
Adaptive fuzzy logic-based framework for software

development effort prediction

Moataz A. Ahmeda, Moshood Omolade Saliub,*, Jarallah AlGhamdia

aDept of Info. & Computer Science, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
bDept of Computer Science, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4

Received 20 October 2003; revised 19 May 2004; accepted 21 May 2004

Abstract

Algorithmic effort prediction models are limited by their inability to cope with uncertainties and imprecision present in software projects

early in the development life cycle. In this paper, we present an adaptive fuzzy logic framework for software effort prediction. The training

and adaptation algorithms implemented in the framework tolerates imprecision, explains prediction rationale through rules, incorporates

experts knowledge, offers transparency in the prediction system, and could adapt to new environments as new data becomes available. Our

validation experiment was carried out on artificial datasets as well as the COCOMO public database. We also present an experimental

validation of the training procedure employed in the framework.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Soft computing; Effort prediction; Fuzzy logic; COCOMO

1. Introduction

Software cost and schedule estimation supports the

planning and tracking of software projects. Effectively

controlling the expensive investment of software develop-

ment is of paramount importance [20,39]. The need for

reliable and accurate cost predictions in software engineer-

ing is an ongoing challenge [13], because it allows for

considerable financial and strategic planning.

Software cost estimation refers to the predictions of the

likely amount of effort, time, and staffing levels required to

build a software system. A very helpful form of effort

prediction is the one made at an early stage during a project,

when the costing of the project is proposed for approval.

This project costing is derived primarily from requirements

specifications documents [18]. However, estimates at the

early stages of the development are the most difficult to

obtain. The estimates are often the least accurate, because

very little detail is known about the project and the product

at the beginning.

In this paper, we present an adaptive fuzzy logic (FL)

framework for effort prediction. The paper is organized as

follows. In Section 2, we discuss the overtime evolution of

both algorithmic and non-algorithmic models; Section 3

presents our attributes for evaluating soft computing-based

prediction systems, and summary result of our critical study

using the attributes. Section 4 presents an adaptive and

transparent framework for effort prediction, and the training

algorithms implemented. Section 5 discusses the various

experiments to realize the framework. Section 6 concludes

discussions of our experimental results, and Section 7 points

out possible directions for future research.

2. Effort prediction models

Software effort estimation spawned some of the first

attempts at rigorous software measurement, so it is the

oldest, most mature aspect of software metrics. This section

discusses the evolution of both algorithmic and non-

algorithmic estimation techniques overtime. We summarize

the section by giving the motivation for our work in this

research.

0950-5849/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2004.05.004

Information and Software Technology xx (2004) xxx–xxx

www.elsevier.com/locate/infsof

* Corresponding author. Tel.: þ1-403-210-8412.

E-mail addresses: saliu@cpsc.ucalgary.ca (M. Omolade Saliu),

mahmed@ccse.kfupm.edu.sa (M.A. Ahmed), jaralla@ccse.kfupm.edu.sa

(J. AlGhamdi).

ARTICLE IN PRESS

http://www.elsevier.com/locate/infsof

2.1. Algorithmic models

Boehm was the first researcher to look at software

engineering from an economic point of view. He came up

with a cost estimation model, COCOMO-81 in 1981, after

investigating a large set of data from TRW in the 1970s

[10]. Putnam also developed an early model known as SLIM

in 1978 [38]. COCOMO and SLIM [11] are both based on

linear regression techniques, using data from past projects.

Both COCOMO and SLIM take number of lines of code

(about which least is known very early in the project) as the

major input to their models. Albrecht’s function points

measures the amount of functionality in a system as

described by a specification [11]. A survey on these

algorithmic models and other cost estimation approaches

is presented by Boehm et al. [2].

Most models rely on accurate estimate of either size of

software in terms of line of code (LOC), number of user

screen, interfaces, complexity, etc. at a time when

uncertainty is mostly present in the project [31].

Algorithmic models such as COCOMO, have failed to

present suitable solutions that take into consideration

technological advancements [13]. One possible reason

why algorithmic models have not proven to provide such

solution is because, they are often unable to capture the

complex set of relationships (e.g. the effect of each variable

in a model to the overall prediction made using the model)

that are evident in many software development environ-

ments [34]. They can be successful within a particular type

of environment, but not flexible enough to adapt to a new

environment. Their inability to handle categorical data (that

is, data that are specified by a range of values) and most

importantly lack of reasoning capabilities (that is, ability to

draw conclusions or make judgments based on available

data) contributed to the number of studies exploring non-

algorithmic methods (e.g. FL).

Section 2.2 discusses some of the non-algorithmic

models that are soft computing-based. Soft computing is a

consortium of methodologies centering in FL, artificial

neural networks (ANN) and evolutionary computation

(EC). These methodologies provide flexible information

processing capability for handling real life ambiguous

situations.

2.2. Non-algorithmic models

Newer computation techniques to cost estimation that are

non-algorithmic were sought in the 1990s. Researchers

turned attention to a set of approaches that are soft

computing-based.

FL with its offerings of a powerful linguistic represen-

tation can represent imprecision in inputs and outputs, while

providing a more expert knowledge-based approach to

model building. A study by Hodgkinson and Garratt claims

that estimation by expert judgment was better than all

regression-based models [13].

MacDonell et al. [21] explored an expert knowledge-

based application of FL to effort prediction. This particular

research has evolved into the development of a tool,

FULSOME, to assist project managers in making predic-

tions. MacDonell also applied fuzzy modeling to software

source code sizing in Ref. [19].

Attempts have been made to fuzzify some of the existing

algorithmic models in order to handle uncertainties and

imprecision problems in such models. The first realization

of the fuzziness of several aspects of one of the best known

[17], most successful and widely used model for cost

estimation, COCOMO, was that of Fei and Liu [10]. Fei and

Liu observed that an accurate estimate of delivered source

instruction (KDSI) cannot be made before starting the

project. Therefore, it is unreasonable to assign a determinate

number for it. Jack Ryder [31] investigated the application

of fuzzy modeling techniques to two of the most widely used

models for effort prediction; COCOMO and the Function-

Points models, respectively. Idri and Abran [14] applied FL

to the cost drivers of intermediate COCOMO model. The

application of FL to represent the mode and size as input to

COCOMO model was later presented by Musilek et al. in

Ref. [24]. Musilek et al. presented a two-stage implemen-

tation called simple F-COCOMO model and augmented

F-COCOMO model, respectively.

FL has also offered itself as a useful tool to aid other

techniques for software cost estimation like analogy.

Similarity between projects is often used when estimating

software effort by analogy. Various authors have put

forward various proposals for means of deriving similarity

as input to the estimation process; the nearest neighbor

algorithm [34] is one such approach. This algorithm cannot

handle projects attributes described by categorical variables.

Idri and Abran [15,16] proposed an alternative approach

using FL to deal with this limitation.

Venkatachalam [40] investigated the application of ANN

to cost estimation. Other latest works using neural networks

(NN) in cost estimation are reported in Refs. [3,4]. ANN is

able to generalize from trained data set. Over a known set of

training data, an ANN learning algorithm constructs

mappings that fit the data, and fits previously unseen data

in a reasonable manner as well [38].

A marriage between NN and FL, Neurofuzzy, was

introduced into cost estimation in Ref. [13]. A Neurofuzzy

system can combine the linguistic attributes of a fuzzy

system with the learning and modeling attributes of a NN.

EC has also recently found its usefulness in software

effort estimation. Burgess and Lefley [6] applied genetic

programming (GP) to software effort estimation. EC

simulates evolution on a computer.

Chulani et al. [7] applied Bayesian analysis in calibrating

the 1998 version of COCOMO II model to 161 data-points.

When compared with the 1997 calibration done using

multiple regressions, the Bayesian approach was adjudged

to perform better and more robust. Bayesian analysis was

also used in the calibration of the 2000 version of

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx2

ARTICLE IN PRESS

COCOMO II by Boehm et al. [2]. The result of this was a

higher predictive accuracy.

