
P
R

O
F

E
S

S
I

O
N

A
L

M

I
N

D
W

A
R

E
TM

Unleash the Power of Excel Formulas

Now revised to cover the new features of Excel 2002 and expanded with two all-new

chapters on financial formulas, this one-of-a-kind reference delivers all the tips and

techniques you need to maximize one of the most powerful spreadsheet tools:

formulas. With clear explanations of operators, nesting, and functions plus hundreds

of practical, real-world examples, spreadsheet expert John Walkenbach shares proven

solutions for typical (and not-so-typical) Excel challenges. From working with dates to

performing table lookups to creating array formulas, this in-depth guide will help you

supercharge your spreadsheets — and make the most of Excel.

Your Road Map to High-Performance Excel Formulas

• Get a concise overview of Excel’s many features, including cell formatting, analysis
tools, and protection options

• Master basic formula facts — including absolute vs. relative references, operators,
error values, naming techniques, and more

• Get practical tips on using Excel’s worksheet functions in your formulas

• Find expanded coverage of discounting, depreciation, and other financial formulas

• Perform magic with powerful array formulas

• Use your formulas to enhance charts and pivot tables

• Debug formulas and take advantage of Excel’s auditing tools

• Develop custom worksheet functions with VBA

Excel 2002 Formulas

$39.99 USA
$59.99 CANADA
£29.99 UK incl. VAT

Excel 2002 Form
ulas

Walkenbach

Reader Level
Intermediate to Advanced

Shelving Category
Excel/Spreadsheets

Power Utility Pak trial
and more on CD-ROM Visit us at mandtbooks.com

CD-ROM
included

P
R

O
F

E
S

S
I

O
N

A
L

M

I
N

D
W

A
R

E
TM

• A trial version of the author’s
award-winning Power Utility
Pak 2000

• A demo of the author’s
Sound-Proof 2000

• Example Excel workbooks from
the book

System Requirements
Pentium PC with Windows 98 or greater;
32 MB RAM; Microsoft Excel 2002.
See About the CD appendix for details
and complete system requirements.

BONUS CD-ROM
INCLUDES

Excel 2002 Formulas
John Walkenbach
Author of Excel 2002 Power Programming with VBA

“Even if you already have a shelf full of Excel reference books,
be sure to squeeze in a couple of inches for this one.”
—Microsoft OfficePro magazine on the previous edition

John Walkenbach is a principal
of JWalk and Associates, Inc., a
consulting firm that specializes
in spreadsheet application
development, and is the author
of more than two dozen books,
including, most recently, Excel 2002
Bible and Excel 2002 Power
Programming with VBA. He maintains
“The Spreadsheet Page,” a popular
Web resource at www.j-walk.com/ss.

,!7IA7G4-feiaaa!:p;N;t;T;t
ISBN 0-7645-4800-X

*85555-AGBGFb
w w w . m a n d t b o o k s . c o m

4800-X cover 8/16/01 10:52 AM Page 1

Excel 2002 Formulas

4800-x FM.F 8/27/01 11:54 AM Page i

4800-x FM.F 8/27/01 11:54 AM Page ii

Excel 2002
Formulas

John Walkenbach

M&T Books
An imprint of Hungry Minds, Inc.

Best-Selling Books � Digital Downloads � e-Books � Answer Networks �

e-Newsletters � Branded Web Sites � e-Learning

New York, NY � Cleveland, OH � Indianapolis, IN

4800-x FM.F 8/27/01 11:54 AM Page iii

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK AND
SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS
CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF THE
INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT GUARANTEED OR
WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL BE
LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED
TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES. FULFILLMENT OF EACH COUPON OFFER
IS THE SOLE RESPONSIBILITY OF THE OFFEROR.

Trademarks: Professional Mindware is a trademark or registered trademark of Hungry Minds, Inc. All other
trademarks are property of their respective owners. Hungry Minds, Inc. is not associated with any product or vendor
mentioned in this book.

is a trademark of
Hungry Minds, Inc.

Excel 2002 Formulas
Published by
M&T Books
An imprint of Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
www.hungryminds.com
Copyright © 2001 Hungry Minds, Inc. All rights reserved.
No part of this book, including interior design, cover
design, and icons, may be reproduced or transmitted in
any form, by any means (electronic, photocopying,
recording, or otherwise) without the prior written
permission of the publisher.
Library of Congress Control Number: 2001089348
ISBN: 0-7645-4800-X
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
1B/RT/QZ/QR/IN
Distributed in the United States by Hungry Minds, Inc.
Distributed by CDG Books Canada Inc. for Canada; by
Transworld Publishers Limited in the United Kingdom; by
IDG Norge Books for Norway; by IDG Sweden Books for
Sweden; by IDG Books Australia Publishing Corporation
Pty. Ltd. for Australia and New Zealand; by TransQuest
Publishers Pte Ltd. for Singapore, Malaysia, Thailand,
Indonesia, and Hong Kong; by Gotop Information Inc.
for Taiwan; by ICG Muse, Inc. for Japan; by Intersoft for
South Africa; by Eyrolles for France; by International
Thomson Publishing for Germany, Austria, and
Switzerland; by Distribuidora Cuspide for Argentina; by
LR International for Brazil; by Galileo Libros for Chile;
by Ediciones ZETA S.C.R. Ltda. for Peru;

by WS Computer Publishing Corporation, Inc., for the
Philippines; by Contemporanea de Ediciones for
Venezuela; by Express Computer Distributors for the
Caribbean and West Indies; by Micronesia Media
Distributor, Inc. for Micronesia; by Chips Computadoras
S.A. de C.V. for Mexico; by Editorial Norma de Panama
S.A. for Panama; by American Bookshops for Finland.
For general information on Hungry Minds’ products and
services please contact our Customer Care department
within the U.S. at 800-762-2974, outside the U.S. at
317-572-3993 or fax 317-572-4002.
For sales inquiries and reseller information, including
discounts, premium and bulk quantity sales, and foreign-
language translations, please contact our Customer Care
department at 800-434-3422, fax 317-572-4002 or write
to Hungry Minds, Inc., Attn: Customer Care Department,
10475 Crosspoint Boulevard, Indianapolis, IN 46256.
For information on licensing foreign or domestic rights,
please contact our Sub-Rights Customer Care department
at 212-884-5000.
For information on using Hungry Minds’ products and
services in the classroom or for ordering examination
copies, please contact our Educational Sales department
at 800-434-2086 or fax 317-572-4005.
For press review copies, author interviews, or other
publicity information, please contact our Public Relations
department at 317-572-3168 or fax 317-572-4168.
For authorization to photocopy items for corporate,
personal, or educational use, please contact Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, or fax 978-750-4470.

is a trademark of
Hungry Minds, Inc.

4800-x FM.F 8/27/01 11:54 AM Page iv

4800-x FM.F 8/27/01 11:54 AM Page v

About the Author
John Walkenbach is a leading authority on spreadsheet software and principal of
JWalk and Associates Inc., a Southern California–based consulting firm that spe-
cializes in spreadsheet application development. John is the author of about 30
spreadsheet books, and has written more than 300 articles and reviews for a variety
of publications, including PC World, InfoWorld, PC Magazine, Windows, and
PC/Computing. He also maintains a popular Internet Web site (The Spreadsheet
Page, www.j-walk.com/ss), and is the developer of the Power Utility Pak, an
award-winning add-in for Microsoft Excel. John graduated from the University of
Missouri and earned a Masters and PhD from the University of Montana.

Credits

ACQUISITIONS EDITOR
Greg Croy

PROJECT EDITOR
Susan Christophersen

TECHNICAL EDITOR
Bill Manville

COPY EDITORS
Jennifer Mario, Rebekah Mancilla

SENIOR PERMISSIONS EDITOR
Carmen Krikorian

EDITORIAL MANAGER
Kyle Looper

PROJECT COORDINATOR
Nancee Reeves

GRAPHICS AND PRODUCTION
SPECIALISTS

Sean Decker
Jill Piscitelli
Kendra Span
Laurie Stevens
Brian Torwelle
Jeremey Unger
Erin Zeltner

QUALITY CONTROL TECHNICIANS
Laura Albert
Andy Hollandbeck
Carl Pierce

MEDIA DEVELOPMENT SPECIALIST
Greg Stephens

MEDIA DEVELOPMENT COORDINATOR
Marisa Pearman

PROOFREADING AND INDEXING
TECHBOOKS Production Services

4800-x FM.F 8/27/01 11:54 AM Page vi

Preface
Thanks for buying my book. If you’re interested in developing killer formulas and
taking Excel to a new level, this book is as good as it gets. I’m confident that you’ll
agree that your money was invested wisely.

Why I Wrote This Book
I approached this project with one goal in mind: To write the ultimate Excel book
that would appeal to a broad base of users. That’s a fairly ambitious goal. But based
on the feedback I received from the first edition, I think I’ve accomplished it.

I’ve been using Excel for nearly a decade and I spend a lot of time participating
in the Excel newsgroups on the Internet. As a result, I’m very familiar with the
types of questions that come up time and time again. Much of the material in this
book was inspired by questions on the Excel newsgroups. This book provides the
answers to those questions — along with answers to questions that probably never
occurred to you!

As you probably know, most bookstores offer dozens of Excel books. The vast
majority of these books are general-purpose user guides that explain how to use the
features available in Excel (often by simply rewording the text in the help files). A
few others focus on advanced issues such as macro programming or scientific
applications. None (that’s right, none!) hones in on the one fundamental compo-
nent of Excel that is critically important to every user: formulas. Fact is, formulas
are what make a spreadsheet a spreadsheet. The more you know about formulas, the
better your spreadsheets will be. It’s that simple.

Excel is the spreadsheet market leader, by a long shot. This is the case not only
because of Microsoft’s enormous marketing clout but also because it is truly the
best spreadsheet available. One area in which Excel’s superiority is most apparent is
formulas. Excel has some special tricks up its sleeve in the formulas department. As
you’ll see, Excel lets you do things with formulas that are impossible with other
spreadsheets.

It’s a safe bet that only about ten percent of Excel users really understand how
to get the most out of worksheet formulas. In this book, I attempt to nudge you into
that elite group. Are you up to it?

What You Should Know
This is not a book for beginning Excel users. If you have absolutely no experience
with Excel, this may not be the best book for you — unless you’re one of a rare
breed who can learn a new software product almost instantaneously.

4800-x FM.F 8/27/01 11:54 AM Page vii

To get the most out of this book, you should have some background using Excel.
Specifically, I assume that you know how to

� Create workbooks, insert sheets, save files, and other basic tasks

� Navigate through a workbook

� Use Excel’s menus, toolbars, and dialog boxes

� Use basic Windows features, such as file management and copy and paste
techniques

If you’re an experienced spreadsheet user, but you are new to Excel, Chap-

ter 1 presents a concise overview of what this product has to offer.

What You Should Have
To make the best use of this book, you need a copy of Microsoft Excel. When I
wrote the current edition of the book, I was using Excel 2002 (which is part of
Microsoft Office XP). With a few exceptions (noted in the text), the material in this
book also applies to all earlier versions of Excel that are still in use.

To use the examples on the companion CD-ROM, you’ll need a CD-ROM drive.
Duh! The examples on the CD-ROM are discussed further in the “About the
Companion CD-ROM” section, later in this preface.

I use Excel for Windows exclusively, and do not own a Macintosh. Therefore,

I can’t guarantee that all of the examples will work with Excel for Macintosh.

Excel’s cross-platform compatibility is pretty good, but it’s definitely not

perfect.

As far as hardware goes, the faster the better. And, of course, the more memory
in your system, the happier you’ll be. And, I strongly recommend using a high-
resolution video mode: at least 1024 x 768.

Conventions in This Book
Take a minute to skim this section and learn some of the typographic conventions
used throughout this book.

viii Preface

4800-x FM.F 8/27/01 11:54 AM Page viii

Keyboard Conventions
You need to use the keyboard to enter formulas. In addition, you can work with
menus and dialog boxes directly from the keyboard — a method you may find eas-
ier if your hands are already positioned over the keys.

FORMULA LISTINGS
Formulas usually appear on a separate line in monospace font. For example, I may
list the following formula:

=VLOOKUP(StockNumber,PriceList,2,False)

Excel supports a special type of formula known as an array formula. When you
enter an array formula, press Ctrl+Shift+Enter (not just Enter). Excel encloses an
array formula in brackets in order to remind you that it’s an array formula. When I
list an array formula, I include the brackets to make it clear that it is, in fact, an
array formula. For example:

{=SUM(LEN(A1:A10))}

Do not type the brackets for an array formula. Excel will put them in

automatically.

VBA CODE LISTINGS
This book also contains examples of VBA code. Each listing appears in a mono-
space font; each line of code occupies a separate line. To make the code easier to
read, I usually use one or more tabs to create indentations. Indentation is optional,
but it does help to delineate statements that go together.

If a line of code doesn’t fit on a single line in this book, I use the standard VBA
line continuation sequence: a space followed by an underscore character. This indi-
cates that the line of code extends to the next line. For example, the following two
lines comprise a single VBA statement:

If Right(cell.Value, 1) = “!” Then cell.Value _
= Left(cell.Value, Len(cell.Value) - 1)

You can enter this code either exactly as shown on two lines, or on a single line
without the trailing underscore character.

Excel 2002 Formulas ix

ix

4800-x FM.F 8/27/01 11:54 AM Page ix

KEY NAMES
Names of keys on the keyboard appear in normal type, for example Alt, Home,
PgDn, and Ctrl. When you should press two keys simultaneously, the keys are con-
nected with a plus sign: “Press Ctrl+G to display the Go To dialog box.”

FUNCTIONS, PROCEDURES, AND NAMED RANGES
Excel’s worksheet functions appear in all uppercase, like so: “Use the SUM function
to add the values in column A.”

Macro and procedure names appear in normal type: “Execute the InsertTotals
procedure.” I often use mixed upper- and lowercase to make these names easier to
read. Named ranges appear in italic: “Select the InputArea range.”

Unless you’re dealing with text inside of quotation marks, Excel is not sensitive
to case. In other words, both of the following formulas produce the same result:

=SUM(A1:A50)
=sum(a1:a50)

Excel, however, will convert the characters in the second formula to uppercase.

Mouse Conventions
The mouse terminology in this book is all standard fare: “pointing,” “clicking,”
“right-clicking,” “dragging,” and so on. You know the drill.

What the Icons Mean
Throughout the book, icons appear in the left margin to call your attention to
points that are particularly important.

This icon indicates a feature new to Excel 2002.

I use Note icons to tell you that something is important — perhaps a con-

cept that may help you master the task at hand or something fundamental

for understanding subsequent material.

Tip icons indicate a more efficient way of doing something, or a technique

that may not be obvious.These will often impress your officemates.

x Preface

4800-x FM.F 8/27/01 11:54 AM Page x

These icons indicate that an example file is on the companion CD-ROM.

(See the upcoming “About the Companion CD-ROM” section.)

I use Caution icons when the operation that I’m describing can cause prob-

lems if you’re not careful.

I use the Cross Reference icon to refer you to other chapters that have more

to say on a particular topic.

How This Book Is Organized
There are hundreds of ways to organize this material, but I settled on a scheme that
divides the book into five main parts. In addition, I’ve included a few appendixes
that provide supplemental information that you may find helpful.

Part I: Basic Information
This part is introductory in nature, and consists of Chapters 1 through 3. Chapter 1
sets the stage with a quick and dirty overview of Excel. This chapter is designed for
readers who are new to Excel, but who have used other spreadsheet products. In
Chapter 2, I cover the basics of formulas. This chapter is absolutely essential read-
ing in order to get the most out of this book. Chapter 3 deals with names. If you
thought names were just for cells and ranges, you’ll see that you’re missing out on
quite a bit.

Part II: Using Functions in Your Formulas
This part consists of Chapters 4 through 10. Chapter 4 covers the basics of using
worksheet functions in your formulas. I get more specific in subsequent chapters.
Chapter 5 deals with manipulating text, Chapter 6 covers dates and times, and
Chapter 7 explores various counting techniques. In Chapter 8, I discuss various types
of lookup formulas. Chapter 9 deals with databases and lists, and Chapter 10 covers
a variety of miscellaneous calculations such as unit conversions and rounding.

Excel 2002 Formulas xi

4800-x FM.F 8/27/01 11:54 AM Page xi

Part III: Financial Formulas
Part III consists of three chapters (Chapters 11 through 13) that deal with creating
financial formulas. You’ll find lots of useful formulas that you can adapt to your
needs.

Most of the material in Chapters 11 through 13 was contributed by Norman

Harker. Norman is a Senior Lecturer in Real Estate at the University of

Western Sydney (Australia).

Part IV: Array Formulas
This part consists of Chapters 14 and 15. The majority of Excel users know little or
nothing about array formulas — a topic that happens to be dear to me. Therefore I
devote an entire part to this little-used yet extremely powerful feature.

Part V: Miscellaneous Formula Techniques
This part consists of Chapters 16 through 21. They cover a variety of topics — some
of which, on the surface, may appear to have nothing to do with formulas. Chapter
16 demonstrates that a circular reference can be a good thing. In Chapter 17, you’ll
see why formulas can be important when you work with charts, and Chapter 18
covers formulas as they relate to pivot tables. Chapter 19 contains some very inter-
esting (and useful) formulas that you can use in conjunction with Excel’s condi-
tional formatting and data validation features. Chapter 20 covers a topic that I call
“megaformulas.” A megaformula is a huge formula that takes the place of several
intermediary formulas. And what do you do when your formulas don’t work cor-
rectly? Consult Chapter 21 for some debugging techniques.

Part VI: Developing Custom Worksheet Functions
This part consists of Chapters 22 through 25. This is the part that explores Visual
Basic for Applications (VBA), the key to creating custom worksheet functions.
Chapter 22 introduces VBA and the VB Editor, and Chapter 23 provides some nec-
essary background on custom worksheet functions. Chapter 24 covers program-
ming concepts, and Chapter 25 provides a slew of worksheet function examples
that you can use as-is or customize for your own needs.

Appendixes
What’s a computer book without appendixes? This book has five appendixes. In the
appendixes, you’ll find secrets about importing 1-2-3 files, a quick reference guide

xii Preface

4800-x FM.F 8/27/01 11:54 AM Page xii

to Excel’s worksheet functions, tips on using custom number formats, and a handy
guide to Excel resources on the Internet. The final appendix describes all the files
on the CD-ROM.

How to Use This Book
You can use this book any way you please. If you choose to read it cover to cover
while lounging on a sunny beach in Maui, that’s fine with me. More likely, you’ll
want to keep it within arm’s reach while you toil away in your dimly lit cubicle.

Due to the nature of the subject matter, the chapter order is often immaterial.
Most readers will probably skip around, picking up useful tidbits here and there.
The material contains many examples, designed to help you identify a relevant for-
mula quickly. If you’re faced with a challenging task, you may want to check the
index first to see whether the book specifically addresses your problem.

About the Companion CD-ROM
The inside back cover of this book contains a CD-ROM that consists of three basic
elements:

� Example workbooks that demonstrate concepts presented in the text.

� A trial copy of my Power Utility Pak 2000 add-in.

� A demo copy of my Sound-Proof 2000 add-in. Sound-Proof is a handy
auditing tool that uses Microsoft Agent technology to read the contents of
cells. You may prefer this to Excel 2002’s text-to-speech feature.

The example workbook files on the companion CD-ROM are not compressed, so
you can access them directly from the CD (installation not required). Power Utility
Pak and Sound-Proof, however, do require installation. Refer to Appendix E for
details.

All CD-ROM files are read-only.Therefore, if you open a file from the CD-ROM

and make any changes to it, you’ll need to save it to your hard drive. Also, if

you copy a file from the CD-ROM to your hard drive, the file retains its read-

only attribute.To change this attribute after copying a file, right-click the file-

name or icon and select Properties from the shortcut menu. In the

Properties dialog box, click the General tab and remove the check mark from

the Read-only check box.

Excel 2002 Formulas xiii

4800-x FM.F 8/27/01 11:54 AM Page xiii

About the Power Utility Pak Offer
Toward the back of the book, you’ll find a coupon that you can redeem for a dis-
counted copy of my award-winning Power Utility Pak — a collection of useful Excel
utilities, plus many new worksheet functions. I developed this package using VBA
exclusively.

You can also use this coupon to purchase the complete VBA source code for a
nominal fee. Studying the code is an excellent way to pick up some useful pro-
gramming techniques. You can take the product for a test drive by installing the
shareware version from the companion CD-ROM.

Power Utility Pak requires Excel 97 for Windows or later.

You can always download the most current version of the Power Utility Pak from
my Web site:

http://www.j-walk.com/ss

Reach Out
I’m always interested in getting feedback on my books. The best way to provide this
feedback is via email. Send your comments and suggestions to:

author@j-walk.com

Unfortunately, I’m not able to reply to specific questions. Posting your question
to one of the Excel newsgroups is, by far, the best way to get such assistance. See
Appendix D for specifics.

Also, when you’re out surfing the Web, don’t overlook my Web site (“The
Spreadsheet Page”):

http://www.j-walk.com/ss/

Now, without further ado, it’s time to turn the page and expand your horizons.

xiv Preface

4800-x FM.F 8/27/01 11:54 AM Page xiv

Acknowledgments
Thanks to everyone who purchased the first edition of this book. I’m especially
grateful to those who took the time to provide me with valuable feedback and sug-
gestions. I’ve incorporated many of the reader suggestions into this new edition.

I am also grateful to Norman Harker, Senior Lecturer in Real Estate at the
University of Western Sydney (Australia). After reading the first edition, Norman
pointed out that the single chapter on financial formulas was the weakest part of
the book. Consequently, the financial formulas portion of the book has been beefed
up significantly, and Norman provided the bulk of the contents of Chapters 11–13.

I would also like to thank Bill Manville for his superb technical editing skills. This
is my second project with Bill, and I’m convinced that he is among the best techni-
cal editors in the business. He corrected many of my mistakes, made lots of useful
suggestions, and re-wrote dozens of my formulas to make them perform better.

Finally, I wish to thank the folks at Hungry Minds for publishing this book. It is
certainly not your “typical” Excel book, and publishing it was a risky venture. The
risk paid off, however, as evidenced by the fact that it was selected for a second
edition. Special thanks to Susan Christophersen, my project editor. She made my
job much easier.

