "EASYDW"."CUSTOMER"
 ("GENDER")
 COMPUTE STATISTICS;
…

10.3.3 Templates

The PL/SQL command-line interface provides some features not available
in the graphical user interface. One useful feature is templates, which allow
you to define a model task, which can then be used as a starting point for
other tasks. To create a template, use the same procedure as creating a task
and set various analysis parameters. Then, when you need to create a new
task with the same parameters, you just create the task from the template.

The following example shows how to create a template named
MY_TEMPLATE and then use it to create a new task named MY_TASK.

Step1: Defining a Template

To create a template, use the CREATE_TASK procedure but set the
is_template parameter to TRUE. In this example, the template sets up the
default naming conventions for the recommended materialized views and
indexes.

variable template_name varchar2(30);
execute :template_name := 'MY_TEMPLATE';
execute dbms_advisor.create_task
 ('SQL Access Advisor',:template_id,
 :template_name,is_template=>'TRUE');

execute dbms_advisor.set_task_parameter(:template_name,
 'INDEX_NAME_TEMPLATE',
 'SH_IDX$$_<SEQ>');

execute dbms_advisor.set_task_parameter(:template_name,
 'MVIEW_NAME_TEMPLATE',
 'SH_MV$$_<SEQ>');

Step2: Create a Task Using the Template

Now we can use this template to create a task by specifying the template
parameter in the CREATE_TASK procedure.

variable task_id number;
execute dbms_advisor.create_task
 ('SQL Access Advisor', :task_id,
 'MY_TASK', template=>'MY_TEMPLATE');

TEAM LinG - Live, Informative, Non-cost and Genuine!

452 10.4 SQL Tuning Advisor

10.3.4 Quick_Tune

Another procedure available via the command-line interface but not in the
graphical user interface is the ability to analyze a single SQL statement for
materialized views and indexes using the QUICK_TUNE procedure. This
is a useful tool if you have a problematic SQL query that needs to be
resolved immediately and you do not have the time to collect an entire
workload and analyze it. Note that if you would like to set any recommen-
dation options for QUICK_TUNE, you must first create a template and
then pass it to this procedure.

The following example shows how to run the QUICK_TUNE procedure
to analyze a single SQL statement. We use the template MY_TEMPLATE,
defined earlier.

variable task_name varchar2(255);
variable sql_stmt varchar2(4000);

BEGIN
 :sql_stmt := ' SELECT count(distinct product_id) as num_cust
 FROM purchases f, customer c
 WHERE f.customer_id = c.customer_id and
 c.gender = :1'

 :task_name := 'MY_QUICKTUNE_TASK';
 dbms_advisor.quick_tune('SQL Access Advisor',
 :task_name, :sql_stmt,
 template=>'MY_TEMPLATE');
END;
/

Once the procedure completes, you can generate a script just like we did
with the previous example.

Unfortunately, due to limited space, we cannot discuss all the proce-
dures in the DBMS_ADVISOR package in detail.

The next section discusses the SQL Tuning Advisor, which is a tool that
complements the SQL Access Advisor to tune SQL statements.

10.4 SQL Tuning Advisor

It is not always possible to create a new access structure to fix a long-run-
ning query. Perhaps it would take too long to create the index or it is not
possible to do so except during the maintenance window. Or maybe the
problem is that there is a skew in the data distribution, which causes the

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.4 SQL Tuning Advisor 453

Chapter 10

optimizer to pick a bad execution plan. There may be alternative ways to
express the query that are more efficient. In these situations, when you need
a quick fix targeted at a specific SQL statement, you should try the SQL
Tuning Advisor.

The SQL Tuning Advisor takes as input one or more SQL statements
(or a SQL Tuning Set) and gives recommendations to fix each SQL state-
ment using one of the following techniques:

� Identifying if a table has changed significantly and its statistics are no
longer accurate.

� Identifying potential problems in the way the SQL is written. For
example, a query may be missing a join condition between two
tables, leading to an extremely expensive Cartesian product.

� Identifying if the internal estimates used by the cost-based optimizer
are off the mark and creating a corrective structure known as a Profile.

The SQL Tuning Advisor is available as a graphical user interface in
Oracle Enterprise Manager and as a command-line interface in the
DBMS_SQLTUNE PL/SQL package. We will review both these interfaces.

10.4.1 SQL Tuning Advisor in Enterprise Manager

The SQL Tuning Advisor has a simple one-page graphical user interface in
Oracle Enterprise Manager. This Advisor can be launched from the Top SQL
page, discussed in section 10.1 (see Figure 10.2), by selecting one or more
SQL statement(s) and pressing the Run SQL Tuning Advisor button. Alterna-
tively, it is possible to first create a SQL Tuning Set and then launch the SQL
Tuning Advisor on it from the screen in Figure 10.5. Once you launch it,
you will get a screen similar to the one in Figure 10.20.

As with the SQL Access Advisor, the SQL Tuning Advisor stores its
inputs and recommendations in an Advisor Task, for which you may pro-
vide a name and description. We recommend you provide a meaningful
name or description so you can identify the task in Advisor Central at a
later time.

The SQL Tuning Advisor has two modes of analysis: Limited and Com-
prehensive. In the limited mode, it will spend around one second per state-
ment and do a very quick analysis to look for major problems such as
missing statistics. Typically, you would want to run it in the comprehensive

TEAM LinG - Live, Informative, Non-cost and Genuine!

454 10.4 SQL Tuning Advisor

mode, where it will attempt to check the optimizer’s cost estimates, check
for possible problems in the SQL, look for better execution plans, and so
on. In the comprehensive mode, you can specify a maximum time limit for
the analysis.

The Advisor can be run immediately or scheduled to run later using the
scheduling mechanism in Oracle Enterprise Manager. If you ask to run it
immediately, you will get a screen (not shown here) showing the progress of
the Advisor until it completes. If you schedule it for later, you can monitor
its progress from the Advisor Central page, shown in Figure 10.6, just as
you did for the SQL Access Advisor.

Figure 10.21 shows the summary of the recommendations of the SQL
Tuning Advisor. For each SQL statement, there will be a check mark indi-
cating the type(s) of recommendations produced. Select any one SQL state-
ment and press the View Recommendation button to see its detailed
recommendation. We will now look at a couple of these recommendations.

Figure 10.22 shows a recommendation for restructuring a SQL state-
ment. Recommendations in this category require the user to change the
SQL text to a different statement, which is not generally equivalent to the
original one, but, based on application knowledge, may perform better. For
example, suppose a UNION operator were present in the SQL. It is possi-
ble that the query would not produce any duplicates (which can only be
determined by the application developer), and hence a UNION ALL oper-

Figure 10.20 The SQL Tuning Advisor

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.4 SQL Tuning Advisor 455

Chapter 10

ator could be used instead and would be much faster. Another common
problem is a missing join between two tables, which could be an oversight
on the part of the application developer.

Figure 10.21 SQL Tuning Advisor Recommendation Summary

Figure 10.22 SQL Tuning Recommendation: Restructure SQL

TEAM LinG - Live, Informative, Non-cost and Genuine!

456 10.4 SQL Tuning Advisor

Hint: To implement a Restructure SQL type of recommendation, you
must be able to physically modify the application or script that launched
that SQL statement. Also, care should be taken to ensure that the new SQL
produces the same result as the original one, based on your application
knowledge.

Note that the SQL Tuning Advisor does not recommend transforma-
tions that could transform a SQL into another, better-performing but
semantically equivalent SQL statement. This is because the cost-based opti-
mizer will automatically and transparently do these transformations when-
ever applicable! One example of such a transformation is query rewrite
using materialized views, which we discussed in Chapter 9.

Profiles

Another type of recommendation produced by the SQL Tuning Advisor is
a profile, which keeps track of various statistics on the table, as well as
predicates and joins in a SQL statement, to assist the optimizer in produc-
ing a better execution plan. These statistics are collected by actually run-
ning the query on a sample of the data, and by verifying if the optimizer’s
estimates match the values found during actual execution. There could be
many reasons why the optimizer might produce a bad plan—for example,
data skew or stale statistics. The SQL profile will provide information that
will allow the optimizer to correct its past mistakes. Once a profile is
implemented by pressing theImplement button in Figure 10.23, the opti-
mizer will then automatically use the improved estimates to produce a
more efficient execution plan.

Hint: You must implement the profile for the new execution plan to take
effect.

Note that sometimes the SQL Tuning Advisor may indicate that a very
critical index is missing on a SQL statement. However, this is a very limited
analysis and should not be considered as advice to implement the index
right away. You should instead run the SQL Access Advisor on that SQL
Tuning Set to obtain the comprehensive access structure advice.

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.4 SQL Tuning Advisor 457

Chapter 10

10.4.2 The DBMS_SQLTUNE PL/SQL Package

In section 10.1.1, we saw how the DBMS_SQLTUNE package can be used
to create a SQL Tuning Set. This package also provides PL/SQL procedures
to run the SQL Tuning Advisor and to create and manage SQL profiles.

The SQL Tuning Advisor can be run either on a single SQL statement
or on a SQL Tuning Set. The following example illustrates how to run
this advisor on a single SQL statement. Begin by first using the
CREATE_TUNING_TASK procedure to create a task, supplying the
SQL statement, and then call EXECUTE_TUNING_TASK to analyze
the statement.

variable task_name varchar2(30);
declare
 sql_stmt varchar2(4000);
begin
 -- prepare task to tune
 sql_stmt :=
 'SELECT p.product_id,
 SUM(ps.purchase_price) as sum_of_sales,
 COUNT (ps.purchase_price) as total_sales
 FROM product p, purchases ps
 WHERE ps.customer_id
 not in (select customer_id
 from customer where country = ''US'')
 GROUP BY p.product_id';

Figure 10.23 SQL Tuning Recommendation: Create Profile

TEAM LinG - Live, Informative, Non-cost and Genuine!

458 10.4 SQL Tuning Advisor

 task_name
 := dbms_sqltune.create_tuning_task(sql_text=>sql_stmt);
 -- execute the task created above
 dbms_sqltune.execute_tuning_task(:task_name);
end;
/

The recommendations and any modified query execution plans can
then be viewed using the REPORT_TUNING_TASK function, as shown
in the following example.

set long 3000

select dbms_sqltune.report_tuning_task(:task_name)

from dual;

--

GENERAL INFORMATION SECTION

--

Tuning Task Name : TASK_497

Scope : COMPREHENSIVE

…

FINDINGS SECTION (2 findings)

--

1- SQL Profile Finding (see explain plans section below)

--

A potentially better execution plan was found for this statement.

 Recommendation (estimated benefit: 81%)

 --

 Consider accepting the recommended SQL profile.

 execute :profile_name :=

 dbms_sqltune.accept_sql_profile(task_name =>'TASK_497');

…

If the recommendation includes a SQL profile, as in the preceding
example, you can use the ACCEPT_SQL_PROFILE procedure to accept
the recommendation and create the profile. The next time the SQL state-
ment is executed, the optimizer will use this profile to adjust its estimates
when determining an execution plan.

Hint: The REPORT_TUNING_TASK function returns the report as a
CLOB column, and hence you must set the long parameter in SQL*Plus
and use a SELECT statement to display this column.

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.5 Memory Advisor 459

Chapter 10

Instead of a single statement, if you would like to tune a SQL Tuning
Set, you must pass the name of a SQL Tuning Set to the
CREATE_TUNING_TASK procedure. The remaining steps are identical
to the preceding example.

We have seen how the SQL Access Advisor and SQL Tuning Advisor
help find and fix problems with the query performance. However, even
with the most optimal plan the performance may be poor if there is a prob-
lem during the SQL statement execution. In the next two sections, we will
discuss two common problems: insufficient memory and parallel execution
problems that can affect query performance.

10.5 Memory Advisor

Good memory configuration is extremely important in the data-intensive
applications typical of a data warehouse. The total available physical mem-
ory on your system must be properly split between the Operating System,
Oracle Shared Global Area (SGA), Process Global Area (PGA), and any
other applications running on the system. The SGA is shared by all Oracle
server processes. Among other things, the SGA contains the buffer cache,
which caches data blocks, and the shared pool, which caches dictionary
metadata and compiled cursors. PGA is a separate private memory used by
each Oracle server process. PGA memory is used for complex SQL opera-
tions, such as sorts, hash joins, and bitmap merges. PGA is also used as
buffers for bulk loads and other processing such as PL/SQL and Java. If
available physical memory is insufficient to satisfy all these needs, it will
result in the Operating System writing pages to disk to free up memory
(known as thrashing), causing performance to degrade rapidly.

Oracle Database 10g includes advisors to help tune both PGA and SGA
memory. Oracle Enterprise Manager provides a graphical interface to these
tools.

10.5.1 Tuning PGA Memory

PGA memory is the most critical memory parameter for the resource-inten-
sive queries found in a data warehouse. In a data warehouse, PGA memory is
used by SQL operations, such as sorts, hash joins, bitmap merges, and bulk
loads. The amount of PGA memory used by each operation is called its work
area. Due to the memory-intensive nature of these operations, tuning the
work areas is very crucial to ensure good query performance. If enough mem-
ory is not available, intermediate data may need to be written to temporary

TEAM LinG - Live, Informative, Non-cost and Genuine!

460 10.5 Memory Advisor

segments on disk, which can slow down performance significantly. Prior to
Oracle 9i, in order to tune query performance, the DBA had to tune various
initialization parameters, such as SORT_AREA_SIZE, HASH_AREA_
SIZE, CREATE_BITMAP_AREA_SIZE, and BITMAP_MERGE_AREA_
SIZE, to get good performance. However, this was a very difficult and time-
consuming process because, the ideal values for these parameters may vary
from query to query and may depend on the load on the system. Oracle 9i
introduced the automatic PGA memory management feature to ease this bur-
den. Additionally, in Oracle Database 10g the PGA advisor can be used to
determine the ideal memory size setting for the system.

Automatic PGA memory management will automatically balance the
work area sizes across SQL statements so as to make best use of available
memory. The DBA only needs to specify the total amount of memory
available for the database instance by setting the initialization parameter,
PGA_AGGREGATE_TARGET. To enable automatic memory manage-
ment the initialization parameter WORKAREA_SIZE_POLICY must be
set to AUTO (setting it to MANUAL will revert back to manual memory
management).

Hint: The automatic PGA memory management is not available when you
use the shared server–based operation in Oracle. For a data warehouse, the
number of connections is usually not an issue; hence, it is recommended to
use the dedicated server model.

Before we discuss how to tune PGA memory, let us learn how to moni-
tor the PGA memory usage.

Monitoring PGA Memory Usage

The amount of PGA memory allocated and used by each Oracle server proc-
ess can be seen in the V$PROCESS view, as follows. The PGA_USED_
MEM column represents the memory currently in use, PGA_ALLOC_
MEM column is total memory currently allocated by the process (some of it
may be freed but not yet returned to the operating system), and
PGA_MAX_MEM is the maximum ever allocated by that process. In a well-
tuned system, every process should be allocating adequate memory but no
more than necessary.

SELECT spid, pga_used_mem, pga_alloc_mem, pga_max_mem
FROM v$process;

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.5 Memory Advisor 461

Chapter 10

SPID PGA_USED_MEM PGA_ALLOC_MEM PGA_MAX_MEM
------------ ------------ ------------- -----------
340 132552 198880 198880
341 135056 3371624 3371624
343 4349880 7570468 7570468
…

The memory used by the work area of SQL statements is seen in the
V$SQL_WORKAREA view. You can join to V$SQL to get the complete
text for the SQL statements. (We have edited the following output to show
only part of the text for lack of space.)

SELECT sql_text, operation_type,
 estimated_optimal_size estsize, last_memory_used
FROM v$sql_workarea w, v$sql s
WHERE w.address = s.address
AND parsing_schema_id = USERENV('SCHEMAID') ;

SQL_TEXT OPERATION_TYPE ESTSIZE LAST_MEMORY_USED
--------------- -------------- ------- ----------------
SELECT t.month, GROUP BY (SORT) 56320 49152
SELECT t.month, HASH-JOIN 874496 628736
...

While a query execution is in progress, you can monitor the work area
usage in the V$SQL_WORKAREA_ACTIVE view.

-- shows the current workarea usage during an execution

SELECT operation_type, work_area_size, expected_size,

 actual_mem_used

FROM v$sql_workarea_active;

OPERATION_TYPE WORK_AREA_SIZE EXPECTED_SIZE ACTUAL_MEM_USED

-------------- -------------- ------------- ---------------

HASH-JOIN 1087488 1086464 628736

Complex SQL operations need adequate work area memory; otherwise,
the operation may need to spill over to temporary segments on disk. The
optimal memory size is one that allows the entire operation to be per-
formed entirely in memory. If memory is somewhat less than optimal, then
one or more extra passes over the data may be required. A one-pass opera-
tion is the next best to the optimal and will perform reasonably well and as
work area sizes get larger, may be the typical case. However, a multipass
operation will severely degrade performance and should be avoided as
much as possible.

TEAM LinG - Live, Informative, Non-cost and Genuine!

462 10.5 Memory Advisor

Hint: A well-tuned system should have a high percentage of optimal and
one-pass executions and very few, if any, multipass executions.

The view V$SQL_WORKAREA_HISTOGRAM can be used to find
the distribution of optimal, one-pass, and multipass query executions in
your system. The view shows the number of optimal, one-pass, and multi-
pass executions for different ranges of work area sizes. For example, in the
following query, most executions use work area sizes under 2MB and are
able to execute with the optimal amount of PGA memory. There is one
query with work areas between 4 and 8 MB, which needed a one-pass exe-
cution and two queries with work areas between 8 and 16 MB, which
needed a multi-pass execution.

SELECT LOW_OPTIMAL_SIZE LOW, HIGH_OPTIMAL_SIZE HIGH,
 OPTIMAL_EXECUTIONS OPT, ONEPASS_EXECUTIONS Onepass,
 MULTIPASSES_EXECUTIONS multipass
FROM V$SQL_WORKAREA_HISTOGRAM
WHERE TOTAL_EXECUTIONS != 0;

 LOW HIGH OPT ONEPASS MULTIPASS
---------- ---------- ---------- ---------- ----------
 2048 4095 4712 0 0
 65536 131071 44 0 0
 131072 262143 23 0 0
 262144 524287 20 0 0
 524288 1048575 178 0 0
 1048576 2097151 34 0 0
 4194304 8388607 0 1 0
 8388608 16777215 0 0 2

Now that we understand how to monitor PGA memory usage and iden-
tify any multipass executions, let us see how we go about tuning it.

Tuning PGA_AGGREGATE_TARGET

As we mentioned earlier, available physical memory on a system running
Oracle must be distributed among the Operating System, SGA, and PGA.
For a data warehouse, a good rule of thumb is to set the
PGA_AGGREGATE_TARGET initially to about 40 percent to 50 percent
of available physical memory and then tune it based on execution of a real
workload.

Oracle Database 10g will continuously monitor how much PGA mem-
ory is being used by the entire instance by collecting statistics during execu-
tions of queries. This information can be seen in the V$PGASTAT view.

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.5 Memory Advisor 463

Chapter 10

Using these statistics, it estimates how the performance would vary if the
PGA_ AGGREGATE_TARGET were set to different values. This informa-
tion is published in the V$PGA_ TARGET_ADVICE view and can be
used to tune the PGA_AGGREGATE_TARGET parameter.

Hint: Set the initialization parameter STATISTICS_LEVEL to TYPICAL
(default) or ALL; otherwise, the V$PGA_TARGET_ADVICE view is not
available.

The following query shows the various statistics in V$PGASTAT:

SELECT * FROM V$PGASTAT;

NAME VALUE UNIT

-- ------------

aggregate PGA target parameter 15728640 bytes

aggregate PGA auto target 4194304 bytes

global memory bound 786432 bytes

total PGA inuse 16775168 bytes

total PGA allocated 50482176 bytes

maximum PGA allocated 59011072 bytes

total freeable PGA memory 6094848 bytes

PGA memory freed back to OS 23986176 bytes

total PGA used for auto workareas 460800 bytes

maximum PGA used for auto workareas 1323008 bytes

total PGA used for manual workareas 0 bytes

maximum PGA used for manual workareas 529408 bytes

over allocation count 426 <- non zero

bytes processed 69940224 bytes

extra bytes read/written 62337024 bytes

cache hit percentage 60.87 percent <- too low

16 rows selected.

The first step is to look at the top two lines of this output: the aggregate
PGA target parameter, which is the current setting of PGA_
AGGREGATE_TARGET, and the aggregate PGA auto target, which Ora-
cle has calculated as the total memory it can use for SQL work areas. The
difference is the estimated memory needed for other processing, such as PL/
SQL, and is not tuned by the automatic memory management feature. In
our example, the PGA_AGGREGATE_TARGET is 15.7MB, and the total
amount available for work areas is 4.2MB. Note that if you find the auto
target is much smaller than the PGA_AGGREGATE_TARGET, as is the
case in our example, this is one indication that there is not enough PGA
memory for work areas and you may need to increase it.

TEAM LinG - Live, Informative, Non-cost and Genuine!

464 10.5 Memory Advisor

To confirm whether your PGA_AGGREGATE_SETTING is too small,
you should look at two quantities - the cache hit percentage and the over-
allocation count, underlined in the preceding output. The cache hit per-
centage indicates the percentage of work areas that operated with an opti-
mal allocation of memory. The overallocation count indicates how many
times Oracle had to step over the user-defined limit for PGA_
AGGREGATE_TARGET, because there was not enough memory avail-
able. In a well-tuned system, the overallocation count should be zero,
meaning the available PGA memory was sufficient, and the cache hit per-
centage should be over 80 percent, meaning most queries execute with the
optimal amount of memory. If you find that your cache hit percentage is
too low or the overallocation count is nonzero, you have insufficient PGA
memory. In our example, the cache hit ratio is 61 percent, which is low, and
the overallocation count is 426, which is not good.

In these cases you should look at the V$PGA_TARGET_ADVICE view
for advice. The view shows the projected values of the cache hit percentage
and the overallocation count for various memory sizes. For each memory
size, the FACTOR column shows which factor of the current memory set-
ting it is. For example, the row where the FACTOR column is 1 is the cur-
rent setting, in our example 15.7MB.

select PGA_TARGET_FOR_ESTIMATE PGA_TARGET, PGA_TARGET_FACTOR
FACTOR,

 ESTD_PGA_CACHE_HIT_PERCENTAGE CACHE_HIT_PCT,

 ESTD_OVERALLOC_COUNT OVERALLOC_CNT

from v$pga_target_advice;

PGA_TARGET FACTOR CACHE_HIT_PCT OVERALLOC_CNT

---------- ------- ------------- -------------

 11796480 .75 50 23

 15728640 1 61 23 <-current setting

 18874368 1.2 61 23

 22020096 1.4 65 2

 25165824 1.6 70 1

 28311552 1.8 80 0 <-minimal needed

 3145728 2 85 0

 47185920 3 87 0

 62914560 4 88 0 <-optimal

 94371840 6 88 0

 125829120 8 89 0

11 rows selected.

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.5 Memory Advisor 465

Chapter 10

When tuning PGA memory, you must ensure that the PGA_
AGGREGATE_TARGET is at least set to a value where the overallocation
count is zero. Otherwise, there is simply not enough memory for all the
work areas. In this example, the minimum memory setting where over-
allocation count goes to zero is around 28MB. Further, notice that as you
increase memory size, the cache hit ratio value increases rapidly up to a
point (88 percent for around 63MB in the previous output), and after that
it starts to increase more slowly. This point is the optimal value of PGA
memory. You must ideally set your PGA memory at or close to this opti-
mal value.

You can see a graphical representation of this view in Oracle Enterprise
Manager. From the Advisor Central page (Figure 10.6), if you follow the
Memory Advisor link and then click on PGA link, you will see the screen
shown in Figure 10.24, which shows the current PGA settings and usage.

From this page, if you click on the Advice button, you will see a line graph
as shown in Figure 10.25 with the memory size setting on the X-axis and the
cache hit percentage on the Y-axis. You will find that the initial part of the line
graph indicates the threshold below which you will see nonzero overallocation
count. The optimal value of memory is where this line starts to taper off. The
vertical line shows the current setting of the PGA_AGGREGATE_TARGET
parameter and can be moved to choose a new setting for this parameter. Once
you have chosen a new value, you simply press the OK button and the change
will be made.

Figure 10.24 PGA Memory Advisor

TEAM LinG - Live, Informative, Non-cost and Genuine!

466 10.5 Memory Advisor

Hint: At all times, you must ensure that there is adequate physical mem-
ory on your system to accommodate increases in the PGA memory for all
users. If not, then you will need to decrease the SGA memory size, which
may not always be desirable. Increasing PGA memory size without avail-
able physical memory means that there will be thrashing, which will only
slow the system down.

In the next section, we will discuss how to set the value for the SGA
memory.

10.5.2 SGA Memory Advisor

SGA memory is accessible across all Oracle processes and is used to store
various internal control structures, such as compiled cursors and dictionary
entries (known as the shared pool), and the buffer cache. The SGA memory
setting is not as critical as the PGA in a data warehouse application; how-
ever, in any system, it is important to have sufficient SGA memory for
smooth functioning. One component of the SGA, known as the large pool,
can be important if you are using parallel execution, which was discussed in
Chapter 6. Also, you should ensure that you are not allocating too much
shared memory, which takes away valuable physical memory that can be
used for PGA instead.

Figure 10.25 PGA Target Advice in Oracle Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.5 Memory Advisor 467

Chapter 10

Following the Memory Advisor link from Advisor Central, you will come
to the SGA Memory Advisor page, shown in Figure 10.26. Here you can
see at a glance the allocation of SGA between various pools, such as buffer
cache, Java pool, large pool, and so on. On this page you can set the Maxi-
mum SGA Size parameter, which will determine the total shared memory
allocated when the database starts up. Later, as the database is running, you
can adjust the sizes of the individual components, as long as the total does
not exceed the specified maximum.

Oracle Database 10g has an Automatic Shared Memory Management
feature, which will automatically and dynamically size the various compo-
nents of the shared memory to adapt to the current workload. To enable
this feature, click the Enable button, near the top of Figure 10.26. Note,
however, that if you use the automatic feature, you will no longer be able
to use the Advisor, since the system will automatically make the changes
for you.

You can click the Advice buttons to get advice on setting the shared pool
and the buffer cache sizes.

Shared Pool Advice

Increasing the shared pool size will improve the time taken to compile a
SQL statement. Hence, the shared pool size advice is in the form of a

Figure 10.26 SGA Memory Advisor

TEAM LinG - Live, Informative, Non-cost and Genuine!

468 10.5 Memory Advisor

graph, shown in Figure 10.27, with the shared pool size on the X-axis and
the expected savings in parse time on the Y-axis. The optimal value is the
knee of this graph (i.e., where the graph tapers off). The vertical line shows
the current setting of the shared pool, and you can click on the curve to
change this setting.

Buffer Cache Advice

The buffer cache is used to cache frequently used data blocks from disk into
memory, thereby speeding up queries. In a data warehouse, many queries
involve scanning entire tables, and increasing the size of the buffer cache
does not usually speed up these scans. (This is because as new blocks get
loaded they displace the earlier blocks and so the next query that needs that
earlier block will need to get it from the disk again.) Also, loading of data
using SQL*Loader or Parallel DML uses PGA memory and not SGA. So,
typically, the size of the buffer cache in a data warehouse would be small
compared with that in an OLTP system. You can use the buffer cache
advice shown in Figure 10.28, to correctly size your buffer cache so you do
not waste too much memory. In this graph, the Y-axis shows the decrease in
physical disk blocks read as you increase the buffer cache size shown on the
X-axis. Again, the optimal value is around the knee of the graph (i.e., where
it starts to flatten out) and you can choose the new setting by clicking on
the graph.

Hint: Automatic Shared Memory Management must be disabled in order
to see the shared pool and buffer pool advice.

Figure 10.27 Shared Pool Size Advice

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.6 Troubleshooting Parallel Execution 469

Chapter 10

It must be said that, as with all tuning tasks, memory configuration is an
iterative process and depends on the workload; therefore, you may need to
repeat this process a few times before you get to the optimal settings. How-
ever, once you start using automatic PGA and SGA advisors, this process is
very straightforward and will ensure that you get the best performance out
of your queries.

10.6 Troubleshooting Parallel Execution

Parallel execution is one of the most useful features for good query
performance in a data warehouse. However, sometimes you may find that
your query did not perform as expected even with parallel execution. First
and foremost, it is imperative that you have accurate statistics on your
tables. If the data has changed significantly and statistics are not updated,
the query plan may no longer be optimal. If statistics are not the problem,
it may be that the optimizer did not generate a parallel execution plan for
your query. It is also possible that resource constraints forced the query to
be executed serially.

In this section, we will discuss some of the problems that can occur with
parallel execution and how to identify and fix them.

10.6.1 Using EXPLAIN PLAN to Display Parallel Plans

The first step when troubleshooting parallel execution is to check for possi-
ble problems with the query plan. You can use the EXPLAIN PLAN facility

Figure 10.28 Buffer Cache Advice

TEAM LinG - Live, Informative, Non-cost and Genuine!

470 10.6 Troubleshooting Parallel Execution

(discussed in Chapter 6) to display the parallel query execution plan. Note
that you must use the script utlxplp.sql to display the plan. The following
example shows the parallel execution plan for the same query used in Chap-
ter 6. We have formatted the plan to show only columns related to parallel
execution, for lack of space.

EXPLAIN PLAN FOR

SELECT t.month, t.year, p.product_id,

 SUM (purchase_price) as sum_of_sales,

 COUNT (purchase_price) as total_sales,

 COUNT(*) as cstar

FROM time t, product p, purchases f

WHERE t.time_key = f.time_key AND

 f.product_id = p.product_id

GROUP BY t.month, t.year, p.product_id;

--

|Id|Operation |Name | TQ |IN-OUT|PQDistrib|

--

| 0|SELECT STATEMENT | | | | |

| 1|PX COORDINATOR | | | | |

| 2| PX SEND QC (RANDOM) |:TQ10003 |Q1,03| P->S |QC (RAND)|

| 3| SORT GROUP BY | |Q1,03| PCWP | |

| 4| PX RECEIVE | |Q1,03| PCWP | |

| 5| PX SEND HASH |:TQ10002 |Q1,02| P->P |HASH |

| 6| HASH JOIN | |Q1,02| PCWP | |

| 7| PX RECEIVE | |Q1,02| PCWP | |

| 8| PX SEND BROADCAST |:TQ10000 |Q1,00| P->P |BROADCAST|

| 9| PX BLOCK ITERATOR | |Q1,00| PCWC | |

|10| TABLE ACCESS FULL |TIME |Q1,00| PCWP | |

|11| HASH JOIN | |Q1,02| PCWP | |

|12| PX RECEIVE | |Q1,02| PCWP | |

|13| PX SEND BROADCAST |:TQ10001 |Q1,01| P->P |BROADCAST|

|14| PX BLOCK ITERATOR | |Q1,01| PCWC | |

|15| INDEX FAST FULL SCAN|PRODUCT |Q1,01| PCWP | |

| | |_PK_INDEX| | | |

|16| PX BLOCK ITERATOR | |Q1,02| PCWC | |

|17| TABLE ACCESS FULL |PURCHASES|Q1,02| PCWP | |

--

The first thing to note is that if you ignore the rows prefixed with a PX,
the plan is the same as the serial plan seen earlier in Chapter 6! The PX
rows for each operation indicate how that operation has been parallelized.
For instance, the PX BLOCK ITERATOR row for id 16 indicates that the
scan of the PURCHASES TABLE has been parallelized at the block gran-
ule. The TQ column and the :TQxxxx names refer to communication

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.6 Troubleshooting Parallel Execution 471

Chapter 10

pipes between the query coordinator process and the parallel execution
servers. The IN-OUT columns indicate which processes are involved in
the communication at each stage. The important thing to note for this col-
umn is that as long the value is P->P, PCWC, or PCWS it implies that
operation is in parallel. However, if you see P->S or no value at all, it
means that at that point the operation is serial. Typically, you will see P->S
when the coordinator collects results from all the slaves. This column can
be used to check if your plan is using parallel execution throughout or if
some operation is being unexpectedly serialized. If you find that an opera-
tion that can be parallelized, such as a table scan, a join, or a sort, is execut-
ing serially, then there may be a problem with the execution plan.

If you find that an operation is serial where it could be parallel, check
your parallel execution setup and ensure that the tables and indexes have sta-
tistics. Check if some user-defined function or aggregate (discussed in Chap-
ter 6) is preventing parallel execution. Run the SQL Tuning Advisor to see if
your query can be tuned further. For instance, if your query involves subque-
ries, it may be possible to express the query using a join instead.

Finally, the last column in the plan display, PQ Distrib, is the method
used by parallel execution to distribute rows of a table among the slaves:
broadcast, meaning all rows are sent to all slaves; hash, meaning a hash
function is used to distribute the rows; and random, meaning the rows are
distributed randomly among the slaves. If the table data is skewed so that
there are more rows with one value than another, or if there are very few
distinct values, then this can result in some slaves having more work to do
than others. In this case, the PX_DISTRIBUTE hint can be used to alter
the distribution method chosen by the optimizer.

If the query plan looks good, then the problem is likely due to lack of
some resource.

10.6.2 Problems Due to Resource Constraints
You can find some useful execution statistics in various dynamic perfor-
mance views such as V$SYSSTAT, V$PX_SESSION and V$PX_
PROCESS_SYSSTAT.

Hint: Corresponding to every V$ view is a GV$ view. The V$ views only
give statistics for the current instance. If you are using Real Application
Clusters, you will have multiple instances and will need to use the GV$
views. The GV$ views give the statistics for all the instances and therefore
have an extra column, INST_ID.

TEAM LinG - Live, Informative, Non-cost and Genuine!

472 10.6 Troubleshooting Parallel Execution

The view V$SYSSTAT keeps cumulative statistics about the Oracle
instance from the time of database startup. The following query can be used
to query the statistics related to parallel execution. From this you can tell if
your queries are being parallelized with the desired degree of parallelism or
if they are being downgraded due to resource contention. If you find this to
be the case, you may need to limit the number of concurrent users or iden-
tify whether there is some high-load SQL statement that is taking up a lot
of the parallel execution servers. In the following output, the rows marked
with an asterisk indicate that some statements did not execute with the
requested degree of parallelism.

SELECT ss.value, ss.name
FROM v$sysstat ss
WHERE UPPER(ss.name) like '%PARALLEL%'
 or UPPER(ss.name) like '%PX%';

 VALUE NAME
---------- ---
 5 DBWR parallel query checkpoint buffers written
 8 queries parallelized
 0 DML statements parallelized
 0 DDL statements parallelized
 8 DFO trees parallelized
 4 Parallel operations not downgraded
 0 Parallel operations downgraded to serial
 0 Parallel operations downgraded 75 to 99 pct
 * 1 Parallel operations downgraded 50 to 75 pct
 * 1 Parallel operations downgraded 25 to 50 pct
 * 3 Parallel operations downgraded 1 to 25 pct
 151171 PX local messages sent
 151084 PX local messages recv'd
 0 PX remote messages sent
 0 PX remote messages recv'd
15 rows selected.

The V$PX_SESSION view can be used to figure out which parallel
execution servers are working together on a query. QCSID is the session id
of the coordinator and there is one row for each slave process, with SID
being the session id of the slave process. One useful piece of information in
this view is the requested and actual degree of parallelism for the operation.
If the requested degree is more than the actual, then you have a resource
shortage. In this example, the requested degree is 8 and the actual degree is
7, which indicates a shortage of parallel execution servers.

SELECT QCSID, SID, DEGREE "Degree", REQ_DEGREE "Req Degree"
FROM V$PX_SESSION
ORDER BY QCSID, QCINST_ID, SERVER_GROUP, SERVER_SET;

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.6 Troubleshooting Parallel Execution 473

Chapter 10

 QCSID SID Degree Req Degree
---------- ---------- ---------- ----------
 142 122 7 8
 142 140 7 8
 142 124 7 8
 …

Finally, the V$PX_PROCESS_SYSSTAT gives information about the
status of the parallel execution servers and statistics about memory and
buffer allocations. The Highwater, or HWM, figures represent the maxi-
mum concurrent usage for that resource and give you an idea whether the
resource is being maximally used at the present time. Specifically, if the
Servers Highwater value is equal to PARALLEL_MAX_SERVERS, it
means that all the parallel execution server processes were in use concur-
rently at some point in time. In this case, you should consider increasing
this parameter, if you have the processing capacity.

select * from V$PX_PROCESS_SYSSTAT;

STATISTIC VALUE
------------------------------ ----------
Servers In Use 28
Servers Available 2
Servers Started 34
Servers Shutdown 4
Servers Highwater 30
Servers Cleaned Up 0
Server Sessions 92
Memory Chunks Allocated 9
Memory Chunks Freed 2
Memory Chunks Current 7
Memory Chunks HWM 9
Buffers Allocated 1234
Buffers Freed 856
Buffers Current 378
Buffers HWM 387

Oracle recommends configuring the LARGE_POOL_SIZE parameter
when using parallel execution. This memory pool is used to store the message
buffers for communication between parallel execution processes. If the prod-
uct of Buffers HWM and the initialization parameter PARALLEL_
MESSAGE_BUFFER_SIZE is much less than the parameter LARGE_
POOL_SIZE, you should consider increasing this parameter setting.

You should also consider using the Oracle Resource Manager to create
resource plans to limit resource usage for each user or application. We can-
not stress enough that for parallel execution to be effective, it is important
to have sufficient hardware capacity; otherwise, no amount of tuning can
improve your performance.

TEAM LinG - Live, Informative, Non-cost and Genuine!

474 10.7 Plan Stability

10.7 Plan Stability

You have successfully tuned and deployed your data warehouse application
and everything is running perfectly. Then you apply a new patch to the
underlying database and suddenly everything slows down and the users
start complaining. What happened? Well, the most likely explanation is
that the optimizer chose a different strategy for the query execution, which
it believes is better but in reality is worse. This can happen for many rea-
sons, including skewed data distribution, different optimizer statistics, or a
new default setting for some initialization parameter. Thus, anytime you do
a software upgrade, or after statistics get updated, there is a risk that a query
execution plan may change and the query may take longer to run.

To mitigate this problem, Oracle has a feature called plan stability. This
allows you to create an object called a stored outline for a SQL statement,
which keeps a record of the execution plan for that query. When a query is
issued, if there is an outline for that query, Oracle will try to reproduce the
same execution plan as stored in the outline.

10.7.1 Creating an Outline

You can instruct Oracle to create outlines for all SQL statements or for spe-
cific SQL statements. Outlines can be grouped together into categories to
better organize and manage them.

The schema where outlines will be created must have the CREATE
ANY OUTLINE system privilege.

To create stored outlines for all SQL statements you must set the param-
eter CREATE_STORED_OUTLINES to TRUE or specify a category
name to group the outline into. In the following example, we are setting the
category name to EASYDW_CAT.

ALTER SESSION SET CREATE_STORED_OUTLINES = easydw_cat;

Once you set this, outlines will automatically be created for every SQL
statement and associated with the given category (if specified). This is an
easy way to create the outlines, but it may result in a large number of out-
lines. Typically, just before upgrading to a new database version, you would
turn this parameter on, leave the application running for some period of
time to create outlines, and then turn the parameter off by setting
CREATE_STORED_OUTLINES to false.

TEAM LinG - Live, Informative, Non-cost and Genuine!

10.7 Plan Stability 475

Chapter 10

Alternatively, you can create stored outlines for specific SQL statements
using the CREATE OUTLINE statement. In the following example, we are
creating an outline named CUST_OUTLN under the category
CUST_PURCHASES_CAT.

CREATE OUTLINE cust_outln FOR CATEGORY cust_purchases_cat
ON
SELECT count(distinct product_id) as num_cust
FROM purchases f, customer c
WHERE f.customer_id = c.customer_id and
 c.gender = 'F';

10.7.2 Using an Outline
To use stored outlines, you must set the parameter USE_
STORED_OUTLINES to true or to a category name (which you specified
when you created the outlines). When Oracle compiles a SQL statement, it
looks to see if there is an outline for a query with exactly the same text as the
query. If it finds one, then the information stored in the outline is used to
control the execution plan generated for the query.

ALTER SESSION SET USE_STORED_OUTLINES = easydw_cat;

To check if a query used an outline, you can run the EXPLAIN PLAN
utility to see the execution plan of the query. The output will indicate the
name of the outline used, if any. You can also view the available outlines
and their usage using the USER_OUTLINES dictionary view, as shown in
the following example.

NAME USED SQL_TEXT

---------- ---- --------------------------------

CUST_OUTLN USED SELECT count(distinct product_id

Hint: Using an outline does not guarantee that you will get the identical exe-
cution plan. For example, if the outline referred to an index that was later
dropped, you would obviously not be able to use the execution plan using
that index. Also, some initialization parameter settings may take precedence
over outlines—for example, if you set query_rewrite_enabled to false, Oracle
will not use a materialized view even if you had an outline using it.

As you can see, plan stability is extremely simple to use and can be a very
valuable tool to ensure that query performance remains predictable. After

TEAM LinG - Live, Informative, Non-cost and Genuine!

476 10.8 Summary

your application has been tuned adequately, consider creating some outlines
for your important queries. Once they have been created and stored in the
database, it is not necessary that you use them all the time. Instead, they can
be kept in case of emergency and enabled only in the event of performance
degradation. Outlines are also useful when building applications that are
deployed at a number of sites to ensure the same query execution plan is
chosen for all users.

10.8 Summary

In this chapter, we discussed various aspects of query performance tuning.
Oracle Database 10g provides tuning tools such as the SQL Access Advisor
and SQL Tuning Advisor, which can be invaluable assistants to a DBA in
simplifying the ongoing tasks of performance tuning. With these tools you
can create index and materialized views to speed up your queries and also
improve the optimizer’s ability to create good execution plans, using pro-
files. We also discussed how you could find and fix some common parallel
execution problems and tune the PGA memory so that the queries execute
with the optimal memory required. Finally, we discussed how you can use
plan stability to keep the query performance predictable over time.

Query performance tuning is just one of the tasks faced by a DBA
when managing a warehouse. Chapter 11 looks at the larger scope of
managing a data warehouse and the tools and features Oracle Database
10g provides for this purpose.

TEAM LinG - Live, Informative, Non-cost and Genuine!

477

11

Managing the Warehouse

11.1 What Has to Be Managed

Once the warehouse has been created and is populated with data, it is very
important to ensure that it is correctly managed. The warehouse must be
configured for optimal performance and availability. Disk, memory, and
CPU resources must be managed effectively. In this chapter, we will
describe some of the tasks involved in managing a data warehouse and pro-
vide advice on how to execute them.

We will make use of the various GUI tools provided in Oracle Enter-
prise Manager (OEM) to manage our database. There are alternative meth-
ods to this approach, but we are sure you will agree that using OEM makes
managing the database considerably easier.

This chapter will first provide an introduction to OEM and then discuss
various tasks, such as reorganizing the warehouse, gathering optimizer sta-
tistics, maintaining security, and monitoring space usage.

11.2 Managing Using Oracle Enterprise Manager

With Oracle Database 10

g

, Enterprise Manager changed significantly from
the Java-based GUI tool to an easily accessible interface accessed via any
browser on your wide area network. There are two named variants of Enter-
prise Manager: Database Control and Grid Control.

For managing an individual database and its ASM storage, EM Data-
base Control is used, and this is the version that we are using predomi-
nantly in this chapter. EM Database Control is installed as standard with
the database.

TEAM LinG - Live, Informative, Non-cost and Genuine!

478

11.2

Managing Using Oracle Enterprise Manager

For managing multiple databases, application servers, and ASM storage
components in your enterprise environment, Enterprise Manager Grid Con-
trol is used. EM Grid Control is installed from a separate installation CD.

EM Database Control provides a subset of the functionality that is
present in EM Grid Control.

Therefore, from one lightweight browser you can manage your entire sys-
tem, no matter where the components may be located. This is an extremely
powerful capability, and you should remember that what we are describing
here could be used not only for the data warehouse database but also for other
Oracle databases—from versions 8.1.7 and above, Oracle Application Server
10

g

, and ASM storage on your network. In this section, we’ll take a look at
some of the concepts and steps required to start using OEM.

11.2.1 The Enterprise Manager Console

Before we launch into a more detailed examination of the new Enterprise
Manager, it is worth mentioning that we still have the old Java GUI EM
console to handle certain aspects of managing our environment.

The Java EM Console is installed from the Client CD and still has the
same familiar interface from its Oracle 9

i

 version. With the Oracle Data-
base 10

g

 version, you will find that some of the tools have been removed to
the browser version, such as the import and export wizards, backup wizard,
the events and job scheduling tools, and the ability to create warehouse
dimensions and cubes. For handling the following product areas you will
still need to use the Console.

�

Streams

�

Advanced replication

�

Advanced queues

�

XML database

�

Spatial

None of these components is crucial to a data warehouse, so you can
manage the warehouse environment exclusively using the browser-based
interface.

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.2

Managing Using Oracle Enterprise Manager 479

Chapter 11

11.2.2 Overview of Enterprise Manager

EM Database Control, which we have been using so far, is for administer-
ing and managing an individual Oracle Database 10

g

 at a time. As we have
seen in previous chapters, you simply point your browser at the URL for
the instance on a server that you wish to administer. The deployment is
shown in Figure 11.1.

The URL for Database Control is shown in the following code, and the
default port number is 5500. If you have multiple Oracle 10

g

 databases on
your server, then EM will be configured to use a different port number for
each database. For example, the second database may be configured to use
port 5501.

http://<server name>:port/em

The background tasks for the database console can be manually started
and stopped from the operating system command line, using the Enterprise
Manager command-line utility, emctl, as follows:

To start the console:

emctl start dbconsole

Or to stop the console:

emctl stop dbconsole

On a Windows system, Enterprise Manager uses a Windows service for
operation. The Windows service name is OracleDBConsole<sid>, where

Figure 11.1

Enterprise Manager Database Control

TEAM LinG - Live, Informative, Non-cost and Genuine!

480

11.2

Managing Using Oracle Enterprise Manager

<sid> is that for your database. For example, the service for the EASYDW
database is OracleDBConsoleeasydw. The service will be configured during
installation to start automatically at system startup.

However, if we want to be managing and administering a number of
databases, and also other components such as Oracle Application Server
10

g

, then we need to use Enterprise Manager 10

g

 Grid Control.

Enterprise Manager Grid Control is designed to run in a three-tier
architecture.

�

The

console

, which is accessed using a browser, provides the graphi-
cal user interface on the client system.

�

The

management service

 (OMS), which provides administrative
functions, such as executing jobs and events, runs in the middle tier.

�

The

management

agents

, which monitor the various targets on the
servers, such as the database and ASM instances, start and stop them
and gather performance data.

All information required to manage and administer the environment is
stored in the OEM repository, which can be part of any Oracle database or
in a separate Oracle database, which is used exclusively for Enterprise Man-
ager. It is where the management service stores the information it needs to
manage the network configuration, the events to monitor, jobs to run, and
the administrator accounts.

The various components in EM Grid Control are shown in Figure 11.2.
To manage a server and the different components deployed on it, you must
have a management agent deployed. This is done as part of an installation
separate from that for the database itself. In Figure 11.2, we have shown
just two types of servers with agents deployed:

�

A server with two database instances and an ASM instance

�

A server with a Oracle Application Server 10

g

 instance

Of course, via EM Grid Control you can administer as many servers and
components as you have agents deployed

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.2

Managing Using Oracle Enterprise Manager 481

Chapter 11

The Grid Control management service communicates with the agents
via secure https. Your browser can communicate with the management
service either via a nonsecure or a secure https connection. Considering the
importance of your enterprise environment, we recommend you always use
the secure https URL.

For EM Grid Control, the secure URL is different from the one for
Database Control. For Grid Control, the default URL is:

https://<server name>:port/em

where the default port number is 7777.

To control the management service we again use the emctl command-
line utility. To start the management service we execute the following from
the operating system command line:

emctl start oms

Figure 11.2

Enterprise Manager Grid Control Deployment

TEAM LinG - Live, Informative, Non-cost and Genuine!

482

11.2

Managing Using Oracle Enterprise Manager

The management agent must similarly be started and this is done as fol-
lows:

emctl start agent

We will continue looking at the new interface and features in the Enter-
prise Manager for now and have a further look at the extensions for Grid
Control later in the chapter.

11.2.3 Enterprise Manager Database Control

In Chapter 2, we have already touched upon how to access the EM login
screen via the browser. When you logon to EM Database Control, you have
the option of logging on as a normal user, an operator, or as SYSDBA. Each
has different levels of privileges, and certain administration functions will
not be available from all login types. For example, if you want to change the
value of certain initialization parameters, such as shared_pool_size, then
you will need to be logged on as a privileged SYSDBA account. We will
assume that a DBA account is being used and point out any differences
when we come across them.

When you have logged in, you are presented with the

Home

 screen,
shown in Figure 11.3, which provides you with a basic summary and status
of your database operation. It is grouped into separate areas, and, if you
scroll down further, you will see other areas, such as the

Alerts

 section,
where you can easily see if there are any critical alerts and notifications for
your attention. We will look at alerts in more detail later in the chapter. The
home page is also an active display. On the top right of the screen there is
the

View Data

 field, where you can switch from a manual refresh to a regu-
lar one every 60 seconds.

Even further down the screen (which isn’t shown), there is a section for-

Job Activity

 and

Critical Patch Advisories

. We will look at jobs later in this
chapter. The new patch advisory feature uses an Oracle Metalink connec-
tion, configured in OEM to determine whether or not any new patches
have been released by Oracle and need to be installed on your system.

Enterprise Manager has four different home tab areas, which are
accessed from the links at the top left of the screen. These are:

�

Home

�

Performance

�

Administration

�

Maintenance

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.2

Managing Using Oracle Enterprise Manager 483

Chapter 11

Home

The

Home

page is the initial login Home page with the summary informa-
tion, where critical alerts and warnings are flagged for the administrator’s
attention

.

Figure 11.3

Launching Oracle Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

484

11.2

Managing Using Oracle Enterprise Manager

Performance

The

Performance

screen provides a new graphical user interface to show the
performance and operation of the system and visually highlight problem
areas. Various links by the graphs enable drill down, so that the administra-
tor can analyze the system and focus in on any problem areas and even drill
down to identify the SQL or other activity that is causing the problem. This
is a very powerful new area and set of screens for assisting the administrator
in problem identification and resolution.

We discussed various SQL tuning tools available from the

Performance

page in Chapter 10.

Administration

The

Administration

screen is the area that we have visited quite frequently
during the course of this book. It is the main launch area to specific screens
for administering the objects and other activities in the database. For exam-
ple, we can administer the instance, monitor the memory usage, and
change the initialization parameters from the

Instance

 section. Or we can
monitor and control the use of resources among our consumers in the data-
base in the

Resource Manager

 section.

From the work that we have done in the preceding chapters, you should
now be quite comfortable with the look and feel of these administration
screens, so, instead of reviewing each area, later in the chapter we will focus
on some new areas, such as the

Scheduler

.

Maintenance

The

Maintenance

 screen consists of three main areas for

Utilities

,

Backup &
Recovery

, and

Deployments

. The

Utilities

 section includes some areas that we
have already talked about in Chapter 5, such as import and export and
SQL*Loader. It also contains some other very useful features, such as

Online Redefinition,

 which we will discuss later and Chapter 12 is dedicated
to backup and recovery, and software upgrades is discussed in Chapter 17.

Finally, at the bottom of the screen, we have a small section on related
links, which will take us to other important areas of Enterprise Manager.
You will find the

Related Links

 section is common to each of the four Home
screens described previously.

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.2

Managing Using Oracle Enterprise Manager 485

Chapter 11

11.2.4 Enterprise Manager Grid Control

Enterprise Manager Grid Control enables us to view the status of all of the
components in our enterprise grid, including the host servers, the data-
bases, the application servers, and the storage instances. EM enables us to
drill down from the enterprise perspective to look at any aspect of the indi-
vidual operation of these components. In this section, we will provide a
brief overview of what we mean by this.

When we log on to EM Grid Control, our initial view and Home page
is very different from what we are used to with EM Database Control. The
EM Grid Control

Home

 screen is shown in Figure 11.4.

Hint:

Figure 11.4 shows the use of a drop-down list. Drop-down lists are a
key feature used in Enterprise Manager screens for finding more options or

actions that can be performed.

In Enterprise Manager,

targets

 are components that you monitor or
configure via Enterprise Manager. In the expanded drop-down list shown in
Figure 11.4, we can see how the Grid Control interface enables us to view
all component targets in our environment. The drop-down list demon-
strates the comprehensive nature of what can be monitored and adminis-
tered, such as databases, application servers, and ASM storage.

Notice that in Figure 11.4, we have a main tab menu at the top of the
screen showing the following options:

�

Home

�

Targets

�

Deployments

�

Alerts

� Jobs

� Management System

For certain selections from this tab menu, a secondary menu, as shown
in Figure 11.5, is displayed. The submenu for Targets contains entries for
the different types of targets that can be administered; they are:

TEAM LinG - Live, Informative, Non-cost and Genuine!

486 11.2 Managing Using Oracle Enterprise Manager

� Hosts

� Databases

� Application Servers

� Web Applications

� Groups

� All Targets

Figure 11.4 Enterprise Manager Grid Control Screen

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.2 Managing Using Oracle Enterprise Manager 487

Chapter 11

But to enable us to monitor and manage a target, Enterprise Manager
must first know about it. To do this we must direct EM to discover the tar-
gets. This operation only needs to be performed once for a new server. Go
to the top of the main Hosts screen, shown in Figure 11.5, select the Targets
tab at the top, and then select Hosts from the submenu. Once the Manage-
ment Agent on the new host has started talking to the Management Ser-
vice, then your new host will appear in the list on the Hosts screen. Select
the host on which you want EM to discover the targets and click on the
Add button.

On the next screen (not shown) enter the name of the host and click
the Continue button. This will start a task, which may take a few minutes
to execute, where the EM management service is talking to the agent that
is deployed on the new host. The agent examines its host environment
and the targets that are deployed on it—for example, database instances
or ASM instances—and communicates the findings back to the manage-
ment service. These are then displayed in the Targets Discovered screen,
shown in Figure 11.6.

By clicking the OK button you accept the discovered targets and the
metadata for these is written to the OMS repository. You are now able to
access and drill down to manage these target components directly from the
EM screens. For example, by selecting the Targets tab and Hosts subtab at
the top of the screen, you will see the Hosts screen shown in Figure 11.5.

Figure 11.5 Enterprise Manager Target Hosts Screen

TEAM LinG - Live, Informative, Non-cost and Genuine!

488 11.2 Managing Using Oracle Enterprise Manager

Clicking on the name of a host in the list will navigate you to the host’s
Home page for which there are four separate screens for the host: Home, Per-
formance, Targets, and Configuration. By clicking on the Targets link, you
will see a list of all of the targets on that host that are monitored by EM, as
shown in Figure 11.7.

You can now click on the name of any of these targets to navigate to spe-
cific screens for the administration of that type of target. In Chapter 3, we
have already seen some of the screens for administering an ASM instance.
Alternatively, if the database name is clicked (which is third in our list), we
navigate to the now very familiar EM Database Control Home pages for
that database.

There is much, much more to Grid Control than we have space for in
this chapter, so we have only provided a quick glimpse of its capabilities
here. Grid Control is not just about the ability to monitor, diagnose, and
control—though, as we have seen at the database level, it is a very impor-

Figure 11.6 Enterprise Manager Host Discovery Results

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.2 Managing Using Oracle Enterprise Manager 489

Chapter 11

tant component—it is also about the ability to control resources across
the grid.

11.2.5 Enterprise Manager Administrators

To perform certain operations, an Enterprise Manager administrator
account is required. An administrator account is a database account that
has been enabled within Enterprise Manager to perform administration
tasks. Database and normal Enterprise Manager accounts are not adminis-
trators by default. Enterprise Manager has two types of administrator
accounts: regular administrators and super administrators, who have addi-
tional privileges.

A super administrator is created when Enterprise Manager is installed
and configured. This is the SYSMAN account and, depending upon the
password option you selected during database creation (see Figure 2.7), will
either have your common password for key accounts or a specifically chosen
one. Go to the Administration screen and select the Administrators link,
which takes you to the Administrators Setup screen, shown in Figure 11.8
from where we can manage the administrators’ accounts.

When we click the Create button, we can create a new administrator in
the screen shown in Figure 11.9, where an existing database account can be
selected and granted the privileges to be an administrator in Enterprise
Manager. The Super Administrator is creating an account with the user

Figure 11.7 Enterprise Manager Navigating to Host Targets

TEAM LinG - Live, Informative, Non-cost and Genuine!

490 11.2 Managing Using Oracle Enterprise Manager

name of EASYDW, for the DBA of the EASYDW data warehouse. Note
that this is not a Super Administrator account, because we have not selected
that option.

Figure 11.8 The Administrators Setup Screen

Figure 11.9 Creating An Enterprise Manager Administrator Account

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.2 Managing Using Oracle Enterprise Manager 491

Chapter 11

11.2.6 Creating and Using Groups

Earlier, we spoke of the issues surrounding managing multiple databases,
and this applies equally to other targets in our grid, such as application serv-
ers and ASM instances. The purpose of a group is to allow you to logically
associate the different targets in your environment to assist with the issues
surrounding managing multiple targets. The Oracle grid in an enterprise
environment can manage many different separate systems. For example:

� Warehouse databases

� Warehouse ASM instances

� Application Servers

� Source OLTP servers and databases

� HR and payroll servers and databases

There are many other Oracle systems typically required for the running
of the business that fall into this list.

In a large enterprise environment, we often require some way to group
these together to help us better understand and appreciate the organization
of the grid that we are administering. A group can consist of targets of the
same type—for example, all databases—or it can consist of targets of differ-
ent types, such as the database, ASM instances, and application servers for
the warehouse. Some examples of ways that we may want to define the
groups are:

� A functional requirement—for example, all targets for the data ware-
house

� A geographical split for example, a group for the systems in the
North-east United States and another for the systems in the United
Kingdom.

� An area of individual responsibility for example, the systems which
are the responsibility of a particular administrator

TEAM LinG - Live, Informative, Non-cost and Genuine!

492 11.2 Managing Using Oracle Enterprise Manager

You can only create and administer groups from EM Grid Control and
not EM Database Control, because it is Grid Control that has the manage-
ment framework for the administration of multiple targets.

To create a group, go to the Targets tab at the top of the Grid Control
Home screen and select the Group subtab below it. The resulting screen (not
shown) lists all of the groups that have been defined. To create a new group,
choose the type of group and click the Go button. There are three types of
groups that can be created:

� Group, which can either be for mixed or for all the same type of tar-
gets.

� Database Group, which is only for database targets

� Host Group, which is only for host server targets

We have chosen to create a general group, which can contain targets of
mixed types, the range of which you can see from the displayed drop-down
list in Figure 11.10. On this screen you enter the name of the group, Easy
Shopping Inc. When a target type is selected, the list is refreshed to display
all available targets of that type, which you can then select and move to the
Selected Targets list.

Figure 11.10 Creating a Group

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.2 Managing Using Oracle Enterprise Manager 493

Chapter 11

On the next screen of the wizard (not shown), you can define which
metrics are to be collected and used for the group. This screen displays the
metrics that are applicable to each type of target in the group. When the
choice of metrics has been made, the minimum, maximum, and average of
these for the targets are used for the alerts and warnings on the group’s
Home page (see Figure 11.11).

In Figure 11.11, we can see our group, called Easy Shopping Inc., which
represents our warehouse. The screen is a summary display of key informa-
tion about the hosts that make up our group. This is one of the powerful
visual features of creating a group, because you can instantly look at the
screen and see the state of your system. From this screen we may drill down
and focus on different aspects of the various targets in the group by navigat-
ing to the Member Targets screen.

You may be saying to yourself: This is all very well, but what is the
point? Later in the chapter, we will describe metrics, alerts, and warnings in
more detail, and when these are combined with the group concept, you
have a very powerful management environment.

Figure 11.11 The Enterprise Manager Group For Easy Shopping Inc.

TEAM LinG - Live, Informative, Non-cost and Genuine!

494 11.2 Managing Using Oracle Enterprise Manager

Groups simplify the management of a complex environment by
enabling the environment to be subdivided into logical groups, which serve
a similar purpose. You can create as many groups as you like to assist with
the management of your environment.

11.2.7 Scheduling Jobs

Data warehouses require a great deal of maintenance, because data is con-
tinually being loaded. You could write scripts to perform these tasks and
remember to run them, or you could use the Scheduler in Enterprise Man-
ager to automatically run your jobs at the designated time.

The Oracle Database 10g Scheduler

The new Scheduler facility in Oracle Database 10g provides the ability to
define jobs that must be run in order to manage your data warehouse.
These jobs can be placed in a library and scheduled automatically by EM to
run at the specified time.

First, we need some simple definitions to help us understand the
process:

� The Program. This is the actual executable that we want to run.

� The Job. This is metadata that defines how a program is to be run. It
defines the argument values for the execution of the program.

� The Schedule. This specifies when the job is executed. The schedule
also defines whether or not, and how, the job repeats its execution.

Before we can create a job, we must first create a program that we want
to run. A program can be a PL/SQL block, a stored procedure, or an oper-
ating system executable outside of the database. We will base our example
on a small program to collect schema statistics. As we have seen in the pre-
vious chapters, the ability of the database optimizer to select the best access
plan to get the data to answer the queries depends on statistics having been
collected on our schema objects.

We will now create a program that gathers the statistics for a schema and
for this we will use a simple PL/SQL stored procedure, which takes the
schema name as its single parameter and calls a standard procedure, called
GATHER_SCHEMA_STATS, in the package DBMS_STATS.

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.2 Managing Using Oracle Enterprise Manager 495

Chapter 11

CREATE OR REPLACE PROCEDURE gather_schema_stats
 (schema_name IN VARCHAR2)
AS
BEGIN
 dbms_stats.gather_schema_stats(schema_name);
END;
/

To create a program, click the Programs link under the Scheduler section
on the Administration screen and you will get a screen that contains a list of
programs. Click the Create button on the right to get to the Create Program
screen shown, in Figure 11.12, where we can define our program. Name
your program and make sure that it is owned by EASYDW and that it is
enabled. For our example, we have decided to use a naming convention
with a _P suffix for the programs and _J suffix for the jobs. Make sure that
you have clicked the Yes radio button so that the program is enabled.

Now you have to specify the type of the program; in this example we are
going to create one for a stored procedure. When you click on the Type box to
select STORED_PROCEDURE, the screen layout will change to the screen
shown and will contain extra fields that are specific to that program type. If
the default procedure name shown isn’t the one for our stored procedure,
then click the Select Procedure button. This will display a new screen (not
shown), which enables you to select the GATHER_SCHEMA_STATS pro-
cedure in the EASYDW schema.

We will create our program as a stored procedure in order to demon-
strate how the arguments work. In Figure 11.12, you can see that the single

Figure 11.12 Creating a Program

TEAM LinG - Live, Informative, Non-cost and Genuine!

496 11.2 Managing Using Oracle Enterprise Manager

argument for our stored procedure has been displayed. At this point, we
have the opportunity to provide a default value for the argument, which
will be used if the program is invoked without any value at all. Enter
EASYDW into the Default field.

Our program is ready to be created, and, if you click on the Show SQL
button, you will see the screen shown in Figure 11.13, which Enterprise
Manager is going to execute. This involves three calls to procedures in the
DBMS_SCHEDULER package to create metadata about the program and
the arguments and then to enable the program.

Click Return to go back to the Create Program screen and then OK to
create the program.

Now that we have created the program, we need to define the job that
will execute it. In the Administration screen in the Scheduler section, click

Figure 11.13 SQL to Create a Program

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.2 Managing Using Oracle Enterprise Manager 497

Chapter 11

on Jobs to get to the Scheduler Jobs screen and then click the Create button
to see the Create Jobs screen, shown in Figure 11.14.

In the same fashion as when we created the program, the Job screen
defaults to fields for the command that are relevant to a PL/SQL block.
Changing the command type will refresh the screen with fields appropriate
to that type. In our example to gather schema statistics, we could have
entered the call to the DBMS_STATS package directly into the PL/SQL
block in this screen. However, this wouldn’t have helped demonstrate how
programs and arguments are used by the Scheduler, which is why we are
using a program.

Figure 11.14 Creating a Job

TEAM LinG - Live, Informative, Non-cost and Genuine!

498 11.2 Managing Using Oracle Enterprise Manager

Once you have completed the Name, Owner, and Description fields,
click on the Change Command Type button and you will see the small
screen shown in Figure 11.15 for selecting the program to be associated
with this job.

Select the Program Name radio button and the program that we just cre-
ated and click OK. Figure 11.16 shows that the Command section now
reflects our program with its single argument. If we fill in the Value field
with EASYDW, then, whenever this job is run, it will gather statistics for
the EASYDW schema.

There are two other screen tabs associated with creating a job. The first
is to specify the schedule that is used for executing the job. Click on the
Schedule link. The resulting screen, similar to that shown in Figure 11.17,
enables us to specify whether or not the job should reexecute on a repeating
basis and if so, when it repeats. Assuming that our warehouse will be
refreshed every night, we would want the optimizer statistics to be collected
daily at the end of that refresh task, just before the warehouse starts to be
used for the business day. Click on the Repeat field and select By Days, and
the resulting screen will be similar to that shown in Figure 11.17.

In Figure 11.17, there are four different ways to define the schedule for
our new job, specified by the Schedule Type field.

Figure 11.15 Selecting the Program for the Job

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.2 Managing Using Oracle Enterprise Manager 499

Chapter 11

� Standard, where you can create a specific schedule, as shown in Fig-
ure 11.17.

� Use Predefined Schedule, where the job uses a predefined and stored
schedule. With this type, the stored schedule name is simply selected
for use.