In summary, FL has been proposed to model imprecision

present in the variables that make up the COCOMO model;

and the imprecision present in software effort prediction in

general. However, there is still much uncertainty as to what

prediction technique suits which type of prediction problem

[35]. Choosing between the various techniques is an arduous

decision that requires the support of a well-defined

evaluation scheme to rank each prediction technique as it

applies to any prediction problem. A sample evaluation

scheme is given in Section 3 of this paper.

Section 3 reveals that a problem with existing techniques

is the absence of transparent framework that incorporates

expert knowledge, information from historical project data,

imprecision handling and adaptability. The existence of

such framework would explore most information source

available to make predictions that could gain the confidence

of project managers.

3. Classification attributes for soft computing-based

techniques

A software project manager will need to trust predictions

made by prediction techniques, if these techniques are to be

deployed in practice [18]. Prediction can be viewed from

three different perspectives: the prediction problem (e.g.

estimating the cost of development/testing, the duration

of development/testing, etc.), the particular problem at hand

(a specific case with its own characteristics, e.g. a super-

market software), and finally the prediction technique (e.g.

algorithmic model, analogy, FL, etc.). Assessing a predic-

tion technique, in our own view, should not only be based on

accuracy of estimates made, but also on other attributes of

the underlying prediction model. To the best of our

knowledge, assessing prediction systems in the literature

have been based on the characteristics of the dataset (i.e. the

data on which the prediction is carried out) and the accuracy

of the model only [35].

There is still much uncertainty as to what prediction

technique suits which type of prediction problem [35]. This

type of uncertainties is what we desire to address by

proposing set of attributes to aid the assessment and choice

of prediction system. Our critical survey result that

concludes this section was guided by the set of attributes

discussed in the sequel. We propose this set of attributes,

which was developed based on surveying the literature, for

assessing, classifying, and comparing soft computing-based

effort prediction systems:

Underlying model. The underlying model specifies

whether the soft computing approach to effort prediction

is based on an existing algorithmic cost estimation model

like COCOMO, SLIM, etc. or based on other models like

expert judgment, analogy, etc. Empirical research has

indicated that expert judgment coupled with prediction

systems sometimes outperform either prediction systems or

expert judgment alone [23]. Based on this observation, it

might not make much sense to keep everything to a single

model. For example, if the underlying model were known

not to always perform accurately, this would affect any

variant of it that is implemented.

Trainability. Trainability is the ability of a prediction

system to learn the relationships between features and adapt

during training. This attribute is what has generally been

referred to as adaptability in many of the approaches

surveyed.

Adaptability. This attribute describes the ability and ease

of the prediction system to adjust to new environments as

new information and knowledge are supplied. Trainability

does not translate to adaptability, as a system could be

trainable but not adaptive. Adaptability subsumes

trainability.

Sensitivity. This attribute refers to the responsiveness to

changes in input data, and the type of input data it can

handle (e.g. numeric data, categorical data). Responsiveness

to changes in input data assesses the effect an imprecision in

input to the model has on the effort estimate produced. For

example, we desire to know how well the system can

accommodate an error involving size supplied as 900 KLOC

as opposed to the actual 850 KLOC.

Aspect coverage. This refers to the ability of the

approach to cover wide range of aspects of the development

process and environment. For example, whether the effort

prediction system takes into consideration the following;

reuse, capability-maturity model level, etc.

Spectrum coverage. This attribute refers to the coverage

of different types (classes) of systems, e.g. organic, semi-

detached and embedded systems, as proposed by Boehm in

Ref. [1]. If a prediction system is not sophisticated, it might

not be able to cover the whole spectrum. A prediction

system might still be able to model a software project

inherently made up of different classes without necessarily

breaking the project into different groups, although such

systems may be too complicated.

Implementation technique. We define this attribute to

capture the implementation approach taken. An implemen-

tation approach using soft computing can be as simple as a

straightforward application of an underlying model by

applying a single soft computing approach, e.g. fuzzifying

input/output, or a more sophisticated implementation

technique that explores/combines various capabilities of

the soft computing methods used (e.g. FL, NN, neurofuzzy

(NF), neuro-genetic (NG), etc.)

Input data. This attribute identifies the type of input data

required by the effort prediction system to perform

estimates, e.g. lines-of-code. It also reflects the ease of

getting the input data and the accuracy in making reasonable

estimates. Input data is simply the input required to make

estimates using the prediction system, but not to develop the

prediction system.

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx 3

ARTICLE IN PRESS

Knowledge acquisition and data source. This refers to

the mode of knowledge acquisition considered in develop-

ing (i.e. training/adapting) the prediction system, the source

of data required and how reliant the system is on the data

source. The mode of knowledge acquisition could either be

manual, with users being the source of the knowledge or

automatic (based on perceived relationship between the data

through learning). For example, a system that relies on users

to supply rules in a FL-based approach is said to exhibit

manual knowledge acquisition. The data source can be

either from historical or simulated data.

Complexity of the model. This attribute refers to the

amount of effort or size (e.g. number of neurons, number or

rules, etc.) required for building and/or using the prediction

system. This attribute reflects the efficiency of the prediction

system. A model that is not practical or rather difficult to use

might not be a good model. For example, NN are known to

give good approximations, but they might be overly

complex and require considerable effort and expertise [23].

Accuracy. Accuracy is the attribute of a prediction system

that reflects its effectiveness. A software manager who wants

to use a prediction model would desire to use an accurate one.

Transparency. Transparency of a prediction system

reflects the visibility of the prediction process to the

software engineer/expert. Interaction or collaboration

between the prediction system and the end-user/expert is

of great importance, especially for maintenance purposes.

If a system is transparent, an expert can easily evaluate and

add his own knowledge to improve accuracy of the model,

because it would be possible to see and understand the

processes involved. Empirical research has indicated that

experts coupled with prediction systems outperform either

prediction systems or experts alone [23].

Extendibility. Extendibility reflects the ability of a

prediction system to accommodate changes to its model,

in that it will be useful for predicting effort required for

other activities of software development, e.g. maintenance,

testing, etc. A prediction system that uses an underlying

model in such a way that the prediction process expects a

specific type of input, might not be useful on extending it to

other activities for which such inputs are not defined.

The assessment attributes presented offer more beyond

their usefulness in carrying out comparison of prediction

systems. They can serve as guidance to researchers

attempting to develop prediction systems for effort esti-

mation using soft computing.

This set of attributes can serve as a fundamental

groundwork of what needs to be measured when assessing

and comparing prediction systems. A set of metrics can be

built on top of this groundwork to quantitatively assess

prediction systems. This type of metric would help a

software engineer in decision making as to what prediction

system to use and when to use it. An approach to developing

such metrics was presented with a sample rating scheme in

our previous work in Ref. [32]. Meanwhile, we admit that

some of these attributes may be difficult to measure in a

systematic manner.

Some other researchers have proposed attributes to

assess effort prediction models, but not much attention

was given to soft computing. Typical works in this area

include that of Boehm [1], Briand and Wieczorek [5],

Burgess and Lefley [6], Gray and MacDonell [12], and Mair

et al. [23]. Most of the attributes proposed by these

researchers are subsumed in our attributes.

In concluding this section, Table 1 gives a summary of

our critical study of important soft computing-based

Table 1

Evaluation of prediction techniques

Work Model Approach Limitations

Musilek et al. [24] FL Fuzzification of COCOMO nominal effort model Not adaptive

No fuzzy rules

Mode modelled as singletons

Idri and Abran [14] FL Fuzzification of COCOMO Cost Drivers Not adaptive

Key project feature ignored (SIZE)

MacDonell et al. [20–22] FL FULSOME Tool Not adaptive (rulebase need to be reconstructed)

Wittig and Finnie [42] NN Training using historical/simulated data Trainable, not adaptive

Imprecision not handled

No Transparency

Boetticher [3,4] NN Training using historical data Trainable, not adaptive

Imprecision not handled

No Transparency

Burgess and Lefley [6] GP Effort estimation formulated as symbolic regression problem Not adaptive

Imprecision not handled

No total transparency

Hodgkinson and Garratt [13] NF Used NN learning to extract fuzzy rules from data Trainable, not adaptive

No total transparency

Shukla [37] NG Genetically trained NN using historical data Trainable, not adaptive

Imprecision not handled

No transparency

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx4

ARTICLE IN PRESS

prediction systems using the attributes we have presented in

Section 2.