4800-x FM.F 8/27/01 11:54 AM Page xv

4800-x FM.F 8/27/01 11:54 AM Page xvi

Contents at a Glance

Preface . vii

Acknowledgments . xv

Part I Basic Information

Chapter 1 Excel in a Nutshell . 3
Chapter 2 Basic Facts about Formulas 29
Chapter 3 Working with Names . 57

Part II Using Functions in Your Formulas

Chapter 4 Introducing Worksheet Functions 97
Chapter 5 Manipulating Text . 113
Chapter 6 Working with Dates and Times 139
Chapter 7 Counting and Summing Techniques 179
Chapter 8 Lookups . 211
Chapter 9 Databases and Lists . 237
Chapter 10 Miscellaneous Calculations 269

Part III Financial Formulas

Chapter 11 Introducing Financial Formulas 293
Chapter 12 Discounting and Depreciation

Financial Functions . 329
Chapter 13 Advanced Uses of Financial Functions

and Formulas . 351

Part IV Array Formulas

Chapter 14 Introducing Arrays . 375
Chapter 15 Performing Magic with Array Formulas 397

Part V Miscellaneous Formula Techniques

Chapter 16 Intentional Circular References 425
Chapter 17 Charting Techniques . 441
Chapter 18 Pivot Tables . 489
Chapter 19 Conditional Formatting and Data Validation 513
Chapter 20 Creating Megaformulas . 541
Chapter 21 Tools and Methods for Debugging Formulas 559

4800-x FM.F 8/27/01 11:54 AM Page xvii

Part VI Developing Custom Worksheet Functions

Chapter 22 Introducing VBA . 587
Chapter 23 Function Procedure Basics 599
Chapter 24 VBA Programming Concepts 619
Chapter 25 VBA Custom Function Examples 653

Appendixes

Appendix A Working with Imported 1-2-3 Files 699
Appendix B Excel Function Reference 717
Appendix C Using Custom Number Formats 733
Appendix D Additional Excel Resources 759
Appendix E What’s on the CD-ROM . 765

Index . 777

End-User License Agreement 825

CD-ROM Installation Instructions 828

xviii Contents

4800-x FM.F 8/27/01 11:54 AM Page xviii

Contents

Preface . vii

Acknowledgments . xv

Part I Basic Information

Chapter 1 Excel in a Nutshell . 3
The History of Excel . 4

It Started with VisiCalc . 4

Then Came Lotus . 4

Microsoft Enters the Picture . 4

Excel Versions . 5

The Object Model Concept . 7
The Workings of Workbooks . 7

Worksheets . 9

Chart Sheets . 10

XLM Macro Sheets . 10

Dialog Sheets . 10

Excel’s User Interface . 11
Menus . 11

Shortcut Menus . 11

Smart Tags . 12

Dialog Boxes . 12

Toolbars . 13

Drag-and-Drop . 13

Keyboard Shortcuts . 14

Customized On-screen Display . 14

Data Entry . 14

Object and Cell Selecting . 14

Cell Formatting . 16
Numeric Formatting . 16

Stylistic Formatting . 16

Worksheet Formulas and Functions 17
Objects on the Draw Layer . 18

Shapes . 18

Diagrams . 18

Linked Picture Objects . 19

Maps . 19

Dialog Box Controls . 19

Charts . 20

4800-x FM.F 8/27/01 11:54 AM Page xix

Customization in Excel . 20
Macros . 20

Toolbars . 21

Add-in Programs . 21

Analysis Tools . 21
Database Access . 22

Outlines . 23

Scenario Management . 23

Analysis ToolPak . 24

Pivot Tables . 24

Auditing Capabilities . 24

Solver Add-in . 24

Protection Options . 25
Protecting Formulas from Being Overwritten 25

Protecting a Workbook’s Structure . 26

Chapter 2 Basic Facts about Formulas 29
Entering and Editing Formulas . 29

Formula Elements . 29

Entering a Formula . 30

Pasting Names . 32

Spaces and Line Breaks . 32

Formula Limits . 32

Sample Formulas . 33

Editing Formulas . 34

Using Operators in Formulas . 35
Reference Operators . 36

Sample Formulas That Use Operators . 36

Operator Precedence . 38

Nested Parentheses . 39

Calculating Formulas . 40
Cell and Range References . 42

Creating an Absolute Reference . 42

Referencing Other Sheets or Workbooks . 44

Making an Exact Copy of a Formula 45
Converting Formulas to Values . 46
Hiding Formulas . 48
Errors in Formulas . 49
Dealing with Circular References . 51
Goal Seeking . 53

A Goal-Seeking Example . 53

More about Goal Seeking . 54

Chapter 3 Working with Names . 57
What’s in a Name? . 57
Methods for Creating Cell and Range Names 58

Creating Names Using the Define Name Dialog Box 58

Creating Names Using the Name Box . 59

xx Contents

4800-x FM.F 8/27/01 11:54 AM Page xx

Creating Names Automatically . 61

Naming Entire Rows and Columns . 63

Names Created by Excel . 64

Creating Multisheet Names . 65
A Name’s Scope . 66

Creating Worksheet-Level Names . 67

Combining Worksheet- and Workbook-Level Names 67

Referencing Names from Another Workbook 68

Working with Range and Cell Names 68
Creating a List of Names . 68

Using Names in Formulas . 69

Using the Intersection Operators with Names 70

Using the Range Operator with Names . 72

Referencing a Single Cell in a Multicell Named Range 73

Applying Names to Existing Formulas . 73

Applying Names Automatically when Creating a Formula 74

Unapplying Names . 74

Deleting Names . 75

Deleting Named Cells or Ranges . 75

Redefining Names . 76

Changing Names . 76

Viewing Named Ranges . 76

Using Names in Charts . 77

How Excel Maintains Cell and Range Names 77
Inserting a Row or Column . 77

Deleting a Row or Column . 77

Cutting and Pasting . 78

Potential Problems with Names . 78
Name Problems When Copying Sheets . 78

Name Problems when Deleting Sheets . 79

The Secret to Understanding Names 80
Naming Constants . 81

Naming Text Constants . 82

Using Worksheet Functions in Named Formulas 83

Using Cell and Range References in Named Formulas 84

Using Named Formulas with Relative References 85

Advanced Techniques That Use Names 88
Using the INDIRECT Function with a Named Range 88

Using the INDIRECT Function to Create a Named Range

with a Fixed Address . 89

Using Arrays in Named Formulas . 90

Creating a Dynamic Named Formula . 91

Contents xxi

4800-x FM.F 8/27/01 11:54 AM Page xxi

Part II Using Functions in Your Formulas

Chapter 4 Introducing Worksheet Functions 97
What Is a Function? . 97

Simplify Formulas . 98

Perform Otherwise Impossible Calculations 98

Speed Up Editing Tasks . 98

Provide Decision-Making Capability . 99

More about Functions . 99

Function Argument Types . 99
Names as Arguments . 100

Full-Column or Full-Row as Arguments 101

Literal Values as Arguments . 102

Expressions as Arguments . 102

Other Functions as Arguments . 102

Arrays as Arguments . 103

Ways to Enter a Function into a Formula 103
Entering a Function Manually . 104

Using the Insert Function Dialog Box to Enter a Function 104

More Tips for Entering Functions . 106

Function Categories . 109
Financial Functions . 109

Date & Time Functions . 109

Math & Trig Functions . 109

Statistical Functions . 109

Lookup and Reference Functions . 110

Database Functions . 110

Text Functions . 110

Logical Functions . 110

Information Functions . 110

Engineering Functions . 110

User-Defined Functions . 111

Other Function Categories . 111

Analysis ToolPak Functions . 112

Chapter 5 Manipulating Text . 113
A Few Words about Text . 113

How Many Characters in a Cell? . 113

Numbers as Text . 114

Text Functions . 115
Determining Whether a Cell Contains Text 115

Working with Character Codes . 117

Determining Whether Two Strings Are Identical 119

Joining Two or More Cells . 120

Displaying Formatted Values as Text . 121

xxii Contents

4800-x FM.F 8/27/01 11:54 AM Page xxii

Displaying Formatted Currency Values as Text 122

Repeating a Character or String . 123

Creating a Text Histogram . 123

Padding a Number . 124

Removing Excess Spaces and Nonprinting Characters 125

Counting Characters in a String . 126

Changing the Case of Text . 126

Extracting Characters from a String . 127

Replacing Text with Other Text . 127

Finding and Searching within a String . 128

Searching and Replacing within a String 129

Advanced Text Formulas . 130
Counting Specific Characters in a Cell . 130

Counting the Occurrences of a Substring in a Cell 130

Expressing a Number as an Ordinal . 131

Determining a Column Letter for a Column Number 132

Extracting a Filename from a Path Specification 132

Extracting the First Word of a String . 133

Extracting the Last Word of a String . 133

Extracting All but the First Word of a String 133

Extracting First Names, Middle Names, and Last Names 134

Removing Titles from Names . 135

Counting the Number of Words in a Cell 135

Custom VBA Text Functions . 136
Chapter 6 Working with Dates and Times 139

How Excel Handles Dates and Times 139
Understanding Date Serial Numbers . 140

Entering Dates . 141

Understanding Time Serial Numbers . 142

Entering Times . 144

Formatting Dates and Times . 145

Problems with Dates . 147

Date-Related Functions . 149
Displaying the Current Date . 150

Displaying Any Date . 151

Generating a Series of Dates . 152

Converting a Non-Date String to a Date 153

Calculating the Number of Days between Two Dates 153

Calculating the Number of Work Days between Two Dates 154

Offsetting a Date Using Only Work Days 156

Calculating the Number of Years between Two Dates 156

Calculating a Person’s Age . 156

Determining the Day of the Year . 157

Determining the Day of the Week . 158

Determining the Date of the Most Recent Sunday 160

Contents xxiii

4800-x FM.F 8/27/01 11:54 AM Page xxiii

Determining the First Day of the Week after a Date 160

Determining the nth Occurrence of a Day of the Week

in a Month . 160

Counting the Occurrences of a Day of the Week 161

Expressing a Date as an Ordinal Number 162

Calculating Dates of Holidays . 163

Determining the Last Day of a Month . 165

Determining Whether a Year Is a Leap Year 165

Determining a Date’s Quarter . 166

Converting a Year to Roman Numerals . 166

Creating a Calendar in a Range . 166

Time-Related Functions . 167
Displaying the Current Time . 168

Displaying Any Time . 169

Summing Times That Exceed 24 Hours . 170

Calculating the Difference between Two Times 172

Converting from Military Time . 174

Converting Decimal Hours, Minutes, or Seconds to a Time 174

Adding Hours, Minutes, or Seconds to a Time 175

Converting between Time Zones . 175

Rounding Time Values . 176

Working with Non–Time-of-Day Values 177

Chapter 7 Counting and Summing Techniques 179
Counting and Summing Worksheet Cells 179
Counting or Summing Records in Databases

and Pivot Tables . 181
Basic Counting Formulas . 182

Counting the Total Number of Cells . 183

Counting Blank Cells . 183

Counting Nonblank Cells . 184

Counting Numeric Cells . 185

Counting Nontext Cells . 185

Counting Text Cells . 185

Counting Logical Values . 185

Error Values in a Range . 185

Advanced Counting Formulas . 186
Counting Cells Using the COUNTIF Function 186

Counting Cells Using Multiple Criteria . 188

Counting the Most Frequently Occurring Entry 191

Counting the Occurrences of Specific Text 192

Counting the Number of Unique Values 193

Creating a Frequency Distribution . 195

Summing Formulas . 201
Summing All Cells in a Range . 201

Computing a Cumulative Sum . 202

Summing the “Top n” Values . 204

xxiv Contents

4800-x FM.F 8/27/01 11:54 AM Page xxiv

Conditional Sums Using a Single Criterion 204
Summing Only Negative Values . 206

Summing Values Based on a Different Range 206

Summing Values Based on a Text Comparison 207

Summing Values Based on a Date Comparison 207

Conditional Sums Using Multiple Criteria 208
Using And Criteria . 208

Using Or Criteria . 209

Using And and Or Criteria . 209

Using VBA Functions to Count and Sum 210
Chapter 8 Lookups . 211

What Is a Lookup Formula? . 211
Functions Relevant to Lookups . 212
Basic Lookup Formulas . 213

The VLOOKUP Function . 213

The HLOOKUP Function . 215

The LOOKUP Function . 216

Combining the MATCH and INDEX Functions 217

Specialized Lookup Formulas . 219
Looking Up an Exact Value . 220

Looking Up a Value to the Left . 221

Performing a Case-Sensitive Lookup . 222

Choosing among Multiple Lookup Tables 223

Determining Letter Grades for Test Scores 224

Calculating a Grade Point Average . 225

Performing a Two-Way Lookup . 226

Performing a Two-Column Lookup . 228

Determining the Address of a Value within a Range 229

Looking Up a Value Using the Closest Match 230

Looking Up a Value Using Linear Interpolation 231

Chapter 9 Databases and Lists . 237
Worksheet Lists or Databases . 237
Using AutoFiltering . 240

AutoFiltering Basics . 240

Counting and Summing Filtered Data . 242

Copying and Deleting Filtered Data . 243

Using Advanced Filtering . 244
Setting Up a Criteria Range . 246

Filtering a List . 247

Specifying Advanced Filter Criteria 248
Specifying a Single Criterion . 249

Specifying Multiple Criteria . 253

Specifying Computed Criteria . 255

Using Database Functions with Lists 258
Summarizing a List with a Data Table 261
Creating Subtotals . 264

Contents xxv

4800-x FM.F 8/27/01 11:54 AM Page xxv

Chapter 10 Miscellaneous Calculations 269
Unit Conversions . 269

Using the Unit Conversion Tables . 269

Converting Metric Units . 270

Distance Conversions . 272

Weight Conversions . 272

Liquid Measurement Conversions . 272

Surface Conversions . 272

Volume Conversions . 272

Force Conversions . 272

Energy Conversions . 272

Time Conversions . 272

Temperature Conversions . 277

Solving Right Triangles . 277
Area, Surface, Circumference,

and Volume Calculations . 280
Calculating the Area and Perimeter of a Square 280

Calculating the Area and Perimeter of a Rectangle 281

Calculating the Area and Perimeter of a Circle 281

Calculating the Area of a Trapezoid . 281

Calculating the Area of a Triangle . 281

Calculating the Surface and Volume of a Sphere 282

Calculating the Surface and Volume of a Cube 282

Calculating the Surface and Volume of a Cone 282

Calculating the Volume of a Cylinder . 282

Calculating the Volume of a Pyramid . 283

Solving Simultaneous Equations . 283
Rounding Numbers . 285

Basic Rounding Formulas . 286

Rounding to the Nearest Multiple . 287

Rounding Dollar Values . 287

Working with Fractional Dollars . 288

Using the INT and TRUNC Functions . 288

Rounding to an Even or Odd Integer . 289

Rounding to n Significant Digits . 290

Part III Financial Formulas

Chapter 11 Introducing Financial Formulas 293
Excel’s Basic Financial Functions 293
Signing of Money Flows Convention 295
Accumulation, Discounting, and

Amortization Functions . 296
Simple Accumulation Problems . 297

Complex Accumulation Problems . 301

Simple Discounting Problems . 303

xxvi Contents

4800-x FM.F 8/27/01 11:54 AM Page xxvi

Complex Discounting Problems . 307

Amortization Problems . 308

Converting Interest Rates . 313
Methods of Quoting Interest Rates . 313

Converting Interest Rates Using

the Financial Functions Add-in . 314

Effective Cost of Loans . 317
Impact of Fees and Charges upon Effective Interest 317

“Flat” Rate Loans . 319

Interest-Free Loans . 319

“Annual Payments / 12” Loan Costs . 320

Calculating the Interest and Principal Components 320
Using the IPMT and PPMT Functions . 321

Using the CUMIPMT and CUMPRINC Functions 323

Matching Different Interest and Payment Frequencies 324
Limitations of Excel’s Financial Functions 325

Deferred Start to a Series of Regular Payments 326

Valuing a Series of Regular Payments . 326

Chapter 12 Discounting and Depreciation
Financial Functions . 329
Using the NPV Function . 329

Definition of NPV . 330

NPV Function Examples . 330

Using the NPV Function to Calculate

Accumulated Amounts . 337

Using the IRR Function . 339
Multiple Rates of IRR and the MIRR Function 342
Using the FVSCHEDULE Function 346
Depreciation Calculations . 347

Chapter 13 Advanced Uses of Financial Functions
and Formulas . 351
Creating Dynamic Financial Schedules 351
Creating Amortization Schedules . 352

A Simple Amortization Schedule . 352

A Detailed Amortization Schedule . 355

A Variable Loan Rate Amortization Schedule 356

Summarizing Loan Options Using a Data Table 358
Creating a One-Way Data Table . 358

Creating a Two-Way Data Table . 360

Accumulation Schedules . 361
Discounted Cash Flow Schedules . 363
Credit Card Calculations . 365
XIRR and XNPV Functions . 366
Variable Rate Analysis . 369
Creating Indices . 370

Contents xxvii

4800-x FM.F 8/27/01 11:54 AM Page xxvii

Part IV Array Formulas

Chapter 14 Introducing Arrays . 375
Introducing Array Formulas . 375

A Multicell Array Formula . 376

A Single-Cell Array Formula . 377

Creation of an Array Constant . 378

Array Constant Elements . 379

Understanding the Dimensions of an Array 379
One-Dimensional Horizontal Arrays . 379

One-Dimensional Vertical Arrays . 380

Two-Dimensional Arrays . 380

Naming Array Constants . 381
Working with Array Formulas . 383

Entering an Array Formula . 383

Selecting an Array Formula Range . 383

Editing an Array Formula . 384

Expanding or Contracting a Multicell Array Formula 385

Using Multicell Array Formulas . 386
Creating an Array from Values in a Range 386

Creating an Array Constant from Values in a Range 386

Performing Operations on an Array . 387

Using Functions with an Array . 388

Transposing an Array . 388

Generating an Array of Consecutive Integers 389

Using Single-Cell Array Formulas 390
Counting Characters in a Range . 391

Summing the Three Smallest Values in a Range 392

Counting Text Cells in a Range . 392

Eliminating Intermediate Formulas . 394

Using an Array in Lieu of a Range Reference 395

Chapter 15 Performing Magic with Array Formulas 397
Working with Single-Cell Array Formulas 397

Summing a Range That Contains Errors 398

Counting the Number of Error Values in a Range 398

Summing Based on a Condition . 399

Summing the n Largest Values in a Range 402

Computing an Average That Excludes Zeros 402

Determining Whether a Particular Value

Appears in a Range . 403

Counting the Number of Differences in Two Ranges 404

Returning the Location of the Maximum Value in a Range 404

Finding the Row of a Value’s nth Occurrence in a Range 405

Returning the Longest Text in a Range . 405

xxviii Contents

4800-x FM.F 8/27/01 11:54 AM Page xxviii

Determining Whether a Range Contains Valid Values 406

Summing the Digits of an Integer . 406

Summing Rounded Values . 408

Summing Every nth Value in a Range . 409

Removing Non-Numeric Characters from a String 410

Determining the Closest Value in a Range 410

Returning the Last Value in a Column . 410

Returning the Last Value in a Row . 412

Ranking Data with an Array Formula . 412

Creating a Dynamic Crosstab Table . 413

Working with Multicell Array Formulas 414
Returning Only Positive Values from a Range 414

Returning Nonblank Cells from a Range 415

Reversing the Order of the Cells in a Range 415

Sorting a Range of Values Dynamically 416

Returning a List of Unique Items in a Range 416

Displaying a Calendar in a Range . 417

Returning an Array from a Custom VBA Function 418

Part V Miscellaneous Formula Techniques

Chapter 16 Intentional Circular References 425
What Are Circular References? . 425

Correcting an Accidental Circular Reference 426

Understanding Indirect Circular References 427

Intentional Circular References . 428
How Excel Determines Calculation

and Iteration Settings . 430
Circular Reference Examples . 431

Time Stamping a Cell Entry . 432

Calculating an All-Time-High Value . 432

Generating Unique Random Integers . 433

Solving a Recursive Equation . 435

Solving Simultaneous Equations Using

a Circular Reference . 436

Potential Problems with Intentional
Circular References . 438

Chapter 17 Charting Techniques . 441
Representing Data in Charts . 441

Understanding the SERIES Formula . 441

Creating Links to Cells . 445

Charting Progress toward a Goal . 448

Creating a Gantt Chart . 449

Creating a Comparative Histogram . 451

Contents xxix

4800-x FM.F 8/27/01 11:54 AM Page xxix

Creating a Box Plot . 453

Plotting Every nth Data Point . 455

Updating a Data Series Automatically . 457

Plotting the Last n Data Points . 458

Plotting Data Interactively . 460
Plotting Based on the Active Row . 460

Selecting Data from a Combo Box . 461

Plotting Functions with One Variable . 462

Plotting Functions with Two Variables . 466

Creating Awesome Designs . 468
Working with Trendlines . 469

Linear Trendlines . 470

Nonlinear Trendlines . 474

Useful Chart Tricks . 479
Storing Multiple Charts on a Chart Sheet 479

Viewing an Embedded Chart in a Window 480

Changing a Worksheet Value by Dragging a Data Point 480

Using Animated Charts . 481

Creating a “Gauge” Chart . 482

Creating a “Clock” Chart . 483

Drawing with an XY Chart . 486

Chapter 18 Pivot Tables . 489
About Pivot Tables . 489

A Pivot Table Example . 490

Data Appropriate for a Pivot Table . 493

Creating a Pivot Table . 495
Step1: Specifying the Data Location . 495

Step 2: Specifying the Data . 496

Step 3: Completing the Pivot Table . 497

Grouping Pivot Table Items . 503
Creating a Calculated Field or Calculated Item 506

Creating a Calculated Field in a Pivot Table 507

Inserting a Calculated Item into a Pivot Table 509

Chapter 19 Conditional Formatting and Data Validation 513
Conditional Formatting . 513

Specifying Conditional Formatting . 514

Formatting Types You Can Apply . 515

Specifying Conditions . 516

Working with Conditional Formats . 518

Conditional Formatting Formulas . 521

Using Custom Functions in Conditional

Formatting Formulas . 530

xxx Contents

4800-x FM.F 8/27/01 11:54 AM Page xxx

Data Validation . 533
Specifying Validation Criteria . 534

Types of Validation Criteria You Can Apply 536

Using Formulas for Data Validation Rules 537

Using Data Validation Formulas to Accept Only

Specific Entries . 538

Chapter 20 Creating Megaformulas . 541
What Is a Megaformula? . 541
Creating a Megaformula: A Simple Example 542
Megaformula Examples . 544

Using a Megaformula to Remove Middle Names 544

Using a Megaformula to Return a String’s Last Space

Character Position . 548

Using a Megaformula to Determine the Validity

of a Credit Card Number . 552

The Pros and Cons of Megaformulas 557
Chapter 21 Tools and Methods for Debugging Formulas 559

Formula Debugging? . 559
Formula Problems and Solutions . 560

Mismatched Parentheses . 561

Cells Are Filled with ########## . 562

Blank Cells Are Not Blank . 563

Formulas Returning an Error . 563

Absolute/Relative Reference Problems . 567

Operator Precedence Problems . 568

Formulas Are Not Calculated . 569

Actual versus Displayed Values . 570

Floating Point Number Errors . 571

“Phantom Link” Errors . 572

Circular Reference Errors . 572

Excel’s Auditing Tools . 572
Identifying Cells of a Particular Type . 573

Viewing Formulas . 573

Tracing Cell Relationships . 575

Tracing Error Values . 577

Fixing Circular Reference Errors . 577

Using Excel 2002’s Background Error Checking Feature 578

Using Excel 2002’s Formula Evaluator . 580

Third-Party Auditing Tools . 580
Power Utility Pak . 581

Spreadsheet Detective. 582

Excel Auditor . 582

Contents xxxi

4800-x FM.F 8/27/01 11:54 AM Page xxxi

Part VI Developing Custom Worksheet Functions

Chapter 22 Introducing VBA . 587
About VBA . 587
Introducing the Visual Basic Editor 588

Activating the VB Editor . 588

The VB Editor Components . 589

Using the Project Window . 590

Using Code Windows . 593

Entering VBA Code . 595

Saving Your Project . 598

Chapter 23 Function Procedure Basics 599
Why Create Custom Functions? . 599
An Introductory VBA Function Example 600
About Function Procedures . 602

Declaring a Function . 602

Choosing a Name for Your Function . 603

Using Functions in Formulas . 604

Using Function Arguments . 605

Using the Insert Function Dialog Box 605
Adding a Function Description . 606

Specifying a Function Category . 607

Testing and Debugging Your Functions 609
Using VBA’s MsgBox Statement . 610

Using Debug.Print Statements in Your Code 612

Calling the Function from a Sub Procedure 613

Setting a Breakpoint in the Function . 616

Creating Add-Ins . 616
Chapter 24 VBA Programming Concepts 619

An Introductory Example Function Procedure 619
Using Comments in Your Code . 622
Using Variables, Data Types, and Constants 622

Defining Data Types . 623

Declaring Variables . 624

Using Constants . 626

Using Strings . 627

Using Dates . 627

Using Assignment Expressions . 628
Using Arrays . 629

Declaring an Array . 630

Declaring Multidimensional Arrays . 630

Using VBA’s Built-in Functions . 631
Controlling Execution . 633

The If-Then Construct . 633

The Select Case Construct . 635

xxxii Contents

4800-x FM.F 8/27/01 11:54 AM Page xxxii

Looping Blocks of Instructions . 636

The On Error Statement . 641

Using Ranges . 643
The For Each-Next Construct . 643

Referencing a Range . 644

Some Useful Properties of Ranges . 646

The Set Keyword . 649

The Intersect Function . 650

The Union Function . 651

The UsedRange Property . 651

Chapter 25 VBA Custom Function Examples 653
Simple Functions . 653

Does a Cell Contain a Formula? . 654

Returning a Cell’s Formula . 654

Is the Cell Hidden? . 654

Returning a Worksheet Name . 655

Returning a Workbook Name . 656

Returning the Application’s Name . 657

Returning Excel’s Version Number . 657

Returning Cell Formatting Information . 657

Determining a Cell’s Data Type . 659
A Multifunctional Function . 660
Generating Random Numbers . 662

Generating Random Numbers That Don’t Change 663

Selecting a Cell at Random . 663

Calculating Sales Commissions . 664
A Function for a Simple Commission Structure 665

A Function for a More Complex Commission Structure 666

Text Manipulation Functions . 668
Reversing a String . 668

Scrambling Text . 669

Returning an Acronym . 669

Does the Text Match a Pattern? . 670

Does a Cell Contain Text? . 671

Extracting the nth Element from a String 672

Spelling Out a Number . 674

Counting and Summing Functions 674
Counting Cells Between Two Values . 675

Counting Visible Cells in a Range . 675

Summing Visible Cells in a Range . 676

Date Functions . 677
Calculating the Next Monday . 677

Calculating the Next Day of the Week . 678

Which Week of the Month? . 678

Working with Dates Before 1900 . 679

Contents xxxiii

4800-x FM.F 8/27/01 11:54 AM Page xxxiii

Returning the Last Nonempty Cell
in a Column or Row . 680
The LASTINCOLUMN Function . 680

The LASTINROW Function . 681

Multisheet Functions . 681
Returning the Maximum Value Across All Worksheets 682

The SHEETOFFSET Function . 683

Advanced Function Techniques . 685
Returning an Error Value . 685

Returning an Array from a Function . 687

Returning an Array of Nonduplicated Random Integers 689

Randomizing a Range . 691

Using Optional Arguments . 693

Using an Indefinite Number of Arguments 694

Appendixes

Appendix A Working with Imported 1-2-3 Files 699
About 1-2-3 Files . 699
Lotus 1-2-3 Formulas . 700

Calculation Order . 701

Text in Calculations . 702

Logical Values . 702

Date Problems . 703

Database Criteria . 703

Lotus 1-2-3 Function Compatibility 704
Function Equivalents . 704

Converting Database Functions . 714

Appendix B Excel Function Reference 717
Excel Functions by Category . 717

Appendix C Using Custom Number Formats 733
About Number Formatting . 733

Automatic Number Formatting . 733

Formatting Numbers Using Toolbar Buttons 734

Using Shortcut Keys to Format Numbers 735

Using the Format Cells Dialog Box to Format Numbers 736

Creating a Custom Number Format 738
About Custom Number Formats . 738

Parts of a Number Format String . 739

Custom Number Format Codes . 740

Custom Number Format Examples 742
Scaling Values . 742

Hiding Zeros . 746

Displaying Leading Zeros . 747

Formatting Percentages . 747

xxxiv Contents

4800-x FM.F 8/27/01 11:54 AM Page xxxiv

Displaying Fractions . 748

Displaying N/A for Text . 749

Displaying Text in Quotes . 749

Repeating Text . 749

Displaying a Negative Sign on the Right 750

Conditional Number Formatting . 750

Coloring Values . 751

Formatting Dates and Times . 752

Displaying Text with Numbers . 753

Displaying a Zero with Dashes . 753

Using Special Symbols . 754

Suppressing Certain Types of Entries . 755

Filling a Cell with a Repeating Character 756

Displaying Leading Dots . 757

Appendix D Additional Excel Resources 759
Microsoft Technical Support . 759

Support Options . 759

Microsoft Knowledge Base . 759

Microsoft Excel Home Page . 760

Microsoft Office Tools on the Web . 760

Internet Newsgroups . 760
Spreadsheet Newsgroups . 761

Microsoft Newsgroups . 761

Searching Newsgroups . 762

Internet Web sites . 763
The Spreadsheet Page . 763

Excel Web Source . 764

Stephen Bullen’s Excel Page . 764

Spreadsheet FAQ . 764

Appendix E What’s on the CD-ROM . 765
CD-ROM Overview . 765
Chapter Examples . 766

Chapter 5 . 766

Chapter 6 . 766

Chapter 7 . 767

Chapter 8 . 767

Chapter 9 . 768

Chapter 10 . 768

Chapter 11 . 768

Chapter 12 . 769

Chapter 13 . 769

Chapter 15 . 770

Chapter 16 . 770

Chapter 17 . 771

Chapter 18 . 772

Contents xxxv

4800-x FM.F 8/27/01 11:54 AM Page xxxv

Chapter 19 . 772

Chapter 20 . 772

Chapter 25 . 773

Power Utility Pak . 773
Registering Power Utility Pak . 774

Installing the trial version . 774

Uninstalling Power Utility Pak . 774

Sound-Proof 2000 . 775
Installing the demo version . 775

Uninstalling Sound-Proof . 776

Electronic Version of Excel 2002 Formulas 776
Adobe Acrobat Reader . 776

Index . 777

End-User License Agreement . 825

CD-ROM Installation Instructions 828

xxxvi Contents

4800-x FM.F 8/27/01 11:54 AM Page xxxvi

Basic Information
CHAPTER 1

Excel in a Nutshell

CHAPTER 2
Basic Facts about Formulas

CHAPTER 3
Working with Names

Part I

4800-x PO1.F 8/27/01 11:54 AM Page 1

4800-x PO1.F 8/27/01 11:54 AM Page 2

Chapter 1

Excel in a Nutshell
IN THIS CHAPTER

� A brief history of Excel

� The object model concept in Excel

� The workings of workbooks

� The user interface

� The two types of cell formatting

� Worksheet formulas and functions

� Objects on the worksheet’s invisible drawer layer

� Macros, toolbars, and add-ins for Excel customization

� Analysis tools

� Protection options

MICROSOFT EXCEL HAS BEEN REFERRED TO as “the best application ever written for
Windows.” You may or may not agree with that statement, but you can’t deny that
Excel is one of the oldest Windows products and has undergone many reincarna-
tions and face-lifts over the years. Cosmetically, the current version — Excel 2002 —
barely even resembles the original version (which, by the way, was written for the
Macintosh). However, many of Excel’s key elements have remained intact over the
years, with significant enhancements, of course.