� Standard, using PL/SQL for repeated intervals where a PL/SQL
expression (e.g., “SYSDATE + 1” is the Enterprise Manager sugges-
tion) is used to define the repeat interval.

� Use Predefined Window, where a predefined window of operation
can be used as a schedule. A job starts when the window opens and
can be forced to stop when the window closes.

The remaining schedule fields on the screen change to be appropriate to
the schedule type selected. We are using the standard schedule type. Simi-

Figure 11.16 Setting the Job-Specific Parameters

TEAM LinG - Live, Informative, Non-cost and Genuine!

500 11.2 Managing Using Oracle Enterprise Manager

larly, the fields required to define the repeat schedule will change and be
appropriate to the Repeat field value that is selected. The Available to Start
and Not Available After parameters enable us to specify the boundaries
within which our repeating schedule will operate. There is actually a lot of
sophistication in how the schedule may be defined via this screen.

The definition of our job is almost complete. Clicking the Options link
enables some more controls on the job execution, such as job priority, to be
set, as shown in Figure 11.18.

We don’t really need to set any of these for our job, though we should
possibly consider setting the Priority. This defaults to Medium, but we may
want to consider a higher priority to ensure that our statistics gathering
completes, so we have raised its priority slightly to High. Clicking OK will
create our job and return us to the Scheduler Jobs screen, where we can see
our new job listed, as shown in Figure 11.19.

Figure 11.17 Setting the Schedule for the Job

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.2 Managing Using Oracle Enterprise Manager 501

Chapter 11

Figure 11.18 Setting the Options for the Job

Figure 11.19 The Confirmed Created Job

TEAM LinG - Live, Informative, Non-cost and Genuine!

502 11.2 Managing Using Oracle Enterprise Manager

From this screen there are a number of links for tabs to display the jobs
we have:

� Scheduled

� Currently executing

� Marked as disabled

� Already executed

We can use these lists to manage, edit, and monitor our jobs. For exam-
ple, if we now wanted to disable the job that we have just created, we would
click on its name, GATHER_STATISTICS, in the Name field in the Sched-
uled list and change the Enabled flag. Once the screens are refreshed, the job
will have disappeared from the Scheduled list and appeared in the Disabled
list. In a similar fashion, those jobs in the Run History list can be drilled into
to examine their execution status and their results.

Enterprise Manager Job System

Distinct from the new Oracle Database 10g Scheduler jobs and programs
that we’ve just discussed, there is another EM Job screen, which can be
accessed by following the Jobs link in the Related Links section at the bot-
tom of the four main Home pages.

The Job Activity screen shown in Figure 11.20 enables information about
all EM jobs and current and previous executions to be searched for and exam-
ined. At the bottom of the screen, you can follow the link to the Job Library.
The title of Jobs is used for both these EM Job screens and those for the new
Oracle Database 10g Scheduler section, but these are actually two separate
areas. You will notice that different jobs submitted by different parts of EM
will utilize either these EM Job screens or the new Oracle Database 10g
Scheduler job screens. For example, backup jobs will be listed in the Results
section of this EM Job Activity screen; however, the new Segment Advisor jobs
will be listed in the Run History list of the Scheduler Jobs screen.

Figure 11.20 shows the Job Activity screen. By clicking on the job Name
field in the Results section, the jobs can be drilled into. This will display new
screens (not shown) containing information on the job’s execution, its indi-
vidual steps, and the output logs from these steps—with further informa-
tion on any error that may have occurred. For example, the backup jobs
listed in Figure 11.20 show a problem that was caused by lack of space in
the disk area where the backups were being written to.

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.2 Managing Using Oracle Enterprise Manager 503

Chapter 11

To create a job, select the type of job that you want to create from the
Create Job field on the right and click Go. The screen shown in Figure 11.21
will appear, which is where you describe the details for this job. In this
example, we are again creating the job to collect the EASYDW schema sta-
tistics. First, we name the job and state upon which database it is to be per-
formed. We can also define the accounts and passwords required for the
job’s execution on both the server and the database, if necessary. Enterprise
Manager has stored preferred credentials for our current login account, and
this section allows us to override these defaults should we need to.

Although this example features a database task, other options are avail-
able from the drop-down list on destination type.

All jobs may be kept in the job library for reuse. Therefore, if you wish
to retain the job, now is a good time to click on the button at the top of the
screen to Save to Library.

Figure 11.20 Enterprise Manager Job Activity Screen

TEAM LinG - Live, Informative, Non-cost and Genuine!

504 11.2 Managing Using Oracle Enterprise Manager

The jobs form a library for reuse and can also be used by other user
accounts. It is easy to see that a sophisticated suite of reusable components
can be created. The other links on this page enable the job to be scheduled,
and the Access link displays a screen where access to the new job can be
granted to other administrators.

The examples in this section have shown a database operation and job.
Alternatively, a job could be an operating system task that needs to be per-
formed for managing the warehouse, such as ensuring that files are copied
from one system to another prior to loading the warehouse.

The number of jobs that we can submit by both of the job mechanisms
described in this chapter is quite extensive, and, once they are defined and
as long as we are backing up our database, we have a comprehensive set of
tasks that is safe and that can never be lost.

Figure 11.21 Creating a Job

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.3 Monitoring the Warehouse 505

Chapter 11

11.3 Monitoring the Warehouse

Oracle Database 10g introduces new tools for monitoring the performance
of your data warehouse, diagnosing and providing recommendations for
correcting any problems. The new components associated with this are the
Automatic Workload Repository (AWR) and the Automatic Database
Diagnostic Monitor (ADDM).

A database administrator may be barraged daily with questions about
the performance of the warehouse. How do we make this SQL run faster?
What is the problem? Where is the bottleneck? What do I look at to solve
this one? These may be questions that your users have asked or they may be
ones that you have asked yourself when something executes and grinds the
database to a halt. The examination of what is happening on the database
and where to look for information to resolve it comes from experience and
knowledge. Similarly, the ability to know how to correct the problem with-
out disrupting other aspects of the system often requires a knowledgeable
Oracle person. On many occasions, solving one issue just uncovers another
or can cause a problem elsewhere if care is not taken. Hence, the task of
problem diagnosis and resolution can be a time-consuming and iterative
process, which can take up quite a bit of a DBA’s time.

With the new AWR and ADDM components, Oracle Database 10g is
addressing the perennial problem of assisting with the collection of the
myriad data about the operation of the database and the analysis of this
data to identify problem areas. AWR collects and stores the statistics and
ADDM uses them to diagnose problems with the database performance.
Oracle Database 10g is also providing new options and EM performance
screens to increase the administrator’s ability to focus on the causes, and
then EM assists with the correction and deployment of the solution.

11.3.1 Automatic Workload Repository (AWR)

The Automatic Workload Repository is a repository of the statistics and
information about the operation of the Oracle Database 10g. To be able to
understand what is happening as the database operates is a prerequisite to
being able to analyze and resolve any problems that may occur; in order to
be able to understand something, we must first have information about it.
AWR is the repository of the information that enables us to understand the
database operation. The statistics gathered are an enhanced superset of
those used by Statspack in prior versions of the database. AWR is used by a

TEAM LinG - Live, Informative, Non-cost and Genuine!

506 11.3 Monitoring the Warehouse

number of other components in the database, such as the EM Performance
screens and ADDM (which is discussed in the next section).

By default, every 30 minutes AWR collects detailed performance statis-
tics and derived metrics on the operation of the database and stores these in
the database. These are known as snapshots. The operation of AWR is
designed and optimized to be an integral part of the database and not an
operation that sits on top of it utilizing resources. Consequently, this inte-
gral aspect of the design and optimization minimizes the impact on the
database operation and performance.

AWR is configurable and there are a number of parameters that control
its operation. For example, the 30-minute collection frequency, which we
have already mentioned, can be adjusted, as can the default seven days used
to purge old snapshots. The AWR screens can be accessed by going to the
Administration screen and clicking on the Automatic Workload Repository
link in the Workload section. The resulting AWR screen, shown in Figure
11.22, enables you to view the general information about the AWR, such as
the retention period and frequency that the snapshot is taken.

By clicking on the snapshot id number, the Snapshots page is displayed,
where you can further control and manage snapshots. For example, you can
use the snapshots to create a SQL Tuning Set (as described in Chapter 10)
or create a set of preserved snapshots for future reference to use as the basis
of a baseline for other metrics operations.

Figure 11.22 Enterprise Manager AWR Information

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.3 Monitoring the Warehouse 507

Chapter 11

By clicking the Edit button on the AWR screen, the Edit Settings screen
(not shown) is displayed, where you can adjust the retention period for the
snapshots and the frequency with which they are taken—or even turn the
snapshots off all together.

AWR and the comprehensive nature of the statistics that are collected
underpin both the monitoring features of the EM performance screens
(which are accessed from the Performance Home page) and the diagnostic
capability that is possible with ADDM, which we will look at next.

11.3.2 Automatic Database Diagnostic Monitor (ADDM)

ADDM is Oracle’s “expert DBA in a box.” It is a diagnostic engine that
runs after every snapshot collection and analyzes the collected data to iden-
tify possible problems and recommend corrective actions. Principally,
ADDM focuses on potential problem areas that are consuming a lot of
database time and resources. It drills down to identify the underlying cause
and creates a recommendation, with an estimate of the associated benefit.

First, we need to define the range of snapshots that we want ADDM to
analyze. To launch ADDM, start at Advisor Central and in the list of Advi-
sors click on ADDM. The resulting screen (not shown) enables you to spec-
ify the start and end snapshots and then create an ADDM task to analyze
these snapshots.

To define the snapshot range, click on the Period Start Time radio button
and then on one of the little camera icons under the graph. This specifies
the start of your snapshot range. Then click on the Period End Time radio
button and click on a camera icon for a later snapshot time. When you click
the OK button, an ADDM task is created and executed. This task analyzes
the data in AWR between your start and end points and provides you with
a list of performance findings, as shown in Figure 11.23.

The Performance Analysis section, as shown in Figure 11.23, displays a
list of the ADDM findings based on the snapshots that you specified. The
ADDM findings are prioritized by the estimated impact on the system, as
shown by the Impact (%) column on the left. Due to the different sets of
metrics that ADDM analyzes, it also categorizes the findings, as shown by
the Recommendation column on the right. For example, in the analysis find-
ings we have shown in Figure 11.23, the highest impact is one involving
potentially badly performing SQL. In the second finding, ADDM has dis-
covered that the buffer cache is undersized and that the database configura-
tion should be adjusted.

TEAM LinG - Live, Informative, Non-cost and Genuine!

508 11.3 Monitoring the Warehouse

Note the two buttons on the right-hand side, which will enable you to
view the information on the individual snapshots and also generate a very
detailed HTML report of the finding.

In Figure 11.24, you can see the result from clicking on the View Snap-
shots button in Figure 11.23, which contains details of the snapshots
involved. By clicking on the Report link, you generate the comprehensive
and user friendly HTML report.

From the list of the ADDM findings shown in in Figure 11.23, you can
click on the Finding links for one of the findings categories that are dis-
played, and this takes you to other screens, which enable further drilling—
even right down to the piece of nonperforming SQL or other cause of a
problem. For example, by drilling down on a SQL statement that ADDM
has identified, you get to the SQL Details screen (not shown), where there
are different sections to enable you to examine more thoroughly the cause
of the problem. These areas are:

Figure 11.23 Enterprise Manager ADDM

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.3 Monitoring the Warehouse 509

Chapter 11

� the execution plan for the SQL

� the execution statistics

� the execution history

� the tuning history of recommendations that have already been gener-
ated for the SQL

Figure 11.24 Enterprise Manager ADDM Snapshot Details

TEAM LinG - Live, Informative, Non-cost and Genuine!

510 11.3 Monitoring the Warehouse

From any of these four screens, you can then invoke the SQL Tuning
Advisor (described in Chapter 10) to provide recommendations on how to
correct the SQL.

This ability to drill down from the general to the specific is an approach
adopted in many places within Enterprise Manager in order to facilitate the
identification of a problem. For example, the graphs on the main
Performance Home page, shown in Figure 11.25, operate in a similar fashion
and use the historical snapshot data. The approach here is that the graphs
display a larger block of color to indicate a possible problem area. You can
then drill down using the links on the right-hand side to further identify the
causes of the problems.

We have only touched upon the power of the new EM interface in order
to demonstrate the functionality and importance of ADDM and AWR.
These new features provide a very comprehensive set of monitoring and
recommendation technologies, which appear in many aspects of the data-
base operation and the management approach by EM. To assist with the
normal day-to-day tasks in administering the warehouse, it will pay signifi-
cant dividends for the DBA to explore and get a good understanding of
these new features.

11.3.3 Using Alerts

One of the problems for anyone managing a database is knowing when cer-
tain events occur. For example, suppose a tablespace fills up and has no free
space remaining. Wouldn’t you like to know immediately that it has hap-
pened rather than wait for the calls from your users, who are complaining
that the system is no longer available?

An alert is a notification that occurs when a metric, about which you
have instructed the database to collect information, goes above a threshold
target that you have set. Within Enterprise Manager, there are many alerts
that are defined as standard and you see an example of these every time you
log into Enterprise Manager in the Alerts section of the Home page. But you
can also define your own alerts, which will allow you to monitor custom
aspects of your data warehouse and be notified when certain events occur.

To manage these metrics, thresholds, and alerts, click on the Manage
Metrics link in the Related Links section and you will get the screen shown
in Figure 11.26. This screen lists the standard precreated metrics, as well as
the custom ones, the thresholds that will trigger an alert, and the operator
that defines the boundary criteria for the threshold. For example, the first
metric in the list in Figure 11.26 is Archive Area Used, which is monitoring

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.3 Monitoring the Warehouse 511

Chapter 11

the disk space used by the archived redo logs; when it exceeds the 80 per-
cent threshold, an alert is issued. When this occurs, you will see this alert on
the Home page when you logon to Enterprise Manager.

The thresholds and actions can be adjusted by clicking the Edit Thresh-
old button, where a screen very similar to the one shown in Figure 11.27 is
displayed, but this time the fields Warning Threshold, Critical Threshold, and
Response Action are editable.

Figure 11.25 Enterprise Manager Performance Screen

TEAM LinG - Live, Informative, Non-cost and Genuine!

512 11.3 Monitoring the Warehouse

The Response Action field can be any operating system command, which
includes calling custom programs and scripts. It is executed by the Manage-
ment Agent running on the server, and this field is one of those that only
superuser administrators can edit.

We can also define our own metrics on which a threshold can be based.
On the Administration screen in the Related Links area, click on the User-
Defined Metrics link at the bottom and then click the Create button to go to
the Create User-Defined Metric screen, shown in Figure 11.28.

Figure 11.26 Enterprise Manager Manage Metrics Screen

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.3 Monitoring the Warehouse 513

Chapter 11

In the screen in Figure 11.28, we need to be able to express our metric
in terms of either a SQL statement or a call to a function. To execute this
code, we will also need to provide a database account name and password.
In our example, we are using some SQL to read the database data dictio-
nary to test if there are any materialized views that have the status
NEEDS_COMPILE with a refresh date more than two days old. You can
then specify the warning and critical conditions and the action to be per-
formed. Our example will raise a warning if the OLD_AND_STALE
value is returned from executing the SQL.

Figure 11.27 Enterprise Manager Threshold Screen

TEAM LinG - Live, Informative, Non-cost and Genuine!

514 11.3 Monitoring the Warehouse

A useful feature here is the field in the Thresholds section to specify the
number of consecutive times that the warning or critical threshold may be
met prior to an alert being issued. This provides some control over tempo-
rary or transitory occurrences, which you may not want to be alerted about,
but enables persistent ones to be flagged.

Here we have just scratched the surface of what is possible with met-
rics and thresholds. Much of the power of these features underpins the
strength of the new monitoring and alert capability in Oracle Database
10g and is enhanced by the capability to customize for your own environ-
ment. Hopefully, this introduction will encourage you to investigate this

Figure 11.28 Enterprise Manager User-Defined Metric Screen

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.4 Reorganizing the Warehouse 515

Chapter 11

area further and implement it as part of your data warehouse manage-
ment procedures.

11.4 Reorganizing the Warehouse

Reorganizing a database, irrespective of whether it is a data warehouse or a
database used for transaction processing–style systems, is not a task to be
undertaken lightly. Unfortunately, in a data warehouse, the time required to
reorganize can become a serious issue, due to the high data volumes
involved. Therefore, it shouldn’t be necessary to reorganize the database
entirely, but minor changes may be necessary.

11.4.1 Why Reorganize?

Reorganizations can occur for a variety of reasons, such as:

� The business needs change

� A regular archiving of data

� The government changes the rules

� Changes are required to the database design

� Improve performance

� The characteristics of the data were not as predicted

� The integration of another company’s computer system following an
acquisition

A change in the business requirements from the system is almost impos-
sible to predict, and one solution to the problem may be to create a data
mart rather than restructure the entire data warehouse.

The most probable reasons that we will need to reorganize are to
improve performance, database changes, and archiving. Changing the phys-
ical implementation of the tables can certainly make a significant difference
to the performance. Changing a table to be partitioned is a good example,
but there may be more subtle changes, such as changing a column data
type, which could also be required.

Careful reviewing of the database design and physical implementation
can help overcome the need for later changes to the design and schema. If

TEAM LinG - Live, Informative, Non-cost and Genuine!

516 11.4 Reorganizing the Warehouse

necessary, asking for an external review by an experienced data warehouse
designer can be a good mechanism to identify potential problems as early as
possible. One of the problems with data warehouses is that what may seem
a good design at the outset may prove unsuitable in the long term, due to
the large volumes of data involved. Therefore, try to minimize the likeli-
hood of this occurring by using techniques such as partitioning.

Some reorganization may be planned. If you want to keep your data
warehouse somewhat constant in size and not let it grow indefinitely, you
may decide to keep only a few years of data. When new data is added, old
data is archived and removed. This is called a rolling window operation and
is discussed later in the book. The two major types of reorganization used in
a data warehouse are partition operations and on-line reorganization, which
we will look at in the next sections.

11.4.2 Partition Maintenance

Some of the structural changes required by the data warehouse can be
achieved by using partition operations. In this section, we will look at
some of the most common partition maintenance operations, including
the following:

� Adding and dropping partitions

� Exchanging a partition

� Splitting and merging partitions

� Coalescing a partition

� Truncating a partition

� Moving a partition

We will provide the full examples using SQL and also present the EM
screens where the operation can also be performed. Where these are multi-
ple-step operations, we will only demonstrate one of the steps in EM.

These operations are performed from the Edit Table screen EM follow-
ing the Partitions link. When a partition has been chosen, a selection is
made from the Actions box, which contains a list of the operations that can
be performed on the partition when the Go button is clicked.

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.4 Reorganizing the Warehouse 517

Chapter 11

Rolling Window Partition Maintenance

When the warehouse is first created, there may be little or no historic data
with which to populate it. Therefore, for the first 18 to 24 months, new
data continues to be added every month until the required system limits are
met. Then, when the data warehouse is full, every month the old data is
backed up and removed to make room for new data. Without partitions,
the operation to delete the old data would have to scan all of the large fact
tables to identify and delete the records, which is very time consuming. The
faster alternative to this problem is to drop the partition containing the old
data and create a new partition for the new data, as shown in Figure 11.29.

This technique is applicable only if the data is partitioned on a date or
on a partition key that infers a date (i.e., that is time sequential, such as an
absolute month number, for example, 200412 for December 2004). There-
fore, if you decide upon another partitioning scheme, such as a code, this
type of maintenance operation would not be possible. For example, it
would be impossible to use with a hash partitioning mechanism, because
you have no control over which partition Oracle will place the records into.

The SQL commands to perform the tasks are as follows. First, the old
partition containing the data for sales for the month of January 2000 is
dropped.

ALTER TABLE easydw.purchases
 DROP PARTITION purchases_jan00;

Next, the new partition for the data for sales for the month of December
2004 is created. The first step is to create the tablespace where the data will
reside.

Figure 11.29 Partition Maintenance

TEAM LinG - Live, Informative, Non-cost and Genuine!

518 11.4 Reorganizing the Warehouse

CREATE TABLESPACE purchases_dec04
DATFILE 'C:\ORACLE\PRODUCT\10.1.0\ORADATA\EASYDW\PURCHASESdec2004.f'
 SIZE 5m REUSE AUTOEXTEND ON DEFAULT STORAGE
 (INITIAL 16k NEXT 16k
 PCTINCREASE 0 MAXEXTENTS UNLIMITED);

The next step is to alter the table definition to create the new partition
for December 2004 data in the new PURCHASES_DEC2004 tablespace.

ALTER TABLE easydw.purchases
 ADD PARTITION purchases_dec2004
 VALUES LESS THAN (TO_DATE('01-01-2005',
 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE purchases_dec2004 ;

Of course, with this mechanism we had to drop the old tablespace in
which the PURCHASES_JAN00 resided; otherwise, we would eventually
end up with a collection of empty tablespaces that are not being used.

A slight variation of this technique is one where our tablespace names do
not reflect the contents of the data they are holding. In Figure 11.30, we
have named our partitions 1 through 60—instead of calling them after the
data they hold, such as PURCHASES_JAN00. By using this approach, the
tablespaces can then be reused. As we drop the old partition, it frees up the
tablespace and then we simply reuse it to contain the new partition, as
shown in Figure 11.30.

Figure 11.30 Rolling Window with Tablespace Reuse

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.4 Reorganizing the Warehouse 519

Chapter 11

Exchanging a Partition

After a new partition is added to a table, data already can be loaded into it.
Various techniques to load data were described in Chapter 5. If the data is in
a table in the database, the fastest way to move the data into the new partition
is by using exchange partition. This is used to move data from a non-parti-
tioned table into a partition of a partitioned table. Exchange partition can
also be used to convert a partition into a nonpartitioned table or between var-
ious types of partitioned tables. The following example shows moving the
data from the DEC_ORDERS table into the PURCHASES_DEC2004 par-
tition of the EASYDW.PURCHASES table.

ALTER TABLE easydw.purchases
 EXCHANGE PARTITION purchases_dec2004
 WITH TABLE dec_orders;

Most of the partition operations that we are going to look at in this
chapter can be performed from Enterprise Manager by editing a partitioned
table. From the Administration screen go to the Schema section and click on
the Tables link. Select the PURCHASES table, and click on the Edit button
to navigate to the Edit Table screen, and click on the Partitions link. This
screen will show you a list of the partitions in the PURCHASES table. The
Actions pick list on the right-hand side contains the list of operations that
can be performed on a partition. Select Exchange from this list, click the Go
button, and the screen shown in Figure 11.31 appears.

Select the nonpartitioned table that you want to exchange with the
selected partition. In our example, the table is DEC_ORDERS but it only
contains records for December 2004.

Hint: The partitioned and nonpartitioned tables must have the same struc-
ture and definition.

The reason that this operation is very quick is because no data move-
ment is actually involved; Oracle is simply exchanging the metadata about
the objects within the data dictionary. So the table’s metadata is redefined to
be that of the partition of the PURCHASES table and the partition’s meta-
data is redefined to be that of the DEC_ORDERS table.

Merging Partitions

Partitions can be merged, either by merging into a wholly new partition or
into an existing partition.

TEAM LinG - Live, Informative, Non-cost and Genuine!

520 11.4 Reorganizing the Warehouse

One technique often used by designers is to keep the first six months of
data in monthly partitions, and then after that, store the data in quarterly
partitions. By using the MERGE PARTITION option, the data can be eas-
ily moved to the new partition, as shown in the following code.

If we wanted to combine the data for April through July 2004 into a
partition for the second quarter, we could merge the partitions. First, a new
tablespace is created to store the Q2 purchases.

CREATE TABLESPACE purchases_q2_2004
 DATAFILE
'C:\ORACLE\PRODUCT\10.1.0\ORADATA\EASYDW\PURCHASESQ22004.f'
 SIZE 5M
 REUSE AUTOEXTEND ON
 DEFAULT STORAGE
 (INITIAL 64K NEXT 64K
 PCTINCREASE 0 MAXEXTENTS UNLIMITED);

In our example, there are three partitions that have to be merged, but
the MERGE PARTITION command only allows us to merge two parti-
tions at a time. Since only adjacent partitions can be merged, we will begin
with merging May and June and then the resultant partition with April. If a

Figure 11.31 Partition Exchange via Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.4 Reorganizing the Warehouse 521

Chapter 11

table is partitioned by range, only adjacent partitions can be merged.
Therefore, we can merge April and May or May and June but cannot merge
April and June.

 The new partition inherits the upper bound of the two merged parti-
tions. Therefore, the two partitions with the highest ranges need to be
merged first (May and June), into the Q2 partition. The following example
merges the May and June partitions and stores them in the newly created
tablespace called PURCHASES_Q2_2004. The PURCHASES_Q22004
partition is automatically added to the PURCHASES table.

ALTER TABLE purchases
 MERGE PARTITIONS purchases_may2004,purchases_jun2004
 INTO PARTITION purchases_q22004
 TABLESPACE purchases_q2_2004 ;

Next, the partition with the lowest range, PURCHASES_APR2004, is
merged into the PURCHASES_Q22004 partition, as follows:

ALTER TABLE purchases
 MERGE PARTITIONS purchases_apr2004,
 purchases_q22004
 INTO PARTITION purchases_q22004
 TABLESPACE purchases_q2_2004 ;

After this operation, the PURCHASES table contains one partition,
shown in Figure 11.32, which is showing the partitions section of the
View Table screen for PURCHASES. Upon completion of the merge oper-
ation, the old partitions are automatically dropped from the PUR-
CHASES table. The high value for the new PURCHASES_Q22004
partition is July 01, 2004.

This operation can also be performed by Enterprise Manager. On the
Edit Table, Partitions screen, select the PURCHASES_MAY2004 parti-
tion, select the Merge action, click the Go button, and you are then pre-
sented with the screen shown in Figure 11.33, where you select the other
partition with which you wish to merge.

The operation is then repeated to merge the new partition for Q22004
with the partition for APR2004.

When merging partitions, both the data and the indexes are merged.
The index partitions for April, May, and June were automatically dropped
and were replaced by a new index partition for Q2. In the following query,

TEAM LinG - Live, Informative, Non-cost and Genuine!

522 11.4 Reorganizing the Warehouse

Figure 11.32 Merge Partition

Figure 11.33 Partition Merge via Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.4 Reorganizing the Warehouse 523

Chapter 11

there is a new index partition, PURCHASES_Q22004, for the indexes on
the PURCHASES table.

SELECT index_name, partition_name, status
FROM user_ind_partitions;

INDEX_NAME PARTITION_NAME STATUS
------------------------ ----------------- --------
PURCHASE_SPECIAL_INDEX PURCHASES_Q22004 UNUSABLE
PURCHASE_CUSTOMER_INDEX PURCHASES_Q22004 UNUSABLE
PURCHASE_PRODUCT_INDEX PURCHASES_Q22004 UNUSABLE
PURCHASE_TIME_INDEX PURCHASES_Q22004 UNUSABLE

The new index partitions are unusable and must be rebuilt, as shown in
the following example.

ALTER INDEX purchase_product_index
 REBUILD PARTITION purchases_q22004 ;
ALTER INDEX purchase_time_index
 REBUILD PARTITION purchases_q22004 ;
ALTER INDEX purchase_special_index
 REBUILD PARTITION purchases_q22004 ;
ALTER INDEX purchase_customer_index
 REBUILD PARTITION purchases_q22004 ;

Splitting Partitions

If a partition becomes too big, it may need to be split to help maintenance
operations complete in a shorter period of time or to spread the I/O across
more devices. A partition can be split into two new partitions. If the PUR-
CHASES table was originally partitioned by quarter, and sales signifi-
cantly exceeded expectations resulting in a very large partition, the
partition could be split up into three monthly partitions. Tablespaces are
first created for PURCHASES_APR2004, PURCHASES_MAY2004, and
PURCHASES_JUN2004.

In the following example, all rows with PURCHASE_DATE less than
or equal to May 1, 2004, will be split into the PURCHASES_APR2004
partition. The remaining rows will remain in the PURCHASES_Q22004
partition. The April purchases will be stored in the PURCHASES_
APR2004 tablespace.

ALTER TABLE purchases
SPLIT PARTITION purchases_q22004
 AT (TO_DATE('01-MAY-2004','dd-mon-yyyy'))
 INTO (PARTITION purchases_apr2004
 TABLESPACE purchases_apr2004,
 PARTITION purchases_q22004) ;

TEAM LinG - Live, Informative, Non-cost and Genuine!

524 11.4 Reorganizing the Warehouse

After the split operation, there are two partitions. Next, the remaining
rows in the partition, PURCHASE_Q22004, are split into the May and
June partitions.

ALTER TABLE purchases
SPLIT PARTITION purchases_q22004
 AT (TO_DATE('01-JUN-2004','dd-mon-yyyy'))
 INTO (PARTITION purchases_may2004
 TABLESPACE purchases_may2004,
 PARTITION purchases_jun2004
 TABLESPACE purchases_jun2004) ;

The data has been repartitioned, and the PURCHASES_Q22004,z par-
tition automatically dropped, as shown in Figure 11.34.

Figure 11.34 Split Partition

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.4 Reorganizing the Warehouse 525

Chapter 11

This operation is performed from EM via the Edit Table, Partition
screen, for the PURCHASES table, as shown in Figure 11.35, by selecting
the Split action. The use of the screen to perform this operation is much
more intuitive and less error prone than performing the operation by hand
with SQL commands.

Clicking the OK button returns you to the Partitions screen, with check
boxes against the partition to indicate that the actual split operation is
pending. Repeat the operation again on the PURCHASES_Q22004 parti-
tions to split it for the May and June partitions. When the Apply button is
clicked, the two pending split partition operations are actually performed.

Any partitions of the local indexes corresponding to the PURCHASES_
Q22004 partition have been dropped. In their place are new local index
partitions for the new table partitions.

Figure 11.35 Splitting Partitions via Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

526 11.4 Reorganizing the Warehouse

SELECT INDEX_NAME, PARTITION_NAME, STATUS
FROM USER_IND_PARTITIONS;

INDEX_NAME PARTITION_NAME STATUS
----------------------- ------------------ --------
PURCHASE_SPECIAL_INDEX PURCHASES_APR2004 UNUSABLE
PURCHASE_CUSTOMER_INDEX PURCHASES_APR2004 UNUSABLE
PURCHASE_SPECIAL_INDEX PURCHASES_JUN2004 UNUSABLE
PURCHASE_SPECIAL_INDEX PURCHASES_MAY2004 UNUSABLE
PURCHASE_CUSTOMER_INDEX PURCHASES_JUN2004 UNUSABLE
PURCHASE_PRODUCT_INDEX PURCHASES_APR2004 UNUSABLE
PURCHASE_TIME_INDEX PURCHASES_APR2004 UNUSABLE
PURCHASE_CUSTOMER_INDEX PURCHASES_MAY2004 UNUSABLE
PURCHASE_PRODUCT_INDEX PURCHASES_JUN2004 UNUSABLE
PURCHASE_PRODUCT_INDEX PURCHASES_MAY2004 UNUSABLE
PURCHASE_TIME_INDEX PURCHASES_JUN2004 UNUSABLE
PURCHASE_TIME_INDEX PURCHASES_MAY2004 UNUSABLE

Any unusable indexes must be rebuilt, as follows, for the APR2004 par-
tition.

ALTER INDEX purchase_product_index
 REBUILD PARTITION purchases_apr2004 ;
ALTER INDEX purchase_time_index
 REBUILD PARTITION purchases_apr2004 ;
ALTER INDEX purchase_customer_index
 REBUILD PARTITION purchases_apr2004 ;
ALTER INDEX purchase_special_index
 REBUILD PARTITION purchases_apr2004 ;

Coalescing Hash Partitions

Range and list partitions can be merged, but hash partitions cannot; they
must be coalesced. Rather than determining which partition a row is stored
in by comparing the value of the partitioning key with the table’s partition-
ing criteria, as is done for range or list partitioning, the partition is deter-
mined by applying a hash function.

Merging partitions in effect reduces the number of partitions by one.
When the number of partitions changes, the hash function must be reap-
plied to redistribute the data. Coalescing the partitions does this.

The following example shows the creation of a hash-partitioned table
with 10 partitions.

CREATE TABLE easydw.hash_purchases
 (product_id varchar2(8),
 time_key date,
 customer_id varchar2(10),
 purchase_date date,

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.4 Reorganizing the Warehouse 527

Chapter 11

 purchase_time number(4,0),
 purchase_price number(6,2),
 shipping_charge number(5,2),
 today_special_offer varchar2(1))
PARTITION BY HASH(product_id)
PARTITIONS 10;

To reduce the number of partitions by one, issue the following com-
mand.

ALTER TABLE easydw.hash_purchases COALESCE PARTITION;

This, in effect, drops a partition.

Likewise, a hash-partitioned table cannot be split when it becomes too
big. To increase the number of partitions in a hash-partitioned table, alter
the table and add a partition to it.

Truncating Partitions

Sometimes we need to remove all the rows in a partition. For example, we
may only keep 18 months of data and, once a month, we need to remove
that old data. Rather than delete each row individually, we can use the
TRUNCATE PARTITION option, which rapidly removes the data.

To remove all the rows from a partition, but not the partition itself, use
TRUNCATE partition. This is much faster than deleting each row in the
partition individually. Any local indexes for the partition, such as the
EASYDW.PURCHASE_TIME_INDEX, are also truncated. Prior to trun-
cating the partition, there are 3,847 rows in the PURCHASES_JAN2003
partition.

SELECT COUNT(*) FROM purchases
WHERE time_key
 BETWEEN TO_DATE('01-JAN-2003', ‘dd-mon-yyyy’)
 AND TO_DATE('31-JAN-2003', ‘dd-mon-yyyy’) ;

 COUNT(*)

 3847

ALTER TABLE PURCHASES TRUNCATE PARTITION purchases_jan2003;

After truncating the partition, all rows have been deleted.

SELECT COUNT(*) FROM purchases

TEAM LinG - Live, Informative, Non-cost and Genuine!

528 11.4 Reorganizing the Warehouse

WHERE time_key
 BETWEEN TO_DATE('01-JAN-2003', ‘dd-mon-yyyy’)
 AND TO_DATE('31-JAN-2003', ‘dd-mon-yyyy’) ;

 COUNT(*)

 0

The EM screen for this operation is shown in Figure 11.36; it is a confir-
mation screen, which provides some useful options and control over the
truncate operation. When a truncate command is performed, it deletes the
rows, but you can specify whether the freed-up space is retained by the par-
tition or returned to the containing tablespace.

Be warned that the truncation operation is actually a DDL operation,
which effectively commits immediately and does not create any undo infor-

Figure 11.36 Partition Truncation via Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.4 Reorganizing the Warehouse 529

Chapter 11

mation. So once you click the Yes button, you confirm the operation and
lose your data.

Moving Partitions

A partition can be moved from one tablespace to another. For example, if
the January partition on the PURCHASES table had been incorrectly cre-
ated in EASYDW_DEFAULT tablespace, it would need to be moved to the
PURCHASES_JAN2003 tablespace to be consistent with the database
design conventions. The following command could be used.

ALTER TABLE purchases
 MOVE PARTITION purchases_jan2003
 TABLESPACE purchases_jan2003 ;

Hint: A NOLOGGING clause can be specified after the tablespace name;
that causes the operation not to create redo logs and results in better perfor-
mance. After performing NOLOGGING operations, don’t forget to take a
backup, since you will not be able to recover in the event of media failure.

This task can also be performed in EM, where you are asked simply to
specify the target tablespace. It also provides the option to update the indexes
and choose the degree of parallelism to be used for the move operation.

Partitions Facilitate Management

Most of the management operations that can be performed at a table level
can also be performed on an individual partition or subpartition of a table.
Partitions or subpartitions can be backed up, exported, restored, and recov-
ered without affecting the availability of the other partitions or subparti-
tions. To best manage each partition or subpartition independently, they
should each be stored in their own tablespace. Each tablespace should be
stored on one or more separate storage devices.

Summary management and the query optimizer make use of the fact
that the data is partitioned in choosing the optimal strategy for executing a
query or refreshing a materialized view. Partition Change Tracking (PCT)
for materialized views, which was discussed in Chapter 7, keeps track of
which partitions have been updated after a partition maintenance operation
and recomputes only that portion of the materialized view when it is
refreshed. Partition Change Tracking also increases the query rewrite capa-
bilities of the materialized view by rewriting queries to use the partitions of
the materialized view that are not stale. If a table is partitioned, the query

TEAM LinG - Live, Informative, Non-cost and Genuine!

530 11.4 Reorganizing the Warehouse

optimizer can use partition elimination or partition pruning to determine if
a certain query can be answered by reading only specific partitions.

Hint: The examples shown in this section have performed partition main-
tenance operations on a table, but don’t forget that partitions are also used
on indexes, so you will have to create and maintain the corresponding index
partitions. Also in these examples we’ve used partitions, but the operations
are equally valid on subpartitions as well.

11.4.3 Index Changes

Probably one of the aspects of the design that will be changed is the indexes.
New ones will be created, and existing ones will be modified. In a data
warehouse, there is a temptation to create more indexes, because of the lack
of updates to the system. However, you should consider the impact all of
these indexes will have on the data load time.

If you need to rebuild an index for any reason, it is suggested that you
use the ALTER INDEX REBUILD statement, which should offer better
performance than dropping and recreating the index.

Many table maintenance operations on partitioned tables invalidate glo-
bal indexes and they are marked UNUSABLE. You must then rebuild the
entire global index or, if partitioned, all of its partitions. To avoid this you
can include the UPDATE GLOBAL INDEXES clause in the ALTER
TABLE statement for the maintenance operation. Specifying this clause
tells Oracle to update the global index at the time it executes the mainte-
nance operation DDL statement.

Hint: By partitioning the data, you can perform maintenance on specific
index partitions rather than on the entire index.

11.4.4 Online Redefinition of Tables

With the increased importance of our data warehouse to the business can
come the increased requirement for it to be constantly available; when it is
not actually open to the users, it will need to be refreshed. These activities
can seriously reduce the available window in which to perform maintenance
operations. In a data warehouse with very large tables, these operations can
be quite time consuming to perform. Gone are the days when the ware-

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.4 Reorganizing the Warehouse 531

Chapter 11

house was only needed 9 to 5 and then there were these long batch win-
dows and periods when maintenance could be performed. Now data
warehouses are being used 24 hours a day, and it is becoming increasingly
difficult to find time to perform maintenance operations.

However, Oracle has online redefinition, which enables tables to be
rebuilt and restructured and data to be transformed while the tables are
fully on-line and accessible to the users of the database.

The benefits and features of online redefinition are:

� The ability to change the table to or from a partitioned structure

� To improve space utilization

� To modify the storage characteristics of the table

� To change a normal table to or from an index-organized table

� To Automatically copy dependant objects on the table, such as trig-
gers, constraints, and indexes (new in 10g)

� Dependant stored procedures do not require recompilation (new in
10g)

� To free unused space within the table segments back to the tablespace
(new in 10g)

� To convert data types such as longs to LOBs (new in 10g)

In spite of all the care and attention spent during the design and deploy-
ment of our warehouse, there can still be the occasional table that is created
but does not operate quite as anticipated. This could be due to a number of
reasons, such as:

� The table has become much larger than expected by the volume met-
rics on which the warehouse designer based physical table design, and
it now needs to be partitioned.

� The update activity on the table was not as expected during analysis and
has caused the underlying physical storage to be used inappropriately.

In our first example, changing a large table to be partitioned enables eas-
ier management and performance improvements to the queries that access

TEAM LinG - Live, Informative, Non-cost and Genuine!

532 11.4 Reorganizing the Warehouse

it—for example, to make use of partition elimination or partition-wise
joins. A persistent problem that exists with table partition operations is that
it is not possible to convert an unpartitioned table into a partitioned table.
There is no SQL operation to do this. All of the partition operations that
we discussed earlier in the chapter are only possible if the table was origi-
nally implemented as a partitioned table.

In the second example for storage problems, unanticipated update DML
activity can cause a problem called row chaining, which causes a row to
become stored in more than one disk block and consequently require two I/O
operations to retrieve it.

Correcting these types of problems typically requires that the table be
dropped, rebuilt, and reloaded to restructure it or improve the space utiliza-
tion. But if the table has constraints or triggers on it, then the opportunity
to drop the table in order to rebuild it in this fashion is significantly
reduced.

Online redefinition enables these changes to the table structure and stor-
age to be performed without needing to drop the table. During the opera-
tion the table remains available and in use by the users.

There are two ways to use on-line redefinition: from within Enterprise
Manager or by invoking the DBMS_REDEFINITION package directly.
We will start by looking at the Enterprise Manager approach, but because
this currently only offers a limited subset of what is possible via the pack-
age, we will then look at an example that calls the package directly.

Online Redefinition via Enterprise Manager

Within Enterprise Manager, the on-line redefinition wizards can be
accessed by going to the Maintenance screen and clicking on the Reorganize
Objects link. On the first screen of the wizard (not shown), you need to
decide which path through the wizard you want to take to reorganize the
objects:

� By schema

� By tablespace

Either route enables you to specify the objects within the schema or
tablespace that you want to reorganize.

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.4 Reorganizing the Warehouse 533

Chapter 11

The wizard is very easy to use and very self-explanatory. One of the
important screens is the Options screen, shown in Figure 11.37, which
requires further explanation.

There are two methods by which the objects can be rebuilt:

� Offline, which results in the objects being unavailable

� Online, which ensures that the objects are available during the redefi-
nition process

The online method requires the tables to have some form of unique
identifier, such as a primary key, rowid, or unique index. If one is not
present, then you will need to tick the check box for the ROWID method.

Figure 11.37 The Enterprise Manager Reorganize Objects Options Screen

TEAM LinG - Live, Informative, Non-cost and Genuine!

534 11.4 Reorganizing the Warehouse

As part of the redefinition process, temporary objects will need to be
built; therefore, the tablespace reorganization method needs to use a sepa-
rate scratch tablespace.

There are two final sections on the Options screen shown in Figure
11.37: Object Parameters and Session Parameters, which enable you to fine-
tune the execution of the redefinition. In these sections, you can control the
degree of parallelism to be used, which can be important for large objects.
Similarly, when indexes are being rebuilt, if the check box to build without
generating redo logs is selected, a performance gain can be achieved for
large indexes. However, be careful when selecting NOLOGGING, because
this can prevent database recovery in the event of media failure; taking a
backup is advised.

When the Next button, shown in Figure 11.37, is clicked, the wizard
analyzes the objects and dependencies that you have selected and displays
an impact report (not shown) of its findings. Examples of the types of find-
ings detected are insufficient tablespace or no primary key on a table for an
on-line redefinition method. After viewing the report, you then have the
option to go back and make corrections using the Back button or progress
to the Schedule screen by pressing the Next button.

The final two steps of the wizard are to specify the schedule for when
you want the reorganization performed (this screen is not shown) and to
make a final review of the process that you have defined via the wizard. On
the Review page, which is shown in Figure 11.38, the scripts that are gener-
ated by Enterprise Manager are displayed.

The scripts produced in Figure 11.38 are either:

� A summary showing the steps required and the packaged procedures
called

� The full script, which is detailed PL/SQL and includes much more
code for controlling each step of the operation

It is the full script that is actually executed. The summary script, how-
ever, is very useful as a starting point for understanding more about the
steps required for the redefinition operation.

Clicking on the Submit Job button, shown in Figure 11.38, will submit
the job to the job queue for execution according to the schedule that you
defined.

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.4 Reorganizing the Warehouse 535

Chapter 11

Online Redefinition Using the DBMS_REDEFINITION Package

From the initial part of the script shown in Figure 11.38, it is clear that a
number of steps are required for redefining an object; these are performed
by executing various procedures in the DBMS_REDEFINITION package.

Before attempting to redefine a table, you should use the procedure
DBMS_REDEFINITION.CAN_REDEF_TABLE() to check if a redefini-
tion is possible. This is because, at the time of writing, there is a limitation
with the DBMS_REDEFINITION package in that it is not possible to
reorganize a table that has materialized views on it.

We will illustrate the use of this feature with an example. Suppose the
CUSTOMER table is currently not partitioned. However, as the business
grows, this table has grown significantly in size and so we would now like to
reorganize it to use list partitioning on the STATE column. Further, we
would like to change the OCCUPATION column from a VARCHAR2(15)
to a VARCHAR2(20). Finally, in order to support some more detailed anal-
ysis of the postal code for U.K. addresses, we want to restructure it from a

Figure 11.38 The Enterprise Manager Reorganize Objects Options Review Screen

TEAM LinG - Live, Informative, Non-cost and Genuine!

536 11.4 Reorganizing the Warehouse

single column into two columns. We will split it on the first space it may
contain into OUTER and INNER parts, as follows:

� If the postal code contains a space, then the OUTER part will be
assigned the characters preceding the first space and the INNER part
will be assigned the characters following the first space.

For example, W1 1QC becomes OUTER=W1 and INNER=1QC

� If the postal code contains no space, then it is assigned to the
OUTER column and the INNER column is null.

For example, 73301 becomes OUTER=73301 and INNER=NULL

To perform the split of the postal code we need to define two PL/SQL
functions to perform the operations, as follows:

CREATE OR REPLACE
FUNCTION outer(postal_code IN VARCHAR2)
RETURN VARCHAR2
IS
BEGIN
 IF instr(postal_code, ' ') = 0
 THEN return (postal_code);
 ELSE return (substr(postal_code,
 1,
 instr(postal_code, ' ')-1)) ;
 END IF ;
END ;

CREATE OR REPLACE
FUNCTION inner(postal_code IN VARCHAR2)
RETURN VARCHAR2
IS
BEGIN
 IF instr(postal_code, ' ') = 0
 THEN return (null);
 ELSE return (substr(postal_code,
 instr(postal_code, ' ')+1)) ;
 END IF ;
END ;

To redefine the CUSTOMER table, while allowing users to still query
and update the data, we need to do the following.

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.4 Reorganizing the Warehouse 537

Chapter 11

Step 1: Create an Interim Table

Create the interim table showing how you would like the redefined table to
look. Note that the interim table will need to have a name different from
the actual table you are redefining.

CREATE TABLE customer_interim
(
 CUSTOMER_ID VARCHAR2(10) NOT NULL,
 CITY VARCHAR2(15),
 STATE VARCHAR2(10),
 POSTAL_CODE_OUTER VARCHAR2(10),
 POSTAL_CODE_INNER VARCHAR2(10),
 GENDER VARCHAR2(1),
 REGION VARCHAR2(15),
 COUNTRY VARCHAR2(20),
 TAX_RATE NUMBER,
 OCCUPATION VARCHAR2(20)
)
PARTITION BY LIST(state)
(
 PARTITION northeast VALUES ('NH', 'VT', 'MA', 'RI', 'CT'),
 PARTITION southeast VALUES ('NC', 'GA', 'FL'),
 PARTITION northwest VALUES ('WA', 'OR'),
 PARTITION midwest VALUES ('IL', 'WI', 'OH'),
 PARTITION west VALUES ('CA', 'NV', 'AZ'),
 PARTITION otherstates VALUES (DEFAULT)
);

Step 2: Start the Redefinition Process

Call the START_REDEF_TABLE procedure providing the name of the
table to be redefined and the interim table.

BEGIN
 dbms_redefinition.start_redef_table
 (uname=>'EASYDW',
 orig_table=>'CUSTOMER',
 int_table=>'CUSTOMER_INTERIM',
 col_mapping=>'customer_id customer_id, '
 ||'city city, '
 ||'state state,'
 ||'outer(postal_code) postal_code_outer,'
 ||'inner(postal_code) postal_code_inner,'
 ||'gender gender, '
 ||'region region, '
 ||'country country, '
 ||'tax_rate tax_rate, '
 ||'occupation occupation'
);
END;

TEAM LinG - Live, Informative, Non-cost and Genuine!

538 11.4 Reorganizing the Warehouse

Once you have done this, the interim table will be instantiated with the
contents of the original table.

Currently, the Enterprise Manager wizard does not support the more
complex table redefinitions that we are performing—for example, where
new columns are added, dropped or column values are transformed. These
types of operations require a mapping and transformation between the col-
umns on the original table and the columns on the interim table and are
performed by using the COL_MAPPING parameter.

The COL_MAPPING parameter takes a list of comma-separated pairs
of columns. The first column in each pair is the original table column, or a
function on the original table column. The second column in a pair is the
destination column in the interim table to which we are mapping. In our
example, outer(POSTAL_CODE) from the original table is mapping to
POSTAL_CODE_OUTER in the interim table.

If the column mapping parameter isn’t supplied, then it is assumed that
all columns map with their names unchanged to columns in the interim
table.

Step 3: Create the Dependant Objects

For each dependent object, such as grants, triggers, constraints, and
indexes:

� If the object is the same on the interim table as it is on the table being
redefined, then call the COPY_TABLE_DEPENDENTS procedure
to automatically create it on the interim table.

� If it is different on the interim table, then manually create it and call
the REGISTER_DEPENDENT_OBJECT procedure. This registers
and associates the two names of the object as applied on the two
tables. This enables the objects to be correctly renamed upon comple-
tion of the redefinition.

In our example, all dependent objects are the same on the interim table,
so we are using the COPY_TABLE_DEPENDENTS procedure, as follows:

set serveroutput on

DECLARE
 num_errors number;
BEGIN

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.4 Reorganizing the Warehouse 539

Chapter 11

 num_errors:= 0;
 dbms_redefinition.copy_table_dependents
 (uname=>'EASYDW',
 orig_table=>'CUSTOMER',
 int_table=>'CUSTOMER_INTERIM',
 num_errors=>num_errors);
 dbms_output.put_line
 ('Number of errors:'||to_char(num_errors));
END;

Step 4: Synchronize the Tables

Call the SYNC_INTERIM_TABLE procedure, which will synchronize any
DML performed on the original table with the interim table. Any changes
done to the original table, while it is being redefined, will be automatically
tracked by Oracle and applied to the interim table.

BEGIN
 dbms_redefinition.sync_interim_table
 (uname=>'EASYDW',
 orig_table=>'CUSTOMER',
 int_table=>'CUSTOMER_INTERIM');
END;

Step 5: Finish the Redefinition

Call the FINISH_REDEF_TABLE procedure to finish the redefinition.
Finishing the redefinition ensures that all of the indexes, grants, and triggers
are on the redefined table, and the referential integrity constraints and trig-
gers are enabled.

BEGIN
 dbms_redefinition.finish_redef_table
 (uname=>'EASYDW',
 orig_table=>'CUSTOMER',
 int_table=>'CUSTOMER_INTERIM');
END;

Step 6: Gather Statistics on the Redefined Table
BEGIN
 dbms_stats.gather_table_stats(ownname=>’easydw’,
 tabname=>’customer’,
 cascade=true
);
END;

TEAM LinG - Live, Informative, Non-cost and Genuine!

540 11.4 Reorganizing the Warehouse

Hint: If the on-line redefinition operation fails for any reason, then the
ABORT_REDEF_TABLE procedure must be called; this cleans up all the
dependent objects so you can start again.

Our table structure has now changed, and, if we look at a subset of the
new postal code columns, we can see that they have been correctly trans-
formed and contain their new values.

SQL> desc customer
 Name Null? Type
 ----------------------- -------- ----------------
 CUSTOMER_ID NOT NULL VARCHAR2(10)
 CITY VARCHAR2(15)
 STATE VARCHAR2(10)
 POSTAL_CODE_OUTER VARCHAR2(10)
 POSTAL_CODE_INNER VARCHAR2(10)
 GENDER VARCHAR2(1)
 REGION VARCHAR2(15)
 COUNTRY VARCHAR2(20)
 TAX_RATE NUMBER
 OCCUPATION VARCHAR2(20)

SQL> SELECT postal_code_outer outer, postal_code_inner inner
 FROM customer;

OUTER INNER
---------- ----------
10001
W1 1QC
W1 1QC
W1 1QC
10001
W1 1QC
73301
W1 1QC

We think you will agree that the on-line redefinition feature is a very
useful and powerful tool to assist the administrator with the long-term
management of the warehouse tables.

11.4.5 Online Segment Shrink

As the tables in our warehouse undergo INSERT, UPDATE and DELETE
operations, the underlying space in the tablespace segments can become less
efficient and space can become unusable. A new feature in Oracle Database

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.5 Refreshing the Warehouse 541

Chapter 11

10g, called on-line segment shrink, enables this space to be reclaimed from
a table and reassigned back to the tablespace for reuse.

In previous versions of the database, this operation would have involved
a costly rebuild of the table, which would mean that it became unavailable.
However, in Oracle Database 10g the operation can be performed while the
table and indexes are on-line and fully available for use.

Via SQL, segment shrinkage can be performed by simply altering the
table, index, or materialized view by using the SHRINK SPACE command.
For example:

ALTER MATERIALIZED VIEW product_sum SHRINK SPACE;

Hint: To perform the shrink space operation, the owning tablespace must
be set for automatic segment management, and tables and materialized
views must be altered to enable row movement.

In Enterprise Manager, one of the new advisors is the Segment Advisor,
which can be accessed from Advisor Central. This advisor will analyze
objects you specify, either those owned by a schema or those residing in the
same tablespace, and provide a report of the space usage and what can be
reclaimed. It then enables you to schedule the job on the objects that you
have selected for shrinkage.

Rather than a hit and miss manual approach for finding out where space
can be effectively recovered, the Segment Advisor provides a very quick and
easy method to access and perform this operation.

11.5 Refreshing the Warehouse

An extremely important management task is refreshing the warehouse with
the latest data. This is a management task that is usually performed over-
night with the data presented in batches. As was described earlier, fre-
quently the data has to be cleansed and transformed before it can be loaded.
Chapter 5 described various techniques that can be used for loading the
new data into the warehouse.

Throughout this book, we have seen extensive use of Oracle Enterprise
Manager for managing and controlling many of our management tasks.
Depending on how complex your tasks are and on the data dependencies,
you may prefer to use your own techniques. Otherwise, you could place the

TEAM LinG - Live, Informative, Non-cost and Genuine!

542 11.6 Gathering Optimizer Statistics

jobs on the Scheduler queue and come in the next day to see that every-
thing has run smoothly. For example, it is not uncommon to receive data
loads from various sources at different times. If there are dependencies
between the data, then you may have to control that within your own man-
agement suites. Alternatively, Oracle Warehouse Builder performs complex
scheduling of its various tasks by use of Oracle Workflow.

Once the data has been loaded into the warehouse, the materialized
views must be refreshed. Depending on the number of materialized views,
this could also take a significant amount of time.

An OEM job could be created to refresh the materialized views. Execut-
ing the DBMS_MVIEW.REFRESH_ALL_MVIEWS procedure could
refresh all of the materialized views. Alternatively, you could use the
DBMS_MVIEW.REFRESH_DEPENDENT option to request that it
refresh only materialized views dependent on certain tables. Or you can call
the refresh procedure and specify which materialized views are to be
refreshed. Specific details on how to refresh materialized views were
described in Chapter 7.

11.6 Gathering Optimizer Statistics

Missing or stale optimizer statistics are often the cause of suboptimal query
performance. The cost-based optimizer uses statistics such as the cardinality
of the table, number of distinct values of a column, and the data distribu-
tion to determine the cost of an access path. The cost is a measure of how
much I/O, CPU time, and memory will be required to execute the query.
To use the cost-based optimizer effectively, statistics describing the cardinal-
ity and data distribution must be collected for each table, index, and mate-
rialized view.

11.6.1 Automatic Statistics Collection

Previously, to automate the gathering of statistics for a table meant
enabling the monitoring of DML activity for that table using the MONI-
TORING keyword in the CREATE or ALTER TABLE command. Then
the GATHER STALE option in the GATHER_DATABASE_STATS
procedure was used to gather statistics for just those tables whose contents
had changed significantly.

Starting with Oracle Database 10g, the MONITORING and
NOMONITORING keywords have been deprecated, and now statistics
collection is performed automatically and is controlled by the

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.6 Gathering Optimizer Statistics 543

Chapter 11

STATISTICS_LEVEL initialization parameter. When this parameter is set
to BASIC, the monitoring and automatic statistics collection is disabled,
and when set to TYPICAL (the default), it is enabled. Monitoring tracks
the insert, update, and delete activity on the tables and maintains the infor-
mation in the SGA; it then periodically updates this information into the
data dictionary.

Finally, there is an automatic statistics collection job that is available
“out of the box” with the Scheduler. Only the user SYS can see and config-
ure this job. Log on to Enterprise Manager as SYS and navigate to the
Administration page, and click the Jobs link in the Scheduler section; this will
display the Scheduler Jobs page where the GATHER_STATS_JOB will be
listed. This job is scheduled using one of two windows:

� WEEKNIGHT_WINDOW for weekdays from 10:00 P.M. to 6:00 A.M.

� WEEKEND_WINDOW from midnight Saturday morning for 48
hours

11.6.2 Manual Statistics Collection

You can, of course, still manually perform statistics collection. Two meth-
ods are available:

� Via Enterprise Manager using the Gather Statistics wizard

� Via the DBMS_STATS package

To access the wizard go to the Maintenance Home screen and, in the Util-
ities section, click on the Gather Statistics link. This displays a five-step wizard,
which enables a job to be defined and scheduled to collect statistics on:

� Schemas

� Tables

� Indexes

� Table partitions

� Index partition

� The whole database

TEAM LinG - Live, Informative, Non-cost and Genuine!

544 11.6 Gathering Optimizer Statistics

Alternatively, you can use the DBMS_STATS package directly. For
example, to use the DBMS_STATS package to collect statistics on all tables
and indexes in the EASYDW schema, issue the following query:

EXECUTE DBMS_STATS.GATHER_SCHEMA_STATS ('EASYDW');

If you are just interested in a specific table—PURCHASES, for exam-
ple—you can use the following statement. This will gather statistics on the
table, its columns, and indexes.

EXECUTE DBMS_STATS.GATHER_TABLE_STATS ('EASYDW', 'PURCHASES');

The table and column statistics can be viewed by querying the
USER_TABLES and USER_TAB_COLS dictionary views, as follows:

-- table statistics
SELECT num_rows, blocks, avg_row_len, last_analyzed
FROM user_tables
WHERE table_name = 'PURCHASES';

 NUM_ROWS BLOCKS AVG_ROW_LEN LAST_ANAL
---------- ---------- ----------- ---------
 94619 567 42 13-JUL-04

-- column statistics
SELECT column_name, num_distinct, num_nulls, avg_col_len
FROM user_tab_cols
WHERE table_name = 'PURCHASES';

COLUMN_NAME NUM_DISTINCT NUM_NULLS AVG_COL_LEN
------------------- ------------ --------- -----------
PRODUCT_ID 165 0 7
TIME_KEY 762 0 8
CUSTOMER_ID 500 0 9
SHIP_DATE 762 0 8
PURCHASE_PRICE 9 0 5
SHIPPING_CHARGE 3 0 4
TODAY_SPECIAL_OFFER 2 0 2

To collect statistics for the index, CUSTOMER_INDEX, use the fol-
lowing statement:

EXECUTE DBMS_STATS.GATHER_INDEX_STATS
 ('easydw', 'purchase_customer_index');

Statistics should be gathered after data is loaded and again whenever
changes made to the data are likely to have altered the distribution. This

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.6 Gathering Optimizer Statistics 545

Chapter 11

ensures that the cost-based optimizer has up-to-date data to base its decision
upon. When partitioned tables are used, only the newest partition or sub-
partition to which rows have been added needs to be analyzed for statistics.
For example, if a new partition for Jan 2005 was added to the purchases
table, statistics can be collected for the newly added partition, as follows:

ALTER TABLE purchases
 ADD PARTITION purchases_jan2005
 VALUES LESS THAN (TO_DATE('01-02-2005',
 'DD-MM-YYYY'));

INSERT /*+APPEND */ INTO purchases ...

EXECUTE DBMS_STATS.GATHER_TABLE_STATS
 ('easydw', 'purchases', 'purchases_jan2005');

11.6.3 Collecting System Statistics

System statistics such as CPU speed and number of I/Os per second give an
indication of the resource availability in the system. Oracle Database 10g
considers system statistics in determining the execution plan. This allows
the optimizer to make smarter decisions when several users are contending
for the same resources. System statistics can be collected using the
DBMS_STATS.GET_SYSTEM_STATS procedure.

As with all statistics, it is important that the system statistics give the
optimizer an accurate picture of the system load. Statistics could be col-
lected for different periods during the day—for example, during normal
business hours and during after-hours reporting activities. Statistics can be
saved using the EXPORT_SYSTEM_STATS procedure and later imported
into a database using the IMPORT_SYSTEM_STATS procedure.

11.6.4 Dynamic Sampling

In the Oracle Database 10g, a feature known as dynamic sampling can be
used by the optimizer when statistics on a table are absent. With dynamic
sampling, the optimizer automatically collects statistics by sampling the data
before optimizing the query. Dynamic sampling is useful for queries whose
tables do not have statistics collected or when the statistics are too old.

To enable dynamic sampling, the initialization parameter,
OPTIMIZER_DYNAMIC_SAMPLING, must be set to a value greater
than 1. The optimizer will perform dynamic sampling if there is more than
one table in the query and some of the tables have no statistics and no
indexes. Note that dynamic sampling will incur some overhead during

TEAM LinG - Live, Informative, Non-cost and Genuine!

546 11.8 Maintaining Security

query optimization and hence must be used with care. In a data warehouse,
it is always a good practice to collect statistics on all your tables as part of
your housekeeping procedures and to keep them current.

11.7 Parallel Management Tasks

Throughout this book, the typically large size of the data warehouse means
that tasks can take a very long time to complete. So far, we have consid-
ered some techniques for improving performance, but there is a very use-
ful one that is worth mentioning again: the ability to run operations in
parallel.

Parallel execution is most useful for operations that access significant
amounts of data, including queries, index creation, bulk inserts, updates
and deletes, aggregations, and data movement. At the time of writing, most
operations can be run in parallel, including:

� Parallel query—queries and subqueries in SELECT statements.

� Parallel DDL—including:

� CREATE TABLE AS SELECT, CREATE INDEX, and ALTER
INDEX REBUILD

� For partitioned tables: ALTER TABLE MOVE, SPLIT, COA-
LESCE

� For partitioned indexes: ALTER INDEX REBUILD or SPLIT

� Parallel DML—INSERT, UPDATE, DELETE, multitable insert

� SQL*Loader and external tables

Parallel operations require accurate statistics to perform optimally and
correct use of the initialization parameters to ensure that parallel operations
properly utilize the database resources. Chapter 6 discussed in detail the
configuration of the database to use parallelism and its use to improve
query performance, and Chapter 5 showed examples of loading data in par-
allel. Similar techniques are used to execute DDL statements in parallel.

11.8 Maintaining Security
One should not forget the security of the data in a data warehouse. In many
respects, warehouse data should probably be more secure than production
data, because its value to your competitors could be enormous. Imagine if

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.8 Maintaining Security 547

Chapter 11

one of your users started earning spare cash by running reports against your
data or if an employee left the company with information from the data
warehouse. If you are laughing at the last statement, please don’t; although
it is very rare, it actually does happen.

The level of security in your data warehouse will depend on what you
think is appropriate for your system. Some sites may prefer to have the
warehouse open for read-only queries, but restrict management tasks such
as creating summary data to the administration team.

We have already seen, in Chapter 2, how we can protect individual
tables by specifying explicitly who may access the tables using the GRANT
and REVOKE commands.

Another technique is to create a role, assign privileges to that role, and
then grant that role to a user. Roles can either be created via SQL or by
going to the Administration screen and following the Roles link in the
Security section, which will take you to the Roles screen. Here you will see a
list of all of the existing roles in the database and from where you can per-
form a number of actions to create and administer roles and view to which
users the role has been granted.

Click the Create button and you will navigate to the General tab of the
Create Role screen, shown in Figure 11.39, where the name of our new
role, EASY_USER, is entered.

Security isn’t limited only to tables; it can be placed on a wide range of
database objects. Clicking on the links on this page displays specific screens
that enable objects of that type to be granted to our new role. For example,
to grant privileges on EASYDW tables to this role, click on the Object Priv-

Figure 11.39 Creating a Role

TEAM LinG - Live, Informative, Non-cost and Genuine!

548 11.8 Maintaining Security

ileges link and you will see a screen similar to that shown in Figure 11.40.
We have already granted the SELECT privilege on the PRODUCT and
CUSTOMER tables to the role by choosing the object type, which in this
example is a table, and clicking the Add button. The subsequent simple
screen (not shown) enables you to find the objects and assign the privileges.

Figure 11.40 also shows the range of objects for which privileges can be
granted. The screens for granting the other privilege types to the role oper-
ate in a similar fashion.

For those of you who do not want to use Enterprise Manager to create
the role—for example, if you want to perform this at a later time—the
Show SQL button will display a screen that shows the commands to imple-
ment this role.

Once the role has been defined, it can be allocated to a user, as shown in
Figure 11.41. From the Administration screen go to the Security section, fol-
low the Users link, and navigate to the Edit Users screen. Select the user
account and click on the Roles link. By clicking on the Modify button you
can assign the new EASY_USER role in the subsequent screen. The Admin
Option shown here designates whether or not the user that you are assigning
the role to can grant that to another user. For our warehouse security, check-

Figure 11.40 Create Role: Grant Object Privileges

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.8 Maintaining Security 549

Chapter 11

ing the Admin Option box would allow access to the warehouse to be granted
to users outside of the administrator’s control and is not a good idea.

Roles are an extremely powerful feature in Oracle and can save an
immense amount of time in not having to allocate lots of individual privi-
leges to a user.

11.8.1 Virtual Private Database

Applications that are deployed on the Internet and make information avail-
able to customers, suppliers, employees, or other users need to provide
access control at a very fine level of granularity. An on-line banking system
needs to ensure that customers can only see transactions for their accounts,
and not anyone else’s account. A self-service human resources application
may let employees see their own records and modify their marital status,
address, and phone number, but not their salary. The same application may
provide managers with the ability to read and modify the records of all
employees who work for them.