The considered works use models that include, FL, NN,

GP, and hybrids like NF and NG. A more detailed

evaluation is contained in Ref. [32].

Our critical evaluation reveals that no single soft

computing-based software effort prediction system exists

that incorporates the following:

1. Tolerance of imprecision

2. Incorporating expert’s knowledge in a well-defined

manner

3. Total transparency in the prediction system

4. Ability to explain prediction results through rules or

other means

5. Adaptability to cope with continuous change in

development technologies and environments.

Properly addressing these problems would position soft

computing-based prediction techniques as models of choice

for effort prediction, considering the promising features

already present in them.

4. Adaptive and transparent framework

Most significant of the problems identified in concluding

our critical study is the lack of adaptive soft computing-

based effort prediction systems that provide complete

transparency to the prediction system building strategies.

Thus, experts would not be able to easily augment with their

knowledge while building and using the prediction system.

In addition, efforts at handling the imprecision problem

present in one of the most widely used algorithmic model,

COCOMO, has not been appropriate, since the model was

not addressed as a whole. That is, imprecision in input is

separately modeled for the nominal effort part of the model

and cost drivers. Thus, integrating the individual component

of the model into a single prediction system remains an open

question.

In order to address these problems we propose a FL-

based framework that is built upon an existing cost

estimation model—COCOMO. A major justification for

using COCOMO is that, while many traditional models have

been said to perform poorly when it comes to cost

estimation, COCOMO’81 is said to be most plausible

[24], best known [17], and most cited [13] of all traditional

models. For detailed justification of the assertions above, the

reader is advised to consult the works by Musilek et al. [24],

Kirsopp and Shepperd [17] and Hodgkinson and Garratt

[13]. Devnani-Chulani reported that over a dozen commer-

cial COCOMO’81 implementations are available [9]. The

original COCOMO database is also readily available for

validation.

Our framework to be presented later in this section

addresses these noted problems by:

† Providing a well-defined and transparent approach to

accommodate expert knowledge

† Proposing a well-defined procedure to fuzzify and

integrate the various components of the COCOMO

model that captures imprecision, and

† Implementing training algorithms to incorporate

adaptability

4.1. The intermediate COCOMO model

The COCOMO model is a set of three models: basic,

intermediate, and detailed. The models depend on the stage of

software development and the level of information available.

The basic version is used for quick, early, and rough estimates

of effort. The intermediate and detailed versions include

more information in the form of cost drivers. The detailed

COCOMO model assumes that the influence of the cost

drivers is phase-dependent, thus requiring the availability of

much detailed information than the intermediate version.

Idri and Abran [14] reported that intermediate COCOMO

model is the most widely used version. According to the

authors, intermediate COCOMO model has estimation

accuracy that is greater than the basic version, and at the

same time comparable to the detailed version. COCOMO

model takes the following as input: (1) the estimated size of

the software product in thousands of Delivered Source

Instructions (KDSI) adjusted for code reuse [1,8]; (2) the

project development mode given as a constant value B (also

called the scaling factor); and (3) 15 cost drivers. The

development mode depends on one of the three categories of

software development modes: organic, semi-detached, and

embedded. It takes only three values, {1.05, 1.12, 1.20},

which reflect the difficulty of the development. The estimate

is adjusted by factors called cost drivers that influence the

effort to produce the software product. Cost drivers have up

to six levels of rating: Very Low, Low, Nominal, High, Very

High, and Extra High. Each rating has a corresponding real

number (effort multiplier), based upon the factor and the

degree to which the factor can influence productivity.

The estimated effort in person-months (PM) for the

intermediate COCOMO is given as:

Effort ¼ A £ ½Size�B £
Y15

i¼1

EMi ð1Þ

The constant A in Eq. (1) is also known as productivity

coefficient. The scale factors for the different modes are

given in Table 2. These scale factors are based solely on

the original set of project data used in developing the

COCOMO model.

The effort multipliers corresponding to the cost drivers

are incorporated into the effort estimation formula by

multiplying them together. The numerical value of the ith

cost driver is EMi and the product of all the multipliers is

called the estimated adjustment factor (EAF). The actual

effort in PM, PMtotal is the product of the nominal effort

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx 5

ARTICLE IN PRESS

(i.e. effort without the cost drivers) and the EAF, as given

below:

PMtotal ¼ PMnominal £
Y15

i¼1

EMi ð2Þ

4.2. The proposed framework

Vagueness is present in all parameters of the COCOMO

model. The exact size of software project to be developed

is difficult to estimate to precision at an early stage of the

development process. There is no consideration given to

software projects that do not exactly fall into one of the

three identified modes. In addition, the cost drivers are

categorical (e.g. high, low, etc.), but determining the

category that applies to a project for most cost driver

depends on crisp values estimates that may not entirely fall

under a single categorical class. In all these input

parameters, fuzzy sets can be employed to handle the

imprecision.

Various attempts have been made to address the fuzzy

nature of some aspects of the COCOMO model, with

prominent ones including Idri and Abran [14], Musilek et al.

[24], and Pedrycz et al. [29].

However, these works have not looked into the

integration of the nominal effort and the cost drivers of

the COCOMO model. Our adaptive framework uses

intermediate COCOMO as the base cost model to address

the major problem of data scarcity and fuzzy rules training.

Data scarcity refers to the unavailability of industrial data.

We have been able to generate artificial datasets using the

COCOMO model. A detail description of artificial data

generation is given in Section 5. The framework is shown in

Fig. 1.

The framework integrates the two components of the

COCOMO model as given in Eq. (2): the nominal effort as

calculated using the basic part of the model, and the effort

adjustment using the effort multipliers. The framework

allows fuzzy and expert knowledge incorporation.

We developed and trained fuzzy rules using the model

equation (and expert knowledge) for the basic component at

the top to estimate nominal effort, and fuzzified the cost

drivers represented at the bottom part of Fig. 1. Independent

training of the two components is valid because the effect of

one multiplier is independent of the effect of others. Pfleeger

observed the need for this independence of cost drivers in

Ref. [30]; we have equally carried out an analytical

justification in Ref. [33].

Thus, we can fuzzify and train the nominal part of the

model equation independent of the cost drivers. Effects of

the drivers on efforts are independent and can be aggregated

with the predicted nominal effort. The fuzzy sets definitions

take care of imprecision in input to the effort prediction

model. Informal description of our approach for fuzzifying

the two components that constitute the overall effort is given

below.

4.2.1. Part I: fuzzy COCOMO for nominal effort

Considering the basic part of the model equation (Eq. (2))

for calculating nominal effort [1], we get

Enominal ¼ ðA £ ½Size�BÞ

Handling the imprecision in input supplied for size

requires that size of software project be redefined as a fuzzy

number, instead of crisp number, using suitable fuzzy sets.

Thus, the size of a software project can be specified as a

range of possible values and the closeness of each value to

the actual value depends on the degree to which the value is

a member of the fuzzy set describing the fuzzy number.

Similarly, given the values for A and B as in Ref. [1], we

define fuzzy sets for each mode of development such that

each adjacent fuzzy set overlaps with its neighbors. The

overlap will exploit the power of FL to enable us handle

development projects that fall between two modes

(a situation not possible in the COCOMO model). Sample

artificial datasets are generated for size and the correspond-

ing effort is calculated using the COCOMO model equation.