This chapter presents a concise overview of the features available in the more
recent versions of Excel, with specific emphasis on Excel 2002. It sets the stage for
the subsequent chapters and provides a transition for those who have used other
spreadsheet products and are moving up to Excel. Hard-core Lotus 1-2-3 users, for
example, usually need some help to start thinking in Excel’s terms.

If you’re an old hand at Excel, you may want to ignore this chapter or just

skim through it quickly.

3

4800-x Ch01.F 8/27/01 11:54 AM Page 3

The History of Excel
You probably weren’t expecting a history lesson when you bought this book, but
you may find this information interesting. At the very least, this section provides
fodder for the next office trivia match.

Spreadsheets comprise a huge business, but most of us tend to take this software
for granted. In the pre-spreadsheet days, people relied on clumsy mainframes or
calculators and spent hours doing what now takes minutes.

It Started with VisiCalc
Dan Bricklin and Bob Frankston conjured up VisiCalc, the world’s first electronic
spreadsheet, back in the late 1970s when personal computers were unheard of in
the office environment. They wrote VisiCalc for the Apple II computer, an interest-
ing machine that seems like a toy by today’s standards. VisiCalc caught on quickly,
and many forward-looking companies purchased the Apple II for the sole purpose
of developing their budgets with VisiCalc. Consequently, VisiCalc is often credited
for much of Apple II’s initial success.

Then Came Lotus
When the IBM PC arrived on the scene in 1982, thus legitimizing personal comput-
ers, VisiCorp wasted no time porting VisiCalc to this new hardware environment.
Envious of VisiCalc’s success, a small group of computer enthusiasts at a start-up
company in Cambridge, Massachusetts, refined the spreadsheet concept. Headed by
Mitch Kapor and Jonathon Sachs, the company designed a new product and
launched the software industry’s first full-fledged marketing blitz. Released in
January 1983, Lotus Development Corporation’s 1-2-3 proved an instant success.
Despite its $495 price tag (yes, people really paid that much for software), it quickly
outsold VisiCalc and rocketed to the top of the sales charts, where it remained for
many years. Lotus 1-2-3 was, perhaps, the most popular application ever.

Microsoft Enters the Picture
Most people don’t realize that Microsoft’s experience with spreadsheets extends back
to the early 1980s. In 1982, Microsoft released its first spreadsheet — MultiPlan.
Designed for computers running the CP/M operating system, the product was subse-
quently ported to several other platforms, including Apple II, Apple III, XENIX, and
MS-DOS. MultiPlan essentially ignored existing software user-interface standards.
Difficult to learn and use, it never earned much of a following in the United States.
Not surprisingly, Lotus 1-2-3 pretty much left MultiPlan in the dust.

Excel partly evolved from MultiPlan, first surfacing in 1985 on the Macintosh. Like
all Mac applications, Excel was a graphics-based program (unlike the character-based
MultiPlan). In November 1987, Microsoft released the first version of Excel for

4 Part I: Basic Information

4800-x Ch01.F 8/27/01 11:54 AM Page 4

Windows (labeled Excel 2 to correspond with the Macintosh version). Excel didn’t
catch on right away, but as Windows gained popularity, so did Excel. Lotus eventually
released a Windows version of 1-2-3, and Excel had additional competition from
Quattro Pro—originally a DOS program developed by Borland International, then sold
to Novell, and then sold again to Corel (its current owner).

Excel Versions
Excel 2002 is actually Excel 10 in disguise. You may think that this name represents
the tenth version of Excel. Think again. Microsoft may be a successful company,
but their version-naming techniques can prove quite confusing. As you’ll see, Excel
2002 actually represents the eighth Windows version of Excel. In the following sec-
tions, I briefly describe the major Windows versions of Excel.

EXCEL 2
The original version of Excel for Windows, Excel 2 first appeared in late 1987. It
was labeled Version 2 to correspond to the Macintosh version (the original Excel).
Because Windows wasn’t in widespread use at the time, this version included a run-
time version of Windows — a special version with just enough features to run Excel
and nothing else. This version appears quite crude by today’s standards, as shown
in Figure 1-1.

Figure 1-1: The original Excel 2 for Windows. Excel has come a long way since its
original version. (Photo courtesy of Microsoft Corporation)

Chapter 1: Excel in a Nutshell 5

4800-x Ch01.F 8/27/01 11:54 AM Page 5

EXCEL 3
At the end of 1990, Microsoft released Excel 3 for Windows. This version offered a
significant improvement in both appearance and features. It included toolbars,
drawing capabilities, worksheet outlining, add-in support, 3-D charts, workgroup
editing, and lots more.

EXCEL 4
Excel 4 hit the streets in the spring of 1992. This version made quite an impact on
the marketplace as Windows increased in popularity. It boasted lots of new features
and “usability” enhancements that made it easier for beginners to get up to speed
quickly.

EXCEL 5
In early 1994, Excel 5 appeared on the scene. This version introduced tons of new
features, including multisheet workbooks and the new Visual Basic for Applications
(VBA) macro language. Like its predecessor, Excel 5 took top honors in just about
every spreadsheet comparison published in the trade magazines.

EXCEL 95
Excel 95 (also known as Excel 7) shipped in the summer of 1995. On the surface, it
resembled Excel 5 (this version included only a few major new features). But Excel
95 proved to be significant because it presented the first version to use more
advanced 32-bit code. Excel 95 and Excel 5 use the same file format.

EXCEL 97
Excel 97 (also known as Excel 8) probably offered the most significant upgrade
ever. The toolbars and menus took on a great new look, online help moved a dra-
matic step forward, and the number of rows available in a worksheet quadrupled.
And if you’re a macro developer, you may have noticed that Excel’s programming
environment (VBA) moved up several notches on the scale. Excel 97 also intro-
duced a new file format.

EXCEL 2000
Excel 2000 (also known as Excel 9) was released in June of 1999. Excel 2000
offered several minor enhancements, but the most significant advancement was the
ability to use HTML as an alternative file format. Excel 2000 still supported the
standard binary file format, of course, which is compatible with Excel 97.

EXCEL 2002
The most recent version, Excel 2002 (also known as Excel 10) was released in June
of 2001. It is sold as part of Microsoft Office XP. This version offers several new
features, most of which are fairly minor and are designed to appeal to novice users.
Perhaps the most significant new feature is the capability to save your work when
Excel crashes, and also recover corrupt workbook files that you may have aban-
doned long ago. Excel 2002 also adds background formula error checking and a
new formula-debugging tool; both features are relevant to this book.

6 Part I: Basic Information

4800-x Ch01.F 8/27/01 11:54 AM Page 6

Many of these versions of Excel also included sub-versions. For example,

Microsoft released two service releases (SR-1 and SR-2) for Excel 97. These

service releases correct various problems with the software.

The Object Model Concept
If you’ve dealt with computers for any length of time, you’ve undoubtedly heard
the term object-oriented programming. An object essentially represents a software
element that a programmer can manipulate. When using Excel, you may find it
useful to think in terms of objects, even if you have no intention of becoming a
programmer. An object-oriented approach can often help you keep the various ele-
ments in perspective.

Excel objects include the following:

� Excel itself

� An Excel workbook

� A worksheet in a workbook

� A range in a worksheet

� A button on a worksheet

� A ListBox control on a UserForm (a custom dialog box)

� A chart sheet

� A chart on a chart sheet

� A chart series in a chart

Notice that something of an object hierarchy exists here: The Excel object con-
tains workbook objects, which contain worksheet objects, which contain range
objects. This hierarchy is called Excel’s object model. Other Microsoft Office prod-
ucts have their own object model. The object model concept proves to be vitally
important when developing VBA macros. Even if you don’t create macros, you may
find it helpful to think in terms of objects.

The Workings of Workbooks
One of the most common Excel objects is a workbook. Everything that you do in
Excel takes place in a workbook, which is stored in a file with an .xls extension.

Chapter 1: Excel in a Nutshell 7

4800-x Ch01.F 8/27/01 11:54 AM Page 7

Beginning with Excel 2000, you can also use HTML as a “native”file format for

Excel. Because this file must store lots of information needed to recreate the

workbook, you’ll find that the HTML files generated by Excel are very

bloated. So unless you have a real need to save your work in HTML by using

this feature, you should use the normal XLS file format.

An Excel workbook can hold any number of sheets (limited only by memory).
The four types of sheets are:

� Worksheets

� Chart sheets

� XLM macro sheets (obsolete, but still supported)

� Dialog sheets (obsolete, but still supported)

You can open as many workbooks as you want (each in its own window), but
only one workbook is the active workbook at any given time. Similarly, only one
sheet in a workbook is the active sheet. To activate a different sheet, click its corre-
sponding tab at the bottom of the window, or press Ctrl+PgUp (for the next sheet)
or Ctrl+PgDn (for the previous sheet). To change a sheet’s name, double-click its
Sheet tab and enter the new text for the name. Right-clicking a tab brings up a
shortcut menu with some additional sheet-manipulation options.

You can also hide the window that contains a workbook by using the Window �
Hide command. A hidden workbook window remains open, but not visible. A sin-
gle workbook can display in multiple windows (select Window � New Window).
Each window can display a different sheet.

8 Part I: Basic Information

Where Are the VBA Module Sheets?
In Excel 5 and Excel 95, a VBA module appeared in a workbook as a separate sheet. A
VBA module, as you may know, holds VBA code. In Excel 97 and later versions, VBA
modules still store with a workbook, but they no longer show up as a separate sheet.
Rather, you work with VBA modules in the Visual Basic Editor (VB Editor). To view or
edit a VBA module, activate the VB Editor by pressing Alt+F11. See Part VI of this book
for more information about VBA.

4800-x Ch01.F 8/27/01 11:54 AM Page 8

Worksheets
The most common type of sheet is a worksheet — which you normally think of when
you think of a spreadsheet. Every Excel worksheet has 256 columns and 65,536
rows. And to answer a common question, the number of rows and columns is per-
manently fixed; you can’t change it. Despite what must amount to thousands of
requests from users, Microsoft refuses to increase the number of rows and columns
in a workbook. You can hide unneeded rows and columns to keep them out of view,
but you can’t increase the number of rows or columns.

Versions prior to Excel 97 support only 16,384 rows in a worksheet.

Having access to more cells isn’t the real value of using multiple worksheets in a
workbook. Rather, multiple worksheets are valuable because they enable you to
organize your work better. Back in the old days, when a spreadsheet file consisted
of a single worksheet, developers wasted a lot of time trying to organize the work-
sheet to hold their information efficiently. Now, you can store information on any
number of worksheets and still access it instantly.

You have complete control over the column widths and row heights and you can
even hide rows and columns (as well as entire worksheets). You can display the
contents of a cell vertically (or at an angle) and even wrap around to occupy mul-
tiple lines.

Chapter 1: Excel in a Nutshell 9

How Big Is a Worksheet?
It’s interesting to stop and think about the actual size of a worksheet. Do the
arithmetic (256 × 65,536), and you’ll see that a worksheet has 16,777,216 cells.
Remember that this is in just one worksheet. A single workbook can hold more than
one worksheet.

If you’re using the standard VGA video mode with the default row heights and column
widths, you can see 9 columns and 18 rows (or 162 cells) at a time. This works out to
be less than 0.001 percent of the entire worksheet. In other words, nearly 104,000
VGA screens of information reside within a single worksheet.

If you entered a single digit into each cell at the relatively rapid clip of one cell per
second, it would take you about 194 days, nonstop, to fill up a worksheet. To print the
results of your efforts would require more than 36,000 sheets of paper — a stack about
six feet high.

4800-x Ch01.F 8/27/01 11:54 AM Page 9

By default, every new workbook starts out with three worksheets. You can

easily add a new sheet when necessary, so you really don’t need to start with

three sheets. You may want to change this default to a single sheet. To

change this option, use the Tools � Options command, click the General tab,

and change the setting for Sheets in new workbook.

Chart Sheets
A chart sheet normally holds a single chart. Many users ignore chart sheets, prefer-
ring to use “embedded charts,” which are stored on the worksheet’s draw layer.
Using chart sheets is optional, but they make it a bit easier to print a chart on a
page by itself, and they prove especially useful for presentations. I discuss embed-
ded charts (or floating charts on a worksheet) later in this chapter.

XLM Macro Sheets
An XLM macro sheet (also known as an MS Excel 4 macro sheet) is essentially a
worksheet, but it has some different defaults. More specifically, an XLM macro
sheet displays formulas rather than the results of formulas. Also, the default col-
umn width is larger than in a normal worksheet.

As the name suggests, an XLM macro sheet is designed to hold XLM macros. As
you may know, the XLM macro system consists of a holdover from previous ver-
sions (version 4.0 or earlier) of Excel. However, Excel 2002 continues to support
XLM macros for compatibility reasons, but it no longer provides the option of
recording an XLM macro. This book doesn’t cover the XLM macro system; instead,
it focuses on the more powerful VBA macro system.

Dialog Sheets
In Excel 5 and Excel 95, you can create a custom dialog box by inserting a special
dialog sheet. When you open a workbook that contains an Excel 5/95 dialog sheet,
the dialog sheet appears as a sheet in the workbook. Excel 97 and later versions still
support these dialog sheets, but they provide a much better alternative: UserForms.
You can work with UserForms in the VB Editor.

If, for compatibility purposes, you need to insert an Excel 5/95 dialog sheet in

later versions of Excel, you won’t find the command to do so on the Insert

menu. You can only add an Excel 5/95 dialog sheet by right-clicking any

Sheet tab and selecting Insert from the shortcut menu. Then, in the Insert

dialog box, click the MS Excel 5.0 Dialog icon.

10 Part I: Basic Information

4800-x Ch01.F 8/27/01 11:54 AM Page 10

Excel’s User Interface
A user interface (UI) is the means by which an end user communicates with a com-
puter program. A UI includes elements, such as menus, dialog boxes, toolbars, and
keystroke combinations, as well as features such as drag-and-drop. For the most
part, Excel uses the standard Windows UI to accept commands.

Menus
Beginning with Excel 97, Excel’s UI deviates from the standard Windows UI by pro-
viding non-standard Windows menus. The menus in Excel 2000 and Excel 97 are
actually toolbars in disguise — the icons that accompany some menu items are a
dead give-away.

Excel’s menu system is relatively straightforward. Excel contains two different
menu bars — one for an active worksheet, the other for an active chart sheet or
embedded chart. Consistent with Windows conventions, inappropriate menu com-
mands are dimmed (“grayed out”) and commands that open a dialog box are fol-
lowed by an ellipsis (three dots). Where appropriate, the menus list any available
shortcut key combinations (for example, the Edit menu lists Ctrl+Z as the shortcut
key for Edit � Undo).

Several menu items are cascading menus, and as such, lead to submenus that
have additional commands (Edit � Fill represents a cascading menu, for example).
A small arrow on the right of the menu item text indicates cascading menus.

An end user or developer can customize the entire menu system. To do so,

choose the View � Toolbars � Customize command. You must understand

that menu changes made by using this technique are “permanent.” In other

words, the menu changes will remain in effect even if you close Excel and

restart it. This differs greatly from the Menu Editor found in Excel 5 and

Excel 95, which is not available in Excel 97 and later versions.

Shortcut Menus
Excel also features dozens of shortcut menus. These menus appear when the user
right-clicks after selecting one or more objects. The shortcut menus are context-
sensitive. In other words, the menu that appears depends on the location of the
mouse pointer when you right-click. You can right-click just about anything — a
cell, a row or column border, a workbook title bar, a toolbar, and so on.

Chapter 1: Excel in a Nutshell 11

4800-x Ch01.F 8/27/01 11:54 AM Page 11

Smart Tags
A Smart Tag is a small icon that appears automatically in your worksheet. Clicking
a Smart Tag reveals several clickable options.

Smart Tags are available only in Excel 2002.

For example, if you copy and paste a range of cells, Excel generates a Smart Tag
that appears below the pasted range (see Figure 1-2). Excel 2002 features several
other Smart Tags, and additional Smart Tags can be provided by third-party
providers.

Figure 1-2: This Smart Tag appears when you paste a copied range.

Dialog Boxes
Most of the menu commands in Excel display a dialog box, in which you can clar-
ify your intentions. These dialog boxes remain quite consistent in terms of how
they operate. Some of Excel’s dialog boxes use a notebook tab metaphor, which
makes a single dialog box function as several different dialog boxes. Tabbed dialog
boxes provide access to many options without overwhelming you. The Options dia-
log box (choose Tools � Options) presents an example of a tabbed dialog box in
Excel 2002 (see Figure 1-3).

12 Part I: Basic Information

4800-x Ch01.F 8/27/01 11:54 AM Page 12

Figure 1-3: The Options dialog box represents a type of
tabbed dialog box.

Toolbars
Excel 2002 ships with 54 predefined toolbars (including the two toolbars that func-
tion as menus). These toolbars typically appear automatically, when appropriate.
For example, if you activate a chart, the Chart toolbar displays.

You can dock toolbars (position them along any edge of the screen) or make
them float. By default, Excel displays the Standard and Formatting toolbars directly
below the menu bar.

Drag-and-Drop
Excel’s drag-and-drop UI feature enables you to freely drag objects that reside on
the draw layer to change their position. Pressing Ctrl while dragging duplicates the
selected objects.

Excel also permits drag-and-drop actions on cells and ranges. You can easily
drag a cell or range to a different position. And pressing Ctrl while dragging copies
the selected range.

Cell drag-and-drop is optional; you can disable it in the Edit tab of the

Options dialog box.

Chapter 1: Excel in a Nutshell 13

4800-x Ch01.F 8/27/01 11:54 AM Page 13

Keyboard Shortcuts
Excel has many keyboard shortcuts. For example, you can press Ctrl+C to copy a
selection. If you’re a newcomer to Excel or if you just want to improve your effi-
ciency, then do yourself a favor and check out the online help (search for Keyboard
Shortcuts). The help file contains tables that summarize useful keyboard commands
and shortcuts.

Customized On-screen Display
Excel offers a great deal of flexibility regarding on-screen display (status bar, for-
mula bar, toolbars, and so on). For example, by choosing View � Full Screen, you
can get rid of everything except the menu bar, thereby maximizing the amount of
visible information. In addition, by using the View tab in the Options dialog box,
you can customize what displays in a worksheet window (for example, you can
hide scroll bars and grid lines).

Data Entry
Data entry in Excel is quite straightforward. Excel interprets each cell entry as one
of the following:

� A value (including a date or a time)

� Text

� A Boolean value (TRUE or FALSE).

� A formula

Formulas always begin with an equal sign (=). Excel accommodates habitual
1-2-3 users, however, and accepts an “at” symbol (@), a plus sign (+), or a minus
sign (–) as the first character in a formula. It automatically adjusts the entry after
you press Enter.

Object and Cell Selecting
Generally, selecting objects in Excel conforms to standard Windows practices. You
can select a range of cells by using the keyboard (using the Shift key, along with
the arrow keys), or by clicking and dragging the mouse. To select a large range,
click a cell at any corner of the range, scroll to the opposite corner of the range, and
press Shift while you click the opposite corner cell.

You can use Ctrl+* (Ctrl asterisk) to select an entire table. And when a large
range is selected, you can use Ctrl+. (Ctrl period) to move among the four corners
of the range.

Clicking an object placed on the draw layer selects the object. An exception
occurs if the object has a macro assigned to it. In such a case, clicking the object

14 Part I: Basic Information

4800-x Ch01.F 8/27/01 11:54 AM Page 14

Chapter 1: Excel in a Nutshell 15

Data-Entry Tips
The following list of data-entry tips can help those moving up to Excel from another
spreadsheet.

� To enter data without pressing the arrow keys, enable the Move selection
after entering an option in the Edit tab of the Options dialog box (which you
access from the Tools � Options command). You can also choose the direc-
tion that you want to go.

� You may find it helpful to select a range of cells before entering data. If you
do so, you can use the Tab key to move only within the selected cells.

� To enter the same data in all cells within a range, select the range, enter the
information into the active cell, and then press Ctrl+Enter.

� To copy the contents of the active cell to all other cells in a selected range,
press F2 and then Ctrl+Enter.

� To fill a range with increments of a single value, press Ctrl while you drag the
fill handle at the lower-right corner of the cell.

� To create a custom AutoFill list, use the Custom Lists tab of the Options dia-
log box.

� To copy a cell without incrementing, drag the fill handle at the lower-right
corner of the selection; or press Ctrl+D to copy down or Ctrl+R to copy to
the right.

� To make text easier to read, you can enter carriage returns in a cell. To enter
a carriage return, press Alt+Enter. Carriage returns cause a cell’s contents to
wrap within the cell.

� To enter a fraction, enter 0, a space, and then the fraction (using a slash).
Excel formats the cell using the Fraction number format.

� To automatically format a cell with the currency format, type a dollar sign
before the value.

� To enter a value in percent format, type a percent sign after the value. You
can also include your local thousand separator symbol to separate thousands
(for example, 123,434).

� To insert the current date, Press Ctrl+semicolon. To enter the current time
into a cell, press Ctrl+Shift+semicolon.

� To set up a cell or range so that it only accepts entries of a certain type (or
within a certain value range), use the Data � Validation command.

4800-x Ch01.F 8/27/01 11:54 AM Page 15

executes the macro. To select multiple objects or noncontiguous cells, press Ctrl
while you select the objects or cells.

Cell Formatting
Excel provides two types of cell formatting — numeric formatting and stylistic
formatting.

Numeric Formatting
Numeric formatting refers to how a value appears in the cell. In addition to choos-
ing from an extensive list of predefined formats, you can create your own custom
number formats in the Number tab of the Format Cells dialog box (choose
Format � Cells).

Excel applies some numeric formatting automatically, based on the entry. For
example, if you precede a value with your local currency symbol (such as a dollar
sign), Excel applies Currency number formatting.

Refer to Appendix C for additional information about creating custom

number formats.

The number format doesn’t affect the actual value stored in the cell. For exam-
ple, suppose that a cell contains the value 3.14159. If you apply a format to display
two decimal places, the number appears as 3.14. When you use the cell in a for-
mula, however, the actual value (3.14159) — not the displayed value — is used.

Stylistic Formatting
Stylistic formatting refers to the cosmetic formatting (colors, shading, fonts, bor-
ders, and so on) that you apply in order to make your work look good. The Format
Cells dialog box (see Figure 1-4) is your one-stop shopping place for formatting
cells and ranges.

Many toolbar buttons offer direct access to common formatting options, regard-
less of whether you work with cells, drawn objects, or charts. For example, you can
use the Fill Color toolbar button to change the background color of a cell, change
the fill color of a drawn text box, or change the color of a bar in a chart. Access the
Format dialog box for the full range of formatting options.

16 Part I: Basic Information

4800-x Ch01.F 8/27/01 11:54 AM Page 16

Figure 1-4: Use the Format Cells dialog box to apply
stylistic formatting.

Each type of object has its own Format dialog box. You can easily get to the cor-
rect dialog box and format an object by selecting the object, right-clicking, and
then choosing Format xxx (where xxx is the selected object) from the shortcut menu.
Alternatively, you can press Ctrl+1. Either of these actions leads to a tabbed dialog
box that holds all the formatting options for the selected object.

Don’t overlook Excel’s conditional formatting feature. This handy tool enables
you to specify formatting that appears only when certain conditions are met. For
example, you can make the cell’s interior red if the cell contains a negative number.

Chapter 19 describes how to create conditional formatting formulas that

greatly enhance this feature.

Worksheet Formulas and Functions
Formulas, of course, make a spreadsheet a spreadsheet. Excel’s formula-building
capability is as good as it gets. You will discover this as you explore subsequent
chapters in this book.

Worksheet functions allow you to perform calculations or operations that would
otherwise be impossible. Excel provides a huge number of built-in functions, and
you can access even more functions (many of them quite esoteric) by attaching the
Analysis ToolPak add-in.

Chapter 1: Excel in a Nutshell 17

4800-x Ch01.F 8/27/01 11:54 AM Page 17

See Chapter 4 for more information about worksheet functions.

All spreadsheets allow you to define names for cells and ranges, but Excel han-
dles names in some unique ways. A name represents an identifier that enables you
to refer to a cell, range, value, or formula. Using names makes your formulas easier
to create and read.

I devote Chapter 3 entirely to names.