As companies are increasing focus on their core competencies, they may
outsource other tasks, such as human resources, customer support, and pay-
roll. When designing an application that provides hosting services, the data
for each company must be kept separate and secure from each other.

Traditionally, access has been controlled at the object level. The data
security policy determines which users have access to which schema objects,
and which types of actions are allowed for each object. For example, a user
may be able to select from a table, but not insert, update, or delete the rows

Figure 11.41 Allocating a Role to a User

TEAM LinG - Live, Informative, Non-cost and Genuine!

550 11.8 Maintaining Security

in the table. If you wanted to allow a user access to a subset of rows in a
table, a view could be created and the user granted access to the view. If you
have a self-service application, where each employee in a large company had
access to the rows containing his or her own personal data in the human
resources database, each employee would have to have his or her own view.
However, the number of views quickly becomes unwieldy. If you want to
allow access to employee data for a certain group of users only through the
human resources application, and not for adhoc queries, views do not give
you this capability.

Another way to implement data security is with Virtual Private Database
(VPD) and fine-grained access control. VPD provides row level security, for
all applications. Associating one or more security policies with a table or
view creates the Virtual Private Database. Any access to a table with an
attached security policy causes the invocation of a function that implements
the policy. The function returns an access condition in the form of a
WHERE clause, which is appended to the user’s SQL statement, thus
dynamically modifying the user’s data access. For example, in the EASYDW
warehouse, we could allow each customer to see information about his own
order history on-line. When a customer issues SELECT * FROM PUR-
CHASES, the function would add his or her customer_id to the WHERE
clause, resulting in the following query.

SELECT * FROM PURCHASES WHERE customer_id = ‘AB123459’

Often, you want to control access based on some attributes about the
user, such as job code, department, location, or whether he or she is a cus-
tomer or partner. An application context is created to do this. Upon logging
into the database, the application context is associated with the user’s ses-
sion. Each application can have its own application context, with each hav-
ing different attributes.

After creating the application context, the PL/SQL functions to imple-
ment the security policies are created. The function determines the
WHERE clause to return, based on the user’s application context.

The PL/SQL package DBMS_RLS, is used to administer the security
policies and apply them to the appropriate tables. Using this package, you
can add, drop, enable, disable, and refresh the policies you create.

Many of the Oracle applications make use of VPD to provide fine-
grained access control.

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.9 Monitoring Space Usage 551

Chapter 11

11.9 Monitoring Space Usage

A very important piece of information for the DBA is to know how much
space is available in the data warehouse. One technique to avoid running
out of space is to create the datafiles with autoextend and to define an
unlimited number of extents. However, this won’t help you if the disk actu-
ally fills up.

Therefore, as part of your routine monitoring of the data warehouse,
you should check for free space. This could be done by simply navigating to
the Tablespaces screen, where this information is shown by default, or you
may prefer to simply query the Oracle metadata in the data dictionary for
this information. Figure 11.42 shows an example of the space utilization for
the EASYDW database.

In Figure 11.42, the Used (%) graph display for each tablespace enables a
very quick visual check of how much space has been used in the tablespace.
In our example, we can see that SYSAUX, SYSTEM, TEMP, and USERS are
very nearly full; this may cause a problem for any operations that cause an
object in these tablespaces to grow in size. However, this screen does not

Figure 11.42 Tablespace Space Utilization

TEAM LinG - Live, Informative, Non-cost and Genuine!

552 11.9 Monitoring Space Usage

quite show the full story, because, you will recall from Chapter 2 (see Figure
2.21), the datafiles for a tablespace can be set to auto extend when they are
nearly full. We will need to click on the tablespace name link and drill down
to the data file to verify the exact status.

But manually checking this on a daily basis is a chore and prone to error;
with Oracle Database 10g, this type of operation is now performed auto-
matically. To look at this further, click on the All Metrics link in the Related
Links of the Home pages to display the screen shown in Figure 11.43.

Clicking on the + icon to the right of the Tablespace Full metric expands
the category to show the space used by the metric. From here you can drill

Figure 11.43 Tablespace Utilization Metrics

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.9 Monitoring Space Usage 553

Chapter 11

down further to values collected and thresholds set for each tablespace and
even further to displays and values for each tablespace.

When the tablespace full warning or critical thresholds are crossed, an
alert will be generated and displayed in the Alert section on the database
Home page. Notification mechanisms can also be defined by email or by
paging the DBA on duty to correct this issue.

11.9.1 Automated Space Management

Summarized here are several features and enhancements in the database
that simplify space management. Some of these features are outside the
scope of this book, but we have listed the relevant chapters where we discuss
certain features in more detail.

� Locally managed tablespaces eliminate the need for periodically reor-
ganizing tablespaces to reclaim fragmented space.

� Tablespaces can be created with the SEGMENT SPACE MANAGE-
MENT AUTO clause to automate the management of free space
inside a database segment, such as a table or index.

� Automatic undo management eliminates the need to manage roll-
back segments manually.

As discussed in Chapter 3, Oracle Managed Files (OMF) can be used to
create and delete files, as they are needed for the datafiles, on-line logs, and
control files, eliminating the need to directly manage the files. All you need
to do is specify the location of where you would like the files stored.

The Flash Recovery Area is new in Oracle Database 10g and is an area
on disk that is used to contain database backups stored to disk, as well as for
a new type of log file, called flashback logs. When the Flash Recovery Area
is configured, the Oracle database will automatically manage the disk space
utilization. The Flash Recovery Area is discussed in more detail in Chapter
12, and the flashback feature in Chapter 17.

11.9.2 Resumable Space Allocation

Long-running operations that update or add new data to the database can
fail when they run out of space. Reexecuting the procedure could take a
long time, particularly if it was almost complete when it failed. A feature
introduced in Oracle 9i, resumable statements, makes it possible to inter-

TEAM LinG - Live, Informative, Non-cost and Genuine!

554 11.9 Monitoring Space Usage

vene and correct errors in the middle of an operation. When the problem
that caused the failure is fixed, the operation is automatically resumed.

A resumable statement is suspended when one of the following errors
occurs:

� Out of space

� Maximum extents reached

� User space quota exceeded

The following operations are resumable:

� SELECT statements that run out of temporary space (for sort areas)

� DML statements—INSERT, UPDATE, and DELETE

� Import/Export

� SQL*Loader

� DDL statements—CREATE TABLE ... AS SELECT, CREATE
INDEX, ALTER INDEX ... REBUILD, ALTER TABLE ... MOVE
PARTITION,

� ALTER TABLE ... SPLIT PARTITION, ALTER INDEX ...
REBUILD PARTITION, ALTER INDEX ... SPLIT PARTITION,
CREATE MATERIALIZED VIEW, and CREATE MATERIAL-
IZED VIEW LOG

Resumable mode must be enabled for a session. Optionally, you can
specify a time-out period. If the error condition is not fixed within that
time period, it will abort. You can also specify a name, which can help iden-
tify the session that has been suspended in the USER_RESUMABLE or
DBA_RESUMABLE views. The following statement sets the time-out
period for 3,600 seconds, or one hour, and assigns the name data ware-
house load to resumable statements for the session.

SQL> ALTER SESSION
 ENABLE RESUMABLE
 TIMEOUT 3600 NAME 'data warehouse load';

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.9 Monitoring Space Usage 555

Chapter 11

SQL*Loader and the Import and Export utilities provide the same
options as command-line parameters.

When a resumable statement is suspended, the error is reported in the
alert log. The system also internally generates an AFTER SUSPEND sys-
tem event. Users can register triggers for this event at both the database and
schema level. The triggers can be used to notify the DBA when a statement
is suspended, so corrective action can be taken.

Information about the status of resumable statements can be seen by
looking at the DBA_RESUMABLE or USER_RESUMABLE views, as
shown in the following example. The data warehouse load was suspended,
because there was inadequate space to extend the PURCHASE_
PRODUCT_INDEX.

SQL> SELECT STATUS, TIMEOUT, START_TIME,

 SUSPEND_TIME, NAME, ERROR_MSG

FROM DBA_RESUMABLE

STATUS TIMEOUT START_TIME SUSPEND_TIME NAME

--------- ------- ----------------- ------------------ --------

SUSPENDED 3600 08/16/04 06:27:56 08/16/04 14:01:05 data
warehouse load

ERROR_MSG

ORA-01683: unable to extend index EASYDW.PURCHASE_PRODUCT_INDEX
partition PURCHASES_JUL04 by 2 in tablespace INDX

When a statement is suspended the session invoking the statement is put
into a wait state. A row is inserted into the V$SESSION_WAIT as seen in
the following example.

SQL> SELECT EVENT, STATE FROM V$SESSION_WAIT;

EVENT STATE

--- --------------

statement suspended, wait error to be cleared WAITING

When space is added, the session will automatically resume. If space is
not added within the time-out period, an error will occur.

TEAM LinG - Live, Informative, Non-cost and Genuine!

556 11.10 Other Management Issues

11.10 Other Management Issues

We have already seen a number of management tasks. The ones specified
here are by no means an exhaustive list, and there may very well be ones
that are not mentioned here that may be applicable in your environment.
There are also some additional tasks that you may want to consider.

11.10.1 Building a Test System

When you suggest the construction of a test system, it is not uncommon for
many people to throw their hands up in the air and say, “impossible.” But
you should stop for a moment and consider the implication on your busi-
ness if you don’t have a test system. When a test system exists, it can be used
for a variety of reasons, such as:

� Testing new software releases

� Timing data loads

� Evaluating management task times

� Practicing management tasks

� Testing scripts before executing in production

� Assessing impact of maintenance tasks (e.g., index rebuild)

� Determining query response times

Many people think that a test system has to be identical to the produc-
tion system, but, in a warehouse, that is usually impossible. Therefore, what
is required is a scaled-down version of the warehouse that is representative
of the real warehouse. Ideally, numbers obtained from it should scale easily
so that you can determine what the effect would be on your production
warehouse.

Data inside the warehouse should, whenever possible, be representative
of the real data. It may be that, to obtain the desired effect, you may have to
extract data from the real warehouse and then load it into the test ware-
house.

The various uses for a test system will now be discussed.

TEAM LinG - Live, Informative, Non-cost and Genuine!

11.10 Other Management Issues 557

Chapter 11

11.10.2 Testing New Software

Once a database becomes a critical component in the business, and the
information supplied from it is used to make critical business decisions, no
one wants to jeopardize the business by introducing new software that may
have problems. Therefore, if you have a test system, you can check that all
of the important parts of the database software that you use are the same.
The range of items to test could be extensive. For example, you will want to
check that queries use the same optimizer strategy as before. If they have
changed, then you should create outlines to ensure consistency of query
response times.

However, you should always ensure, when using outlines, that perform-
ance will not degrade when a new version of Oracle is installed; it could
improve due to an optimizer change, so always check for the current strategy.

Another important check to make is that key features that you rely on
still function the same. For example, if you rely heavily on partition opera-
tions to maintain the data in your warehouse, then check that they still
work.

Utilities you rely on should also be checked to see that no changes have
occurred that cause them to change their behavior.

If a script is created that contains all of these important tasks, then each
time you upgrade the software, you have only to run the scripts and check
the results. Therefore, considerable effort will be required to construct the
scripts the first time. Once completed, however, they can be run repeatedly
and you will know that everything that is important to your environment
will have been checked.

11.10.3 Timing Data Loads

The test system provides an ideal opportunity to determine the load time
for data and to practice any data cleansing that may be required. Generally,
the fastest way to load data into an Oracle 9i data warehouse is by using the
utility SQL*Loader via the direct path method. But, you may want to com-
pare the performance with external tables, particularly if you also need to
perform transformations.

TEAM LinG - Live, Informative, Non-cost and Genuine!

558 11.11 Summary

Hint: Don’t forget to check the logs from any SQL*Loader jobs in case any
problems occurred during the run, such as constraints not being enabled.

11.10.4 Evaluating/Practicing Management Tasks

Now is also an ideal opportunity to practice and try out all of those man-
agement tasks before they are done in production. When it comes to testing
backup and recovery processes, using very small databases initially and then
moving on to the full size once you are sure that all of the procedures are
working correctly will save time.

11.10.5 Determine Query Response Times

The test system provides an ideal opportunity to see the data warehouse in
use before all the users are given access. Even with a limited user audience,
you will be surprised that you will find queries that do not perform well.

Therefore, you now have time to diagnose the cause of the poor
performance and resolve the problem by adding a new index, for example,
or creating a materialized view to make the query perform faster.

In a test environment, it is unlikely that you will see an exact reproduc-
tion of usage of the data warehouse. Nevertheless, problems will still surface
and it is easier to fix them now before the pressure comes with users
demanding reports yesterday!

11.11 Summary
In this chapter, we have taken a look at some of the tasks required to man-
age a warehouse, examined many of the new features available in Oracle
Database 10g to help with this, and used Oracle Enterprise Manager to
simplify management of our warehouse. Ongoing tasks, including monitor-
ing space usage, were discussed, and techniques for periodic reorganization
using partition maintenance operations and on-line redefinition were intro-
duced. Developing a test system and a business continuity plan are impor-
tant considerations.

Hopefully, you can begin to appreciate what is involved in managing a
database. Many of the tasks described here apply equally to a traditional
OLTP database. It’s often the size of the data warehouse that makes the task
different. Remember that it is better to manage now than not at all. Even
something as simple as failing to monitor space usage could have disastrous
results, usually when you can least afford the time to correct them.

TEAM LinG - Live, Informative, Non-cost and Genuine!

559

12

Backup and Recovery

12.1 Strategy

One of the most important management tasks for any database is taking
backups of the data. It may seem obvious, but you will be surprised how
many companies jeopardize their business by taking backups infrequently,
by not taking care of their backup tapes, or by not testing their backup and
recovery strategy.

A data warehouse has a couple of major characteristics that influence the
backup strategy:

�

The size of the data warehouse

�

The historical, and therefore static, nature of most of the data in the
warehouse.

A data warehouse by its very nature is a repository of historical records,
which, generally, once loaded, are not subsequently altered. Therefore, once
this load has been performed and backed up, it is unnecessary for it to par-
ticipate in any subsequent backup operation. For example, if our data ware-
house holds five years of data, it may be only the partitions for the current
month that are updated on a nightly basis. This is less than 2 percent of the
warehouse data that is changing and therefore needs to be backed up.

In addition, the problems with scheduling the backup of a data ware-
house are slightly different from backing up a typical production system.
Since warehouses usually receive large loads of data at scheduled times, typ-
ically overnight, backups have to be scheduled along with this work. Plus,
we have the added complication of deciding how to back up the database.

TEAM LinG - Live, Informative, Non-cost and Genuine!

560

12.1

Strategy

Why is this a problem? Well, normally, a database is backed up in its
entirety, but that may not be possible with your data warehouse, especially if
it is particularly large (multiple terabyte size). Therefore, incremental back-
ups and backups of one or more tablespaces may be more practical. Careful
management of your backup location, or of the backup tapes, is critical; oth-
erwise, you could find yourself unable to rebuild the data warehouse.

In the next sections, we are going to look at the common backup and
recovery strategies and their applicability to the data warehouse; we will also
discuss a new feature in Oracle Database 10

g

, called the Flash Recovery
Area, which is a disk backup area.

12.1.1 Methods of Performing a Backup and Recovery

In this section, we will look at the different forms of backup and recovery
that are possible on the Oracle database and their business implications.

Backup

There are a number of types of backup that can be performed on an Oracle
database.

Logical Backup

A logical backup is an export to an operating system file of the database or
objects in the database, such as schema object definitions, and the contents
of the objects, such as tables and indexes. It provides a snapshot of the
schema and its data at the time of the export, and reimporting can be used
to restore that snapshot.

However, using export and import is not advised as the sole basis of a
warehouse backup strategy on any but the smallest of data warehouses. For
example, exporting the whole database would be prohibitively time con-
suming for a large data warehouse and would use a lot of disk space. In
addition, recovery by reimport could also take an inordinate amount of
time. Furthermore, it is not possible to easily export just the changed data
for either the fact tables or the dimensions. This could result in the scripts
to control a backup, which must be selective on the data being exported,
being complex and difficult to write.

However, a logical backup can still play a very useful role. It can still be
necessary or convenient to take an export snapshot of part of our data ware-
house schema. For example, the dimension tables, which tend to be signifi-
cantly smaller than the fact tables, could be exported more conveniently
and may provide a supplement to the other backup mechanisms. If we

TEAM LinG - Live, Informative, Non-cost and Genuine!

12.1

Strategy 561

Chapter 12

know that a dimension table has not changed appreciably, it may be mark-
edly quicker and easier to reimport the table from the logical backup and
rerun the processes to reapply any changes to the data.

During a logical backup, we do not want changes occurring to the data
that may result in a transactionally inconsistent backup. If Data Pump
export is used, as discussed in Chapter 5, the use of the flashback feature
ensures that a transactionally consistent view of the data is obtained.

Physical Backup

A physical backup involves backing up the actual files that form the data-
base and are necessary for its recovery (i.e., the datafiles, control files, and
redo log files).

There are two modes of physical backup that can be performed:

�

Cold

, or

off-line

, backup, which is performed when the database has
been shut down in a consistent state or is not operating in archive log
mode. The database must be shut down consistently (i.e. using shut-
down modes immediate or normal); the database files and control file
are backed up and then the database is restarted. During a cold
backup, the database is not accessible to the users and this can be a
major limiting factor.

�

Hot

, or

on-line

, backup, which is performed while the database is in
archive log mode, open to read and write activity, and accessible to
the users.

Furthermore, there are two other considerations when performing a
physical backup concerning how copies of the datafiles are made.

�

Full backup, which backs up all used blocks in the database data files

�

Incremental backups, which backs up only those blocks in the data-
base that have changed since the last full or incremental backup

Incremental Backups

We mentioned earlier that a type of backup that is very useful for a data
warehouse is one that does not have to back up all of the datafiles. The

incremental backup

 allows us to back up only the parts of the database data-
files that have changed.

TEAM LinG - Live, Informative, Non-cost and Genuine!

562

12.1

Strategy

Oracle incremental backups have the concept of backup levels, of which
there are two: level 0 and level 1. A level 0 incremental backup acts as the
base for subsequent incremental backups and is similar to a full backup in
that it copies all blocks that contain data. (The only difference between a
level 0 incremental backup and a full backup is that a full backup cannot
act as the base of an incremental backup strategy.)

The level 1 backup has two types:

�

Differential

, which copies all blocks changed since the last level 0 or
level 1 backup

�

Cumulative

, which copies all blocks changed since the last level 0
backup

Cumulative level 1 incremental backups, therefore, contain all of the
previous level 1 backups back to the last level 0 incremental backup. They
are better for recovery purposes, because only the one incremental backup
needs to be applied.

Figure 12.1 shows how each of the differential incremental level 1 back-
ups only backs up the changes occurring since the preceding level 1 or level
0 backup.

A level 0 incremental backup (i.e., a full backup of all used blocks to use
as a baseline) is taken on Saturday, and then each day at close of business up

Figure 12.1

Differential Incremental Backups

TEAM LinG - Live, Informative, Non-cost and Genuine!

12.1

Strategy 563

Chapter 12

to Friday, a level 1 differential backup is taken. This backs up all of the
blocks that have changed since the preceding day’s level 1 backup. There-
fore, after Friday’s backup, all of the changed blocks are held on six incre-
mental backup files. On the following Saturday, a new full level 0 backup is
taken and the cycle repeats.

Now, let’s compare this with using a cumulative incremental backup
strategy. A level 1 cumulative backup taken on the same schedule will incor-
porate all of the changes back to the preceding level 0 backup. To clarify how
this is different from the differential level 0 backup, refer to Figure 12.2.

A cumulative backup on Sunday backs up the changes since the preced-
ing level 0 incremental backup on Saturday. The cumulative backup on
Monday backs up the changes on Monday and the changes on Sunday. On
each day, the cumulative incremental backup will back up all changes since
the last level 0. Therefore, after Friday’s backup, all of the changed blocks
are held on just one incremental backup file. On Saturday, a new level 0
incremental backup is taken and the cycle repeats.

Block Change Tracking

In order to track which blocks have changed for an incremental backup,
Oracle tracks the system change number (SCN). Each block in an Oracle
database contains the system change number (SCN) of the most recent
change to a block. When performing an incremental backup, Oracle must
read each block in a file and compare the block’s SCN with the SCN of the
preceding backup. If the SCN is greater, then the block has changed and is

Figure 12.2

Cumulative Incremental Backups

TEAM LinG - Live, Informative, Non-cost and Genuine!

564

12.1

Strategy

backed up. This method does rely on reading every block to get its SCN
number and hence can be slow. However, one of the new features in Oracle
Database 10

g

 is block change tracking, which uses a special tracking file to
record the location of all changed blocks in the database. The backup
process can then use this file when performing an incremental backup
rather than reading all of the datafiles. The file enables the backup to more
quickly identify the location of the changed blocks and back them up
resulting in a much more efficient incremental backup.

Hint:

Block change tracking records changed blocks even if no redo log is
generated. It should, therefore, be used after performing NOLOGGING
operations—for example, during data load operations, for which you may

still want to backup incrementally.

Another particularly important new feature in Oracle Database 10

g

 is
the ability to merge the incremental backup into the full backup copy of
the database, so that the full backup files then contain the up-to-date
backup. Full backups are a lengthy process, because they are backing up all
blocks that have ever been used; incremental backups usually take a signifi-
cantly shorter amount of time, because they are backing up just the
changed blocks. Effectively, this new feature means that we can obtain a full
backup in about the same time that is taken to perform an incremental
backup of our database.

Considering the size of a typical data warehouse, copying the entire
datafile every time that a backup is required can be a significant overhead in
terms of time, processing requirements, and space requirements of the
backup media. To only have to back up the datafiles for the partitions that
have changed or, even better, the blocks in those files that have changed,
can result in considerable savings.

Restore and Recovery

To restore a database or parts of the database, such as a tablespace, is to
retrieve the backed up files from the backup media and make them available
to the database. For example, the whole database can be restored from a full
backup by restoring the datafiles and control files. It will, therefore, still
have the same data as it had at the time the backup was taken.

We could also restore the database by restoring the level 0 backup and
then restoring and applying the incremental differential level 1 backups.
This will update the blocks in the correct sequence and therefore result in

TEAM LinG - Live, Informative, Non-cost and Genuine!

12.1

Strategy 565

Chapter 12

the database files being brought up-to-date. Applying a single cumulative
level 1 backup will be quicker than applying the multiple differential level 1
backups. For example, if we have to perform a restore due to some form of
system failure and get the database back quickly, then time is our enemy and
this is when we least need a lengthy process. Consider the backup strategy
that involves a weekly full backup on Saturday night with daily differential
incremental backups, as shown in Figure 12.1. If the system fails on a Friday,
then to restore the database would necessitate restoring the level 0 backup
and then restoring and applying each of the five differential incremental
backups in turn, which could take a considerable amount of time.

This is where the new incremental merge option in Oracle Database 10

g

is a very important feature. Now, our base level 0 backup files contain an
up-to-date backup so that all that is required is to restore the most recent
merged level 0 backup. In our weekly backup strategy example, just the
merged level 0 backup must be restored, and this method removes the need
to apply the incremental backups. A considerable saving on both the speed
of the backup and the speed of the restore!

However, restoring the database only resets it to the state at the time that
the backup was made. In our example backup strategy, this means the time
that the incremental or full backup was actually taken at the end of the day.
This would result in losing any transactions that occurred during the day
after the backup. This is where databases that operate in archive redo log
mode have the advantage of being able to be recovered.

To recover the database, or part of the database, is to recover to a point
in time using the archived redo logs. By applying the transaction changes in
the redo logs to the restored database files, the datafiles are rolled forward to
a required point in time.

Applying the redo logs in this fashion effectively repeats the transac-
tions contained in the log files. We can roll forward to a selected point in
time and then open the recovered files to make them accessible and usable
on the database again. We do not necessarily have to perform a complete
recovery, which would be to the most recent point in time. For example, if
we are recovering due to a faulty program writing incorrect data into our
tables, then we will want to recover to just before that program com-
mences its transaction. This is known as an incomplete recovery or point-
in-time recovery.

Running the database in archive log mode provides significant advan-
tages. The data warehouse could still have other transactions, which we
want to preserve, occurring at other times on the database. For example,

TEAM LinG - Live, Informative, Non-cost and Genuine!

566

12.1

Strategy

the database may also be used for a number of other repositories, such as
Oracle Enterprise Manager, Oracle Discoverer and Oracle Warehouse
Builder. If we run the database in archive log mode, then changes to the
data in these repositories can be recovered without needing to reenter any
of the transactions.

Oracle backup and recovery is performed using Recovery Manager
(RMAN). RMAN handles the administrative work associated with the
backup and recovery operations and catalogs the metadata about the
backup files and the activities performed. We will now look at the new
Flash Recovery Area feature for performing backups to disk; in the remain-
der of the chapter, we will discuss how backup and recovery are managed
and performed via Oracle Enterprise Manager using RMAN.

12.1.2 Simplifying Recovery with Flash Recovery Area

Traditionally, backup was done to a slow medium such as tape. However,
with the advent of low-cost disk storage devices, it is much easier and faster
to do backups to disk. Unlike with a tape backup, restoring data from a disk
backup can be a very quick operation. However, the process of managing
the disk space for backups and determining which files to keep and discard
can be an onerous task for a DBA. Oracle Database 10

g

 has a new feature
called the Flash Recovery Area, which can greatly simplify the management
of all recovery related files. By setting up the

Flash Recovery Area

 and some
simple policies, RMAN can now automatically manage all of the backup
and recovery files with no DBA intervention.

The Flash Recovery Area is a unified storage area that contains all the
recovery related files for the Oracle database, including redo logs, RMAN
backups, and data and control file backups. Creating a Flash Recovery Area
simplifies the process of managing recovery related files, such as naming
backup files, determining which ones to keep and removing files when they
are no longer necessary. In addition, the Flash Recovery Area is used to con-
tain a new type of file, called the

flashback logs

,

which are used by the new
Oracle Database 10

g

 flashback feature discussed in more detail in Chapter
17. The Flash Recovery Area uses the Oracle Managed Files (OMF) feature,
discussed in Chapter 3, to manage the files.

At this point it is worth reiterating a golden rule of backup, which is
particularly relevant when we are backing up to disk. What is being backed
up (i.e., the database data, control, and redo log files) must reside on sepa-
rate disks to the backup destination—that is the Flash Recovery Area. This
prevents any form of media failure causing the loss of both the source data-

TEAM LinG - Live, Informative, Non-cost and Genuine!

12.2

Backup 567

Chapter 12

base files and the backup files. Furthermore, also backing up to tape, which
is then held off site, enables recovery from any disaster that affects the
whole data center, such as fire or flood.

Setting up the Flash Recovery Area

The Flash Recovery Area can be set up by simply setting up two initializa-
tion parameters, as follows:

�

DB_RECOVERY_FILE_DEST

: This parameter specifies the default
location for all recovery-related files, which can be a directory on a
file system or an ASM disk group (see Chapter 3). By using ASM,
you can automatically provide redundancy for files stored in the Flash
Recovery Area.

�

DB_RECOVERY_FILE_DEST_SIZE

: Specifies (in bytes) the max-
imum space to be used by the recovery files created in the recovery
area location. The Flash Recovery Area size should be large enough to
include a copy of all the datafiles, control files, any incremental back-
ups (created using RMAN), on-line redo logs, and archive logs that
have not yet been archived to tape.

Hint:

When creating a database using the Database Configuration Assis-
tant, you will be asked if you would like to set up the Flash Recovery Area,

as shown in Chapter 2, Figure 2.10.

Use of the Flash Recovery Area for backups to disk has the advantage
that you set the location, size to be used, and retention policy; Oracle man-
ages the storage area on disk. Files no longer needed are eligible for dele-
tion. If you don’t use a Flash Recovery Area, then you must manage the disk
area manually.

12.2 Backup

In this section, we will discuss the various techniques you can use to back
up your data warehouse. However, it is important to realize that, if your
data warehouse is very large, taking a full backup of it may be almost
impossible due to time and other constraints.

TEAM LinG - Live, Informative, Non-cost and Genuine!

568

12.2

Backup

The following types of backups will be discussed:

�

Full backups

�

Incremental backups performed as a custom backup

�

Tablespace backups

12.2.1 Creating a Backup Configuration

The first step toward defining our backup environment is to create a
backup configuration. The backup configuration is a set of defaults used for
backup operations. It determines where the backup is to be stored and what
the backup medium is to be (tape or disk). It enables customizations to be
defined and saved for reuse.

In Enterprise Manager, on the

Maintenance

screen in the

Backup/Recov-
ery

section, there are a number of options for performing and managing
your backup and recovery. Start by selecting

Configure Backup Settings,

where you can specify default values for your backup operations, as shown
in Figure 12.3.

This screen contains three sections for defining the defaults for your
backup, and they are used when you create the backup job if you don’t spe-
cifically override them. The three groups of settings that can be defined are:

�

Device

�

Backup set

�

Policy

On the

Device

 screen, shown in Figure 12.3, there are check boxes in the
disk and tape sections for an important option in Oracle Database 10

g

: to
instruct RMAN to compress the backup files as they are archived to the des-
tination area. This feature assists in the management of large volumes and
enables better space utilization and more backup files to be stored.

Another new and important option in Oracle Database 10

g

 is the
option to compress the backup set as it is being written to disk or tape.
With writing to the disk-based Flash Recovery Area, being able to compress
the backup set can have significant benefits in saving and managing the
space.

TEAM LinG - Live, Informative, Non-cost and Genuine!

12.2

Backup 569

Chapter 12

Also on the

Device

 screen, you can define the degree of parallelism to be
used when the backup is performed, as well as the disk location for the
backup. By default the disk location is the Flash Recovery Area, but here
you can override the default to use a different disk location. Similarly, you
can provide default settings if you are backing up directly to tape.

In our examples in this section, the backup will go to disk, but, in a data
warehouse, it will probably also have to go to tape. For example, a disaster
recovery plan may mandate off-site storage on tape. To store backups on
tape, RMAN requires the installation of a media management library avail-
able from another company such as Legato or Veritas. Refer to Oracle’s
Backup Solutions Partners Program for the current list of certified vendors.

Figure 12.3

Configure Backup Settings

TEAM LinG - Live, Informative, Non-cost and Genuine!

570

12.2

Backup

When backing up to tape, it is extremely important to ensure that the
physical labels placed on the tapes match the contents. Too many times we
have seen customer problems, where it is impossible to recreate the database
from the backups because the labels on the tapes do not match the actual
tape contents. Sloppy management practices such as this could mean that
you lose your entire data warehouse.

Whenever you take a full backup of the system, do not discard the previ-
ous full backup set, because, if there were a problem with the current
backup, you would lose your entire data warehouse. Therefore, save as
many full backup sets as is possible before you recycle the tapes.

On the

Configure Backup Settings

 screen, use the appropriate test button
to test the disk or tape device’s configuration. For example, for a disk-based
backup, clicking the

Test Disk Backup

creates a BACKUPSET directory.
This is created under the named directory for your database in the Flash
Recovery Area. In the BACKUPSET directory, the new directory is named
by the current date (e.g., 2004_07_18). Once tested, we know our configu-
ration is correct.

On the

Policy

 screen, shown in Figure 12.4, you can define various addi-
tional settings for your backup, such as how long the backup sets are to be
retained.

This screen provides a good indication of changes that have been imple-
mented with Oracle Database 10

g

 to ease the backup management task. For
example, under the

Retention Policy

section, there are options to define
which backup sets must be kept in order to meet the backup and recovery
strategy for your system; these are then automatically used when a backup is
performed.

Note the

Optimize

 check box in the

Backup Policy

section. If this is
selected so that backups are executed using the optimization feature, then
RMAN avoids creating identical copies of files that have not changed since
the last backup. However, if backup files are aged out by the retention pol-
icy, then RMAN will take a new copy.

12.2.2 Full Backups

The size of your data warehouse will determine how frequently a full
backup is taken. Even if your warehouse is huge, a backup should always be
taken periodically.

TEAM LinG - Live, Informative, Non-cost and Genuine!

12.2

Backup 571

Chapter 12

One of the tools provided in Oracle Enterprise Manager is the backup
wizard, where you can:

�

Define a predefined backup strategy

� Customize your own strategy

To start a backup, go to the Backup/Recovery section on the Maintenance
screen and click on the Perform Backup link.

Figure 12.4 Configure Backup Settings Policy

TEAM LinG - Live, Informative, Non-cost and Genuine!

572 12.2 Backup

Predefined Backup Strategy

Here we will see how to set up a predefined backup strategy. The first ques-
tion asked by the wizard, illustrated in Figure 12.5, is where is the destina-
tion of the backup is disk, tape, or both.

The next screen (not shown) summarizes the Oracle suggested backup
policy. This is first to perform a full backup followed by an incremental
daily backup.

Moving on to the next screen in the wizard, shown in Figure 12.6,
enables the schedule for the backup job to be set. Don’t forget that the first
backup performed as part of the schedule is a full backup, which could be a
very lengthy operation on a warehouse-sized database.

The definition of the backup procedure is almost complete. Click on
Next and the screen in Figure 12.7 is displayed shown where we can review
all of the options that we have selected. To change any of the values, press
the Back key to return to the appropriate screen, and make the necessary
modifications. At this point we can also view the RMAN script that has
been generated.

Figure 12.5 Oracle Suggested Backup Strategy

TEAM LinG - Live, Informative, Non-cost and Genuine!

12.2 Backup 573

Chapter 12

Figure 12.6 Predefined Backup Schedule

Figure 12.7 Reviewing the Backup Procedure

TEAM LinG - Live, Informative, Non-cost and Genuine!

574 12.2 Backup

Clicking on the Submit Job button completes the definition of the
backup and submits the job, which will be placed on the Enterprise Man-
ager job queue until it is time for it to run. Monitoring the job can be per-
formed by going to the EM Home pages and clicking on the Jobs link in the
Related Links section, where the screen illustrated in Figure 12.8 is displayed.

12.2.3 Incremental Backups

An alternative to the Oracle suggested backup is to create a custom backup
strategy. We will use the customized option to show how to perform a level
1 incremental backup.

Again, we start at the Schedule Backup Strategy screen shown in Figure
12.9, where a backup strategy of Customized is selected.

The first question asked by the wizard is the type of backup that you
require. If Whole Database is selected, you will then have the choice of either
backing up the entire database or taking an incremental backup. As we have
already discussed, an incremental backup is very likely to be of interest to a
data warehouse administrator, because it allows you to back up only the
data that has changed, instead of the entire data warehouse.

Figure 12.8 Backup Job on the Console Job Queue

TEAM LinG - Live, Informative, Non-cost and Genuine!

12.2 Backup 575

Chapter 12

Depending on whether or not the database is running in archive log
mode will determine the types of backup options available. In Figure 12.9,
more options are available because archive log mode is enabled. With
archive logging disabled, it is only possible to perform an off-line (cold)
backup of the whole database which will necessitate it being automatically
shut down first. Enabling archive logging means that the database, selected
tablespaces, datafiles, or the archived logs can be backed up in on-line mode
with the database still open to the users.

The steps in a custom backup are very similar to those we have seen pre-
viously; it uses a four-step wizard, so we won’t show all screens because most
of these are self-explanatory. However, in Figure 12.10 we show the Options
screen for the customized approach.

Here we can control the type of backup that we want to perform. As we
have already mentioned, a typical warehouse is going to be too large to per-
form a full backup following every single refresh, so normally we will want to
perform incremental backups. However, to perform an incremental backup
we must start with a baseline full backup position. The Backup Type field pro-
vides us with the ability to specify which backup we want to perform.

� Full backup

� Incremental backup

Figure 12.9 Type of Custom Backup

TEAM LinG - Live, Informative, Non-cost and Genuine!

576 12.2 Backup

We can perform a full backup by selecting the Full Backup option and
leaving the check box clear for use as the base of an incremental backup.
This will just perform the full backup. However, if we select the check box
as well, then a level 0 incremental backup is performed. It is the same full
backup of all of the used database blocks, but, because it is the base of an
incremental backup strategy, this is what we have previously defined as a
level 0 incremental backup.

We have chosen the level 1 incremental backup on the basis that a prior
backup operation has performed the full backup to use as a baseline. Note
the check box under the Incremental Backup option; it specifies that the
incremental backup is to be merged into the full backup image held in the
Flash Recovery Area.

Figure 12.10 Customized Backup Options for an Incremental Backup

TEAM LinG - Live, Informative, Non-cost and Genuine!

12.2 Backup 577

Chapter 12

The other options we can specify on this screen are:

� Backup mode, for whether the backup is performed when the data-
base is open or whether it is shut down first. The database must be in
ARCHIVELOG mode for an on-line backup to be performed.

� Advanced options, which control the backup and retention policy for
our archived logs and for the obsolete backups on disk.

Here we are backing up the archived redo logs and specifying that
RMAN manage the logs by deleting those that are no longer required once
they have been backed up. Similarly, we want any backups that are no
longer required to be deleted. These options automate and simplify the
backup procedure and the associated management tasks.

Figure 12.11 The Custom Backup Job Name and Schedule Screen

TEAM LinG - Live, Informative, Non-cost and Genuine!

578 12.2 Backup

The remaining screens in the custom backup wizard enable us to specify
the backup destination, disk or tape (which is step 2 and not shown), and
specify the backup job name and schedule, as shown in Figure 12.11.
Finally, there is a review screen (also not shown).

In Figure 12.11, we can rename the backup job to something that is
more meaningful on our system, and we have full control of the start, stop,
and frequency of operation of the job by the Scheduler. Once we have sub-
mitted the job in step 4 then, as before, we can always access it from the
Related Links section of the OEM pages and click on the Jobs link.

12.2.4 Tablespace Backups

Another technique for backing up the database is a tablespace backup.
Using this technique, you have the ability to back up a specific tablespace,
which, in a data warehouse, could make for a very nice backup strategy.

This time, when we schedule a backup, as shown in Figure 12.9, we will
choose Customized and select the Tablespaces radio button. The first step is
to select the tablespaces that we want to back up. In Figure 12.12, we see
one of the screens from the backup wizard asking us which tablespaces we
want to back up. Tablespaces are added to the list using a separate screen,
accessed via the Add button. In our example, we have selected the
tablespace that contains the January 2005 data.

Figure 12.12 Selecting a Tablespace to Back Up

TEAM LinG - Live, Informative, Non-cost and Genuine!

12.2 Backup 579

Chapter 12

This screen is a good example of where designing the database for man-
agement should be considered during the initial construction process. If we
can group our updates to the database by date, and we know that after a
given point in time there will be no changes made within this tablespace,
then, if we set the tablespace to be read-only and back it up, we can rest
assured that we have captured the data in that tablespace. Since it will never
change, we won’t have to back it up again.

Changing the status of a tablespace to read-only is very simple. You can
enter this SQL command:

ALTER TABLESPACE purchases_jan2005 READ ONLY;

Alternatively, go to the Maintenance screen and select Tablespaces from
the Storage area, select the tablespace, and then click on the box on the right
of the screen marked Read Only, as shown in Figure 12.13. Finally, clicking
on the Apply button will make this a read-only tablespace. You can change it
back to a read/write tablespace at any time.

Of course, it makes sense to periodically take full backups, just in case
there are any problems with the backup files you have taken. Taking only

Figure 12.13 Making a Tablespace Read-Only

TEAM LinG - Live, Informative, Non-cost and Genuine!

580 12.2 Backup

tablespace backups is okay, but it still makes it possible for somebody to
accidentally overwrite the tape containing all of the data for a given month.

12.2.5 Backup File Sizes

When a database is being built, designers are constantly aware of the size of
the database. However, that information seems to get lost when people start
thinking about backing up the database. Everyone tends to say, “Well it’s
300 gigabytes so it will take x minutes to back up.” What they forget to add
is that the backup file will need y gigabytes of space.

In the examples shown here, we have used disks to store our backups.
For a real data warehouse, however, you will be storing them on tape; so
don’t forget how many tapes you will require for the backup strategy you
will be implementing. It has been known for sites to actually run out of
tapes! Our Easy Shopping Inc. database is small, and the datafiles occupy
approximately 1.5 gigabytes on a Windows XP system. In Figure 12.14, we
can see the different sizes for the full backup files.

A full backup occupies a little less than 1GB, which is about 66 percent
of the full size of the database. Therefore, you can see that you can save a
significant amount of storage space by using the backup provided by Oracle
Database 10g. If a backup were taken using the Operating System backup

Figure 12.14 Backup File Sizes

TEAM LinG - Live, Informative, Non-cost and Genuine!

12.3 The Recovery Catalog 581

Chapter 12

utility, which may or may not compress the file, then 1.5GB of storage
would be needed, instead of 1GB.

The files resulting from an incremental backup will be even smaller than
the full backup files, though the size will be dependent upon the update
activity that has occurred in the database. Obviously, we can see that there
is a big advantage in using the RMAN utility for backups.

It is easy to see that even for the incremental backups, the size of the files
is going to be significantly less than that for the full warehouse. By taking
incremental backups, you can make backups of your warehouse more fre-
quently and not have to worry about when you are going to find the time to
back up the entire warehouse. By using the new option to merge the incre-
mental backup into the full backup files, you can significantly improve the
recovery times.

One final reminder on this topic: during the testing of the data ware-
house, don’t forget to test your backup procedures and obtain some esti-
mates of possible run times for backups. Then you can discuss your
requirements with the operations department so that your management
tasks can be included with all of the other work that has to be done.

12.3 The Recovery Catalog

Information describing your RMAN backups can be stored in the target
database’s control file or in a recovery catalog. The recovery catalog is a sep-
arate repository of information stored in a database schema; it contains
backup and recovery information for one or more databases. The catalog
schema should always reside in a database different from the data ware-
house. You will recall that when EM Grid Control is used, it uses its own
database, which contains the EM repository, and this database can also be
used for the recovery catalog. Using a recovery catalog is a safer alternative
than storing it in the control file alone, since the information is stored sepa-
rately from the database. It also allows you to store information about all of
your backups in a central place, which is a particularly flexible configura-
tion when administering multiple databases using Grid Control.

12.3.1 Creating the Recovery Catalog

A recovery catalog should be stored in its own tablespace. In our example,
the RMANREP tablespace is used. A new user, who will own the recovery
catalog schema in the recovery catalog database, should be created. In the

TEAM LinG - Live, Informative, Non-cost and Genuine!

582 12.3 The Recovery Catalog

following example we have created a user called RMAN and granted it the
appropriate privileges.

CREATE USER rman IDENTIFIED BY rmanrep
 DEFAULT TABLESPACE rmanrep TEMPORARY TABLESPACE temp
 QUOTA UNLIMITED ON rmanrep;
GRANT connect, resource TO rman;
GRANT recovery_catalog_owner TO rman;

The next step is to actually create the recovery catalog, which is achieved
by running the RMAN utility. As soon as the RMAN prompt appears, as
illustrated, connect to the database that will hold the catalog. Since you are
using the syntax CONNECT CATALOG, an error message will appear
saying that the recovery catalog is not installed. Ignore this message. Then
issue the CREATE CATALOG command. Once complete, you are now
ready to use the catalog.

C:\>rman

Recovery Manager: Release 10.1.0.2.0 - Production

Copyright (c) 1995, 2004, Oracle. All rights reserved.

RMAN> connect CATALOG rman/rmanrep

connected to recovery catalog database
recovery catalog is not installed

RMAN> CREATE CATALOG

recovery catalog created

12.3.2 Registering the EASYDW database with RMAN

Before a database can be included in the recovery catalog, it must be regis-
tered. Otherwise, you may see the message “RMAN-20001 Target database
not found in recovery catalog.” Do not be alarmed by the message.

To register the EASYDW database in the catalog, go to the Backup/
Recovery section on the Maintenance page and click on the Configure Recov-
ery Catalog Settings link; you will see the screen shown in Figure 12.15.

Here you must specify where the recovery catalog is located (i.e., either
on a known database or by entering the database access information
directly) and you must also provide the catalog repository account user-
name and password. In our example, the account is RMAN, which can be

TEAM LinG - Live, Informative, Non-cost and Genuine!

12.3 The Recovery Catalog 583

Chapter 12

found on the OEMREP database on server DS9. On the next screen (not
shown), it is simply a case of clicking the Register Database button to regis-
ter our EASYDW database in the RMAN catalog.

As mentioned previously, the recovery catalog should always be placed
in a database different from the one being backed up. Also, don’t forget that
the recovery catalog must also be backed up regularly because it is stored
inside a database.

Oracle Enterprise Manager can be used to access the catalog to report on
various backup information. The example in Figure 12.16 shows the Man-
age Current Backups screen accessed from the Maintenance home page,
which lists the backup information stored in the catalog. A very pertinent
piece of information is whether the backup is obsolete due to being
replaced by a more recent backup.

From the screen in Figure 12.16, we are able to perform additional tasks
to manage our backup sets by pressing the following buttons.

� Catalog Additional Files enables other backup pieces that have been
made to disk to be registered in the catalog.

� Crosscheck All enables a job to be scheduled that will resynchonize
the information about backups on disk with the information in the
catalog.

Figure 12.15 Recovery Catalog Information

TEAM LinG - Live, Informative, Non-cost and Genuine!

584 12.4 Restore and Recover

� Delete All Obsolete enables a job to be scheduled that will delete any
obsolete backup sets—that is, both the actual backup set files on disk
and the records within the catalog.

By clicking on the links in the Contents column, you can get more infor-
mation from the catalog about the contents of what that backup set con-
tains. For example, clicking on the datafile link for Key 2736 results in the
screen shown in Figure 12.17.

Although this has been a brief introduction to the recovery catalog and
how it is used by OEM, hopefully you can begin to see some of the benefits
of using it, especially being able to see which backups exist. Using this
information, you will see later how automatic recovery is possible,
although, for a data warehouse, we may prefer to do it manually.

12.4 Restore and Recover

Restoring a database from a backup is a task that most DBAs probably fear.
They are always concerned that the backup may fail, leaving them with no
database. Unfortunately, unless you test every backup, you can never be
sure that a backup file will actually work. If you can, it is a good idea to

Figure 12.16 List of the Backup Contents of the Catalog

TEAM LinG - Live, Informative, Non-cost and Genuine!

12.4 Restore and Recover 585

Chapter 12

periodically restore your backup files onto a test system, so that you know
that the files and your procedures are good.

Hint: If you are restoring during a serious database problem, try to restore
to another location, so that, if the restore operation fails, you still have the
original database.

One of the first problems you encounter when restoring a database is
identifying which backup files to use. If you have been using the recovery
catalog, then it is very simple, since it will automatically figure it out; oth-
erwise, you will have to check your records to determine the correct
backup file.

Don’t forget that restoring a database could require a number of full and
incremental backup files. This is when the RMAN recovery wizard is
extremely useful, especially if you want to recover to the latest point in
time. But, if we have been using the new Oracle Database 10g feature of
rolling our incremental backups into our full backup, then only the full
backup files are required.

The recovery wizard can be started by clicking on the Perform Recovery
link in the Backup/Recovery section of the Maintenance home screen. The

Figure 12.17 Contents of a Backup Set

TEAM LinG - Live, Informative, Non-cost and Genuine!

586 12.4 Restore and Recover

screen shown in Figure 12.18 will appear, and you will be asked for the type
of restoration that is required.

In Figure 12.18, we have the option of restoring the following by choos-
ing from the Object Type drop-down list.

� The whole database

� Tablespaces

� Datafiles

� Archived logs

� Tables

The other parameter fields on the screen will alter, depending on the
type of object chosen to be specific to restoring that object type. For exam-
ple, for the Datafiles option, the additional fields become a radio button
selection, allowing you to choose whether to:

Figure 12.18 Perform Recovery: Restore Tablespace

TEAM LinG - Live, Informative, Non-cost and Genuine!

12.4 Restore and Recover 587

Chapter 12

� Restore datafiles, possibly to a new location

� Recover to a point in time (i.e., roll forward)

� Restore datafiles and recover

� Recover datafile blocks that are marked as corrupted

If Tablespaces is chosen, then one of the options shown in Figure 12.18
is the ability to recover to a specific point in time, such as to Monday at
11:30 A.M. Usually this type of recovery is unnecessary. If a specific prob-
lem corrupted the database, however, then you may want to restore to just
prior to the job running against the database. In this example, we have
chosen to restore a tablespace.

After selecting Tablespaces from the drop-down list, click on the radio
button Restore Tablespace, then click the Next button and you will navigate
to the Tablespaces screen. Here you will create the list of tablespaces that you
want to restore.

The subsequent step illustrates the reason why you should be familiar
with your backup and restoration procedure, because, after selecting which
tablespaces should be restored, the Perform Recovery screen will appear, as
shown in Figure 12.19. The wizard automatically selects the most recent
backup.

Using this configuration, the wizard knows where the backup files are
located and is given the information to access the recovery catalog.

 The next screen in the wizard asks where the files are to be restored to,
as illustrated in Figure 12.20, where a separate directory is being used that is
not the directory containing the database files. Depending on the reason for
the restore, you may want them to go to another location, which can be
specified here. The other advantage of this screen is that it provides an
opportunity to check which files are going to be restored.

Finally, you will see the Review screen, shown in Figure 12.21. Here you
have the opportunity to perform a final check on all of the options that you
have specified and to examine, and even alter, the generated RMAN script.

When you click the Submit button, your RMAN job is executed to per-
form the restore; when completed, you will see the status screen shown in
Figure 12.22, where you can examine the RMAN log file

In this example we can see only a portion of the log, and the utility has
automatically worked out which backup files were required. Here we used
the recovery catalog to determine the required backup files, but the

TEAM LinG - Live, Informative, Non-cost and Genuine!

588 12.4 Restore and Recover

backup information is also recorded in the database control file, which can
be used for some recovery operations. Although we have illustrated how to

Figure 12.19 Recovery Configuration

Figure 12.20 Location of Data Files

TEAM LinG - Live, Informative, Non-cost and Genuine!

12.4 Restore and Recover 589

Chapter 12

Figure 12.21 Perform Recovery: Restore Tablespace Review

Figure 12.22 RMAN Recovery Log

TEAM LinG - Live, Informative, Non-cost and Genuine!

590 12.5 Summary

recover a tablespace, the procedure is almost the same for a datafile or the
entire database.

12.5 Summary

In this chapter, we have taken a look at some of the approaches and tasks
required to protect our warehouse by backing it up. We have seen how
RMAN is integral to the ease of performing this operation and how Enter-
prise Manager integrates with the recovery catalog to provide information
on our backups.

Hopefully, this section has given you some idea of how to back up and
recover an Oracle Database 10g data warehouse. This is such an extensive
subject that it is highly recommended that you read the Oracle Database
10g Backup and Recovery Manual for detailed information on functionality,
as well as many more ideas on how to design, create, and run backup-and-
recovery operations.

Remember that deciding on, implementing, and testing the backup and
recovery strategy is very important and should be performed at the outset of
the warehouse project. Failure to back up the database could have disastrous
results, usually when you can least afford the time.

TEAM LinG - Live, Informative, Non-cost and Genuine!

591

13

Oracle Warehousing Tools

13.1 Which Tool

So far we have built and managed our database using the SQL*Plus inter-
face or Oracle Enterprise Manager. But there are a number of tools available
to the user, DBA, and designer to facilitate easy warehouse creation and
access to information. We will now look at three of these tools, which are
available from Oracle.

�

Warehouse Builder

�

Discoverer

�

Reports

Oracle Warehouse Builder is a tool that helps the DBA design and man-
age the data warehouse, whereas Oracle Discoverer and Reports are end-
user tools for querying your data warehouse.

13.2 Oracle Warehouse Builder

Oracle Warehouse Builder (OWB) is Oracle’s tool for designing and
deploying data warehouses, data marts, and business intelligence applica-
tions. It is part of the Oracle Developer Suite 10

g

, which includes products
for application development, such as Jdeveloper, Designer, and Forms
Developer. In the business intelligence (BI) area, it includes the products
Oracle Discoverer which is described later in this chapter, Oracle Reports,
and Oracle Warehouse Builder.

TEAM LinG - Live, Informative, Non-cost and Genuine!

592

13.2

Oracle Warehouse Builder

Building any type of application is not a task to be undertaken lightly;
since there are so many steps to be completed when building our data ware-
house and BI application, Oracle Warehouse Builder (OWB) is essential. It
allows you to:

�

Design and create the data flows between sources and targets

�

Design, create, manage, update, and upgrade the data warehouse
schema

�

Manage and update the source definitions

�

Import data source definitions

�

Design and create the OLAP and ad hoc query environment

�

Take advantage of Oracle Database 10

g

 features

�

Manage the deployment process

�

Be another repository of the metadata for the warehouse structure,
processes, and mappings (i.e., OWB can act as a design tool)

�

Generate documentation from the metadata

Within OWB there is a

repository

 stored in an Oracle database and this
is where OWB keeps all of its metadata. The

OWB Client

 is the main inter-
face and is used to design and create the data warehouse and application.

A code generator is provided that creates the scripts from your design
that are applied to the data. The OWB Browser Assistant can be used to
view the design and reports from your browser, provided Oracle Applica-
tion Server 10

g

 has been installed.

You may be wondering why you should use a tool such as Oracle Ware-
house Builder to design and create your data warehouse and associated
application. Why not design it by hand? Yes, you could do that, but some
of the benefits of using Warehouse Builder include:

�

System design time is reduced, due to the GUI

�

The design is held in one place, so everyone is guaranteed that he or
she is not working with an out-of-date model

�

The code generated by OWB is free from errors and works the first
time

�

The design can easily be changed or an ETL process modified and
then a new module is generated for that change

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.2

Oracle Warehouse Builder 593

Chapter 13

Let us now look at how we would use OWB to design our data ware-
house or data mart.

13.2.1 Setting up Warehouse Builder

Before your data warehouse can be designed using Warehouse Builder, a
small amount of setup is required to create the repository that Warehouse
Builder uses when designing your warehouse. When launching the OWB
Repository Assistant, Figure 13.1 appears, which shows us the steps that
have to be completed to set up our Warehouse Builder repository. Although
there are quite a few steps, this entire process does not take very long, so
you will soon be up and running Warehouse Builder.

You can choose into which database the OWB repository will reside,
and then you must connect using a user name that has the SYSDBA privi-
lege. Then a user name and password must be supplied for the schema that
will own the OWB repository. You must also specify which tablespace to
use for repository data and also which language you would like to use. Click
on

Finish

, and your repository is created. Now Oracle Warehouse Builder is
ready to use.

Figure 13.1

Warehouse Builder—Setup Steps

TEAM LinG - Live, Informative, Non-cost and Genuine!

594

13.2

Oracle Warehouse Builder

13.2.2 Oracle Warehouse Builder Client

Once the Oracle Warehouse Builder repository has been built, it is time to
start using this tool to design our data warehouse, where we can:

�

Define the logical view of our warehouse schema

�

Define data sources and targets

�

Describe ETL processes, where we extract, transform and load

�

Generate the SQL required to create the data warehouse and ETL
processes

In OWB, your data warehouse is defined inside a

Project,

 and the fol-
lowing five steps must be completed to build and implement a design:

1. Create a project.

2. Define the data sources and targets.

3. Specify how data moves and its transformations.

4. Validate and generate the design.

5. Deploy and run the design.

The OWB client is the primary tool for building our design, and Figure
13.2 shows the console when it is first started.

Creating the project is very straightforward, as this involves simply start-
ing the OWB client, selecting

Project

 from the strip menu at the top, and
then selecting

Create Project

. Give the project a name (our project is called
EASYDW), supply an optional description and version number, and the
project is created.

13.2.3 Data Sources and Targets

The next step is to define where the data for our warehouse will originate.
Referring to the OWB Console in Figure 13.2, this could be a database or a
file, and a module must now be created that tells us all about that source.

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.2

Oracle Warehouse Builder 595

Chapter 13

Oracle Database Source

Suppose that one of the sources for our Oracle database comes from our
Order entry system, which is in an Oracle database. This source would be
defined by right-clicking on

Oracle

 under

Databases

 and selecting

Create
Oracle Module

. Figure 13.3 appears, where the module is named and we
specify that it is a data source.

Figure 13.2

OWB Client Console

Figure 13.3

Warehouse Builder—Creating a Module

TEAM LinG - Live, Informative, Non-cost and Genuine!

596

13.2

Oracle Warehouse Builder

Hint:

Spaces in the module name are not allowed if you are defining a

physical object.

Since we specified that our data source is an Oracle Database, Figure
13.4 appears, where we must specify how to connect to this database. At
this time a database link can be created, if one does not already exist, by
clicking on the

New DB Link

 button. At this time the link will be tested, so
make sure that the database is accessible.

Next, we must specify where this data will be deployed; we have chosen
the EASY_DATAW location. By clicking on the

Finish

 button the source
and target are now created.

Oracle Database Target

We also have to define the target for our design, which is where the design
will be deployed. To achieve this the same process is used as for defining our
sources. Therefore, this time in Figure 13.3, we would specify
THE_EASYDW_DW, which is the name we want to give to our design,
and click the radio button for Warehouse Target.

Figure 13.4

Warehouse Builder—Creating an Oracle Database Source

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.2

Oracle Warehouse Builder 597

Chapter 13

File Data Source

If there are any file data sources that will be input to our data warehouse,
these can also be defined at this stage. Suppose that customers can also place
orders via PDA devices. These orders are captured from the device and are
currently stored in a file for subsequent processing into the system. This
data source can be defined by right-clicking on

Files

 in Figure 13.5 and
then selecting

Create Flat File Module

. The details of this flat file are entered
into the wizard, and the data source, PDA_SALES, has now been defined.

This process is repeated for every data source in our system, and OWB
provides for several standard data sources, including, flat files, SAP, Oracle
database, or other databases such as DB2.

After doing all of this work, it is extremely important to save it, because
OWB does not automatically save your work. Therefore, whenever you are
satisfied with the state of the objects, you must

Commit

 the changes by
either clicking on the commit icon or selecting

Commit

 from the

Project

option on the strip menu at the top.

Figure 13.5

Warehouse Builder—Defined Data Sources and Targets

TEAM LinG - Live, Informative, Non-cost and Genuine!

598

13.2

Oracle Warehouse Builder

13.2.4 Defining the Tables in Our Data Warehouse

In the previous section, we defined the sources for our data and our data
warehouse. Now is the time to define the tables that we require inside our
data warehouse. This can be achieved by either defining the tables manually
or importing them from another database.

 Importing the table definitions illustrates how OWB can save on devel-
opment time, because it can be quite time consuming and error prone
defining the tables by hand. When you are defining these tables, which are
going to be the sources for your data, its very important that they are
defined exactly as they exist in your production system; otherwise, costly
delays will incur when trying to resolve the data inconsistencies. If you have
to define them by hand, then it’s easy to make mistakes, which can subse-
quently delay implementation of your data warehouse.

The table definitions are imported by right-clicking on

Database

 and
selecting

Import

. The

Import Metadata Wizard

 will appear for you to answer
the questions as to what is to be imported—tables, sequences, and so on.
Upon completion, Figure 13.6 appears, where we can see the tables that
have been imported from another database.

Some of the tables may have to be defined manually, and this can be
achieved by double-clicking on THE_EASYDW_DW database source

Figure 13.6

Warehouse Builder—Import a Table

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.2

Oracle Warehouse Builder 599

Chapter 13

shown in Figure 13.5, then right-clicking on

Tables,

 and then selecting

Create Table

. This will start the new table wizard; Figure 13.7 illustrates
how the columns are specified. Here we have defined a new table called
COUNTRY.

While using this wizard don’t forget that you can also specify con-
straints, such as primary-key, foreign-key, and check constraints. When the
definition is complete, click on the

Finish

 button to complete the definition
of our table.

13.2.5 Creating Dimensions

Typically, a data warehouse consists of tables, which can be fact and
dimension tables; in the previous section, we saw how to physically create
tables. At this stage in the development of our data warehouse, we proba-
bly only have a model, described in terms of facts and dimensions. OWB
allows us to define these logical objects and then, when it is time to gener-
ate our design, OWB will physically create the tables to represent these
facts and dimension.

A dimension is created in OWB by using the dimension wizard, which
is selected by right-clicking on the

Dimension

 object, shown in Figure 13.5,
and selecting

Create Dimension

.

Figure 13.7

Warehouse Builder—Manually Define a Table

TEAM LinG - Live, Informative, Non-cost and Genuine!

600

13.2

Oracle Warehouse Builder

The process is very similar to the one we saw in Chapter 8 for creating a
dimension. That is, you must name the dimension, define each level and its
attributes, and then describe the hierarchy. In Figure 13.8, we see one of the
dimension wizard screens where we are defining the hierarchy for our cus-
tomer dimension.

13.2.6 Creating a Cube

Once the dimensions have been created, the next step in our design process
is to define one or more fact tables, which are known as cubes. In OWB a
cube is a logical object in that only when the physical design is generated,
does our cube become a physical table. It is created by right-clicking on

Cube

 in Figure 13.5 and selecting

Create Cube

; the

New Cube Wizard

appears. One of the screens is shown in Figure 13.9, which is where the for-
eign keys for our cube are defined. In this example, OWB automatically
offers a foreign key to each dimension that was previously defined.

The wizard also allows you to add measures and by clicking on the

Fin-
ish

 button our cube is created.

At any time while the data warehouse is being defined, the various parts
of the design can be validated by selecting the

Validate

 option, described in
section 13.2.8. Any problems, can be correctly immediately before proceed-
ing to defining the next part of the design.

Figure 13.8 Warehouse Builder—Dimension Hierarchy

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.2 Oracle Warehouse Builder 601

Chapter 13

Hint: Validate your design and individual components frequently.

There are a number of other objects that can be defined but will not be
described in this chapter. They include materialized views, external tables,
sequences, and views.

13.2.7 Defining Source to Target Mappings

In Chapter 5, we saw that when data is being moved from one source to
another, it often needs to undergo some transformations. In OWB we can
define these transformations using functions, procedures, and packages.

The real power of Oracle Warehouse Builder starts to become apparent
when we see how it can be used to define how data is moved from our
sources, such as from our OLTP system into our data warehouse. In Chap-
ter 5, we discussed the various techniques that we can use to load and per-
form transformations. Now, inside Oracle Warehouse Builder, by using its
GUI interface, we can graphically represent these processes by defining a
mapping. When the design is finally generated, OWB even creates the pro-
cedures required to transform and load the data, using the principles
described in Chapter 5. Now we will look at just a few of the many differ-
ent types of mappings that are possible.

Figure 13.9 Warehouse Builder—Cube Creation

TEAM LinG - Live, Informative, Non-cost and Genuine!

602 13.2 Oracle Warehouse Builder

Mapping a Source to a Target

A mapping is defined from the OWB client by right-clicking on Mappings,
in Figure 13.5; selecting Creating Mappings gives the mapping a name and
then the Mapping Editor appears, as shown in Figure 13.10. The first map-
ping that we are going to define is extracting information from our
ORDER_ENTRY_SYSTEM and moving it into our data warehouse.
OWB can also take information from flat files or from SAP, but we won’t be
showing here how that is done.

When the blank Mapping Editor appears, click on the Mapping Table
icon (which is top left in the floating toolbar) and drag it onto the Editor. It
now asks you where your table is to come from, and we are going to select
the ORDER_LINE table from our source ORDER_ENTRY_SYSTEM,
which we defined earlier. Then click on the Mapping Cube icon and select
PURCHASES. Now in our Editor we have two tables: ORDER_LINE and
PURCHASES.

The next step is to specify which items are to be moved from each table.
First, we are going to move the item PRODUCT_ID from the
ORDER_LINE table to the PURCHASES table. This is achieved by drag-
ging a line from PRODUCT_ID in ORDER_LINE to PRODUCT_ID in

Figure 13.10 Mapping Editor

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.2 Oracle Warehouse Builder 603

Chapter 13

PURCHASES. In Figure 13.10, we can see the line that OWB has drawn
between the two items.

Computing a Value

The next column to be defined in PURCHASES is the value of the order,
and this can only be obtained by computing its value from two columns in
the ORDER_ITEM table. To compute this value an intermediate expres-
sion box must be created, as illustrated in Figure 13.10.

Click on the Expression icon and drag that onto the Mapping Editor. An
empty box appears with empty input and output groups. Take the two col-
umns from ORDER_LINE, unit_price and quantity, and drag them over
to the input group box. Now we have to use the right mouse button to add
a new attribute in our output group, which we will call Total_Price. Do this
by choosing Edit from the right mouse menu, and under the Output
Attribute tab add the new attribute, called Total Price.

Then you select that item’s properties and click on the expression box and
the expression builder will appear, where you can specify how the attribute is
to be computed, which in our case is to multiply the two numbers together.
Then drag a line from TOTAL_PRICE to the column SUM_PURCHASES
in PURCHASES to complete the mapping operation.

Hint: It’s probably worth validating the design periodically so that you
don’t create mappings and transformations that are invalid.

Joining Tables to Obtain Data

Another common task that our warehouse designer has to perform is join-
ing data from two or more tables to extract information that is used as
input to another table. In Figure 13.11, we see a join that we have created
between ORDER and ORDER_LINE to enable us to store one record in
our data warehouse for the total value of the order. Note that the expression
that we created in Figure 13.10 has now been used as input to the join.

Hint: When you have finished working on a part of the design, such as the
expression to compute the value of the sales, you can minimize the box to
give you more working space.

TEAM LinG - Live, Informative, Non-cost and Genuine!

604 13.2 Oracle Warehouse Builder

Key Lookup

Previously in this book we have described surrogate keys, where the natural
keys used in the sources for your data warehouse are transformed into a key
used by the data warehouse. In OWB we can define exactly how that trans-
formation should occur by using the key lookup feature.