For each selected size and cost calculated, membership

functions are defined. We then proceed to formulate rules

based on the relationship between size and effort; and train

the fuzzy inference system (FIS) developed using the

artificial dataset.

Implementing a fuzzy system requires that the

different categories of the different inputs be represented

by fuzzy sets, which in turn is represented by member-

ship functions. For our problem, a natural membership

function type that readily comes to mind is the triangular

membership functions. It is a three-point function,

Fig. 1. Adaptive fuzzy logic framework using COCOMO.

Table 2

COCOMO mode coefficients and scale factors values

Mode A B

Organic 3.2 1.05

Semi-detached 3.0 1.12

Embedded 2.8 1.2

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx6

ARTICLE IN PRESS

defined by minimum ðaÞ; maximum ðbÞ and modal ðmÞ

values, that is, TMFða;m;bÞ; where ða # m # bÞ; Please

refer to Fig. 2 for a sample triangular membership

function, showing a; m; and b with center m; and

support ½a;b�:

The fuzzy sets definitions for the mode of development appear

in Fig. 3 below. For example, the middle triangular fuzzy set can

be used to represent the fuzzy number (approximately semi-

detached), with center 1.12, and support [1.05,1.20].

In addition, for size of software fuzzification, we have

fuzzy sets as shown in Fig. 4 (triangular membership

function) in the simplest case. The hypothetical effort fuzzy

sets will correspondingly be as given in Figs. 5 (the unit of

effort is in man-months).

Our rules formulated, based on the fuzzy sets of modes,

sizes and efforts appear in the following form:

IF mode is organic AND size is s1 THEN cost is c11

IF mode is semi-detached AND size is s1 THEN effort

is c21

IF mode is embedded AND size is s1 THEN effort is c31

IF mode is organic AND size is s2 THEN effort is c12

IF mode is semi-detached AND size is s2 THEN effort

is c22

IF mode is embedded AND size is s2 THEN effort is c32

…

IF mode is mj AND size is si THEN effort is cji

ð1 # i # n; 1 # j # 3Þ

Where mj are the fuzzy values for the fuzzy variable

mode, si ð1 # i # nÞ are the fuzzy values for the fuzzy

variable size, and Cji ð1 # i # n; 1 # j # 3Þ are the fuzzy

values for fuzzy variable cost (effort).

The fuzzy membership functions of these rules are

trained to improve their prediction quality (i.e. a measure of

the prediction accuracy). In this paper, the prediction quality,

PREDðtÞ; is calculated as the percentage of the number of

predicted values that fall within a threshold t of their actual

values. The resulting trained FIS can be used to predict

nominal effort early in the software life cycle, when a

detailed knowledge of the cost drivers cannot be

ascertained.

4.2.2. Part II: fuzzy adjustment factors

In the case of cost drivers, we consider each cost driver

differently, since their definitions are based on different

criteria. Each cost driver originally defined in Ref. [1], are

based on rating scales of ‘low’, ‘high’, etc. and for each

rating, we have corresponding multiplier that specifies the

effect of the cost driver on nominal effort estimated.

For incorporating the cost drivers into our framework, we

define fuzzy sets for each linguistic values, ‘Low’, ‘Very

Low’, etc. as it applies to each cost driver. Then rules are

formulated using the cost drivers in the antecedent (i.e. the

IF part of the rule) and their effects on effort in the

consequent (i.e. the THEN part of the rule.). In our

framework, each cost driver has its own FIS. The

defuzzified values from each of the FIS are aggregated as

effort adjustment factor (EAF) to adjust the predicted output

from the trained FIS for nominal effort.

For instance, let’s consider the TIME (computer turn-

around time) cost driver. In this case, we represent the

ratings shown in Table 3 using the fuzzy sets shown in Fig. 6.

Fig. 2. A triangular membership function.

Fig. 3. COCOMO scale factors fuzzification.

Fig. 4. Fuzzy sets for hypothetical software sizes.

Fig. 5. Fuzzy sets for hypothetical software efforts.

Table 3

The TIME cost driver range definition

Nominal High Very high Extra high

#50% use 70% 85% 95%

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx 7

ARTICLE IN PRESS

Similarly, the effort multipliers in Table 4 are rep-

resented using fuzzy sets shown in Fig. 7.

From Figs. 6 and 7 we can have rules of the form:

If TIME is Nominal then EFFORT is Unchanged

If TIME is High then EFFORT is Increased

If TIME is Very High then EFFORT is Increased

Significantly

If TIME is Extra High then EFFORT is Increased

Dramatically

In concluding our presentation of the framework, it is

worth noting that our rules formulated for the nominal effort

part is required to be trained using an adaptive training

algorithm. The algorithm will be able to evolve the

relationship between features/factors involved. The adap-

tive training approach and the algorithms are presented in

the subsections that follow. The rules formulated for the cost

drivers part do not have to be trained. These rules are simply

developed into FISs. However, the membership functions

definition and rules formulation are open to experts’

knowledge, because our approach is transparent.

4.3. Adaptive training approach

The training strategy requires building learning capabili-

ties into our FL framework so that the system can learn

the importance of the input features and their relationships

with effort.

Let us consider once again the nominal effort component

of the framework for effort model. Our rules formulation

informally discussed in Section 4.2 follow the Mamdani

max–min fuzzy reasoning. This reasoning can be trans-

formed to fuzzy perceptron structure introduced by Nauck

et al. [25,26] in a straightforward manner.

We have rules of the form:

IF MODE is Mj AND SIZE is Si THEN EFFORT is Cji

Using the Mamdani max–min inference system to

evaluate the complete set of rules, the effort derived from

the rules is given as:

CjiðeffortÞ ¼ max
j

{min{MjðxÞ; SiðyÞ}} ð3Þ

where

MjðxÞ : R! ½0; 1�; and also SiðyÞ : R! ½0; 1�

Eq. (3) is the fuzzy reasoning for evaluating a rulebase to

get the predicted output. We have used the fuzzy perceptron

learning structure (similar to NN perceptron) [25] to

represent the fuzzy reasoning. This representation helps to

preserve the meaning of the relationships between the

variables, during and after training.

Suppose we derive the following three rules:

R1: IF MODE is M1 AND SIZE is S1 THEN EFFORT

is C11

R2: IF MODE is M2 AND SIZE is S1 THEN EFFORT

is C21

R3: IF MODE is M3 AND SIZE is S1 THEN

EFFORT is C31

The fuzzy perceptron representation of the rules using

the Mamdani fuzzy reasoning system is given in Fig. 8.

m
ð1Þ
i ; m

ð2Þ
i are membership functions of the mode and size

input variables, respectively, while vijs are fuzzy sets of the

effort output variable. Mj; Si and Cji are linguistic terms

(Fig. 9). Considering rule R1, for instance, M1; S1 and C11

are linguistic terms represented by the fuzzy sets m
ð1Þ
1 ; m

ð2Þ
1

and v11; respectively.

Fig. 6. Antecedent MFs for the FIS of TIME Cost driver.

Table 4

The TIME cost driver range definition

Nominal High Very high Extra high

1.00 1.11 1.30 1.66

Fig. 7. Consequent MFs for the FIS of TIME cost driver.

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx8

ARTICLE IN PRESS

From the representation above, the architecture of the

fuzzy perceptron is determined by the rules and the fuzzy

sets of the underlying problem. This representation

retains the transparency in the rules formulated, and

retains the built-in fuzzy reasoning. The rules in the

rulebase are transparently formulated or updated, and not

evolved from data after training as usually done for NF

systems that use NN learning algorithms directly. This

transparency allows experts to augment with their

knowledge by adding new rules. Rules may also be

deleted if they are adjudged to consistently perform

poorly. It is worth noting that, inconsistencies cannot

arise in our rulebase.