Objects on the Draw Layer
As I mentioned earlier in this chapter, each worksheet has an invisible draw layer,
which holds shapes, diagrams, charts, maps, pictures, and controls (such as buttons
and list boxes). I discuss some of these items in the following sections.

Shapes
You can insert AutoShapes from the Drawing toolbar. You can choose from a huge
assortment of shapes. After you place a shape on your worksheet, you can modify
the shape by selecting it and dragging its handles. In addition, you can apply drop
shadows, text, or 3-D effects to the shape. Also, you can group multiple shapes into
a single drawing object, which you’ll find easier to size or position.

Diagrams
The Insert � Diagram command displays the Diagram Gallery dialog box, shown in
Figure 1-5. You can choose from six diagrams, and each is highly customizable.

The Diagram Gallery is new to Excel 2002.

18 Part I: Basic Information

4800-x Ch01.F 8/27/01 11:54 AM Page 18

Figure 1-5: Excel 2002 supports several types of diagrams.

Linked Picture Objects
For some reason, the designers of Excel make the linked picture object rather diffi-
cult to generate. To use this object, copy a range and then press Shift and select the
Edit � Paste Picture Link command (which appears on the Edit menu only when
you press Shift). This command originally accommodated users who wanted to
print a noncontiguous selection of ranges. Users could “take pictures” of the ranges
and then paste the pictures together in a single area, which they could then print.

Maps
If you work with geographic data, you may like the ability to insert a map into a
worksheet by using the Insert � Map command. Unfortunately, this feature was
removed from Excel 2002. Maps that were created with earlier versions still appear
in Excel 2002, but they can’t be modified.

Dialog Box Controls
Many of the controls that are used in custom dialog boxes can be placed directly on
the draw layer of a worksheet. Doing this can greatly enhance the usability of some
worksheets and eliminate the need to create custom dialog boxes. Figure 1-6 shows
a worksheet with some dialog box controls added to the draw layer.

Dialog box controls come from two sources: The Forms toolbar, or the

Control Toolbox toolbar. Controls from the Control Toolbox toolbar consist

of ActiveX controls, and are available only in Excel 97 or later.

Chapter 1: Excel in a Nutshell 19

4800-x Ch01.F 8/27/01 11:54 AM Page 19

Figure 1-6: Excel enables you to add many controls directly to the
draw layer of a worksheet.

Charts
Excel, of course, has excellent charting capabilities. As I mentioned earlier in this
chapter, you can store charts on a chart sheet or you can float them on a worksheet.

Excel offers extensive chart customization options. If a chart is free-floating,
just click a chart element to select it (or double-click it to display its formatting dia-
log box). Right-clicking a chart element displays a shortcut menu.

You can easily create a free-floating chart by selecting the data to be charted
and then using the Chart Wizard to walk you through the steps to create a chart
that meets your needs.

Chapter 17 contains additional information about charts.

Customization in Excel
This section describes various features that enable you to customize Excel. They
include macros, toolbars, and add-in programs.

Macros
Excel’s VBA programming language provides a powerful tool that can make Excel
perform otherwise impossible feats. You can classify the procedures that you create
with VBA into two general types:

20 Part I: Basic Information

4800-x Ch01.F 8/27/01 11:54 AM Page 20

� Macros that automate various aspects of Excel.

� Macros that serve as custom functions that you can use in worksheet
formulas.

Part VI of this book describes how to use and create custom worksheet

functions using VBA.

Toolbars
As I noted earlier, Excel includes many toolbars. You can, if you’re so inclined, cre-
ate new toolbars that contain existing toolbar buttons, or new buttons that execute
macros.

Use the View � Toolbars � Customize command to customize toolbars or create
new ones. You can also write VBA code to manipulate toolbars.

Add-in Programs
An add-in is a program attached to Excel that gives it additional functionality. For
example, you can store custom worksheet functions in an add-in. To attach an add-
in, use the Tools � Add-Ins command.

Excel ships with quite a few add-ins (including the Analysis ToolPak). In addi-
tion to these add-ins, you can purchase or download many third-party add-ins
from online services. My Power Utility Pak represents an example of an add-in. You
can access a trial version on the CD-ROM included with this book.

Chapter 23 describes how to create your own add-ins that contain custom

worksheet functions.

Analysis Tools
Excel is certainly no slouch when it comes to analysis. After all, most people use a
spreadsheet for analysis. Many analysis tasks can be handled with formulas, but
Excel offers many other options, which I discuss in the following sections.

Chapter 1: Excel in a Nutshell 21

4800-x Ch01.F 8/27/01 11:54 AM Page 21

Database Access
Over the years, most spreadsheets have enabled users to work with simple flat data-
base tables (even the original version of 1-2-3 contained this feature). Excel’s data-
base features fall into two main categories:

� Worksheet databases. The entire database stores in a worksheet, limiting
the size of the database. In Excel, a worksheet database can have no more
than 65,535 records (because there are 65,536 rows; the top row holds the
field names) and 256 fields (because there are 256 columns).

� External databases. The data stores in one or more disk files and you can
access it as needed.

Generally, when the cell pointer resides within a worksheet database, Excel rec-
ognizes it and displays the field names whenever possible. For example, if you
move the cell pointer within a worksheet database and choose the Data � Sort com-
mand, Excel enables you to select the sort keys by choosing field names from a
drop-down list.

A particularly useful feature, Excel’s AutoFilter, enables you to display only the
records that you want to see. When AutoFilter mode is on, you can filter the data
by selecting values from pull-down lists (which appear in place of the field names
when you choose the Data � Filter � AutoFilter command). Rows that don’t qualify
are temporarily hidden. See Figure 1-7 for an example.

Figure 1-7: Excel’s AutoFilter feature makes it easy to
view only the database records that meet your criteria.

If you prefer, you can use the traditional spreadsheet database techniques that
involve criteria ranges. To do so, choose the Data � Filter � Advanced Filter
command.

22 Part I: Basic Information

4800-x Ch01.F 8/27/01 11:54 AM Page 22

Chapter 9 provides additional details regarding worksheet lists and

databases.

Excel can automatically insert (or remove) subtotal formulas in a table that is set
up as a database. It also creates an outline from the data so that you can view only
the subtotals, or any level of detail that you desire.

Outlines
A worksheet outline often serves as an excellent way to work with hierarchical
data, such as budgets. Excel can create an outline automatically by examining the
formulas in your worksheet. After you’ve created an outline, you can collapse or
expand the outline to display various levels of details. Figure 1-8 shows an exam-
ple of a worksheet outline.

Figure 1-8: Excel can automatically insert subtotal formulas and create outlines.

Scenario Management
Scenario management is the process of storing input values that drive a model. For
example, if you have a sales forecast, you may create scenarios such as best case,
worst case, and most likely case.

If you seek the ultimate in scenario-management features, 1-2-3’s Version
Manager is probably your best bet. Unlike Version Manager, Excel’s Scenario
Manager can only handle simple scenario-management tasks. However, it is defi-
nitely easier than trying to keep track of different scenarios manually.

Chapter 1: Excel in a Nutshell 23

4800-x Ch01.F 8/27/01 11:54 AM Page 23

Analysis ToolPak
The Analysis ToolPak add-in provides 19 special-purpose analysis tools (primarily
statistical in nature) and many specialized worksheet functions. These tools make
Excel suitable for small- to medium-scale statistical analysis.

Pivot Tables
One of Excel’s most powerful tools is its pivot tables. A pivot table enables you to
display summarized data in just about any possible way. Data for a pivot table
comes from a worksheet database or an external database and stores in a special
cache, which enables Excel to recalculate data rapidly after a pivot table is altered.

Chapter 18 contains additional information about pivot tables.

Excel 2000 and later versions also support the pivot chart feature. Pivot charts
enable you to link a chart to a pivot table.

Auditing Capabilities
Excel also offers useful auditing capabilities that help you identify errors or track
the logic in an unfamiliar spreadsheet. To access this feature, select Tools �
Formula Auditing (or Tools � Auditing, in versions prior to Excel 2002).

Excel 2002 includes background formula auditing. I cover this topic and

other auditing features in Chapter 21.

Solver Add-in
For specialized linear and nonlinear problems, Excel’s Solver add-in calculates
solutions to what-if scenarios based on adjustable cells, constraint cells, and,
optionally, cells that must be maximized or minimized.

24 Part I: Basic Information

4800-x Ch01.F 8/27/01 11:54 AM Page 24

Protection Options
Excel offers a number of different protection options. For example, you can protect
formulas from being overwritten or modified, protect a workbook’s structure, and
protect your VBA code.

Protecting Formulas from Being Overwritten
In many cases, you may want to protect your formulas from being overwritten or
modified. To do so, perform the following steps:

1. Select the cells that may be overwritten.

2. Select Format � Cells, and click the Protection tab of the Format Cells dia-
log box.

3. In the Protection tab, remove the checkmark from the Locked check box.

4. Click OK to close the Format Cells dialog box.

5. Select Tools � Protection � Protect Sheet to display the Protect Sheet dia-
log box, as shown in Figure 1-9. If you use a version prior to Excel 2002,
this dialog box looks different.

6. In the Protect Sheet dialog box, specify a password if desired, and
click OK.

By default, all cells are Locked.This has no effect, however, unless you have a

protected worksheet.

Protection options in Excel 2002 are much more flexible.When you protect a

worksheet, the Protect Sheet dialog box lets you choose which elements

won’t be protected. For example, you can allow users to sort data or use

AutoFiltering on a protected sheet (tasks that weren’t possible with earlier

versions).

Chapter 1: Excel in a Nutshell 25

4800-x Ch01.F 8/27/01 11:54 AM Page 25

Figure 1-9: The Protect Sheet dialog box in
Excel 2002

You can also hide your formulas so they won’t appear in Excel’s formula bar
when the cell is activated. To do so, select the formula cells and make sure that the
Hidden check box is checked in the Protection tab of the Format Cells dialog box.

Protecting a Workbook’s Structure
When you protect a workbook’s structure, you can’t add or delete sheets. Use the
Tools � Protection � Protect Workbook command to display the Protect Workbook
dialog box, as shown in Figure 1-10. Make sure that you check the Structure check
box. If you also check the Windows check box, the window can’t be moved or
resized.

Figure 1-10: The Protect Workbook dialog box

It’s important to keep in mind that Excel is not really a secure application.

The protection features, even when used with a password, are intended to

prevent casual users from accessing various components of your workbook.

Anyone who really wants to defeat your protection can probably do so by

using readily available password-cracking utilities.

26 Part I: Basic Information

4800-x Ch01.F 8/27/01 11:54 AM Page 26

Summary
This chapter provided a general overview of the features available in Excel, and pri-
marily focuses on newcomers to Excel. The next chapter gets into the meat of the
book and provides an introduction to Excel formulas.

Chapter 1: Excel in a Nutshell 27

4800-x Ch01.F 8/27/01 11:54 AM Page 27

4800-x Ch01.F 8/27/01 11:54 AM Page 28

Chapter 2

Basic Facts about Formulas
IN THIS CHAPTER

� How to enter, edit, and paste names into formulas

� The various operators used in formulas

� How Excel calculates formulas

� Cell and range references used in formulas

� How to make an exact copy of a formula

� How to convert formulas to values

� How to prevent formulas from being viewed

� The types of formula errors

� Circular reference messages and correction techniques

� Excel’s goal-seeking feature

THIS CHAPTER SERVES AS A BASIC INTRODUCTION to using formulas in Excel.
Although I direct its focus on newcomers to Excel, even veteran Excel users may
find some new information here.

Entering and Editing Formulas
This section describes the basic elements of a formula. It also explains various ways
of entering and editing your formulas.

Formula Elements
A formula entered into a cell can consist of five element types:

� Operators: These include symbols such as + (for addition) and * (for
multiplication)

� Cell references: These include named cells and ranges and can refer to
cells in the current worksheet, cells in another worksheet in the same
workbook, or even cells in a worksheet in another workbook. 29

4800-x Ch02.F 8/27/01 11:54 AM Page 29

� Values or strings: Examples include 7.5 or “Year-End Results.”

� Worksheet functions and their arguments: These include functions such
as SUM or AVERAGE and their arguments.

� Parentheses: These control the order in which expressions within a for-
mula are evaluated.

Entering a Formula
When you type an equal sign into an empty cell, Excel assumes that you are enter-
ing a formula (a formula always begins with an equal sign). Excel’s accommodat-
ing nature also permits you to begin your formula with a minus sign or a plus sign.
However, Excel always inserts the leading equal sign after you enter the formula.

As a concession to former 1-2-3 users, Excel also enables you to use an “at”
symbol (@) to begin a formula that starts with a function. For example, Excel
accepts either of the following formulas:

=SUM(A1:A200)
@SUM(A1:A200)

However, after you enter the second formula, Excel replaces the at symbol with
an equal sign. You can enter a formula into a cell in one of two ways: enter it man-
ually, or enter it by pointing to cell references. I discuss each of these methods in
the following sections.

ENTERING FORMULAS MANUALLY
Entering a formula manually involves, well, entering a formula manually. You sim-
ply activate a cell and type an equal sign (=) followed by the formula. As you type,
the characters appear in the cell as well as in the formula bar. You can, of course,
use all the normal editing keys when entering a formula. After you insert the for-
mula, press Enter.

An exception to this is when you enter an array formula. When you enter an

array formula, press Ctrl+Shift+Enter rather than just Enter. I discuss array

formulas in Part IV.

After you press Enter, the cell displays the result of the formula. The formula,
itself, appears in the formula bar when the cell is activated.

30 Part I: Basic Information

4800-x Ch02.F 8/27/01 11:54 AM Page 30

ENTERING FORMULAS BY POINTING
The other method of entering a formula still involves some manual typing, but you
can simply point to the cell references instead of entering them manually. For
example, to enter the formula =A1+A2 into cell A3, follow these steps:

1. Move the cell pointer to cell A3.

2. Type an equal sign (=) to begin the formula. Notice that Excel displays
Enter in the left side of the status bar.

3. Press the up arrow twice. As you press this key, notice that Excel displays
a faint moving border around the cell and that the cell reference (A1)
appears in cell A3 and in the formula bar. Also notice that Excel displays
Point in the status bar.

If you prefer, you can use your mouse and click cell A1.

4. Type a plus sign (+). The faint border disappears and Enter reappears in
the status bar.

5. Press the up arrow one more time. A2 adds to the formula.

If you prefer, you can use your mouse and click cell A2.

6. Press Enter to end the formula. As with entering the formula manually,
the cell displays the result of the formula, and the formula appears in the
formula bar when the cell is activated.

If you prefer, you can use your mouse and click the check mark icon next
to the formula bar.

Pointing to cell addresses rather than entering them manually is usually less
tedious, and almost always more accurate.

When you create a formula that refers to other cells, the cell that contains

the formula has the same number format as the first cell to which it refers.

The only exception: if the first cell reference is formatted as a percentage.

Excel 97 and Excel 2000 include the Formula Palette feature that you can use
when entering or editing formulas (see Figure 2-1). To access the Formula Palette,
click on the Edit Formula button in the edit line (it has an image of an equal sign).
The Formula Palette enables you to enter formulas manually or use the pointing
techniques described previously.

Chapter 2: Basic Facts about Formulas 31

4800-x Ch02.F 8/27/01 11:54 AM Page 31

The Formula Palette was removed from Excel 2002.

Pasting Names
As I discuss in Chapter 3, you can assign a name to a cell or range. If your formula
uses named cells or ranges, you can type the name in place of the address or choose
the name from a list and have Excel insert the name for you automatically.

To insert a name into a formula, select the Insert � Name � Paste command (or
Press F3) to display the Paste Name dialog box. Excel displays its Paste Name dia-
log box with all the names listed, as shown in Figure 2-1. Select the name and click
OK. Or, you can double-click the name, which inserts the name into the formula
and closes the dialog box.

Figure 2-1: The Paste Name dialog box
enables you to insert a name while
entering a formula.

Spaces and Line Breaks
Normally, you enter a formula without using any spaces. However, you can use
spaces (and even line breaks) within your formulas. Doing so has no effect on the
formula’s result, but may make the formula easier to read. To enter a line break in
a formula, press Alt+Enter. Figure 2-2 shows a formula that contains spaces and
line breaks.

Formula Limits
A formula can consist of up to 1,024 characters. If you need to create a formula
that exceeds this limit, you must break the formula up into multiple formulas. You
also can opt to create a custom function (using VBA).

32 Part I: Basic Information

4800-x Ch02.F 8/27/01 11:54 AM Page 32

Figure 2-2: This formula contains spaces and line breaks.

Part IV focuses on creating custom functions.

Sample Formulas
If you follow the above instructions for entering formulas, you can create a variety
of formulas. This section provides a look at some sample formulas.

� The following formula multiplies 150 times .01, and returns 1.5. This for-
mula uses only literal values, so it doesn’t prove very useful (you can sim-
ply enter the value 1.5 instead of the formula).

=150*.01

� This formula adds the values in cells A1 and A2:

=A1+A2

� The next formula subtracts the value in the cell named Expenses from the
value in the cell named Income.

=Income–Expenses

Chapter 2: Basic Facts about Formulas 33

4800-x Ch02.F 8/27/01 11:54 AM Page 33

� The following formula uses the SUM function to add the values in the
range A1:A12.

=SUM(A1:A12)

� The next formula compares cell A1 with cell C12 by using the = operator.
If the values in the two cells are identical, the formula returns TRUE; oth-
erwise it returns FALSE.

=A1=C12

� This final formula subtracts the value in cell B3 from the value in cell B2
and then multiplies the result by the value in cell B4:

=(B2-B3)*B4

Editing Formulas
If you make changes to your worksheet, you may need to edit formulas. Or, the for-
mula may return one of the error values described later in this chapter, and you
need to edit the formula to correct the error. You can edit your formulas just as you
edit any other cell.

There are several ways to get into cell edit mode:

1. Double-click the cell. This enables you to edit the cell contents directly
in the cell. This technique works only if the Edit directly in cell option
is in effect. You can change this option in the Edit tab of the Options
dialog box.

2. Press F2. This enables you to edit the cell contents directly in the cell. If
the Edit directly in cell option is not turned on, the editing will occur in
the formula bar.

3. Select the formula cell that you want to edit and then click in the formula
bar. This enables you to edit the cell contents in the formula bar.

4. Click the Edit Formula button (it has an equal sign icon) in the edit line to
access the Formula Palette.

Excel 2002 does not have an Edit Formula button.

34 Part I: Basic Information

4800-x Ch02.F 8/27/01 11:54 AM Page 34

When you edit a formula, you can select multiple characters by dragging the
mouse over them or by holding down Shift while you use the arrow keys. You can
also press Home or End to select from the cursor position to the beginning or end
of the formula. If you use Ctrl+Shift, pressing the arrow keys allows you to select
“words” within the formula.

Suppose you have a lengthy formula that contains an error, and Excel won’t

let you enter it because of the error. In this case, you can convert the formula

to text and tackle it again later. To convert a formula to text, just remove the

initial equal sign (=). To try the formula again, insert the initial equal sign to

convert the cell contents back to a formula.

Using Operators in Formulas
As previously discussed, an operator is the basic element of a formula. An operator
is a symbol that represents an operation. Excel supports the following operators:

Chapter 2: Basic Facts about Formulas 35

Using the Formula Bar as a Calculator
If you simply need to perform a calculation, you can use the formula bar as a
calculator. For example, enter the following formula into any cell:

=(145*1.05)/12

Because this formula always returns the same result, you might prefer to store the
formula’s result rather than the formula. To do so, press F2 to edit the cell. Then press
F9 followed by Enter. Excel stores the formula’s result (12.6875), rather than the
formula. This technique also works if the formula uses cell references.

You’ll find that this technique is most useful when you use worksheet functions. For
example, to enter the square root of 221 into a cell, enter =SQRT(221), press F9, and
press Enter. Excel enters the result: 14.8660687473185. You also can use this
technique to evaluate just part of a formula. Consider this formula:

=(145*1.05)/A1

If you want to convert just the expression within the parentheses to a value, get into
cell edit mode and select the part that you want to evaluate. In this example, select
145*1.05. Then, press F9 followed by Enter. Excel converts the formula to the
following:

=(152.25)/A1

4800-x Ch02.F 8/27/01 11:54 AM Page 35

+ Addition

- Subtraction

/ Division

* Multiplication

% Percent

& Text concatenation

^ Exponentiation

= Logical comparison (equal to)

> Logical comparison (greater than)

< Logical comparison (less than)

>= Logical comparison (greater than or equal to)

<= Logical comparison (less than or equal to)

<> Logical comparison (not equal to)

You can, of course, use as many operators as you need. Formulas can prove
quite complex.

Reference Operators
Excel supports another class of operators known as reference operators. Reference
operators, described in the following list, work with cell references.

: (colon) Range operator. Produces one reference to all the cells
between two references.

, (comma) Union operator. This combines multiple cell or range refer-
ences into one reference.

(single space) Intersection operator. This produces one reference to cells
common to two references.

Sample Formulas That Use Operators
These examples of formulas use various operators:

� The following formula joins (concatenates) the two literal text strings to
produce a new text string: Part-23A:

=”Part-”&”23A”

� The next formula concatenates the contents of cell A1 with cell A2:

=A1&A2

36 Part I: Basic Information

4800-x Ch02.F 8/27/01 11:54 AM Page 36

Usually, concatenation is used with text, but concatenation works with
values as well. For example, if cell A1 contains 123 and cell A2 contains
456, the preceding formula would return the value 123456. Note that,
technically, the result is a text string. However, this text string functions
as a numeric value.

� The following formula uses the exponentiation operator to raise 6 to the
third power, to produce a result of 216.

=6^3

� A more useful form of the above formula uses a cell reference instead of
the literal value. Note this example that raises the value in cell A1 to the
third power:

=A1^3

� This formula returns the cube root of 216 (which is 6):

=216^(1/3)

� The next formula returns TRUE if the value in cell A1 is less than the
value in cell A2. Otherwise, it returns FALSE.

=A1<A2

Logical comparison operators also work with text. If A1 contains Alpha
and A2 contains Gamma, the formula returns TRUE because Alpha comes
before Gamma in alphabetical order.

� The following formula returns TRUE if the value in cell A1 is less than or
equal to the value in cell A2. Otherwise, it returns FALSE.

=A1<=A2

� The next formula returns TRUE if the value in cell A1 does not equal the
value in cell A2. Otherwise, it returns FALSE.

=A1<>A2

� Unlike some other spreadsheets (such as 1-2-3), Excel doesn’t have logical
AND or OR operators. Rather, you use functions to specify these types of
logical operators. For example, this formula returns TRUE if cell A1 con-
tains either 100 or 1000:

=OR(A1=100,A1=1000)

This last formula returns TRUE only if both cell A1 and cell A2 contain
values less than 100:

=AND(A1<100,A2<100)

Chapter 2: Basic Facts about Formulas 37

4800-x Ch02.F 8/27/01 11:54 AM Page 37

Operator Precedence
You can (and should) use parentheses in your formulas to control the order in
which the calculations occur. As an example, consider the following formula that
uses references to named cells.

=Income-Expenses*TaxRate

The goal is to subtract expenses from income and then multiply the result by the
tax rate. If you enter the above formula, you discover that Excel computes the
wrong answer. Rather, the formula multiplies expenses by the tax rate and then
subtracts the result from the income. The correct way to write this formula is:

=(Income-Expenses)*TaxRate

To understand how this works, you need to be familiar with a concept called
operator precedence — the set of rules that Excel uses to perform its calculations.
Table 2-1 lists Excel’s operator precedence. Operations with a lower precedence
number are performed before operations with a higher precedence number.

Use parentheses to override Excel’s built-in order of precedence. Returning to
the previous example, the formula without parentheses is evaluated using Excel’s
standard operator precedence. Because multiplication has a higher precedence, the
Expense cell multiplies by the TaxRate cell. Then, this result is subtracted from
Income — producing an incorrect calculation.

The correct formula uses parentheses to control the order of operations.
Expressions within parentheses always get evaluated first. In this case, Expenses is
subtracted from Income, and the result multiplies by TaxRate.

TABLE 2-1 OPERATOR PRECEDENCE IN EXCEL FORMULAS

Symbol Operator Precedence

- Negation 1

% Percent 2

^ Exponentiation 3

* and / Multiplication and division 4

+ and - Addition and subtraction 5

& Text concatenation 6

=, <, >, <=, >=, and <> Comparison 7

38 Part I: Basic Information

4800-x Ch02.F 8/27/01 11:54 AM Page 38

Nested Parentheses
You can also nest parentheses in formulas. Nesting means putting parentheses
inside of parentheses. If you do so, Excel evaluates the most deeply nested expres-
sions first and works its way out. The following example of a formula uses nested
parentheses.

=((B2*C2)+(B3*C3)+(B4*C4))*B6

This formula has four sets of parentheses. Three sets are nested inside the fourth
set. Excel evaluates each nested set of parentheses and then sums the three results.
This sum is then multiplied by the value in B6.

It’s a good idea to make liberal use of parentheses in your formulas, even when
they aren’t necessary. Using parentheses clarifies the order of operations and makes
the formula easier to read. For example, if you want to add 1 to the product of two
cells, the following formula performs will do the job:

=A1*A2+1

You may find it much clearer, however, to use the following formula (with
superfluous parentheses):

=(A1*A2)+1

Every left parenthesis, of course, must have a matching right parenthesis. If you
have many levels of nested parentheses, you might find it difficult to keep them
straight. If the parentheses don’t match, Excel pops up a message telling you and
won’t permit you to enter the formula.

Fortunately, Excel lends a hand in helping you match parentheses.When you

enter or edit a formula that has parentheses, pay attention to the text.When

the cursor moves over a parenthesis, Excel momentarily displays the paren-

thesis and its closing parenthesis in bold. This lasts for less than a second, so

watch carefully.

In some cases, if your formula contains mismatched parentheses, Excel may pro-
pose a correction to your formula (Excel 97 introduced this Formula AutoCorrect
feature). Figure 2-3 shows an example of Excel’s AutoCorrect feature in action.