In Chapter 5, we described the process of converting the product code
used in out OLTP system to a surrogate key in the data warehouse. In Fig-
ure 13.12, this has been implemented in OWB by showing that the column
PRODUCT_ID from the join between ORDER and ORDER_LINE is
input to the key lookup process. Although not visible, a mapping has been
defined that states that PRODUCT_ID is to be matched to PRODUCT_
CD. The resulting output is the column PRODUCT_ID, which is sent to
the PURCHASES table.

Filtering Data

When data is being extracted from sources such as our OLTP system, there
may be times when we do not want all of that data to be sent across to our
data warehouse. In OWB, this is not a problem, because it allows us to filter
the incoming data in a variety of ways.

Figure 13.11 Mapping Editor with Joins

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.2 Oracle Warehouse Builder 605

Chapter 13

In Figure 13.13, we are filtering the items from the ORDER_LINE
table according to criteria that we have specified. For example, we could say
that we are only interested in certain products. Also see in our example how,
after we have filtered the data, we are then applying the expression we
defined in Figure 13.10 to the data that has passed through the filter.

Figure 13.12 Product Key Lookup

Figure 13.13 Filtering Source Data

TEAM LinG - Live, Informative, Non-cost and Genuine!

606 13.2 Oracle Warehouse Builder

Using Data Generators

There may be times when, rather than extracting data from a source, the
data must be automatically generated. OWB has this capability, and it can
automatically create:

� Record number

� Sequence number

� System date

In Figure 13.13, we can see the system date being used to set the date for
our order. This was achieved by dragging the Data Generator icon onto the
Mapping Editor, and then selecting the item required and attaching it to
PURCHASES.

Over these few pages, we have barely touched the surface on the types of
transformations and mappings that are possible with Oracle Warehouse
Builder. All of the icons shown in the toolbox in Figure 13.13 can be used
to define your warehouse. Also, in these examples we have kept them sim-
ple, but in a real warehouse, they would be connected; we did start to show
this in Figures 13.12 and 13.13 where the expression was being used as
input to another stage in the loading process.

13.2.8 Validating the Design

Once the design is complete, or while it is being developed, it must be vali-
dated before Oracle Warehouse Builder can create all the components
needed to build, load, and manage our data warehouse. You can validate
each component individually, or the entire project, but it’s probably easier
to resolve problems if you validate each component as it is defined.

To validate any component, select Object from the strip menu at the top
and then select Validate, or it can be selected by clicking on the right mouse
button. In Figure 13.14, we can see that there are several errors with our
design. We can’t use SYS_DATE for the time in the purchases column and,
more importantly, OWB has detected that the data types of the
CUSTOMER_ID column are incompatible between the ORDERS system
and the data warehouse. Therefore, we need to fix these problems before we
can continue.

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.2 Oracle Warehouse Builder 607

Chapter 13

This illustrates the benefits of using a tool such as OWB, because with a
complex design it is very easy to miss a problem such as the one in Figure
13.14 until very late in the day. We have known of systems where data type
inconsistencies were only detected the first day someone tried to transfer
data from the source system.

13.2.9 Generating the Design

Once the design has been validated, Oracle Warehouse Builder can now
generate the design. From the OWB client, shown in Figure 13.5, we can
generate each component individually or by selecting Generate. The genera-
tion process will run and OWB will create scripts that perform the follow-
ing tasks:

� SQL for creating the database

� PL/SQL for executing within the database

� Procedures for loading the data

� SQL*Loader files for working with our flat files

Figure 13.14 Validating the Design

TEAM LinG - Live, Informative, Non-cost and Genuine!

608 13.2 Oracle Warehouse Builder

In Figure 13.15, we can see the various components that OWB will gen-
erate. There are the schema objects, such as our PRODUCT table. By click-
ing anywhere on the PRODUCT line, everything that OWB created for
the PRODUCT table is displayed in the lower part of the screen.

By clicking on the Validation tab, the validation messages are shown,
and clicking on the Script tab lists all the scripts created for this object. To
view the script, click on the script name and then click on View Code.

If we click on the Mappings tab, we would see that OWB has created a
package for us to load the data, which we defined previously. By clicking on
the View Code button, we can see part of this long procedure generated by
OWB (Figure 13.16). Just look at where the slider bar is to see how much
code OWB has created for us. The section of code we have shown here is
part of the INSERT statement, but prior to this there are variable defini-
tions and lots of other things that we would have had to write ourselves.

In this example, OWB has chosen to use a SQL INSERT statement, but
since OWB has been designed to take advantage of features in the database,

Figure 13.15 Generating the Design

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.2 Oracle Warehouse Builder 609

Chapter 13

it can therefore use statements such as MERGE, which we saw earlier in the
code that it generates.

Vast amounts of time can be saved using OWB, because you no longer
have to write the code needed to implement and load data into your ware-
house. The code that OWB generates is optimized for the Oracle database
and it works immediately. When was the last time you wrote a complex
piece of code that worked the first time?

13.2.10 Deploying the Design

Now the time has come to implement our design, but before this can be
completed, you must ensure that the runtime repository has been created
on the system where your design will be deployed, because this is where all
the information about your deployed system is stored. This task should

Figure 13.16 Code Generated by Oracle Warehouse Builder

TEAM LinG - Live, Informative, Non-cost and Genuine!

610 13.2 Oracle Warehouse Builder

have been completed when OWB was installed, but it can be performed at
any time by running the OWB Runtime Assistant.

Launch the Deployment Manager from the OWB client by selecting File
from the strip menu at the top and Figure 13.17 appears. Here we can see
all the objects for our system, such as the PRODUCT table and the
CUSTOMER_DIM dimension. To deploy an object, click in the Deploy
Action box to specify the action required, which, in Figure 13.17, is create.

Once all appropriate actions have been set for the objects, to actually
deploy them, click on File in the strip menu at the top and then select Gener-
ate/Deploy. A status bar will appear showing how deployment is progressing.

The next screen to appear is that shown in Figure 13.18, which is the
predeployment report, where we can see the state of every object. Referring
to TIME, it has completed validation, and by clicking on the Script tab, we
can see all the scripts that will be generated.

Select the script, and then click on the View Code button to view the
contents of any of those scripts. When you are satisfied with what is to be
built, click on the Deploy button and your system will be generated.

The design has now been generated, and in Figure 13.19, which is a
screen from Enterprise Manager, we can see the all the objects created by
the deploy operation in our new schema, EASY_OWB.

Figure 13.17 Deployment Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.2 Oracle Warehouse Builder 611

Chapter 13

Figure 13.18 Deployment Manager—Predeployment Report

Figure 13.19 Enterprise Manager Shows OWB Objects Deployed

TEAM LinG - Live, Informative, Non-cost and Genuine!

612 13.2 Oracle Warehouse Builder

Returning to the Deployment Manager, we see that in Figure 13.20 that
the status of all of our objects is displayed and that everything was success-
ful except for the GET_PURCHASES mapping. OWB did tell us about
this problem earlier, but we decided to deploy regardless, because it was not
affecting the deployment of any other objects.

With virtually all of the system deployed, OWB allows us to go back to
the OWB client, fix the problem with the GET_PURCHASES mapping,
and then repeat the deploy process; however, this time it would only be per-
formed on this object.

Configuring the Physical Design

Although we have generated a logical design, it is most likely that it does
not include all of the physical aspects of our design, such as whether a table
is partitioned and which indexes are needed. These physical components
can be configured in OWB by selecting the module to be configured, right-
clicking on the mouse, and selecting Configure. Figure 13.21 is displayed,
which lists all of the properties that you can configure. In this example, for
our COUNTRY table, we can see that an index has been defined, and the
table is going to be stored in tablespace USERS.

Figure 13.20 Deployment Manager Status

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.2 Oracle Warehouse Builder 613

Chapter 13

When defining indexes, OWB has the ability to automatically recom-
mend bitmapped indexes; clicking on the Generate button shows these
recommendations.

Normally, the physical design for the objects would be done prior to
deployment. However, in our example we have created the EASYDW ware-
house and then returned to OWB, defined more physical design attributes,
and then redeployed.

Hopefully, you now have an appreciation of what OWB can do. This is
a very powerful product and, over these few pages, we have only been able
to highlight some of its features. What we have not covered here is how
OWB can be managed using a browser and integrated into Oracle Portal.

There are many benefits from using tools such as Oracle Warehouse
Builder. It provides a visual representation of your warehouse and, by using
the various wizards that are available, it is easy to complete the tasks needed

Figure 13.21 Configuring the Physical Design

TEAM LinG - Live, Informative, Non-cost and Genuine!

614 13.3 Oracle Discoverer

for building the warehouse. In addition when changes to the environment
occur, you can visually see the impact of them and OWB can easily incor-
porate them into the environment. The Deployment Manager enables you
to clearly see the state of all modules in the system and view the code for
those modules.

Now that you have deployed the physical design to the database, you
may want to enable this for a query tool. OWB has the capability of trans-
ferring the design metadata into a Discoverer environment, which is
described in the next section. By doing this you can save yourself time and
effort in creating the reporting solution on top of your logical design. A sec-
ond benefit is the concentration of metadata in a single place, allowing you
to reduce the maintenance efforts for your integrated solution.

Oracle Warehouse Builder provides a comprehensive environment for
building and managing your data warehouse that could significantly reduce
your development time and costs when its full potential is exploited.

13.3 Oracle Discoverer

Oracle Discoverer is an extremely popular tool for querying data ware-
houses and generating reports, because it is very easy and intuitive to use
and has been designed for use by end users who are focused on the business
aspects and not necessarily familiar with databases. Therefore, in order for
these business users to be able to use Discoverer easily, some setup is
required from the DBA group. But once this has been done, these end users
should really like using this tool. There are four parts to Oracle Discoverer:

� Administrator

� Desktop

� Plus

� Viewer

Discoverer Administrator is the version that is used by the power user or
analyst of the data warehouse to set up the environment for the general Dis-
coverer users. The business end user will either use the Desktop or Plus ver-
sion, because it has been designed especially for people who are not familiar
with writing computer programs, as well as for anyone who is not familiar
with SQL and prefers to deal with data using familiar business entities. For

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.3 Oracle Discoverer 615

Chapter 13

business users and others who may be concerned that they could change the
data within the data warehouse, fear not, because Discoverer Viewer allows
the user to only view predefined reports. The attraction of using Discoverer
Viewer is that all users require to access the data is their PC and a browser.

Oracle Discoverer is also integrated with Oracle Portal, which we will
learn more about later. From within Oracle Portal it is possible to set up Web
pages that have direct access to Discoverer reports on our data, thus provid-
ing a very powerful and dynamic mechanism for displaying information.

Oracle Discoverer is part of Oracle Application Server and it can be run
in one of two ways. When Oracle Developer Suite is installed, this provides
access to Discoverer Administrator and Discoverer Desktop, which are the
original, nonbrowser-based versions of Discoverer. Currently, Discoverer
can only be configured using the Discoverer Administrator therefore, Ora-
cle Developer Suite will have to be installed.

Discoverer requires some configuration, which will be described
shortly, before it can be used by general users. Once this task is complete,
it can then be queried using Discoverer Desktop; however, you may prefer
to use one of the browser-based tools, Discoverer Viewer or Plus, due to
the additional capabilities these offer because they are tightly integrated
into Oracle Application Server. Some additional setup and configuration is
required when Discoverer Viewer and Plus are used, but it is worth all the
extra effort.

Oracle Discoverer can also be used to access data held in non-Oracle
databases, using Oracle Heterogeneous Services. A single business area can
be created that references data from these different data sources. Then, Dis-
coverer functionality, such as report scheduling, query prediction, and use
of analytical functions, can be used against this non-Oracle data.

13.3.1 Why Discoverer?

Before we learn how to set up Discoverer, let’s first look at the types of
reports that it can produce. Imagine logging on to the corporate Web site
and having available to you reports containing the latest data from Discov-
erer, along with other company information. Figure 13.22 illustrates its
capabilities with Oracle Portal, where we can see a list of all of the reports
available to us in its only region on the screen. In another region, one of
the reports is displaying its results in a pie chart. Since each user of the Por-
tal can have his or her own customized view, it can greatly improve pro-
ductivity and business efficiency.

TEAM LinG - Live, Informative, Non-cost and Genuine!

616 13.3 Oracle Discoverer

Query Using Discoverer Viewer

Many organizations run Discoverer independently, and Discoverer Viewer
provides a user with the ability to access predefined reports and have the
capability to modify those reports in a limited way. The advantage of this
approach is that the user only needs a PC and a browser to access the data
in the warehouse and the DBA can rest assured that users cannot change
the data.

You can start Discoverer viewer from your browser using a URL such as:

http://easydw.com:7777/discoverer/viewer

A connection is made to this database, and a list of the available work-
books that we can attach to is presented. We select our workbook,
EASYDW and the query contained within is immediately executed. In Fig-
ure 13.23, we can monitor the progress of our executing query, and when it
has completed our report is displayed, as shown in Figure 13.24.

Since we defined this report as both a table and a graph, both versions
are displayed in Figure 13.24. Note that at any time we can hide the graph
or table by clicking on the Data or Chart option. The report shown here is
the default generated by Discoverer, and I am sure you will agree that it is a
very nice format, which is presented well and is easy to understand.

Figure 13.22 Discoverer and Oracle Portal

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.3 Oracle Discoverer 617

Chapter 13

Inside a workbook there can be many reports. In Figure 13.24, we can
see a list of those reports in the top left. Any of these reports can be run by
simply clicking on the report name.

Figure 13.23 Discoverer Viewer—Executing Our Query

Figure 13.24 Discoverer Viewer—Category Sales by Country

TEAM LinG - Live, Informative, Non-cost and Genuine!

618 13.3 Oracle Discoverer

One of the advantages of using Discoverer Viewer is that is the user is not
able to change the data in the warehouse or generate new reports. However,
there are limited customizations that can be done to this report, such as
changing the sort order or table layout, or, by clicking on the Presentation
Options items, as illustrated in Figure 13.25, changing how our report looks.

Dynamic Reports with Graphs

One of the features that makes Discoverer nice to use is the ability to
group together a number of reports that can be easily run and customized
to your own requirements. In the example shown here, we have a work-
book called EASYDW and, referring to Figure 13.24, at the top left of the
screen we can see a tab, with two entries on it, for each of the reports that
are available:

� Yearly Sales

� Customer Sales

In Figure 13.24, we see both a table and a graph generated from data in
our warehouse. When this report is run, the user is prompted to specify his
or her criteria for which years the sales are to be displayed.

Figure 13.25 Discoverer Viewer—Presentations Options

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.3 Oracle Discoverer 619

Chapter 13

Drilling on the Data

When a report is produced, someone reading it may say that this is very
interesting, but I need to know more about how this data is derived. For
example, suppose the user is viewing the report shown in Figure 13.24 and
sees that we sold many items in the United States, but how does that break
down by state and is it more than we sold in the United Kingdom?

By clicking on Country, a drill-down list is displayed and State was
selected; Figure 13.26 shows us the report with the data by state. Now we
can see that we sold across a number of states, rather than in just one state,
and U.K. sales are equivalent to selling in over four U.S. states.

Now that we have caught a glimpse of the types of reports, Discoverer
can produce, we must return to setting up Discoverer, because, before you
can use it, that setup we mentioned earlier must be performed.

13.3.2 Setting up the Environment

When a database is created, usually everything is named using terminology
that is familiar to a computer-literate person, but for a typical end user it
may look like a foreign language. Oracle Discoverer overcomes this prob-

Figure 13.26 Discoverer Viewer—Drill Down

TEAM LinG - Live, Informative, Non-cost and Genuine!

620 13.3 Oracle Discoverer

lem by creating what is known as the End-User Layer. Here, all those techni-
cal computer terms are turned into a user-friendly environment so that it is
easy for anyone to understand and access the information in the database.
Therefore, this task has to be completed before anyone can access the data-
base. This may seem like a lot of work, but, once completed, it will make it
very easy for users to access all the information, thus saving countless phone
calls to the IT department.

A major advantage of this approach is that it enables an organization to
control exactly which data in the warehouse users can see how they see it,
and, most importantly, they won’t need to understand how to join data in
order to query the data warehouse. To begin using Discoverer, first connect
to your Oracle database.

Hint: You may prefer to create a special user for Discoverer and connect to
your database using that user to ensure that the metadata is loaded under
that user name.

End-User Layer

The first time the Discoverer Administrator is started, you will be asked to
create an end-user layer (EUL), which consists of all the metadata that is
needed by Discoverer; therefore, this task will be performed only once. Fig-
ure 13.27 shows the screen where you can manage the end-user layer, includ-
ing creating a new one or deleting an existing one.

The wizard will then ask who will own the EUL. In our example, it
would be EASYDW. Now click on the Finish button and the end-user layer

Figure 13.27 Discoverer Administrator—Create an EUL

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.3 Oracle Discoverer 621

Chapter 13

is created. This process may take a few minutes, depending on the complex-
ity of the schema that it has to analyze.

Business Area

Once the definition of the end-user layer is complete, a Business Area is
named, where all of the information needed to query the warehouse must
be defined. The purpose of the business area is to group information into
business-oriented categories, such as Sales or Finance, which are familiar to
end users. Business areas are the unit of access control and a user can be
assigned to one or more business areas. Users will then have access to all of
the objects within the assigned business area.

Within this business area, you will specify exactly which data a user may
access, how that data may be joined, and describe data aggregations and
new data items based on calculations on existing data items. Creating the
business area will take some time, but it will reap significant benefits later.

When creating the business area, we must first specify the schemas from
where data is to be made available to the end user, as illustrated in Figure
13.28. We can select any number of users from the list and also request that
it only selects items from the list that match the pattern specified in the
box. In our example, we have selected only the user, or schema EASYDW.

Once we know the schema from which the data will be available, we can
then explicitly state from which tables or views we can retrieve data, as
shown in Figure 13.29. Using our Easy Shopping Inc. example, we have
given the users access to all of the five tables in this data warehouse.

Figure 13.28 Discoverer Administrator—Select the Schema

TEAM LinG - Live, Informative, Non-cost and Genuine!

622 13.3 Oracle Discoverer

One extremely useful feature in Discoverer is the ability of the wizard to
automatically create joins based on primary and foreign keys and create
hierarchies from the data, as illustrated in Figure 13.30. By allowing the
wizard to perform these tasks, there will be less setup work for you to do,

and by default these options are already selected. The advantage to the end
users is that when they are constructing queries they won’t need to know
how to join the data, because Discoverer will know this from what was
done at this stage. Therefore, end users require minimal computer design
knowledge in order to construct reports in the database.

There is one final screen before the first stage in creating the business
area is complete. In Figure 13.31, we must name the EUL and optionally

Figure 13.29 Discoverer Administrator—Select the Tables and Views

Figure 13.30 Discoverer Administrator—Automatic Joins

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.3 Oracle Discoverer 623

Chapter 13

add a description to describe what is being held. Discoverer will also gener-
ate names for all of the objects, and in Figure 13.31 you can see the options
available, such as capitalize or replace underscores with spaces.

Clicking on the Finish button, completes the first stage in creating our
business area. A task list will appear, as shown in Figure 13.32, to help
remind us of the steps to follow.

In Figure 13.33, we can see that part of the basic EUL screen in Discov-
erer from where everything can be managed. Discoverer has already identi-
fied that the table PURCHASES can be joined to the customer, product,
and time table and that some computation may be applied to the column
purchase price.

Figure 13.31 Administrator—Naming the Business Area

Figure 13.32 Discoverer Administrator—Task List

TEAM LinG - Live, Informative, Non-cost and Genuine!

624 13.3 Oracle Discoverer

With the basic EUL is place, this is where the real work begins, since we
can now set up the rest of the business area; although we have shown only the
creation of one business area, you could create any number of business areas
in your environment, each with its own unique set of data requirements.

Restricting the Visible Columns

By default, when access is given to a table, all the columns in that table are
accessible. What is nice about Discoverer is that users can only access data
via the business area. If the table and column are not given visibility by Dis-
coverer, then the user will never even know that this data existed.

In Figure 13.33, we can see all the tables from the database that we have
access to. Note that our table TODAYS_SPECIAL_OFFERS is now called
Todays Special Offer, as a result of the naming change requested earlier. By
default, the end user will have access to every column in those tables. If you
click on the table name to expand it, all the columns in that table will
appear. To remove any of those columns, simply click on the item using the
right mouse button, and a drop-down list will appear. One of the items in
that list is Delete Item. Simply select that option, and the item will be
removed from the business area but not from the database.

Figure 13.33 Discoverer Administrator—Setting up the Business Area

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.3 Oracle Discoverer 625

Chapter 13

Folders

Before moving on, there is some terminology that you should familiarize
yourself with. In Discoverer, a table or view is known as a folder, and a col-
umn from the table is called an item. A folder can be one of two types:

� Simple, where it is based on a single database table or view

� Complex, where it can contain items from other folders and can be
nested

An item corresponds to a column in a relational database. A simple item is
based on a single column in the database, but an item can also be calculated
or derived based on a formula using other items, functions, or operators.

Changing Item Details

The attributes of any of the items that you have selected may be modified
by selecting that item, clicking on the right mouse button, and then select-
ing Properties. The window illustrated in Figure 13.34 will appear, and you
can then modify whichever properties you like. In this example, we have
changed the item’s name from Supplier to Main Supplier, which means that
our users can be presented with friendly meaningful names, rather than
computer format names.

When the business area is first created, if the database has primary and
foreign keys defined, then Discoverer will automatically create joins

Figure 13.34 Discoverer Administrator—Change the Item Details

TEAM LinG - Live, Informative, Non-cost and Genuine!

626 13.3 Oracle Discoverer

between those constraints. However, you can specify your own joins by
selecting Insert from the strip menu and then Joins.

Creating New Items

Another feature that many DBA’s may require is the ability to create new col-
umns or items in the database by calculating their results from other columns.

A calculation creates a new item in the end-user layer. It will not add
underlying columns to database tables and is used to create a new item
where there is no underlying database column that contains the data
required. Calculations can be simple, such as weight * 4.54 or they can be
complex mathematical or statistical expressions. For example, in Figure
13.35, a new column called Total Cost is created in the PURCHASES table
by adding together the columns purchase price and shipping charges. You
can create as many of these types of calculations as you require, and they
will appear as an item for that table.

Creating Joins

When the EUL was first created, Discoverer tried to identify which joins to
create from the primary- and foreign-key relationships that had already
been defined. However, there may be times when additional joins are
required and these can easily be created using the join wizard.

A join is created by clicking on Create Joins in the Discoverer Adminis-
trative Task List, which is shown in Figure 13.32, or from the Administra-
tion Work Area, shown in Figure 13.34, by clicking on Insert and then
Joins; the wizard will then appear, as illustrated in Figure 13.36.

By using the wizard, give the join a name and then, from the drop-down
list, select the table and columns to join on and the type of join. In our

Figure 13.35 Discoverer Administrator—Creating a Calculated Item

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.3 Oracle Discoverer 627

Chapter 13

example in Figure 13.36, we have specified a join between the TODAYS
SPECIAL OFFERS table and the PRODUCT table using the column
PRODUCT_ID. The advantage of defining these joins now is that when a
user writes a query, Discoverer will know how to join the data, so it’s one
less piece of information that our user has to supply; in this way we ensure
that a meaningful join is being applied.

Click on the Next button to proceed to the second and final join wizard
screen, where you can specify some more advanced options about the joins.

Hierarchies

We have already seen that hierarchies play an important role in our data ware-
house. Although in Oracle we can create dimensions, at the time of writing,
these are not used by Discoverer, and we must create our own dimensions,
which are known in Discoverer as hierarchies. Hierarchies are very important
in Discoverer, because if an item is in a hierarchy, then users can:

� Drill up, which changes the query to show a higher level of details

� Drill down, which shows more detail

This is how we were able to drill on our report shown earlier. A hierar-
chy is created by clicking on Insert in the menu at the top and then selecting

Figure 13.36 Discoverer Administrator—Define a Join

TEAM LinG - Live, Informative, Non-cost and Genuine!

628 13.3 Oracle Discoverer

Hierarchy. First, you will be asked about the type of hierarchy you want to
create: an item or a date. When the business area is first created, it is quite
likely that Discoverer will automatically create a time-based hierarchy.
Therefore, you will probably only have to create nontime-based hierarchies.

Figure 13.37 shows how easy it is to create the hierarchy by selecting the
items and then defining the hierarchy relationship. In Figure 13.37, we have
created a very simple hierarchy between PRODUCT_ID and CATEGORY.

Hint: Click on the Hierarchy tab shown in Figure 13.34 to see all the hier-
archies that Discoverer created automatically when the EUL was generated.

Item Classes—List of Values

When the end users are actually querying the data, there are times when it
may be helpful to them if they can see a possible list of values. For exam-
ple, suppose they want to pick out all of the electrical items. If they know
which category they are represented in, then this will facilitate rapid
query generation.

An item class can describe the hierarchical relationship between items, a
list of values, alternative sort keys for items, and the display methods.
Therefore, an item class defines all of the attributes for an item. Once an
item class has been defined, it can then be assigned to other items, which
share similar properties.

Figure 13.37 Discoverer Administrator—Defining a Hierarchy

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.3 Oracle Discoverer 629

Chapter 13

An item class is created by selecting Insert from the menu at the top and
then Insert Class from the list or by clicking on the text in the Administration
Task List, shown in Figure 13.32, the Item Class Wizard will now appear.

The first step is to define the type of item class, a List of Values, Alterna-
tive Sort, or Drill to Details, which is used to drill between a summary and
the detail. Then all you have to select is the column containing the values
and which tables will use it. When it is complete, click on the tab Item
Classes, and the window shown in Figure 13.38 will appear.

In this example, a list of values called Categories has been created from
our products dimension table. If we expand the entry categories, the data
warehouse can be queried, and all the different values will be displayed; in
Figure 13.38, we can see some of the different categories for products that
are sold. Here we only have a few items, but in the real world, where you
may have a number of different values, you can omit this step of displaying
the results.

When an item class is defined, you can also define the sort order for the
data. In Figure 13.39, we have chosen to use the conventional alphabetical
method, but that is not always suitable, so Discoverer will allow you explic-
itly to specify a logical order, such as N, S, E, W (North, South, East, West)
rather than E, N, S, W.

Summaries

We have already seen the importance of creating and using materialized
views in our data warehouse in Chapter 7. Discoverer allows you to create

Figure 13.38 Discoverer Administrator—Item Class

TEAM LinG - Live, Informative, Non-cost and Genuine!

630 13.3 Oracle Discoverer

your materialized views, which Discoverer calls summaries, from its sum-
mary wizard, by:

� Using query performance statistics

� Manually creating the summary

� Registering a previously built summary

To create your summary, click on Insert in the menu at the top, and then
select Summary and the summary wizard appears. Three types of summaries
can be created:

� Specifying items in the end-user layer

� Recommendations based on query performance statistics

� Registering an existing summary table

Then the window shown in Figure 13.39 appears, where you select the
folders and items from within those tables that are to appear in the sum-
mary. In our example, we have selected only the PURCHASES table, but
you could select multiple tables. Then we have chosen four of the data
items in that table. For the item purchase price, we have asked that this
value be aggregated. You will see that Discoverer will automatically supply a

Figure 13.39 Discoverer Administrator—Creating a Summary

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.3 Oracle Discoverer 631

Chapter 13

range of functions for you to select when a function may be applied to an
item. In Figure 13.39, for the item PURCHASE_PRICE, we have asked
that the SUM function be applied to this item. Next, you are asked to spec-
ify which groups of items you require.

As we have seen, it is very important to ensure that the materialized
views or summary contain the latest data. When defining your summary in
Discoverer, you can specify how often it is to be refreshed. Remember that,
as new data is added to the warehouse, the summaries must be maintained
to reflect the latest data. In Figure 13.40, we can see that we have stated that
this summary should be refreshed every day.

If you don’t know which summaries to create, Discoverer can recom-
mend them for you using its own summary wizard. In Figure 13.41, we can
see one of the steps from the wizard, where we can select the summaries we
require based on our space requirements. This wizard is very similar to sum-
mary management’s own SQL Access Advisor, described in Chapter 10, but
the recommendation process used by Discoverer is different from the one
used by the Oracle SQL Access Advisor.

Creating either Discoverer summaries or materialized views is very impor-
tant if you want to achieve the fastest query response time. Here, we have
seen how to create summaries directly in Discoverer, but you can create
materialized views, as discussed in Chapter 7, or use the SQL Access Advisor,
which was described in Chapter 10. Irrespective of how the materialized view
is created, Discoverer will still use it whenever possible.

Figure 13.40 Discoverer Administrator—Refreshing the Summary

TEAM LinG - Live, Informative, Non-cost and Genuine!

632 13.3 Oracle Discoverer

Security Issues

The final setup task is defining who may access the business area that you
have just created. You can start this component by double-clicking on
Grant Business Area Access, shown in Figure 13.42. A window will appear
that will allow you to state which users can access a business area or which
business areas a user can access. In Figure 13.42, we can see that the only
user who will be granted access to our business area is EASYDW. Don’t for-
get that although in this example we have enabled access via the user name,
you can also grant access to the business area via the roles that may be given
to a user. When you are satisfied that all the relevant access rights have been
given, click on the Apply button to complete the changes.

Figure 13.41 Discoverer Administrator—Summary Wizard

Figure 13.42 Administrator—Granting Access to the Business Area

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.3 Oracle Discoverer 633

Chapter 13

In Figure 13.43, our complete business area is shown. Expanding just
the PURCHASES table, we can see all the items that are available to our
users; the new calculation that we created, called Total Cost; and the
functions that we can apply to that column. At the bottom of the win-
dow, we can see that joins have been created from the PURCHASES table
to the PRODUCT and TIME table. Of course, not all the information
can be displayed on this one window, so, to see the Hierarchies tab, you
will have to click that tab. The same is true for item classes and summary
information.

We have now completed all of the basic setup tasks for using Discoverer.
Don’t forget to save all of your work, and please remember that the tool is
much more comprehensive than we have shown in these few pages. For
example, we haven’t shown here that Discoverer fully supports the Oracle
analytical functions to enable sophisticated analysis of the data. Now we
can start using Discoverer Desktop, Viewer, or Discoverer Plus to retrieve
data from our data warehouse.

Figure 13.43 Discoverer Administrator—Business Area

TEAM LinG - Live, Informative, Non-cost and Genuine!

634 13.3 Oracle Discoverer

13.3.3 Query Using Discoverer Plus

Once the environment has been set up for querying via Discoverer, you can
now start either the Desktop edition or the Plus version, which has been
designed for use via a browser. In this chapter, our examples will use the
browser version, Discoverer Plus.

Reports in Discoverer are held in a workbook; therefore, the first step is
to connect to the database where our workbooks reside. In Discoverer Plus,
launch Plus from your browser using a URL such as:

http://easydw.com:7777/discoverer/plus

You will be presented with a list of the databases that you can connect
to, as shown in Figure 13.44. Here we can see that we only have one data-
base, called EASYDW.

These connections will have been defined previously and consist of
your user name and database name. Therefore, all you must supply is your
password, and you will be asked whether to create or open an existing
workbook. In Figure 13.45, we see the initial window, where we specify
the workbook and how the results are to be displayed. Discoverer offers a
range of display options, such as showing the data in tabular or a crosstab
form. Using the crosstab format is ideal when you have multidimensional
data to display.

Figure 13.44 Discoverer Plus—List of Databases for Connection

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.3 Oracle Discoverer 635

Chapter 13

Now, it is time to specify exactly what is to be reported in this query.
First, you must select the business area that was defined using the Adminis-
tration edition, which determines the data that you may see. In our exam-
ple, we have only the EASYDW business area, but there could be several
areas to choose from.

Now we have to select the items from those folders. This is a simple
process, involving moving them from the left window (available) to the
right window (selected). In Figure 13.46, we have selected the item category

Figure 13.45 Discoverer Plus—Using a Workbook

Figure 13.46 Discoverer Plus—Selecting Data to Be Displayed

TEAM LinG - Live, Informative, Non-cost and Genuine!

636 13.3 Oracle Discoverer

from the product folder, purchase price from the purchases folder, and the
year from the time folder.

Next, we must specify the layout for our report. This is very easily
achieved by dragging the columns to where you require them on the report.
In Figure 13.47, we have specified our order as category, year, and price.
Initially the year column was to the right of the purchase price column, but
by simply dragging the year column, we can place it wherever we wish on
the report. At this stage, we can only decide how the data is to be presented;
we can specify formats and headings on another screen.

At this stage, by clicking on the Options button, Figure 13.48 will
appear, and, in Discoverer, some very useful limits can be set on the query,
such as preventing it from running longer than a specified period of time or
only returning a limited number of rows.

For each item that will be displayed on our report, we can now specify
how that data is to be formatted and the heading to be used on reports. In
Figure 13.49, we have changed the heading for our sum on PURCHASE_
PRICE to Total Sales. By clicking on the Format Heading button, the font
and alignment options can be defined, and clicking on Format Data allows
us to specify how the data is actually presented. In this example, we have
decided that our total will have no decimal places.

Progressing through all of the steps in the wizard shows a number of
other options that are available, but we will not show all of these steps here.
For example, a condition can be specified to limit the results of our work-

Figure 13.47 Discoverer Plus—Table Layout

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.3 Oracle Discoverer 637

Chapter 13

sheet to a specific criterion. There are some very extensive options available
here, however, in this example we are going to view all of the data.

Step 6 in the wizard is specifying the sort order of our data, which is
achieved by clicking on the Add button and selecting one of the available
columns. In our example in Figure 13.50, we are sorting by year first and
then category.

At this stage we could also add calculations to appear on our report,
such as profit made by subtracting purchase price from cost price. In our

Figure 13.48 Discoverer Plus—Query Options

Figure 13.49 Discoverer Plus—Format Headings

TEAM LinG - Live, Informative, Non-cost and Genuine!

638 13.3 Oracle Discoverer

report today, we will not include any calculations. Another option is the
ability to create a percentage point on any item on the report, which can be
useful to help understand the data.

We have already said that we want to total the item purchase price, and
in Figure 13.51 we can now add a total to this item as well. As you can see,
there are a number of options available to us, such as whether we want a
subtotal, the type of sum to perform, and how the data should be format-

Figure 13.50 Discoverer Plus—Sorting the Data

Figure 13.51 Discoverer Plus—Defining Totals

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.3 Oracle Discoverer 639

Chapter 13

ted. Once again, we can create as many totals as we need for inclusion in
our report.

The last step on the wizard is the ability to define a parameter so that the
user of the report can be prompted to enter some value. In our example
here, we want to see all of the data, but we could use this if, say, we wanted
the ability to specify which years data we wanted.

Clicking on the Finish button will display our data. Discoverer will now
query our data warehouse directly and show us the results, as shown in Fig-
ure 13.52. There we can see the total sales by category for a given year.

Hint: You may have to format the cells of the report to see the data if the
numbers are large, because, by default, it uses small numbers.

Note that in order to report this data, we did not have to specify how to
join the tables that we selected, because the join information had already
been specified in the business area. This is one of the really nice benefits of
using Discoverer, because the end user does not have to know about rela-
tional joins. The person who created the business area using Discoverer
Administration edition has done all of this work behind the scenes. Now all
that the user has to do to get the report is select the data of interest, answer

Figure 13.52 Discoverer Plus—Report

TEAM LinG - Live, Informative, Non-cost and Genuine!

640 13.3 Oracle Discoverer

the questions on a few screens, and then click the Finish button to request
the information.

Now that we have our report, we can customize it to our own require-
ments by either clicking on the items or selecting from the menu at the top.
To change the format of our numbers, if we click on Sheet and then Format,
the item can be amended.

If you are interested in how the report is being executed within the data-
base, selecting Sheet, followed by Show SQL, will bring up the SQL Inspec-
tor box shown in Figure 13.53. Here you can either view the SQL used to
execute the query by clicking on the SQL tab, or, as shown in Figure 13.53,
the query execution plan. Here we can see that query rewrite has selected a
materialized view to show the results of this query.

Now that we have our report, we may want to look at the data from a
different perspective. Discoverer will automatically offer alternative drill
down on the data; it’s easy to see if this is possible, by looking for a sideways
triangle beside a column.

In Figure 13.52, the column Category has one of these triangles beside
it, and clicking on it displays the drop-down list shown in Figure 13.54.
Now we have the ability to view the data either by category, or to drill down
to the product level. Note that the user did not have to tell Discoverer

Figure 13.53 Discoverer Plus—SQL Inspector

Figure 13.54 Discoverer Plus—Drilling up/down the Data

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.3 Oracle Discoverer 641

Chapter 13

about how it could report on the data. All this information was previously
defined during the setup, so once again the end user needs to know little
about how the data is stored in order to get the information requireed.

In Figure 13.55, we now see our report with the information at the
product level. Because we have a product hierarchy, we can change our
report to total by product, instead of by category, simply by selecting prod-
uct from the drop-down list. Hopefully, now you are beginning to appreci-
ate the benefits of all the setup work that we completed using the
Discoverer Administration edition.

So far, we have only viewed our data in a traditional report format, but
Discoverer Plus can also represent our data graphically. By answering a few
questions using the Graph Wizard, which is started by clicking on the graph
icon shown in Figure 13.55, it is possible to create a report similar to the
one shown in Figure 13.56.

There are over a dozen different types of graphs available from within
Discoverer Plus, and you can totally customise the output by adding your
own titles and legends. We have decided to use a pie chart to represent our
yearly sales, shown in Figure 13.57, which makes it easy for us to see that
electrical items were the most popular item.

In this sample Discoverer report, we reported all of the data, but you can
select a subset by specifying a condition. What is nice in Discoverer Plus is

Figure 13.55 Discoverer Plus—Report at the Month Level

TEAM LinG - Live, Informative, Non-cost and Genuine!

642 13.3 Oracle Discoverer

that you can set up a number of conditions and then select the ones you
want for this report. In Figure 13.58, we see one of the screens where you
specify these conditions.

Figure 13.56 Discoverer Plus—Graph Wizard

Figure 13.57 Discoverer Plus—Graph of Yearly Sales

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.3 Oracle Discoverer 643

Chapter 13

There is another screen where you specify the condition, which can be
done using quite a complex expression. Here, we can see that we have one
conditions defined so that we can select data for a year. Then, when we view
the new report in Figure 13.59, we can see that when we restrict the view to
just the sales for 2003, electrical is still by far our top-selling item.

Figure 13.58 Discoverer Plus—Select Specific Data

Figure 13.59 Discoverer Plus—Report Using Conditions

TEAM LinG - Live, Informative, Non-cost and Genuine!

644 13.4 Oracle Reports 10g

There are many more facilities available from Discoverer, but, hopefully,
over these few pages, you can now see some of this tool’s capabilities and
how ideal this tool is for business-focused end users.

We will discuss Discoverer further in Chapter 14, when we describe how
to integrate these reports into Oracle Portal, so that they can be run and
viewed from within our browser as part of our Web content.

13.4 Oracle Reports 10g

We have just seen how reports can be generated using tools such as Oracle
Discoverer. But if you are looking to create sophisticated reports, which
accept data from a variety of sources, can use report templates, and can be
published in a variety of formats, such as HTML and PDF, then consider
using Oracle Reports 10g.

Oracle Reports 10g will accept data from a variety of sources, including
Oracle Database, Oracle Express, Oracle OLAP, XML, JDBC, or even a sim-
ple text file. Reports can be presented in a variety of styles and can be
enhanced by adding graphs, such as pie charts or bar charts. Each report can
be based on predefined templates, or the Template Editor can be used to cre-
ate your own templates, which means that you can define a standard layout
and include, for example, your company logo. Once the report has been
defined, it can then be sent to a number of different destinations, which
include a file, a printer, email distribution list, or Oracle Portal for inclusion
on your corporate Web site. However, the real power of Oracle Reports 10g
comes when you can use its powerful Web publishing capabilities, which
allow you to create JavaServer Pages (JSP)using Report Builder.

Let us now look at some of the types of reports that we can produce
using Oracle Reports.

13.4.1 Creating a Report Using the Report Builder

A report can either be constructed manually or by using the Report Wiz-
ard, which we will use to guide us through the steps of creating a report.
In Figure 13.60, we see one of the first screens, where we are asked to
select the type of layout. Since our report is going to be published on our
intranet, we have selected the Create Web Layout option. This means that
a single report can have two formats, if required: one for paper and
another for the Web.

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.4 Oracle Reports 10g 645

Chapter 13

Our next step is to select the type of report we require, as shown in Fig-
ure 13.61, where there are a number of options to choose from; a thumb-
nail sketch of the style is presented next to each radio button. The title of
this report will be Monthly Sales by Manufacturer, and the data will be pre-
sented in tabular format. Later, we will see examples of reports using the
matrix option.

The next step is to define the source of the data; in Figure 13.62, we can
see the ways that Oracle Reports allow us to query the data source. In this
example, we have chosen to use SQL, but it could just as easily be a query
to Oracle OLAP or JDBC.

Figure 13.60 Oracle Reports—Select the Reporting Medium

Figure 13.61 Choosing the Style of Report and Title

TEAM LinG - Live, Informative, Non-cost and Genuine!

646 13.4 Oracle Reports 10g

Since we are querying the database, in Figure 13.63 we see there are
three methods available for defining the SQL. If you know SQL, then you
can type it in manually; otherwise the SQL can be imported from a file, or
the Query Builder can construct the query.

For users not familiar with SQL, use the Query Builder, because it makes
defining SQL statements very easy and will certainly save you a lot of time,
since all you have to do is select the tables to include in your report and
then select the items that are to appear.

Oracle Reports automatically determine how to join the data and creates
the required SQL when you leave the query builder. In Figure 13.64, we
have selected the PRODUCT, TIME, and PURCHASES tables and have

Figure 13.62 Oracle Reports—Selecting the Data Source

Figure 13.63 Oracle Reports—Specifying the SQL Query

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.4 Oracle Reports 10g 647

Chapter 13

selected some columns from these tables. Note how Oracle Reports have
determined how to join the PURCHASES table to the TIME and PROD-
UCT table.

Oracle Reports will now validate our SQL statement, and next we are
asked which fields are to appear in the report. In Figure 13.65, we have
selected manufacturer, the month name rather than a number, the year, and
the total purchase price.

Figure 13.64 Oracle Reports—Using the Query Builder

Figure 13.65 Oracle Reports—Columns to Display

TEAM LinG - Live, Informative, Non-cost and Genuine!

648 13.4 Oracle Reports 10g

We can now select, in Figure 13.66, whether we require any totals to be
computed for data. See how Oracle Reports give us buttons to request for
sum, average, count, minimum, maximum, and %total.

A nice feature in Oracle Reports is the ability to specify how wide the
columns should be for our data and what our column headings should be.
In Figure 13.67, we are given the option to specify these widths before our
report is produced. At this time, column headings can also be defined there-
fore, we have taken the opportunity to change the heading for Month
Name to Month and increase the size of the column for the Manufacturer .

Figure 13.66 Oracle Reports—Calculate Totals

Figure 13.67 Oracle Reports—Specify the Column Widths

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.4 Oracle Reports 10g 649

Chapter 13

The layout for the report is determined by selecting one of the pre-
defined templates, or you can define your own template. When you’re
done, click Finish and you are returned to the Report Builder. Once here
you can save the report and then select Program followed by Run Web Lay-
out to actually run the report. Figure 13.68 shows us the actual report as
viewed from our browser.

However, this is in its raw format, and it can be customized as required.
Therefore, the report layout can be modified to include currency symbols,
commas, and decimal points. Other possible changes include changing the
fonts, bolding numbers, underline, or italicize text, and you can format
numbers to represent a monetary value. You can even add your own logos,
graphics, headings and footers, and construct company-specific templates
for report layouts.

Figure 13.68 Oracle Reports—Final Report

TEAM LinG - Live, Informative, Non-cost and Genuine!

650 13.4 Oracle Reports 10g

Report Builder has so many reporting capabilities that once its capabili-
ties are appreciated, it soon becomes apparent how this extremely sophisti-
cated reporting design tool can be used to produce flexible and powerful
reports.

13.4.2 More Oracle Reports Examples

The report shown in Figure 13.68 is a very simple report and not that excit-
ing, but it illustrates how to create a report. Let us now look at examples of
some more reports that we have created using Oracle Reports from our
EASYDW Data Warehouse.

Matrix Report

In Figure 13.69, we see an example of a report using the matrix with a
group layout, where we can view the total amount that has been purchased
for each of our manufacturers for the month of January.

Figure 13.69 Oracle Reports—Matrix Report

TEAM LinG - Live, Informative, Non-cost and Genuine!

13.4 Oracle Reports 10g 651

Chapter 13

Conditional Report

The extensive capabilities of Oracle Reports begin to become apparent
when we see how defining a condition on our report can be used to high-
light when specified conditions have been reached. In Figure 13.70, we
have chosen to highlight in red any customer who spent less than $250. We
could even go further and specify a number of conditions, all highlighted
with a different color. Therefore, customers spending less than $250 are in
red, up to $1,000 in yellow, and over $1,000 in black. Unfortunately, in a
black and white book we can’t show this, so the red numbers are in italic.

13.4.3 Publishing the Report

Once our report has been created, it can then be published in a number of
formats. From within Report Builder, we can see the options by clicking
File, then Generate, and a list of output formats is displayed, which
includes, HTML, PDF, XML, RTF, and Text; we have already seen the
HTML layout in Figures 13.68 and 13.69.

Figure 13.70 Oracle Reports—Conditional Report

TEAM LinG - Live, Informative, Non-cost and Genuine!

652 13.5 Summary

By selecting PDF and HTML formats, we have the ability to view the
reports using a Web browser. Oracle Reports also allow you to deploy a
report to:

� File

� Printer

� OracleAS Portal

� Email

Select the type of report that is required, and you will be prompted to
specify where the report is to be stored. Optionally, you may also be
prompted for database connection information. The report is then run
immediately, and the report can be viewed from the location where it is
stored.

The report can also be published in OracleAS Portal as a portlet, and we
will learn more about publishing data this way in Chapter 14.

13.5 Summary

In this chapter, we have barely skimmed the surface of what is possible with
these three data warehousing tools from Oracle. They are all very powerful
and it is strongly recommended that you find out more about these tools;
visit http://otn.oracle.com, where there will be demos showing the tools
capabilities and very detailed documentation, tutorials, and best practices.

TEAM LinG - Live, Informative, Non-cost and Genuine!

653

14

Data Warehousing and the Web

14.1 Overview

There was a time when, if you mentioned integrating the data warehouse
with the Web, people would stare at you and ask, “Why on earth would you
want to do that?” Most of us, when we first think of the Web, probably
imagine checking out a company’s product or placing an order, so what
does that have to do with our data warehouse? Well, you may be very sur-
prised at how important the Web could be to your data warehouse.

Today, as described in Chapter 1, applications and tools are evolving
toward browser-based solutions. We saw in Chapter 13 that Discoverer
Viewer is a browser-based tool for querying your data. Now, imagine tightly
integrating that tool into the Web pages you are viewing, and an extremely
powerful reporting environment is now available.

14.1.1 Internet and Intranet

To distinguish between an internal Web and the World-Wide-Web, the
term

Internet

 is used to describe the global connection of public computers.
Often sitting behind the Internet is a company’s own Web, called the

intranet

, which is only accessible to people within that organization; it is the
intranet that we are primarily interested in.

Today, most companies have a presence on the World Wide Web, but
what many people may not realise is that within the company there can be a
huge internal Web site used by employees only. This is the Web site where
all business is conducted, and Oracle is a good example of a company using
its intranet to communicate and conduct internal business. For example,
when an Oracle employee needs a new laptop or mobile phone, he or she
accesses the internal procurement system and goes shopping similar to
shopping on the Web. In some countries, payslips are only available on-

TEAM LinG - Live, Informative, Non-cost and Genuine!

654

14.1

Overview

line, as well as all end-of-year tax documents. Numerous reports, status
documents, and product specifications are all accessed via Web-based sys-
tems using a browser such as Internet Explorer or Netscape. Therefore,
information is quickly and easily available, provided he or she is connected
to the corporate network, no matter where in the world the Oracle
employee is located. Therefore, what does a company place on its intranet?
Well, the possibilities are endless, and here are just a few ideas:

�

Press releases

�

Product information

�

Software to download

�

Payslips and HR systems

�

Purchasing systems

�

Telephone lists

�

Sales information

�

Historical data

�

Trends and analysis

�

Many different types of reports and documents

At first glance, this list looks like a typical Internet site, but it’s the
items such as sales information, historical data, and trends and analysis
that differentiate it from the normal Internet and indicate a role for our
data warehouse.

Before we look at how we can use this intranet, we must address a con-
cern many people have when data is published on the Web, even if it is
internal: Is it safe? Typically, company intranets are not connected to the
Internet and can only be accessed by either being in a company office, by
dialing in, or through a secure VPN connection when outside a company
office. Therefore, the information is safe and protected from hackers. Of
course, if you are concerned about security within your organization, then
information can be protected so that only certain staff can review sensi-
tive information.

Therefore, knowing that our data is safe, why would we want to con-
sider putting our data warehouse on the company intranet? Well, before the
intranet, if there was a report that a manager needed—say, sales by area for

TEAM LinG - Live, Informative, Non-cost and Genuine!

14.1

Overview 655

Chapter 14

this month, he or she would have to request that report and then wait for
the paper copy to arrive.

Now, the intranet changes all of that, because standard reports can be
created and then published on the intranet for managers to review at a time
that is convenient to them. Once they have been produced, reports can be
made readily available to everyone, no matter location. No longer do you
have to wait for them to arrive in the internal mail. If you are not in the
office today but working from a hotel, home, or dialing in from some loca-
tion, you can still review the report. You could even consider converting the
report into, say, a spreadsheet, so that the data can be downloaded and
manipulated locally.

By using this approach, reports don’t have to be published on the Web.
They can be configured so that they are regularly updated and always con-
tain the latest information. When published in conjunction with tools such
as Discoverer Viewer and Discoverer Plus, not only can the users get the
report when they want it, but they are no longer restricted to getting a stan-
dard report. Now, tools such as Discoverer allow users some degree of cus-
tomization of the report, such as only sales for the Southern area or store
whose sales are less than $10,000.

Hopefully, now you are beginning to appreciate how the Web can help
solve your report publishing and distribution problems and provide a
mechanism for users to have access to the very latest information. For
example, suppose you have a static report: You could automatically regener-
ate that report every hour and publish it on the Web or refresh it on
demand as users request it. On-line interaction with reports has tradition-
ally not been feasible with a data warehouse, because business intelligence
queries can typically take hours to run. But now, with features such as sum-
mary management, described in Chapter 7, a query that used to take hours
can be reduced to seconds. Thus, the reports using that data can be run
more frequently.

Now that we have an appreciation of what the Web can do, there are
several different ways in which it can interact with our data warehouse:

�

It becomes the deployment platform for all your business intelligence
information, using tools such as Oracle Discoverer and Reports.

�

It becomes the platform where an application can be customized,
using Oracle Personalization, thanks to data from our warehouse.

TEAM LinG - Live, Informative, Non-cost and Genuine!

656

14.2

Oracle Application Server 10g

14.1.2 Oracle Software for the Data Warehouse

Oracle offers a complete solution that facilitates easy publishing of the data
from your data warehouse onto your intranet or Internet, providing a com-
plete customized experience. Everything that is needed to build this envi-
ronment can be found within Oracle Application Server 10

g

, but this is a
product that includes many different components. However, it is not neces-
sary to install everything, because you only need to use the parts of the
Application Server that you require. But be warned, once you discover what
is possible, those other components could suddenly become very useful.

There are four components in Oracle Application Server 10

g

 that will
initially be of interest in our data warehouse:

�

Portal

�

Discoverer

�

Reports

�

Personalization

We will now look briefly at each of these products and see how they can
help our data warehouse.

14.2 Oracle Application Server 10

g

Hopefully, now you are beginning to appreciate how the Web can dramati-
cally change how information is used and accessed by the data warehouse.
Using Oracle Application Server 10

g

 (OracleAS) to run all of your business
intelligence applications provides you with the complete environment to
run e-business intelligence.

Oracle Application Server 10

g

, provides all the technology stack that
you need to build and implement e-business portals, Web services, and
transaction-based applications. It supports all the Java, XML, and Web
services industry standards and can be used to access both Oracle and non-
Oracle data.

Included is Oracle’s HTTP server, which is based on the Apache Web
server. Following installation of OracleAS, which has already been config-
ured, it is immediately ready for use. There is also a J2EE (Java 2 Enterprise
Edition) environment, which is a Java platform designed for the develop-

TEAM LinG - Live, Informative, Non-cost and Genuine!

14.2

Oracle Application Server 10g 657

Chapter 14

ment of applications up to enterprise-size businesses. By using J2EE tech-
nologies, you can create an application using Java server pages, servlets, and
enterprise Java Beans.

�

A

Java servlet

 is a program, which, when it receives a request for infor-
mation from the client, dynamically gets the information from the
database, generates a response, which can be in HTML or XML, and
sends that back to the client.

�

JAVAServer pages

 help us develop our servlets, because they allow the
developer to easily design and maintain dynamic Web pages by sepa-
rating the dynamic content from the page layout.

�

Enterprise Java Beans

 help developer by encapsulating business logic,
so they don’t have to write the code for these functions.

Within OracleAS, development is possible using Java, XML, Perl, and
PL/SQL.

Oracle Application Server 10

g

 actually comprises the following areas,
which, as you can see are a very comprehensive list. Thankfully, you don’t
have to install all of them to use OracleAS.

Oracle HTTP Server Web Server

OracleAS Portal Build and administer portal applications

OracleAS Reports Services Create reports

OracleAS Discoverer Business intelligence reporting

OracleAS Personalization Provides real-time personalization

OracleAS Containers for J2EE J2EE run-time component

OracleAS TopLink Store Java objects in database

OracleAS Web Services Develop and deploy Web services

OracleAS Form Services Web deployment for oracle forms

OracleAS Developer Kits XML, Content Management, and MapViewer

OracleAS High Availability Ensures application high availability

OracleAS Integration Manages Enterprise Business processes

OracleAS Identity Management Identity management infrastructure

TEAM LinG - Live, Informative, Non-cost and Genuine!

658

14.2

Oracle Application Server 10g

Now, we will begin to see which components you may need to take the
data warehouse to the Web. There are many ways that a Web site can be
configured, and it’s beyond the scope of this book to discuss them here, but
typically Oracle Application Server 10

g

 will be installed and running on a
machine different from where your database is located.

By using this approach, an environment can be created where the hard-
ware and operating systems can be configured to match the processing
demands. The examples in this book were constructed with Oracle Applica-
tion Server 10

g

 running on a Windows machine and Oracle Database 10

g

running on Linux.

14.2.1 Why Set up a Portal?

When the Internet first became popular, a company would talk about their
Web site, but now talks about its

portal

, where a portal is a Web site that
offers a range of resources and services. A Web site devoted to a specific topic,
such as the medical site WebMD (http://www.webmd.com/), is known as a
vertical portal. But most portals cover a wide range of subjects, such as Yahoo
(http://www.yahoo.com); these are known as horizontal portals.

The portal provides access to this wealth of information, and, typically,
once you sign in, what you see is customized to meet your needs. For
example, when an external visitor visits Oracle (http://myoracle.com), he
or she will see a screen very similar to the one shown in Figure 14.1. How-
ever, when an Oracle employee signs in, he or she will see a completely
different Web.

The Oracle employee will be presented with internal company informa-
tion and access to a wide range of internal systems, such as email. The exter-
nal visitor to the Web site will first be presented with the screen shown in
Figure 14.2, where he or she invited to register for Oracle World and is pre-
sented with the latest news. Since this is a portal, users can now customize
this page so that they only see and access information of interest to them.

OracleAS BPEL Process Manager Deploy and manage BPEL processes

OracleAS Workflow Manage workflows

OracleAS Wireless Deploys wireless and voice applications

OracleAS Web Cache Web caching and compression

OracleAS Java Object Cache Manage local Java objects

Oracle Enterprise Manager Web-based administration

TEAM LinG - Live, Informative, Non-cost and Genuine!

14.2

Oracle Application Server 10g 659

Chapter 14

Figure 14.1

Signing in to the OracleAS Portal

Figure 14.2

OracleAS Portal—Standard View

TEAM LinG - Live, Informative, Non-cost and Genuine!

660

14.2

Oracle Application Server 10g

So why is a portal relevant to our data warehouse. Well, many compa-
nies are now realizing that they need a portal, which is a very sophisticated
Web site. Using the tools available, a portal is not difficult to construct, and
efficiency should increase because the portal provides customized access to
the information companies need to do their jobs. Therefore, consider using
a portal to bring the information from your data warehouse to its users.
There are two products within OracleAS that make this possible: OracleAS
Portal and Personalization.

14.2.2 OracleAS Portal

Oracle Application Server 10

g

 includes OracleAS Portal, which is software
that allows a portal to be developed quickly and easily. Since OracleAS
Portal uses the single sign-on authentication, which is part of OracleAS, it
provides the mechanism by which access to the information is controlled.

It’s very easy to develop applications using OracleAS Portal, even if you
are not an experienced developer. This is because it is a friendly, browser-
based tool with many wizards; these can be used to quickly create a very
comprehensive and professionally designed portal. Whenever information
is being retrieved from the database or other sources, there are always wiz-
ards to help you specify the query, or you can define the SQL yourself. The
benefits of using OracleAS Portal are:

�

It has a framework that is extensible and that integrates all the Web
resources.

�

It uses the OracleAS single sign-on.

�

It provides easy access to information.

�

The contents can be personalized.

�

It has comprehensive wizards to help build applications quickly and
with minimal development knowledge.

�

It uses a scalable architecture.

�

It forms an integrated solution with OracleAS Reports and Discoverer.

�

It information is published using portlets.

�

It is a self-service publishing facility.

TEAM LinG - Live, Informative, Non-cost and Genuine!

14.2

Oracle Application Server 10g 661

Chapter 14

Although OracleAS Portal can create simple reports, it is also tightly
integrated with Oracle Reports and Discoverer, and the information and
reports produced by these tools can be published as a portlet.

Security is also not an issue; since OracleAS Portal is part of Oracle
Application Server 10g, it uses single sign-on (SSO). Therefore, before any-
one can access any information, he or she will have to log in, as illustrated
in Figure 14.1; this will control exactly which pages a user can see within
the portal.

In Figure 14.3, we can see all of the components that can be used to cre-
ate our portal. Before access can be granted to any information, security
must confirm that this is an authorized user. Once users have access to the
pages in the portal, information is presented in regions. Within those
regions, portlets can be used to present information from tools such as Dis-
coverer. The pages used to present this information can use a template for
consistent styling, and navigation is provided so the users can move around
the portal quickly.

Before we discuss how to get started with Oracle Application Server, let’s
look at how easy it is to create Web pages in OracleASPortal. Figure 14.4
shows part of the graphical design tool for constructing our Web page.
Although it may look a bit complex, it’s actually quite straightforward to
use. Regions are specified and then within that region information is placed
such as text, a graphic or a link to Discoverer worksheets or the actual
results from a report, such as this one from Discoverer can be displayed.
Using this approach, Web pages can be quickly constructed, and, by using

Figure 14.3

An Overview of OracleAS Portal

TEAM LinG - Live, Informative, Non-cost and Genuine!

662

14.2

Oracle Application Server 10g

templates, a corporate look and feel can easily be incorporated into the
design.

In Figure 14.4, we see how our page is being constructed. Regions have
been defined for each of the areas on the screen and within those regions
there are text, navigation tabs, and Discoverer portlets.

In Figure 14.5, we can see how our page will look when it is displayed in
a browser. The page shown here is extremely simplistic and only shows a
very small percentage of what is possible with OracleAS Portal.

Referring to Figure 14.5, on the left we can see links to some of the Dis-
coverer reports we created in Chapter 13; one of the reports, Sales by Cate-
gory, is displayed. The information from Discoverer is published here via
what is known as a

portlet

. Once in the portal, these report contents do not
have to remain static, since they can be automatically refreshed and repub-
lished with the new data. At the bottom of the window on the left, infor-
mation is displayed about when the report was last refreshed and when it is
due to be refreshed again. These are just some of the parameters that can be
controlled when the page is constructed.

On the right side of the screen, there are tabs to select business pro-
cesses, such as tracking a package, clicking on the News tab, or displaying

Figure 14.4

Creating the EASYDW Web Page in OracleAS Portal

TEAM LinG - Live, Informative, Non-cost and Genuine!

14.2

Oracle Application Server 10g 663

Chapter 14

the latest company news and a graphic. When clicked, a tab can perform a
number of tasks—from simply displaying text to running a report.

Hopefully, you can start to appreciate how this self-service publishing
feature is of interest to our data warehouse users, because it allows them to
publish and share documents. Therefore, we can use the portal to create a
portlet, shown in Figure 14.4, where we can publish the information from
our data warehouse. Using this approach to publish and retrieve informa-
tion in our data warehouse means that any user within our organization,
who has permission to access the data, can easily view it. He or she simply
clicks on the tab or link and is taken to the report or graph of interest.

As you can see, by using OracleAS Portal, it is very easy to give users
access to all the information they may require from their browser. Now that
we have an appreciation of what is possible using Oracle Application Server
10

g

, let us now look at what is involved in setting up this environment.

14.2.3 Getting Started with Oracle Application Server 10

g

Oracle Application Server 10

g

is an extremely comprehensive product, but,
at the time of writing, the installation procedure, while straightforward,
does involve a number of steps, so it shouldn’t be attempted when only lim-
ited time is available.

Figure 14.5

The EASYDW Portal

TEAM LinG - Live, Informative, Non-cost and Genuine!

664

14.3

Publishing Data on the Web

In this section, some of the key points of the installation will be high-
lighted, but it is highly recommended that the installation guides be read
prior to installation.

In order to use the various components of Oracle Application Server,
several software installations need to be performed. The first step involves
installing the infrastructure, which is the second option on the installa-
tion screen. During this step, components such as Oracle Internet Direc-
tory and single sign-on are installed; these are needed by Oracle
Application Server 10g.

Once this installation is complete, start the installation again and this
time, select the first option. Now you can choose which parts of Oracle
Application Server to install, and, once completed, everything should be up
and running.

Hint: During the installation, you will be asked to specify several pass-
words so keep a careful note of these and the URLs listed at the end of the
installation.

Administration of Oracle Application Server 10g is achieved via a
browser, and the URL will depend on the available ports at installation
time. In the example shown in Figure 14.6, the administration page was
started by entering http://lhobbs-uk.uk.oracle.com:1812, where lhobbs-uk
is the name of the server and uk.oracle.com is the domain.

Oracle Application Server is managed via its own database instance—for
our EASYDW system it is known as iasdb3. By selecting the iasdb3
instance, the administration screen shown in Figure 14.6 appears. Here we
can see that all the installed components, such as Discoverer and Portal, are
running.

This screen is very useful, because from here the performance of the sys-
tem can be monitored; we will return here shortly to perform some config-
uration tasks to use Discoverer.

14.3 Publishing Data on the Web

We have started to see how using the Web to publish information can be
extremely powerful, so let us now look at how easy it is to achieve this from
Oracle Discoverer and Oracle Reports using OracleAS Portal.

TEAM LinG - Live, Informative, Non-cost and Genuine!

14.3 Publishing Data on the Web 665

Chapter 14

14.3.1 Discoverer

Oracle Discoverer is an extremely popular tool for querying data in the data
warehouse, and only minimal extra configuration is required in order to
publish reports on the Web.

Creating a Public Connection

Although users can have their own private connections to access Discoverer
data, this could involve considerable administration, especially if there are
many users. Therefore, for some general reports, public connections may be
beneficial; these can be created by clicking on Discoverer in Figure 14.6 and
then the screen shown in Figure 14.7 will appear.

Here, all the options for configuring Discoverer within Oracle Applica-
tion Server are shown, and clicking on Create Connection will show a
screen where the database connection information can be supplied; this was
described in Chapter 13.

14.3.2 Publishing a Portlet

Information from Discoverer is shared via a portlet which has to be config-
ured before it can be included in our portal. This is achieved in OracleAS

Figure 14.6 Administering Oracle Application Server 10g

TEAM LinG - Live, Informative, Non-cost and Genuine!

666 14.3 Publishing Data on the Web

Portal from the Portal Builder screen, which is reached by clicking on the
Administer tab. Register your Remote Provider here by completing the three
steps in the wizard; your portlets will now be available for inclusion on your
Web pages.

To include a portlet on your Web page click, on the Add Portlet icon, this
is one of the options for the regions shown in Figure 14.4. This will take you

Figure 14.7 Creating a Public Connection

Figure 14.8 Specifying Portlet Details

TEAM LinG - Live, Informative, Non-cost and Genuine!

14.3 Publishing Data on the Web 667

Chapter 14

to the Add Portlet screen, where you select the portlet from the ones avail-
able. The next step is to specify exactly which information is to be displayed;
this is achieved by clicking on the Edit default icon, shown in Figure 14.4.

A wizard will appear and will ask a number of questions. The first one
will be to select the database connection, which could be the one specified
earlier in Figure 14.7. Then Figure 14.8 will appear, which lists the work-
books available from this portlet. Select the one required and then continue
with the remainder of the screens in the wizard; eventually it will return to
design mode.

The data is now available from Discoverer, and clicking on the View
Page link within OracleAS Portal will allow you to see exactly how the
information will appear to the end user.

Although we have illustrated here how to publish a portlet from Discov-
erer, a very similar approach is used to embed an OracleAS Report.

14.3.3 Embedding a Static Report

In Chapter 13, we saw that in OracleAS Reports it was also possible to gen-
erate a static report, since sometimes it may be desirable to see a report at a
specific point in time. These reports can also be embedded within our por-
tal, and there are various ways in which they can be launched. In Figure
14.9, we have chosen to set up some tabs, which users are presented with
when they click on the Standard Reports tab. Clicking on any of these tabs
would display the report we produced in Chapter 13.