The adaptive training algorithms for the framework will

encourage modularity of knowledge in adapting to different

environments. Adaptability in this context refers to the

changing parameters of the MFs in order to accommodate

new data. A detailed explanation is given in Section 4.4.

Modularity is also achieved in the sense that the whole

rulebase and knowledge are not reconstructed or destroyed

each time the framework is deployed to different

environments.

4.4. The training algorithms for the framework

We built our training algorithm on the generic fuzzy

perceptron architecture’s algorithm by Nauck et al. [25,26],

adapting the algorithm as appropriate for our problem.

The training implementation involves these steps:

1. Structure-Learning Phase (for building the IF–THEN

rules using the knowledge built into the COCOMO

model)

2. Parameter-Learning Phase (for tuning the membership

functions and rules to optimize)

The structure-learning phase involves building a full

rulebase to be optimized during training of the membership

functions. Our proposed approach for building a rulebase of

the FIS for nominal effort prediction is a special case of

the five-step procedure proposed by Wang and Mendel [41]

for generating fuzzy rules from numerical data pairs.

An outline summary of the five-step procedure by Wang

and Mendel is given as follows:

(i) Divide the input and output spaces into fuzzy regions

(ii) Generate fuzzy rules from given data pairs

(iii) Assign a degree to each rule

(iv) Create a combined fuzzy rule base

(v) Determine a mapping based on the combined fuzzy

rule base

Since our rules are not just generated from given data

pairs, but guided by the prior knowledge embedded in the

COCOMO model, we will only adopt and modify Step (i)

of Wang and Mendel for partitioning the size input

variable into fuzzy regions using fuzzy sets. The prior

knowledge available makes the remaining steps not

applicable to our approach. We only need to know the

parameters of the MFs of the regions in order to formulate

rules. In Wang and Mendel approach, the degree to which

data pairs supplied belong to each MF determines the

rules to be formulated, because no prior knowledge is

available. The steps to build the initial FIS are described

by Algorithm 1.

Algorithm 1 is guided by the prior knowledge already

embedded in the cost model, which avoids the compu-

tational overhead of searching for spurious rules after the

rulebase is created. Our rules are reflection of the actual

relationships between the variables.

Fig. 8. Cost model rules represented using fuzzy perceptron structure.

Algorithm 1

Building initial FIS

Step 1: Defining the input variables membership functions

1. Define fuzzy sets for mode input variable (intuitive from mode

classification) using triangular membership function, or any other

shape of membership functions that is applicable, like Gaussian MFs

2. For the size input variable, suppose the domain interval is ½s2; sþ�;

e.g. (1–100 KDSI), where the domain interval means that most

probably the size variable will assume values that lie in this interval.

Divide the domain interval into 2N þ 1 region, and assign each region

a fuzzy membership function. Fig. 9 shows an example where the

domain interval is divided into five regions ðN ¼ 2Þ: The shape of each

membership function is triangular in this case—one vertex lies at the

center of the region and has membership degree value of 1; the other

two vertices lie at the centers of the two neighboring regions,

respectively, and have membership degree values equal to zero. That

is, each MF is defined as TMFða;m;bÞ; with center m and support

½a;b�: The membership degree in TMF of center m is 1, and those of

a and b are 0

Step 2: Defining the output variables membership functions

1. For the output variable, effort, the parameters of each MF of a selected

size MF in Step 1 is plugged into COCOMO nominal effort model to

calculate the parameters of the corresponding effort, for each of the

three modes. This implies that, for every size MF, we will have three

different membership functions corresponding to three regions

2. Repeat (1) as many as the number of input MF we have for size

Step 3: Formulating the rules and populating the rulebase

1. Using the prior knowledge embedded in COCOMO model, we

formulate a rule reflecting the relationship between corresponding

mode, size and effort MFs selected. This is repeated for as many as the

number of effort MFs created in Step 2. Thus, we will have 3ð2N þ 1Þ

regions and MFs in the output. Similarly, we will have 3ð2N þ 1Þ

fuzzy rules in the rulebase of the fuzzy system

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx 9

ARTICLE IN PRESS

The objective of the parameter-learning phase is to adjust

parameters of the FIS such that, the error function during

training reaches minimum or is less than a given threshold

[27,36]. The error measure is not only used to guide the

learning process, but also to evaluate the performance of the

final model. Training is achieved by adapting the parameters

of the membership functions and rules in the input/output

layers.

Algorithm 2 describes our approach to generating

artificial dataset for training and validation.

The algorithms for fuzzy set learning in a Mamdani-type

fuzzy system, originally presented in Refs. [28,29] follow

this four-step procedure:

1. Choose a training sample and propagate the input vector

across the network to get the output.

2. Determine the error in output, and the error gradient in all

the other layers.

3. Determine the parameter changes for the fuzzy weights

and update the fuzzy weights.

4. Repeat until the fuzzy error is sufficiently small after an

epoch is complete.

We have modified this algorithm where applicable to suit

our problem. The modification of the MFs of rules is based

on the extent of contribution of each rule to the output.

The fuzzy set learning algorithm (Algorithm 3) uses the

following notations:

1. L : a set of training data with lLl ¼ s; where patterns

p [Rn as input is mapped to a target t [R:

2. ðp; tÞ [L : a training pattern consists of an input vector

p [Rn and target t [R:

3. Ar ¼ ðmð1Þ
r ;…;mðnÞ

r Þ the antecedent of rule Rr:

4. 4. ArðpÞ denotes the degree of fulfillment of rule Rr

(with antecedent Ar) for pattern p; i.e. ArðpÞ ¼

min{mð1Þ
r ðp1Þ;…;mðnÞ

r ðpnÞ}:

5. mðiÞ
r : a fuzzy set of input variable xi ði [{1;…; n}Þ;

(x1 ¼ mode; x2 ¼ size) that appears in the antecedent of

fuzzy rule Riðr [{1;…; k}Þ:

6. vr : a fuzzy set of output variable y (effort) that appears in

the consequent of fuzzy rule Rr:

7. d : is the learning rate of the training algorithm.

Algorithm 3 implements the main loop of the training

procedure. In each loop, the algorithm propagates a training

pattern, determines the output of the fuzzy system. Using

the output error, the algorithm computes parameter updates

of the antecedent and consequent MFs, as outlined in the

four-step procedure above.

The main information derived from the output error value

is whether the contribution of a fuzzy rule to the overall output

values should be increased or decreased. The actual modi-

fication of the consequent and antecedent MFs is based on

some heuristics in the other two algorithms (i.e. Lines 7 and

13 in Algorithm 3). These heuristics are same as in the

original algorithms, which is discussed by Nauck in Ref. [27].

The learning algorithm is presented below.

Algorithm 2

Generating artificial datasets

1. Generate random numbers for a desired number, say K; of unique sizes in

the domain interval ½s2; sþ� considered in Algorithm 1

2. For every number generated in (1), randomly select one of the three

development modes and calculate corresponding effort value using the

nominal effort model. Each data pattern of the K data points consists of

values for size and mode as input, and effort as target

3. Partition the K data-points into training and validation datasets. The

training datasets consist of two-third of the entire dataset while the

remaining one-third is left for testing after training

Fig. 9. Divisions of the input variable SIZE into fuzzy regions and the

corresponding membership functions.

Algorithm 3

Fuzzy set training in Mamdani-type fuzzy system

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx10

ARTICLE IN PRESS

In Algorithm 3 above, we normalized the error E in

output, dividing it by the range of the domain interval of the

output variable as given in Line 4. The idea behind our

normalization is to tolerate small errors, and make the value

of the error relative to the value of the output variable. This

is necessary because training the fuzzy sets takes the ranges

of the individual variables into account. If the output

variable is using very large values, the size of delta

computed is equally so large. In order to be completely

independent of the ranges of all the variables, we use the

normalization of the error. The training algorithm would

therefore successfully operate on any range of input/output

variables in the dataset, and there would be no need to

normalize the dataset between [0,1] before training, as

normally done in NN. This means that the error is bounded

and not overemphasized for large errors in output.