Chapter 2: Basic Facts about Formulas 39

4800-x Ch02.F 8/27/01 11:54 AM Page 39

It is tempting to simply accept the correction proposed in the dialog box,

but be careful. In many cases, the proposed formula, although syntactically

correct, isn’t the formula that you want. In Figure 2-3, I omitted the closing

parentheses after January. Excel proposed this correction:

=SUM(January/SUM(Total))

In fact, the correct formula is:

=SUM(January)/SUM(Total)

Figure 2-3: Excel’s Formula AutoCorrect feature often suggests a
correction to an erroneous formula.

Calculating Formulas
You’ve probably noticed that the formulas in your worksheet get calculated imme-
diately. If you change any cells that the formula uses, the formula displays a new
result with no effort on your part. This occurs when Excel’s Calculation mode is set
to Automatic. In this mode (the default mode), Excel follows certain rules when cal-
culating your worksheet:

Don’t Hard-Code Values
When you create a formula, think twice before using a literal value in the formula. For
example, if your formula calculates 7.5 percent sales tax, you may be tempted to enter
a formula such as:

=A1*.075

A better approach is to insert the sales tax rate into a cell and use the cell reference
in place of the literal value. This makes it easier to modify and maintain your
worksheet. For example, if the sales tax range changes to 7.75 percent, you need to
modify every formula that uses the old value. If the tax rate is stored in a cell, you
simply change one cell and all the formulas automatically get updated.

40 Part I: Basic Information

4800-x Ch02.F 8/27/01 11:54 AM Page 40

� When you make a change (enter or edit data or formulas, for example),
Excel calculates immediately those formulas that depend on new or edited
data.

� If working on a lengthy calculation, Excel temporarily suspends calcula-
tion when you need to perform other worksheet tasks; it resumes when
you finish.

� Formulas are evaluated in a natural sequence. For instance, if a formula in
cell D12 depends on the result of a formula in cell D11, cell D11 is calcu-
lated before D12.

Sometimes, however, you may want to control when Excel calculates formulas.
For example, if you create a worksheet with thousands of complex formulas, you’ll
find that things can slow to a snail’s pace while Excel does its thing. In this case,
you can set Excel’s calculation mode to Manual. Do this in the Calculation panel of
the Options dialog box. (Select Tools � Options to display this dialog box.)

When you work in Manual calculation mode, Excel displays Calculate in the sta-
tus bar when you have any uncalculated formulas. You can use the following
shortcut keys to recalculate the formulas:

� F9: Calculates the formulas in all open workbooks.

� Shift+F9: Calculates only the formulas in the active worksheet. It does not
calculate other worksheets in the same workbook.

� Ctrl+Alt+F9: Forces a complete recalculation of all open workbooks. Use
it if Excel (for some reason) doesn’t seem to return correct calculations.

� Ctrl+Shift+Alt+F9: Rechecks all of the dependent formulas, and then
forces a recalculation of all open workbooks.

The Ctrl+Shift+Alf+F9 key sequence works only in Excel 2002.

Excel’s Calculation mode isn’t specific to a particular worksheet. When you

change Excel’s Calculation mode, it affects all open workbooks — not just

the active workbook. Also, the initial Calculation mode is set by the

Calculation mode saved with the first workbook you open.

Chapter 2: Basic Facts about Formulas 41

4800-x Ch02.F 8/27/01 11:54 AM Page 41

Cell and Range References
Most formulas reference one or more cells by using the cell or range address (or
name if it has one). Cell references come in four styles; the dollar sign differentiates
them:

� Relative: The reference is fully relative. When the formula is copied, the
cell reference adjusts to its new location. Example: A1

� Absolute: The reference is fully absolute. When the formula is copied, the
cell reference does not change. Example: A1

� Row Absolute: The reference is partially absolute. When the formula is
copied, the column part adjusts, but the row part does not change.
Example: A$1

� Column Absolute: The reference is partially absolute. When the formula is
copied, the row part adjusts, but the column part does not change.
Example: $A1

Creating an Absolute Reference
When you create a formula by pointing to cells, all cell and range references are
relative. To change a reference to an absolute reference, you must do so manually
by adding the dollar signs. Or, when you enter a cell or range address, you can use
the F4 key to cycle among all possible reference modes.

If you think about it, you may realize that the only reason you would ever need
to change a reference is if you plan to copy the formula. Figure 2-4 demonstrates
this. Note the formula in cell C4:

=C$3*$B4

This formula calculates the area for various widths (listed in column B) and
lengths (listed in Row 3). After you enter the formula, it can then be copied down
and across. Because the formula uses absolute references to row 3 and column B,
each copied formula produces the correct result. If the formula uses relative refer-
ences, copying the formula causes the references to adjust and produce the wrong
results.

42 Part I: Basic Information

4800-x Ch02.F 8/27/01 11:54 AM Page 42

Chapter 2: Basic Facts about Formulas 43

A1 vs. R1C1 Notation
Normally, Excel uses what is referred to as A1 notation. Each cell address consists of a
column letter and a row number. However, Excel also supports R1C1 notation. In this
system, cell A1 is referred to as cell R1C1, cell A2 as R2C1, and so on.

To change to R1C1 notation, select Tools � Options to get the Options dialog box,
click the General tab, and place a check mark next to R1C1 reference style. Now,
notice that the column letters all change to numbers. And, all of the cell and range
references in your formulas also adjust.

Look at the following examples of formulas using standard notation and R1C1
notation. The formula is assumed to be in cell B1 (also known as R1C2).

Standard R1C1

=A1+1 =RC[-1]+1

=A1+1 =R1C1+1

=$A1+1 =RC1+1

=A$1+1 =R1C[-1]+1

=SUM(A1:A10) =SUM(RC[-1]:R[9]C[-1])

=SUM(A1:A10) =SUM(R1C1:R10C1)

If you find R1C1 notation confusing, you’re not alone. R1C1 notation isn’t too bad
when you’re dealing with absolute references. But when relative references are
involved, the brackets can drive you nuts.

The numbers in brackets refer to the relative position of the references. For example,
R[-5]C[-3] specifies the cell that appears five rows above and three columns to the
left. Conversely, R[5]C[3] references the cell that appears five rows below and three
columns to the right. If you omit the brackets, it specifies the same row or column. For
example, R[5]C refers to the cell five rows below in the same column.

Although you probably won’t use R1C1 notation as your standard system, it does have
at least one good use. R1C1 notation makes it very easy to spot an erroneous formula.
When you copy a formula, every copied formula is exactly the same in R1C1 notation.
This remains true regardless of the types of cell references you use (relative, absolute,
or mixed). Therefore, you can switch to R1C1 notation and check your copied
formulas. If one looks different from its surrounding formulas, it’s probably incorrect.

Continued

4800-x Ch02.F 8/27/01 11:54 AM Page 43

Figure 2-4: An example of using non-relative references in a formula

Referencing Other Sheets or Workbooks
A formula can use references to cells and ranges that are in a different worksheet.
To refer to a cell in a different worksheet, precede the cell reference with the sheet
name followed by an exclamation point. Note this example of a formula that uses a
cell reference in a different worksheet (Sheet2):

=Sheet2!A1+1

You can also create link formulas that refer to a cell in a different workbook. To
do so, precede the cell reference with the workbook name (in square brackets), the
worksheet name, and an exclamation point like this:

=[Budget.xls]Sheet1!A1+1

If the workbook name in the reference includes one or more spaces, you must
enclose it (and the sheet name) in single quotation marks. For example:

=’[Budget Analysis.xls]Sheet1’!A1+A1

If the linked workbook is closed, you must add the complete path to the work-
book reference. For example:

=’C:\MSOffice\Excel\[Budget Analysis.xls]Sheet1’!A1+A1

44 Part I: Basic Information

A1 vs. R1C1 Notation (Continued)
If you’re using Excel 2002, however, you can take advantage of the new background
formula auditing feature. This feature can flag potentially incorrect formulas. I discuss
this feature in Chapter 21.

4800-x Ch02.F 8/27/01 11:54 AM Page 44

Although you can enter link formulas directly, you also can create the reference
by using normal pointing methods discussed earlier. To do so, make sure you have
an open source file. Normally, you can create a formula by pointing to results in
relative cell references. But, when you create a reference to a workbook by point-
ing, Excel creates absolute cell references (if you plan to copy the formula to other
cells, you must edit the formula to make the references relative).

Working with links can be tricky and may cause some unexpected problems.

For example, if you use the File � Save As command to make a backup copy

of the source workbook, you automatically change the link formulas to refer

to the new file (not usually what you want). You also can mess up your links

by renaming the source workbook file.

Making an Exact Copy of a Formula
When you copy a formula, Excel adjusts the formula’s cell references when you
paste it to a different location. This is usually exactly what you want. Sometimes,
however, you may want to make an exact copy of the formula. You can do this by
converting the cell references to absolute values, as discussed earlier — but this isn’t
always desirable.

A better approach is to select the formula while in edit mode and then copy it to
the Clipboard as text. There are several ways to do this. Here I present a step-by-
step example of how to make an exact copy of the formula in A1 and copy it to A2:

Chapter 2: Basic Facts about Formulas 45

Using Links to Recover Data in a Corrupt File
At some point, you may find one of your Excel workbooks damaged or corrupt. If you
cannot load a corrupt workbook, you can write a link formula to recover all or part of
the data (but not the formulas). You can do this because you do not need to have the
source file in a link formula open. If your corrupt file is named Badfile.xls, for example,
open a blank workbook and enter the following formula into cell A1 to attempt to
recover the data from Sheet1:

=[Badfile.xls]Sheet1!A1

Copy this formula down and to the right to recover as much information as you can.
As a better approach, however, you can maintain a backup of your important files.

If you use Excel 2002, corrupt workbooks are less of a problem because this version
can often repair such files.

4800-x Ch02.F 8/27/01 11:54 AM Page 45

1. Double-click cell A1 to activate edit mode (or, press F2).

2. Press End, followed by Shift+Home to select all of the formula text. Or,
you can drag the mouse to select the entire formula.

3. Click the Copy button on the Standard toolbar (or, press Ctrl+C). This
copies the selected text to the Clipboard.

4. Press Enter to end edit mode.

5. Activate cell A2.

6. Click the Paste button on the Standard toolbar (or, press Ctrl+V). This
operation pastes an exact copy of the formula text into cell A2.

You also can use this technique to copy just part of a formula to use in another
formula. Just select the part of the formula that you want to copy by dragging the
mouse or by using the Shift+arrow keys. Then use any of the available techniques
to copy the selection to the Clipboard. You can then paste the text to another cell.

Formulas (or parts of formulas) copied in this manner won’t have their cell ref-
erences adjusted when you paste them to a new cell. This is because you copy the
formulas as text, not as actual formulas.

Another technique for making an exact copy of a formula is to edit the formula
and remove its initial equal sign. This converts the formula to text. Then, copy the
“non-formula” to a new location. Finally, edit both the original and the copied for-
mula by inserting the initial equal sign.

Converting Formulas to Values
If you have a range of formulas that always produce the same result (i.e., dead for-
mulas), you may want to convert them to values. You can use the Edit � Paste
Special command to do this.

Suppose that range A1:A10 contains formulas that calculate a result and that
never changes. To convert these formulas to values:

1. Select A1:A10.

2. Click the Copy button on the Standard toolbar (or, press Ctrl+C).

3. Select the Edit � Paste Special command. Excel displays its Paste Special
dialog box.

4. Select the Values option button and then click OK.

5. Press Enter or Esc to cancel paste mode.

46 Part I: Basic Information

4800-x Ch02.F 8/27/01 11:54 AM Page 46

If you’re using Excel 2002, you can take advantage of a Smart Tag. In Step 3 in

the preceding list, select Edit � Paste (or press Ctrl+V). A Smart Tag will

appear at the lower right corner of the range. Click the Smart Tag and

choose Values Only (see Figure 2-5).

Figure 2-5: in Excel 2002, a Smart Tag appears
after pasting data.

This technique is very useful when you use formulas as a means to convert cells.
For example, assume you have a list of names (in uppercase) in column A. You
want to convert these names to proper case. In order to do so, you need to create
formulas in a separate column; then convert the formulas to values and replace the
original values in column A. The following steps illustrate how to do this.

1. Insert a new column after column A.

2. Insert the following formula into cell B1:

=PROPER(A1)

3. Copy the formula down column B, to accommodate the number of entries
in column A. Column B then displays the values in column A, but in
proper case.

4. Select all the names in column B.

5. Click the Copy button on the Standard toolbar.

6. Select cell A1.

Chapter 2: Basic Facts about Formulas 47

4800-x Ch02.F 8/27/01 11:54 AM Page 47

7. Select the Edit � Paste Special command. Excel displays its Paste Special
dialog box.

8. Select the Values option button and then click OK.

9. Press Enter or Esc to cancel paste mode.

10. Delete column B.

Hiding Formulas
In some cases, you may not want others to see your formulas. For example, you
may have a special formula you developed that performs a calculation proprietary
to your company. You can use the Format Cells dialog box to hide the formulas
contained in these cells.

48 Part I: Basic Information

When to Use AutoFill Rather Than Formulas
Excel’s AutoFill feature provides a quick way to copy a cell to adjacent cells. AutoFill
also has some other uses that may even substitute for formulas in some cases. I’m
surprised to find that many experienced Excel users don’t take advantage of the
AutoFill feature, which can save a lot of time.

For example, if you need a list of values from 1 to 100 to appear in A1:A100, you can
do it with formulas. You enter 1 in cell A1, the formula =A1+1 into cell A2 and then
copy the formula to the 98 cells below.

You also can use AutoFill to create the series for you without using a formula. To do
so, enter 1 into cell A1 and 2 into cell A2. Select A1:A2 and drag the fill handle down
to cell A100. (The fill handle is the small square at the lower right corner of the active
cell.) When you use AutoFill in this manner, Excel analyzes the selected cells and uses
this information to complete the series. If cell A1 contains 1 and cell A2 contains 3,
Excel recognizes this pattern and fills in 5, 7, 9, and so on. This also works with
decreasing series (10, 9, 8, and so on) and dates. If there is no discernible pattern in
the selected cells, Excel performs a linear regression and fills in values on the
calculated trend line.

Excel also recognizes common series names such as months and days of the week. If
you enter Monday into a cell and then drag its fill handle, Excel fills in the successive
days of the week. You also can create custom AutoFill lists using the Custom Lists
panel of the Options dialog box. Finally, if you drag the fill handle with the right
mouse button, Excel displays a shortcut menu to enable you to select an AutoFill
option.

4800-x Ch02.F 8/27/01 11:54 AM Page 48

To prevent one or more formulas from being viewed:

1. Select the formula or formulas.

2. Choose Format � Cells. In the Format Cells dialog box, click the Protection
tab.

3. Place a check mark next to the Hidden check box, as shown in Figure 2-6.

4. Use the Tools � Protection � Protect Sheet command to protect the work-
sheet. To prevent others from unprotecting the sheet, make sure you spec-
ify a password in the Protect Sheet dialog box.

By default, all cells are “locked.” Protecting a sheet prevents any locked cells
from being changed. Therefore, you should unlock any cells that require user input
before protecting your sheet.

Be aware that several password-cracking utilities are available. Therefore,

this technique of hiding your formulas does not ensure that no one can view

your formulas.

Figure 2-6: Use the Format Cells dialog box
to change the Hidden status of a cell.

Errors in Formulas
It’s not uncommon to enter a formula only to find that the formula returns an error.
Table 2-2 lists the types of error values that may appear in a cell that has a formula.

Chapter 2: Basic Facts about Formulas 49

4800-x Ch02.F 8/27/01 11:54 AM Page 49

Formulas may return an error value if a cell that they refer to has an error value.
This is known as the ripple effect: A single error value can make its way to lots of
other cells that contain formulas that depend on that cell.

TABLE 2-2 EXCEL ERROR VALUES

Error Value Explanation

#DIV/0! The formula attempts to divide by zero (an operation not allowed on this
planet). This also occurs when the formula attempts to divide by an empty
cell.

#NAME? The formula uses a name that Excel doesn’t recognize. This can happen if
you delete a name used in the formula or if you misspell a function.

#N/A The formula refers (directly or indirectly) to a cell that uses the NA function
to signal unavailable data. This error also occurs if a lookup function does
not find a match.

#NULL! The formula uses an intersection of two ranges that don’t intersect.
(I describe this concept later in the chapter.)

#NUM! A problem occurs with a value; for example, you specify a negative number
where a positive number is expected.

#REF! The formula refers to an invalid cell. This happens if the cell has been
deleted from the worksheet.

#VALUE! The formula includes an argument or operand of the wrong type. An
operand refers to a value or cell reference that a formula uses to calculate a
result.

If the entire cell fills with hash marks (#########), this usually means that the

column isn’t wide enough to display the value.You can either widen the col-

umn or change the number format of the cell.The cell will also fill with hash

marks if it contains a formula that returns an invalid date or time.

In Excel 2002, formulas that return an error display a Smart Icon.You can click

this Smart Icon to get more information about the error or to trace the cal-

culation steps that led to the error. Refer to Chapter 21 for more information

about this feature.

50 Part I: Basic Information

4800-x Ch02.F 8/27/01 11:54 AM Page 50

Dealing with Circular References
When you enter formulas, you may occasionally see a message from Excel like the
one shown in Figure 2-7. This indicates that the formula you just entered will result
in a circular reference.

A circular reference occurs when a formula refers to its own value, either
directly or indirectly. For example, if you enter =A1+A2+A3 into cell A3, this pro-
duces a circular reference because the formula in cell A3 refers to cell A3. Every
time the formula in A3 is calculated, it must be calculated again because A3 has
changed. The calculation would go on forever. In other words, the answer never
gets resolved.

Figure 2-7: Excel’s way of telling you that your formula
contains a circular reference

When you enter a formula that contains a circular reference, Excel displays a
dialog box with three options:

� Click OK to attempt to locate the circular reference.

� Click Cancel to enter the formula as is.

� Click Help to read more about circular references in the online help.

Normally, you’ll want to correct any circular references, so you should choose
OK. When you do so, Excel displays its Circular Reference toolbar (see Figure 2-8).
On the Circular Reference toolbar, click the first cell in the Navigate Circular
Reference drop-down list box, and then examine the cell’s formula. If you cannot
determine whether the cell is the cause of the circular reference, click the next cell
in the Navigate Circular Reference drop-down list box. Continue to review the for-
mulas until the status bar no longer displays Circular.

Chapter 2: Basic Facts about Formulas 51

4800-x Ch02.F 8/27/01 11:54 AM Page 51

Figure 2-8: The Circular Reference toolbar

There are a few situations in which you may want to use a circular reference

intentionally. Refer to Chapter 16 for some examples.

If you ignore the circular reference message (by clicking Cancel), Excel enables
you to enter the formula and displays a message in the status bar reminding you
that a circular reference exists. In this case, the message reads Circular: A3. If you
activate a different worksheet or workbook, the message simply displays Circular
(without the cell reference).

Excel doesn’t warn you about a circular reference if you have the Iteration

setting turned on. You can check this in the Options dialog box (in the

Calculation panel). If Iteration is on, Excel performs the circular calculation

the number of times specified in the Maximum iterations field (or until the

value changes by less than .001 — or whatever other value appears in the

Maximum change field). You should, however, keep the Iteration setting off

so that you’ll be warned of circular references. Generally, a circular reference

indicates an error that you must correct.

Usually, the cause of a circular reference is quite obvious and is, therefore, easy
to identify and correct. Sometimes, however, you will encounter indirect circular
references. In other words, a formula may refer to a formula that refers to a formula
that refers back to the original formula. In some cases, it may require you to do a
bit of detective work to reach the problem.

52 Part I: Basic Information

4800-x Ch02.F 8/27/01 11:54 AM Page 52

Goal Seeking
Many spreadsheets contain formulas that enable you to ask questions, such as,
“What would be the total profit if sales increase by 20 percent?” If you set up your
worksheet properly, you can change the value in one cell to see what happens to
the profit cell.

Goal seeking serves as a useful feature that works in conjunction with your for-
mulas. If you know what a formula result should be, Excel can tell you which val-
ues of one or more input cells you need to produce that result. In other words, you
can ask a question such as, “What sales increase is needed to produce a profit of
$1.2 million?”

Single-cell goal seeking (also known as backsolving) represents a rather simple
concept. Excel determines what value in an input cell produces a desired result in a
formula cell. You can best understand how this works by walking through an
example.

A Goal-Seeking Example
Figure 2-9 shows a mortgage loan worksheet that has four input cells (C4:C7) and
four formula cells (C10:C13). The formulas calculate various values using the input
cell. The formulas are:

C10: =(1-C5)*C4

C11: =PMT(C7/12,C6,-C10)

C12: =C11*C6

C13: =C12-C10

Figure 2-9: This worksheet presents a good
demonstration of goal seeking.

Chapter 2: Basic Facts about Formulas 53

4800-x Ch02.F 8/27/01 11:54 AM Page 53

Imagine that you’re in the market for a new home and you know that you can
afford $1,200 per month in mortgage payments. You also know that a lender can
issue a fixed-rate mortgage loan for 8.00 percent, based on an 80 percent loan-to-
value (a 20 percent down payment). The question is, “What is the maximum pur-
chase price you can handle?” In other words, what value in cell C4 causes the
formula in cell C11 to result in $1,200? You can plug values into cell C4 until C11
displays $1,200. A more efficient approach lets Excel determine the answer.

To answer this question, select Tools � Goal Seek. Excel responds with the Goal
Seek dialog box shown in Figure 2-10. Completing this dialog box resembles form-
ing a sentence. Set cell C11 to 1200 by changing cell C4. Enter this information in
the dialog box by either typing the cell references or by pointing with the mouse.
Click OK to begin the goal-seeking process.

Figure 2-10: The Goal Seek dialog box

Almost immediately, Excel announces that it has found the solution and displays
the Goal Seek Status box. This box tells you the target value and what Excel came
up with. In this case, Excel found an exact value. The worksheet now displays the
found value in cell C4 ($204,425). As a result of this value, the monthly payment
amount is $1,200. Now, you have two options:

� Click OK to replace the original value with the found value.

� Click Cancel to restore your worksheet to its original form before you
chose Tools � Goal Seek.

More about Goal Seeking
If you think about it, you may realize that Excel can’t always find a value that pro-
duces the result you’re looking for — sometimes a solution doesn’t exist. In such a
case, the Goal Seek Status box informs you of that fact (see Figure 2-11). Other

54 Part I: Basic Information

4800-x Ch02.F 8/27/01 11:54 AM Page 54

times, however, Excel may report that it can’t find a solution, even though you
believe one exists. In this case, you can adjust the current value of the changing
cell to a value closer to the solution, and then reissue the command. If that fails,
double-check your logic, and make sure that the formula cell does indeed depend
on the specified changing cell.

Figure 2-11: The Goal Seek Status box
tells you if Excel can’t find a solution
to your goal-seeking problem.

Like all computer programs, Excel has limited precision. To demonstrate this,
enter =A1^2 into cell A2. Then, select Tools � Goal Seek to find the value in cell A1
that causes the formula to return 16. Excel returns a value of 4.00002269 — close to
the square root of 16, but certainly not exact. You can adjust the precision in the
Calculation panel of the Options dialog box (make the Maximum change value
smaller).

In some cases, multiple values of the input cell produce the same desired result.
For example, the formula =A1^2 returns 16 if cell A1 contains either –4 or +4. If
you use goal seeking when two solutions exist, Excel gives you the solution that
has the same sign as the current value in the cell, or the solution that is nearest to
the current value in the cell.

Perhaps the main limitation of the Tools � Goal Seek command is that it can
find the value for only one input cell. For example, it can’t tell you what purchase
price and what down payment percent result in a particular monthly payment. If
you want to change more than one variable at a time, use Solver.

Summary
This chapter provided an introduction to Excel formulas and covered the various
elements that comprise a formula. The chapter also discussed related topics such as
relative and absolute references, converting formulas to values, formula errors, and
circular references.

The next chapter covers how to work with names in Excel.

Chapter 2: Basic Facts about Formulas 55

4800-x Ch02.F 8/27/01 11:54 AM Page 55

4800-x Ch02.F 8/27/01 11:54 AM Page 56

Chapter 3

Working with Names
IN THIS CHAPTER

� An overview and the advantages of using names in Excel

� Various ways to create cell and range names

� How to create names that extend across multiple worksheets

� The difference between workbook- and worksheet-level names

� How to perform common operations with range and cell names

� How Excel maintains cell and range names

� Potential problems that may crop up when you use names

� The secret behind names and examples of named constants and named
formulas

� Examples of advanced techniques that use names

MOST INTERMEDIATE AND ADVANCED Excel users are familiar with the concept of
named cells or ranges. Naming cells and ranges is an excellent practice and offers
several important advantages. As you’ll see in this chapter, Excel supports other
types of names — and the power of this concept may surprise you.

What’s in a Name?
You can think of a name as an identifier for something in a workbook. This “some-
thing” can consist of a cell, a range, a chart, a shape, and so on. If you provide a
name for a range, you can then use that name in your formulas. For example, sup-
pose your worksheet contains daily sales information stored in the range B2:B200.
Further, assume that cell C1 contains a sales commission rate. The following for-
mula returns the sum of the sales, multiplied by the commission rate:

=SUM(B2:B200)*C1

This formula works fine, but its purpose is not at all clear. To help clarify the for-
mula, you can define one descriptive name for the daily sales range and another
descriptive name for cell C1. For example, assume that the range B2:B200 is named 57

4800-x Ch03.F 8/27/01 11:54 AM Page 57

DailySales and cell C1 is named CommissionRate. You can then rewrite the formula
to use the names instead of the actual range addresses:

=SUM(DailySales)*CommissionRate

As you can see, using names instead of cell references makes the formula “self-
documenting,” and much easier to understand.

Using named cells and ranges offers a number of advantages:

� Names make your formulas more understandable and easier to use, espe-
cially for people who didn’t create the worksheet. Obviously, a formula
such as =Income–Taxes is more intuitive than =D20–D40.

� When entering formulas, a descriptive range name (such as Total_Income)
is easier to remember than a cell address (such as AC21). And typing a
name is less error-prone than entering a cell or range address.

� You can quickly move to areas of your worksheet either by using the
Name box, located at the left side of the formula bar (click the arrow for a
drop-down list of defined names) or by choosing Edit � Go To (or F5) and
specifying the range name.

� When you select a named cell or range, its name appears in the Name
box.