Figure 14.9 Using Tabs to Launch a Static Report

TEAM LinG - Live, Informative, Non-cost and Genuine!

668 14.4 Oracle Personalization

14.4 Oracle Personalization

So far, we have seen how we can use the portal to present and retrieve infor-
mation, but it would be nice if we could extend this further and customize
the information being presented. Then, users of the portal would see the
information that is of interest to them; this can be achieved using OracleAS
Personalization.

Have you noticed that when you visit some Web sites, they remember
who you are? Then, the next time you visit, they start recommending spe-
cific products, making you aware of special offers they think you might be
interested in, and even tailoring the products to suit your needs. If you have
ever wondered how they do it, the answer is by using products such as Ora-
cle Personalization and your data warehouse.

What OracleAS Personalization does, is take the information stored in
the data warehouse about what customers do each time they visit our Web
site—for example, which products did they buy, which pages did they
visit, and when did they buy items. Then, using the data mining technol-
ogy that is built into Oracle Database 10g, OracleAS Personalization
makes recommendations to our customers as to what it thinks they will be
interested in. By using Oracle Personalization, questions such as the fol-
lowing can be asked:

� Which product will our customer most likely buy?

� Which other items may be bought when customers buy this item?

� Which rating will a customer assign to a product?

� Which items on the Hot Pick list do we think our customer will pur-
chase?

Once again, we are using all of the information in our data warehouse to
not only benefit the customer, but hopefully benefit our business both
financially and with respect to customer service.

TEAM LinG - Live, Informative, Non-cost and Genuine!

14.5 The Data Warehouse and E-Business Intelligence 669

Chapter 14

14.5 The Data Warehouse and E-Business Intelligence

The Internet and company intranets are creating huge opportunities for
organizations. For businesses, they are identifying new customers and pro-
viding the data to create promotional opportunities to encourage customers
to switch their loyalties from other companies. Within a company, they are
providing a flexible, easy-to-use, working environment. The data warehouse
can be a key component in making your e-business successful. Why?
Because it can help answer all those important questions to ensure that your
business succeeds, such as:

� Which products do people buy?

� When are these products sold (time of year and time of day)?

� When is there a quiet time when systems can come off-line?

� Based on current sales, what do we predict our sales will be this time
next year?

� How much will free shipping cost us?

By integrating your data warehouse with OracleAS Portal, customized
information can be published to a wide community of users, from the per-
son on the shop floor to senior executives within the organization, provid-
ing them with fast and easy access to the very latest information.

Hopefully, this chapter has given you an insight into how you can use
the Web with your data warehouse. There are many ways it can be
exploited, and we have barely touched the surface here with respect to the
tools and techniques that are available.

TEAM LinG - Live, Informative, Non-cost and Genuine!

671

15

OLAP

Once a data warehouse has been built, a business can deploy a host of busi-
ness intelligence applications to derive full benefit from the data. These
include ad hoc querying and reporting applications such as Discoverer and
Reports, which were discussed in Chapter 13. These applications may be
used by all levels of an organization to analyze data about the ongoing oper-
ation of the business. Other applications, such as demand planning, sales
forecasting, corporate budgeting, and financial modeling, require specialized
knowledge and algorithms to operate. These types of analyses are usually
performed by a select few analysts or financial experts. A common aspect of
business intelligence applications is that data is analyzed along multiple
dimensions, such as product, geography, and time, and hence this type of
analysis is generally referred to as Online Analytical Processing (OLAP).

15.1 Why Do We Need the Oracle OLAP Option?

Oracle Database 10

g

 OLAP, which is an additional option in the Enterprise
Edition of the database, provides a specialized storage and analysis model
for OLAP within the database server. This is an alternative to using the
SQL-based relational model provided by the Oracle database. To under-
stand the motivation behind using this option, let us look at some of the
operations commonly involved in OLAP and the different models that can
be used to accomplish them.

15.1.1 OLAP Applications

Online Analytical Processing involves analysis along multiple dimensions.
The most basic OLAP operations are aggregation and analysis, such as
ranking (e.g., top-10 products), time-series calculations (e.g., moving aver-
age), and interrow calculations (such as period-over-period comparisons).

TEAM LinG - Live, Informative, Non-cost and Genuine!

672

15.1

Why Do We Need the Oracle OLAP Option?

As we discussed in Chapter 6, these calculations can be done using SQL
analytical functions. You can also use powerful end-user tools such as Dis-
coverer to perform this analysis graphically. These types of operations when
done using SQL may require multiple passes over the data and hence, with
Oracle OLAP option, it may be possible to do these types of operations
faster because the data storage format is optimized for analysis.

Other business applications, such as financial modeling, sales forecast-
ing, what-if analysis, and budget allocation, require more specialized storage
and analysis models and cannot be done efficiently using SQL. Let us
review what each of these applications involves.

Forecasting:

Forecasting, as the name suggests, involves predicting a
quantity based on available historical figures—for instance, forecasting sales
for the next quarter based on results of the past year. These applications use
advanced statistical algorithms, such as linear and nonlinear regressions,
single and double exponential smoothing, and the Holt-Winters method.

Allocation:

Allocation, also known as reverse aggregation, is used to
divide a quantity such as a budget or a quota into several parts. Allocation is
an important part of business planning applications. For example, at the
beginning of each quarter, each department head may be given a budget for
purchasing new equipment, which must then be further apportioned
among the managers within that department and so on.

Financial Calculations:

These are calculations that can be conveniently
done in a spreadsheet environment—for example, interest calculations and
payment schedules.

Modeling:

Modeling involves describing a quantity using a set of equa-
tions. The model can then be used to compute other quantities by plugging
data into these equations. The equations may have an implied dependency
order among them and can compute new values of dimensions and facts. For
example, you may have a model to calculate the peak sales for different
countries or regions based on different holiday months. With Oracle Data-
base 10g, you can now also do some modeling using the SQL Model Clause.

What-if Analysis:

What-if analysis, or scenario management, is a very
important aspect of advanced analytical applications. It involves analyzing
data under hypothetical scenarios to determine its impact on the business.
For instance, how much will it cost the company if we were to close down
some of our retail stores and start an online outlet store? What will be the
impact on revenues if we made a change to our sales organization? What-if
analysis requires a transactional model different from that provided by rela-
tional databases and SQL. Users must be able to change the structure and

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.1

Why Do We Need the Oracle OLAP Option? 673

Chapter 15

content of the data in a localized fashion within the session, without mak-
ing it visible to the entire database. Further, the changes may be temporary
and the user should be able to restore the data back to the way it was.

Regardless of the type of analysis being performed, OLAP typically
involves analyzing data across multiple dimensions. The question then
arises—what is the best way to store data to facilitate such multidimen-
sional analysis?

15.1.2 ROLAP and MOLAP

Ever since the OLAP industry started, there has been an ongoing debate
about the best way to store data for OLAP. One school of thought advo-
cates storing and analyzing data using relational databases, which have long
been known for their ability to scale to large amounts of data. This is
known as Relational OLAP (

ROLAP

). In this case, analysis of data is done
using SQL queries. All the SQL analytical features discussed in this book,
especially in Chapter 6, would qualify as relational OLAP.

The other school of thought says that multidimensional data processing
should be done using a specialized storage format (called a multidimen-
sional database, or MDDB) designed to quickly answer OLAP queries.
This is known as Multidimensional OLAP (

MOLAP

). The major benefit
of MOLAP is that data is presented to the users in an intuitive multidimen-
sional fashion that they can very easily access without needing to write
complex and lengthy SQL. Further, because the storage format is optimized
for multi-dimensional analysis, it may be possible to obtain much better
performance than using SQL. Many vendors provide standalone MOLAP
products as an alternative to the relational database. However, a major
problem with this approach is that business data is typically stored in a rela-
tional database or data warehouse and must then be moved or replicated
from the relational to the multidimensional database for analysis. This
means that the data can never be up-to-date and can easily get out-of-sync.
Further, standalone MOLAP products, being primarily focused on ease of
analysis, may not provide the same level of security and reliability that a
relational database does.

Sometimes ROLAP and MOLAP technologies are combined to varying
degrees to perform Hybrid OLAP (

HOLAP

). This is done by storing some
data in relational format and other data in multidimensional format as
appropriate to the application. For example, you can store summarized
information in the MDDB and then reach out to the relational database
when you need to drill down to the detail-level data.

TEAM LinG - Live, Informative, Non-cost and Genuine!

674

15.1

Why Do We Need the Oracle OLAP Option?

To summarize, both the relational and the multidimensional mecha-
nisms have their merits, and the right choice depends on the application in
question. In the past, most businesses had to invest in two products—a
relational database for simple analysis and reporting needs and a specialized
MOLAP product for advanced analysis and business planning applications.
With Oracle Database 10

g

, there is no need to have two separate analysis
products. You can choose to do either ROLAP, MOLAP, or a combination
in the Oracle Database Server. Applications can either use the relational
model using SQL or the multidimensional model provided by the Oracle
OLAP Option.

15.1.3 Oracle OLAP

Ever since Oracle 8

i

, Oracle has been incorporating OLAP functionality
into the database to support relational OLAP. In Chapter 6, we discussed
analytical functions, such as RANK, aggregation operators, CUBE, ROL-
LUP and GROUPING SETS, and modeling features, such as SQL Model
Clause, which allow users to do complex OLAP calculations through SQL.
Materialized views and query rewrite allow you to preaggregate data so that
queries can be answered quickly. Therefore, simple OLAP analyses can be
performed within the database. However, as we discussed earlier, there are
still some types of analyses, such as forecasting and allocation, that cannot
be done in SQL.

Starting with Oracle 9

i

, Release 2, Oracle also supports multidimen-
sional OLAP directly in the database. This is available via the OLAP
Option of Database, Enterprise Edition. With the OLAP Option, the
database can store data in a multidimensional format in an entity known
as an

analytic workspace

. Further, there is a rich multidimensional cal-
culation engine built into the database. Oracle OLAP provides several
built-in algorithms for advanced OLAP analyses, such as forecasting, allo-
cation, and modeling. Thus, you now have the full analytical capabilities
provided by any traditional MOLAP products, with the added benefits of
scalability, security, manageability, and reliability provided by a database
management system. Data does not have to be moved into a separate
database; hence, data consistency can be maintained easily and the time
lag involved in making data available for analysis is reduced. Further,
Oracle also provides a mechanism so you can access the multidimensional
data using SQL. So any analyses that cannot be done in SQL can be per-
formed in the analytic workspace, but the results can still be retrieved
using SQL.

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.2

Oracle OLAP Architecture 675

Chapter 15

With the introduction of the Oracle OLAP Option, the calculation
capabilities of Oracle’s original MOLAP product, Oracle Express Server, are
now integrated into the database server. Existing Oracle Express databases
can be migrated to analytic workspaces in the database. The OLAP Option
also supports a rich application development environment. Users can build
Java applications using the standard JDeveloper tool. They can use OLAP
APIs to access the multidimensional data and use reusable components
known as BI Beans to create sophisticated graphical user interfaces. Oracle
Warehouse Builder can be used to generate metadata required by OLAP
APIs, and the multidimensional data can be queried using tools such as
Discoverer—just like relational tables.

Most of the features described in this book deal with relational storage
and queries. In this chapter, we will mostly focus on the multidimensional
analysis model provided by the Oracle OLAP option.

15.2 Oracle OLAP Architecture

Oracle Database 10

g

 OLAP provides a very flexible architecture for multi-
dimensional analysis. It consists of the following components, shown in
Figure 15.1.

�

Analytic Workspaces for multidimensional storage

�

OLAP Catalog to define multidimensional logical metadata model

�

OLAP Analysis Engine to perform calculations

�

Access to multidimensional data using:

�

OLAP DML command language

�

SQL Table functions

�

Tools

�

Analytic Workspace Manager

�

Oracle Enterprise Manager

�

Application Development Framework

�

Analytic Workspace Java API

�

OLAP Java API

�

DBMS_AW PL/SQL API

�

BI Beans in JDeveloper

TEAM LinG - Live, Informative, Non-cost and Genuine!

676

15.2

Oracle OLAP Architecture

Analytic Workspaces:

An analytic workspace is an entity that aggregates
and stores data in a multidimensional format within the Oracle database.
The relational counterpart to an analytic workspace is a materialized view
or summary table, which is used to preaggregate data in a relational table.
Unlike other database objects, an analytic workspace can be permanent or
temporary for the duration of analysis. You may choose to use an analytic
workspace when you need to use the advanced analytical capabilities of the
OLAP calculation engine. Oracle Database 10

g

 provides a tool known as

Analytic Workspace Manager

, which can be used to define, populate, and
refresh analytic workspaces.

OLAP Analysis Engine:

The OLAP Analysis Engine is a multidimen-
sional calculation engine running inside the Oracle database server. It oper-
ates on data stored in analytic workspaces. It complements the analytical
features provided by SQL with various calculation capabilities, such as fore-
casting, allocation, and modeling.

You can access analytic workspaces using either OLAP DML or SQL.

OLAP DML:

 The OLAP DML is powerful programming language that
is used to load, manipulate and query data in analytic workspaces. It pro-

Figure 15.1

Oracle Database 10g OLAP Architecture

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.2

Oracle OLAP Architecture 677

Chapter 15

vides several operations such as aggregation, forecasting, regression analysis,
numerical calculations and time-series manipulation. OLAP DML can be
issued using a tool similar to SQL*Plus, known as the OLAP Worksheet.
You can also issue OLAP DML using the Java OLAP API or the
DBMS_AW PL/SQL package. If you are familiar with Oracle Express, you
may recognize that OLAP DML is very similar to the SPL language. In fact,
existing programs written for Oracle Express should work with only minor
changes in OLAP DML.

SQL Access to Analytic Workspaces:

Oracle provides a mechanism to
access analytic workspace with SQL, using Table functions. This makes
Oracle OLAP accessible to users who are unfamiliar with OLAP DML but
are familiar with SQL. In Chapter 5, we saw how table functions can be
used to perform various ETL functions for your data warehouse. A table
function can perform any kind of computation underneath but finally pro-
duces its output as a set of rows. Hence, it can be used in SQL queries as if
it were a table in a database. Because of this capability, if you have a table
function that encapsulates the OLAP DML commands used to access the
analytic workspace, SQL applications can then use it like a table in a query.
Oracle provides a table function called OLAP_TABLE, which provides
access to an analytic workspace.

While the analytic workspaces provide the physical storage model for
multidimensional data, the OLAP Catalog describes the logical model for
the multidimensional data.

OLAP Catalog:

 The OLAP Catalog imposes a multi-dimensional logi-
cal model on data in a relational schema. The OLAP Catalog consists of
metadata entities like dimensions, levels, hierarchies, attributes, measures
and cubes. Note that the underlying data may be stored in actual relational
tables i.e. in a star or a snowflake schema, or alternatively, it may be stored
in analytic workspaces and mapped into relational views using SQL. The
model provided by the OLAP Catalog allows OLAP applications to access
multi-dimensional data and relational data in a uniform fashion. The Ana-
lytic Workspace Manager tool uses this metadata to create an analytic work-
space from a relational star schema.

Finally, Oracle OLAP provides a very sophisticated application develop-
ment framework.

Programming APIs

: As mentioned earlier, you can use OLAP DML,
SQL, or PL/SQL (DBMS_AW package) to access the multidimensional
data. Oracle also supports the OLAP API, which is a set of Java program-
ming interfaces for OLAP. The OLAP API allows application developers to

TEAM LinG - Live, Informative, Non-cost and Genuine!

678

15.3

Analytic Workspaces

write programs to perform calculations and multidimensional selection and
navigation through the data. Since it is Java based, the OLAP API provides
a portable, object-oriented application development framework for OLAP
applications. The objects being manipulated by OLAP API must first be
defined in the OLAP Catalog. Java APIs are also available to define analytic
workspaces.

UI Components:

BI Beans are reusable components specially designed
for rapid development of OLAP applications. You can create BI Beans
using simple wizards in JDeveloper and store them persistently in the data-
base itself. BI Beans can perform various operations, such as connecting to a
database, forming analytical calculations, and displaying them in various
graphical and tabular formats. These can then be used in Java or JSP appli-
cations that need analytical capabilities. BI Beans use the OLAP APIs to
access data.

We will now discuss each of these components in detail. We will start by
describing various concepts in the multidimensional storage model pro-
vided by analytic workspaces. In the subsequent sections, we will delve into
the details of defining the metadata model, creating analytic workspaces,
and querying them.

15.3 Analytic Workspaces

Analytic workspaces allow you to store data in a multidimensional form. As
with relational tables, an analytic workspace is owned by a specific schema
and uses an Oracle tablespace for storage. You can use analytic workspaces to
store data that is used in calculations such as forecasting and allocations.

Hint:

Existing Oracle Express databases can also be migrated into analytic

workspaces in the Oracle database.

Analytic workspaces can be persistent or temporary, depending on your
needs. If you need to perform a calculation but do not need to store the
results, you can discard changes done within the analytic workspace at the
end of the session. A temporary analytic workspace is often used for what-if
analysis, where you want to try different hypothetical scenarios but not
make all the changes persistent. Unlike relational tables, where changes
done by DDL, such as adding a column, are automatically made visible
throughout the database, all changes done within the analytic workspace
are local to your session unless explicitly committed.

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.3

Analytic Workspaces 679

Chapter 15

Now, let us look at the physical storage model used by analytic work-
spaces and see how it differs from the relational model.

15.3.1 The Multidimensional Model

Throughout this book, we have described how a data warehouse can be cre-
ated and managed using relational tables. In this relational world, data is
typically stored in a star or snowflake schema. The fact table stores various
measures and quantities that you want to analyze with respect to each
dimension. Dimension tables store the associated data about each dimen-
sion. To perform a calculation, queries must join the fact and dimension
tables using appropriate predicates. The SQL Dimension object described
in Chapter 8 can be used to define the hierarchical relationships between
various columns in the dimension tables.

In a multidimensional format, such as an analytic workspace, there are
no tables or columns. Instead, there are entities known as dimensions, rela-
tions, and variables.

Dimension

: A dimension in the multi-dimensional model is simply a
list of values. For instance, a city dimension may consist of the values Bos-
ton, London, and San Francisco. A geography dimension may consist of the
values World, United States, Massachusetts, New Hamphire, UK, and Lon-
don. Unlike a SQL dimension object, which defines a hierarchy within one
or more dimension tables, a dimension in a multidimensional model does
not itself imply any relationships. To specify any relationships between vari-
ous values in the dimension, you must create a relation.

Relation

: A relation stores the correspondence between a value in one
dimension to another value in the same or another dimension. Note that
relations can also declare a relationship between two values in the same
dimension—these are called self-relations. Relations can be used to describe
hierarchies in a multidimensional world.

You can think of the relationship defined by a relation as a

parent-child

dimension table in a relational schema, as illustrated by

Figure 15.2. On the
left is a typical geography dimension table, used in a relational star schema,
where each level is stored in a separate column. This is sometimes referred
to as a

level-based

 dimension table. For instance, you have columns corre-
sponding to the city, state, and region levels.

On the right is a parent-child dimension table, where all values are
stored in the child column and parent column has the corresponding parent
value. For example, suppose the child column contains values such as Bos-

TEAM LinG - Live, Informative, Non-cost and Genuine!

680

15.3

Analytic Workspaces

ton, San Francisco, and MA. For each value in the child column, there will
be a corresponding value in the parent column. For instance, for the child
value Boston, the parent value is MA. Unlike a level-based dimension table,
where higher-level values are repeated for every lowest-level value, in a par-
ent-child dimension every relationship is stored exactly once. This ensures
that the dimension data is automatically validated.

Variable

: A variable is used to store data and is equivalent to a fact table
in a relational star schema. A variable is defined with respect to a specific set
of dimensions. Figure 15.3 shows a

conceptual

 version of how data is stored
in a variable. In this example, the sales variable is dimensioned by geogra-
phy and time. You can query the value of a variable for any values of the
dimensions it is defined against. For instance, the sales value for United
States for the year 2002 is $3,102. Notice that this is quite like a spread-
sheet, where you can retrieve the value of any cell by simply specifying the
row and column.

Figure 15.2

Level-based versus Parent-Child Dimension Tables

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.3

Analytic Workspaces 681

Chapter 15

There are several advantages of this multidimensional storage format:

�

It enforces referential integrity. For instance, if a variable is defined
along customer and time dimension, every cell of the data will have
some unique value of a customer and time. Also, relationships
between dimension values are stored exactly once, and hence you
will not end up with inconsistent data such as Boston, MA and
Boston, CA.

�

There is an implicit ordering between rows in the dimension that is
defined at creation. This is unlike SQL, where you must explicitly
add ORDER BY clauses to return values in a certain order.

�

Users don’t need to specify how to join the fact and dimension tables
to get their answers. They can simply ask to report the variable for
any dimension values, as in a spreadsheet. However, unlike a spread-
sheet, you are not restricted to two dimensions.

�

The data is presented to the application as “fully solved.” Once the
DBA sets up the analytic workspace with various calculations, the
application users do not have to describe

 how

 to perform a calcula-
tion as part of the query. They just have to indicate

which

of the avail-
able calculations they would like and the calculation engine will take
care of the details of computing it. The calculation may be a complex
analytical function, a formula, or an aggregate. The data may be pre-
computed for performance or calculated on the fly; however, the

Figure 15.3

Conceptual version of a Variable

TEAM LinG - Live, Informative, Non-cost and Genuine!

682

15.3

Analytic Workspaces

application users do not have to know these details, they simply get
the results they ask for.

15.3.2 Creating Analytic Workspaces

At this point, you may be wondering what is involved in creating and que-
rying these analytic workspaces. You can use OLAP DML to create dimen-
sions and variables and to load data into the analytic workspace. However,
if you would like to use any of Oracle’s tools, such as OLAP API or BI
Beans, to manipulate data stored in an analytic workspace, you need to sat-
isfy the following requirements:

�

You must have a logical model defined in the OLAP Catalog.

�

The analytic workspace itself must conform to a certain format
known as the database standard form.

Sounds like quite a handful! Fortunately, in cases where the data is
stored in a relational star or a snowflake schema, such as as the ones
described in this book, a simple wizard in Oracle Enterprise Manager can
be used to populate the OLAP Catalog from the relational schema. Once
you have defined a relational cube in the OLAP Catalog, a wizard in the
Analytic Workspace Manager can be used to build the analytic workspace
in the standard form.

Hint: The database standard form for an analytic workspace is very com-
plex, and manually creating the analytic workspace elements can be
extremely tedious and error prone. It is strongly recommended that you use
Analytic Workspace Manager and Oracle Enterprise Manager at least as
starting points.

Oracle Database 10g also provides Java APIs to create analytic work-
spaces. These APIs do not require any preexisting metadata and do not
require knowledge of OLAP DML. Due to limitations of space, we will not
be discussing these APIs in this book.

In the next sections, as we discuss various other components of Oracle
OLAP, we will walk you through the process of defining an analytic work-
space from the EASYDW star schema. In section 15.4, we will describe the
logical model defined in the OLAP Catalog and populate it using Oracle

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.4 The OLAP Catalog 683

Chapter 15

Enterprise Manager. Then, in section 15.5, we will use the Analytic Work-
space Manager tool to create and populate a sample analytic workspace in
the standard form. Along the way, we will highlight any assumptions or
restrictions imposed by these tools.

Finally, in section 15.6, we will give a brief tour of OLAP DML and
illustrate some calculations using the standard form analytic workspace we
created. This should help you understand how the multidimensional model
can be used to perform analysis instead of, or to complement, the SQL fea-
tures we have discussed elsewhere in this book.

15.4 The OLAP Catalog

The OLAP Catalog stores the metadata to specify the logical model for
your data. The purpose of defining this metadata is to allow applications to
access data using OLAP API or BI Beans. These APIs require that the data
is accessible relationally using SQL and require a certain logical metadata
model, which we will describe shortly.

The OLAP Catalog metadata can be used regardless of whether your
data is in a relational or multi-dimensional format.

� If you have a relational schema, the OLAP Catalog simply defines a
logical metadata model for this data, as is required by OLAP API and
BI Beans. This metadata can also be used to generate a standard form
analytic workspace using the Analytic Workspace Manager tool,
which we will discuss in section 15.5.

� Alternatively, if you have data in a standard form analytic workspace,
you can define relational views on top of the multi-dimensional data.
The OLAP Catalog can then be defined on these relational views,
which can then be used by the OLAP API to access the analytic
workspace using SQL. The Analytic Workspace Manager provides
wizards to automatically create the required relational views and
OLAP Catalog metadata, to enable the analytic workspace for the
OLAP API.

Thus, once the requisite metadata has been defined, you can use SQL,
OLAP API, or BI Beans to access the data, regardless of whether the data is
actually stored in a relational or multidimensional format.

TEAM LinG - Live, Informative, Non-cost and Genuine!

684 15.4 The OLAP Catalog

The logical model provided by the OLAP Catalog consists of the follow-
ing entities:

� Dimensions: Dimensions are used to express relationships, such as
hierarchies, in your data. Dimensions consist of levels, hierarchies, and
level attributes. Note that the SQL dimension object described in
Chapter 8 is part of but not the complete metadata for an OLAP Cat-
alog dimension. Also note that the dimension in the OLAP Catalog is
not the same as the dimension described in section 15.3.1, which was
used to store a list of values in the multidimensional storage format.

� Measures: A measure is a quantity that will be used in calculations,
such as purchase price or cost.

� Measure folders: A measure folder, also known as a measure catalog,
is a convenient place to keep related measures together.

� Cube: A cube defines how measures will be aggregated across one or
more dimensions. In relational terms, it defines how to join your fact
and dimension tables. A cube also specifies which hierarchies in the
dimensions will be used to compute aggregations.

In the next section, we will discuss how to define OLAP metadata for a
relational schema.

15.4.1 Defining OLAP Metadata for a Relational Schema

OLAP metadata can be defined from a relational schema in two ways:

� Using the CWM_OLAP_* and CWM2_OLAP_* packages

� Using Oracle Enterprise Manager or Oracle Warehouse Builder tools

The CWM_OLAP_* packages (henceforth referred to as CWM1) are
APIs that correspond to the first version of the Common Warehouse Meta-
data model, also known as CWMLite. This model supports traditional
dimension tables, as defined in a star or a snowflake schema. In order to use
CWM1 your relational schema must satisfy the following conditions:

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.4 The OLAP Catalog 685

Chapter 15

� The dimension table must be level-based and not parent-child (see
Figure 15.2)

� If there are multiple hierarchies in a dimension, they must all start
with the same base level. Hierarchies where this is not the case, are
called ragged hierarchies.

� Dimension levels cannot have nulls. Hierarchies where levels can be
nulls are called skip-level hierarchies.

� The fact table can only have data at the lowest level of the hierarchy.
Fact tables where detail data and aggregated data are stored in the
same table, known as embedded-total fact tables, are not supported.

A dimension defined using CWM1 in the OLAP Catalog consists of a
SQL Dimension object (described in Chapter 8), with some additional
descriptive attributes. Oracle Enterprise Manager also provides a graphi-
cal user interface to create CWM1 metadata. If you used Oracle Ware-
house Builder to design the relational schema for your data warehouse,
you can automatically generate metadata from it, according to the
CWM1 specification.

The CWM2_OLAP_* packages (henceforth referred to as CWM2) are
the second version of CWM1 and provide advanced features not supported
by CWM1. If your relational schema has artifacts such as embedded-total
fact tables, parent-child dimensions, ragged hierarchies, same value map-
ping to different levels in different hierarchies, and null values in level col-
umns, you need to use CWM2. At the time of writing, there is no graphical
user interface to create this metadata.

Both CWM1 and CWM2 metadata can be viewed in the Analytic
Workspace Manager tool.

We will now illustrate the use of Oracle Enterprise Manager to generate
OLAP metadata for the EASYDW schema.

Creating OLAP Metadata in Oracle Enterprise Manager

You can access the OLAP functionality in Oracle Enterprise Manager from
the Administration page (see Chapter 2, Figure 2.16). On this page, in the
Warehouse section, you will see links to Cubes, OLAP Dimensions, and Mea-
sures, which lead to simple wizards to create and edit dimensions, cubes,
and measure folders.

We will define a cube containing the customer, product, and time
dimensions using this interface. First, we must define the metadata for the

TEAM LinG - Live, Informative, Non-cost and Genuine!

686 15.4 The OLAP Catalog

dimensions involved in the cube and then specify the measures and the
aggregation operators associated with the cube.

Let us start by going to the OLAP Dimensions page and search for
dimensions under schema EASYDW, as shown in Figure 15.4. You will see
listed here the SQL Dimension objects we had defined for use with query
rewrite in Chapter 9.

To generate the OLAP metadata for a dimension, select the dimension
and click on the Edit button. You will get a page similar to the one we dis-
cussed in Chapter 8 (Figure 8.5) when creating a dimension—with tabs
such as General, Levels, Hierarchies, and Attributes. The last tab is OLAP
Options and, when you click on it, you will see a page similar to the one in
Figure 15.5. In this figure, we have added OLAP options for the time
dimension.

You should now fill in all the descriptive fields on this page, because
OLAP API and BI Beans use this information to display various elements
related to the dimension. If you press the Show SQL button, you can see the
corresponding CWM API calls, as shown in Figure 15.6.

Returning to Figure 15.5, once you press Apply, the CWM metadata will
be created. Be assured that your existing SQL dimension object will not be
harmed in any way by doing this. Similarly, we can define OLAP metadata
for the other two dimensions, Customer and Product. You can now use
these dimensions to define your cube objects, as discussed next.

Figure 15.4 Dimensions in Oracle Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.4 The OLAP Catalog 687

Chapter 15

Figure 15.5 Editing OLAP Options for a Dimension

Figure 15.6 CWM Metadata for a Dimension

TEAM LinG - Live, Informative, Non-cost and Genuine!

688 15.4 The OLAP Catalog

The cube is a metadata object that defines a relationship between the
dimensions and measures. From the Administration page (Chapter 2, Figure
2.16), click on the Cubes link to get a page similar to Figure 15.4, except
that the Object Type is Cubes. If you press the Create button, you will get
the page shown in Figure 15.7. Here, you must specify a name for the cube
and the schema where it should reside. You must also indicate the table that
would serve as the fact table for this cube. In our example, we are creating
the EASYDW_SALES cube using the PURCHASES fact table.

Next, you must click on the Dimensions link and add dimensions to the
cube, as shown in Figure 15.8. A cube must have at least one dimension.
When adding a dimension to the cube, you must specify how the dimen-
sion table joins to the fact table, as well as the default hierarchy to be used
to aggregate data along this dimension. In order to do so, after you have
entered the dimension name, click the Populate Property button to see the
available hierarchies and join key columns, from which you can then
choose the ones for the cube. In our example, we have chosen the time
dimension, with the hierarchy being CALENDAR_ROLLUP and the join
keys being TIME_KEY columns in the dimension and fact tables.

Figure 15.7 Creating a Cube in Oracle Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.4 The OLAP Catalog 689

Chapter 15

Clicking OK takes you back to the Create Cube page, where you will
now see your new dimension in the list. For our example, assume that we
have added two more dimensions, CUSTOMER_DIM, and PRODUCT_
DIM to the cube. The next step is to define measures—click the Measures
tab and on the next screen click the Add button; you will see the screen as
shown in Figure 15.9. This step is easy—you just need to pick the fact table
columns that you want to use for analysis.

Figure 15.8 Adding Dimensions to a Cube

Figure 15.9 Add a Measure to the Cube

TEAM LinG - Live, Informative, Non-cost and Genuine!

690 15.4 The OLAP Catalog

Click OK to return to the Create Cube page. The final step is to choose the
aggregations you would like to perform in this cube—click the Aggregation
tab and you will see the page shown in Figure 15.10. Along each dimension,
you can pick the aggregation operator from a variety of operators.

As with the dimensions, the Show SQL button allows you to see the
CWM APIs to create the cube. Once you have filled in all the information,
press OK to create the cube.

Note that none of these operations populates data in the cube. They
only define which aggregates are available to an application.

15.4.2 OLAP Metadata Views and Validation

The OLAP metadata can be viewed in several views, such as
ALL_OLAP2_CUBES, ALL_OLAP2_DIMENSIONS, and so on.

Once you have defined OLAP metadata created using either Enterprise
Manager or CWM2 APIs, it is advisable to validate it and verify access to it.
This ensures that the metadata definition is consistent with the underlying
schema (i.e., all the tables and columns that the cube refers to exist and the
user who created the metadata has access to the data in these tables).

Figure 15.10 Defining Aggregations for the Cube

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.4 The OLAP Catalog 691

Chapter 15

You can check whether a cube or dimension is valid or not in the catalog
view, ALL_OLAP2_CUBES, as follows. The INVALID column can have a
value Y, N, or O. The value N means that the all the tables, columns,
dimension levels, and so on referenced by the cube are present. The value O
means that the cube is valid for use by the OLAP API, which means that all
additional metadata required by the OLAP API is present. Otherwise, the
cube is invalid, which is indicated by the value Y.

SELECT CUBE_NAME, INVALID FROM ALL_OLAP2_CUBES;

OWNER CUBE_NAME INVALID

----- ------------ -------

EASYDW EASYDW_SALES O

To validate a cube you must call the CWM2 APIs, as follows, which will
validate all underlying dimensions and measures as well. Note that the
CWM2_OLAP_MANAGER.SET_ECHO_ON procedure is necessary in
order to see the detailed output.

set serveroutput on size 99999

EXECUTE cwm2_olap_manager.set_echo_on;

EXECUTE cwm2_olap_validate.validate_cube

 ('EASYDW','EASYDW_SALES','default','yes');

The output will indicate if any of the elements of the cube are invalid
and the reason will be reported in the COMMENT column (not shown
here for lack of space). The third parameter can be default or OLAP API,
which will do the basic checks for table and columns or perform additional
checks required for using OLAP API. The last parameter indicates whether
or not to generate a verbose report.

Validate Cube: EASYDW.EASYDW_SALES

Type of Validation: DEFAULT Verbose Report: YES

Validating Cube Metadata in OLAP Catalog 1

Date: 2004 MAY 21 Time: 22:46:55 User: EASYDW 030922

ENTITY TYPE ENTITY NAME STATUS COMMENT

Cube EASYDW.EASYDW_SALES VALID …

 Dimension EASYDW.CUSTOMER_DIM VALID

 Hierarchy CUSTOMER_ZONE VALID

 Level CUSTOMER VALID

 LevelMap VALID

 LevelParentMap VALID

TEAM LinG - Live, Informative, Non-cost and Genuine!

692 15.4 The OLAP Catalog

...

 FactTable EASYDW.PURCHASES VALID

 FactLevel (EASYDW.CUSTOMER_DIM) VALID

 FactLevel (EASYDW.PRODUCT_DIM) VALID

 FactLevel (EASYDW.TIME) VALID

 FactMeasure PURCHASE_PRICE VALID

 FactMeasureMap VALID

...

If you plan to use OLAP API or BI Beans directly against the relational
schema, you must call the following procedure as the final step after defin-
ing the OLAP metadata.

EXECUTE CWM2_OLAP_METADATA_REFRESH.MR_REFRESH;

If you use analytical workspaces, you must instead call the following
procedure.

EXECUTE CWM2_OLAP_METADATA_REFRESH.MR_AC_REFRESH;

These procedures are required to populate some underlying cached
metadata tables, which are optimized for queries used by the OLAP API.

Finally, you need to verify that the user who created the cube actually
has the privileges required to access the underlying tables by using the
procedure CWM2_OLAP_VERIFY_ACCESS.VERIFY_CUBE_ACCESS.
The parameters of this procedure are the same as those of the
VALIDATE_ CUBE procedure.

set serveroutput on size 99999

EXECUTE cwm2_olap_manager.set_echo_on;

EXECUTE CWM2_OLAP_VERIFY_ACCESS.VERIFY_CUBE_ACCESS

 ('EASYDW', 'EASYDW_SALES', 'DEFAULT', 'NO');

The output of this procedure will appear as follows. Any problems with
access are reported in the COMMENT column.

Verify_Cube_Access v_Select_Any_Table:1

***** Verifying User EASYDW access to cube "EASYDW.EASYDW_SALES"
030922.

***** STEP 1: Validate the Cube Metadata.

Validate Cube: EASYDW.EASYDW_SALES Type of Validation: DEFAULT
Verbose Report: NO

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.5 The Analytic Workspace Manager 693

Chapter 15

Validating Cube Metadata in OLAP Catalog 1

Date: 2004 JULY 02 Time: 01:09:19 User: EASYDW 030922

ENTITY TYPEENTITY NAME STATUS COMMENT

Cube EASYDW.EASYDW_SALES VALID

…

***** STEP 2: Verify the Cached Metadata.

***** STEP 3: Verify Owner.Table.Column access.

***** Validate_Access version 030922 has not found any condition
that would prevent

***** User EASYDW from accessing Cube "EASYDW.EASYDW_SALES".

Note that the procedure will also verify access to the cached metadata
created for the OLAP API.

Hint: Always validate the OLAP metadata and refresh the metadata tables
after creating or making any changes to it. If it is invalid, the OLAP API
and tools may not be able to access the metadata.

Now that we have created the logical model, you can use the Analytic
Workspace Manager tool, described next, to create an analytic workspace
for this cube.

15.5 The Analytic Workspace Manager

The Analytic Workspace Manager is a standalone Java application to create,
manage, and refresh analytic workspaces. The analytic workspace created by
this tool is in a standard form, as required by the Oracle tools. You can also
use this tool to enable the analytic workspace for use by OLAP API, BI
Beans, and Discoverer.

Hint: The Analytic Workspace Manager application is available on the
Oracle Database 10g Client CD. It is not part of Enterprise Manager.

The Analytic Workspace Manager application has two views of the ana-
lytic workspaces: the OLAP Catalog View and the Object View. You can
switch between the two from the View menu. The OLAP Catalog View
shown in Figure 15.11, shows you the OLAP metadata—namely, the

TEAM LinG - Live, Informative, Non-cost and Genuine!

694 15.5 The Analytic Workspace Manager

dimensions, cubes, and measures that were created using either the CWM1
or CWM2 APIs (or Oracle Enterprise Manager). For instance, in Figure
15.11, we have expanded the view to show the EASYDW_SALES cube and
the various dimensions we created earlier.

Figure 15.11 Analytic Workspace Manager—OLAP Catalog View

Figure 15.12 Analytic Workspace Manager—Object View

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.5 The Analytic Workspace Manager 695

Chapter 15

The Object View, illustrated in Figure 15.12, allows you to browse
through various entities in the analytic workspace—namely, dimensions,
variables, relations, and so on which we discussed previously.

This is a very nifty tool, because the standard form workspace, which we
will create shortly, consists of a large number of these entities and it can be
very difficult to remember their names.

15.5.1 The Create Analytic Workspace Wizard

The Analytic Workspace Manager provides a wizard to create an analytic
workspace from a relational cube. You can launch the wizard from the Tools
menu, shown in Figure 15.11. We will now use this wizard to create an ana-
lytic workspace for the EASYDW_SALES cube.

When you launch the wizard, after an introductory page (not shown
here), you will see the screen shown in Figure 15.13, where you will be
asked to name the analytic workspace, provide a schema where the work-
space should be placed, and the tablespace used for storage. It is recom-
mended that you use a different schema to store the analytic workspaces
than that used for your relational tables to avoid confusion and potential
naming conflicts. The schema owning the analytic workspace must have
been granted the OLAP_USER privilege and must have access to the rela-
tional tables underlying the cube. Let us assume we have created a new
schema, EASYOLAP, and a tablespace, EASYOLAP_AW_DEFAULT,
which we will provide here.

Figure 15.13 Create Analytic Workspace Wizard—Naming the Analytic Workspace

TEAM LinG - Live, Informative, Non-cost and Genuine!

696 15.5 The Analytic Workspace Manager

When you click the Next button, you will be asked to choose the Cube
used to build the analytic workspace, as shown in Figure 15.14.

The next step, shown in Figure 15.15, is to decide whether you would
like to load data into the analytic workspace right away or later. Note that

the data population stage can take significant time, and in a production sys-
tem you may want to schedule this at a later time, such as in load window.
The Analytic Workspace Manager also includes a wizard to refresh the ana-
lytic workspace, discussed in section 15.5.2.

The other option in Figure 15.15 is to generate unique keys for dimen-
sion members. Recall that in the multidimensional model, a dimension is
just a list of values. So the same value can appear at different levels of the

Figure 15.14 Choosing a Cube for the Analytic Workspace

Figure 15.15 Choosing Build Options for the Analytic Workspace

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.5 The Analytic Workspace Manager 697

Chapter 15

relational dimension table—for example, the name New York could signify
either the city or the state. In this case, you may need to qualify the dimen-
sion value to distinguish the two levels. If you check the box, the wizard will
automatically do this for you.

The next step, shown in Figure 15.16, is to choose an optional naming
prefix for the generated objects. In our example, the dimension object
PRODUCT_DIM will translate into the dimension AWPRODUCT_DIM
in the analytic workspace. It is useful to follow such a naming convention to
avoid confusion between relational and multidimensional entities.

The other option in Figure 15.16 is to decide if you need to change the
default storage settings. We will come back to this option in a bit, but for
now we will leave it unchecked and accept the d efaults.

Figure 15.16 Advanced Storage and Naming Options

Figure 15.17 Save Analytic Workspace Creation Script to a File

TEAM LinG - Live, Informative, Non-cost and Genuine!

698 15.5 The Analytic Workspace Manager

 Next, as shown in Figure 15.17, you can decide if you would like to
create the analytic workspace immediately or save the script for future use
into a file. The script consists of various DBMS_AWM PL/SQL package
calls. It can be edited if necessary and executed later in SQL*Plus. You can
also choose to enable the analytic workspace for use by OLAP API. This
will create several relational views on top of the analytic workspace ele-
ments. You can also do this later from the menu.

The next screen (not shown here) will give you a chance to review all the
options you have chosen. You can then click the Finish button and the wiz-
ard will start creating the analytic workspace elements, as shown in Figure
15.18.

Figure 15.18 Analytic Workspace Creation in Progress

Figure 15.19 Analytic Workspace in OLAP Catalog View

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.5 The Analytic Workspace Manager 699

Chapter 15

This analytic workspace is now visible under the EASYOLAP schema in
the OLAP Catalog View, as shown in Figure 15.19.

Setting Storage Options for the Analytic Workspace

Recall that in Figure 15.16, we saw an option to set advanced storage
options for the analytic workspace. By default, in an analytic workspace, a
variable stores values for every combination of its dimension values. To
understand this, recall the conceptual version of a variable that we saw in
Figure 15.3. Every cell corresponds to one combination of dimension val-
ues. Now, typically, your data may not have entries for every combina-
tion—for instance, not every customer buys every product every single day!
So we will have a lot of cells with no values, which is a huge waste of space.
This problem is addressed by creating a composite dimension. A variable
that is dimensioned by a composite dimension will only store values for
those combinations of dimension values where data actually exists. This can
significantly reduce the space requirements for your analytic workspace.

If there exists data for most values of a dimension, the dimension is said
to be dense—otherwise, it is called sparse. By default, the analytic work-
space creation wizard assumes that the time dimension is dense and the data
across the remaining dimensions is somewhat sparse, specifically that
around 30 percent of the dimension combinations have values. Therefore,
by default, the wizard creates a composite dimension, which includes all
dimensions except the time dimension. If your data does not satisfy these
default sparseness assumptions, you can change the default composite
dimension or create your own custom composite dimensions.

Hint: For the wizard to detect that a dimension is the time dimension, you
would have had to mark it as a time dimension when you created the
dimension in the OLAP Catalog.

If you check the box in Figure 15.16, you will get the screen shown in
Figure 15.20. Note that composites do add some overhead in processing the
queries against the data and hence should not be created unless the data is
indeed sparse.

TEAM LinG - Live, Informative, Non-cost and Genuine!

700 15.5 The Analytic Workspace Manager

If you press the Create Composite button, you will be taken to the screen
shown in Figure 15.21. Now you must give a name to the composite dimen-
sion and choose which base dimensions to add to the composite. Typically,
you should exclude dense dimensions such as TIME, from the composite.

The advanced settings pages also allow you to specify the order of the
dimensions for the variable. The order is important, because it affects how
data is stored on disk—correctly ordering dimensions within a composite
ensures that all data for one value of the composite is clustered together and
hence will improve data access performance. Usually, you would want the
denser dimensions ahead of the composite and sparser dimensions. For
example, if you have transactions for every single day, then the TIME
dimension is a dense dimension and should be placed first. Further, on any

Figure 15.20 Creating a Composite Dimension

Figure 15.21 Adding Dimensions to a Composite

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.5 The Analytic Workspace Manager 701

Chapter 15

given day, you would probably have transactions involving most of your
products; however, it is less likely you would have transactions involving all
your customers. So in this case the product dimension is denser than the
customer dimension and should be placed before customers within the
composite. The next screen, shown in Figure 15.22, allows you to order the
dimensions within the composite.

When you press the End Composite button, your composite will show up
in the list in Figure 15.20.

You can choose to group your base dimensions into as many composite
dimensions as required by the characteristics of your data. For example,
suppose you had five dimensions TIME, PRODUCT, CUSTOMER,
GEOGRAPHY, and PROMOTIONS. You may decide to group the CUS-
TOMER and GEOGRAPHY dimensions together into one composite;
since you don’t have all combinations of customers and geographies, the
composite will be smaller because it only stores the relevant combinations.
Similarly, you can group PRODUCT and PROMOTIONS together into
another composite. On the other hand, suppose you wanted to group
PRODUCT and GEOGRAPHY into one composite—if you find that you
do indeed have transactions for every combination of the two, it would not
be advisable to group them into a composite dimension.

Once you have defined all the composites, when you press the Next but-
ton you can now choose the order between various composites and remain-
ing base dimensions, as shown in Figure 15.23. Recall that you must decide
the order based on which dimension or composite is denser. In this exam-
ple, we have placed the denser TIME dimension before the composite. You

Figure 15.22 Specifying Order of Dimensions in a Composite

TEAM LinG - Live, Informative, Non-cost and Genuine!

702 15.5 The Analytic Workspace Manager

can also set segment sizes for their storage. In this example, we have speci-
fied a segment size of 5KB for the TIME dimension and 10MB for the
larger composite dimension.

Once you have done this, you will be back into the normal flow of the
wizard, starting in Figure 15.17.

Coming back to the OLAP Catalog View in Figure 15.19, if you right-
click on the analytic workspace EASYAW, you will get a menu with sev-
eral options, as shown in Figure 15.24. From this menu, you can populate
the analytic workspace with data from the source tables, which we will
discuss next. You can also enable the analytic workspace for Discoverer,
OLAP API, and BI Beans, which will be discussed in section 15.5.4.

15.5.2 Refreshing the Analytic Workspace

The Analytic Workspace Manager has a wizard to refresh the analytic work-
space from its relational source tables. You must refresh the cubes and
dimensions every time there is a change to the source tables that you would
like to be visible to the analytic workspace. Note, however, that the refresh
process is not incremental and so can take a significant amount of time.

To bring up the refresh wizard, in Figure 15.24, select the Refresh Ana-
lytic Workspace Using Wizard option. After the introductory page, you will
get the screen shown in Figure 15.25, where you must choose the cube (or
cubes) you would like to refresh.

Figure 15.23 Specifying Segment Sizes and Dimension Order

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.5 The Analytic Workspace Manager 703

Chapter 15

The next step is to choose which dimensions you would like refreshed.
In Figure 15.26, we are refreshing all three dimensions. However, note that
after initially populating the analytic workspace, you do not need to refresh

Figure 15.24 Analytic Workspace—Right-Click Menu

Figure 15.25 Refreshing an Analytic Workspace—Choosing Cubes

Figure 15.26 Refreshing an Analytic Workspace—Choosing Dimensions

TEAM LinG - Live, Informative, Non-cost and Genuine!

704 15.5 The Analytic Workspace Manager

dimensions unless the underlying dimension tables have changed, which,
depending on your business, may be infrequent.

The next button will bring you to a screen (not shown here) similar to
Figure 15.17, where you can choose a file to save the script to, if you want
to make any customizations to it or execute it later. If you would like the
tool to refresh immediately, click the Next button and you will get the
screen shown in Figure 15.27, where you can see the refresh of the analytic
workspace in progress.

The refresh populates the base-level data into the analytic workspace.

15.5.3 Creating an Aggregation Plan

Once you have populated the analytic workspace, you need to create an
aggregation plan for this analytic workspace. An aggregation plan or
aggregation map determines which levels of the dimension hierarchies you
would like to store preaggregated in the analytic workspace. Data at all
other levels will be computed on the fly when queries request it. Preaggre-
gated data is analogous to materialized views in the relational world and
speeds up queries at the cost of storage space. By striking a good balance
between which levels you keep aggregated and which ones you compute on
the fly, you can obtain optimal performance within the available storage.
One common technique is called skip-level aggregation, where every other
level of the cube is preaggregated. We will illustrate this using the wizard in
the Analytic Workspace Manager.

Figure 15.27 Refresh of Analytic Workspace in Progress

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.5 The Analytic Workspace Manager 705

Chapter 15

If you right-click on the Aggregation Plans node highlighted in Figure
15.19, you will see a popup menu—with one of the options being the wiz-
ard to create an aggregation plan. After the customary introduction page,
you will be asked to name the aggregation plan (not shown here but assume
we have named it AGG1), and then you will see the screen shown in Figure
15.28, where you pick the measures being aggregated.

Note that the aggregation operator used by the wizard is the one you
pick when you create the measures in the OLAP Catalog metadata for the
source data (see Figure 15.10). The default operator is SUM. To change the
aggregation operator after creating the aggregation map, you must issue the
following PL/SQL API from SQL*Plus. For example, the following proce-
dure shows how you would change the operator for the purchase price mea-
sure to average, along the customer dimension.

EXECUTE DBMS_AWM.SET_AWCUBEAGG_SPEC_AGGOP('AGG1', 'EASYOLAP',
'EASYAW', 'AWEASYDW_SALES', 'AW_EASYDW_SALES_PURCHASE_PRICE',
'AWCUSTOMER_DIM', 'AVERAGE');

The next step, shown in Figure 15.29, allows you to choose which levels
should be aggregated for each dimension. In this example, we are doing a
skip-level aggregation by aggregating every other level in each hierarchy (i.e.,
in the fiscal rollup hierarchy we are aggregating at the WEEK_NUMBER
level and in the calendar rollup, we are aggregating at the MONTH level).

Once you click the Next button, you get to review the choices you have
made, as shown in Figure 15.30. Clicking the Finish button creates the

Figure 15.28 Aggregation Plan Wizard—Choose the Measures to Aggregate

TEAM LinG - Live, Informative, Non-cost and Genuine!

706 15.5 The Analytic Workspace Manager

aggregation plan. Note that the aggregates are not actually built until you
deploy the aggregation plan.

To deploy the aggregation plan, right-click on the desired aggregation
plan node in the OLAP Catalog View (Figure 15.11) and choose menu item
Deploy aggregation plan using wizard. This is a simple one-page wizard,
which will ask for confirmation and then start the aggregation process to
compute the levels specified by the plan.

15.5.4 Analytic Workspace Enablers

The Analytic Workspace Manager provides enablers to adapt the analytic
workspace for Discoverer and OLAP API. The enablers are simple wizards
and can be launched from the menu shown in Figure 15.24.

Figure 15.29 Choosing Which Levels to Aggregate

Figure 15.30 Reviewing the Aggregation Plan

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.6 Querying Analytic Workspaces 707

Chapter 15

Enabling Analytic Workspace for OLAP API and BI Beans

The enabler for OLAP API and BI Beans is very simple (looks like Figure
15.17) and simply produces the required relational views that allow the API
to access the multidimensional data. You can also save the script to a file to
be executed later.

Enabling Analytic Workspace for Discoverer

In Chapter 13, we saw how to use Discoverer for adhoc querying and
reporting for endusers who may not know SQL. You can use Discoverer to
query your multi-dimensional data as well. The Analytic Workspace Man-
ager provides a wizard that will adapt the analytic workspace to work with
Discoverer.

The wizard produces two items:

� A SQL script, which contains the relational views that Discoverer
needs to access the data in the analytic workspace. This must be run
from SQL*Plus.

� An EEX file, which has an XML script to build an EUL layer. This
should be imported into Discoverer using the Administrator, dis-
cussed in Chapter 13.

Once you have done this, you can start using Discoverer to access the
data.

Hint: If you make any metadata changes to the analytic workspace or the
OLAP Catalog, such as adding a new dimension, cube, or measure, you
must rerun the enablers.

Now that we have built an analytic workspace in standard form, we will
illustrate how analysis can be done on this workspace.

15.6 Querying Analytic Workspaces

Oracle OLAP provides several ways by which an application can access
multidimensional data in an analytic workspace. These are shown in Figure
15.31.

The primary language to access analytic workspaces is OLAP DML.
OLAP DML is a very simple but powerful language that allows you to

TEAM LinG - Live, Informative, Non-cost and Genuine!

708 15.6 Querying Analytic Workspaces

express a variety of calculations and do spreadsheet-like reporting on data
stored in an analytic workspace. It provides functions for forecasting, alloca-
tion, aggregation, statistical analysis, and financial calculations. You can
execute OLAP DML using the OLAP Worksheet application (described in
section 15.6.1) or in the Analytic Workspace Manager.

Java programs can access analytic workspaces using the OLAP API, pro-
vided that appropriate OLAP Catalog metadata has been defined. SQL
applications can access the data by defining Table Functions that convert
the data into rows. Relational views may be defined on top of the Table
functions, so that the application does not know whether the underlying
data is stored in analytic workspaces or tables.

We will now discuss each of these mechanisms in some detail.

15.6.1 OLAP DML

Figure 15.32 shows the OLAP Worksheet application, which is a simple
application (like SQL*Plus) that allows you to execute OLAP DML com-
mands. You can launch the OLAP Worksheet from the command line using
the standalone executable called wrksht on UNIX or wrksht.bat on Win-
dows. You can also launch it from the Tools menu in the Analytic Workspace

Figure 15.31 Accessing the Analytic Workspace

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.6 Querying Analytic Workspaces 709

Chapter 15

Manager application. You issue the OLAP DML commands in the lower
portion of the window and the results appear in the upper portion.

Hint: OLAP DML is very different and completely separate from SQL.
However, there is a SQL mode in the OLAP Worksheet, where you can
issue regular SQL statements as in SQL*Plus. Conversely, you can issue
OLAP DML commands in SQL*Plus using the DBMS_AW package,
described in section 15.6.2.

One thing to bear in mind is that OLAP Worksheet is not a graphical
user interface to query the analytic workspace. It only allows you to enter
OLAP DML commands. In other words, you must know OLAP DML to
use this tool. However, the OLAP Worksheet has an excellent help system,
which describes all OLAP DML commands with examples. In the next few
sections, we will show some examples of using OLAP DML to illustrate the
types of calculations that can be done with analytic workspaces. Note that
this is not a tutorial on OLAP DML and we will not go into details of
OLAP DML syntax.

Figure 15.32 OLAP Worksheet in Oracle Enterprise Manager

TEAM LinG - Live, Informative, Non-cost and Genuine!

710 15.6 Querying Analytic Workspaces

Attaching to an Analytic Workspace

Before you can access the analytic workspace, you must first attach to an
analytic workspace using the AW ATTACH OLAP DML command. The
examples in the following sections will use the analytic workspace, named
EASYAW, that we created earlier using the Analytic Workspace Manager
tool.

Hint: In the following examples, the OLAP DML command is prefixed
with the prompt -> and followed by its output.

To attach to the EASYAW analytic workspace, issue the following
OLAP DML command in the OLAP Worksheet tool. The readwrite key-
word allows you to save changes to the workspace:

-> aw attach easyaw readwrite

Once this command returns successfully, you can then issue other
OLAP DML commands to access the analytic workspace—for instance, in
Figure 15.32, we are querying a dimension named AWPRODUCT_DIM.

Standard Form Entities

The analytic workspace EASYAW, created using the Analytic Workspace
Manager, is in a special format called the database standard form, which
consists of several dimensions and relations that describe the structure of
the analytic workspace. You can browse through all of these in the Object
View in the Analytic Workspace Manager, shown earlier in Figure 15.12. To
see the definition of any entity in OLAP DML, right-click on it to bring up
a popup menu and choose the View Details option.

Alternatively, you can issue the FULLDSC command from the OLAP
Worksheet. For instance, the AWTIME dimension will appear as follows:

-> FULLDSC AWTIME

DEFINE AWTIME DIMENSION TEXT
LD IMPLEMENTATION AWTIME Dimension
PROPERTY 'AW$CLASS' - 'IMPLEMENTATION'
PROPERTY 'AW$CREATEDBY' - 'AW$CREATE'
PROPERTY 'AW$LASTMODIFIED' -'20MAY04_16:23:32'
PROPERTY 'AW$LOGICAL_NAME' - 'AWTIME'
…

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.6 Querying Analytic Workspaces 711

Chapter 15

The various properties are part of the standard form definition and you
would not ordinarily need to know the details of these.

Another example of a standard form entity is the variable AWEASYDW_
PURCHASE_PRICE_VARIABLE, which was derived from the measure
PURCHASE_PRICE in the OLAP Catalog. Its definition is as follows:

-> FULLDSC AWEASYDW_SALES_PURCHASE_PRICE_VARIABLE

DEFINE AWEASYDW_SALES_PURCHASE_PRICE_VARIABLE

VARIABLE DECIMAL

<AWEASYDW_SALES_COMPOSITE <AWCUSTOMER_DIM AWPRODUCT_DIM AWTIME>>

The items in the angle brackets are the dimensions along which the vari-
able is defined. Notice that a composite dimension has been defined to
include all the base dimensions.

We will see more standard form entities in the next section.

Reporting and Aggregating Data with OLAP DML

Previously, we described various entities in an analytic workspace, such as
dimensions, relations, and variables. The REPORT command can be used
to query data in these entities. When reporting data in a dimension, the
report command produces the list of values in the dimension. When report-
ing data in a variable, the report command returns the answer like a spread-
sheet, typically with one dimension along the rows and another along the
columns.

For example, one of the entities in the EASYAW analytic workspace is
the AWTIME dimension. The following command reports the values of
the AWTIME dimension. Notice how values at different levels in a hierar-
chy are all part of the same dimension.

-> report awtime

AWTIME

MONTH.200301

MONTH.200302

...

TIME_KEY.01-JAN-03

TIME_KEY.02-JAN-03

...

YEAR.2003

YEAR.2004

...

TEAM LinG - Live, Informative, Non-cost and Genuine!

712 15.6 Querying Analytic Workspaces

In the next example, we are querying the AWTIME_LEVELREL rela-
tion. This is a standard form relation, which maintains the relationship
between each value in a dimension and the level it corresponds to. For
example, the value MONTH.200301 corresponds to the MONTH level
and the value YEAR.2003 corresponds to the YEAR level.

-> report down awtime awtime_levelrel

AWTIME AWTIME_LEVELREL

------------------------------ --------------------

MONTH.200301 MONTH

MONTH.200302 MONTH

...

TIME_KEY.23-DEC-04 TIME_KEY

TIME_KEY.24-DEC-04 TIME_KEY

...

YEAR.2003 YEAR

YEAR.2004 YEAR

...

At this point, you may find it to be a worthwhile exercise to try similar
report commands on some of the other dimensions and relations in the
EASYAW analytic workspace. Remember that you can browse the various
entities in the Object View of the Analytic Workspace Manager in Figure
15.12.

You can restrict the data you are querying to a specific value or list of
values using the LIMIT command. This is similar to a selection specified by
a WHERE clause in SQL. However, unlike SQL, where the selection is
specified on a per query basis, the limit commands in an OLAP DML per-
sist as long as you are attached to the analytic workspace. The next example
limits the AWTIME dimension to only those values that have the
AWTIME_LEVELREL value of MONTH.

-> LIMIT awtime to awtime_levelrel EQ 'MONTH'

-> REPORT awtime

AWTIME

MONTH.200301

MONTH.200302

MONTH.200303

...

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.6 Querying Analytic Workspaces 713

Chapter 15

Now we get to the more interesting part about reporting data from a
variable. The OLAP analysis engine automatically figures out the dimen-
sions involved, using the definition of the variable. The keyword ACROSS
indicates that the AWTIME dimension values will be reported along the
row. The engine then automatically places the other dimensions in the
report. In the following example, we are reporting sales by state for January
through June 2003 for the HDRW product category.

-> LIMIT awcustomer_dim TO awcustomer_dim_levelrel EQ 'STATE'

-> LIMIT awtime TO 'MONTH.200301' TO 'MONTH.200303'

-> LIMIT awproduct_dim TO 'CATEGORY.HDRW'

-> REPORT across awtime : aweasydw_sales_purchase_price_variable

AWPRODUCT_DIM: CATEGORY.HDRW

 AWEASYDW_SALES_PURCHASE_PRICE_VA

 -------------RIABLE-------------

 -------------AWTIME-------------

 MONTH.2003 MONTH.2003 MONTH.2003

AWCUSTOMER_DIM 01 02 03

------------------------------ ---------- ---------- ----------

STATE.AZ 501.44 391.75 376.08

STATE.CA 407.42 391.75 297.73

STATE.CT 501.44 329.07 407.42

STATE.IL 454.43 376.08 360.41

...

STATE.OH 376.08 329.07 329.07

STATE.TX 376.08 282.06 297.73

STATE.WA 391.75 360.41 282.06

You may be wondering how we were automatically able to generate sales
data at a MONTH level without specifying any aggregation functions like
SUM, to rollup from the detail data. Recall that in section 15.5.3, after popu-
lating the analytic workspace, we created an aggregation plan, which indi-
cated the levels for which to pre-aggregate data in the variable. When creating
this plan, we had specified that the MONTH and STATE levels be pre-aggre-
gated and hence we could report along these levels automatically. This is in
fact one of the most powerful features of the multi-dimensional model, which
differentiates it from SQL.

For levels that were not preaggregated, the aggregation can be performed
on the fly by using the AGGREGATE function and specifying the aggrega-
tion map. In the following example, we are limiting the customer dimension
to the REGION level (which was not precomputed), the product dimension
to the HDRW category, and the months to January–March 2003; we are

TEAM LinG - Live, Informative, Non-cost and Genuine!

714 15.6 Querying Analytic Workspaces

using the aggregation plan AWEASYDW_SALES_AGGMAP_AGG1 to
compute the total sales.

-> LIMIT AWCUSTOMER_DIM TO AWCUSTOMER_DIM_LEVELREL EQ 'REGION'

-> LIMIT AWPRODUCT_DIM TO 'CATEGORY.HDRW'

-> LIMIT AWTIME TO 'MONTH.200301' TO 'MONTH.200303'

-> REPORT across AWTIME:

 AGGREGATE(aweasydw_sales_purchase_price_variable USING

 aweasydw_sales_aggmap_agg1)

AWPRODUCT_DIM: CATEGORY.HDRW

 AGGREGATE(AWEASYDW_SALES_PURCHAS

 -----E_PRICE_VARIABLE USING-----

 --AWEASYDW_SALES_AGGMAP_AGG1)---

 -------------AWTIME-------------

 MONTH.2003 MONTH.2003 MONTH.2003

AWCUSTOMER_DIM 01 02 03

------------------------------ ---------- ---------- ----------

REGION.AmerMidWest 830.51 705.15 689.48

REGION.AmerNorthEast 1,817.72 1,378.96 1,629.68

REGION.AmerNorthWest 391.75 360.41 282.06

REGION.AmerSouth 376.08 282.06 297.73

REGION.AmerWest 908.86 783.50 673.81

REGION.EuroWest 2,146.79 1,755.04 1,786.38

Instead of having end users specifying the aggregation function every
time they query, the DBA can set the aggregation plan as a default for a
variable, as follows:

-> AGGMAP SET aweasydw_sales_aggmap_agg1 AS DEFAULT FOR

 aweasydw_sales_ship_charge_variable

Now, every time the end users do a report command, the aggregation
will be automatically returned, either by computing it on the fly or by using
the precomputed values. This is illustrated in the following example, where
we report on the AWEASYDW_SALES_SHIP_CHARGE_VARIABLE.

-> REPORT ACROSS awtime: aweasydw_sales_ship_charge_variable

 AWEASYDW_SALES_SHIP_CHARGE_VARIA

 --------------BLE---------------

 -------------AWTIME-------------

 MONTH.2003 MONTH.2003 MONTH.2003

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.6 Querying Analytic Workspaces 715

Chapter 15

AWCUSTOMER_DIM 01 02 03

------------------------------ ---------- ---------- ----------

REGION.AmerMidWest 238.50 202.50 198.00

REGION.AmerNorthEast 522.00 396.00 468.00

REGION.AmerNorthWest 112.50 103.50 81.00

REGION.AmerSouth 108.00 81.00 85.50

REGION.AmerWest 261.00 225.00 193.50

REGION.EuroWest 616.50 504.00 513.00

Here you can see simplicity and the power of the multidimensional
model—we do not need to specify the join, aggregation, or repeat the
clauses as in SQL!

Defining Formulas and Custom Measures

You can also compute other variables using the variables defined earlier. For
instance, the following example defines a variable named AWEASYDW_
TOTAL_SALES_VARIABLE and computes it using the sum of two other
variables.