The modification factor of the consequent MFs is

computed by using the error, E; in predicted output for

effort. The modification factor of the antecedent MFs, on

the other hand, is computed from a factor of E (see Line 10

in Algorithm 3).

The heuristic for modifying the output of a fuzzy system

takes the defuzzification procedure into consideration

The defuzzification procedure used is the centre of area

(COA) [28].

5. Experiments

We have conducted some experiments for the purpose of

developing and training FIS for effort (cost) prediction using

our proposed approach. The datasets used for the exper-

iments are artificial datasets randomly generated following

the procedure discussed in Section 4.

Our experiments basically involve implementation of the

training algorithm. During the experiments, we explored

different strategies to train the fuzzy system as reported in

Fig. 10. The error graph during training.

Fig. 11. Prediction of effort using the testing dataset for validation.

Fig. 12. The prediction quality of untrained and trained FIS using different

number of MFs.

Fig. 13. The RMSRE of the untrained and trained FIS using different

number of MFs.

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx 11

ARTICLE IN PRESS

Ref. [33], but limit our discussion here to the most accurate

training and adaptation strategy. The training algorithms

have linear time complexities and run for seconds or

minutes in the worst case.

The artificial dataset for all the experiments is composed

of 100 observations partitioned into 67 training data and 33

validation data.

5.1. Training the FIS for the framework

We conducted an experiment to train a FIS with five

input MFs for the size input variable and three MFs for

mode input variable. A plot of the root mean square relative

error (RMSRE) showing the learning curve during training

is shown in Fig. 10.

The prediction capabilities of the trained FIS was tested

using the actual data on which the FIS was trained and on

the validation data. Fig. 11 shows the prediction results

obtained from the trained FIS using the validation dataset

that was not used during training.

Fig. 12 shows the detailed results of instances of the

same experiments, using 3, 5, 7, 9, and 11 fuzzy sets for

size, respectively. The graph shows consistent improve-

ment in the performance of the trained FIS with increasing

number of input MFs when compared to untrained FIS.

When 11 MFs were used, the trained and untrained FIS

Fig. 14. Nominal effort prediction of trained FIS and COCOMO model on COCOMO database.

Fig. 15. Effort Prediction of Trained FIS and COCOMO model adjusted by effort multipliers on COCOMO database.

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx12

ARTICLE IN PRESS

gave the same results. Our intuitive explanation for this is

related to the suitability of a rulebase, which depends on the

initial fuzzy partitions. That is, if there are too few fuzzy

sets, groups of data that should be represented by different

rules might be covered by a single rule. In the same vein,

if we have too many fuzzy sets than necessary, as is the

case for 11 MFs, too many rules would be created resulting

in over-fitting. Thus it may be difficult to see significant

impact of training on the initial FIS. The accuracy of the

trained FIS increases, but interpretability of the rulebase

decreases.

In addition to the gain in prediction quality, Fig. 13

shows corresponding reduction in the RMSRE with

increasing number of input MFs after training. The gain

achieved by training the initial FIS which was hidden

when using 11 MFs, as discussed above, is clearly

Fig. 16. Percentage error of the nominal effort predictions obtained from trained FIS and COCOMO model using the COCOMO database.

Fig. 17. Percentage error of the adjusted effort predictions obtained from trained FIS and COCOMO model using the COCOMO database with effort

multipliers.

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx 13

ARTICLE IN PRESS

revealed in the RMSRE plot. The trained FIS shows lower

RMSRE for 11 MFs, meaning that gain was actually

recorded in prediction quality, but was over-shadowed by

the crisp cut of 25% error margin used. Validation of the

training procedure in Section 5.2.3 explains this

observation.

5.2. Validation using the COCOMO database

In Section 5.1, the validation of our approach to develop

and train FIS for effort prediction has been done using

artificial datasets. While real life data has always been

adjudged difficult to obtain in software engineering

community, the public availability of the COCOMO

database offers some respite in this regard.

For the validation in this section, we have selected 53 of

the 63 live projects in the COCOMO database [1] whose sizes

in lines of code fall within 1–100 KDSI. This is not in

anyway a limitation, but it is the same range we have used to

develop the FIS from artificial datasets. Our approach to

partitioning the input/output space into fuzzy regions

discussed in Section 4.3 and Algorithm 1 confirms that we

are totally independent of the range of input/output variables.

We adopted two approaches to conduct our validation

using the COCOMO database. The first validation approach

uses the FIS already trained with artificial training dataset as

done in the previous experiments. This validation procedure

is presented in Section 5.2.1. Secondly, we trained a new

FIS using the data from COCOMO database directly, and

testing the performance on the COCOMO data after training

as presented in Section 5.2.2.

5.2.1. Using datasets from COCOMO database

on trained FIS

Our validation in this subsection is carried out in two

steps. The first step compares the performance of the trained

FIS for nominal effort prediction with that of nominal

intermediate COCOMO model estimate on actual project

values. The second step compares the performance of

trained FIS with the COCOMO model estimates using the

same effort multipliers used in the COCOMO database to

adjust the FIS nominal effort. We again compare the

performance of adjusted effort of both COCOMO model

and trained FIS.

The nominal effort from intermediate COCOMO model

has 26% of its predicted values fall within 25% of the actual

values (PRED(25) ¼ 26%) on the COCOMO database,

while our trained FIS has 23% of its predicted values fall

within 25% of the actual values (PRED(25) ¼ 23%). A

graph comparing the nominal effort predicted using trained

FIS and COCOMO model on actual projects in the database

is given in Fig. 14.

In the second validation experiments, tuning with effort

adjustment factor (EAF) of the cost drivers in the

COCOMO database, the intermediate COCOMO model

has 72% of the predicted values fall within 25% of their

actual values (PRED(25) ¼ 72%). The trained FIS when

tuned with EAF has 55% of the predicted values fall

within 25% of their actual values (PRED(25) ¼ 55%).

The graph in Fig. 15 compares the adjusted effort

predicted using the trained FIS and COCOMO model on

actual projects in the database.

We plot a graph of the percentage error on predictions

made by trained FIS and COCOMO model using

the COCOMO database. These graphs are shown in

Figs. 16 and 17 for the nominal effort and adjusted effort

predictions, respectively.

Considering the percentage error graphs, the trained FIS

recorded marginally higher percentage errors on an average,

thus making the predictions of the COCOMO model a little

better. The overshoot in the percentage error of one of the

data-points when testing the trained FIS could possibly have

resulted from the artificial training data not covering values

at such data-points.

In summary, the prediction quality and the percentage

errors show that COCOMO model marginally outperforms

the trained FIS in this test. This observation is not surprising

since our trained FIS derived most of its initial knowledge

from the COCOMO model, including the training data.

For a fairer comparison, we train the FIS directly from the

COCOMO database and compare the results as discussed in

Section 5.2.2.

5.2.2. Validation using the COCOMO database

to train the FIS

The aim of the first validation experiment carried out

here is to strengthen our assertion that the availability of

more information would enhance the prediction capabilities

of the framework.

Two validation experiments were carried out here. The

first experiment partitioned the 53 data-points selected

from the COCOMO database into 39 training and 14

validation datasets. After training, the FIS yields nominal

effort with prediction accuracy of PRED(25) ¼ 26% on

training data, PRED(25) ¼ 29% on validation dataset,

and PRED(25) ¼ 26% on the entire 53 data-points. This

shows that both trained FIS and COCOMO model achieved

the same prediction quality—PRED(25) ¼ 26%.

In the second validation experiment, the whole dataset of

53 data-points was used for training, yielding prediction

accuracy of PRED(25) ¼ 30% after training. The prediction

accuracy recorded by the trained FIS is higher than that of

COCOMO model which reported PRED(25) ¼ 26%, as

discussed in Section 5.2.1. We are aware that any training

procedure that uses same data for training and validation

would definitely be biased. But the second experiment was

simply carried out to show that, given enough information

the framework could perform better.