� You may find that creating formulas is easier if you use named cells. You
can paste a cell or range name into a formula by using the Insert �
Name � Paste command (or F3).

� Macros are easier to create and maintain when you use range names
rather than cell addresses.

Methods for Creating Cell
and Range Names
Excel provides several ways to create names for cells and ranges. I discuss these
methods in this section, along with other relevant information that pertains to
names.

Creating Names Using the
Define Name Dialog Box
To create a name for a cell or range, start by selecting the cell or range that you
want to name. Then select Insert � Name � Define (or press Ctrl+F3). Excel displays
the Define Name dialog box, shown in Figure 3-1.

58 Part I: Basic Information

4800-x Ch03.F 8/27/01 11:54 AM Page 58

Figure 3-1: Use the Define Name dialog box to create
names for cells or ranges.

Type a name in the field labeled Names in the workbook (or use the name that
Excel proposes, if any). The selected cell or range address appears in the Refers to
field. Verify that the address listed is correct and then click OK to add the name to
your worksheet and close the dialog box. Or, click the Add button to continue
adding names to your worksheet. If you do this, you must specify the Refers to
range either by typing an address (make sure to begin with an equal sign) or by
pointing to it in the worksheet.

A single cell or range can have any number of names. I can’t think of a good

reason to use more than one name, but Excel does permit it. If a cell or range

has multiple names, the Name box always displays the first name when you

select the cell or range.

A name can also refer to a noncontiguous range of cells. You can select a non-
contiguous range by pressing the Ctrl key while you select various cells or ranges
with the mouse.

If you try to edit the contents of the Refers to field manually, you’ll find that

this field is in “point” mode.You can’t use keys such as End and Home to edit

the field’s contents. To switch from point mode to normal edit mode, press

F2. Then you can use the standard editing keys when the Refers to field is

activated.

Creating Names Using the Name Box
A faster way to create a name involves accessing the Name box. The Name box is
the drop-down box to the left of the formula bar. Select the cell or range to name,
and then click the Name box and type the name. Press Enter to create the name. If

Chapter 3: Working with Names 59

4800-x Ch03.F 8/27/01 11:54 AM Page 59

a name already exists, you can’t use the Name box to change the range to which
that name refers. Attempting to do so simply selects the original range. You must
use the Define Name dialog box to change the reference for a name.

When you type a name in the Name box, you must press Enter to actually

record the name. If you type a name and then click in the worksheet, Excel

won’t create the name.

The Name box serves double-duty by also providing a quick way to activate a
named cell or range, as shown in Figure 3-2. To select a named cell or range, click
the Name box and choose the name. This selects the named cell or range. Oddly, the

60 Part I: Basic Information

Rules for Naming Names
Although Excel is quite flexible about the names that you can define, it does have
some rules:

� Names can’t contain any spaces. You might want to use an underscore or a
period character to simulate a space (such as Annual_Total or Annual.Total).

� You can use any combination of letters and numbers, but the name must
begin with a letter or underscore. A name can’t begin with a number (such as
3rdQuarter) or look like a cell reference (such as Q3).

� You cannot use symbols, except for underscores and periods. Although not
documented, I’ve found that Excel also permits a backslash (\) and question
mark (?) as long as they don’t appear as the first character in a name.

� Names are limited to 255 characters. Trust me — you should not use a name
anywhere near this length. In fact, doing so defeats the purpose of naming
ranges.

� You can use single letters (except for R or C), but generally I do not recom-
mend this because it also defeats the purpose of using meaningful names.

� Names are not case sensitive. The name AnnualTotal is the same as annual-
total. Excel stores the name exactly as you type it when you define it, but it
doesn’t matter how you capitalize the name when you use it in a formula.

Excel also uses a few names internally for its own use. Although you can create names
that override Excel’s internal names, you should avoid doing so unless you know what
you’re doing. Generally, avoid using the following names:: Print_Area, Print_Titles,
Consolidate_Area, Database, Criteria, Extract, FilterDatabase, and Sheet_Title.

4800-x Ch03.F 8/27/01 11:54 AM Page 60

Name box does not have a keyboard shortcut. In other words, you can’t access the
Name box by using the keyboard; you must use a mouse. After you click the Name
box, however, you can use the direction keys and Enter to choose a name.

Figure 3-2: The Name box provides a quick way to activate
a named cell or range.

Creating Names Automatically
You may have a worksheet containing text that you want to use for names of adja-
cent cells or ranges. Figure 3-3 shows an example of such a worksheet. In this case,
you might want to use the text in column A to create names for the corresponding
values in column B. Excel makes this very easy to do.

Figure 3-3: Excel makes it easy to create names by using
text in adjacent cells.

To create names by using adjacent text, start by selecting the name text and the
cells that you want to name (these can consist of individual cells or ranges of cells).
The names must be adjacent to the cells that you’re naming (a multiple selection is
allowed). Then choose Insert � Name � Create (or Ctrl+Shift+F3). Excel displays the
Create Names dialog box, shown in Figure 3-4.

Chapter 3: Working with Names 61

4800-x Ch03.F 8/27/01 11:54 AM Page 61

The check marks in this dialog box are based on Excel’s analysis of the selected
range. For example, if Excel finds text in the first row of the selection, it proposes
that you create names based on the top row. If Excel doesn’t guess correctly, you
can change the check boxes. Click OK and Excel creates the names. Note that when
Excel creates names using text in cells, it does not include those text cells in the
named range.

Figure 3-4: The Create Names dialog box

If the text in a cell would result in an invalid name, Excel modifies the name to
make it valid. For example, if a cell contains the text Net Income (invalid for a
name because it contains a space), Excel converts the space to an underscore char-
acter and creates the name Net_Income. If Excel encounters a value or a formula
instead of text, however, it doesn’t convert it to a valid name. It simply doesn’t cre-
ate a name.

Double-check the names that Excel creates. Sometimes, the Insert �

Name � Create command works counter-intuitively. Figure 3-5 shows a

small table of text and values. If you select the entire table, choose Insert �

Name � Create, and accept Excel’s suggestions (Top row and Left column

options). You’ll find that the name Products doesn’t refer to A2:A6, as you

may expect, but instead refers to B2:C6. If the upper-left cell of the selection

contains text and you choose the Top row and Left column options, Excel

uses that text for the name of the entire set of data — excluding the top row

and left column. So, before you accept the names that Excel creates, take a

minute to make sure that they refer to the correct ranges.

62 Part I: Basic Information

4800-x Ch03.F 8/27/01 11:54 AM Page 62

Figure 3-5: Creating names from the data in this table may
produce unexpected results.

Naming Entire Rows and Columns
Sometimes it makes sense to name an entire row or column. Often, a worksheet is
used to store information that you enter over a period of time. The sheet in Figure
3-6 is an example of such a worksheet. If you create a name for the data in column
B, you need to modify the name’s reference each day you add new data. The solu-
tion is to name the entire column.

Figure 3-6: This worksheet, which tracks daily sales, uses
a named range that consists of an entire column.

For example, you might name column B DailySales. If this range were on
Sheet3, its reference would appear like this:

=Sheet3!$B:$B

After defining the name, you can use it in a formula. The following formula, for
example, returns the sum of all values in column B:

=SUM(DailySales)

Chapter 3: Working with Names 63

4800-x Ch03.F 8/27/01 11:54 AM Page 63

Names Created by Excel
Excel creates some names on its own. For example, if you set a print area for a
sheet, Excel creates the name Print_Area. If you set repeating rows or columns for
printing, you also have a worksheet-level name called Print_Titles. When you exe-
cute a query that returns data to a worksheet, Excel assigns a name to the data that
is returned. Also, many of the add-ins that ship with Excel create hidden names (see
the “Hidden Names” sidebar).

You can modify the reference for any of the names that Excel creates automati-
cally, but make sure that you understand the consequences.

64 Part I: Basic Information

Hidden Names
Some Excel macros and add-ins create hidden names. These names exist in a
workbook, but don’t appear in the Define Name dialog box or the Name box. For
example, the Solver add-in creates a number of hidden names. Normally, you can just
ignore these hidden names. However, sometimes these hidden names create problems.
If you copy a sheet to another workbook, the hidden names are also copied, and they
may create a link that is very difficult to track down.

Excel doesn’t make it very easy to work with names. For example, you have no way of
viewing a complete list of names defined in a workbook. When you use the Define
Name dialog box, it lists only the worksheet-level names in the active worksheet. And
it never displays hidden names.

If you’d like a better tool to help you work with names, you can use the Name Lister
utility, which is part of the Power Utility Pak. This utility displays a list of all names,
and you can filter the list in a number of ways — for example, you can show only
sheet-level names, or show only linked names. The utility is also useful for identifying
and deleting “bad” names — names that refer to an invalid range. I included a trial
version of the Power Utility Pak on the companion CD-ROM.

4800-x Ch03.F 8/27/01 11:54 AM Page 64

Creating Multisheet Names
Names can extend into the third dimension; in other words, they can extend across
multiple worksheets in a workbook. You can’t simply select the multisheet range
and enter a name in the Name box, however. You must use the Define Name dialog
box to create a multisheet name. The format for a multisheet reference looks like
this:

FirstSheet:LastSheet!RangeReference

In Figure 3-7, a multisheet name (DataCube), defined for A1:C3, extends across
Sheet1, Sheet2, and Sheet3.

Figure 3-7: Creating a multisheet name

You can, of course, simply type the multisheet range reference into the Refers to
field. But if you want to create the name by pointing to the range, you’ll find it a
bit tricky. Even if you begin by selecting a multisheet range, Excel does not use this
selected range address in the Define Name dialog box.

Follow this step-by-step procedure to create a name called DataCube that refers
to the range A1:C3 across three worksheets (Sheet1, Sheet2, and Sheet3):

1. Activate Sheet1.

2. Choose Insert � Name � Define (or press Ctrl+F3) to display the Define
Name dialog box.

3. Type DataCube in the Names in workbook field.

4. Activate the Refers to field, and press Del to delete the range reference.

Chapter 3: Working with Names 65

4800-x Ch03.F 8/27/01 11:54 AM Page 65

5. Select the range A1:C3 in Sheet1. The following appears in the Refers to
field:

=Sheet1!A1:C3

6. Press Shift and then click the Sheet tab for Sheet3. You’ll find that Excel
inexplicably changes the range reference to a single cell. At this point, the
following appears in the Refers to field:

=’Sheet1:Sheet3’!A1

7. Reselect the range A1:C3 in Sheet1. The following appears in the Refers to
field:

=’Sheet1:Sheet3’!A1:C3

8. Since the Refers to field now has the correct multisheet range address,
click OK to close the Define Name dialog box.

After you define the name, you can use it in your formulas. For example, the fol-
lowing formula returns the sum of the values in the range named DataCube.

=SUM(DataCube)

Multisheet names do not appear in the Name box or in the Go To dialog box

(which appears when you select Edit � Go To). In other words, Excel enables

you to define the name, but it doesn’t give you a way to automatically select

the cells to which the name refers.

If you insert a new worksheet into a workbook that uses multisheet names, the
multisheet names will include the new worksheet — as long as the sheet resides
between the first and last sheet in the name’s definition. In the preceding example,
a worksheet inserted between Sheet1 and Sheet2 will be included in the DataCube
range. But a worksheet inserted before Sheet1 or after Sheet 3 will not be included.

If you delete the first or last sheet included in a multisheet name, Excel changes
the name’s range in the Refers to field automatically. In the preceding example,
deleting Sheet1 causes the Refers to range of DataCube to change to:

=’Sheet2:Sheet3’!A1:C3

A Name’s Scope
Normally, when you name a cell or range, you can use that name in all worksheets
in the workbook. For example, if you create a name called RegionTotal that refers

66 Part I: Basic Information

4800-x Ch03.F 8/27/01 11:54 AM Page 66

to the cell A1 on Sheet1, you can use this name in any formula in any worksheet.
This is referred to as a workbook-level name (or a global name). By default, all cell
and range names are workbook-level names.

Creating Worksheet-Level Names
What if you have several worksheets in a workbook and you want to use the same
name (such as RegionTotal) on each sheet? In this case, you need to create worksheet-
level names (sometimes referred to as local names).

To define a worksheet-level name RegionTotal, activate the worksheet in which
you want to define the name and choose Insert � Name � Define. The Define Name
dialog box then appears. In the Names in workbook field, precede the worksheet-
level name with the worksheet name, followed by an exclamation point. For exam-
ple, to define the name RegionTotal on Sheet2, activate Sheet2 and enter the
following in the Names in workbook field of the Define Name dialog box:

Sheet2!RegionTotal

If the worksheet name contains at least one space, enclose the worksheet name
in single quotation marks, like this:

‘Marketing Dept’!RegionTotal

You can also create a worksheet-level name by using the Name box. Select the
cell or range you want named, click in the Name box, and type the name. Make
sure you precede the name with the sheet’s name and an exclamation point (as
shown above). Press Enter to create the name.

When you write a formula that uses a worksheet-level name on the sheet in
which you defined it, you don’t need to include the worksheet name in the range
name (the Name box won’t display the worksheet name either). If you use the name
in a formula on a different worksheet, however, you must use the entire name (sheet
name, exclamation point, and name).

Only the worksheet-level names on the current sheet appear in the Name

box. Similarly, only worksheet-level names in the current sheet appear in the

list when you open the Paste Name or Define Name dialog boxes.

Combining Worksheet- and
Workbook-Level Names
Using worksheet-level names can be a bit confusing because Excel lets you define
worksheet-level names even if the workbook contains the same name as a workbook-
level name. In such a case, the worksheet-level name takes precedence over the

Chapter 3: Working with Names 67

4800-x Ch03.F 8/27/01 11:54 AM Page 67

workbook-level name, but only in the worksheet in which you defined the sheet-
level name.

For example, you can define a workbook-level name of Total for a cell on
Sheet1. You can also define a worksheet-level name of Sheet2!Total. When Sheet2
is active, Total refers to the worksheet-level name. When any other sheet is active,
Total refers to the workbook-level name. Confusing? Probably. To make your life
easier, I recommend that you simply avoid using the same name at the workbook
level and worksheet level.

Referencing Names from Another Workbook
Chapter 2 described how to use links to reference cells or ranges in other work-
books. The same rules apply when using names defined in another workbook.

For example, the following formula uses a range named MonthlySales, defined
in a workbook named Budget.xls (which is assumed to be open):

=AVERAGE(Budget.xls!MonthlySales)

Working with Range and Cell Names
Once you create range or cell names, you can work with them in a variety of ways.
This section describes how to perform common operations with range and cell
names.

Creating a List of Names
If you create a large number of names, you may need to know the ranges that each
name refers to, particularly if you’re trying to track down errors or document your
work.

You might want to create a list of all names (and their corresponding addresses)
in the workbook. To create a list of names, first move the cell pointer to an empty
area of your worksheet (the two-column name list, created at the active cell posi-
tion, overwrites any information at that location). Use the Insert � Name � Paste
command (or press F3). Excel displays the Paste Name dialog box (see Figure 3-8)
that lists all the defined names. To paste a list of names, click the Paste List button.

Figure 3-8: The Paste Name dialog box

68 Part I: Basic Information

4800-x Ch03.F 8/27/01 11:54 AM Page 68

The list of names does not include worksheet-level names that appear in

sheets other than the active sheet.

The list of names pasted to your worksheet occupies two columns. The first col-
umn contains the names, and the second column contains the corresponding range
addresses. The range addresses in the second column consist of text strings that
look like formulas. You can convert such a string to an actual formula by editing
the cell (press F2, then press Enter). The string then converts to a formula. If the
name refers to a single cell, the formula displays the cell’s current value. If the
name refers to a range, the formula returns a #VALUE! error.

Using Names in Formulas
After you define a name for a cell or range, you can use it in a formula. If the name
is a workbook-level name (the default type), you can use the name in any sheet in
the workbook. Just enter the name in place of the cell reference. For example, the
following formula calculates the sum of the values in the range named UnitsSold:

=SUM(UnitsSold)

When you write a formula that uses a worksheet-level name on the sheet in
which it’s defined, you don’t need to include the worksheet name in the range
name. If you use the name in a formula on a different worksheet, however, you
must use the entire name (sheet name, exclamation point, and name). For example,
if the name UnitsSold represents a worksheet-level name defined on Sheet1, the
following formula (on a sheet other than Sheet1) calculates the total of the
UnitsSold range:

=SUM(Sheet1!UnitsSold)

As you type a formula, you can select Insert � Name � Paste (or simply press F3)
to display the Paste Name dialog box. Select a name from the list, click OK, and
Excel inserts that name into your formula. As I previously mentioned, the Paste
Name dialog box lists all workbook-level names, plus worksheet-level names for
the active sheet only.

If you use a nonexistent name in a formula, Excel displays a #NAME? error,
indicating that it cannot find the name you are trying to use. Often, this means that
you misspelled the name.

Chapter 3: Working with Names 69

4800-x Ch03.F 8/27/01 11:54 AM Page 69

Using the Intersection Operators with Names
Excel’s range intersection operator is a single space character. The following for-
mula, for example, displays the sum of the cells at the intersection of two ranges:
B1:C20 and A8:D8:

=SUM(B1:C20 A8:D8)

The intersection of these two ranges consists of two cells: B8 and C8.
The intersection operator also works with named ranges. Figure 3-9 shows a

worksheet containing named ranges that correspond to the row and column labels.
For example, the name January refers to B2:E2 and the name North refers to
B2:B13. The following formula returns the contents of the cell at the intersection of
the January range and the North range:

=January North

Figure 3-9: This worksheet contains named ranges
that correspond to row and column labels.

Using a space character to separate two range references or names is known as
explicit intersection because you explicitly tell Excel to determine the intersection
of the ranges. Excel, however, can also perform implicit intersections. An implicit
intersection occurs when Excel chooses a value from a multicell range based on the
row or column of the formula that contains the reference. An example should clear
this up. Figure 3-10 shows a worksheet that contains a range (B3:B8) named
MyData. Cell D5 contains the simple formula shown here:

=MyData

70 Part I: Basic Information

4800-x Ch03.F 8/27/01 11:54 AM Page 70

Chapter 3: Working with Names 71

Natural Language Formulas? Just Say No!
Beginning with Excel 97, you can use worksheet labels in your formulas, even if you
haven’t officially defined the names. Microsoft calls this “natural language formulas.”
For example, the workbook, shown in the accompanying figure, contains no defined
names.

Excel, however, can interpret the row and column labels. For example, the following
formula returns the sum of the values in the row labeled January:

=SUM(January)

You can also make use of the column labels. The following formula, for instance,
returns the sum of the values for Region 1:

=SUM(Region 1)

You can even use multiple labels in a formula. This next formula returns 2787, the
value at the intersection of February and Region 2:

=February Region 2

Using natural language formulas may seem like an easy way to get the benefits of
names without going through the trouble of defining names. However, this feature
sometimes does not work as advertised. Formulas that use these “pseudonames”
sometimes do not get calculated when the data changes. Even worse, two identical
formulas may return different results! Another problem is that, unlike a real named
range, you really have no way of determining how Excel interprets a particular label.
Finally, Excel imposes a limit of 32,764 natural language formulas; try to use more
and Excel will probably crash.

I strongly recommend that you simply ignore this feature and use real names instead.
To disable natural language formulas, select Tools � Options. In the Options dialog box
that appears, click the Calculation tab, and uncheck the Accept labels in formulas

Continued

4800-x Ch03.F 8/27/01 11:54 AM Page 71

Figure 3-10: Range B3:B8 in this worksheet is named MyData.
Cell D5 demonstrates an implicit intersection.

Notice that cell D5 displays the value from MyData that corresponds to the for-
mula’s row. Similarly, if you enter the same formula into any other cell in rows 3
through 8, the formula displays the corresponding value from MyData. Excel per-
forms an implicit intersection using the MyData range and the row that contains
the formula. It’s as if the following formula is being evaluated:

=MyData 5:5

If you enter the formula in a row not occupied by MyData, the formula returns
an error because the implicit intersection returns nothing.

By the way, implicit intersections are not limited to named ranges. In the pre-
ceding example, you get the same result if cell D5 contains the following formula
(which doesn’t use a named range):

=B2:B8

Using the Range Operator with Names
You can also use the range operator, which is a colon (:), to work with named
ranges. Refer back to Figure 3-9. For example, this formula returns the sum of the
values for North through West for January through March (nine cells):

=SUM((North January):(West March))

72 Part I: Basic Information

Natural Language Formulas? Just Say No! (Continued)
option. This setting is stored with each workbook, so if you open a file that uses
natural languages formulas, you may want to turn it off for that file. When you turn
this feature off, Excel scans your formula and converts any labels to actual cell
references.

4800-x Ch03.F 8/27/01 11:54 AM Page 72

Referencing a Single Cell in
a Multicell Named Range
You can use Excel’s INDEX function to return a single value from a multicell range.
Assume that range A1:A50 is named DataRange. The following formula displays
the second value (the value in A2) in DataRange:

=INDEX(DataRange,2)

The second and third arguments for the INDEX function are optional, although
at least one of them must always be specified. The second argument (used in the
preceding formula) is used to specify the row offset within the DataRange range.

If DataRange consists of multiple cells in a single row, use a formula like the fol-
lowing one. This formula omits the second argument for the INDEX function, but
uses the third argument that specifies the column offset with the DataRange range:

=INDEX(DataRange,,2)

If the range consists of multiple rows and columns, use both the second and
third arguments for the INDEX function. For example, this formula returns the
value in the fourth row and fifth column of a range named DataRange:

=INDEX(DataRange,4,5)

Applying Names to Existing Formulas
When you create a name for a cell or range, Excel does not scan your formulas
automatically and replace the cell references with your new name. You can, how-
ever, tell Excel to “apply” names to a range of formulas.

Select the range that contains the formulas that you want to convert. Then
choose Insert � Name � Apply. The Apply Names dialog box will appear, as shown
in Figure 3-11. In the Apply Names dialog box, select which names you want
applied to the formulas. Only those names that you select will be applied to the
formulas.

Figure 3-11: The Apply Names dialog box

Chapter 3: Working with Names 73

4800-x Ch03.F 8/27/01 11:54 AM Page 73

To apply names to all the formulas in the worksheet, select a single cell

before you choose Insert � Name � Apply.

The Ignore Relative/Absolute check box controls how Excel substitutes the range
name for the actual address. A cell or range name is usually defined as an absolute
reference. If the Ignore Relative/Absolute check box is checked, Excel applies the
name only if the reference in the formula matches exactly. In most cases, you will
want to ignore the type of cell reference when applying names.

If the Use row and column names check box is checked, Excel takes advantage
of the intersection operator when applying names. Excel uses the names of row and
column ranges that refer to the cells if it cannot find the exact names for the cells.
Excel uses the intersection operator to join the names. Clicking the Options button
displays some additional options that are available only when you have the Use
row and column names check box checked.

Applying Names Automatically
when Creating a Formula
When you insert a cell or range reference into a formula by pointing, Excel auto-
matically substitutes the cell or range name if it has one.

This behavior occurs only in Excel 97 and later.

In some cases, this feature can be very useful. In other cases, it can be annoying;
you may prefer to use an actual cell or range reference instead of the name.
Unfortunately, you cannot turn off this feature. If you prefer to use a regular cell or
range address, you need to type the cell or range reference manually (don’t use the
pointing technique).

Unapplying Names
Excel does not provide a direct method for unapplying names. In other words, you
cannot replace a name in a formula with the name’s actual cell reference automat-
ically. However, you can take advantage of a trick described here. You need to
change Excel’s Transition formula entry option so it emulates 1-2-3. Select Tools �
Options, and click the Transition tab in the Options dialog box. Place a check mark
next to Transition formula entry, and click OK.

74 Part I: Basic Information

4800-x Ch03.F 8/27/01 11:54 AM Page 74

Next, press F2 to edit a formula that contains one or more cell or range names.
The formula displays the actual range references instead of the names (the formula
bar, however, continues to show the range names). Press Enter to end cell editing.
Next, go back to the Options dialog box and remove the check mark from the
Transition formula entry check box. You’ll find that the edited cell no longer uses
names.

The Power Utility Pak includes a utility that enables you to unapply names in

selected formulas. The companion CD-ROM contains a trial version of the

Power Utility Pak.

Deleting Names
If you no longer need a defined name, you can delete it. Deleting a range name
deletes the name only. It does not delete the contents of the range. Choose Insert �
Name � Define to display the Define Name dialog box. Choose the name that you
want to delete from the list and then click the Delete button.

Be extra careful when deleting names. If the name is used in a formula, delet-

ing the name causes the formula to become invalid (it will display #NAME?).

It would be very helpful if Excel simply replaced all references to the name

with the actual cell or range reference of the deleted name — but it doesn’t.

However, you can undo the act of deleting a name, so if you find that formu-

las return #NAME? after you delete a name, select Edit � Undo to get the

name back.

Deleting Named Cells or Ranges
If you delete the rows or columns that contain named cells or ranges, the names
will not be deleted (as you might expect). Rather, each name will contain an invalid
reference. For example, if cell A1 on Sheet1 is named Interest and you delete row 1
or column A, Interest then refers to =Sheet1!#REF! (i.e., an erroneous reference). If
you use Interest in a formula, the formula displays #REF.

In order to get rid of this erroneous name, you must delete the name manually
using the Insert � Name � Define command. Or, you can redefine the name so it
refers to a valid cell or range.

Chapter 3: Working with Names 75

4800-x Ch03.F 8/27/01 11:54 AM Page 75

Redefining Names
After you define a name, you may want to change the cell or range to which it
refers. Select Insert � Name � Define to display the Define Name dialog box. Select
the name that you want to change, and then edit the cell or range address in the
Refers to field. If you prefer, you can click the Refers to field and select a new cell
or range by pointing in the worksheet.

Changing Names
Excel doesn’t provide a simple way to change a name once you create one. If you
create a name and then realize that you prefer a different name — or, perhaps, that
you spelled it incorrectly — you must create the new name and then delete the old
name. In the Define Name dialog box, select the old name in the list of names,
change the text in the Names in workbook field to the new name, and click the Add
button. Then select the old name again and click the Delete button.

When you change a name, Excel does not automatically adjust formulas that use
the name. You can, however, use the Edit � Replace command to find and replace
occurrences of the old name with the new name.