-> DEFINE AWEASYDW_TOTAL_SALES_VARIABLE
-> VARIABLE DECIMAL
 <AWEASYDW_SALES_COMPOSITE
 <AWCUSTOMER_DIM AWPRODUCT_DIM AWTIME>>

-> LIMIT awtime TO awtime_levelrel EQ 'QUARTER'
-> LIMIT awcustomer_dim TO awcustomer_dim_levelrel EQ 'STATE'
-> LIMIT awproduct_dim TO awproduct_dim_levelrel EQ 'CATEGORY'

-> ACROSS awtime awcustomer_dim awproduct_dim
 DO 'aweasydw_total_sales_variable =
 aweasydw_sales_purchase_price_variable +
 aweasydw_sales_ship_charge_variable'

The ACROSS DO construct in the preceding example loops over the
values in each of the dimensions, as specified by the limit clauses, and per-
forms the computation for each value combination. We can now use it to
report the variable, as in the following example. Here, we also illustrate
another standard form construct, the PARENTREL relation. This relation
maintains the relationship between a value and its parent value in a given
dimension hierarchy. We limit the AWCUSTOMER_DIM dimension to
those values (states) whose parent (region) is the AmerNorthEast region.

-> LIMIT awtime TO awtime_levelrel EQ 'QUARTER'
-> LIMIT AWCUSTOMER_DIM TO AWCUSTOMER_DIM_PARENTREL EQ
 'REGION.AmerNorthEast'

TEAM LinG - Live, Informative, Non-cost and Genuine!

716 15.6 Querying Analytic Workspaces

-> LIMIT AWPRODUCT_DIM TO 'CATEGOR.HDRW'

-> REPORT DOWN awtime ACROSS awcustomer_dim:
 aweasydw_total_sales_variable

AWPRODUCT_DIM: CATEGORY.HDRW
 -------AWEASYDW_TOTAL_SALES_VARIABLE-------
 --------------AWCUSTOMER_DIM---------------
AWTIME STATE.CT STATE.MA STATE.NH STATE.NY
-------------- ---------- ---------- ---------- ----------
QUARTER.200301 1,593.43 1,593.43 1,311.05 1,573.26
QUARTER.200302 1,694.28 1,835.47 1,532.92 1,754.79
QUARTER.200303 1,714.45 1,734.62 1,311.05 1,593.43
QUARTER.200304 1,734.62 1,875.81 1,391.73 1,633.77
...

With OLAP DML you can also define formulas to perform calculations
using simple arithmetic or analytic functions. Once defined, users can then
reference these calculations in reports like any other variables defined ear-
lier. We should emphasize that the end user does not need to know how the
calculation was done or which analytic function it used.

The next example creates a formula to determine difference in sales
between the current month and the previous month using the LAGDIF
function. This function is similar to the LAG SQL analytic function we
saw in Chapter 6, except that it returns the difference between the current
value and the value at the specified LAG offset. The LAGDIF function in
OLAP DML takes as arguments a variable name, the LAG offset, a
dimension along which to compute the LAG, and an optional LIMIT
command, which can be used to restrict the values of the dimension. In
this example, we are using the AWEASYDW_SALES_PURCHASE_
PRICE_VARIABLE, along the AWTIME dimension. The LIMIT com-
mand restricts the computation to only the month level and the LAG off-
set is 1—in other words, the previous month.

-> DEFINE AWEASYDW_SALES_PREV_MONTH

 FORMULA

 DECIMAL <AWCUSTOMER_DIM AWPRODUCT_DIM AWTIME>

 EQ LAGDIF (AWEASYDW_SALES_PURCHASE_PRICE_VARIABLE,1,

 AWTIME, AWTIME_LEVELREL EQ 'MONTH')

-> LIMIT awproduct_dim TO 'CATEGORY.HDRW'

-> LIMIT awcustomer_dim TO 'REGION.AmerNorthEast'

-> LIMIT awtime TO awtime_levelrel EQ 'MONTH'

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.6 Querying Analytic Workspaces 717

Chapter 15

We can now use this formula to report the sales for the current month
and the difference between the sales for the current and the previous
month.

-> REPORT down awtime across awproduct_dim:

 <AWEASYDW_SALES_PURCHASE_PRICE_VARIABLE,

 AWEASYDW_SALES_PREV_MONTH>

AWCUSTOMER_DIM: REGION.AmerNorthEast

 ----AWPRODUCT_DIM----

 ----CATEGORY.HDRW----

 AWEASYDW_S

 ALES_PURCH AWEASYDW_S

 ASE_PRICE_ ALES_PREV_

AWTIME VARIABLE MONTH

-------------------- ---------- ----------

MONTH.200301 1,817.72 NA

MONTH.200302 1,378.96 -438.76

MONTH.200303 1,629.68 250.72

MONTH.200304 1,817.72 188.04

MONTH.200305 1,896.07 78.35

...

So far all the examples we have seen could also have been performed with
SQL. The following section illustrates one of the advanced features of the
OLAP Engine that is currently not available in SQL: forecasting.

Forecasting Using OLAP DML

One of the common operations performed using OLAP DML is forecast-
ing. To forecast a quantity such as sales we must perform the following
steps:

� Define variables to store the forecast results.

� Specify the parameters of the forecast.

� Execute the forecast.

We will show a very simple example of forecasting future sales based on
historical sales.

TEAM LinG - Live, Informative, Non-cost and Genuine!

718 15.6 Querying Analytic Workspaces

The first step is to define a variable called AWEASYDW_SALES_
FORECAST_VARIABLE, which stores the result of the forecast. Note
again that we have dimensioned this variable just like the AWEASYDW_
SALES_ PURCHASE_PRICE_VARIABLE.

-> DEFINE AWEASYDW_SALES_FORECAST_VARIABLE VARIABLE DECIMAL

 <AWEASYDW_SALES_COMPOSITE

 <AWCUSTOMER_DIM AWPRODUCT_DIM AWTIME>>

Next, we constrain the AWTIME dimension to the month level and
customers to customer id level. This means that the forecast will be com-
puted using the months in the AWTIME dimension for each customer id
value in the AWCUSTOMER_DIM dimension.

-> LIMIT AWTIME TO AWTIME_LEVELREL EQ 'MONTH'

-> LIMIT AWCUSTOMER_DIM TO AWCUSTOMER_DIM_LEVELREL EQ 'CUSTOMER'

-> LIMIT AWPRODUCT_DIM TO 'CATEGORY.HDRW'

To specify parameters and run the forecast, we must create a handle,
which will be used by subsequent commands. The handle, called sf_handle,
is obtained by calling the FCOPEN command to which you specify a
name.

-> DEFINE sf_handle VARIABLE INTEGER;

-> sf_handle = FCOPEN('EasyDWSalesForecast')

Next, we will set the forecast parameters using the FCSET command.
We are using the automatic method for forecasting. We will consider three
time periods (months) as historical data and forecast using a periodicity
parameter of 6, which indicates the interval over which the sales repeat.

-> FCSET sf_handle method 'automatic' histperiods 3 periodicity 6

Finally, we execute the forecast using the FCEXEC command. We
must specify the name of the time dimension and also the variable con-
taining the data to be used for the forecast—in our case,
AWEASYDW_SALES_PURCHASE_PRICE_VARIABLE. The results are
placed into the AWEASYDW_SALES_SALES_ FORECAST_VARIABLE
we defined earlier.

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.6 Querying Analytic Workspaces 719

Chapter 15

-> FCEXEC sf_handle TIME AWTIME

 INTO AWEASYDW_SALES_FORECAST_VARIABLE

 AWEASYDW_SALES_PURCHASE_PRICE_VARIABLE

Finally, we close the handle as follows:

-> FCCLOSE sf_handle

You can now query this variable to forecast the sales. You can also use an
aggregation map to aggregate the forecast to higher levels. In the following
example, we are forecasting sales for January 2005 for customers in Massa-
chusetts (STATE.MA).

-> LIMIT awtime to 'MONTH.200501'

-> LIMIT awcustomer_dim to awcustomer_dim_parentrel eq 'STATE.MA'

-> LIMIT AWPRODUCT_DIM TO 'CATEGORY.HDRW'

-> REPORT down awcustomer_dim across awtime:

 AWEASYDW_SALES_FORECAST_VARIABLE

AWPRODUCT_DIM: CATEGORY.HDRW

 AWEASYDW_S

 ALES_FOREC

 AST_VARIAB

 ----LE----

 --AWTIME--

 MONTH.2005

AWCUSTOMER_DIM 01

------------------------------ ----------

CUSTOMER.AB123410 31.34

CUSTOMER.AB123420 15.67

CUSTOMER.AB123440 0.00

CUSTOMER.AB123450 0.00

…

CUSTOMER.AB123500 9.25

CUSTOMER.AB123510 13.93

CUSTOMER.AB123530 22.63

CUSTOMER.AB123540 24.38

…

In this section, we have given you a quick but broad overview of OLAP
DML and analytic workspaces. We saw how data is stored, aggregated, cal-
culated, and reported in the multidimensional format. We have only

TEAM LinG - Live, Informative, Non-cost and Genuine!

720 15.6 Querying Analytic Workspaces

scratched the surface of what can be done with OLAP DML, but hopefully
you have gotten some idea of the simplicity and power of this language.

Besides interactively issuing OLAP DML using the OLAP Worksheet,
you can also use it within an application, as discussed in the next section.

15.6.2 DBMS_AW package

The DBMS_AW package provides functions that allow you to execute
OLAP DML commands and programs using PL/SQL programs or
SQL*Plus.

The EXECUTE procedure can be used to execute one or more OLAP
DML commands and print the output to the screen using the
DBMS_OUTPUT package. The following example attaches to the
EASYAW analytic workspace and reports the dimension AWTIME.

SET SERVEROUTPUT ON;

BEGIN

 DBMS_AW.EXECUTE(q'[

 AW ATTACH easyaw

 LIMIT awtime to awtime_levelrel EQ 'MONTH'

 REPORT awtime

 AW DETACH easyaw

]');

END;

/

AWTIME

MONTH.200301

MONTH.200302

MONTH.200303

MONTH.200304

MONTH.200305

MONTH.200306

MONTH.200307

…

PL/SQL procedure successfully completed.

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.6 Querying Analytic Workspaces 721

Chapter 15

Hint: Use the handy new PL/SQL construct q'[]' to enclose the OLAP
DML commands, especially if they have quotes in them. This eliminates
the need to escape the quotes. For more information refer to the Oracle PL/
SQL documentation.

15.6.3 SQL Access to Analytic Workspaces

Applications can access multidimensional data stored in analytic work-
spaces with SQL by using SQL Table functions. Oracle provides a table
function called OLAP_TABLE to do this, but you can also write your own
custom table functions.

The OLAP_TABLE function takes four parameters:

1. The analytic workspace to attach to. You can specify whether to
attach the workspace for a query or for a session.

2. An optional type for the result of the OLAP_TABLE function.
Recall from Chapter 5 that a table function is similar to a table
and returns rows as its result. So you must first define a type for
the rows being returned and a type for the table. This parameter
is useful if you would like to control the data types returned. If
not specified, the results are converted to SQL data types.

3. This parameter allows you to specify any OLAP command. A
common use of this parameter involves specifying OLAP DML
FETCH commands, which indicate how to fetch data from the
analytic workspace. It is usually omitted and the next parameter,
called the limit map is used instead. If specified, this command is
executed prior to the limit map.

4. The last parameter is called the LIMIT MAP and specifies how
data in the analytic workspace maps to columns in the table
returned by the OLAP_TABLE function. The limit map defines
measures, dimensions, and their hierarchies. When the
OLAP_TABLE function is used in a SQL query, the limit map,
in combination with the SQL WHERE clause, will issue OLAP
DML LIMIT commands to the analytic workspace to restrict
data returned.

TEAM LinG - Live, Informative, Non-cost and Genuine!

722 15.6 Querying Analytic Workspaces

We will explain these with the following example, which retrieves the
data from the variable AWEASYDW_PURCHASE_PRICE_VARIABLE in the
EASYAW analytic workspace. We will define a TYPE, named
PURCHASES_TYPE, which describes the rows being returned, and a TYPE,
named PURCHASE_TABLE, which describes the table of these rows. For
each dimension, we will return the value and the GROUPING_ID func-
tion, which indicates the level the value corresponds to (see Chapter 6 for a
description of the GROUPING_ID SQL function).

CREATE TYPE purchases_type AS OBJECT

(cust VARCHAR2(80),

 cust_gid NUMBER,

 time VARCHAR2(30),

 time_gid NUMBER,

 prod VARCHAR2(30),

 prod_gid NUMBER,

 purchase_price NUMBER);

/

Next, we define a type, PURCHASE_PRICE_TYPE, which describes a
table whose rows are of the PURCHASE_TYPE:

CREATE TYPE purchases_table AS TABLE OF purchases_type;

/

We will define a relational view on the table function as follows, so that
applications can access this data without really needing to know about table
functions and OLAP DML.

CREATE VIEW purchase_price_view

as

SELECT * FROM TABLE(OLAP_TABLE(

'easyaw duration session', 'purchases_table', '',

'dimension cust from awcustomer_dim

 with hierarchy awcustomer_dim_parentrel

 gid cust_gid from awcustomer_dim_gid

 dimension time from awtime

 with hierarchy awtime_parentrel

 gid time_gid from awtime_gid

 dimension prod from awproduct_dim

 with hierarchy awproduct_dim_parentrel

 gid prod_gid from awproduct_dim_gid

 measure purchase_price

 from aweasydw_sales_purchase_price_variable

'));

TEAM LinG - Live, Informative, Non-cost and Genuine!

15.6 Querying Analytic Workspaces 723

Chapter 15

This view is now queried like any other relational table. For instance, in
the following example, we are querying hardware sales in Massachusetts.

SELECT time, sum(purchase_price)

FROM purchase_price_view

WHERE prod = 'CATEGORY.HDRW' and cust = 'STATE.MA'

GROUP BY time

TIME SUM(PURCHASE_PRICE)

------------------------------ -------------------

MONTH.200301 470.1

MONTH.200302 360.41

…

QUARTER.200402 1284.94

QUARTER.200403 1300.61

…

YEAR.2003 5468.83

…

Note that when you enable the analytic workspace for OLAP API using
the analytic workspace manager, the relational views created by the tool use
the OLAP_TABLE function.

Thus, using table functions and relational views, the OLAP DML com-
mands can be completely hidden away, and the SQL application can now
be completely unaware of whether the data being accessed is stored in a
relational or a multidimensional format.

15.6.4 OLAP API and BI Beans

The OLAP API is a set of Java classes that can be used to develop OLAP
applications. It is very well suited to developing thin-client applications
that can be accessed with a Web-browser. The OLAP API uses a multidi-
mensional model for querying data; however, it internally translates these
queries into SQL. To access objects using this API, you need to have
defined the objects in the OLAP Catalog. The underlying data may be
stored either in relational tables or in analytic workspaces encapsulated
within relational views.

Business Intelligence Beans (BI Beans) is a set of reusable components
that allows you to rapidly develop OLAP applications. They are integrated
into Oracle’s JDeveloper product, where they can be created and custom-
ized using simple wizards. BI Beans can perform a wide range of tasks, such
as connecting to a database, building queries to perform analytical calcula-

TEAM LinG - Live, Informative, Non-cost and Genuine!

724 15.7 Summary

tions, and displaying the results in extremely powerful reports, tables, or
graphs. These components can then be easily deployed as part of a Java or
JSP application.

A novel aspect of BI Beans is that you have full access to the data as the
component is being designed, so you can immediately see how the resulting
graph or presentation will look. Before you start to build business intelli-
gence components, you must set up a database connection using the
Designer bean. Then you can use the Query Builder to define queries, Pre-
sentation Wizard to create a report or graph, and Calculation Builder to
define calculations.

A detailed discussion of the OLAP APIs and BI Beans is beyond the
scope of this book.

15.7 Summary
In this chapter, we have seen how Oracle can be used to perform multi-
dimensional analysis using the Oracle OLAP option. The multidimensional
model is an intuitive model for analysis, because the application does not
need to know how to join fact tables with dimension tables or to express
analytic functions using SQL. Analytic workspaces provide a way to store
and preaggregate data in a multidimensional format. The OLAP calculation
engine provides several advanced features, such as forecasting and alloca-
tion, that are not available in SQL. You can map the analytic workspace
back to a relational model for use by OLAP API and BI Beans applications
by defining relational views on top of it. The Analytic Workspace Manager
tool simplifies creation and maintenance of analytic workspaces from a rela-
tional star or snowflake schema and also provides wizards to automatically
create the views required for the analytic workspace to be used by applica-
tions such as Discoverer or BI Beans.

Thus, regardless of whether you store your data in relational or multi-
dimensional format, the Oracle database provides all the tools and tech-
niques required for advanced business analysis applications.

In the next chapter, we will discuss another technique for business anal-
ysis—data mining, which can be used to determine hidden trends and pat-
terns in your data.

TEAM LinG - Live, Informative, Non-cost and Genuine!

725

16

Oracle Data Mining

Data mining is a process that finds hidden patterns and relationships in
data to help make better business decisions.

In the course of running a business, you may encounter data in different
forms. Operational data tells you day-to-day information about your cus-
tomers—what did John Doe buy on August 5, 2002? In the data ware-
house, data is organized according to predefined relationships using fact
and dimension tables. You can then use OLAP tools to find out various
facts about your business: How many people bought electronic products
from your store and what was the average amount they spent? How many
customers who bought electronic products were engineers? These are all
questions based on existing data.

However, you may also like to answer questions such as:

�

Which of your customers are likely to buy a personal video recorder?

�

What could be a good city from which to launch a new product?

�

What might be a good promotion to offer for Christmas?

�

If a customer buys a digital camera, what other items is this customer
likely to buy?

This is where you need some predictive insight into your data. Data
mining uses various statistical and machine learning techniques to discover
trends and patterns of behavior. In other cases, you may know what you are
looking for. In some cases, there is no clear definition of what the mining
process may find. You are saying: Here’s my data—find me something
interesting to look at. This is indeed the challenge of data mining—it is like
looking for a needle in a haystack, only you may not know what the needle

TEAM LinG - Live, Informative, Non-cost and Genuine!

726

16.1

Oracle Database 10g Data Mining Option

looks like! One of the biggest advantages of building a data warehouse is
that data has been cleansed and consolidated and is now more amenable to
data mining.

Data mining can be used in many applications, such as improving store
layouts, fraud detection, mail-order promotions, reducing customer churn,
and Web site personalization. It can also be used in life-sciences applica-
tions, such as finding patients at high risk for certain diseases.

16.1 Oracle Database 10

g

 Data Mining Option

Oracle Data Mining is an option to Oracle Database 10

g

 Enterprise Edi-
tion that embeds data mining functionality in the database server. This
allows you to integrate data mining directly into your application logic and
workflow, rather than extracting data from your applications for analysis.
Data mining involves processing large amounts of data, which often needs
to be preprocessed and put into a format suitable for the mining algo-
rithms. By incorporating data mining functionality into the database, the
mining algorithms can take advantage of the scalability and performance of
the database engine and make use of features such as, partitioning, com-
pression and parallel execution to speed up the analysis.

Oracle Data Mining supports various data mining techniques, such as
classification, regression, association rules, clustering, determination of
attribute importance, and feature extraction. Oracle Data Mining also sup-
ports text mining. The functionality is available through a PL/SQL package
and a Java API.

Unlike much of the other material in this book, data mining algorithms
need some mathematical background, such as statistics and probability. In
this chapter, we will provide you with a broad overview of the data mining
process and techniques while avoiding the technical details of each algo-
rithm. We will describe the tasks and briefly illustrate the use of Oracle
Data Mining Java and PL/SQL APIs. To read the examples at the end of
this chapter you must have a basic knowledge of the Java and PL/SQL pro-
gramming languages. However, if you are only looking for a conceptual
overview, you may safely skip these examples.

TEAM LinG - Live, Informative, Non-cost and Genuine!

16.2

Oracle Data Mining Techniques 727

Chapter 16

16.2 Oracle Data Mining Techniques

Data mining problems can be classified into two categories. In some situa-
tions you have some idea of what you are looking for—for example, you are
interested in customers who are likely to buy a digital camera. This is
known as

directed

 or

supervised

 learning. In other cases, you leave it to the
mining process to find you something interesting—for example, a high
incidence of accidents at a certain intersection. This is called

undirected

 or

unsupervised

 learning. In unsupervised learning, the data mining algo-
rithms describe some intrinsic property or structure of data and hence are
sometimes called

descriptive

 models. On the other hand, supervised learn-
ing techniques typically use a model to predict the value or behavior of
some quantity and are hence called

predictive

 models.

Oracle Data Mining supports various techniques for mining data, each
of which falls into one of these two categories.

1. Descriptive Models/Unsupervised Learning:

�

Association rules or market-basket analysis

�

Clustering

�

Feature extraction

2. Predictive Models/Supervised Learning:

�

Classification

�

Regression

�

Attribute importance

We will look at each of these in some detail. Oracle Data Mining also
provides special algorithms for mining of text and for life-sciences applica-
tions, which we will not discuss in this book.

16.2.1 Association Rules

We are all familiar with Amazon.com’s feature—“Hello, Jane! We have
some new recommendations for you.” This type of Web-site personaliza-
tion uses a data mining technique known as association rules. Mining with
association rules finds items that occur together frequently. For instance,
association ruls may find that a large percentage of users who bought the

TEAM LinG - Live, Informative, Non-cost and Genuine!

728

16.2

Oracle Data Mining Techniques

book

The Lord of the Rings

 also bought the book

The Hobbit

’. So if you buy

The Lord of the Rings

, it may recommend you also read

The Hobbit

.

Data mining using association rules is also known as “market-basket
analysis.” When you visit your local grocery store, you may find that the
seafood department has lemons or tartar sauce next to the fish. This is
because, it has found that 80 percent of people who buy fish also buy lem-
ons to go with it. Most of these stores offer some kind of frequent shopper
cards—by keeping a count of what combinations of items have been
bought by the same person, they can organize their shelves more appropri-
ately and even send you coupons for the same or similar items for your
next visit.

Mining with association rules involves counting how many times a cer-
tain group of items occur together. In this case, you do not necessarily know
which combination to look for beforehand—hence, this comes under the
unsupervised or undirected learning category. The association algorithm
comes up with rules of the type “A implies B.” There are two quantities of
interest to the user of this algorithm: support and confidence.

�

Support

 tells us the percentage of the transactions where the combi-
nation of items A and B occur together. It helps identify combina-
tions that are sufficiently frequent to be of interest (e.g., purchasing
fish alone or purchasing fish and lemons together).

�

Confidence

 tells us which percent of transactions that have an item A
also have an item B (e.g., how many transactions that have fish also
have lemons).

To use association rules, a user must provide the desired level of sup-
port and confidence for a rule to be considered interesting. For instance,
suppose we specify that for a rule to be interesting, it must have a support
of 20 percent and a confidence of 70 percent. If found that in fact 40 per-
cent of all transactions involved the combination fish and lemons, then the
combination “fish, lemons” exceeds the minimum support of 20 percent.
Now, if we found that 50 percent of all transactions involve fish then the
combination “fish, lemons” has confidence (40 / 50) * 100 = 80 percent, so
it also meets the minimum confidence criterion. Hence, “fish implies lem-
ons” will be reported as an association rule.

 To make meaningful business decisions, both support and confidence
are important. Consider this alternate example of an area where fish is not

TEAM LinG - Live, Informative, Non-cost and Genuine!

16.2

Oracle Data Mining Techniques 729

Chapter 16

very popular due to high levels of mercury. Maybe only 5 percent of the
transactions involve fish. The item “fish” does not have enough support
and hence the rule “fish implies lemons” will not make any significant dif-
ference to our sales.

Figure 16.1 shows a typical output of mining analysis using association
rules, as analyzed using a tool such as Oracle Discoverer. The first two rules
say people often buy WINE or LEMONS to go with FISH.

The algorithm used by Oracle Data Mining for association rules is
called

apriori

. The user provides the minimum support and confidence
desired. The algorithm first finds single items that occur frequently and
have the minimum support—for example, fish. It then finds pairs of items
that have the minimum support, such that at least one item in the pair was
frequently occurring—for example, fish and lemons. It repeats the process
to come up with increasingly larger combinations of items until it can find
no more. Once it has found all “frequent item-sets,” it then finds those that
satisfy the minimum confidence requirement from the user. These are
reported as association rules. Oracle Database 10

g

 has a SQL-based imple-
mentation of this algorithm.

Figure 16.1

Association Rules

TEAM LinG - Live, Informative, Non-cost and Genuine!

730

16.2

Oracle Data Mining Techniques

16.2.2 Clustering

Clustering is a technique used to divide a large data set with many
attributes into a small number of “closely packed” groups. Such groups are
not easily apparent to a human eye due to the large number of attributes
involved. For example, suppose you had census data for a population,
including several attributes, such as age, occupation, occurrence of diseases,
and so on. By clustering this data, may find that there are several pockets
where a certain disease is prevalent, possibly pointing to a polluted water
supply in those regions. Since we have no definite idea of what we may find,
this is another example of unsupervised learning.

The groups generated by a good clustering algorithm are such that all
items in one group are quite like each other in some respects and very much
unlike items in other groups.

Figure 16.2 illustrates the concept of clusters in data. In this figure, two
attributes of the data have been plotted using a scatter plot to highlight the
clusters. For all items in each cluster, the values of the two attributes have
greater similarity compared with items in different clusters. This is an
example where the clusters in the data were apparent by simply plotting a
graph. In practice, it is not often possible to visualize clusters in this way,
since we may have more than two or three dimensions! For instance, in bio-
informatics applications, you can have thousands of dimensions! In these
situations, we use mathematical clustering algorithms to identify clusters.

Figure 16.2

Clustering

TEAM LinG - Live, Informative, Non-cost and Genuine!

16.2

Oracle Data Mining Techniques 731

Chapter 16

One of the applications where clustering is used is market segmentation.
Suppose you were a large retailer selling a wide range of products from
soaps to jukeboxes. With clustering, you can segment your customer base
into groups based on demographics or past buying habits. This allows you
to customize your advertising strategy for each segment and to better serve
the more profitable segments.

Clustering is performed by first analyzing a small section of the data to
determine clusters. Once the clusters have been determined, the remaining
data is then analyzed to assign each individual item to a cluster, with a cer-
tain probability.

Clustering Algorithms

Oracle data mining supports two algorithms for clustering:

�

Enhanced k-means

�

O-Cluster

The k-means algorithm is a clustering algorithm that groups data into a
specified number of k clusters. It groups items into clusters based on their
relative “distance” from each other. So, all points in one cluster are “closer”
to each other than to points in other clusters. The Enhanced k-means algo-
rithm is a variation on the k-means algorithm that forms clusters in a hier-
archical fashion. It starts with all the data being in one cluster and then
successively splits it into smaller clusters until the desired number of clus-
ters is obtained. It is very efficient compared with traditional k-means, since
it only requires one pass through the data and hence can handle large data
sets. It works well even for data sets with less than 10 attributes. The metric
“distance” used by k-means can only be defined for numerical attributes;
hence, if you have discrete values (e.g., color = red, black, blue), then k-
means cannot be used.

The O-Cluster algorithm defines clusters using ranges of attribute val-
ues. The user does not need to provide the number of clusters to generate.
This algorithm can be used for nonnumeric attributes that have a discrete
set of values.

TEAM LinG - Live, Informative, Non-cost and Genuine!

732

16.2

Oracle Data Mining Techniques

16.2.3 Feature Extraction

Feature extraction is a process that identifies important features or
attributes of the data. Some examples of this technique are pattern recogni-
tion and identifying common themes among a large collection of docu-
ments. If the data has a lot of dimensions (such as keywords in a
document), then feature extraction can be used to produce a more concise
description of the data.

One example of feature extraction that all of us can relate to is spam-
detection software. If we had a large collection of emails and the keywords
contained in these emails, then a feature extraction process could find cor-
relations among the various keywords. For example, the words Bush and
election may appear to be correlated. Thus, the set of emails can now be
described using a far smaller number of word phrases than what we started
out with. For example, you can tell whether the email is a current news item
about the U.S. presidential election or is selling you an unsolicited mort-
gage product or a new diet solution. Once we have done this, we can then
associate certain combinations of words or phrases as spam and automati-
cally out filter these emails. Of course, this is a very oversimplified descrip-
tion of any actual algorithm, but hopefully it has helped you understand
the concept of feature extraction.

Feature extraction can be useful to reduce the number of attributes that
describe the data. This can speed up data mining using supervised learning
techniques such as classification, which we will discuss shortly.

Oracle Data Mining uses various techniques for feature extraction, such
as Nonnegative Matrix Factorization (NMF). The details of this technique
are beyond the scope of this book.

16.2.4 Classification

Suppose you wanted to target a promotion for a new digital camera and
would like to know which of your customers are likely to buy the camera.
Classification is a data mining technique that is useful for this application.
Classification divides data into two or more well-defined classes. Unlike
clustering, where you do not know which groups will be generated, in clas-
sification you know exactly what each group represents. In the previous
example, the two groups are: customers who are likely to buy a camera and
customers who are

not

 likely to buy a camera. This is an example of super-
vised learning.

TEAM LinG - Live, Informative, Non-cost and Genuine!

16.2

Oracle Data Mining Techniques 733

Chapter 16

In classification, you first analyze a small part of your data to build a

model.

 For instance, you would analyze real data for people who have
bought digital cameras and people who have not bought digital cameras,
over a given time period. The data used to build a model is known as

build
data

. The model will be built taking into account various factors, such as
age, income, and occupation, that are known to influence people’s buying
habits. These factors are known as

predictor attributes

. The output that is
predicted is called the

target attribute

 and its values (whether the person
will buy the camera or not) are known as

categories

 or

classes

. Once the
model has been generated, it can be applied to other data to come up with
a prediction. This is known as

model apply

, or

scoring

. In our example,
you would use the model to predict whether a certain customer is likely to
buy a digital camera.

In the previous example, the target attribute has two values: will buy a
digital camera and will not buy a digital camera. You can also use classifica-
tion to predict attributes with more than two values—for example, whether
the risk of a person defaulting on a payment is low, medium or high.

Classification is often used to create customer profiles. For instance,
once you have determined which of your customers are likely to buy a digi-
tal camera, you can then profile them by occupation, as shown in Figure
16.3. From this graph, you now know that most likely buyers are either
engineers or executives. So you can now target your promotions more accu-
rately toward these customers and reduce your costs.

Figure 16.3

Classification

TEAM LinG - Live, Informative, Non-cost and Genuine!

734

16.2

Oracle Data Mining Techniques

In order for classification to work well, the build data must contain
enough samples for each target category; otherwise, it may not be accurate.
In other words, your build data must include enough people who have
bought digital cameras in the past and enough who have not.

Testing a Classification Model

Data mining using classification usually involves a testing phase to check
how good the model is. For this, data where the outcome is known is tested
to see how well the model’s predictions match it. For instance, you would
take data for customers who have bought a digital camera in the past and
check it against the predictions given by the model.

Testing a model involves computation of a structure known as the

con-
fusion matrix

. A confusion matrix tells you how many times the model’s
prediction matched the actual data and how many times it did not. The
columns correspond to the predicted values and the rows to the actual val-
ues. For instance, in Figure 16.4, the model was correct 555 + 45 = 600
times and wrong 12 + 8 = 20 times. This shows that this model is a pretty
good one.

Computing Lift

Another metric used to determine the effectiveness of a model is its

lift

. To
understand what lift means, consider the following example. Suppose we
have a customer base of 100,000 households and on an average about 2.5
percent (2,500 customers) respond to any given promotion. We would like
to get smarter and only target those customers who are most likely to
respond. With a good classification model, we should be able to identify
most of the likely 2,500 respondents by targeting much fewer than the
100,000 households. Given a certain percentage of target customers, lift is

Figure 16.4

Confusion Matrix

TEAM LinG - Live, Informative, Non-cost and Genuine!

16.2

Oracle Data Mining Techniques 735

Chapter 16

the ratio of the number of respondents obtained with the model against the
number obtained without the model.

Lift is computed as follows. The classification model is applied to an
actual customer data set, where we know who responded to a past promo-
tion and who did not. The customers are then sorted by their likelihood to
respond as predicted by the model, with the most likely respondents first.
This sorted list is then divided into 10 equal groups known as

deciles

. For
each decile, the number of customers in the data set who had actually
responded to the promotion is counted. If the model is any good, then
most of the respondents should come from the top few deciles, since they
were predicted to be the most likely respondents.

If you draw a graph with deciles 1 through 10 on the X-axis and the
number of actual respondents on the Y-axis, you will typically get the curve
shown in Figure 16.5. This curve tells you that you only need to target the
customers in the first three deciles (30 percent households), to get 70 per-
cent of those likely to respond. On the other hand, the straight line in this
figure corresponds to a random promotion where everyone is predicted to
be equally likely to respond. Without the model to guide you, if you target
30 percent households, you will only get 30 percent of the likely respon-
dents. To get 70 percent of the likely respondents, you will have to target 70
percent of the households!! The higher the curved line is from the straight
line for the first one or two deciles, the better the model’s lift.

Confusion matrix and lift are both widely employed techniques to
determine the accuracy of classification models. Oracle Data Mining pro-
vides APIs that will allow you compute these quantities.

Figure 16.5

Using lift analysis for targeted promotions

TEAM LinG - Live, Informative, Non-cost and Genuine!

736

16.2

Oracle Data Mining Techniques

Classification Algorithms

Oracle offers three algorithms for classification:

�

Naive Bayes Algorithm

�

Adaptive Bayes Network Algorithm

�

Support Vector Machines

The Naive Bayes (NB) Algorithm is based on the probability theorem
known as Bayes theorem and assumes that each attribute is independent
from the other. An interesting property of the NB algorithm is that you can
build and cross-validate the model using the same data. This algorithm
works best with a small number of predictor attributes (less than 200).

The Adaptive Bayes Network (ABN) Algorithm in its most intuitive
form (known as single feature build) produces a model in the form of a
decision tree, shown in Figure 16.6. From this decision tree you can see that
men between the ages of 15 and 35 and women over 26 are likely to buy a
camera. Since the model produced by ABN is in a human-readable form, a
business analyst or executive would be more comfortable when using it to
make a business decision. The ABN algorithm is usually more accurate than
NB, but it takes longer to build the model.

Oracle also provides two other modes for the Adaptive Bayes Network
model called Pruned Naive Bayes and Boosted, which

conceptually

 allow
you to describe the data using multiple decision trees; however, these modes
do not provide human-readable rules.

Figure 16.6

Adaptive Bayes Network Decision Tree

TEAM LinG - Live, Informative, Non-cost and Genuine!

16.2

Oracle Data Mining Techniques 737

Chapter 16

Support Vector Machines (SVM) are a technique for classification based
on machine-learning (artificial intelligence) theory. In this technique,
mathematical functions called

kernels

 are used to transform data, which
makes it possible for the data to be more clearly differentiated into different
categories. This is a predictive technique, because the machine (algorithm)
is first trained using some initial training data and then learns to correctly
classify new data. SVM is used in many real-world applications, such as
handwriting recognition and classifying images.

16.2.5 Regression

Regression is a predictive modeling technique, which allows you to describe
the relationship between two variables using a line or curve. If the value of
one variable (called the

independent

 variable) is known, the line or curve
can then be used to predict the value of the other variable (called the

dependent

 variable). The most common technique is

linear

 regression,
where you find a straight line that fits the data. In Chapter 6, we saw some
built-in SQL functions for linear regression analysis. For example, linear
regression may be used to determine if the price of a quantity has any rela-
tionship to its total sales.

It is important to note the difference between classification and regres-
sion: Classification allows you to classify data when the target attribute is
discrete, whereas regression allows you to classify data where the target
attribute is continuous or numerical.

The Support Vector Machine technique used for classification can also
be used to create regression models for the data.

16.2.6 The PMML Standard

The Predictive Modeling Markup Language (PMML) is an emerging
XML-based standard to define data mining models. PMML provides a
vendor-independent method of defining models so that the models can
be exchanged between different applications. Thus, one application may
produce a model and another may apply the model to a data set. Oracle
Data Mining supports import and export of Association Rules and Naive
Bayes models.

TEAM LinG - Live, Informative, Non-cost and Genuine!

738 16.3 Preparing Data for Oracle Data Mining

16.3 Preparing Data for Oracle Data Mining

In order to use data mining algorithms, the data may need to be in a certain
format and you may need to preprocess the data to reduce its size or complex-
ity. In this section, we will describe the requirements for the data format and
also the various techniques to prepare data for the mining algorithms.

16.3.1 Data Format

The data to be mined must be accessible using either a single table or a view
that encapsulates the access to the underlying tables. Each fact in the data
being analyzed is known as a case. For example, “customer #3, male, aged
35, a teacher by profession, bought a digital camera” is one case. In the
table, a case can be represented using either a single record or multiple
records (one for each attribute) as illustrated in Figure 16.7.

If all attributes for a case are placed in the same row, the table is said to
be in a single-record or nontransactional format. Alternatively, the table
could store each case using multiple records, with the format customer#,
attribute_name, attribute_value. This is known as a multirecord or trans-
actional format.

The transactional format is useful when the table needs to have more
than 1,000 columns, which is the maximum number of columns allowed
in a table in Oracle. Some algorithms in the Oracle Data Mining Java
interfaces will automatically convert the data into a transactional format

Figure 16.7 Table Formats for Data Mining

TEAM LinG - Live, Informative, Non-cost and Genuine!

16.3 Preparing Data for Oracle Data Mining 739

Chapter 16

prior to analysis. When using the PL/SQL interfaces, it is possible to repre-
sent the data in a transactional format with nested tables using built-in col-
lection types.

Oracle Data Mining supports all Oracle character and numeric data
types. However, any date columns must be converted into either a numeric
or a character data type, depending on their meaning.

16.3.2 Data Preparation

Some data mining algorithms require data to be transformed in certain
ways—in this case the data is said to be prepared. The Java interfaces for
Oracle Data Mining assume the data is unprepared and will do the
required preprocessing. On the other hand, the PL/SQL interfaces require
that the data be prepared by the user. There are two important techniques
for data preparation—binning and normalization. You can also use
attribute importance to reduce the number of attributes as a data prepara-
tion step.

Binning or Discretization

Data mining algorithms may require that the data be categorized into a dis-
crete set of bins or buckets for analysis. Binning will group related values
together and so will reduce the number of distinct values of a data attribute
that need to be considered by the data mining algorithms. This will usually
speed up the building of data mining models. Algorithms such as associa-
tion rules, Naive Bayes, Adaptive Bayes Network, and clustering may bene-
fit from binning.

Oracle provides the capability to automatically perform binning or
allow a user to manually bin the data by specifying the boundary values for
the buckets. There are several ways to bin data:

� Using Top N frequently used values (for categorical data): The
Top N frequently used values each get one category and all other val-
ues are clubbed into one bin called “Other.”

� Equiwidth Binning (for numerical data): This technique divides
the allowable range of a numeric attribute into equi-sized buckets and
assigns a number to each bucket. This is similar to the
WIDTH_BUCKET function discussed in Chapter 6.

TEAM LinG - Live, Informative, Non-cost and Genuine!

740 16.3 Preparing Data for Oracle Data Mining

� Quantile Binning (for numerical data): This technique divides the
range of the numeric attribute into N bins containing approximately
equal numbers of records.

� Equiwidth Binning with Winsorizing (for numerical data): A
common problem with data is the presence of outliers, which are
exceptional values that lie outside the normal expected range of val-
ues. For example, if you expect the normal daily sales for a product
to be between $5,000 and $10,000 but on one specific day, due to
extenuating circumstances, the sales were only $50, then any min-
ing model should exclude the outlier case of $50. The quality of
models generated by the data mining algorithms can be severely
diminished due to the presence of outliers. Winsorizing is a tech-
nique that excludes values that fall outside of an accepted range,
determined statistically. Equiwidth binning is then performed on
the remaining data.

Normalizing

Normalizing of data converts data values so they fit into a specific range,
such as between 0 and 1 or between –1 and +1. For example, if you have
values between 0 and 100, normalizing the data to between 0 and 1 will
convert these values to a value between 0 and 1. Thus, the original value of
50 will become 0.5 and a value of 100 will become 1. Normalizing of data
is useful for algorithms such as Support Vector Machines and Nonnegative
Matrix Factorization.

Attribute Importance

This technique is useful when building a classification model by narrowing
down the relevant predictor attributes. If your data has a large number of pre-
dictor attributes, it can be a challenge to determine which ones influence your
required target attribute and which ones do not. For instance, age may deter-
mine a customer’s preference in music; however, the customer’s name, height,
or eye color will have little impact. Depending on the number of predictor
attributes, the classification process can be quite time consuming to compute.
Attribute importance automatically ranks attributes by how likely they are to
influence the target attribute. You can then choose to pick only a few of the
top ranking attributes to build the model.

In the next section, we will look at how to use the Oracle Data Mining
interfaces and a few examples. If you are only interested in a conceptual
overview of data mining, you can skip over this section and continue on to
section 16.5.

TEAM LinG - Live, Informative, Non-cost and Genuine!

16.4 Using Oracle Data Mining Interfaces 741

Chapter 16

16.4 Using Oracle Data Mining Interfaces

Oracle Data Mining is an option in the Enterprise Edition of Oracle Data-
base 10g. The data mining algorithms are available to application develop-
ers using either a Java or PL/SQL programming interface.

We will start by describing how to install and configure the data mining
option and its various components.

16.4.1 Installation and Configuration

Oracle Data Mining (ODM) is available as part of the Oracle Database 10g
installation using the Oracle Universal Installer. During the installation, if
you choose to create a preconfigured database (see Chapter 2), ODM is
automatically installed for you. If you choose to build a custom database,
then you must use the Database Configuration Assistant (DBCA) to install
the ODM option and follow its instructions.

Once the ODM option is installed, you will find that there is a built-in
schema, called DMSYS, which stores the repository containing database
system tables used by the data mining option. You can unlock the DMSYS
account and set new passwords, as follows:

alter user dmsys identified by <password_here> account unlock;

To run data mining tasks, you must have a user account with certain
database privileges. The easiest way to create this user is to run the script
$ORACLE_HOME/dm/odmuser.sql. It will prompt you for the user
name, password, and the default tablespace for the user. The data mining
algorithms produce many internal tables in the user schema, so it is recom-
mended that you use a schema different from the one used for your normal
data warehouse tables (EASYDW in our case). Further, it is recommended
that you create a separate tablespace, which can be allocated to data mining
users to store the mining data and the mining results. The examples in this
chapter assume that we have created a user, EASYDM, and a tablespace
EASYDM_DEFAULT.

It is also recommended that you use partitioning (see Chapter 4) and
parallel execution (see Chapter 6) for data mining tasks, especially for large
data sets, since they can achieve significant performance gains.

Now you are ready to start using the data mining APIs.

TEAM LinG - Live, Informative, Non-cost and Genuine!

742 16.4 Using Oracle Data Mining Interfaces

16.4.2 Data Mining Analysis Flow

The Java and PL/SQL interfaces largely follow the same flow, though the
details may be slightly different and will become clear when we look at
actual examples.

1. Preprocessing the input data for analysis: The raw data may need to
be preprocessed before analysis. Some algorithms require that the
data be binned. The user can preprocess the data and specify how
it is to be binned. This is optional with the Java interfaces, since
Oracle can automatically perform binning, if the user has not
done so. However, it is mandatory with the PL/SQL interfaces.

2. Setting up parameters for the analysis: Next, you must indicate
which function you would like to use (association, clustering,
classification, attribute importance, or feature extraction). You
can also optionally specify the actual algorithm you want to use
for that technique. If you do not specify the algorithm setting,
Oracle will use a default algorithm.

3. Building a model: The next step is to build the model. When
using the Java interfaces, the model is executed asynchronously.
However, when using the PL/SQL procedures, the model build-
ing is synchronous. In both cases the model is stored persistently
in the database. Note, however, that models generated using the
two interfaces are not compatible with each other.

4. Testing a model and computing lift: As described previously, when
using classification you may also want to test the model and com-
pute its lift. The test data must have the same format as the build
data.

5. Applying the model to new data: Once you have built a model, you
can apply it to new data to make predictions. You can apply a
model on new cases stored in a table or to a single case. To apply
the model, you must specify an input table containing the new
data, which must be preprocessed (if needed). The input table
must be compatible with the one used to build the model. You
must also specify an output table, where the results or predictions
will be placed, and identify which subset of attributes should be
placed in the output table.

TEAM LinG - Live, Informative, Non-cost and Genuine!

16.4 Using Oracle Data Mining Interfaces 743

Chapter 16

Now, we will illustrate the general flow of the data mining analysis using
the Oracle Data Mining Java and PL/SQL interfaces. We will present an
example using one technique: classification. The detailed description of all
the classes and procedures is beyond the scope of this book.

Hint: The Oracle Database 10g companion CD contains several sample
programs using the Oracle Data Mining APIs. After reading this chapter,
you may find it useful to install and try these additional examples to learn
how to use the different APIs.

16.4.3 An Example Using the Java API

In this example, we will build a model for classification to predict if a per-
son is likely to buy a digital camera. We will first illustrate how to build a
model and then apply the model on some test data. In real-life data mining
projects, the model is usually tested before it is applied to new data. Typi-
cally, many models are built and evaluated before the “best” model is dis-
covered. In these examples, we will skip the testing phase.

Hint: The examples in this section are in the form of Java code fragments.
Please refer to the Appendix for instructions to obtain the complete exam-
ples and instructions to compile and execute them.

Building a Model

In this example, we assume that the input data set used to build the model
is stored in a table, EASYDM.TEST_BUILD_DATA. The data is stored in
a nontransactional format, meaning that all attributes for a case are stored
in the same row of the table. The table definition is as follows:

DESCRIBE test_build_data;

 Name Null? Type

 --- -------- -------------

 CUSTOMERID VARCHAR2(15)

 AGE NUMBER

 GENDER VARCHAR2(8)

 OCCUPATION VARCHAR2(10)

 CAMERABUYER NUMBER(1)

TEAM LinG - Live, Informative, Non-cost and Genuine!

744 16.4 Using Oracle Data Mining Interfaces

The target attribute, CAMERABUYER, indicates whether the person
has bought a digital camera or not. It has the value 1 if the person has
bought a digital camera and 0 if not.

Building the model involves the following steps:

1. Preprocessing the input data for analysis: With the Java interfaces, it
is not necessary to preprocess the data. In this case we will not pre-
process the data and will let Oracle automatically perform binning.

2. Specifying the mining server to use: First, we need to create an
instance of a DataMiningServer object, specifying the database to
connect to using a standard JDBC URL and the user to login as.
On successful login, we get a connection handle (dmConn),
which will be used in the subsequent APIs. We are connecting
using the EASYDM user.

DataMiningServer dms = new

 DataMiningServer("jdbc:oracle:thin:@mypc:1521:orcl",

 "EASYDM", "EASYDM");

oracle.dmt.odm.Connection dmsConn = dms.login();

3. Specifying the structure of data: To specify the input data, we must
first create a LocationAccessData object, which indicates the
schema and table name of the input data. Then we create a Physi-
calDataSpecification object of the NonTransactionalDataSpecifica-
tion kind. (If the table were in transactional format, you would
use TransactionalDataSpecification instead.)

LocationAccessData lad

 = new LocationAccessData("TEST_BUILD_DATA", "EASYDM");

PhysicalDataSpecification pds

 = new NonTransactionalDataSpecification(lad);

4. Setting up parameters for the analysis: The function settings for
analysis are stored in a Mining Function Settings (MFS) Java
object. The actual API to use to create the MFS depends on the
mining technique you are using. An important part of MFS set-
tings is the Logical Data Specification, which allows you to specify
how each mining attribute has to be treated by the mining algo-
rithm. This will include the attribute type—as in whether the
attribute is categorical or numerical; the usage, as in whether it is

TEAM LinG - Live, Informative, Non-cost and Genuine!

16.4 Using Oracle Data Mining Interfaces 745

Chapter 16

a target attribute or a predictor; and its preparation status, as in
whether the attribute is prepared or unprepared.

In this example, we will specify parameters to do classification
using the ClassificationFunctionSettings class. We will not specify
any algorithm and will let Oracle determine the algorithm to use.
Because we have not preprocessed the data, we will indicate the
DataPreparationStatus of “unprepared” to indicate that Oracle
should apply automatic binning. The target attribute is specified
as CAMERABUYER and is of type categorical, because it has dis-
crete values.

ClassificationFunctionSettings cfs

 = ClassificationFunctionSettings.create

 (dmsConn, null, pds,

 "camerabuyer",

 AttributeType.categorical,

 DataPreparationStatus.getInstance("unprepared"));

If we want to use the Naive Bayes Algorithm, then we must
also define the algorithm level settings and pass it into the func-
tion level settings. The code would then look something like the
following. Notice that we have passed the Naive Bayes settings
variable nbs into the ClassificationFunctionSettings class.

NaiveBayesSettings nbs

 = new NaiveBayesSettings(0.01f, 0.01f);

ClassificationFunctionSettings cfs

 = ClassificationFunctionSettings.create

 (dmsConn, nbs, pds, "camerabuyer",

 AttributeType.categorical,

 DataPreparationStatus.getInstance("unprepared"));

After the mining function settings object is created, it is a
good idea to validate it to ensure it is correct. You can also persist
the settings in the database by specifying a name. This allows you
to reuse the same settings in different programs. Therefore, we
will verify the settings and store them in the database under the
name TEST_DATA_CFS.

cfs.validate();

cfs.store(dmsConn, "TEST_DATA_CFS");

TEAM LinG - Live, Informative, Non-cost and Genuine!

746 16.4 Using Oracle Data Mining Interfaces

5. Building a model: To build a model, you create a MiningBuildTask
object and store it persistently in the database under some name.
Then you must execute the task and wait for it to complete. In our
example, we create a task named TEST_DATA_CFS_MODEL,
store it in the database, and then execute it. You can query the sta-
tus of the task during execution. When execution is complete, the
model will be stored in the database.

MiningBuildTask task

 = new MiningBuildTask(pds, "TEST_DATA_CFS",

 "TEST_DATA_CFS_MODEL");

task.store(dmsConn, "TEST_DATA_CFS_TASK");

task.execute(dmsConn);

MiningBuildStatus = task.waitForCompletion(dmsConn);

Once the model is built, you will notice several new tables and views
created in the EASYDM schema. These are all internal tables and views,
which store the information about the model, and should not be tampered
with.

The next example shows how this model is applied to new data.

Applying a Model

Now, we will apply the model we built in the previous example to a test set
of customers to predict which of the customers are likely to buy a digital
camera.

Applying a model involves the following steps:

1. Specifying the mining server to use: This step is the same as in the
previous example of building the model.

2. Specifying the logical structure of data: Next, we specify the loca-
tion of the data to apply the model to. This is also similar to spec-
ifying the input table when building a model. The data used to
apply the model must have a format compatible with the build
data. In our example, we will use the table EASYDM.TEST_
APPLY_DATA.

LocationAccessData lad

 = new LocationAccessData("TEST_APPLY_DATA", "EASYDM");

PhysicalDataSpecification pds

 = new NonTransactionalDataSpecification(lad);

TEAM LinG - Live, Informative, Non-cost and Genuine!

16.4 Using Oracle Data Mining Interfaces 747

Chapter 16

3. Specifying the location of the output: On applying the model, the
resulting predictions will be placed in a table. In our example, we
will use the table EASYDM.TEST_APPLY_OUT.

LocationAccessData ladOut

 = new LocationAccessData("TEST_APPLY_OUT","EASYDM");

We must also specify a MiningApplyOutput object describing
which columns we would like in it.

MiningApplyOutput mao = new MiningApplyOutput();

Each row of the output table contains a prediction for the tar-
get attribute, in our case whether the customer is likely to buy a
camera or not. The target attribute is represented by a prediction
(1 or 0), a probability for the prediction, and a rank. We define
the target attribute using an ApplyTargetProbabilityItem object, as
follows:

ApplyTargetProbabilityItem camerabuyerAttr

 = new ApplyTargetProbabilityItem

 (new Attribute("CameraBuyer",

 DataType.stringType),

 new Attribute("Probability",

 DataType.stringType),

 new Attribute("Rank",

 DataType.stringType));

The camerabuyer attribute has two values: 1 meaning the cus-
tomer is a camera buyer, and 0, meaning the customer is not. We
must define these values as follows:

camerabuyerAttr.addTarget

 (new Category("CameraBuyer", "1",

 DataType.getInstance("int")));

camerabuyerAttr.addTarget

 (new Category("NotCameraBuyer", "0",

 DataType.getInstance("int")));

In addition, we would like to store in the output table the
CUSTOMERID for whom this prediction was made. This is
copied from the source table EASYDM.TEST_APPLY_DATA to
which the model is being mined, and hence we define it using an
ApplySourceAttributeItem object, as follows. The first parameter

TEAM LinG - Live, Informative, Non-cost and Genuine!

748 16.4 Using Oracle Data Mining Interfaces

specifies the name and properties of the column in the source
table and the second parameter specifies the name of this column
in the output table.

ApplySourceAttributeItem customerIDAttr

 = new ApplySourceAttributeItem(

 new MiningAttribute("CUSTOMERID",

 DataType.intType,

 AttributeType.notApplicable),

 new Attribute("CUSTOMER_ID",

 DataType.intType));

Finally, we add these to the MiningApplyOutput object we cre-
ated previously.

mao.addItem(camerabuyerAttr);

mao.addItem(customerIDAttr);

4. Creating and executing a MiningApplyTask: Now we are ready to
apply the model. This is nearly identical to building a model. We
create a MiningApplyTask and supply it the location of the input
data, the name of the model (one we created in the previous
example), the location of the output table, and the MiningApply-
Output specification. We then store this in the database under the
name TEST_DATA_CFS_APPLYTASK and execute it.

MiningApplyTask task

 = new MiningApplyTask(pds,

 "TEST_DATA_CFS_MODEL",

 mao, ladOut,

 "TEST_DATA_CFS_OUTPUT");

task.store(dmsConn, "TEST_DATA_CFS_APPLYTASK");

task.execute(dmsConn);

Once the task finishes, the predictions are stored in the
EASYDM.TEST_APPLY_OUT table. Notice that the columns
correspond to the attributes we defined in step 3. Each custom-
erid had two rows: one with the probability of being a camer-
abuyer (prediction=1) and the other with the probability of not
being a camerabuyer (prediction=0). The predictions are ranked
according to which is the more likely case. Thus, customer with
id AB70466 is unlikely to buy a camera (rank = 1 => camer-

TEAM LinG - Live, Informative, Non-cost and Genuine!

16.4 Using Oracle Data Mining Interfaces 749

Chapter 16

abuyer = 0), while customer with id AB70481 is more likely to
buy one (rank = 1 => camerabuyer = 1).

 SELECT prediction CAMERABUYER, probability, rank, customerid

 FROM EASYDM.TEST_APPLY_OUT;

 CAMERABUYER PROBABILITY RANK CUSTOMERID

 ----------- ----------- ---------- ----------

 …

 0 .837545455 1 AB70466 <- unlikely

 1 .162454545 2 AB70466

 0 .756452858 1 AB70472

 1 .243547171 2 AB70472

 1 .687442183 1 AB70481 <- likely

 0 .312557846 2 AB70481

 …

You can also use any of the analysis tools provided by Oracle, such as
Discoverer or Reports to analyze this result graphically.

16.4.4 An Example Using the PL/SQL Procedures

In this section, we will build the same model as in the previous section,
however, we will use the PL/SQL interfaces. The data mining interfaces are
in the PL/SQL package DBMS_DATA_MINING.

We will use the same input data, stored in the table EASYDM.TEST_
BUILD_DATA to build the model. We will then apply the generated
model to the data in EASYDM.TEST_APPLY_DATA and finally get pre-
dictions for which customers would be likely to purchase a camera.

Hint: To run these examples from SQL*Plus connect as the EASYDM user.

We will use the classification data mining technique, which requires
that the data be prepared by binning the attributes, as described. Unlike
the Java interfaces, where data preparation is automatically performed,
the PL/SQL interfaces require the data to be prepared using the
DBMS_DATA_MINING_TRANSFORM package (or your own or
third-party programs). We will start by briefly describing how we prepare
the data for data mining. Note that this step must be performed for both
the build data and the apply data.

TEAM LinG - Live, Informative, Non-cost and Genuine!

750 16.4 Using Oracle Data Mining Interfaces

Data Preparation

The data being used for our model has one numeric attribute, AGE, and two
categorical (nonnumeric) attributes, OCCUPATION and GENDER.

The DBMS_DATA_MINING_TRANSFORM.CREATE_BIN_NUM
procedure can be used to create a bin boundary table, which holds the bins
for the numeric attributes. The DBMS_DATA_MINING_TRANSFORM.
INSERT_BIN_EQWIDTH procedure is then used to bin numeric
attributes into the specified number of equal sized buckets (specified by the
bin_num parameter). The procedure will perform the binning on all numeric
columns of the input table specified by the parameter data_table_name that
are not in the exclude_list. The resulting bounds are placed in the table speci-
fied by the bin_table_name parameter.

In the following code, we first create a table, TEST_DATA_
NUM_BOUNDARY, to hold the results of binning. We then perform bin-
ning on the AGE attribute of TEST_BUILD_DATA into 10 buckets and
place the resulting boundaries into the bin table. Note that the table has
two numeric columns, AGE and CAMERABUYER; because we want to
bin only the AGE attribute, we specify CAMERABUYER in the
exclude_list.

BEGIN

-- create a bin boundary table

dbms_data_mining_transform.create_bin_num

 (bin_table_name => 'test_data_num_boundary');

-- Create boundaries for age and occupation (10 bins)

 dbms_data_mining_transform.insert_bin_num_eqwidth (

 bin_table_name => 'test_data_num_boundary',

 data_table_name => 'test_build_data',

 bin_num => 10,

 exclude_list => dbms_data_mining_transform.column_list

 ('CAMERABUYER'),

 round_num => 0

);

END;

/

The TEST_DATA_NUM_BOUNDARY table is a simple table,
described as follows with three columns: COL column contains the
attribute name, VAL has the lower bound for the bin, and BIN has the bin
number.

TEAM LinG - Live, Informative, Non-cost and Genuine!

16.4 Using Oracle Data Mining Interfaces 751

Chapter 16

describe test_data_num_boundary;

 Name Null? Type

 -------------- ------- --------------

 COL VARCHAR2(30)

 VAL NUMBER

 BIN VARCHAR2(4000)

The contents of TEST_DATA_NUM_BOUNDARY table for the AGE
attribute are as follows.

SELECT * FROM test_data_num_boundary;

COL VAL BIN

------- ---- ---

AGE 10.6 1

AGE 18.2 2

AGE 25.8 3

...

Similarly, we can bin the categorical (nonnumeric) attributes using the
DBMS_DATA_MINING_TRANSFORM.INSERT_BIN_CAT_FREQ
procedure. The parameters are identical to the previous example. We will use
2 bins for the GENDER attribute and 10 bins for OCCUPATION. The
resulting bin boundary values are placed in the TEST_DATA_
CAT_BOUNDARY table, created using the DBMS_DATA_MINING_
TRANSFORM.CREATE_BIN_CAT procedure.

BEGIN

 -- create categorical bin boundary table

 dbms_data_mining_transform.create_bin_cat (

 bin_table_name => 'test_data_cat_boundary');

 -- Categorical Bin for AGE

 dbms_data_mining_transform.insert_bin_cat_freq (

 bin_table_name => 'test_data_cat_boundary',

 data_table_name => 'test_build_data',

 bin_num => 2,

 exclude_list => dbms_data_mining_transform.column_list

 ('CUSTOMERID', 'OCCUPATION'),

 default_num => 0);

 -- Categorical bin for OCCUPATION

 dbms_data_mining_transform.insert_bin_cat_freq (

 bin_table_name => 'test_data_cat_boundary',

 data_table_name => 'test_build_data',

 bin_num => 10,

TEAM LinG - Live, Informative, Non-cost and Genuine!

752 16.4 Using Oracle Data Mining Interfaces

 exclude_list => dbms_data_mining_transform.column_list

 ('CUSTOMERID', 'AGE'),

 default_num => 0);

END;

/

Now, we use these bin boundary tables to generate views, which will be
used as input to the data mining algorithms. We will first transform the
input table, TEST_BUILD_DATA, by applying the categorical binning
table into a view named TEST_DATA_BUILD_CAT. This will then be
further transformed by using the numeric bin table into the final view,
TEST_DATA_BUILD_PREPARED, which contains the prepared data.

BEGIN

-- Create the transformed view

 dbms_data_mining_transform.xform_bin_cat (

 bin_table_name => 'test_data_cat_boundary',

 data_table_name => 'test_build_data',

 xform_view_name => 'test_data_build_cat');

 dbms_data_mining_transform.xform_bin_num (

 bin_table_name => 'test_data_num_boundary',

 data_table_name => 'test_data_build_cat',

 xform_view_name => 'test_data_build_prepared');

END;

/

We will not use the TEST_DATA_BUILD_PREPARED view to build
our classification model.

Building a Model

As with in the Java interfaces, to build a model you must specify the mining
technique to use. In our example, we will be using classification. Further,
you can optionally specify the algorithm and its settings to use. In the PL/
SQL interfaces, the settings are specified using a table called a settings table,
which is a simple table, described as follows:

CREATE TABLE test_data_settings (setting_name VARCHAR2(30),

 setting_value VARCHAR2(30));

You can then insert into this table the specific settings for your algo-
rithm. For example, we will be using the Naive Bayes algorithm with set-
tings of 0.01 and 0.01, as follows:

TEAM LinG - Live, Informative, Non-cost and Genuine!

16.4 Using Oracle Data Mining Interfaces 753

Chapter 16

BEGIN
-- Populate settings table
 INSERT INTO test_data_settings
 VALUES (dbms_data_mining.algo_name,
 dbms_data_mining.algo_naïve_bayes);
 INSERT INTO test_data_settings
 VALUES (dbms_data_mining.nabs_pairwise_threshold,'.01');
 INSERT INTO test_data_settings
 VALUES (dbms_data_mining.nabs_singleton_threshold,'.01');
 COMMIT;
END;
/

The model is created by invoking the procedure
DBMS_DATA_MINING.CREATE_MODEL, giving the name of the
model, the algorithm to use the input data table, the column that identifies
each “case,” the settings table, and the target attribute on which the predic-
tion will be made. In this following example, we are building a classification
model named TEST_DATA_PLSQL_MODEL using the TEST_DATA_
BUILD_PREPARED view and the TEST_DATA_SETTINGS settings
table. Our cases are specified by CUSTOMERID and the target attribute is
CAMERABUYER.

BEGIN

 dbms_data_mining.create_model(

 model_name => 'TEST_DATA_PLSQL_MODEL',

 mining_function => dbms_data_mining.classification,

 data_table_name => 'test_data_build_prepared',

 settings_table_name => 'test_data_settings',

 case_id_column_name => 'customerid',

 target_column_name => 'camerabuyer');

END;

/

Once the model build has finished, the model will be saved in the data-
base. You can query various aspects of the model, such as the settings, using
built-in TABLE functions. The model can then be applied to new data as
discussed in the next section.

Applying a Model

The data used to apply the model is stored in TEST_APPLY_DATA and
must also be prepared by binning, as done with the build data. The follow-
ing code uses the same bin boundary tables created for the build data and
creates views for the apply data. The final view, which gives the prepared
data, is named TEST_DATA_APPLY_PREPARED.

TEAM LinG - Live, Informative, Non-cost and Genuine!

754 16.4 Using Oracle Data Mining Interfaces

-- prepare apply data

BEGIN

 dbms_data_mining_transform.xform_bin_cat (

 bin_table_name => 'test_data_cat_boundary',

 data_table_name => 'test_apply_data',

 xform_view_name => 'test_data_apply_cat');

 dbms_data_mining_transform.xform_bin_num (

 bin_table_name => 'test_data_num_boundary',

 data_table_name => 'test_data_apply_cat',

 xform_view_name => 'test_data_apply_prepared');

END;

/

The model is applied by calling the procedure DBMS_
DATA_MINING.APPLY. The parameters are the name of the model to
use, the view containing the input data, the column identifying each case
and the table where the results must be stored. In this example, we are
applying the TEST_DATA_PLSQL_MODEL model on the input view
TEST_DATA_APPLY_PREPARED and the results are stored in
TEST_APPLY_OUT_PLSQL.

BEGIN

 dbms_output.put_line('Apply on apply data');

 dbms_data_mining.apply(

 model_name => 'TEST_DATA_PLSQL_MODEL',

 data_table_name => 'test_data_apply_prepared',

 case_id_column_name => 'customerid',

 result_table_name => 'test_apply_out_plsql');

 dbms_output.put_line('Completed apply');

END;

/

You can then view the predictions by selecting from the
TEST_APPLY_OUT_PLSQL table. Note that the predictions are not
automatically ranked, as in the Java model. You must explicitly issue the
DBMS_DATA_MINING.RANK_APPLY procedure to do the ranking.
This is left as an exercise to the reader.

Hint: Please note that the models generated by the PL/SQL and the Java
interfaces are not compatible. So it is not possible to generate a model using
Java and then apply it using the PL/SQL interfaces.

TEAM LinG - Live, Informative, Non-cost and Genuine!

16.5 Summary 755

Chapter 16

16.5 Summary
Data mining is a process that finds hidden trends and patterns in your data.
Oracle Data Mining embeds data mining functionality in the database
server, thereby improving the mining performance and allowing it to scale
to large amounts of data. In this chapter, we discussed various applications
of data mining and how they can be done using Oracle data mining Java
and PL/SQL interfaces.

The next and final chapter discusses how to make your data warehouse
highly available and how to protect your critical data in the event of disasters.

TEAM LinG - Live, Informative, Non-cost and Genuine!

757

17

High Availability and a Data Warehouse

17.1 Introduction

When data warehouses were first built, they were considered as a repository
for historical data to be used for business analysis by a chosen few. However,
as technology and business practices have evolved, businesses now need to
use daily business intelligence at all levels of the organization to stay com-
petitive. The data warehouse, being the central repository of information
about the business, thus plays a key role in the day-to-day operation of the
business. This means that, as with OLTP systems, the data warehouse sys-
tem must also be extremely reliable and nearly always available. Depending
on how the data warehouse is used in the business, a short downtime could
severely hamper the functioning of the business and an extended downtime
could mean serious financial consequences. Therefore, when building a data
warehouse, it is crucial to have a plan in place to ensure that the data ware-
house is always available if needed.