Fig. 18 shows the percentage prediction error recorded by

the trained FIS and COCOMO model when the FIS is trained

using all the data-points selected from the COCOMO

database. The error graph reveals that, the percentage errors

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx14

ARTICLE IN PRESS

of the two are comparable. In sort, the COCOMO model

prediction contains the data-point with the largest percentage

error.

In concluding our validation using live project data, the

FIS appears to perform as well as the COCOMO model, and

could potentially perform better, but this needs further

extensive empirical investigation overtime.

5.2.3. Validation of the training procedure

The objective of this experiment is to investigate the

learning capabilities of the training procedure.

The approach involves developing a badly formulated

FIS rulebase and investigates if our training procedure can

still rediscover a pattern for improvement. If this objective

is realized, then the presence of experts to provide adequate

knowledge for building correct rulebase may enhance the

potential of a trained FIS in providing qualitative estimates

always.

The procedure we took to develop a bad rulebase is to

distort the rulebase already well formulated to make it less

meaningful. We have neither imposed lower nor upper

bounds on the number of rules changed. The objective, as

explained, is just to investigate the ability of the training

procedure to learn, even when lacking some information.

Our procedure for achieving this is given in Algorithm 4.

After distorting the rulebase, it is expected that the

prediction accuracy drops, and this actually happened for

the FIS with distorted rulebase. We then try to optimize the

distorted rulebase to investigate whether our training

procedure would be able to make some improvements.

After training, we observed some improvements. In

particular, the prediction quality—PRED(25) on testing

with the validation data improved from 59.94 to 70.59%,

and improves from 54.55 to 62.12% on the training data.

In addition, the training has offered considerable

reduction in the RMSRE while testing the trained FIS

using validation and training datasets. The importance of

this little discovery is again significant. It implies that, while

about 70.59% predicted values fall within 25% of the actual

values, it is clear that the bulk of the other data-points are

very close to the 25% cut, unlike the untrained distorted

rulebase FIS that has larger RMSRE.

Fig. 19 shows the percentage error when testing the

untrained FIS and trained FIS with distorted rulebase using

the training dataset. From the graph, it can be seen that

almost 100% of the prediction made by our trained FIS fall

within 100% of the actual values while the corresponding

untrained FIS has 100% of the prediction fall within 700%

of the actual value. The prediction error margin of

Fig. 18. Percentage error of the nominal effort predictions obtained from trained FIS and COCOMO model using the COCOMO database for training and

testing.

Algorithm 4

1. Create a fuzzy inference system with a rulebase formulated using the

knowledge of relationships between mode, size and effort in the

COCOMO model

2. Extract the rules automatically generated in (1) and save the initial FIS

3. Disorganize the rulebase such that they are less meaningful. For example,

a combination of organic mode M1; and specific size S2 should give

effort C1: Change the conclusion of this particular rule to C2; which is

supposed to be the effort for a mode M1 and size S2

4. Repeat steps 1–3 until some of the rules are made less meaningful based

on the relationships in (1)

5. Update the initial FIS with the updated rulebase and save as FIS2

6. Train the new FIS2 to give a finally trained FIS3

7. Evaluate the prediction quality of the trained FIS3, and compare the

result of the prediction using the saved FIS2 (5)

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx 15

ARTICLE IN PRESS

100–700% is too wide, even as the trained FIS still

maintains prediction quality that is very much higher than

the untrained FIS.

Similarly, Fig. 20 shows similar experimental result on

the validation dataset that was not used during training.

Again, our trained FIS gave almost 100% of predicted

values within 80% error margin, while the untrained

FIS gave the same 100% prediction at an error margin of

about 400%.

The ability of our training procedure to optimize a badly

formulated rulebase with blind knowledge is significant.

The availability of experts to furnish the rulebase with

meaningful knowledge could make the training procedure a

promising candidate for reliable effort prediction.

In summary, we recorded improvements in the

performance of our training procedure in the presence of

counter-intuitive rulebase. We also witnessed reduction in

RMSRE values during validation.

6. Conclusion

In this paper, we have presented a transparent FL-based

framework, equipped with training and adaptation algor-

ithms for development effort prediction. The framework

allows contribution from experts, and also enables the

prediction technique to model and adapt to the environment

of the prediction problem.

We have demonstrated the capabilities of the framework

through empirical validation carried out on artificial datasets

and the COCOMO public database of completed projects.

We have reported promising experimental summary

results in spite of the little background knowledge in the

rulebase and training data. It does signify that there are

potentials for improvements when the framework is

deployed in practice, since experienced experts could

augment with their knowledge.

7. Future research

Some of the open issues, which we have identified, and

that can be investigated in future research include the

following:

1. Deploying the framework to COCOMO II environment

and comparing performance on live projects data. Our

framework is still valid and applicable to COCOMO II

once experts are available to give information required

for MFs definition and rulebase development.

Fig. 19. Percentage error of the predictions obtained using the trained and untrained FIS with distorted rules on TRAINING DATA.

Fig. 20. Percentage error using the trained and untrained FIS with distorted

rules on validation data.

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx16

ARTICLE IN PRESS

2. Investigating other applicable MF types like Gaussian,

and performing comparative analysis can be pursued as a

future research.

3. A future research may involve investigating other

approaches to normalizing the error measure. In our

implementation of the training and adaptation algor-

ithms, we have just used our intuition to normalize so far.

Although, we observed improved performance, but

require further investigation.

4. Investigating the performance of other defuzzification

techniques may be pursued in a future work. The

heuristic we have used in modifying the output fuzzy

sets considers the defuziffication procedures. In our

current implementation, we have used COA and it

performed well.

5. Our research presented in this paper has dealt with

knowledge imperfection when making decisions about

effort and schedule estimations, where knowledge of the

software engineer making the estimates can be imperfect

due to doubt in validity of knowledge (uncertainty)

and/or difficulty in expressing the knowledge (impre-

ciseness). Our research focus for further studies will look

at these two types of imperfections in relation to

unknown uncertainties that will arise during the devel-

opment or deployment of the software system. An

example of such unknown uncertainties includes the use

of untried new technologies or activities that may arise

because of unexpected failures or requirements that are

encountered.

6. Investigating industrial acceptability of our proposed

attributes sets as a groundwork for prediction models

evaluation. This could be in the form of metrics based on

some or all the attributes.

7. While it is expected that our fuzzy-based technique

would be acceptable in the industry, we hope to carry out

a feasibility study to establish it.

8. Building a graphical user interface that allows project

managers to select input areas in the form of fuzzy

sets, rather than forcing them to make crisp

commitments.

Acknowledgements

The authors wish to acknowledge King Fahd University

of Petroleum and Minerals (KFUPM) for utilizing the

various facilities in carrying out this research. We also like

to thank Prof. David Rine of George Mason University,

Virginia, for his valuable comments. Many thanks are due to

the anonymous referees for their detailed and helpful

comments.

References

[1] B.W. Boehm, Software Engineering Economics, Prentice-Hall,

Englewood Cliffs, NJ, 1981.

[2] B. Boehm, C. Abts, S. Chulani, Software development cost estimation

approaches—a survey, Technical Reports, USC-CSE-2000-505,

University of Southern California Center for Software Engineering,

2000.

[3] G.D. Boetticher, An assessment of metric contribution in the

construction of a neural network-based effort estimator, Proceedings

of Second International Workshop on Soft Computing Applied to

Software Engineering, 2001.

[4] G.D. Boetticher, Using machine learning to predict project effort:

empirical case studies in data-starved domains, Proceedings of Model

Based Requirements Workshop, San Diego, 2001, pp. 17–24.

[5] L.C. Briand, I. Wieczorek, Resource estimation in software

engineering, in: J. Marciniak (Ed.), Encyclopedia of Software

Engineering, second ed., Wiley, New York, 2001.