Viewing Named Ranges
When you zoom a worksheet to 39 percent or lower, you see a border around the
named ranges with the name displayed in blue letters, as shown in Figure 3-12. The
border and name do not print; they simply help you visualize the named ranges on
your sheet.

Figure 3-12: Excel displays range names when you
zoom a sheet to 39 percent or less.

76 Part I: Basic Information

4800-x Ch03.F 8/27/01 11:54 AM Page 76

This feature is available only in Excel 97 or later.

Using Names in Charts
When you create a chart, each data series has an associated SERIES formula. The
SERIES formula contains references to the ranges used in the chart. If you have a
defined range name, you can edit a SERIES formula and replace the range reference
with the name.

Refer to Chapter 17 for additional information about charts.

How Excel Maintains Cell
and Range Names
Once you create a name for a cell or range, Excel automatically maintains the name
as you edit or modify the worksheet. The following examples assume that Sheet1
contains a workbook-level name (MyRange) that refers to =Sheet1!C3:E5 (a
nine-cell range).

Inserting a Row or Column
When you insert a row above the named range or insert a column to the left of the
named range, Excel changes the range reference to reflect its new address. For
example, if you insert a new row 1, MyRange then refers to =Sheet1!C4:E6.

If you insert a new row or column within the named range, the named range
expands to include the new row or column. For example, if you insert a new col-
umn to the left of column E, MyRange then refers to =Sheet1!C3:F5.

Deleting a Row or Column
When you delete a row above the named range or delete a column to the left of the
named range, Excel adjusts the range reference to reflect its new address. For
example, if you delete row 1, MyRange refers to =Sheet1!B3:D5.

If you delete a row or column within the named range, the name range adjusts
accordingly. For example, if you delete column D, MyRange then refers to
=Sheet1!C3:D5.

Chapter 3: Working with Names 77

4800-x Ch03.F 8/27/01 11:54 AM Page 77

If you delete all rows or all columns that make up a named range, the named
range continues to exist, but it contains an error reference. For example, if you
delete columns C, D, and E, MyRange then refers to =Sheet1!#REF!. Any formulas
that use the name also return errors.

Cutting and Pasting
When you cut and paste an entire named range, Excel changes the reference
accordingly. For example, if you move MyRange to a new location beginning at cell
A1, Excel MyRange then refers to =Sheet1!A1:C3. Cutting and pasting only a
part of a named range does not affect the name’s reference.

Potential Problems with Names
Names are great, but they can also cause some problems. This section contains
information that you should remember when you use names in a workbook.

Name Problems When Copying Sheets
Excel, as you know, lets you copy a worksheet within the same workbook, or to a
different workbook. Let’s focus first on copying a sheet within the same workbook.
If the copied sheet contains worksheet-level names, those names will also be pre-
sent on the copy of the sheet, adjusted to use the new sheet name. Usually, this is
exactly what you want to happen. But if the workbook contains a workbook-level
name that refers to a cell or range on the sheet that’s copied, that name will also be
present on the copied sheet. However, it will be converted to a worksheet-level
name! That is usually not what you want to happen.

Consider a workbook that contains one sheet (Sheet1). This workbook has a
workbook-level name (called BookName) for cell A1, and a worksheet-level name
(called Sheet1!LocalName) for cell A2. If you make a copy of Sheet1 within the
workbook, the new sheet is named Sheet1 (2). You’ll find that, after copying the
sheet, the workbook contains four names, listed and described in Table 3-1.

TABLE 3-1 NAMES IN A WORKBOOK AFTER COPYING A SHEET

Name Refers To Type

BookName =Sheet1!A1 Workbook-level

Sheet1!LocalName =Sheet1!A2 Worksheet-level

Sheet1 (2)’!BookName =’Sheet1 (2)’!A1 Worksheet-level

Sheet1 (2)’!LocalName =’Sheet1 (2)’!A2 Worksheet-level

78 Part I: Basic Information

4800-x Ch03.F 8/27/01 11:54 AM Page 78

Chapter 3: Working with Names 79

This proliferation of names when copying a sheet is not only confusing, but can
result in errors that can be very difficult to identify. In this case, typing the follow-
ing formula on the copied sheet displays the contents of cell A1 in the copied sheet:

=BookName

In other words, the newly created worksheet-level name (not the original
workbook-level name) is being used.

If you copy the worksheet from a workbook containing a name that refers to a
multisheet range, you also copy this name. A #REF! error appears in its Refers to
definition.

When you copy a sheet to a new workbook, all of the names in the original
workbook that refer to cells on the copied sheet are also copied to the new work-
book. This includes both workbook-level and worksheet-level names.

Copying and pasting cells from one sheet to another does not copy names,

even if the copied range contains named cells.

Bottom line? You must use caution when copying sheets from a workbook that
uses names. After copying the sheet, check the names and delete those that you
didn’t intend to be copied.

Name Problems when Deleting Sheets
When you delete a worksheet that contains cells used in a workbook-level name,
you’ll find that the name is not deleted. The name remains with the workbook, but
it contains an erroneous reference in its Refers to definition.

Figure 3-13 shows the Define Name dialog box that displays an erroneous name.
The workbook originally contained a sheet named Sheet1, which had a named
range (a workbook-level name, MyRange) for A1:F12. After deleting Sheet1, the
name MyRange still exists in the workbook, but the Refers to field in the Define
Name dialog box displays the following:

=#REF!A1:F12

As far as I can tell, keeping erroneous names in a workbook doesn’t cause any
harm, but it’s still a good practice to delete all names that contain an erroneous
reference.

4800-x Ch03.F 8/27/01 11:54 AM Page 79

Figure 3-13: Deleting the sheet that contains the cell for
MyRange causes an erroneous reference.

The Secret to Understanding Names
Excel users often refer to named ranges and named cells. In fact, I’ve used these
terms frequently throughout this chapter. Actually, this terminology is not quite
accurate.

Here’s the secret to understanding names:

When you create a name, you’re actually creating a named formula. Unlike a
normal formula, a named formula doesn’t exist in a cell. Rather, it exists in Excel’s
memory.

This is not exactly an earth-shaking revelation, but keeping this “secret” in mind
will help you understand the advanced naming techniques that follow.

When you work with the Define Name dialog box, the Refers to field contains
the formula, and the Names in workbook field contains the formula’s name. You’ll

Naming Charts and Objects
When you add a chart or any other type of object to a worksheet, the object has a
default name. For example, the first chart on a worksheet is named Chart 1. When you
add a shape (such as a Rectangle or TextBox), the name reflects the type of object (for
example, Rectangle 3).

To change the name of an object, select it, type the new name in the Name box, and
press Enter. Naming charts is an exception. To rename a chart, you must first select
the entire chart object (the container for the chart). To do so, press Ctrl while you click
the chart.

Excel is a bit inconsistent with regard to the Name box. Although you can use the
Name box to rename an object, the Name box does not display a list of objects. To
select an object using the Name box, you must type the exact name of the object.
Also, you’ll find that the Define Name dialog box does not list the names of objects.

80 Part I: Basic Information

4800-x Ch03.F 8/27/01 11:54 AM Page 80

find that the contents of the Refers to field always begin with an equal sign, which
makes it a formula.

As you can see in Figure 3-14, the workbook contains a name (InterestRate) for
cell B1 on Sheet1. The Refers to field lists the following formula:

=Sheet1!B1

Figure 3-14: Technically, the name InterestRate is a named
formula, not a named cell.

Whenever you use the name InterestRate, Excel actually evaluates the formula
with that name and returns the result. For example, you might type this formula
into a cell:

=InterestRate*1.05

When Excel evaluates this formula, it first evaluates the formula named
InterestRate (which exists only in memory, not in a cell). It then multiplies the
result of this named formula by 1.05 and displays the result. This cell formula, of
course, is equivalent to the following formula, which uses the actual cell reference
instead of the name:

=Sheet1!B1*1.05

At this point, you may be wondering if it’s possible to create a named formula
that doesn’t contain any cell references. The answer comes in the next section.

Naming Constants
Consider a worksheet that generates an invoice and calculates sales tax for a sales
amount. The common approach is to insert the sales tax rate value into a cell, and
then use this cell reference in your formulas. To make things easier, you probably
would name this cell something like SalesTax.

You can do this another way. Figure 3-15 demonstrates the following steps:

Chapter 3: Working with Names 81

4800-x Ch03.F 8/27/01 11:54 AM Page 81

1. Choose Insert � Name � Define (or press Ctrl+F3) to bring up the Define
Name dialog box.

2. Enter the name (in this case, SalesTax) into the Names in workbook field.

3. Click the Refers to box, delete its contents, and replace it with a simple
formula, such as =.075

4. Click OK to close the dialog box.

Figure 3-15: Defining a name that refers to a constant

The preceding steps create a named formula that doesn’t use any cell references.
To try it out, enter the following formula into any cell:

=SalesTax

This simple formula returns .075, the result of the formula named SalesTax. Since
this named formula always returns the same result, you can think of it as a named
constant. And you can use this constant in a more complex formula, such as:

=A1*SalesTax

SalesTax is a workbook-level name, so you can use it in any worksheet in the
workbook.

Naming Text Constants
In the preceding example, the constant consisted of a numeric value. A constant
can also consist of text. For example, you can define a constant for a company’s
name. You can use the Define Name dialog box to create the following formula
named MS:

=”Microsoft Corporation”

82 Part I: Basic Information

4800-x Ch03.F 8/27/01 11:54 AM Page 82

Then you can use a cell formula such as:

=”Annual Report: “&MS

This formula returns the text Annual Report: Microsoft Corporation.

Names that do not refer to ranges do not appear in the Name box or in the

Go To dialog box (which appears when you press F5). This makes sense,

because these constants don’t reside anywhere tangible. They do appear in

the Paste Names dialog box, however, which does make sense, because you’ll

use these names in formulas.

As you might expect, you can change the value of the constant at any time by
accessing the Define Name dialog box and simply changing the value in the Refers
to box. When you close the dialog box, Excel uses the new value to recalculate the
formulas that use this name.

Although this technique is useful in many situations, changing the value takes
some time. Having a constant located in a cell makes it much easier to modify. If
the value is truly a “constant,” however, you won’t need to change it.

Using Worksheet Functions in Named Formulas
Figure 3-16 shows another example of a named formula. In this case, the formula
is named ThisMonth, and the actual formula is:

=MONTH(TODAY())

Figure 3-16: Defining a named formula that uses
worksheet functions

The formula in Figure 3-16 uses two worksheet functions. The TODAY function
returns the current date and the MONTH function returns the month number of its
date argument. Therefore, you can enter a formula such as the following into a cell

Chapter 3: Working with Names 83

4800-x Ch03.F 8/27/01 11:54 AM Page 83

and it will return the number of the current month. For example, if the current
month is April, the formula returns 4.

=ThisMonth

A more useful named formula would return the actual month name, as text. To
do so, create a formula named MonthName, defined as:

=TEXT(TODAY(),”mmmm”)

Now enter the following formula into a cell and it returns the current month
name, as text. In the month of April, the formula returns the text April.

=MonthName

Using Cell and Range References
in Named Formulas
Figure 3-17 shows yet another example of creating a named formula, this time with
a cell reference. This formula, named FirstChar, returns the first character of the
contents of cell A1 on Sheet1. The named formula is:

=LEFT(Sheet1!A1,1)

Figure 3-17: Defining a named formula that uses a cell reference

After creating this named formula, you can enter the following formula into a
cell. The formula always returns the first character of cell A1 on Sheet1.

=FirstChar

The next example uses a range reference in a named formula. Figure 3-18 shows
the Define Name dialog box when defining the following named formula (named
Total).

=SUM(Sheet1!A1:D4)

84 Part I: Basic Information

4800-x Ch03.F 8/27/01 11:54 AM Page 84

Figure 3-18: Defining a named formula that uses a range reference

After creating this named formula, you can enter the following formula into any
cell on any sheet. The formula returns the sum of the values in A1:D4 on Sheet1.

=Total

Notice that the cell references in the two preceding named formulas are absolute
references. By default, all cell and range references in named formulas use an
absolute reference, with the worksheet qualifier. But, as you can see in the next sec-
tion, overriding this default behavior by using a relative cell reference can result in
some very interesting named formulas!

Using Named Formulas with Relative References
As I noted previously, when you use the Define Name dialog box to create a named
formula that refers to cells or ranges, the Refers to field always uses absolute cell
references and the references include the sheet name qualifier. In this section, I
describe how to use relative cell and range references in named formulas.

USING A RELATIVE CELL REFERENCE
Let’s begin with a simple example. Follow these steps to create a named formula
that uses a relative reference:

1. Start with an empty worksheet.

2. Select cell A1 (this step is very important).

3. Select Insert � Name � Define to bring up the Define Name dialog box.

4. Enter CellToRight in the Names in workbook field.

5. Delete the contents of the Refers to field, and type the following formula
(don’t point to the cell in the sheet):

=Sheet1!B1

6. Click OK to close the Define Name dialog box.

7. Type something (anything) into cell B1.

Chapter 3: Working with Names 85

4800-x Ch03.F 8/27/01 11:54 AM Page 85

8. Enter this formula into cell A1:

=CellToRight

You’ll find that the formula in A1 simply returns the contents of cell B1.

Next, copy the formula in cell A1 down a few rows. Then enter some values in col-
umn B. You’ll find that the formula in column A returns the contents of the cell to the
right. In other words, the named formula (CellToRight) acts in a relative manner.

You can use the CellToRight name in any cell (not just cells in column A). For
example, if you enter =CellToRight into cell D12, it returns the contents of cell E12.

To demonstrate that the formula named CellToRight truly uses a relative cell ref-
erence, activate any cell other than cell A1 and display the Define Name dialog box
(see Figure 3-19). Select the CellToRight item in the list box and examine the Refers
to field. You’ll see that the formula varies, depending on the active cell. For exam-
ple, if cell E5 is selected when the Define Name dialog box is displayed, the formula
for CellToRight appears as:

=Sheet1!F5

Figure 3-19: The CellToRight named formula varies,
depending on the active cell.

If you use the CellToRight name on a different worksheet, you’ll find that it con-
tinues to reference the cell to the right — but it’s the cell with the same address on
Sheet1. This happens because the named formula includes a sheet reference. To
modify the named formula so it works on any sheet, follow these steps:

1. Activate cell A1 on Sheet1.

2. Select Insert � Name � Define to bring up the Define Name dialog box.

3. In the Define Name dialog box, click the CellToRight item in the list box.

4. Delete the contents of the Refers to field, and type this formula:

=!B1

5. Click OK to close the Define Name dialog box.

86 Part I: Basic Information

4800-x Ch03.F 8/27/01 11:54 AM Page 86

After making this change, you’ll find that the CellToRight named formula works
correctly on any worksheet in the workbook.

The named formula does not work if you use it in a formula in column IV

because the formula attempts to reference a nonexistent cell (there is no

column to the right of column IV).

USING A RELATIVE RANGE REFERENCE
This example expands upon the previous example, and demonstrates how to create
a named formula that sums the values in 10 cells directly to the right of a particu-
lar cell. To create this named formula, follow these steps:

1. Activate cell A1.

2. Select Insert � Name � Define to bring up the Define Name dialog box.

3. Enter Sum10Cells in the Names in workbook field.

4. Enter this formula in the Refers to field:

=SUM(!B1:!K1)

After creating this named formula, you can insert the following formula into
any cell in any sheet, and it will display the sum of the 10 cells directly to the right:

=Sum10Cells

For example, if you enter this formula into cell D12, it returns the sum of the
values in the 10-cell range E12:N12.

Note that, because cell A1 was the active cell when you defined the named for-
mula, the relative references used in the formula definition are relative to cell A1.
Also note that the sheet name was not used in the formula. Omitting the sheet name
(but including the exclamation point) causes the named formula to work in any
sheet.

If you select cell D12 and then bring up the Define Name dialog box, you’ll see
that the Refers to field for the Sum10Cells name displays the following:

=SUM(!E12:!N12)

The Sum10Cells named formula does not work if you use it in a cell that

resides in a column beyond column IL. That’s because the formula becomes

invalid as it tries to reference a nonexistent cell beyond column IV.

Chapter 3: Working with Names 87

4800-x Ch03.F 8/27/01 11:54 AM Page 87

USING A MIXED RANGE REFERENCE
As I discussed in Chapter 2, a cell reference can be absolute, relative, or mixed. A
mixed cell reference consists of either of the following:

� An absolute column reference and a relative row reference (for example,
$A1)

� A relative column reference and an absolute row reference (for example,
A$1)

As you might expect, a named formula can use mixed cell references. To demon-
strate, activate cell B1. Use the Define Name dialog box to create a formula named
FirstInRow, using this formula definition:

=!$A1

This formula uses an absolute column reference and a relative row reference.
Therefore, it always returns a value in column A. The row depends on the row in
which you use the formula. For example, if you enter the following formula into
cell F12, it displays the contents of cell A12:

=FirstInRow

You cannot use the FirstInRow formula in column A because it generates a

circular reference — a formula that refers to itself.

Advanced Techniques
That Use Names
This section presents several examples of advanced techniques that use names. The
examples assume that you’re familiar with the naming techniques described earlier
in this chapter.

Using the INDIRECT Function with a Named Range
Excel’s INDIRECT function lets you specify a cell address indirectly. For example, if
cell A1 contains the text C45, this formula returns the contents of cell C45:

=INDIRECT(A1)

88 Part I: Basic Information

4800-x Ch03.F 8/27/01 11:54 AM Page 88

The INDIRECT function also works with named ranges. Figure 3-20 shows a
worksheet with 12 range names that correspond to the month names. For example,
January refers to the range B2:E2. Cell B16 contains the following formula:

=SUM(INDIRECT(A16))

This formula essentially returns the sum of the named range entered as text in
cell A16.

Figure 3-20: Using the INDIRECT function with a named range.

In Excel 97 or later, you can use the Data � Validation command to insert a

drop-down box in cell A16 (use the List option in the Data Validation dialog

box, and specify A2:A13 as the list source). This allows the user to select a

month name from a list; the total for the selected month then displays in B16.

You can also reference worksheet-level names with the INDIRECT function. For
example, suppose you have a number of worksheets named Region1, Region2, and
so on. Each sheet contains a worksheet-level name called TotalSales. This formula
retrieves the value from the appropriate sheet, using the sheet name typed in
cell A1:

=INDIRECT(A1&”!TotalSales”)

Using the INDIRECT Function to Create
a Named Range with a Fixed Address
It’s possible to create a name that always refers to a specific cell or range, even if
you insert new rows or columns. For example, suppose you want a range named

Chapter 3: Working with Names 89

4800-x Ch03.F 8/27/01 11:54 AM Page 89

UpperLeft to always refer to the range A1. If you create the name using standard
procedures, you’ll find that inserting a new row 1 causes the UpperLeft range to
change to A2. Or, inserting a new column causes the UpperLeft range to change to
B1. To create a named range that uses a fixed address that never changes, create a
named formula using the following Refers to definition:

=INDIRECT(“A1”)

After creating this named formula, UpperLeft will always refer to cell A1, even if
you insert new rows or columns. The INDIRECT function, in the preceding formula,
lets you specify a cell address indirectly by using a text argument. Because the
argument appears in quotation marks, it never changes.

Because this named formula uses a function, it does not appear in the Go

To dialog box or in the Name box.

Using Arrays in Named Formulas
An array is a collection of items. You can visualize an array as a single-column
vertical collection, a single-row horizontal collection, or a multirow and multi-
column collection.

Part IV of this book discusses arrays and array formulas, but this topic is also

relevant when discussing names.

You specify an array by using brackets. A comma or semicolon separates each
item in the array. Use a comma to separate items arranged horizontally and use a
semicolon to separate items arranged vertically.

Use the Define Name dialog box to create a formula named MonthNames that
consists of the following formula definition:

={“Jan”,”Feb”,”Mar”,”Apr”,”May”,”Jun”,”Jul”,”Aug”,”Sep”,”Oct”,”Nov”,
”Dec”}

This formula defines a 12-item array of text strings, arranged horizontally.

90 Part I: Basic Information

4800-x Ch03.F 8/27/01 11:54 AM Page 90

When you type this formula, make sure that you include the brackets.

Entering a formula into the Define Name dialog box is different from enter-

ing an array formula into a cell.

After you define the MonthNames formula, you can use it in a formula.
However, your formula needs to specify which array item to use. The INDEX func-
tion is perfect for this. For example, the following formula returns Aug:

=INDEX(MonthNames,8)

You can also display the entire 12-item array, but it requires 12 adjacent cells to
do so. For example, to enter the 12 items of the array into A1:L1, follow these steps:

1. Use the Define Name dialog box to create the formula named
MonthNames.

2. Select the range A1:L1.

3. Type =MonthNames in the formula bar.

4. Press Ctrl+Shift+Enter.

Using Ctrl+Shift+Enter tells Excel to insert an array formula into the selected
cells. In this case, the single formula is entered into 12 adjacent cells in Figure 3-21.
Excel places brackets around an array formula to remind you that it’s a special type
of formula. If you examine any cell in A1:L1, you’ll see its formula listed as:

{=MonthNames}

Figure 3-21: You can enter a named formula that contains a 12-item
array into 12 adjacent cells.

Creating a Dynamic Named Formula
A dynamic named formula is a named formula that refers to a range not fixed in
size. You may find this concept difficult to grasp, so a quick example is in order.

Examine the worksheet shown in Figure 3-22. This sheet contains a listing of
sales by month, through the month of May.

Chapter 3: Working with Names 91

4800-x Ch03.F 8/27/01 11:54 AM Page 91

Figure 3-22: You can use a dynamic named formula to
represent the sales data in column B.

Suppose you want to create a name (SalesData) for the data in column B, and
you don’t want this name to refer to empty cells. In other words, the reference for
the SalesData range would change each month as you add a new sales figure. You
could, of course, use the Define Name dialog box to change the range name defin-
ition each month. Or, you could create a dynamic named formula that changes
automatically as you enter new data.

To create a dynamic named formula, start by recreating the worksheet shown in
Figure 3-22. Then follow these steps:

1. Bring up the Define Name dialog box.

2. Enter SalesData in the Names in workbook field.

3. Enter the following formula in the Refers to field:

=OFFSET(Sheet1!B1,0,0,COUNTA(Sheet1!$B:$B),1)

4. Click OK to close the Define Name dialog box.

The preceding steps created a named formula that uses Excel’s OFFSET and
COUNTA functions. To try out this formula, enter the following formula into any
cell not in column B:

=SUM(SalesData)

This formula returns the sum of the values in column B. Note that SalesData
does not display in the Name box and does not appear in the Go To dialog box. You
can, however, bring up the Go To dialog box and type SalesData to select the range.

At this point, you may be wondering about the value of this exercise. After all, a
simple formula such as the following does the same job, without the need to define
a formula:

=SUM(B:B)

92 Part I: Basic Information

4800-x Ch03.F 8/27/01 11:54 AM Page 92

The value of using dynamic named formulas becomes apparent when creating a
chart. You can use this technique to create a chart with a data series that adjusts
automatically as you enter new data.

Refer to Chapter 17 for an example that uses this technique to create a

dynamic chart.

Summary
This chapter introduced the concept of names. I described how to create and mod-
ify names, and compared workbook-level names with worksheet-level names. The
chapter provided many examples of using names in your workbooks, and also
revealed the secret to understanding names — every name is actually a named
formula.

Chapter 4 presents an introduction and overview of Excel’s worksheet functions.

Chapter 3: Working with Names 93

4800-x Ch03.F 8/27/01 11:54 AM Page 93

4800-x Ch03.F 8/27/01 11:54 AM Page 94

Using Functions in Your Formulas
CHAPTER 4

Introducing Worksheet Functions

CHAPTER 5
Manipulating Text

CHAPTER 6
Working with Dates and Times

CHAPTER 7
Counting and Summing Techniques

CHAPTER 8
Lookups

CHAPTER 9
Databases and Lists

CHAPTER 10
Miscellaneous Calculations

Part II

4800-x PO2.F 8/27/01 11:54 AM Page 95

4800-x PO2.F 8/27/01 11:54 AM Page 96

Chapter 4

Introducing Worksheet
Functions

IN THIS CHAPTER

� The advantages of using functions in your formulas

� The various types of arguments used by functions

� How to enter a function into a formula

� Excel’s function categories

A THOROUGH KNOWLEDGE OF EXCEL’S worksheet functions is essential for anyone
who wants to master the art of formulas. This chapter provides an overview of the
functions available for use in formulas.

What Is a Function?
A worksheet function is a built-in tool that you use in a formula. A typical function
(such as SUM) takes one or more arguments, and then returns a result. The SUM
function, for example, accepts a range argument and then returns the sum of the
values in that range.

You’ll find functions useful because they:

� Simplify your formulas

� Permit formulas to perform otherwise impossible calculations

� Speed up some editing tasks

� Allow “conditional” execution of formulas — giving them rudimentary
decision-making capability

The examples in the sections that follow demonstrate each of these points.

97

4800-x Ch04.F 8/27/01 11:55 AM Page 97

Simplify Formulas
Using a built-in function can simplify a formula significantly. For example, you
might need to calculate the average of the values in 10 cells (A1:A10). Without the
help of any functions, you would need to construct a formula like this:

=(A1+A2+A3+A4+A5+A6+A7+A8+A9+A10)/10

Not very pretty, is it? Even worse, you would need to edit this formula if you
expanded the range to be summed. You can replace this formula with a much sim-
pler one that uses one of Excel’s built-in worksheet functions. For example, the fol-
lowing formula uses Excel’s AVERAGE function:

=AVERAGE(A1:A10)

Perform Otherwise Impossible Calculations
Functions permit formulas to perform impossible calculations. Perhaps you need to
determine the largest value in a range. A formula can’t tell you the answer without
using a function. This simple formula uses Excel’s MAX function to return the
largest value in the range A1:D100:

=MAX(A1:D100)

Speed Up Editing Tasks
Functions can sometimes eliminate manual editing. Assume that you have a work-
sheet that contains 1,000 names in cells A1:A1000 and that all the names appear in
all-uppercase letters. Your boss sees the listing and informs you that you need to
mail merge the names with a form letter and that the use of all uppercase is not
acceptable. For example, JOHN F. CRANE must appear as John F. Crane. You could
spend the rest of the day reentering the list — or you could use a formula such as the
following, which uses Excel’s PROPER function to convert the text in cell A1 to
proper case:

=PROPER(A1)

Enter this formula in cell B1 and then copy it down to the next 999 rows. Then
select B1:B1000 and use the Edit � Copy command to copy the range to the
Clipboard. Next, activate cell A1 and use the Edit � Paste Special command (with
the Values option) to convert the formulas to values. Delete column B, and you’re
finished. With the help of a function, you just accomplished several hours of work
in less than a minute.