Due to its key role in the business, the data stored in the data warehouse
is an important corporate asset and hence must be protected from damage
due to system failures and from disasters such as fire or an earthquake.

Sep-
tember 11, 2001, highlighted the need to have a business continuity plan in
place.

It can take months to create a data warehouse, but only a few minutes
to lose it!

 Thus, in addition to normal backup and recovery procedures,
you may also need a disaster recovery plan for critical data stored in the data
warehouse.

In this chapter, we will discuss how to build a highly available data ware-
house based on features in Oracle Database 10

g

, such as Real-Application
Clusters (RAC), Automatic Storage Management (ASM), Recovery Man-
ager (RMAN), and Data Guard. Once the data warehouse has been built, it
cannot remain a static entity and must constantly evolve to meet the chang-
ing needs of the business. You may need planned downtime because the

TEAM LinG - Live, Informative, Non-cost and Genuine!

758

17.2

What Is a Highly Available System?

data is being reorganized or the system hardware or software is being
upgraded. This chapter will also discuss mechanisms in Oracle Database
10

g

, such as Rolling Patch Upgrades and Online Reorganization, which can
reduce the planned downtime for the warehouse.

The right architecture for your data warehouse will be determined not
only by the role the data plays in your business and the desired level of
availability of the data warehouse, but also by the costs associated with that
architecture. We will discuss techniques that can help maintain a balance
between the costs and the availability and protection of the data.

We will begin this chapter by exploring the key features of a highly avail-
able system.

17.2 What Is a Highly Available System?

In simple terms, a highly available system is one where there is very little
downtime. In reality, however, availability is measured by its impact on the
users of the system. In other words, if the system were to go down, would it
make a significant difference in the

perceived

 user experience? In an online
store, a 30-second delay may be tolerable; however, in a stock trading sys-
tem, this could be disastrous.

17.2.1 Characteristics of a highly available system

To achieve high availability, a system must have the three key features: reli-
ability, recoverability, and continuous operation.

Reliability

A reliable system is resilient to failures due to hardware or software prob-
lems. In order to be so, it is critical that the all hardware components used
are reliable, including disks, CPUs, memory, interconnects, network, and
so on. A system with built-in redundancy can be useful to protect against
individual component failure. Software reliability encompasses the data-
base, application, and Web servers, as well as the applications themselves.

Recoverability

Recoverability means that the system is capable of recovering from any type
of failure. Despite the best design, hardware and software components can
fail. No matter how reliable, disks will crash and so it is important to have
regular backups and a recovery procedure for data. Failures can also be due
to human error, where someone accidentally deletes some critical files or

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.2

What Is a Highly Available System? 759

Chapter 17

tables. Finally, failures can be due to manmade or natural disasters, such as
fire, earthquake, flood, electrical shutdown, or a terrorist attack. It is not
only important for the system to be recoverable but also that the recovery
occurs within a reasonable period of time. In order to do so, the system
must be able to quickly identify failures and possibly automate the recovery
process. Thus, monitoring and error detection form important components
of a highly available system.

Continuous Operation

Continuous operation is the most obvious characteristic definition of a
highly available system: the system downtime should be minimal or within
the acceptable limits. The ability of the system to recover from unplanned
failures in a timely manner is crucial for continuous operation. Another
aspect is to be able to handle planned expansions, such as adding new hard-
ware, upgrading software, or reorganizing the data without interruption in
service to the users.

17.2.2 Role of Operational Best Practices

In order to provide these three characteristics, a highly available system not
only requires technology infrastructure but also operational best practices.
No amount of technology will help if you end up scrambling to find the
DBA when the database goes down, because it will take longer than you
think to restore the operation back to normal. And you will end up with
lost business and unhappy users.

It is therefore important to put in place procedures and plans that dic-
tate how to react when an unplanned failure occurs. Who will respond to
the failure? How will they be notified? How long will the expected recovery
time be? Is there an alternative system that users can access during the out-
age? How often can failure be tolerated? How much data can you afford to
lose? Finally, it is extremely important to track and document the
unplanned outages in the past to identify any recurring problems and to
take steps to prevent failures in the first place!

No system, once designed, is ever static, and therefore you should also
be thinking about procedures to handle planned downtime. Does the sys-
tem have enough capacity to handle the user workload? How long can the
system operate before you will need to expand the hardware? What is the
anticipated growth of data volumes? How will you handle minor software
patches and major software upgrades? How often does data need to be reor-

TEAM LinG - Live, Informative, Non-cost and Genuine!

760

17.3

Overview of Oracle Database 10g High Availability Features

ganized? Can the users query the data while it is being reorganized? What
time of year or day is (not) a good time for planned downtime?

To summarize, before you settle on the technology for your highly avail-
able system, it is important to have clear answers to these operational ques-
tions.

In the following section, we will provide an overview of the Oracle
Database 10

g

 for building a highly available system.

17.3 Overview of Oracle Database 10

g

High Availability Features

Oracle Database 10

g

 provides features that can be used to build an effective
high-availability solution for any database system, including a data ware-
house.

Some of these features include:

�

Real-Application Clusters (RAC)

�

Automatic Storage Management (ASM)

�

Flashback Table, Database, and Query

�

Oracle Data Guard

�

Online Reorganization of Data

�

Dynamic Reconfiguration of the Oracle Instance

Figure 17.1 shows where each of these features fit in supporting the
three characteristics a highly available system.

In any system, there are two causes for downtime—planned and
unplanned. Unplanned downtime includes hardware, software, and disk
failures. Oracle features such as Real Application Clusters and Data Guard
provide protection against unplanned downtimes. Human error is also
another possible cause of downtime, and Oracle provides a feature called
flashback to help correct problems caused by human errors. Planned down-
time includes system maintenance and data reorganization and can be min-
imized by using features such as Rolling Patch Upgrades and Online
Redefinition in Oracle Database 10

g

. The Oracle Enterprise Manager Grid
Control framework provides a centralized management and monitoring

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.4

Protecting against Hardware/Software Failures 761

Chapter 17

interface, which makes it possible to anticipate failure conditions in
advance, detect failures, and recover from them in a timely fashion.

In the next few sections, we will discuss each aspect of high availability,
shown by the boxes in Figure 17.1, in the context of a data warehouse and
how to use the relevant features in Oracle Database 10

g

 for this purpose.

17.4 Protecting against Hardware/Software Failures

If you are designing a highly available data warehouse, the first question
that must be answered is: What is the impact to the business if the data
warehouse system is down? This will ultimately determine how many min-
utes or hours of downtime you can tolerate and how frequent your outages
can be. If you cannot tolerate unplanned outages, then you must ensure
that all hardware and software components are fault tolerant. If you use a
three-tier architecture, then your application, Web-servers, and the network
infrastructure must be fault tolerant as well. And, finally, the end-user
applications that access the data warehouse must be robust. Most impor-
tantly, the database server used for the data warehouse must be protected
against hardware and software failures.

Let us look at the various features in Oracle Database 10

g

 that can be of
use in ensuring continuous operation of the warehouse database.

Figure 17.1

Oracle Database 10g High-Availability Features

TEAM LinG - Live, Informative, Non-cost and Genuine!

762

17.4

Protecting against Hardware/Software Failures

17.4.1 Real-Application Clusters (RAC)

The Real-Application Clusters (RAC) technology is at the core of most
high-availability solutions using Oracle Database 10

g

. Chapter 3 discussed
the concepts involved in clustering a database and the technology behind
RAC. In a data warehouse, RAC provides the dual benefits of improving
the scalability and performance of the system and making it highly available
in the event of failure.

In an architecture using RAC, if there is a hardware failure in a node of
the cluster or if the Oracle instance running on a node dies, the entire sys-
tem does not become unavailable. The surviving nodes (or instances) will
automatically take over the work of the failed node (or instance) within a
matter of seconds. This means that while the system will not perform at its
full capacity, at the least, the data is still available and user operation is not
interrupted.

17.4.2 Reliable Storage

A key part of a fault-tolerant system is the storage architecture. For uninter-
rupted operation it is important to ensure that the storage components pro-
vide redundancy and fault tolerance or that an architecture incorporating
redundancy is utilized—for example, mirrored disks. In Chapter 3, we dis-
cussed in detail architectures using RAID systems, which could be used to
provide redundancy for storage. We also discussed the SAME (Stripe and
Mirror Everything) methodology to ensure high availability for storage.

Automatic Storage Management

The Automatic Storage Management (ASM) feature in Oracle Database
10

g

, which was described in Chapter 3, provides data mirroring and strip-
ing capability, thereby providing protection against disk crashes. Further,
ASM has a concept of failure groups, which allows disks to be classified
according to their common points of failure. ASM will mirror data such
that the mirrored copies will be in different failure groups, thereby provid-
ing storage redundancy. This ensures that no single failure can cause com-
plete unavailability or loss of data. For example, if two disks that share a
single SCSI controller are used to store the primary data and its mirrored
copy, then failure of the controller could cause the data on the disk to be
unavailable. In this case, the two disks are said to be in the same failure
group. If these disks are managed by ASM, it will automatically ensure that
the data and its mirrored copy will not be stored on these two disks in the
same failure group.

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.4

Protecting against Hardware/Software Failures 763

Chapter 17

Integration with HARD-Compliant Storage

Occasionally, a problem with the storage hardware can cause data corrup-
tion, which could be disastrous for a database. There are many ways to
recover from such data corruptions, including RMAN’s Block-Level Media
Recovery, restoring the data from a backup, and so on. However, the ideal
situation is when the storage subsystem can be smart enough to identify
that a block is corrupt and return an error instead of writing it to disk. Ora-
cle has started an initiative known as Hardware-Assisted Resilient Data
(HARD) in association with several leading storage vendors to integrate
special checking for Oracle data block corruptions into the storage sub-
system. In order to use HARD validation, the datafiles and log files need to
be placed on special HARD-compliant storage devices. This technique can
also detect corrupted writes due to errors made by the operating system or
third-party backup products.

Hint:

It is currently not possible to use the ASM to automatically balance

files, when HARD storage checking is in place.

17.4.3 Failure Detection and Monitoring

One of the important features of any highly available system is to quickly
identify where the failure is. Oracle Enterprise Manager Grid Control pro-
vides a complete monitoring framework for monitoring the health of all
components of the system. This can be used to monitor hosts, clusters,
ASM storage, and databases and has a comprehensive system of alerts to
notify the administrator in case of a failure.

Automatic Proactive Notifications

By proactively monitoring your system, it is possible to become aware of a
potential problem before it occurs. For example, an alert that a certain
tablespace is running out of space can avoid a failed load job in the future.
As described in Chapter 11, Enterprise Manager provides a mechanism for
a DBA to define alerts; however, in addition, it has a built-in set of best-
practice policies, and any violations get reported on the

Targets

 page.

17.4.4 Resource Management

As the data warehouse is made accessible to more and more users in a corpo-
ration, the load on the system rises. If the system goes down because the load

TEAM LinG - Live, Informative, Non-cost and Genuine!

764

17.5

Protecting against Data Loss

is too much, a user may perceive it no differently than an unplanned outage
due to a disk failure. Therefore, it is important to plan for the peak load
capacity. The Oracle Database 10

g

 Resource Manager is a valuable tool to
manage allocation of resources between different tiers of users of the system.

It is also important to ensure that the system has sufficient expansion
capabilities so that you don’t need a wholesale redesign to accommodate an
increase in users or data. In the future, the emerging Oracle Database 10

g

Grid Control framework may allow multiple systems to virtually share
resources and provision additional resources as needed.

17.5 Protecting against Data Loss

Building a data warehouse can take a significant amount of time, and it
could only take a few failures to lose it all, so it is important to consider the
impact of data loss. There are several ways in which data can be lost: media
failure, such as disk crash; a human error, such as an operator inadvertently
dropping a table; and a disaster, such as a fire, flood, or earthquake. We will
discuss each of these aspects.

17.5.1 Recovering from Media Failure

One very important consideration in the case of a data warehouse is to
identify how much data loss can be tolerated in the case of a media failure
such as a disk crash. An interesting point to note is that before getting to
the data warehouse, the data usually goes through a staging process, and so
there is already some built-in redundancy in the data. Perhaps it would be
possible to retrieve some of the lost data from the staging areas, using the
datafiles used for loading the warehouse, or from the operational data store,
if you have one. However, if you are going to rely on any of these tech-
niques, you need to test the process, and document how this will be done.
On the other hand, it may be acceptable if the last few minutes of data were
lost, because it did not make much difference to the analyses performed
using the data warehouse.

The amount of data loss you can tolerate will ultimately determine the
strategy for recovery from media failure. There are several options to con-
sider:

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.5

Protecting against Data Loss 765

Chapter 17

�

Using archived redo logs allows you to recover the database after
media failures. The Flash Recovery Area, described in Chapter 12,
should be used to simplify the management of backup- and recovery-
related files. The Recovery Manager (RMAN), which was also dis-
cussed in Chapter 12, provides sophisticated backup and recovery
capabilities.

�

Techniques such as striping and mirroring, discussed in Chapter 3,
can be used to provide data redundancy.

�

Physical design techniques such as partitioning, discussed in Chapter
4 can also be useful to protect against complete data loss: by splitting
partitions across multiple disks, you may only lose one or more parti-
tions and not the entire table.

17.5.2 Recovery from Human Errors with Flashback

Although most data loss is due to hardware failures, occasionally it may be
due to a human error. In a data warehouse, individual changes to the tables
are not very common except during the ETL process, and hence you may
think that there is not much need for error correction. It is true that you
may rarely have to retrieve an individual deleted record; however, accidents
happen—for example, someone may inadvertently drop a table or a parti-
tion. More commonly, a batch job may get run twice, causing duplicate
data to get loaded into the data warehouse. It can be very time consuming
to recover from these simple mistakes. In these cases, the flashback features
in Oracle can be used to restore the data, often significantly faster than
restoring from backup or repeating the ETL process.

The flashback features work by allowing data to be viewed as of a time
in the past. It is possible to recover past data at the level of a row, transac-
tion, table, or the entire database. Thus, if you knew that the error occurred
roughly at 3:15

P.M.

 today, you can look at the data as of a few minutes ear-
lier and identify the changes done during this period.

Oracle Database10

g

 provides several flashback features:

�

Flashback Table

�

Flashback Drop

�

Flashback Query

�

Flashback Database

TEAM LinG - Live, Informative, Non-cost and Genuine!

766

17.5

Protecting against Data Loss

The

point in time

 to flashback is specified using either a TIMESTAMP
or an SCN. The TIMESTAMP is just a date and time expression and you
are most likely to use this form. However, Oracle actually internally uses a
number called the SCN to mark a “timestamp” for committed transactions.
You can flashback up to a specific transaction, provided you know the SCN
for that transaction. The SCN can be mapped to a timestamp to within a
three second margin, so unless you need this level of accuracy, a time stamp
is usually sufficient.

Flashback Table

Flashback table allows you to restore a table as of a certain point in time,
along with all its indexes, triggers, and constraints, without shutting down
the database. This is done by issuing a FLASHBACK TABLE command
from SQL*Plus. For minor error correction, this is a much faster method
than restoring from a backup. For example, suppose we had incorrectly
deleted a new special offer for product SP1300 to the TODAYS_
SPECIAL_OFFER table, around July 7, 2004, 1:01

P.M

. Querying the
table indicates the row is not present.

SELECT * FROM todays_special_offers WHERE PRODUCT_ID = 'SP1300';

no rows selected

To recover the data before this time, say to 1:00

P.M.

, the following state-
ment can be issued:

FLASHBACK TABLE todays_special_offers TO TIMESTAMP

 TO_TIMESTAMP('2004-JUL-07 13:00:00',

 'YYYY-MON-DD HH24:MI:SS');

Flashback complete.

The flashback table command rolls back the entire table to the time or
SCN specified. Now, if we issue the same query again, we will see that the
row is restored.

SELECT * FROM todays_special_offers WHERE PRODUCT_ID = 'SP1300';

PRODUCT_ID OFFER_DAT SPECIAL_PRICE OFFER_PRICE

-------- --------- ------------- -----------

SP1300 07-JUL-04 200 0

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.5

Protecting against Data Loss 767

Chapter 17

Note that in order to perform a flashback table operation, the table must
have ROW MOVEMENT ENABLED, because the physical location of
any row may need to change—during the flashback. To enable row move-
ment, for example in the TODAYS_SPECIAL_OFFERS table, we had to
issue the following SQL:

ALTER TABLE todays_special_offers ENABLE ROW MOVEMENT;

At the time of writing, flashback table is not supported if the table has
any materialized views defined on it.

Flashback Drop

Flashback drop can be used to quickly recover from an accidental drop of a
table. In Oracle Database 10

g

, when you issue a DROP command to drop a
table, index, materialized view, and so on, the object does not get dropped
altogether but is placed in a

recycle bin

. The object can then be recovered
back from the recycle bin.

Hint:

Note that objects in the recycle bin appear under names such as

BIN$, and you can find its original name in the RECYCLEBIN view.

Suppose we had accidentally dropped the YEAR table from the data
warehouse. The table will appear in the recycle bin and can be seen by que-
rying the RECYCLEBIN view, as follows:

SELECT object_name as recycle_name

FROM recyclebin

WHERE original_name = 'YEAR' AND type = 'TABLE';

RECYCLE_NAME

BIN$3yV4u7YNbG7gNAgAIOXDhA==$0

Now, you can use the FLASHBACK TABLE statement to restore the
table, along with any indexes or other items. You can use either the original
name or the recycle bin name to restore the object.

FLASHBACK TABLE easydw.year TO BEFORE DROP;

TEAM LinG - Live, Informative, Non-cost and Genuine!

768

17.5

Protecting against Data Loss

If you do not want objects to go into the recycle bin, you must use the
PURGE option when issuing the DROP—for example, if you truly wanted
to purge the YEAR table, you would issue the following statement:

DROP TABLE easydw.year PURGE;

Once the object is placed in the recycle bin, it is only purged automati-
cally if the tablespace is getting close to full and Oracle needs the space for
other purposes. However, if you would like to reclaim the space earlier—for
example, if you wanted to purge the YEAR table—you could issue the fol-
lowing statement:

PURGE TABLE easydw.year;

Thus, using Flashback Drop you can easily recover from an accidental
drop of a table without having to go to a backup

Flashback Query

Flashback query is an extension of flashback table, which provides the abil-
ity to query the database as of a certain point in time by using a SELECT
statement. With flashback query it is possible look at the data as it existed
yesterday, a week ago, and so on. This allows you to have a historical per-
spective on the data. You can also use flashback query to recover and re-
insert old data into the table using an INSERT SELECT statement.

To use flashback query, you must use an AS OF TIMESTAMP or AS
OF SCN clause for a table in the FROM clause.

Suppose we have the following simple query, which shows the current
value of total sales (on July 7, 9:00 A.M.) from the PURCHASES table:

SELECT SUM(ps.purchase_price)

FROM purchases ps;

SUM(PS.PURCHASE_PRICE)

 19319852.7

Now, suppose we deleted records worth $1,000 from the PURCHASES
table, at around 10:00 A.M., with the result of the query as follows:

SELECT SUM(ps.purchase_price)

FROM purchases ps;

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.5 Protecting against Data Loss 769

Chapter 17

SUM(PS.PURCHASE_PRICE)

 19318852.7

If we wanted to see the data as of, say, this morning, around 9:30 A.M.,
we could issue the following query. The result shows that the deletion of
$1,000 is not included in the result of this query and so we are looking at a
historical view of this table.

SELECT SUM(ps.purchase_price)

FROM purchases AS OF TIMESTAMP ('2004-JUL-07 9:30:00',

 'YYYY-MM-DD HH24:MI:SS') ps;

SUM(PS.PURCHASE_PRICE)

 19319852.7

You can also use the DBMS_FLASHBACK package to set a flashback
time and then perform a whole sequence of queries as of that time, without
using any special AS OF syntax. This is shown in the following example.
First we use the DBMS_FLASHBACK.ENABLE_AT_TIME procedure to
set flashback to 12:00pm July 7, 2004, then issue our query (in fact you
could issue several) and finally issue DBMS_FLASHBACK.DISABLE pro-
cedure to turn off flashback.

--Step 1. enable flashback

execute DBMS_FLASHBACK.ENABLE_AT_TIME(-

 TO_TIMESTAMP('2004-JUL-07 9:30:00', 'YYYY-MM-DD HH24:MI:SS'));

--Step 2. issue the query

SELECT SUM(ps.purchase_price)

FROM purchases;

SUM(PS.PURCHASE_PRICE)

 19319852.7

--Step 3. disable flashback

execute DBMS_FLASHBACK.DISABLE;

Note that it is only possible to do a flashback query up to the point
where no DDL has been done to the table. Thus, in the preceding example,
if you had added a new column to the table, at 9:45 A.M. before doing the
deletion, then you will not be able to flashback to the data as of 9:30 A.M.

TEAM LinG - Live, Informative, Non-cost and Genuine!

770 17.5 Protecting against Data Loss

Hint: The flashback query and flashback table features requires the Auto-
matic Undo Management feature of Oracle Database 10g, to be enabled by
setting the initialization parameter UNDO_MANAGEMENT to AUTO.
Further, the UNDO_RETENTION parameter must be set to a value (in
seconds) large enough to include the oldest data you may need to flashback
to. For example, if you expect you may need to see 30-minutes old data, set
UNDO_RETENTION to 1800.

Flashback Database

Flashback database quickly rewinds an Oracle database to a previous point
in time to correct any problems caused by logical data corruptions or user
errors. Flashback database provides granular database recovery, down to a
SCN.

To enable flashback database, follow these steps:

1. Make sure that your database has media recovery enabled by
archiving the redo logs. To do this, you need to issue the follow-
ing SQL command.

ALTER DATABASE ARCHIVELOG;

2. Ensure that you have set up a Flash Recovery Area, as discussed in
Chapter 12.

3. Set the initialization parameter, DB_FLASHBACK_
RETENTION_TARGET, to indicate how far back into the
past in minutes you want to be able to restore your database.

4. Execute the ALTER DATABASE FLASHBACK ON statement
to enable flashback, as follows:

STARTUP MOUNT EXCLUSIVE;
ALTER DATABASE FLASHBACK ON;

When the flashback database feature is enabled, Oracle will periodically
write the current versions of data blocks to a flashback log. These logs are
saved in the flash recovery area and are used to flashback the database.

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.5 Protecting against Data Loss 771

Chapter 17

To flashback a database to any point in time, say 12:00 P.M., July 7,
2004, issue a FLASHBACK DATABASE command from SQL*Plus.

FLASHBACK DATABASE TO TIMESTAMP

TO_TIMESTAMP('2004-JUL-07 12:00:00','YYYY-MON-DD HH24:MI:SS');

Once a flashback database operation has been completed, the database is
not yet open for data access. At this point, the database can be opened in
read-only mode. You can verify if this is the point in time that is desired
and, if not, you can simply roll further back or forward in time. Once you
have determined it is the correct point in time to flashback to, open the
database with the RESETLOGS option, as follows:

ALTER DATABASE OPEN RESETLOGS;

To disable the flashback database feature, issue ALTER DATABASE
FLASHBACK OFF, which will disable creation of the flashback logs.

Hint: The flash recovery area should be large enough to hold all required
files, such as archived redo logs and backups; otherwise, you may not be
able to do flashback to the desired point in time.

In a data warehouse, depending on your change volume, the space
requirements for flashback logs may become prohibitive, so you may not be
able to use this to recover from errors. However, one use for this feature is
in a test system when trying out potential schema changes. Rather than
writing lengthy undo scripts to undo the schema changes, you can simply
flashback the database.

17.5.3 Disaster Recovery Using Data Guard

The importance of your data warehouse to the business will determine
whether you need a disaster recovery plan, such as in case of a fire, flood, or
earthquake. It may be that you decide that the business can do without the
warehouse for a while. However, great care should be taken if you make this
decision, because it may take much longer than you think to return to nor-
mal working conditions. Chances are that if you have a major failure, espe-
cially something that relates to a building, it could be many months before
the site is back in operation. Another aspect of disaster recovery is recover-
ing the data itself in the case of a disaster. One technique may be to keep a

TEAM LinG - Live, Informative, Non-cost and Genuine!

772 17.5 Protecting against Data Loss

recent set of backup tapes off-site in a fireproof safe, and then use these to
restore the database. A major issue with the data warehouse is its sheer size.
Your recovery procedures should take into account the size of the database
and the hardware required to rebuild it. Depending on how often the back-
ups are synchronized, you must be prepared to lose data in this process.

If the data warehouse is indeed very critical to the business, you may
want to consider having a standby database at a different location, using
Oracle Data Guard.

Data Guard Concepts

Oracle Data Guard creates and maintains a copy of a database as a standby
database at another site. If the primary database becomes unavailable, appli-
cations can be restarted and run on the standby. The standby is initially cre-
ated from a backup of the primary database. As changes are made on the
primary database, the redo that is generated is transmitted to the standby,
where it is applied, keeping the databases synchronized. Data Guard can be
configured to ensure that no data is lost in the event of a failure. It can also
be used to support planned maintenance operations, such as hardware or
operating system upgrades. Both the primary and standby systems can use
Real Application Clusters.

There are two types of standby databases for use with Data Guard:

� Physical Standby

� Logical Standby

Physical Standby

A physical standby database is an identical copy, block for block, of the pri-
mary database. It is kept synchronized with the primary database by recov-
ering the redo data from the primary database (called Redo Apply) using
the same process that is used for media recovery. When the standby is not
performing recovery, it can be open for read-only queries. However, while
the standby is open for queries, the redo cannot be applied.

A physical standby database can also be used to offload backup process-
ing from the primary database. RMAN can back up the physical standby
database while redo is being applied. Since the primary and the standby
databases are block for block copies of each other, a standby backup can be
used to recover the primary database in case of a failure

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.5 Protecting against Data Loss 773

Chapter 17

Physical standby databases have been available for several releases of the
Oracle database and are currently used to protect many OLTP systems, data
warehouses, and operational data stores.

Logical Standby

A logical standby database contains the same logical data as the primary
database, but its physical structure may be different. It is kept synchronized
with the primary database by converting the redo data to SQL and then
executing the SQL statements against the standby database (called SQL
Apply). Data can be queried at the same time SQL apply is applying
changes; however, it cannot be updated. Unlike in a physical standby, it is
possible to create additional tables on logical standby databases and these
tables may be updated at any time. Logical standby databases can be effec-
tively used for reporting or testing purposes, thereby offloading some of the
work from the primary database. Additional indexes and materialized views
can be added to improve query performance. At the time of writing, there
are a number of restrictions on the data types, types of tables, and opera-
tions supported on a logical standby.

Logical Standby Databases and Data Warehouse

Apart from disaster recovery, there are a number of ways in which logical
standby database could be used to support the overall data warehouse archi-
tecture.

� The logical standby database could be used as a source of data for the
warehouse. Since it contains a copy of the data from the production
system, it could be used as the source for the ETL process, thereby
offloading the operational systems.

� The logical standby database could be used to offload reporting tasks
from the primary database. It could also be used as the operational
data store. Data could then be moved into a staging area on a differ-
ent system, where it is transformed into a star schema and is ready for
warehouse queries.

� The logical standby database could contain the warehouse tables. The
tables maintained by logical standby must have the same logical
structure as the tables on the primary database; however, additional
tables could be created in the logical standby database to create a star
schema for the warehouse. It is possible to update these tables as with
any normal database tables.

TEAM LinG - Live, Informative, Non-cost and Genuine!

774 17.5 Protecting against Data Loss

While these techniques do not serve to protect the data warehouse
against disasters, they allow a data warehouse to be incorporated into the
larger enterprise disaster recovery plan, thereby reducing the overall costs.

Let us now look at the details of using Data Guard and how to set up
standby databases.

Data Guard Configuration

A data guard configuration can be made up of one primary database and up
to nine logical or physical standby databases. A typical configuration is
shown in Figure 17.2. The primary database transmits the redo to both a

physical and logical standby database, located at a site different from the
primary database. The physical standby is used for disaster recovery, and the
logical is used primarily for reporting but can also be used for disaster
recovery.

There are a number of components that actually make up Data Guard,
which are listed as follows:

Redo Transport Services: This component is responsible for shipping
the redo data from the primary site to the standby site(s). These services
also detect and resolve problems with missing archived logs (also referred to
as gaps in the redo). Note that redo transport services are also used in the

Figure 17.2 A Data Guard Configuration

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.5 Protecting against Data Loss 775

Chapter 17

Auto Log mode of Asynchronous Change Data Capture, which was dis-
cussed in Chapter 5.

Redo Apply Services: This component is responsible for maintaining
the standby database to keep it consistent with the primary database. In
case of physical standby, the redo apply services use the normal database
recovery mechanisms to apply the redo logs to the standby database. In case
of logical standby, the redo information is first transformed into equivalent
SQL statements, which are then executed on the standby database. This is
illustrated in Figure 17.2. In Oracle Database 10g, the redo apply can either
be done from archived redo logs on the standby database as they become
available or in a real-time apply mode directly from the standby redo logs.

Role Management Services: Typically, in order to perform mainte-
nance on the primary database, you may temporarily transform the
standby database to be the primary database, and transform the old pri-
mary database to be the standby database. This operation can be done as a
planned operation and is called a switchover. On the other hand, in the
event of a catastrophic failure of the primary database, you may transform
the standby to be the primary database. This is called a fail-over operation.
Role Management Services provide switchover and fail-over capabilities in
a Data Guard configuration.

Data Guard Broker

Data Guard Broker is a distributed management framework that automates
and centralizes the creation, maintenance, and monitoring of Data Guard
configurations. While a Data Guard configuration can be managed using
SQL*Plus, management operations are considerably simplified if they are
performed using the Data Guard Broker, with the graphical user interface
in Oracle Enterprise Manager. The Data Guard Broker also has a special-
ized command-line interface available as a standalone executable called
DGMGRL.

The Data Guard Broker is integrated with Oracle Database 10g and uses
a special process, known as the Data Guard Monitor (DMON), to perform
its various tasks. The graphical user interface to Data Guard Broker in Ora-
cle Enterprise Manager can be used to create new logical and physical
standby databases from backups of the primary database, establish commu-
nication between the primary and standby databases, perform role transi-
tions between the primary and standby, and so on. The command-line
interface cannot be used to create a standby; however, it can be used to con-
figure standby databases, perform role transitions, and various other main-
tenance and management tasks.

TEAM LinG - Live, Informative, Non-cost and Genuine!

776 17.5 Protecting against Data Loss

Hint: Please note that to use the Data Guard GUI you must use the Grid
Control version of Oracle Enterprise Manager and not the Database Con-
trol version.

In the following section, we will discuss how to set up a Data Guard
configuration using the Grid Control interface and, along the way, explain
some more concepts and requirements for using this feature.

Using Oracle Enterprise Manager to Configure Data Guard

The Data Guard graphical user interface can be reached from the Adminis-
tration page in Grid Control (shown in Figure 17.3) under the High Avail-
ability section.

Assuming no Data Guard configuration exists, clicking on the Data
Guard link will bring up the page shown in Figure 17.4.

At this point, there are no physical or logical standby databases present;
clicking on the Add Standby Database link will start the wizard to create a
standby database, as shown in Figure 17.5.

In this example, we are creating a physical standby database; however,
the steps to create a logical standby are mostly identical. Before continuing

Figure 17.3 Grid Control Administration Page

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.5 Protecting against Data Loss 777

Chapter 17

on, you must be aware of some requirements that the primary database
must satisfy in order to use Data Guard. In fact, if these requirements are
not met, you will be prompted to fix them, when using the wizard.

Figure 17.4 Setting up a Data Guard Configuration

Figure 17.5 Adding a Standby Database

TEAM LinG - Live, Informative, Non-cost and Genuine!

778 17.5 Protecting against Data Loss

� SPFILE: The SPFILE (Server Parameter File) is a mechanism to
manage initialization parameters, first introduced in Oracle 9i. When
the initialization parameters are changed, unlike with a regular
init.ora file, the SPFILE is updated automatically by the database
server. In order to use Data Guard Broker, the primary database must
use an SPFILE because it automatically configures some initialization
parameters. Note that if you used the default database installed in
Oracle Database 10g, SPFILE would already be enabled for you.

� ARCHIVELOG mode: In order to use Data Guard, the primary
database must be in the archive log mode, which means that before
the redo log is overwritten, a copy of it is automatically archived.
Recall that the standby database is maintained using the redo logs of
the primary, and hence this is very crucial.

� FORCE LOGGING mode: Some operations, such as Direct Path
inserts (or loads using SQL*Loader), may optionally be instructed to
not log redo data, using the NOLOGGING clause. This could be
detrimental to the correct operation of a standby database, especially
in the case of a failure. To protect against the use of the NOLOG-
GING mode, it is recommended that the primary database be set in
the FORCE LOGGING mode. Note that this is not mandatory and
you will get a warning when using the GUI, but the standby can still
be created.

Hint: If you fail to satisfy any key requirements for Data Guard, such as
ARCHIVELOG mode, you will not be able to proceed beyond this point.

Recall that the standby is initially created using a backup of the primary
database. Pressing the Continue button in Figure 17.5 will bring you to the
screen shown in Figure 17.6, where you must specify which type of backup
to use—a new backup or one that had been previously created by Data
Guard. Since this is the first standby database, we will create a live backup
of the primary database.

If you are creating a logical standby and the primary database has any
tables not currently supported, the offending tables will be indicated to you
at this time. Also, in our example, the primary database is not in FORCE
LOGGING mode, which is indicated as a warning on this screen (we can
still proceed, since this is not mandatory).

The Next button brings up the page shown in Figure 17.7, where you
must specify the directory where the backup files are stored. The backup

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.5 Protecting against Data Loss 779

Chapter 17

can be retained and used to populate additional standby databases later.
Note that in this step, you must specify appropriate operating system user
credentials to create the backup directory.

Figure 17.6 Choosing a Backup Type

Figure 17.7 Specifying Backup Options

TEAM LinG - Live, Informative, Non-cost and Genuine!

780 17.5 Protecting against Data Loss

The next step, shown in Figure 17.8, is to specify the Oracle Home
where the standby database must be created. The Oracle Home must be
one managed as a Grid Control target. In our example, we have the standby
database on the same host machine as the primary, but, typically, the
standby will reside on a different machine and likely at a different location.
Here you can appreciate the huge benefits of using Grid Control, in that it
provides a single centralized mechanism to monitor databases and hosts at
widely dispersed locations. You must also specify the instance name to use
(in our example dg2).

Pressing the Next button will bring up the screen shown in Figure 17.9,
where you specify the location for various files for the standby, such as data
files, control files, redo log files, and so on.

Note that if the primary and standby are on different host machines,
you should use an identical file system structure on both the standby and
primary databases. However, in our example, they are both on the same
machine and hence we must have a different structure. Fortunately, the wiz-
ard automatically figures this out, so you do not need to worry about the
details. If you are curious, you could press the Customize button to see the
various file locations. Also, in Figure 17.9, you must specify the location of
the listener.ora and tnsnames.ora, where entries will be added to allow
SQL*Net connections to the standby database.

Figure 17.8 Specifying Oracle Home for the Standby

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.5 Protecting against Data Loss 781

Chapter 17

The Next button brings up the penultimate screen of the wizard, shown
in Figure 17.10, where, first, you must specify the Database Unique Name
for the standby database and the Target Name, which is used by Grid Con-
trol to list the database under its targets listing. Second, you must specify

Figure 17.9 Specifying Standby File Locations

Figure 17.10 Specifying Standby Configuration

TEAM LinG - Live, Informative, Non-cost and Genuine!

782 17.5 Protecting against Data Loss

the location (on the standby site) where the archived redo logs from the pri-
mary are placed. It is recommended that you use the Flash Recovery Area,
described in Chapter 12, for this purpose, because this allows Oracle to
automatically manage the space used by these logs and delete them when
no longer necessary.

Hint: Set DB_FLASHBACK_RETENTION_TARGET for the Flash
Recovery Area to be the same for both primary and standby databases.

The Next button will bring up a review screen (not shown here), where
you can review your choices. The Back button can be used to change the
options on any screen. Once you are satisfied with the settings, press the
Finish button to start the creation of the standby database, which will bring
up the screen shown in Figure 17.11.

The standby creation will be issued as an Oracle Enterprise Manager
job, and once the job has been submitted, you will be presented with a
screen similar to that shown in Figure 17.12, which is the central page to
manage a Data Guard Configuration. While the standby database is in
progress, the Status column will show Creation in progress, and, once it has
finished, the status will appear as Normal. On this page, you will see all
existing standby databases in the Data Guard Configuration and also the

Figure 17.11 Processing Standby Creation

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.5 Protecting against Data Loss 783

Chapter 17

progress of the Redo Apply. The standby we just created, site1, is shown on
this page. Press the Add Standby Database button to add additional standby
databases.

Data Guard Protection Modes

One of the items of interest in Figure 17.12 is the Protection Mode. Data
Guard provides three operating modes, which give different levels of perfor-
mance, availability, and data protection. These modes are:

� Maximum Protection Mode

� Maximum Performance Mode (default)

� Maximum Availability Mode

Maximum Protection Mode

This mode guarantees that there will be no data loss in the event of failure
of the primary database. In this mode a transaction cannot be committed
until its redo information is written both to the redo logs on the primary
and at least one standby site. If a failure prevents the redo from being writ-
ten to the last standby site available in this protection mode, the primary
database will be shut down. This level of protection is recommended to
protect only the most critical data. It is also recommended that when using

Figure 17.12 Data Guard Configuration

TEAM LinG - Live, Informative, Non-cost and Genuine!

784 17.5 Protecting against Data Loss

the maximum protection mode, you should have at least two standby data-
bases so that hopefully one of them will be reachable at any given time,
thereby avoiding a shutdown of the primary database.

Maximum Performance Mode

This mode will provide data protection without impacting the performance
of the transactions on the primary database. In this mode, the writing of
redo to the standby site is done asynchronously with the transaction com-
mit. Thus, the redo logs on the standby will lag the primary database. If the
primary database fails, you may lose the data corresponding to this missing
redo portion. Depending on the network bandwidth, the missing redo may
be minimal.

Maximum Availability Mode

This mode is a compromise between the other two modes. Similar to the
maximum protection mode, this mode also requires that the redo be writ-
ten to at least one standby site prior to transaction commit. However, if the
redo could not be written to the standby site, the primary database will not
shutdown but will instead operate in the maximum performance mode.
This means that there may be temporary durations where the standby site
does not have all the redo from the primary. This mode operates on the
premise that eventually the missing redo will get written to the standby site,
after which the database will resume operation in the maximum availability
mode. As long as there were no gaps in the redo, this mode ensures no data
loss if the primary database fails. However, in the event of a failure, if some
redo was not yet written to the standby site, then you will lose this data, just
as in the maximum performance mode.

Note that it is important to understand the difference between redo
shipping and redo apply in the context of the protection mode. In the max-
imum protection and availability mode, the redo shipping is synchronous
with the transaction commit; however, the standby may still take some time
before the redo is applied. This guarantees no data loss, because as long as
the redo is available at the standby site, it can be applied at any time to syn-
chronize the standby to the primary. On the other hand, in the maximum
performance mode, the redo shipping may lag behind the actual generation
of the redo on the primary. To appreciate this, click the Performance Over-
view link in Figure 17.12, which will bring up the screen shown in Figure
17.13. Here you can see the details regarding the redo data generated by the
primary and the progress of the redo shipping services and the redo apply
on the standby database. In the graph on the upper-right corner, the dark

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.5 Protecting against Data Loss 785

Chapter 17

bar shows the volume of data not yet received by the standby and the light
bar shows the volume of data not yet applied.

It is possible to switch between the modes of protection by clicking on
the Protection Mode link in Figure 17.12. Note that when switching the
mode to a higher level of protection, the primary database must be
restarted, so you should carefully consider your availability and data protec-
tion requirements before deciding on the mode.

Switching Roles From Primary to Standby Database

One of the major reasons to have a standby is so that it can be used in lieu
of the primary database either when performing a scheduled maintenance
or during an unplanned failure of the primary. The Switchover and Fail-over
buttons in Figure 17.12 allow you to perform these two functions. In this
section, we will illustrate the switchover operation; however, the steps for a
fail-over are the same.

Suppose we needed to perform a hardware upgrade on the primary data-
base but would like to have minimal interruption in data access for the
application users. In this case, we would like to perform a switchover opera-
tion. Selecting a target standby and pressing the Switchover button will
bring up the screen shown in Figure 17.14, where you must confirm that
you would like to switchover. When a switchover occurs, the current pri-

Figure 17.13 Data Guard Performance Overview

TEAM LinG - Live, Informative, Non-cost and Genuine!

786 17.5 Protecting against Data Loss

mary database will be shut down and any connected user sessions will be
disconnected.

Once the Yes button is pressed, you will see a progress screen (not shown
here). Once the switchover is complete, you can now see (as shown in Fig-

Figure 17.14 Switchover Operation

Figure 17.15 Switchover Complete

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.5 Protecting against Data Loss 787

Chapter 17

ure 17.15) that the original primary database, orcl2.us.oracle.com, is now
the standby, and site1 is now the primary database.

17.5.4 Oracle Maximum Availability Architecture

We can see how easy it is to set up a disaster recovery solution, if you need
one, using Data Guard and Grid Control. In a Data Guard configuration
the primary and standby databases can either be single-instance databases
or they can use RAC. Oracle recommends that the primary and standby
databases have identical hardware and software configuration.

In order to assist the design of highly available systems, Oracle provides
a detailed blueprint, called the Maximum Availability Architecture
(MAA), which gives guidelines for technology and best practices to set up a
highly available architecture. This architecture, illustrated in Figure 17.16,
is designed to provide maximum protection against both unplanned failures

and disasters. In this architecture, redundancy is included at every level,
including the network components, application server, database server, and
storage. Due to limitations of space, we have only discussed Oracle Data-

Figure 17.16 Maximum Availability Architecture

TEAM LinG - Live, Informative, Non-cost and Genuine!

788 17.6 Managing Planned Downtime

base 10g in this chapter; however, a key component of MAA is an applica-
tion server farm running Oracle Database 10g Application Server, with a
load-balancer providing fail-over capabilities. RAC and Data Guard are
integral parts of this architecture, with an RAC database used for both the
primary and standby. A WAN traffic manager is used to direct network traf-
fic from the primary to the standby site in the event of a disaster. The entire
configuration is centrally managed using the Oracle Enterprise Manager
Grid Control console.

Along with the technical details, MAA also suggests best practices that
can be followed to ensure continuous operation and quick recovery from
failures. Detailed information on MAA is available in the Oracle documen-
tation and at OTN (http://otn.oracle.com/deploy/availability/htdocs/
maa.htm), and we would encourage you to consult this when designing
your data warehouse for high availability.

17.5.5 Protecting Metadata

In designing the warehouse, in addition to the data, you may have collected
a lot of metadata in the form of schema design, DDL scripts, loading
scripts, and so on. Loss of a crucial script can be as disruptive to a data
warehouse operation as loss of a critical table. Thus, care must be taken to
also include metadata in your high-availability solution. This means all crit-
ical files and scripts must be backed up on a regular basis or, alternatively,
stored in the database itself. The Oracle Database 10g is capable of storing
data in all formats, and so, by using the database, you can ensure protection
for all critical files just as if they were data. Further, as your business pro-
cesses evolve, so will your processes for loading and managing your data
warehouse. Hence, it is also important to put a change management infra-
structure in place to track all changes to the schema and loading procedures
over time. Thus, in case there is a problem, you can quickly identify the
source and revert back to an older version if necessary.

17.6 Managing Planned Downtime

As with any computer system, the data warehouse typically needs to be
periodically upgraded with new hardware and software. When choosing
hardware for a data warehouse, it is important to choose hardware that can
be expanded online. You should be able to add disks, memory, and CPUs
without needing to bring down the entire data warehouse. Similarly, it is
important to consider the impact of software upgrades on the system. The
upgrade may be as simple as applying a patch or as major as changing the

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.6 Managing Planned Downtime 789

Chapter 17

database version. In all cases, you must have adequate testing done before
unleashing the new software on users.

Oracle Database 10g provides several features to help in this area, which
we will discuss now.

17.6.1 Dynamic Instance Reconfiguration

Prior to Oracle Database 10g, if you were experiencing an increased user
workload and needed to increase the size of the SGA, you had to shut down
the database. This can be an annoying interruption to users and can be a
significant financial hit to the business. In Oracle Database 10g, many of
the initialization parameters for the Oracle instance, including SGA and
PGA memory settings, can be dynamically altered, using the ALTER SYS-
TEM SET command, without shutting down the database.

The initialization parameters can be easily reconfigured using Oracle
Enterprise Manager. Further, Oracle will also automatically adjust values of
other internal derived parameters whose values are based on the settings of
the modified initialization parameter.

17.6.2 Online Maintenance

Usually, data warehouses have a regular maintenance window where data is
loaded and all auxiliary structures refreshed. This could happen weekly,
daily, or even multiple times in a day. By partitioning data you can perform
maintenance on part of the data, while the remaining data is still available
for use. Many other operations in Oracle Database 10g can be performed in
an online fashion, such as rebuilding indexes, reclaiming space for objects
(Online Segment Shrink), and allocating additional space (Resumable
Space Allocation). Thus, the data warehouse can be made fully or partially
available during normal maintenance operations.

17.6.3 Online Redefinition

No database design is ever static, and, as business requirements or perform-
ance goals change, the data warehouse schema must evolve to meet these
requirements. For instance, you may decide to split a large dimension table
into a snowflake for improved load performance, or add a new measure col-
umn to the fact table. Also, occasionally you may need to physically reorga-
nize the data—for example, to change the partitioning structure or to move
it to a different tablespace on a different disk. Traditionally, these types of
changes would require a significant scheduled downtime for the entire data-

TEAM LinG - Live, Informative, Non-cost and Genuine!

790 17.6 Managing Planned Downtime

base. Oracle Database 10g provides Online Data Redefinition capabilities
to physically or logically reorganize data. This makes it possible to change
the data warehouse schema, or reorganize data, while users may still be
accessing and even modifying it.

Oracle Enterprise Manager Redefinition wizard and the DBMS_
REDEFINITION package, which were discussed in Chapter 11, can be
used to reorganize tables.

17.6.4 Rolling Upgrades

One of the common maintenance activities on any software system is that
you periodically need to apply a patch to fix outstanding issues, especially
security issues, or to upgrade the database version. The Oracle Database
provides two mechanisms to do this without downtime—using RAC and
using Data Guard.

Using RAC

In addition to transparent fail-over after an unplanned outage, Oracle RAC
also provides the ability for planned shutdown of one or more nodes. This is
used by the Rolling Patch Upgrade feature, which allows you to apply an
Oracle database or operating system patch to one of the nodes in a RAC
cluster, without affecting the other nodes. Thus, you can patch all nodes
one, by one shutting down the entire cluster, which means that users can
continue to use the database while the software is being patched.

There are two steps to perform a Rolling Patch Upgrade:

1. The node where the patch is to be applied is quiesced, which will
mean that all users are automatically directed to one of the other
nodes.

2. The patch is applied to this node, the node is reactivated, and
joins the cluster.

Thus, the RAC system now has different nodes operating at different
software levels. You can also use this as an effective way to test the patch,
because if there is a problem, you can roll back the patch. Thus, you can
apply a patch to the entire cluster in a phased manner without any down-
time.

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.7 Information Lifecycle Management 791

Chapter 17

Oracle Enterprise Manager can be used to monitor availability of new
software patches for the database by configuring access to the MetaLink
Web site and can be used to apply the patches on an ongoing basis. How-
ever, not all patches can be upgraded in a rolling fashion, and hence the
alternative technique using Data Guard can prove beneficial.

Using Data Guard

With Data Guard, you can either apply patches or perform database soft-
ware upgrades (from Oracle Database 10g, Release 1, Patch Set 1 onward)
with near-zero downtime by using a logical standby database. Unlike the
RAC Rolling Patch Upgrade, which can only be used for select patches, the
logical standby database can be used for any Oracle patch set or major
release.

This is done using the following steps:

1. The logical standby database is upgraded to the next release. At
this point, the Data Guard configuration is running in a mixed
mode. In this mode, the upgrade can be aborted and the software
downgraded, without any data loss. Also, additional standby
databases may be used to protect against unplanned failures at
this time.

2. Once the new software version is tested and validated, a switch-
over operation is done now to make the logical standby the pri-
mary database, and all applications must now use the new pri-
mary database.

3. The old primary database can then be upgraded to the newer ver-
sion as well.

Thus, with Data Guard, it is possible to perform database software
upgrades and tests with minimal disruption in service for the end users.

17.7 Information Lifecycle Management

Throughout this chapter, we have illustrated the technology Oracle
Database 10g provides to build a highly available warehouse. Ideally, you
would like to keep as much data online and available at all times. However,
despite the availability of technology, the sheer size of data involved in a
data warehouse could throw any high-availability solution out the window

TEAM LinG - Live, Informative, Non-cost and Genuine!

792 17.7 Information Lifecycle Management

because the costs could be prohibitive! The answer to this dilemma lies in
understanding which data is hot and which is not—only the data that is
critical and constantly in use needs to be kept in a highly protected and
available system. As data gets old or obsolete, it could be moved to cheaper
disks or compressed and/or archived to a slower medium such as tape.
Thus, it is still available if you need it for some long-term analysis or regula-
tory purposes; however, it does not cost as much to keep it accessible and
protected, if it is not in active use. This is known as Information Lifecycle
Management and can be the critical success factor in balancing the cost
and availability of data in a growing data warehouse.

In order to manage resources effectively, you need to classify data into
different categories, based on the age, access frequency, or importance to
the business. Typically, the age of the data is the most common criterion
for how frequently it is accessed. For example, if the data warehouse stores
five years of data, only the last two years of data may be used in daily
operations of the business. An effective mechanism to place data in differ-
ent categories by age is to use range partitioning. However, you could also
perform the classification based on some application-specific data value,
such as a frequent customer tag, which could then be used as a partition
key with list partitioning.

Therefore, data may be classified into active current data, less active, his-
torical, and archival data. Different policies regarding type of storage and
protection levels may be used for each class of data. Thus, the cost of stor-
ing that data can be controlled based on which category the data falls into.
This is illustrated in Figure 17.17. For example, the most current active

Figure 17.17 Managing Storage Policies According to Class of Data

TEAM LinG - Live, Informative, Non-cost and Genuine!

17.8 Summary 793

Chapter 17

data could be placed in a highly redundant, enterprise-class storage system.
At this stage, the data can be kept in a maximum protection RAID system
and backed up nightly. As updates to the data become infrequent, the parti-
tions could be compressed. Later, as the activity on the data decreases, it
could be moved on to a lower-cost storage tier consisting of off-the-shelf
cheap (and potentially slower) disks. Eventually, the data may be obsolete
from the business point of view but may need to be kept for regulatory pur-
poses—such archived data could be kept off-line on tape. As time passes
and current data becomes older, the data is continuously reclassified, and
Oracle Database 10g features such as Data Pump and transportable
tablespaces can be used to rapidly move the older data into the next,
cheaper tier of storage.

We have barely touched on this topic, but hopefully you can appreciate
how effective life-cycle management makes it possible to provide adequate
protection to critical data, while at the same time keeping the cost of stor-
age and data protection under control.

17.8 Summary

In this chapter, we have discussed various aspects of improving the availabil-
ity of the data warehouse. Oracle Database 10g provides features such as
RAC to provide fault-tolerant operation in the face of hardware and soft-
ware failures and allows logical and physical reorganization of data without
requiring downtime. We discussed the role of disaster recovery in a data
warehouse and also how the data warehouse fits into an enterprise disaster
recovery strategy using Data Guard. Finally, we also touched upon the sub-
ject of information life-cycle management, which ensures that the data
warehouse will continue to be cost effective even as data sizes grow.

TEAM LinG - Live, Informative, Non-cost and Genuine!

795

A

The Schema for Easy Shopping Inc.

We saw in Chapter 2 how to create our database using the GUI tools, but
many readers may prefer to create the database directly from SQL. The
SQL to achieve this is shown below, but it assumes that the database has
already been created.

The example shown here has been created for a Windows system, a sim-
ple edit of the file specs is all that is required for a different platform. Also
note that the file sizes here are very small compared to what you would use
in a production environment.

A.1 Creating the Tablespaces and Data Files

The first step is to connect to the database using a powerful user name.

connect system/manager

The next step is to create the tablespaces where the data will reside and
their associated data files.

-- Temporary Tablespace

CREATE TEMPORARY TABLESPACE easy_temp

 TEMPFILE 'D:\ORACLE\PRODUCT\10.1.0\ORADATA\EASYDW\easy_temp.f'

 SIZE 10m REUSE AUTOEXTEND ON NEXT 16k ;

-- Tablespace to store Materialized Views

CREATE TABLESPACE mview

 DATAFILE 'D:\ORACLE\PRODUCT\10.1.0\ORADATA\EASYDW\easy_mview.f'

SIZE 6m REUSE AUTOEXTEND ON

 DEFAULT STORAGE

 (INITIAL 16k NEXT 16k PCTINCREASE 0 MAXEXTENTS UNLIMITED);

TEAM LinG - Live, Informative, Non-cost and Genuine!

796

A.1

Creating the Tablespaces and Data Files

-- Tablespace for Dimensions

CREATE TABLESPACE easy_dim

 DATAFILE 'D:\ORACLE\PRODUCT\10.1.0\ORADATA\EASYDW\dimensions.f'

SIZE 5m REUSE AUTOEXTEND ON

 DEFAULT STORAGE

 (INITIAL 16k NEXT 16k PCTINCREASE 0 MAXEXTENTS UNLIMITED);

-- Tablespace for the INDEXES

CREATE TABLESPACE easy_idx

 DATAFILE 'D:\ORACLE\PRODUCT\10.1.0\ORADATA\EASYDW\index.f'

SIZE 5m REUSE AUTOEXTEND ON

 DEFAULT STORAGE

 (INITIAL 16k NEXT 16k PCTINCREASE 0 MAXEXTENTS UNLIMITED);

-- Default Tablespace

CREATE TABLESPACE easydw_default

 DATAFILE 'D:\ORACLE\PRODUCT\10.1.0\ORADATA\EASYDW\
easydw_default.f'

SIZE 5m REUSE AUTOEXTEND ON

 DEFAULT STORAGE

 (INITIAL 16k NEXT 16k PCTINCREASE 0 MAXEXTENTS UNLIMITED);

Once the tablespaces have been created for the dimensions, we can now
create the tablespaces for the fact table, PURCHASES. Since we will be par-
titioning the data, we must now create the tablespace for each partition.
There will be one partition per month for the data and another partition
for the indexes. Here we will create only the January partition for the data
and index; simply repeat this process for the other partitions.

-- create the 3 month tablespaces for the fact partitions

CREATE TABLESPACE purchases_jan2003

 DATAFILE 'D:\ORACLE\PRODUCT\10.1.0\ORADATA\EASYDW\
PURCHASESJAN2003.f'

 SIZE 5m REUSE AUTOEXTEND ON

 DEFAULT STORAGE

 (INITIAL 16k NEXT 16k PCTINCREASE 0 MAXEXTENTS UNLIMITED);

-- create the 3 month tablespaces for the fact indexes

CREATE TABLESPACE purchases_jan2003_idx

 datafile 'D:\ORACLE\PRODUCT\10.1.0\ORADATA\EASYDW\
PURCHASESJAN2003_IDX.f'

SIZE 3m REUSE AUTOEXTEND ON

 DEFAULT STORAGE

 (INITIAL 16k NEXT 16k PCTINCREASE 0 MAXEXTENTS UNLIMITED);

TEAM LinG - Live, Informative, Non-cost and Genuine!

A.2

Creating the Tables, Constraints, and Indexes 797

Appendix A

A.2 Creating the Tables, Constraints, and Indexes

Once the tablespaces have been defined, the EASYDW user can be created,
which will create that schema where the data will be stored.

-- create a user called EASYDW

-- this will be the schema where the objects will reside

connect system/manager

CREATE USER easydw IDENTIFIED BY easydw

 DEFAULT TABLESPACE easydw_default

 TEMPORARY TABLESPACE temp

 PROFILE DEFAULT ACCOUNT UNLOCK;

GRANT unlimited tablespace TO easydw ;

GRANT dba TO easydw ;

GRANT create session TO easydw;

The DBA privilege has been granted to the user so they can create and
manage the tables and indexes.

Hint:

Don’t forget to connect as user EASYDW before creating the tables

and indexes, or the tables and indexes will be defined in the wrong schema.

-- now create the tables

CONNECT easydw/easydw

-- CUSTOMER Dimension

CREATE TABLE easydw.customer

(customer_id varchar2(10),

 city varchar2(15),

 state varchar2(10),

 postal_code varchar2(10),

 gender varchar2(1),

 region varchar2(15),

 country varchar2(20),

 tax_rate number,

 occupation varchar2(15))

PCTFREE 0 PCTUSED 99

TABLESPACE easy_dim

STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0) ;

TEAM LinG - Live, Informative, Non-cost and Genuine!

798

A.2

Creating the Tables, Constraints, and Indexes

ALTER TABLE customer

 ADD CONSTRAINT pk_customer PRIMARY KEY (customer_id)

 USING INDEX

 PCTFREE 5

 TABLESPACE indx

 STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0) ;

We have defined the constraint here by adding it via the ALTER TABLE
command. The constraint will use an index with the parameters that we
have specified and the index will inherit the constraint name,
PK_CUSTOMER.

-- PRODUCT Dimension

CREATE TABLE easydw.product

(product_id varchar2(8),

 product_name varchar2(30),

 category varchar2(4),

 cost_price number (6,2)

 constraint cost_price_not_null NOT NULL,

 sell_price number (6,2)

 constraint sell_price_not_null NOT NULL,

 weight number (6,2),

 shipping_charge number (5,2)

 constraint shipping_charge_not_null NOT NULL,

 manufacturer varchar2(20),

 supplier varchar2(10))

PCTFREE 0 PCTUSED 99

TABLESPACE easy_dim

STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0) ;

ALTER TABLE product

 ADD CONSTRAINT pk_product PRIMARY KEY (product_id)

 USING INDEX

 PCTFREE 5 TABLESPACE easy_idx

 STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0) ;

-- TIME Dimension

CREATE TABLE easydw.time

(time_key date,

 month number (6,0),

 month_name varchar2(10),

 quarter number (6,0),

 year number (4,0),

 day_number number (3,0),

 day_of_the_week varchar2(9),

 week_number number (2,0))

PCTFREE 0 PCTUSED 99

TABLESPACE easy_dim

STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0) ;

TEAM LinG - Live, Informative, Non-cost and Genuine!

A.2

Creating the Tables, Constraints, and Indexes 799

Appendix A

ALTER TABLE time

 ADD CONSTRAINT pk_time PRIMARY KEY (time_key)

 USING INDEX

 PCTFREE 5 TABLESPACE easy_idx

 STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0) ;

-- TODAYS_SPECIAL_OFFERS Dimension

CREATE TABLE easydw.todays_special_offers

(product_id varchar2(8),

 offer_date date,

 special_price number (6,2),

 offer_price number (6,2))

PCTFREE 0 PCTUSED 99

TABLESPACE easy_dim

STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0) ;

For the TODAYS_SPECIAL_OFFERS table, we have defined the pri-
mary key to include two columns rather than a single column.

ALTER TABLE todays_special_offers

 ADD CONSTRAINT pk_specials PRIMARY KEY

(offer_date,product_id)

 USING INDEX

 PCTFREE 5 TABLESPACE easy_idx

 STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0) ;

Now we come to creating the all-important fact table, which is called
PURCHASES. This table definition is quite complex because it includes
FOREIGN KEYS to several tables that are identified by the REFER-
ENCES clause. For the column product_id, two constraints have been
defined on the table, a NOT NULL and a Foreign key constraint. Pro-
vided each constraint is given a unique name, then is allowed on a column
in a table.

Here we have also illustrated how to partition the table, which was dis-
cussed in detail in Chapter 4. In this SQL statement example, we are only
creating the table with three partitions though the table will actually have
24 partitions for the two years of data that it contains.

TEAM LinG - Live, Informative, Non-cost and Genuine!

800

A.2

Creating the Tables, Constraints, and Indexes

-- Fact Table PURCHASES

CREATE TABLE easydw.purchases

(product_id varchar2(8)

 CONSTRAINT not_null_product_id NOT NULL

 CONSTRAINT fk_product_id

REFERENCES product(product_id),

 time_key date

 CONSTRAINT not_null_time NOT NULL

 CONSTRAINT fk_time

REFERENCES time(time_key),

 customer_id varchar2(10)

 CONSTRAINT not_null_customer_id NOT NULL

 CONSTRAINT fk_customer_id

REFERENCES customer(customer_id),

 ship_date date,

 purchase_price number(6,2),

 shipping_charge number(5,2),

 today_special_offer varchar2(1)

 CONSTRAINT special_offer

 CHECK (today_special_offer IN ('Y','N')))

PARTITION BY RANGE (time_key)

 (

 PARTITION purchases_jan2002

 VALUES LESS THAN (TO_DATE('01-02-2002', 'DD-MM-YYYY'))

 PCTFREE 0 PCTUSED 99

 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)

 TABLESPACE purchases_jan2002 ,

 PARTITION purchases_feb2002

 VALUES LESS THAN (TO_DATE('01-03-2002', 'DD-MM-YYYY'))

 PCTFREE 0 PCTUSED 99

 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)

 TABLESPACE purchases_feb2002 ,

 PARTITION purchases_mar2002

 VALUES LESS THAN (TO_DATE('01-04-2002', 'DD-MM-YYYY'))

 PCTFREE 0 PCTUSED 99

 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)

 TABLESPACE purchases_mar2002);

In this example, we have created the indexes immediately after the table
definition. In a real data warehouse, the number of indexes created prior to
loading the data is kept to an absolute minimum to ensure that the loading
time is as fast as possible. Therefore, indexes exist prior to loading usually
only to enable constraints to be executed as efficiently as possible.

TEAM LinG - Live, Informative, Non-cost and Genuine!

A.3

Defining Security 801

Appendix A

-- Now create the indexes

-- Partition on the Time Key Local prefixed index

CREATE BITMAP INDEX easydw.purchase_time_index

 ON purchases (time_key) LOCAL

 PCTFREE 5 TABLESPACE indx

 STORAGE (INITIAL 64k NEXT 64k PCTINCREASE 0);

CREATE BITMAP INDEX easydw.purchase_product_index

 ON purchases (product_id)

 LOCAL

 PCTFREE 5 TABLESPACE indx

 STORAGE (INITIAL 64k NEXT 64k PCTINCREASE 0) ;

CREATE INDEX easydw.purchase_customer_index

 ON purchases (customer_id)

 LOCAL

 PCTFREE 5 TABLESPACE indx

 STORAGE (INITIAL 64k NEXT 64k PCTINCREASE 0) ;

CREATE BITMAP INDEX easydw.purchase_special_index

 ON purchases (today_special_offer)

 LOCAL

 PCTFREE 5 TABLESPACE indx

 STORAGE (INITIAL 64k NEXT 64k PCTINCREASE 0) ;

A.3 Defining Security

The next step is to grant some privileges to our user, EASYDW. We will
start with the following ones, which will allow us to use summary manage-
ment, and, as we progress through this book, we will discuss other privileges
that should be granted to users.

connect system/manager

-- Add privileges

GRANT SELECT ANY TABLE TO easydw;

GRANT EXECUTE ANY PROCEDURE TO easydw;

-- Add privileges for summary management

GRANT CREATE ANY DIMENSION TO easydw;

GRANT ALTER ANY DIMENSION TO easydw;

GRANT DROP ANY DIMENSION TO easydw;

GRANT CREATE ANY MATERIALIZED VIEW TO easydw;

GRANT ALTER ANY MATERIALIZED VIEW TO easydw;

GRANT DROP ANY MATERIALIZED VIEW TO easydw;

GRANT QUERY REWRITE TO easydw;

GRANT GLOBAL QUERY REWRITE TO easydw;

TEAM LinG - Live, Informative, Non-cost and Genuine!

802

A.4

Final Steps

You will have to repeat these steps for every user that has been created
and the privileges granted will, of course, vary by user.

A.4 Final Steps

The final step is actually not completed now, but after the data is loaded.
However, it is included here to remind you not to forget this important
step, which is to analyze the table and indexes. These statistics are gathered
using the package DBMS_STATS and are used by the optimizer. Without
these statistics, features like Summary Management will not operate to pro-
vide the most efficient access so query performance will suffer. The
DBMS_STATS command was explained in Chapters 10 and 12.

-- Now Analyze the Tables and Indexes

EXECUTE dbms_stats.gather_table_stats

 ('EASYDW','CUSTOMER');

EXECUTE dbms_stats.gather_table_stats

 ('EASYDW','TODAYS_SPECIAL_OFFERS');

EXECUTE dbms_stats.gather_table_stats

 ('EASYDW','PRODUCT');

EXECUTE dbms_stats.gather_index_stats

 ('EASYDW','PURCHASE_CUSTOMER_INDEX');

TEAM LinG - Live, Informative, Non-cost and Genuine!

803

B

Product Information

B.1 Product Information

This book describes how to use a wide range of Oracle products. To use the
software as described in this book, you will need the following products. The
version mentioned below is the minimum software version of the product
that supports the described features, at the time of writing. It is recom-
mended that you use the latest version of the product available to you.