[6] C.J. Burgess, M. Lefley, Can genetic programming improve software

effort estimation? A comparative evaluation, Information and Soft-

ware Technology 43 (2001) 863–873.

[7] S. Chulani, B. Boehm, B. Steece, Calibrating software cost models

using bayesian analysis, Technical Reports, USC-CSE-98-508,

University of Southern California Center for Software Engineering,

1998.

[8] B.K. Clark, The Effects of Software Process Maturity on Software

Development Effort, PhD Dissertation, Faculty of Graduate School,

University of Southern California, Aug 1997.

[9] S. Devnani-Chulani, Bayesian Analysis of Software Cost and Quality

Models, PhD Dissertation, Faculty of Graduate School, University of

Southern California, May 1999.

[10] Z. Fei, X. Liu, f-COCOMO: fuzzy constructive cost model in software

engineering, Proceedings of the IEEE International Conference on

Fuzzy Systems, IEEE Press, New York, 1992, pp. 331–337.

[11] N.E. Fenton, S.L. Pfleeger, Software Metrics—A Rigorous and

Practical Approach, second ed., PWS Publishing, Boston, MA, 1997.

[12] A.S. Gray, S.G. MacDonell, A comparison of techniques for

developing predictive models of software metrics, Information and

Software Technology 39 (1997) 425–437.

[13] A.C. Hodgkinson, P.W. Garratt, A neurofuzzy cost estimator, in:

Proceedings of the Third International Conference on Software

Engineering and Applications—SAE, 1999, pp. 401–406.

[14] A. Idri, A. Abran, COCOMO cost model using fuzzy logic, Seventh

International Conference on Fuzzy Theory and Technology, Atlantic

City, NJ, 2000.

[15] A. Idri, A. Abran, Evaluating software project similarity by using

linguistic quantifier guided aggregations, Proceedings of IFSA/

NAFIPS, Vancouver, Canada, 2001, pp. 470–475.

[16] A. Idri, A. Abran, Towards a fuzzy logic based measures for software

projects similarity, MCSEAI’2000, Morocco, 2000.

[17] C. Kirsopp, M.J. Shepperd, Making inferences with small numbers of

training sets, Sixth International Conference on Empirical Assessment

& Evaluation in Software Engineering, Keele University, Stafford-

shire, UK, April 8th–10th, 2002.

[18] C. Kirsopp, M.J. Shepperd, J. Hart, Search heuristics, case-based

reasoning and software project effort prediction, Genetic

and Evolutionary Computation Conference (GECCO 2002), New

York, AAAI, 2002.

[19] S.G. MacDonell, Software source code sizing using fuzzy logic

modeling, Information and Software Technology 45 (2003)

389–404.

[20] S.G. MacDonell, A.R. Gray, A comparison of modeling techniques

for software development effort prediction, in: Proceedings of the

International Conference on Neural Information Processing and

Intelligent Information Systems, Dunedin, New Zealand, Springer,

Berlin, 1997, pp. 869–872.

[21] S.G. MacDonell, A.R. Gray, M.J. Calvert, FULSOME: a fuzzy logic

modeling tool for software metricians, in: Proceedings of the 18th

International Conference of the North American Fuzzy Information

Processing Society—NAFIPS, IEEE Press, New York, 1999,

pp. 263–267.

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx 17

ARTICLE IN PRESS

[22] S.G. MacDonell, A.R. Gray, M.J. Calvert, FULSOME: a fuzzy logic

for software metric practitioners and researchers, in: Proceedings of

the Sixth International Conference on Neural Information Proces-

sing—ICONIP, IEEE Press, New York, 1999, pp. 308–313.

[23] C. Mair, G. Kadoda, M. Lefley, K. Phalp, C. Schofield, M. Shepperd,

S. Webster, An investigation of machine learning based prediction

systems, Journal of Systems and Software 53 (2000) 23–29.

[24] P. Musilek, W. Pedrycz, G. Succi, M. Reformat, Software cost

estimation with fuzzy models, Applied Computing Review 8 (2)

(2000) 24–29.

[25] D. Nauck, F. Klawonn, R. Kruse, Foundations of Neuro-Fuzzy

Systems, Wiley, Chichester, 1997.

[26] D. Nauck, A fuzzy perceptron as a generic model for neuro-fuzzy

approaches, in: Proceedings of Fuzzy-Systeme’94, Second GI-Work-

shop, Munich, Semen Corporation, 1994.

[27] D. Nauck, Data Analysis with Neuro-Fuzzy Methods, Habilitation

Thesis, University of Magdeburg, 2000.

[28] M. Negnevitsky, Artificial Intelligence—A Guide to Intelligent

Systems, First ed., Addison-Wesley, Reading, MA, 2002.

[29] W. Pedrycz, H.F. Peters, S. Ramanna, A fuzzy set approach to cost

estimation of software projects, Proceedings of IEEE Canadian

Conference on Electrical and Computer Engineering, Alberta,

Canada, May 9–12 (1999).

[30] S.L. Pfleeger, Model of software effort and productivity, Information

and Software Technology 33 (3) (1991) 224–231.

[31] J. Ryder, Fuzzy modeling of software effort prediction, Proceedings of

IEEE Information Technology Conference, Syracuse, NY, 1998.

[32] M.O. Saliu, M. Ahmed, Soft computing based effort prediction

systems—A survey, in: E. Damiani, L.C. Jain (Eds.), Computational

Intelligence in Software Engineering, Springer-Verlag, July 2004,

ISBN 3-540-22030-5.

[33] M.O. Saliu, Adaptive Fuzzy Logic Based Framework for Software

Development Effort Prediction, MS Thesis, Deanship of Graduate

Studies, King Fahd University of Petroleum and Minerals, Dhahran,

Saudi Arabia, April 2003.

[34] C. Schofield, Non-algorithmic effort estimation techniques, Technical

Reports, Department of Computing, Bournemouth University,

England, TR98-01, March 1998.

[35] M. Shepperd, G. Kadoda, Comparing software prediction techniques

using simulation, IEEE Transactions on Software Engineering 27 (11)

(2001) 1014–1022.

[36] Y. Shi, M. Mizumoto, N. Yubazaki, M. Otani, A learning algorithm

for tuning fuzzy rules based on the gradient descent method,

Proceedins of Fifth IEEE International Conference on Fuzzy System,

New Orleans, Sept. 8–11, 1996, pp. 55–61.

[37] K.K. Shukla, Neuro-Genetic prediction of software development

effort, Information and Software Technology Journal 42 (2000)

701–713.

[38] K. Srinivasan, D. Fisher, Machine learning approaches to estimating

software development effort, IEEE Transactions on Software

Engineering 21 (2) (1995).

[39] K. Strike, K. El-Emam, N. Madhavji, Software cost estimation with

incomplete data, IEEE Transactions on Software Engineering 27 (10)

(2001).

[40] A.R. Venkatachalam, Software cost estimation using artificial neural

networks, in: Proceedings of the International Joint Conference on

Neural Networks, 1993, pp. 987–990.

[41] L.-X. Wang, J.M. Mendel, Generating fuzzy rules by learning from

examples, IEEE Transactions on System, Man, and Cybernetics 22 (6)

(1992).

[42] G. Wittig, G. Finnie, Estimating software development effort with

connectionist models, Information and Software Technology 39

(1997) 469–476.

M.A. Ahmed et al. / Information and Software Technology xx (2004) xxx–xxx18

ARTICLE IN PRESS

	Adaptive fuzzy logic-based framework for software development effort prediction
	Introduction
	Effort prediction models
	Algorithmic models
	Non-algorithmic models

	Classification attributes for soft computing-based techniques
	Adaptive and transparent framework
	The intermediate COCOMO model
	The proposed framework
	Adaptive training approach
	The training algorithms for the framework

	Experiments
	Training the FIS for the framework
	Validation using the COCOMO database

	Conclusion
	Future research
	Acknowledgements
	References