�

Oracle Database 10

g

 Enterprise Edition, Version 10.1.0.2

�

Options:

�

Oracle Partitioning Option

�

Oracle Data Mining Option

�

Oracle OLAP Option

�

Tuning Pack to use the Advisor functionality from Oracle
Enterprise Manager

�

Oracle Enterprise Manager, Version 10.1.0.2

�

Database Control

�

Grid Control

�

Software available on Client CD:

�

Analytic Workspace Manager for the OLAP Option

�

Oracle Application Server 10

g

, Enterprise Edition

�

Portal

�

Oracle Warehouse Builder

�

Oracle Developer Suite

�

Discoverer

�

Reports

All software can be downloaded at http://otn.oracle.com.

TEAM LinG - Live, Informative, Non-cost and Genuine!

804

B.1

Product Information

A listing of the EASYDW schema, sample data and all examples used in
the book will be made available on the website:

http://www.lilianhobbs.com.

If you have any questions, comments or corrections to report, the
authors would be happy to hear from you. You may contact the authors by
email as follows:

Shilpa Lawande slawande@gmail.com

Pete Smith pete.smith@conchango.com

Susan Hillson susan@thehillsongroup.com

Lilian Hobbs lilian.hobbs@oracle.com

TEAM LinG - Live, Informative, Non-cost and Genuine!

805

Index

ABORT_REDEF_TABLE procedure, 540
ACTIVATE_SUBSCRIPTION procedure,

173
Adaptive Bayes Network (ABN) Algorithm,

736
Administrators, 489–90

account creation, 490
accounts, 489
setup, 490
super, 489
See also Enterprise Manager (EM)

Advisor Central, 435–36
Advisors

defined, 435
launching, 435
types, 435–36

ADVISOR system privilege, 436
Advisor Tasks, 436
Affinity

defined, 270
reporting, 281

Aggregate rollup, 387
Aggregates

complex, 320
computing, in queries, 389
moving window, 281, 291–93
reporting, 297–99
user-defined, 279–81, 423

Aggregation
defined, 272

defining, for cubes, 690
skip-level, 704
SQL extensions for, 272–81

Aggregation plans
creating, 704–6
defined, 704
deploying, 706
reviewing, 706

Alerts
defined, 510
management, 510
metrics, 512
thresholds, 513
user-defined metrics, 514
using, 510–15

Allocation
OLAP, 672
resumable space, 553–55

ALTER INDEX REBUILD statement, 530
Analytical functions, 420–22
Analytic Workspace Manager, 693–707

defined, 676
enablers, 706–7
Object View, 693, 694, 695
OLAP Catalog View, 693, 694, 702

Analytic workspaces, 678–83
accessing, 708
advanced storage and naming, 697
attaching to, 710
build options, 696

TEAM LinG - Live, Informative, Non-cost and Genuine!

806 Index

creating, 682–83
creation script, saving, 697
cube selection, 696
defined, 674, 676
enabling, 706–7
naming, 695
in OLAP Catalog View, 698
persistent, 678
querying, 707–24
refreshing, 702–4
right-click menu, 703
SQL access to, 677, 721–23
storage options, 699–702
temporary, 678

Antijoins, 294
Apriori, 729
Architectures, 73–111

Automatic Storage Management (ASM),
94–108

clustered, 78–79
hardware components, 85–94
hardware configurations, 74–85
introduction, 73–74
MPP, 79–80
multidisk, 75–76
multiprocessor, 77–78
scaling, 73–74
server, 74–80
single-processor, single-disk, 74–75
SMP, 77
summary, 111

ASM instance, 95
administration, 105
configuration, 104
defined, 96
initialization parameters, 103
responsibilities, 96
See also Automatic Storage Management

(ASM)
ASM Tool

defined, 97

disk selection, 98
illustrated, 98
stamp disks configuration selection, 99
subdirectory, 99
See also Automatic Storage Management

(ASM)
Association rules, 727–29

apriori, 729
defined, 727
illustrated, 729
use of, 728
See also Data mining

Asynchronous CDC, 163, 167–71
AUTOLOG, 163
HOTLOG, 163, 167
Oracle Streams, 169, 170, 171
uses, 163
See also Change Data Capture (CDC)

Atomic_refresh, 338, 351–52
ATTRIBUTE clause, 372–73, 395–96
Attributes

adding, 378
predefined, 379
predictor, 733
relationship, 368
target, 733

AUTOLOG, 163–64
Automated space management, 553
Automatic Database Diagnostic Monitor

(ADDM), 17, 505, 507–10
analyzes, 507
defined, 507
findings list, 507, 508
focus, 507
illustrated, 508
launching, 507
snapshot details, 509

Automatic Shared Memory Management
feature, 467

Automatic Storage Management (ASM), 94–
108, 762

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 807

Index

administering, 97–106
concepts, 95
configuration during installation, 99–101
defined, 76, 94
disk groups, 95, 96, 102, 105, 106
failure groups, 97
management from command line, 101–3
management from Enterprise Manager

Grid Control, 103–6
overview, 95–97
service name, 102
setting up, 97–99
SID name, 102
using, 107–8
See also ASM instance; ASM Tool

Automatic Workload Repository (AWR),
505–7

configuration, 506
default, 506
defined, 505
information, 506
retention period, 507
screen access, 506
snapshot frequency, 507
use, 505–6

Availability, 19–20
ensuring, 19
high, 757–93

Background processes, 80, 81
Back references, 238
Backups, 567–81

block change tracking, 563–64
cold, 561
configuration, creating, 568–70
custom, 575–76
file sizes, 580–81
Flash Recovery Area for, 567
full, 561, 567, 570–74
hot, 561

incremental, 561–63, 574–78
logical, 560–61
methods, 560–64
physical, 561
predefined schedule, 573
predefined strategy, 572–74
procedure review, 573
RMAN, 581
strategy, 559–67
tablespace, 578–80
types, 568

Backup wizard, 571
Base tables, 329
BI Beans, 723–24

creating, 678
data access and, 724
defined, 678, 723
enabling analytic workspaces for, 707
tasks, 723–24

Bigfile tablespaces, 110
Bind variables

internal, 413
query rewrite and, 411–13
uses, 411
values, 412

Binning, 739–40
defined, 739
equiwidth, 739
equiwidth, with winsorizing, 740
quantile, 740

Bitmapped indexes, 133–36
combining, 134
compression, 135, 153
defined, 133
disadvantages, 135–36
on foreign-key columns, 262
gender, 134
join, 262
occupation, 135
using, 135
See also Indexes

TEAM LinG - Live, Informative, Non-cost and Genuine!

808 Index

Bitmapped join indexes, 136–38
bitmaps, 136
defined, 136
low-cardinality columns, 138
on purchases and customer, 137

B*tree indexes, 132–33
balanced, 133
compression, 153
defined, 132
rowids, 132
uses, 133
See also Indexes

Build data, 733
Business areas, 621–24

creating, 621
data access within, 621
granting access to, 632
illustrated, 633
naming, 623
setting up, 624

Business intelligence, 271

Cache Fusion, 83
Calculated members, 310
CASE function, 281
CASE statement, 305–6

searched, 305
simple, 305
use of, 306

Cell references, 312
defined, 312
multicell, 312
positional, 312
single-cell, 312
symbolic, 312, 314

Change data
identifying, 159–61
processing, 173–74
publishing, 164–65
querying, 174

subscribing to, 171
triggers, 160

Change Data Capture (CDC), 16, 161–76
asynchronous, 163, 167–71
defined, 161
extract programs, 162
publish/subscribe architecture, 161
synchronous, 162, 165–67

Change sets
creation, 165
defined, 162

Change source, 162
Change tables

defined, 161
dynamic, 173
list of, 167

Character large object (CLOB) data type,
409

Classes, 733
Classification, 732–37

algorithms, 736–37
build data, 733
defined, 733
illustrated, 733
lift computation, 734–35
model testing, 734
uses, 733
See also Data mining

Cleansing data, 177–78
dirty data and, 177
transformations, 233–39

Clustered servers, 78–79
Clustering, 78–79, 730–31

algorithms, 731
benefits, 79
defined, 78, 730
illustrated, 79, 730

Cold backups, 561
Common Warehouse Metamodel (CWM)

specification, 18
Composite dimensions

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 809

Index

adding to, 700
creating, 700
defined, 699
dimension order, 701
See also Dimensions

Composite paritioning, 119–23
defined, 118
partition pruning, 264–65
range-hash, 119–21
range-list, 121–23
See also Partitioning

Compression, 151–53
data segment, 151
index, 153
table, 151–53

Conditional reports, 651
Confusion matrix, 734
Consolidation, 1–2

of applications, 3
of data into single company view, 2
of hardware, 2

Constraints, 55–63
adding, 58
checking, 60
defined, 55
disabling, 195–96, 199
Easy Shopping example, 797–801
foreign key, 397
NOVALIDATE clause on, 398
primary key, 59
reenabling, 198, 201, 202
RELY clause on, 398
resource, problems due to, 471–73
rewrite using, 397–98
status, 61
viewing, 62
violations, handling, 202–3
without validation, enabling, 203

Continuous operation, 759
Control files, 183–85

defined, 183

identifying, 184
See also SQL*Loader

COPY_TABLE_DEPENDENTS procedure,
538

Cost-based optimizer
defined, 256
query rewrite, 384
statistics, 256, 542–46
See also Query optimizer

CREATE CATALOG statement, 582
CREATE DIMENSION statement, 369,

373, 374–75
CREATE INDEX statement, 64, 268
CREATE MATERIALIZED VIEW

statement, 268, 325–26
NO INDEX clause, 334
privilege, 335

CREATE OUTLINE statement, 475
CREATE TABLE statement, 53, 215, 268,

542
CUBE operator, 272–73
Cubes

addding measures to, 689
adding dimensions to, 689
creating, 600–601
creating, in Enterprise Manager, 688
defined, 600, 684
defining aggregations for, 690

CUME_DIST function, 300
Cumulative incremental backups, 562, 563
Cursor Cache. See SQL Cache
Cursor sharing, 413
Cursor variables, 242–43

defined, 242
type definition, 242

Customer relationship management (CRM),
20

Data
build, 733

TEAM LinG - Live, Informative, Non-cost and Genuine!

810 Index

changed, identifying, 159–61
cleansing, 177–78, 233–39
compression, 151–53
definitions, changed, 161
deriving, 178, 233–39
dirty, 177
drilling up/down, 640
extracting, 157–76
filtered, 389–91
filtering, 604–5
generators, 606
integrating, 177
loading, 196–97, 200
loading, from external tables, 217
loading in parallel with external tables,

217–18
loads, timing, 557
moving, between databases, 207–10
moving, between tables, 250
from multiple systems, 9
new, 10
normalizing, 740
obtaining with joining tables, 603–4
operational, 9, 12–13
partitioning, 113–31
preparation, 738–40, 750–52
publishing, 252
purchase, 10
sorting, 638
sources, splitting, 245–46
sparse, converting, 293–97
stale, 401
transformation, 10, 176–81
usage, 11
validating, 240
volume, increasing, 19

Database administrator (DBA), 90, 91
Database Configuration Assistant (DBCA),

35, 36–44
creation options, 44
database content, 41

database credentials, 38
database file locations, 40
database identification, 37
database templates, 37
defined, 36
file location variables, 43
initialization parameters, 42
management options, 38
recovery configuration, 40
storage options, 39

Database Grids, 38
Databases

architecture, 80–85
big, 110
content, 41
credentials, 38
design, 7–8
file locations, 40
identification, 37
list of, 634
logical standby, 773–74
naming conventions, 35–36
physical standby, 772–73
preconfigured, 36–44
recoverying, 565–66
restoring, 564–65, 584–85
running, in archive log mode, 565–66
scalable, 82–84
single/many decision, 35
standby, 772–74
templates, 37
transformations inside, 232–51
virtual private, 549–50

Database standard form, 682
Data files, 49

converting, 224–26
creating, 51–52
Easy Shopping example, 795–96
example, 185
extracting, 187
fixed-length, 185

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 811

Index

illustrated, 186
recovery and, 588
variable-length, 185

Data Guard, 20
backup options, 779
backup types, 779
concepts, 772
configuration, 774–75
configuration with Enterprise Manager,

776–87
defined, 772
disaster recovery with, 771–87
logical standby, 773–74
maximum availability mode, 784
maximum performance mode, 784
maximum protection mode, 783–84
physical standby, 772–73
protection modes, 783
protection modes, switching between, 785
Redo Apply Services, 775
Redo Transport Services, 774–75
Role Management Services, 775
rolling upgrade, 791
switchover operation, 785, 786

Data Guard Broker, 775–76
defined, 775
integration, 775

Data loss protection, 764–88
Data marts, 11–14

data warehouses vs., 11, 30
defined, 11
dependent, 12, 13–14
independent, 12

Data mining, 725–55
analysis flow, 742–43
association rules, 727–29
attribute importance, 740
classification, 732–37
clustering, 730–31
data prepration, 738–40
defined, 15, 725

descriptive models, 727
feature extraction, 732
functionality, 15
PMML standard, 737
predictive models, 727
regression, 737
relationships detection, 15
table formats, 738
tasks, running, 741
techniques, 727–37
tools, 16

Data Pump, 10, 16
datafile location, 207
defined, 205
expdp, 205–7
export, 208, 209, 211
external tables, 218–20
features, 206–7
formatted dump file, 219
impdp, 205–7
import, 210
interactive mode, 210
job monitoring/control, 210–12
loading warehouse with, 205–12
log files, 207
management benefits, 212
moving data, 207–10

Data segment compression, 151
Data warehouses

architecture, 73–111
availability, 19–20, 757–93
building, incrementally, 13–14
building challenges, 17–20
database design and, 7–8
data marts vs., 11, 30
defined, 4
designing, 23–71
e-business intelligence and, 669
ETL process, 9
evolution as separate systems, 8–11
in finding information, 7

TEAM LinG - Live, Informative, Non-cost and Genuine!

812 Index

future, 20–21
high availability and, 757–93
historical perspective, 5–16
inclusion decision, 24
loading, 181–232
managing, 17–18, 477–558
monitoring, 505–15
need for, 4–5
normalizing, 28–30
from operational systems, 9–11
Oracle software for, 656
physical design, 113–54
querying, 255–320
real-time, 21
refreshing, 541–42
reorganizing, 515–41
rise of, 6–8
separate, disappearance of, 21
storage configurations, 87–94
Web and, 653–69

The Data Warehouse Toolkit, 8
DBA_RESUMBABLE view, 555
DBMS_ADVISOR PL/SQL package, 449–

51
link creation, 450
task execution, 450–51
task/set parameters creation, 450
workload creation, 449
workload parameter specification, 449
workload statement loading, 449

DBMS_AW package, 720–21
DBMS_DIMENSION.VALIDATE_DIME

NSION procedure, 380–81
DBMS_REDEFINITION package, 535–40

ABORT_REDEF_TABLE procedure, 540
COPY_TABLE_DEPENDENTS

procedure, 538
defined, 535
FINISH_REDEF_TABLE procedure, 539
REGISTER_DEPENDENT_OBJECT

procedure, 538

START_REDEF_TABLE procedure, 537
SYNC_INTERIM_TABLE procedure,

539
DBMS_SQLTUNE package, 432–34, 457–

59
ACCEPT_SQL_PROFILE procedure,

458
CREATE_TUNING_TASK procedure,

457, 459
defined, 432, 457
use, 433

DBMS_STATS_FUNC package, 304–5
DBMS_STATS package, 251, 252, 351

EXPORT_SYSTEM_STATS procedure,
545

GET_SYSTEM_STATS procedure, 545
IMPORT_SYSTEM_STATS procedure,

545
Deciles, 735
Decision-support analysis, 271
Decision-support systems (DSS), 7
Decision-support workload, 18
Degree of parallelism (DOP), 269–70
DENSE_function, 283
Deployment, 609–14
Deployment Manager

illustrated, 610
launching, 610
predeployment report, 611
status, 612

Deriving data, 178
defined, 178
transformations, 233–39

Descriptive models, 727
Designs, 23–71

aggregation decision, 24
deploying, 609–14
dimensional modeling, 25–26
dimension table, 27–28
fact table, 26–27
generating, 607–9

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 813

Index

implementing, 34–70
inclusion decision, 24
to manage, 31–33
for performance, 33–34
physical, configuring, 612–14
single/many databases, 35
testing, 70–71
validating, 606–7
warehouse keys, 28

Detail tables, 329
Differential incremental backups, 562, 563
Dimensional modeling, 25–26

data, 26
defined, 25
hierarchy, 367, 368
illustrated, 26
See also Designs

Dimensional normal form, 28
advantages, 30
normalized vs., 29

DIMENSION BY clause, 310, 318
Dimensions, 28, 367–82

adding, to cubes, 689
base, grouping, 701
composite, 699, 700
concepts, 367–69
creating, 369–79
creating, in OWB, 599–600
creating, with Enterprise Manager, 375–79
CWM metadata for, 687
data validation with, 240
defined, 310, 324, 679, 684
defining, with attributes, 372–73
defining, with multiple hierarchies, 371–

72
defining, with normalized tables, 373–75
defining, with single hierarchy, 369–71
dense, 699
describing, 379
geography, bubble diagram, 370
hierarchy, 600

levels, adding, 377
loading, with SQL MERGE, 227–32
as metadata objects, 369
normalized, 374
order of, 701
query rewrite using, 393–96
for relationship definitions, 368
segment size specification, 702
sparse, 699
time, bubble diagram, 371
validating, 379–82
verifying, 251–52

Dimension tables, 27–28
adding data to, 181–82
creating, 53–55
defined, 27
dimensions, 28
level-based, 679, 680
loading, 181
parent-child, 679, 680
textual fields, 27
See also Tables

Direct path insert, 250
Direct path load, 194–98

add partition, 195
create tablespace, 195
disable contraints/triggers, 195–96
inspect log, 197–98
load data, 196–97
parallel, 198–201
rebuild indexes, 198
reenable constraints/triggers, 198
using, 193
See also SQL*Loader

Dirty data, 177
Discoverer Administrator, 614, 619–33

automatic joins, 622
business area access, 632
business area illustration, 633
business area naming, 623
business area setup, 624

TEAM LinG - Live, Informative, Non-cost and Genuine!

814 Index

calculated item creation, 626
end-user layer (EUL), 620–21
folders, 625
hierarchies, 627–28
item classes, 628–29
item creation, 626
item detail change, 625–26
joins creation, 626–27
schema selection, 621
security issues, 632–33
summary creation, 629–30
summary refresh, 631
summary sizard, 631, 632
tables/views selection, 622
task list, 623
visible column restriction, 624
See also Oracle Discoverer

Discoverer Plus, 614, 634–44
data selection, 635, 643
defined, 634
drilling up/down, 640
format headings, 637
graphs, 641, 642
Graph Wizard, 641, 642
list of databases, 634
query options, 637
report at month level, 641
report illustration, 639
report using conditions, 643
sorting, 638
SQL Inspector, 640
table layout, 626
totals definition, 638
workbooks, 635
See also Oracle Discoverer

Discretization, 739–40
Disk groups, 102

defined, 96
disks, 96
files, 106
members, 105

Distribution functions
defined, 286
hypothetical, 302–3

Downtime. See Planned downtime
DROP statement, 767, 768
Dynamic instance reconfiguration, 789
Dynamic partition pruning, 262
Dynamic provisioning, 85
Dynamic sampling, 545–46

Easy Shopping example, 30–31
constraints, 797–801
database registration with RMAN, 582–84
data files, 795–96
defined, 30
dimensional model, 31
final steps, 802
group for, 493
indexes, 797–801
portal, 663
schema, 71, 795–802
security, 801–2
tables, 797–801
tablespaces, 795–96
Web page creation, 662

EM Database Control
Administration screen, 484
defined, 477
Home screen, 483
illustrated, 479
Maintenance screen, 484
Performance screen, 484
tab areas, 482
URL, 479
See also Enterprise Manager (EM)

EM Grid Control, 20
Administration page, 776
ASM disk group files, 106
ASM disk group members, 103
ASM instance administration, 105

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 815

Index

ASM instance configuration, 104
ASM management from, 103–6
console, 480
defined, 478, 485
deployment, 481
Host Discovery results, 488
illustrated, 481
logging onto, 485
manageent service, 480
management agents, 480, 482
management service, 481
screen illustration, 486
secure URL, 481
Target Hosts screen, 487
three-tier architecture, 480
See also Enterprise Manager (EM)

ENABLE NOVALIDATE clause, 56
End-user layer (EUL), 620–21
ENFORCED mode

defined, 398
dimension objects and, 399
TRUSTED mode comparison, 399–400
See also Query rewrite integrity modes

Enterprise Java Beans, 657
Enterprise Manager (EM)

add datafile, 51
Add Primary Constraints, 58
Administration screen, 145, 484
administrators, 489–90
Advanced Storage Options, 129
Advisor Central, 435–36
backup wizard, 571
Check Constraints, 60
Console, 478
Constraints, 55, 58, 59, 61
Create Table, 55, 63
Create Table Interface, 126
Create Tablespace, 50
Create User screen, 47
creating dimensions with, 375–79
cube creation in, 688

Database Home, 45
Data Guard configuration, 776–87
Device page, 568, 569
Dimension Tablespace SQL, 53
Edit Table, 55
Global Partitioning, 147
Home page, 483, 511
Host Discovery results, 488
Index Creation, 145
Indexes, 64
Index Options, 146
Index Partitioning, 147
Job Activity screen, 502, 503
job system, 502–4
launching, 483
List Partitioning, 130
Load Wizard, 283
Maintenance screen, 183, 484, 532, 543,

568, 579
Manage Metrics screen, 512
managing with, 477–504
materialized view creation in, 331
materialized view log creation in, 344
monitoring jobs in, 190–91
OLAP Dimensions screen, 686
OLAP metadata creation in, 685–90
OLAP Worksheet, 709
online redefinition via, 532–35
overview, 479–82
Parition Definitions, 129
Parition Keys, 127
Parition Methods, 127
partition exchange via, 520
partitioning with, 126–30
partition merge via, 522
Performance screen, 430, 484, 511
Range Parition Bounds, 128
for refresh, 339–40
Reorganize Objects Options Review

screen, 535
Reorganize Objects Options screen, 533

TEAM LinG - Live, Informative, Non-cost and Genuine!

816 Index

repository, 480
for running EXPLAIN_MVIEW, 361
splitting partitions via, 525
in SQL Tuning Set creation, 432
Tables, 54
Tablespaces screen, 50, 551
Tablespace with Datafile, 52
Target Hosts screen, 487
Threshold screen, 513
Top SQL screen, 430–31
truncating partitions via, 528
use advantage, 49
Users screen, 47
viewing constraints, 62
viewing partitions, 248
See also EM Database Control; EM Grid

Control
Entity-relationship (E-R) diagrams, 25
Equiheight histograms, 287
Equiwidth histograms, 289
Exchanging partitions, 519
Expdp, 205–7
EXPLAIN_MVIEW utility, 344, 356–62

defined, 356–57
on existing materialized views, 361
output, 357, 360
procedure, running, 357–61
procedure output, 358–59
procedure types, 357
query rewrite and, 360
running, with Enterprise Manager, 361

EXPLAIN PLAN facility, 256–58
detailed query plan display, 258
to display parallel plans, 469–71
output, 256, 257
PLAN_TABLE creation, 257

EXPLAIN_REWRITE utility, 360, 407–9
defined, 407
output, 409
uses, 408, 409

EXPORT_SYSTEM_STATS procedure, 545

EXTEND_WINDOW procedure, 174
External tables

access parameters, 213
creating, 213–16
Data Pump, 218–20
defined, 212–13
illustrated, 214
loading data from, 217
loading data in parallel using, 217–18
loading warehouses with, 212–20
metadata specification, 213
read-only, 213
stored data access, 216
See also Tables

Extracting data, 157–76
Extraction/transformation/load (ETL)

process, 9, 36, 155–57
designing, 157
development, 156
illustrated, 155
summary, 253
tools for, 253

Fact tables, 26–27
creating, 53–55
creating, with CREATE TABLE AS

SELECT statement, 250–51
defined, 26
embedded-total, 685
granularity, 27
loading, 182
moving data from stage table to, 246
size, 27
surrogate keys in, 180
See also Tables

Fail-over operation, 775
Failure groups, 97
Failures

detection, 763
hardware/software, 761–64

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 817

Index

media, 764–65
monitoring, 763

Fast refresh, 327, 340–44
defined, 340
with materialized view logs, 341
mechanisms, 340–41
requirements, 344
See also Refresh

Feature extraction, 732
Fibre Channel, 92
File location variables, 43
File naming convention, 158
Filtered data, 389–91
Filtering data, 604–5
Financial calculations, 672
FINISH_REDEF_TABLE procedure, 539
FIRST function, 299–300
Flashback

database, 770–71
drop, 767–68
features, 765
point in time, 766
query, 768–70
table, 766–67

Flashback logs
defined, 566, 770
location, 770

FLASHBACK TABLE statement, 766, 767
Flashbackup, 40
Flash Recovery Area, 40, 41, 553

for backups, 567
defined, 566
initialization parameters, 567
recovery with, 566–67
setting up, 567

Folders, 625
Forecasting

defined, 672
execution, 718
with OLAP DML, 717–20
parameters, 718

steps, 717
Foreign keys, 55, 397
FROM clause

multiple occurrences of tables in, 416–17
subqueries in, 415–16

Full backups, 561, 567, 570–74
frequency, 570
predefined schedule, 573
predefined strategy, 572–74
procedure review, 573
starting, 571
See also Backups

Full partition-wise joins, 266
Functional dependencies, 368
Function-based indexes, 138–39

GET_SYSTEM_STATS procedure, 545
Global indexes, 139–41

decision, 144
defined, 140
expense, 141
illustrated, 140
See also Partitioned indexes

Graphs
illustrated, 642
output, customizing, 641
selecting, 641–42

Graph Wizard, 641, 642
GROUPING function, 277–79

behavior, 277
defined, 277
for each column, 279
functions, 277–78

GROUPING_ID function, 277–78
Grouping sets, 417–20
GROUPING SETS operator, 274–76, 417,

418
multiple, 275
specifying, 275

Groups, 491–94

TEAM LinG - Live, Informative, Non-cost and Genuine!

818 Index

benefits, 494
contents, 491
creating, 492–93
defined, 491
definition examples, 491
for Easy Shopping, 493
using, 493–94

Hardware, 85–94
memory, 86–87
processors, 87
storage configurations, 87–94

Hardware-Assisted Resilient Data (HARD),
763

Hardware/software failures protection, 761–
64

Hash joins, 259
defined, 259
hashing function, 259
memory-intensive, 260

Hash partitioning, 116–18
coalescing, 526–27
defined, 117
illustrated, 117
optimizer, 118
partition pruning, 263
selecting, 125
See also Partitioning

Heap-organized tables, 148
Heterogeneous Transportable Tablespaces, 16
Hierarchies, 627–28

adding, 378
building, 377
concept, 368
creating, 627–28
defined, 367
levels, 368, 377
multiple, dimensions with, 371–72
rugged, 685
single, dimensions with, 369–71

skip-level, 685
Warehouse Builder, 600

HIERARCHY clause, 393–95
High availability, 757–93

characteristics, 758–59
continuous operation, 759
data loss protection, 764–88
defined, 758
features, 760–61
hardware software failure protection, 761–

64
information lifecycle management, 791–

93
operational best practices, 759–60
planned downtime management, 788–91
recoverability, 758–59
reliability, 758
summary, 793

Hot backups, 561
HOTLOG method

defined, 163
mining, 164

Hybrid (HOLAP), 673

Impdp, 205–7
IMPORT_SYSTEM_STATS procedure, 545
Incremental backups, 561–63, 574–78

cumulative, 562, 563
custom, 575–76
defined, 561
differential, 562, 563
files resulting from, 581
level 1, 576
levels, 562
options, 577
See also Backups

Index compression, 153
Indexes, 63–64

balanced, 133
bitmapped, 133–36

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 819

Index

bitmapped join, 136–38
B*tree, 132–33
changes, 530
create, with Enterprise Manaager, 145–48
creation decision, 131
creation time, 64
decision help, 144–45
Easy Shopping example, 797–801
function-based, 138–39
global, 139–41, 198
local, 141–43
maintenance, deferring, 193
nonunique, 132
options, setting, 146
partitioned, 139–43
partitioning, 147
rebuilding, 198
selecting, 64
space requirements, 144
statistics, collecting, 544
types, 63
unique, 132
unusable, check for, 203–5
unusable, rebuild, 205, 526

Indexing, 131–48
IOTs, 150
materialized view, 334–35

Index-organized tables (IOTs), 148–51
creating, 149–50
defined, 148
heap-organized vs., 148
indexing, 150
organization, 151
partitioning, 150
using, 151
See also Tables

Information lifecycle management, 791–93
defined, 792
storage policy, 792

Initialization parameters, 42
Inner joins, 294

INSERT statement, 193, 227, 230, 608
condition specification, 245
direct path, 250
multitable, 245

Instances
ASM, 95, 96, 103
defined, 80
statistics, 472

INSTR function, 237
Internal bind variables, 413
Internet, 653–55
Intranets, 653–55
Inverse percentile, 300–302
I/O latency, 270
I/O subsystem, 87–88
Items

calculated, 626
categories, 635–36
classes, 628–29
creating, 626
details, changing, 625–26
selecting, 635

JAVAServer pages, 657
Java servlets, 657
Jobs

activity, 502
confirming, 501
creating, 496–98, 504
defined, 494
displaying, 502
Enterprise Manager system, 502–4
monitoring, 574
number of, 504
options, 501
parameters, setting, 499
selecting programs for, 498

Job scheduling, 494–504
methods, 498–99
setting, 500

TEAM LinG - Live, Informative, Non-cost and Genuine!

820 Index

specifying, 498
Join-back, 387–88

advantage, 388
defined, 387
simple case, 387–88
See also Query rewrite

Join dependency expression, 347–48
Joins, 258–60

automatic, 622
creating, 626–27
execution methods, 258
hash, 259
inner, 294
loss-less, 397
Mapping Editor with, 604
method selection, 259–60
nested-loops, 258–59
outer, 294–95
partition-wise, 265–67
query rewrite analysis, 416
sort-merge, 259

Kernels, 737
Key lookup feature, 604, 605
K-means algorithm, 731

LAG function, 289–90
LAST function, 299–300
Latency

of change, 163
I/O, 270

LEAD function, 289–90
Level-based dimension tables

defined, 679
illustrated, 680

Lift
analysis, using, 735
computing, 734–35
defined, 734

Linear regression
analysis, 303
defined, 737
See also Regression

List partitioning, 118–19
defined, 118
in Enterprise Manager, 130
illustrated, 119
partition pruning, 263–64
query optimizer and, 119
selecting, 125
See also Partitioning

Load exceptions, processing, 202
Loading warehouses, 181–232

with Data Pump, 205–12
dimension tables, 181
direct path load of single partition, 194–

98
with external tables, 212–20
fact tables, 182
job monitoring, 190–91, 210–12
methods, 182
parallel, 194, 198–201
scheduling, 189–90
single partition, 194–98
with SQL*Loader, 183–205
with transportable tablespaces, 220–27

Loads, timing, 557
Local indexes, 141–43

decision, 144
defined, 141
nonprefixed, 142–43
partitions of, 525
prefixed, 141–42
See also Partitioned indexes

Logical backups, 560–61
adding, 777–78
defined, 560
during, 561
role, 560
See also Backups

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 821

Index

Logical standby databases, 773–74
data warehouses and, 773–74
defined, 773
See also Data Guard

Logical Volume Manager (LVM), 90, 97
Logical windows, 292
Log Transport Services, 163
Loss-less joins, 397

Management, 477–558
alerts, 510
automated space, 553
data load timing, 557–58
design for, 31–33
with Enterprise Manager, 477–504
options, 38
parallel tasks, 546
query response times, 558
resource, 763–64
software testing, 557
space usage, 551–55
summary, 321–65
tasks, evaluating/practicing, 558
test systems, 556

Mapping Editor, 602
illustrated, 602
with joins, 604

Mappings
defined, 601
source to target, 602–3
value computation, 603

Massively parallel processor (MPP)
architectures, 79–80

defined, 79
illustrated, 80

Materialized view logs
creating, in Enterprise Manager, 344
defining, 343–44
fast refresh with, 341
materialized view creation and, 342

options, 341–43
use of, 343

Materialized views, 66–67
contents comparison, 349
contents specification, 329–30
creating, 325–36, 342
creating, in Enterprise Manager, 331
creating, with existing table, 333
defined, 33, 66, 322, 324, 325
enabling, for query rewrite, 329
examples, 66
GROUP BY clause, 349
indexing, 334–35
large, 67
naming, 326
nested, 353–56
optimizer statistics for, 252
partitioned, 352
partitioning, 333–34
PCT support, 403
physical storage, 326–27
population, 327
for precomputing expensive joins, 391
refreshing, 252, 427
refresh method, 327–28
refresh time, 328
for replication, 325
rewrite equivalences vs., 425
security of, 335–36
statistics, 351
storage specification, 326

Matrix reports, 650
Maximum Availability Architecture (MAA),

787–88
application server farm, 788
best practices, 788
defined, 787
illustrated, 787

MEASURE clause, 318
Measure folders, 684
Measures

TEAM LinG - Live, Informative, Non-cost and Genuine!

822 Index

adding, to cubes, 689
defined, 310, 684

Media failures, 764–65
Memory, 86–87

needs, 86
PGA, 459–66
requirements, 86–87
SGA, 459, 466–69

Memory Advisor, 435, 459–69
MERGE statement, 609

in conditional INSERT/UPDATE
statement execution, 230

example, 230
loading dimensions with, 227–32
parts, 228
See also SQL statements

Merging partitions, 519–23
data/index merge, 521
upper bound, 521
via Enterprise Manager, 522

Metacharacters, 234–35
basic, 234–35
defined, 234

Metadata, 213
changed, 161
creating, in Enterprise Manager, 685–90
CWM1, 684–85
CWM2, 685
defining for relational schema, 684–90
export, 223–24
import, 226–27
protecting, 788
role, 18
storage, 683
validating, 693
views and validation, 690–93

Modeling, 672
Models

applying (Java API), 746–49
applying (PL/SQL), 753–54
building (Java API), 743–46

building (PL/SQL), 752–53
defined, 733
testing, 734
See also Classification

Monitoring
backup jobs, 574
performance, 429–34
space usage, 551–55
warehouses, 505–15

Moving partitions, 529
Moving window aggregates, 281
Multicell references, 312
Multicolumn partitioning, 123–25
Multidimensional model, 679–82

advantages, 681–82
defined, 679
entities, 679–81

Multidimensional (MOLAP), 673, 674
Multidisk architecture, 75–76

advantages, 75
illustrated, 76

Multipass operations, 461, 462
Multiprocessor server architecture, 77–78

defined, 77
example, 78
illustrated, 77
See also Server architectures

Naive Bayes (NB) Algorithm, 736
Naming conventions, 35–36
Nested loops join, 258–59
Nested materialized views, 353–56

defined, 353
example, 353
query rewrite with, 422–23
reasons to use, 354–56
refreshing, 356
See also Materialized views

Network Attached Storage (NAS), 92
architecture, 93

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 823

Index

defined, 93
illustrated, 94

New Cube Wizard, 600
NOLOGGING clause, 529, 534
Nonnegative Matrix Factorization (NMF),

732
Nonprefixed local indexes, 142–43
Nontransactional format, 738
Normalized, 28

defined, 29
dimensional normal form vs., 29
disadvantages, 29

Normalized dimensions, 373–75
illustrated, 374
qualify column names and, 375
See also Dimensions

Normalized tables, 373–75
Normalizing, 740
NOVALIDATE clause, 398

Objects
dependent, creating, 538–39
privileges, 67–68
rebuild methods, 533

O-Cluster algorithm, 731
ODCIAggregate interface, 279
Off-line backups, 561
OLAP, 671–724

allocation, 672
applications, 671–73
architecture, 675–78
architecture illustration, 676
complex calculations, 674
financial calculations, 672
forecasting, 672
Hybrid (HOLAP), 673
modeling, 672
Multidimensional (MOLAP), 673, 674
need for, 671–75
Option, 674, 675

queries, 15
Relational (ROLAP), 673, 674
tools, 15, 16
what-if analysis, 672–73

OLAP Analysis Engine, 676
OLAP API, 677–78

enabling analytic workspaces for, 707
multidimensional model, 723

OLAP Catalog, 683–93
defined, 677
logical model, 684
metadata, 683, 684–90
View, 694, 698, 702

OLAP DML, 708–20
ACROSS DO construct, 715
ACROSS keyword, 713
AGGREGATE function, 713
commands, 708, 709
custom measures, 715–17
defined, 676–77, 707–8
defining formulas with, 715–17
FCEXEC command, 718
FCOPEN command, 718
FCSET command, 718
forecasting with, 717–20
knowledge of, 682
LIMIT command, 712
REPORT command, 711
reporting/aggregating data with, 711–15
syntax, 709

OLAP_TABLE function, 677
defined, 721
parameters, 721

OLAP Worksheet, 709
Online Analytical Processing. See OLAP
On-line backups, 561
Online maintenance, 789
Online redefinition, 530–40, 789–90

with DBMS_REDEFINITION package,
535–40

defined, 531

TEAM LinG - Live, Informative, Non-cost and Genuine!

824 Index

features, 531
finishing, 539
object rebuild methods, 533
process, starting, 537–38
scripts, 534
via Enterprise Manager, 532–35

On-line redo logs, 162
Online segment shrink, 540–41
On-line transaction processing (OLTP)

systems, 5, 6
data extraction from, 13
data interpretation, 6
entity-relationship (E-R) diagramming, 7
performance, 6, 7
processing, 8
queries, 15
software, 7

ON PREBUILT TABLE clause, 332, 333
Operational best practices, 759–60
Operational data, 9, 12–13
Operational data stores (ODS), 13
Optimizer statistics

automatic collection, 542–43
dynamic sampling, 545–46
gathering, 542–46
manual collection, 543–45
saving, 545
system, collecting, 545

Oracle Application Servers 10g, 20, 656–64
administering, 665
areas, 657–58
components, 656
defined, 656
development, 657
getting started with, 663–64
J2EE environment, 656–57

OracleAS Personalization, 668
OracleAS Portal, 658–63

benefits, 660
data warehouse integration with, 669
defined, 660

overview, 661
Portal Builder screen, 666
signing in, 659
single sign-on authentication, 660, 661
standard view, 659
Web page creation, 661–62

Oracle Database 10g
analytical analysis, 16
ASM, 94–108
automatic advisors, 16
clusterware, 85
Data Mining Option, 726
data warehousing features, 16–17
ETL processing, 16
Grid, 84–85
high availability features, 760–61
introduction, 1–4
RAC, 82–84
Scheduler, 494–502
SQL Model Clause, 308
transportable tablespaces, 222

Oracle Database 10g Backup and Recovery
Manual, 590

Oracle Data Mining
availability, 741
configuration, 741
data preparation, 738–40
defined, 726
installation, 741
interfaces, 741–54
Java API example, 743–49
PL/SQL interface example, 749–54
summary, 755
support, 726
techniques, 727–37

Oracle Discoverer, 614–44
Administrator, 614, 619–33
configuration, 615
for data queries, 665
defined, 614
Desktop, 614

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 825

Index

drilling, 619
dynamic reports, 618
enabling analytic workspaces for, 707
environment setup, 619–33
folders, 625
integration with Oracle Portal, 615
Plus, 614, 634–44
presentations options, 618
public connection creation, 665
queries using, 616–18
query execution, 617
reasons for using, 615–19
Viewer, 616–18
See also Warehousing tools

Oracle Express, 15
Oracle Managed Files (OMF), 108–10, 553

defined, 108
uses, 110
using, 109

Oracle Portal, 615, 616
Oracle Reports 10g, 644–52

column widths specification, 648
conditional report, 651
data source selection, 646
defined, 644
display columns, 647
final report, 649
matrix report, 650
in report creation, 644–50
reporting medium selection, 645
SQL query specification, 646
totals calculation, 648

Oracle Streams, 169, 170, 171
Oracle Warehouse Builder (OWB), 11, 591–

614
benefits, 592, 613–14
client, 594
client console, 595
code generated by, 609
comprehensive environment, 614
cube creation, 600–601

database source, 595–96
database target, 596
defined, 591
design deployment, 609–14
design generation, 607–9
design validation, 606–7
dimension creation, 599–600
dimensions hierarchy, 600
file database source, 597
index definition and, 613
Mappings tab, 608
module creation, 595
repository, 592, 593
Runtime Assistant, 610
setting up, 593
source to target mappings definition, 60–

606
table definition, 598–99
Validation tab, 608
See also Warehousing tools

Oracle World, 658
Outer joins, 294–95
Outlines

automatic creation, 474
categories, 474
creating, 474–75
query use of, 475
stored, 474
using, 475–76

PARALLEL clause, 69–70, 217
Parallel direct path load, 198–201

defined, 198–99
disable contraints/triggers, 199
drop indexes, 200
illustrated, 199
inspect log, 200
load data, 200
reenable constraints/triggers, 201
See also SQL*Loader

TEAM LinG - Live, Informative, Non-cost and Genuine!

826 Index

Parallel execution, 267–71
coordinator process, 267
DOP, 269–70
hardware requirements, 270–71
problems due to resource constraints,

471–73
setting up, 269–70
SQL statements, 268–69
troubleshooting, 469–73
using, 352

Parallel management tasks, 546
Parent-child dimension tables, 679–80

defined, 679
illustrated, 680
See also Dimension tables

Partial partition-wise joins, 267
PARTITION BY clause, 284–85, 310
Partition Change Tracking (PCT), 345–51

advantages, 346
defined, 345
illustrated, 345
limitations, 351
materialized view support, 403
with partition key, 404–6
with partition marker, 406–7
query rewrite and, 403–7, 529
refresh, 345, 346
uses, 407

Partitioned indexes, 139–43
global, 139–41
local, 141
nonprefixed local, 142–43
prefixed local, 141–42
See also Indexes

Partitioning, 65, 113–31
benefits, 113–14
composite, 118, 119–23, 264–65
defined, 65, 113
with Enterprise Manager, 126–30
global, 147
hash, 116–18, 263

IOTs, 150
list, 118–19, 263–64
materialized view, 333–34
methods, 115
method selection, 125–26
multicolumn, 123–25
process, 114–15
range, 65, 115–16, 262–63
range-hash, 119–21
range-list, 121–23
techniques, 65
by time, 126

Partition keys, 348–49
defined, 114, 347
including, 349
multicolumn, 123–25
query rewrite using PCT and, 404–6
specifying, 127

Partition maintenance, 516–30
coalescing, 526–27
exchanging, 519
illustrated, 517
management facilitation, 529–30
merging, 519–23
moving, 529
operations, 130–31, 516
rolling window, 517–18
splitting, 523–26
truncating, 527–29

Partition markers, 350–51
defined, 347
example, 350
function, 350
query rewrite with PCT and, 406–7

PARTITION OUTER JOIN, 295–97
defined, 295
illustrated, 296
need for, 297

Partition pruning, 262–65
benefits, 265
composite partitioning, 264–65

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 827

Index

hash partitioning, 263
list partitioning, 263–64
range partitioning, 262–63

Partitions
adding, 195
backing up, 252
bounds, automatic generation, 128
coalescing, 526–27
definitions, editing, 129
elimination, 114, 262
exchanging, 519
of local indexes, 525
logical attributes, 114
merging, 519–23
moving, 529
splitting, 523–26
storage options, 129
truncating, 527–29
viewing, with Enterprise Manager, 248

Partition-wise joins, 265–67
defined, 265–66
full, 266
partial, 267
See also Joins

PERCENTILE_CONT function, 301–2
PERCENTILE_DISC function, 301–2
Performance

design for, 33–34
gains, 34
monitoring, 429–34
query, 429–76
query rewrite during refresh, 427

PGA_AGGREGATE_TARGET, 462–66
current setting, 463
too small, 464
user-defined limit, 464

PGA Memory Advisor, 465
PGA Target Advisor, 466
Physical backups, 561
Physical standby databases, 772–73
Physical windows, 291

Planned downtime
dynamic instance reconfiguration, 789
managing, 788–91
online maintenance, 789
online redefinition, 789–90
rolling upgrades, 790–91

Plan stability, 474–76
defined, 474
outline creation, 474–75
outline use, 475–76

Portals
defined, 658
EASYDW, 663
importance, 660
setting up, 658–60
uses, 658

Portlets, 662
publishing, 665–67
on Web pages, 666–67

Positional references, 312
Postload operations, 202–3, 251–53

back up table/partition, 252
constraint violations, 202–3
enable constraints without validation, 203
gather optimizer statistics, 251, 252
inspect logs, 202
process load exceptions, 202
publish data, 252
reenable constraints, 202
refresh material views, 252
verify dimensions, 251–52
See also SQL*Loader

Preconfigured databases, 36–44
Predefined windows, 499
Predictive Modeling Markup Language

(PMML), 737
Predictive models, 727
Predictor attributes, 733
Prefixed local indexes, 141–42
Primary keys, 55
Privileges

TEAM LinG - Live, Informative, Non-cost and Genuine!

828 Index

assigning, to roles, 68–69
object, 68
system, 69

Process Global Area (PGA) memory, 459
aggregate auto target, 463
automatic management, 460
critical nature, 459
increases in, 466
monitoring, 460–62
optimal size, 461
PGA_AGGREGATE_TARGET

parameter, 462–66
tuning, 459–66
work area, 459

Processors, 87
Product information, 803–4
Program Global Area (PGA), 86
Programs

creating, 494–96
defined, 494
selecting for jobs, 498
as stored procedures, 495–96

Publication
data, 252
portlets, 665–67
reports, 651–52
Web data, 664–67

Public connections, 665
benefits, 665
creating, 665, 666

PURGE_WINDOW procedure, 176

Queries, 255–320
analytic workspaces, 707–24
bind variables in, 411
computing aggregates in, 389
data access, 8
with Discoverer Plus, 634–44
forcing to fail, 411
multiple groupings, 418

OLAP, 15
outline use, 475
response times, determining, 558
rewritten determination, 384
star, 260–62

Query Builder, 646, 647
Query execution plans, 256
Query optimizer, 255–67

cost-based, 256
EXPLAIN PLAN facility, 256–58
hints for query rewrite, 409–11
join methods, 258–60
purpose, 255
statistics, 351, 542–46

Query rewrite, 383–427
advanced techniques, 409–27
aggregate rollup, 387
analytical functions, 420–22
ATTRIBUTE clause and, 395–96
automatic join analysis, 416
benefits, 383
bind variables and, 411–13
with complex SQL constructs, 413–22
with constraints, 397–98
cost-based optimizer use, 384
defined, 324
with dimensions, 393–96
enabling, during refresh, 353
enabling materialized view for, 329
EXPLAIN_MVIEW and, 360
EXPLAIN_REWRITE and, 407–9
filtered data, 389–91
forcing errors, 411
grouping sets, 417–20
HIERARCHY clause and, 393–95
join-back, 387–88
with materialized views and no

aggregation, 391–93
multiple occurrences of tables in FROM

clause, 416–17
with nested materialized views, 422–23

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 829

Index

optimizer hints, 409–11
PCT and, 403–7, 529
with PCT using partition key, 404–6
with PCT using partition marker, 406–7
at refresh, 426–27
with set operators, 413–15
setting up, 383–84
sophisticated, 389–90
SQL text match, 385–86
subqueries in FROM clause, 415–16
troubleshooting, 407–9
types, 385–98
with user-defined aggregates, 423

Query rewrite integrity modes, 398–403
defined, 398
ENFORCED, 398, 399–400
STALE_TOLERATED, 399, 400–403
TRUSTED, 399–403

Quick_TUNE procedure, 452

RAID, 76, 88–91
controllers, 90
defined, 88
four-way, 89
implementation, 90, 95
levels, 89–90
RAID 0, 89
RAID 1, 89–90
RAID 3, 90
RAID 4, 90
RAID 5, 90
RAID 10, 90

Range-hash partitioning, 119–21
defined, 119–20
illustrated, 120

Range-list partitioning, 121–23
defined, 121
selecting, 125
SUBPARTITION TEMPLATE, 122, 123

Range partitioning, 115–16

bounds generation, 128
defined, 115
illustrated, 115
by month, 65
with multicolumn partition key, 125
partition pruning, 262–63
selecting, 125
See also Partitioning

RANK function, 282–83
defined, 282
DENSE_RANK, 283
hypothetical, 302–3
multiple use, 285
OVER() clause, 284
PARTITION BY clause, 284–85

Ranking functions, 282–88
defined, 281
DENSE_RANK, 283
FIRST_VALUE, 288
LAST_VALUE, 288
RANK, 282–83
relative, 285–86
ROW_NUMBER, 288

Readwrite keyword, 710
Real Application Clusters (RAC), 4, 20, 21,

39
as high-availability solution, 762
illustrated, 94
introduction, 82
Oracle Database 10g, 82–84
rolling upgrades, 790–91
scale, 84
technology, 74
two-node architecture, 83

Real-time data warehouses, 21
Recommendations (SQL Access Advisor)

actions, 445
details, 446
generation, 443–44
implementation, 448–49
SQL view, 447

TEAM LinG - Live, Informative, Non-cost and Genuine!

830 Index

types, 442
view, 445–47

Recommendations (SQL Tuning Advisor),
453

Create Profile, 457
Restructure SQL type, 455, 456
storage, 453
summary, 454, 455

Recoverability, 758–59
Recovery

configuration, 40, 588
data files location, 588
with Data Guard, 771–87
defined, 565
with Flash Recovery Area, 566–67
human errors, 765–71
log, 589
media failure, 764–65
methods, 564–66
performing, 586, 589
strategy, 559–67
See also Backups; Restoring Databases

Recovery catalog, 581–84
backup contents list, 584
creating, 581–82
defined, 581
information, 583

Recovery Manager (RMAN), 32, 566
database registration with, 582–84
features, 32
prompt, 582
recovery log, 589

Recovery wizard, 585–86
Redo logs

defined, 162
disabling, 193
HOTLOG mining and, 164
on-line, 162

Redundant Array of Inexpensive Disks. See
RAID

Refresh, 336–56

atomic_refresh, 338, 351–52
behavior control, 337–38
COMPLETE, 327, 328
defined, 336
enable query rewrite during, 353
Enterprise Manager for, 339–40
FAST, 327, 340–44
FORCE, 327–28, 339
frequency, 336
method, 327–28
multiple materialized views, 352–53
nested, 338
nested materialized views, 356
ON DEMAND, 337
options, 327–28
PCT, 345, 346
performance, 351–53
policy, 337
query rewrite during, 426–27
refresh_after_errors, 338
time, 328
time consumption, 336
trusted information and, 426

Refreshing warehouses, 541–42
Refresh wizard, 702–4
REGEXP functions, 234, 237, 238, 239
REGEXP_INSTR function, 237
REGEXP_REPLACE function, 238, 239
REGISTER_DEPENDENT_OBJECT

procedure, 538
Regression

defined, 737
linear, 303, 737

Regular expressions
basics, 234–37
for data manipulation, 238–39
defined, 234
power of, 237
searching and, 234–37
substrings and, 237–38

Relational (ROLAP), 673, 674

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 831

Index

Relations, 679
Relative ranking functions, 285–88
Reliability, 758
Reliable storage, 762–63
RELY clause, 398
Reorganization, 515–41

index changes, 530
online redefinition, 530–40
online segment shrink, 540–41
partition maintenance, 516–30
reasons for, 515–16

Report Builder, 644–50
Reporting aggregates, 297–99

defined, 281
function, 297
query use, 297–98

Reports
column widths, 648
conditional, 643, 651
creating, 644–50
data formating, 636
data source, 646
dynamic, 618
headings, 637
illustrated, 639, 649
layout determination, 649
layout specification, 636
matrix, 650
medium, 645
at month level, 641
on-line interaction with, 655
publishing, 651–52
static, embedding, 667
style of, 645
title, 645
totals, 638
totals calculation, 648

Report Wizard, 644
Resource management, 763–64
Restoring databases, 564–65, 584–85

defined, 564

problems, 585
requirements, 585
See also Recovery

Resumable
mode, 554
operations, 554
space allocation, 553–55
statements, 554, 555

Rewrite equivalences, 423–26
defined, 423
disabling, 425
materialized views vs., 425
optimizer use of, 424
use of, 425–26
validity, 425

Roles, 68–69
allocating, 549
creating, 547, 548
power, 549

Rolling upgrade, 790–91
with Data Guard, 791
with RAC, 790–91
See also Planned downtime

Rolling window
partition maintenance, 517–18
with tablespace reuse, 518

ROLLUP operator, 273–74
Rugged hierarchies, 685
Rules, 311–17

application, 316
iterations, 316–17
ordering, 315–16
semantics, 313

SAME (Stripe and Mirror Everything), 91–
92

Scheduler facility, 494–502
Schedules

defined, 494
definition methods, 498–99

TEAM LinG - Live, Informative, Non-cost and Genuine!

832 Index

predefined, 499
predefined window, 499
setting, 500
standard, 499, 500
See also Job scheduling

Schemas
defined, 44
Easy Shopping, 71, 795–802
names, 44, 48
objects, 45
star, 260
by subject area, 44

Scoring, 733
Security, 67–69

Easy Shopping example, 801–2
maintaining, 546–50
of materialized views, 335–36
object privileges, 67–68
roles, 68–69
system privileges, 69
VPD, 549–50

Segment Advisor, 436
Server architectures, 74–80

clustered, 78–79
MPP, 79–80
multidisk, 75–76
multiprocessor, 77–78
single-processor, single-disk, 74–75
See also Architectures

SETI@home project, 3
Set operators, 413–15

INTERSECT, 413, 415
MINUS, 413, 415
UNION, 413, 415
UNION ALL, 413, 414, 415

SGA Memory Advisor, 466–69
buffer cache advice, 468–69
illustrated, 467
shared pool advice, 467–68
See also Memory Advisor

Shared Global Area (SGA), 459

Shared storage, 92–94
SHRINK SPACE command, 541
Single-cell references, 312
Single-processor, single-disk architecture, 74–

75
Skip-level aggregation, 704
Skip-level hierarchies, 685
Snapshots

defined, 506
details, 509
frequency, 507
id numbers, 506
range, defining, 507
retention period, 507

Snowflaking, 29
Software provisioning, 85
Sort-merge joins, 259, 260
Space

automated management, 553
resumable allocation, 553–55
usage monitoring, 551–55

Splitting partitions, 523–26
defined, 523
illustrated, 524
via Enterprise Manager, 525
See also Partitions

SQL
access to analytic workspaces, 677, 721–23
creating tablespaces from, 52–53
multiplication operator, 233
query features, 271–320

SQL Access Advisor, 17, 145, 436–52
analysis results review, 444–45
analysis schedule, 443
availability, 436
Comprehensive mode, 442
CREATE_TASK procedure, 451
defined, 324, 435
flow, 437
input, 437
launching, 438

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 833

Index

Limited mode, 442
maintenance impact and, 440
Quick_TUNE procedure, 452
recommendation generation, 443–44
recommendation implementation, 448–49
recommendation types, 442
recommendation view, 445–47
Review page, 444
schedule implementation, 448
SQL Cache workload source, 441
SQL statement view, 445, 447–48
SQL Tuning Set source, 440
templates, 451
tuning parameters specification, 441–42
wizard, 438–49
workload filtering options, 440
workloads, 437, 439
workload sources, 437–38
workload source selection, 438–41

SQL Cache
defined, 432–33, 438
SQL Tuning Set creation from, 433

SQL extensions
for aggregation, 272–81
for business intelligence, 271
CUBE operator, 272–73
GROUPING SETS operator, 274–76
ROLLUP operator, 273–74

SQL functions
analysis, 281–308
CASE, 281
CUME_DIST, 300
DENSE_RANK, 283
FIRST, 299–300
FIRST_VALUE, 288
GROUPING, 277–79
GROUPING_ID, 277–78
LAG, 289–90
LAST, 299–300
LAST_VALUE, 288
LEAD, 289–90

PERCENTILE_CONT, 301–2
PERCENTILE_DISC, 301–2
RANK, 282–83
ranking, 281, 282–88
reporting aggregates, 281, 297–99
ROW_NUMBER, 288
statistical analysis, 303–5
SUMMARY, 304
WIDTH_BUCKET, 288–89
window aggregates, 281, 291–93

SQL Inspector, 640
SQL*Loader, 10, 183–205

accessing, from Enterprise Manager, 183
advanaced options, 188
control file, 183–85
data files, 185–205
data load options, 187–89
direct path load, 194–98
fixed-length format support, 185
load operation scheduling, 189–90
log, inspecting, 191–92, 197–98, 200, 202
modes of operation, 186–87
parallel direct path load, 198–201
performance, optimizing, 193–94
postload operations, 202–3
sorted order load, 193
transformations with, 201–2
variable-length format support, 185

SQL Model Clause, 308–20
cell-reference, 312
defined, 308
examples, 317–20
execution, 311
iterations, 316–17
operation, 310
rules, 311–17

SQL*Plus
autotrace option, 256
dimension structure and, 379

SQL statements
ALTER INDEX REBUILD, 530

TEAM LinG - Live, Informative, Non-cost and Genuine!

834 Index

ALTER TABLE, 542
CASE, 305–6
CREATE CATALOG, 582
CREATE DIMENSION, 369, 373, 374–

75
CREATE INDEX, 64, 268
CREATE MATERIALIZED VIEW, 268,

325–26, 334, 335
CREATE OUTLINE, 475
CREATE TABLE, 53, 215, 268, 542
CREATE TABLE AS SELECT, 250–51
DROP, 767, 768
FLASHBACK TABLE, 766, 767
INSERT, 193, 227, 230, 250, 608
MERGE, 227–32, 609
SHRINK SPACE, 541
SORTED INDEXES, 193
UPDATE, 227, 230, 233

SQL text match, 385–86
defined, 385
execution plan, 385–86
See also Query rewrite

SQL Tuning Advisor, 17, 452–59
availability, 453
comprehensive mode, 454
Create Profile recommendation, 457
DBMS_SQLTUNE PL/SQL package,

457–59
defined, 435
in Enterprise Manager, 453–57
illustrated, 454
input, 453
limited mode, 453–54
recommendations, 453
recommendations summary, 454
recommendation storage, 453
recommendation summary, 455
Restructure SQL type, 455, 456
running, 454

SQL Tuning Sets, 431–34, 438
creating, in Enterprise Manager, 432

creating, with DBMS_SQLTUNE, 432–
34

creating, with SQL Cache, 433
defined, 431
with too many statements, 433
viewing, 434

Staging tables, 246–51
Stale summaries, 322, 323
STALE_TOLERATED mode

defined, 399
stale data and, 401
TRUSTED mode comparison, 400–403
trusted relationship use, 400
See also Query rewrite integrity modes

Standard form entities, 710–11
Star transformation, 260–62

basis, 260
defined, 260
enabling, 260
foreign-key columns and, 262

START_REDEF_TABLE procedure, 537
Static reports, 667
Statistical analysis functions, 303–5
Statistics

automatic collection, 542–43
dynamic sampling, 545–46
manual collection, 543–45
optimizer, gathering, 542–56
saving, 545
system, collecting, 545

Storage
configurations, 87–94
HARD-compliant, 763
I/O subsystem, 87–88
options, 39
policy management, 792
RAID, 88–91
reliable, 762–63
shared, 92–94

Storage Area Networks (SANs), 92
Stored outlines, 474

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 835

Index

SUBSCRIBE procedure, 172
Subscriber views

defined, 162
select data from, 175

Subscriptions
creating, 171–73
ending, 176

SUBSTR functions, 237
Substrings, regular expressions and, 237–38
Summaries

complete refresh, 322
defined, 321
illustrated, 321
incrementally refresh, 322
refreshing, 322, 324–25
stale, 322, 323
user awareness, 324
using summary management with, 331–

33
Summaries (Discoverer)

creating, 629–30
defined, 630
recommendation, 631
refreshing, 631
types of, 630

Summary Advisor, 438
SUMMARY function, 304
Summary management, 321–65

defined, 322
need for, 322–23
with Oracle, 323–25
using, 331–33

Summary wizard, 631, 632
Supervised learning, 727
Supply chain management, 20
Support Vector Machines (SVM), 737
Surrogate keys, 28

defined, 178–79
in fact tables, 180
recommendation, 159
storage, 179

use illustration, 179
use of, 240

Switchovers, 775, 785, 786
Symbolic references, 312, 314
Symmetrical multiprocessor (SMP)

architecture, 77
Synchronizing tables, 539
Synchronous CDC, 162, 165–67

change set creation, 165
triggers, 162
See also Change Data Capture (CDC)

SYNC_INTERIM_TABLE procedure, 539
SYSAUX tablespace, 48–49
System change number (SCN), 563
System Global Area (SGA), 80, 466–69

accessibility, 466
buffer cache advice, 468–69
illustrated, 81
large pool, 466
shared pool advice, 467–68
See also SGA Memory Advisor

System privileges, 69
Systems administrator, 90, 91
System statistics, 545

Table compression, 151–53
examples, 152–53
queries and, 152
See also Compression

Table functions, 242–44
cursor variables, 242–43
defined, 242
invoking, 244
object technology, 242
results, saving, 244

Tables
access path, 256
adding partitions to, 247–48
backing up, 252
base, 329

TEAM LinG - Live, Informative, Non-cost and Genuine!

836 Index

creating, with CREATE TABLE AS
SELECT, 250–51

defining, in OWB, 598–99
detail, 329
Easy Shopping example, 797–801
index-organized (IOTs), 148–51
interim, creating, 537
joining, 603–4
layout, 636
moving, into new partitions, 248
moving data between, with direct path

insert, 250
nonpartitioned, 519
normalized, 373–75
online redefinition of, 530–40
optimizer statistics for, 251
partitioned, 519
summary, 321–65
synchronizing, 539
user-specified, 438
See also Dimension tables; Fact tables

Tablespace backups, 578–80
Tablespaces

alter to read/write, 227
creating, 49–53, 195
creating, from SQL, 52–53
creating, in OLTP system, 222–23
critical thresholds, 553
data files, 49
Easy Shopping example, 795–96
full warning, 553
names, 51
read-only, 579
space utilization, 551
SYSAUX, 48–49
transport, 226
transportable, 220–27
utilization metrics, 552

Target attribute, 733
Targets

defined, 485

hosts, 487
hosts, navigating to, 489
types, 485–86

Templates
database, 37
SQL Access Advisor, 451

Testing
designs, 70–71
new software, 557
problems identified during, 71

Test systems, building, 556
Timestamps, 160
Transactional format, 738
Transformations, 176–81

data cleansing, 233–39
data clensing, 177–78
data derivation, 178, 233–39
data integration, 177
in extraction process, 180
inside databases, 232–51
in load process, 180–81
optimal place for, 180–81
splitting data source, 245–46
with SQL*Loader, 201–2
in staging area, 180
star, 260–62
warehouse key generation, 178–80
in warehouse staging tables, 181

Transportable tablespaces
defined, 220
illustrated, 222
loading warehouses with, 220–27
use steps, 221
See also Tablespaces

Triggers, 160
disabling, 195–96, 199
reenabling, 198, 201
in synchronous CDC, 162

Troubleshooting
parallel execution, 469–73
query write, 407–9

TEAM LinG - Live, Informative, Non-cost and Genuine!

Index 837

Index

Truncating partitions, 527–29
defined, 527
via Enterprise Manager, 528

TRUSTED mode
constraints, 399
defined, 399
ENFORCED mode comparison, 399–400
stale data and, 401
STALE_TOLERATED mode

comparison, 400–403
See also Query rewrite integrity modes

TUNE_MVIEW utility, 344, 362–65
advantages, 365
defined, 362
example, 362
UNDO script generation, 365
using, 363

UNION ALL operator, 413, 414, 415
Unsupervised learning, 727
UPDATE statement, 230, 277

with built-in functions, 233
semantics, 313–14

UPSERT semantics, 313
Usage patterns, 18
User-defined aggregates, 279–81, 423–24

query rewrites with, 423
rollups and, 423

USER_RESUMABLE view, 555
User-specified tables, 438
USER_TAB_COLS dictionary view, 544
USER_TABLES dictionary view, 544

Validation
components, 606
data, 240
design, 606–7
dimension, 379–82
OLAP metadata, 693

rewrite equivalences, 425
Variables

bind, 411–13
conceptual version, 681
cursor, 242–43
defined, 680
dependent, 737
file location, 43
independent, 737

Virtual Private Database (VPD), 549–50
V$PX_PROCESS_SYSSTAT, 473
V$PX_SESSION, 472
V$SYSSTAT, 472

Warehouse keys, 28
generating, 178–80
looking up, 240–41

Warehousing tools, 591–652
Oracle Discoverer, 614–44
Oracle Reports 10g, 644–52
Oracle Warehouse Builder (OWB), 591–

614
Web data publication, 664–67
What-if analysis, 672–73
WIDTH_BUCKET function, 288–89

bucket distribution, 288
uses, 288–89

Window aggregates, 281, 291–93
Windows

logical, 292
physical, 291
predefined, 499
rolling, 517–18
specifications, 291

Window sort operation, 421
WITH clause, 306–8

TEAM LinG - Live, Informative, Non-cost and Genuine!

	Cover
	Contents
	Foreword
	Preface
	Acknowledgments
	1 Data Warehousing
	2 Designing a Warehouse
	3 Architecture of a Data Warehouse
	4 Physical Desigh of the Data Warehouse
	5 Loading Data into the Warehouse
	6 Querying the Data Warehouse
	7 Summary Management
	8 Dimensions
	9 Query Rewrite
	10 Tuning Query Performance
	11 Managing the Warehouse
	12 Backup and Recovery
	13 Oracle Warehousing Tools
	14 Data Warehousing and the Web
	15 OLAP
	16 Oracle Data Mining
	17 High Availability and a Data Warehouse
	A The Schema for Easy Shopping Inc.
	B Product Information
	Index