98 Part II: Using Functions in Your Formulas

4800-x Ch04.F 8/27/01 11:55 AM Page 98

Provide Decision-Making Capability
Functions can also give your formulas decision-making capability. Suppose you
have a worksheet that calculates sales commissions. If a salesperson sells more than
$100,000 of product, the commission rate reaches 7.5 percent; otherwise, the com-
mission rate remains at 5.0 percent. Without using a function, you would need to
create two different formulas and make sure that you use the correct formula for
each sales amount. Note this formula that uses the IF function to check the value in
cell A1 and make the appropriate commission calculation:

=IF(A1<100000,A1*5%,A1*7.5%)

More about Functions
All told, Excel includes more than 300 functions. And if that’s not enough, you can
purchase additional specialized functions from third-party suppliers, and even cre-
ate your own custom functions (using VBA).

If you’re ready to create your own custom functions, check out Part IV of this

book.

The sheer number of available worksheet functions may overwhelm you, but
you’ll probably find that you use only a dozen or so of the functions on a regular
basis. And as you’ll see, Excel’s Paste Function dialog box (described later in this
chapter) makes it easy to locate and insert a function, even if you use it only rarely.

Appendix B contains a complete listing of Excel’s worksheet functions, with

a brief description of each.

Function Argument Types
If you examine the preceding examples in this chapter, you’ll notice that all of the
functions used a set of parentheses. The information within the parentheses is
referred to as the function’s arguments. Functions vary in how they use arguments.
A function may use:

� No arguments

� One argument

Chapter 4: Introducing Worksheet Functions 99

4800-x Ch04.F 8/27/01 11:55 AM Page 99

� A fixed number of arguments

� An indeterminate number of arguments

� Optional arguments

For example, the RAND function, which returns a random number between 0
and 1, doesn’t use an argument. Even if a function doesn’t require an argument,
you must provide a set of empty parentheses, like this:

=RAND()

If a function uses more than one argument, then a comma separates the argu-
ments. For example, the LARGE function, which returns the “nth” largest value in a
range, uses two arguments. The first argument represents the range; the second
argument represents the value for n. The formula below returns the third largest
value in the range A1:A100:

=LARGE(A1:A100,3)

The character used to separate function arguments can be something other

than a comma — for example, a semicolon. This character is determined by

the List separator setting for your system, which is specified in the Regional

Settings dialog box, accessible via the Control Panel.

The examples at the beginning of the chapter used cell or range references for
arguments. Excel proves quite flexible when it comes to function arguments, how-
ever. The following sections demonstrate additional argument types for functions.

Names as Arguments
As you’ve seen, functions can use cell or range references for their arguments.
When Excel calculates the formula, it simply uses the current contents of the cell or
range to perform its calculations. The SUM function returns the sum of its argu-
ment(s). To calculate the sum of the values in A1:A20, you can use:

=SUM(A1:A20)

And, not surprisingly, if you’ve defined a name for A1:A20 (such as Sales), you
can use the name in place of the reference:

=SUM(Sales)

100 Part II: Using Functions in Your Formulas

4800-x Ch04.F 8/27/01 11:55 AM Page 100

For more information about defining and using names, refer to Chapter 3.

Full-Column or Full-Row as Arguments
In some cases, you may find it useful to use an entire column or row as an argu-
ment. For example, the following formula sums all values in column B:

=SUM(B:B)

Using full-column and full-row references is particularly useful if the range that
you’re summing changes (if you continually add new sales figures, for instance). If
you do use an entire row or column, just make sure that the row or column doesn’t
contain extraneous information that you don’t want included in the sum.

You might think that using such a large range (a column consists of 65,536 cells)
might slow down calculation time. Not true. Excel keeps track of the last-used row
and last-used column, and will not use cells beyond them when computing a for-
mula result that references an entire column or row.

Chapter 4: Introducing Worksheet Functions 101

Accommodating Former Lotus 1-2-3 Users
If you’ve ever used any of the 1-2-3 spreadsheets (or any version of Corel’s Quattro
Pro), you might recall that these products require you to type an “at” sign (@) before
a function name. Excel is smart enough to distinguish functions without you having to
flag them with a symbol.

Because old habits die hard, however, Excel accepts @ symbols when you type
functions in your formulas, but it removes them as soon as you enter the formula.

These competing products also use two dots (..) as a range reference operator — for
example, A1..A10. Excel also enables you to use this notation when you type formulas,
but Excel replaces the notation with its own range reference operator, a colon (:).

This accommodation goes only so far, however. Excel still insists that you use the
standard Excel function names, and it doesn’t recognize or translate the function
names used in other spreadsheets. For example, if you enter the 1-2-3 @AVG
function, Excel flags it as an error (Excel’s name for this function is AVERAGE). For
more information about 1-2-3 compatibility, consult Appendix A.

4800-x Ch04.F 8/27/01 11:55 AM Page 101

Literal Values as Arguments
A literal argument refers to a value or text string that you enter directly. For exam-
ple, the SQRT function, which calculates the square root of a number, takes one
argument. In the following example, the formula uses a literal value for the func-
tion’s argument:

=SQRT(225)

Using a literal argument with a simple function like this one usually defeats the
purpose of using a formula. This formula always returns the same value, so you
could just as easily replace it with the value 15. You may want to make an excep-
tion to this rule in the interest of clarity. For example, you might want to make it
perfectly clear that you are computing the square root of 225.

Using literal arguments makes more sense with formulas that use more than one
argument. For example, the LEFT function (which takes two arguments) returns
characters from the beginning of its first argument; the second argument specifies
the number of characters. If cell A1 contains the text “Budget”, the following for-
mula returns the first letter, or “B”:

=LEFT(A1,1)

Expressions as Arguments
Excel also enables you to use expressions as arguments. Think of an expression as
a formula within a formula. When Excel encounters an expression as a function’s
argument, it evaluates the expression and then uses the result as the argument’s
value. Here’s an example:

=SQRT((A1^2)+(A2^2))

This formula uses the SQRT function, and its single argument appears as the fol-
lowing expression:

(A1^2)+(A2^2)

When Excel evaluates the formula, it first evaluates the expression in the argu-
ment and then computes the square root of the result.

Other Functions as Arguments
Because Excel can evaluate expressions as arguments, it shouldn’t surprise you that
these expressions can include other functions. Writing formulas that have functions
within functions is sometimes known as nesting functions. Excel starts by evaluat-
ing the most deeply nested expression and works its way out. Note this example of
a nested function:

102 Part II: Using Functions in Your Formulas

4800-x Ch04.F 8/27/01 11:55 AM Page 102

=SIN(RADIANS(B9))

The RADIANS function converts degrees to radians, the unit used by all of
Excel’s trigonometric functions. If cell B9 contains an angle in degrees, the RADI-
ANS function converts it to radians, and then the SIN function computes the sine of
the angle.

A formula can contain up to seven levels of nested functions. If you exceed

this level, Excel pops up an error message. In the vast majority of cases, this

limit poses no problem. Users often exceed this limitation when attempting

to create complex formulas comprised of nested IF functions.

Arrays as Arguments
A function can also use an array as an argument. An array is a series of values sep-
arated by a comma and enclosed in brackets. The formula below uses the OR func-
tion with an array as an argument. The formula returns TRUE if cell A1 contains 1,
3, or 5.

=OR(A1={1,3,5})

See Part IV of this book for more information about working with arrays.

Often, using arrays can help you simplify your formula. The formula below, for
example, returns the same result, but uses nested IF functions instead of an array:

=IF(A1=1,TRUE,IF(A1=3,TRUE,IF(A1=5,TRUE,FALSE)))

Ways to Enter a Function
into a Formula
You can enter a function into a formula by typing it manually, or by using the
Paste Function dialog box.

Chapter 4: Introducing Worksheet Functions 103

4800-x Ch04.F 8/27/01 11:55 AM Page 103

Entering a Function Manually
If you’re familiar with a particular function — you know how many arguments it
takes and the types of arguments — you may choose simply to type the function and
its arguments into your formula. Often, this method is the most efficient.

Excel 2002 provides some additional help by displaying a list of the argu-

ment names in a small window (see Figure 4-1). If this window gets in your

way, you can drag it to a new position.

Figure 4-1: When you enter a function, Excel 2002 lists the
names of the function arguments.

If you omit the closing parenthesis for a function, Excel adds it for you auto-
matically. For example, if you type =SUM(A1:C12 and press Enter, Excel corrects
the formula by adding the right parenthesis.

When you enter a function, Excel always converts the function’s name to

uppercase. Therefore, it’s a good idea to use lowercase when you type func-

tions. If Excel doesn’t convert your text to uppercase when you press Enter,

then your entry isn’t recognized as a function — which means that you

spelled it incorrectly or the function isn’t available (for example, it may be

defined in an add-in not currently installed).

Using the Insert Function Dialog Box
to Enter a Function
The Insert Function dialog box assists you by providing a way to enter a function
and its arguments in a semi-automated manner. Using the Insert Function dialog
box ensures that you spelled the function correctly and that it contains the proper
number of arguments in the correct order.

104 Part II: Using Functions in Your Formulas

4800-x Ch04.F 8/27/01 11:55 AM Page 104

In versions prior to Excel 2002, this dialog box is known as the Paste

Function dialog box.

To insert a function, select the function from the Insert Function dialog box,
shown in Figure 4-2. You can access this dialog box by using any of the following
three methods:

� Choose the Insert � Function command from the menu.

� Click the Insert Function button, located next to the formula bar. In ver-
sions prior to Excel 2002, this button is located on the Standard toolbar.

� Press Shift+F3.

Figure 4-2: The Insert Function dialog box

When you select a category from the drop-down list, the list box displays the
functions in the selected category. The Most Recently Used category lists the func-
tions that you’ve used most recently. The All category lists all the functions avail-
able across all categories. Access this category if you know a function’s name, but
not its category.

A new feature in Excel 2002 enables you to search for a function. Use the

field at the top of the Insert Function dialog box. Enter one or more key-

words and click Go. Excel will display a list of functions that match your

search criteria.

Chapter 4: Introducing Worksheet Functions 105

4800-x Ch04.F 8/27/01 11:55 AM Page 105

When you select a function in the Select a function list box, notice that Excel
displays the function (and its argument names) in the dialog box, along with a brief
description of what the function does.

When you locate the function that you want to use, click OK. Excel’s Function
Arguments dialog box appears, as in Figure 4-3. Use the Function Arguments dia-
log box to specify the arguments for the function. You can easily specify a range
argument by clicking the Collapse Dialog button (the icon at the right edge of each
argument field). Excel temporarily collapses the Function Arguments dialog box to
a thin box, so that you can select a range in the worksheet.

Figure 4-3: The Function Arguments dialog box

The Function Arguments dialog box is new to Excel 2002. Previous versions

display the Formula Palette (which is similar in look and functionality).

More Tips for Entering Functions
The following list contains some additional tips to keep in mind when you use the
Insert Function dialog box and the Formula Palette to enter functions:

� Click the Help on this function hyperlink (or press F1) at any time to get
help about the function that you selected (see Figure 4-4).

106 Part II: Using Functions in Your Formulas

4800-x Ch04.F 8/27/01 11:55 AM Page 106

Figure 4-4: Don’t forget about Excel’s online help. It’s the most comprehensive
function reference source available.

� If the active cell already contains a formula that uses a function, clicking
the Insert Function button displays the Function Arguments dialog box.

Chapter 4: Introducing Worksheet Functions 107

Let Excel Insert Functions for You
Most of the time, you’re on your own when it comes to inserting functions. However,
at least two situations can arise in which Excel will enter functions for you
automatically:

� When you click the AutoSum button on the Standard toolbar, Excel does a
quick check of the selected cells and the surrounding cells. It then proposes a
formula that uses the SUM function. If Excel guessed your intentions, just
press Enter (or click the AutoSum button a second time) to accept the pro-
posed formula(s). In Excel 2002, the AutoSum button displays an arrow that,
when clicked, displays additional functions.

� When you select the Data � Subtotals command, Excel displays a dialog box
that enables you to specify some options. Then it proceeds to insert rows and
enter some formulas automatically. These formulas use the SUBTOTAL
function.

4800-x Ch04.F 8/27/01 11:55 AM Page 107

� You can use the Insert Function dialog box to insert a function into an
existing formula. Just edit the formula and move the insertion point to the
location where you want to insert the function. Then open the Insert
Function dialog box and select the function.

� If you change your mind about entering a function, click the Cancel button.

� The number of arguments used by the function that you selected deter-
mines the number of boxes you see in the Function Arguments dialog box.
If a function uses no arguments, you won’t see any boxes. If the function
uses a variable number of arguments (as with the AVERAGE function),
Excel adds a new box every time you enter an optional argument.

� On the right side of each box in the Function Arguments dialog box,
you’ll see the current value for each argument.

� A few functions, such as INDEX, have more than one form. If you choose
such a function, Excel displays another dialog box that enables you to
choose which form you want to use.

� If you only need help remembering a function’s arguments, type an equal
sign and the function’s name, and then press Ctrl+Shift+A. Excel inserts
the function with descriptive placeholders for the arguments, as shown in
Figure 4-5. You need to replace these placeholders with actual arguments.

� To locate a function quickly in the Function Name list that appears in the
Insert Function dialog box, open the list box, type the first letter of the
function name, and then scroll to the desired function. For example, if you
select the All category and want to insert the SIN function, click anywhere
on the Select a function list box and press S. Excel selects the first function
that begins with S. Keep pressing S until you reach the SIN function.

� If the active cell contains a formula that uses one or more functions, the
Function Arguments dialog box enables you to edit each function. In the
formula bar, click the function that you want to edit, then click the Insert
Function button.

Figure 4-5: Press Ctrl+Shift+A to instruct Excel to display
descriptive placeholders for a function.

108 Part II: Using Functions in Your Formulas

4800-x Ch04.F 8/27/01 11:55 AM Page 108

Function Categories
I list and briefly describe Excel’s function categories below.

Refer to subsequent chapters for specific examples of using the functions.

Financial Functions
The financial functions enable you to perform common business calculations that
deal with money. For example, you can use the PMT function to calculate the
monthly payment for a car loan. (You need to provide the loan amount, interest
rate, and loan term as arguments.)

Date & Time Functions
The functions in this category enable you to analyze and work with date and time
values in formulas. For example, the TODAY function returns the current date (as
stored in the system clock).

Math & Trig Functions
This category contains a wide variety of functions that perform mathematical and
trigonometric calculations.

The trigonometric functions all assume radians for angles (not degrees).

Use the RADIANS function to convert degrees to radians.

Statistical Functions
The functions in this category perform statistical analysis on ranges of data. For
example, you can calculate statistics such as mean, mode, standard deviation, and
variance.

Some of the functions in this category require you to install the Analysis

ToolPak add-in.

Chapter 4: Introducing Worksheet Functions 109

4800-x Ch04.F 8/27/01 11:55 AM Page 109

Lookup and Reference Functions
Functions in this category are used to find (look up) values in lists or tables. A com-
mon example is a tax table. You can use the VLOOKUP function to determine a tax
rate for a particular income level.

Database Functions
Functions in this category are useful when you need to summarize data in a list
(also known as a worksheet database) that meets specific criteria. For example,
assume you have a list that contains monthly sales information. You can use the
DCOUNT function to count the number of records that describe sales in the
Northern region with a value greater than 10,000.

Text Functions
The text functions enable you to manipulate text strings in formulas. For example,
you can use the MID function to extract any number of characters beginning at any
character position. Other functions enable you to change the case of text (convert
to uppercase, for example).

Logical Functions
This category consists of only six functions that enable you to test a condition (for
logical TRUE or FALSE). You will find the IF function very useful since it gives your
formulas simple decision-making capability.

Information Functions
The functions in this category help you determine the type of data stored within a
cell. For example, the ISTEXT function returns TRUE if a cell reference contains
text. Or, you can use the ISBLANK function to determine whether a cell is empty.
The CELL function returns lots of potentially useful information about a particular
cell.

Engineering Functions
The functions in this category can prove useful for engineering applications. They
enable you to work with complex numbers, and perform conversions between var-
ious numbering and measurement systems.

To use the functions in the Engineering category, you must install the

Analysis ToolPak add-in.

110 Part II: Using Functions in Your Formulas

4800-x Ch04.F 8/27/01 11:55 AM Page 110

User-Defined Functions
Functions that appear in this category are custom worksheet functions created
using VBA. These functions can operate just like Excel’s built-in functions. One dif-
ference, however, is that custom functions do not display a description of each
argument in the Paste Function dialog box and Formula Palette.

Other Function Categories
In addition to the function categories described above, Excel includes four other
categories that may not appear in the Paste Function dialog box: Commands,
Customizing, Macro Control, and DDE/External. These categories appear to be
holdovers from older versions of Excel. If you create a custom function, you can
assign it to one of these categories. In addition, you may see other function cate-
gories created by macros.

Refer to Chapter 23 for information about assigning your custom functions

to a function category.

Chapter 4: Introducing Worksheet Functions 111

Volatile Functions
Some Excel functions belong to a special class of functions called volatile. Excel
recalculates a volatile function whenever it recalculates the workbook — even if the
formula that contains the function is not involved in the recalculation.

The RAND function represents an example of a volatile function because it generates
a new random number every time Excel calculates the worksheet. Other volatile
functions include:

AREAS INDEX OFFSET

CELL INDIRECT ROWS

COLUMNS NOW TODAY

As a side effect of using these volatile functions, Excel will always prompt you to save
the workbook when you close it — even if you made no changes to it. For example, if
you open a workbook that contains any of these volatile functions, scroll around a bit
(but don’t change anything), and then close the file, Excel will ask whether you want
to save the workbook.

You can circumvent this behavior by using the Manual Recalculation mode, with the
Recalculate before save option turned off.

4800-x Ch04.F 8/27/01 11:55 AM Page 111

Analysis ToolPak Functions
When you feel comfortable with Excel’s worksheet functions, you can explore other
available functions when you load the Analysis ToolPak. This add-in provides you
with dozens of additional worksheet functions.

When you load this add-in, the Paste Function dialog box displays a new cate-
gory, Engineering. It also adds new functions to the following function categories:
Financial, Date & Time, Math & Trig, and Information.

Summary
This chapter provided an introduction to worksheet functions. Excel provides hun-
dreds of functions that you can use in your formulas. In addition, you can use
functions defined in add-ins. The remaining chapters in this book provide hundreds
of examples of using functions in your formulas. The next chapter demonstrates
many of the functions available in the Text category.

112 Part II: Using Functions in Your Formulas

4800-x Ch04.F 8/27/01 11:55 AM Page 112

Chapter 5

Manipulating Text
IN THIS CHAPTER

� How Excel handles text entered into cells

� Excel’s worksheet functions that handle text

� Examples of advanced text formulas

� Custom VBA text functions

EXCEL, OF COURSE, IS BEST KNOWN for its ability to crunch numbers. However, it is
also quite versatile when it comes to handling text. As you know, Excel enables you
to enter text for things such as row and column headings, customer names and
addresses, part numbers, and just about anything else. And, as you might expect,
you can use formulas to manipulate the text contained in cells.

This chapter contains many examples of formulas that use functions to manipu-
late text. Some of these formulas perform feats you may not have thought possible.

A Few Words about Text
When you enter data into a cell, Excel immediately goes to work and determines
whether you’re entering a formula, a number (including a date or time), or anything
else. Anything else is considered text.

You may hear the term string used instead of text. You can use these terms

interchangeably. Sometimes, they even appear together, as in text string.

How Many Characters in a Cell?
In Excel 5 and Excel 95, a single cell can hold up to 255 characters. Beginning with
Excel 97, however, Microsoft upped the ante significantly. A single cell in Excel 97
can hold up to 32,000 characters. To put things into perspective, this chapter contains

113

4800-x Ch05.F 8/27/01 11:55 AM Page 113

about 30,000 characters. I certainly don’t recommend using a cell in lieu of a word
processor, but if you use Excel 97 or later, you really don’t have to lose much sleep
worrying about filling up a cell with text.

Although a cell can hold up to 32,000 characters, there is a limit on the num-

ber of characters that can actually display. And, as I describe later, some func-

tions may not work properly for text strings greater than 255 characters.

Numbers as Text
As I mentioned, Excel distinguishes between numbers and text. If you want to
“force” a number to be considered as text, you can do one of the following:

� Apply the Text number format to the cell. Use Format � Cells, click the
Number tab, and select Text from the category list. If you haven’t applied
other horizontal alignment formatting, the value will appear left aligned
in the cell (like normal text).

� Precede the number with an apostrophe. The apostrophe isn’t displayed,
but the cell entry will be treated as if it were text.

Even though a cell is formatted as Text (or uses an apostrophe), you can still per-
form some mathematical operations on the cell if the entry looks like a number. For
example, assume cell A1 contains a value preceded by an apostrophe. The formula
that follows will display the value in A1, incremented by 1:

=A1+1

The formula that follows, however, will treat the contents of cell A1 as 0:

=SUM(A1:A10)

If you’re switching from Lotus 1-2-3, you’ll find this to be a significant change.
Lotus 1-2-3 never treats text as values. In some cases, treating text as a number can
be useful. In other cases, it can cause problems. Bottom line? Just be aware of
Excel’s inconsistency in how it treats a number formatted as text.

Excel 2002 flags numbers preceded by an apostrophe with a Smart Tag.You

can use this Smart Tag to convert the “text” to an actual value.

114 Part II: Using Functions in Your Formulas

4800-x Ch05.F 8/27/01 11:55 AM Page 114

Text Functions
Excel has an excellent assortment of worksheet functions that can handle text. For
your convenience, Excel’s Insert Function dialog box places most of these functions
in the Text category. A few other functions that are relevant to text manipulation
appear in other function categories. For example, the ISTEXT function is in the
Information category in the Insert Function dialog box.

Refer to Appendix B for a listing of the functions in the Text category. Or

choose Insert � Function to access the Insert Function dialog box, and scroll

through the functions in the Text category.

Most of the text functions are not limited for use with text. In other words, these func-
tions can also operate with cells that contain values. Unlike other spreadsheets (such as
1-2-3), Excel is very accommodating when it comes to treating numbers as text and text
as numbers.

The examples discussed in this section demonstrate some common (and useful)
things you can do with text. You may need to adapt some of these examples for
your own use.

Determining Whether a Cell Contains Text
In some situations, you may need a formula that determines the type of data con-
tained in a particular cell. For example, you may use an IF function to return a
result only if a cell contains text. Excel provides three functions to help you deter-
mine if a particular cell contains text:

� ISTEXT

� CELL

� TYPE

Chapter 5: Manipulating Text 115

When a Number Isn’t Treated as a Number
If you import data into Excel, you may be aware of a common problem: Sometimes,
the imported values are treated as text. Here’s a quick way to convert these non-
numbers to actual values. Activate any empty cell and enter the value 1. Choose
Edit � Copy to copy that value to the Clipboard. Then, select the range that contains
the values you need to fix. Choose Edit � Paste Special. In the Paste Special dialog
box, select the Multiply option, then click OK. This procedure forces Excel to treat the
non-numbers as actual values.

4800-x Ch05.F 8/27/01 11:55 AM Page 115

As you’ll see, however, these functions are not always reliable.

The companion CD-ROM includes a workbook that demonstrates these

functions (including their problems).

THE ISTEXT FUNCTION
The ISTEXT function takes a single argument, and returns TRUE if the argument
contains text, and FALSE if it doesn’t contain text. The formula that follows returns
TRUE if A1 contains a string:

=ISTEXT(A1)

The ISTEXT function, although useful, is certainly not perfect. In fact, it will

give you an incorrect result in some cases. Although Excel 97 and later can

store a huge amount of text in a cell (up to 32,000 characters), the ISTEXT

function doesn’t seem to realize this fact. The ISTEXT function returns FALSE

if its argument refers to a cell that contains more than 255 characters. Excel

2000 corrected this problem, so ISTEXT works as expected regardless of the

amount of text in the cell.

THE TYPE FUNCTION
The TYPE function takes a single argument and returns a value that indicates the
type of data in a cell. If cell A1 contains a text string, the formula that follows will
return 2 (the code number for text):

=TYPE(A1)

The TYPE function falls apart when a cell contains more than 255 characters:

It returns 16, the code number for an Error value.

THE CELL FUNCTION
Theoretically, the CELL function should help you determine whether a particular
cell uses the Text format, or has an apostrophe prefix. The first argument for the
CELL function can consist of any of 12 keywords, including format, prefix, or type.

116 Part II: Using Functions in Your Formulas

4800-x Ch05.F 8/27/01 11:55 AM Page 116

None of these options work as advertised when a number is formatted as Text.
For example, if you enter a number into cell A1 and then give it a number format
of Text, the following formula returns G, which means Excel considers it formatted
using the General format:

=CELL(“format”,A1)

Using prefix as the first argument for the CELL function returns an apostrophe if
a value is preceded by an apostrophe, but it returns nothing if the cell contains a
number and is formatted as Text. Using type as the first argument in the CELL func-
tion also yields inconsistent results. For example, if the cell contains more than 255
characters, the function returns v (for value).

Working with Character Codes
Every character that you see on your screen has an associated code number. For
Windows systems, Excel uses the standard ANSI character set. The ANSI character
set consists of 255 characters, numbered from 1 to 255.

Figure 5-1 shows a portion of an Excel worksheet that displays all of the
255 characters. This example uses the Arial font (other fonts may have different
characters).

Figure 5-1: The ANSI character set (for the Arial font)

Chapter 5: Manipulating Text 117

4800-x Ch05.F 8/27/01 11:55 AM Page 117

The companion CD-ROM includes a copy of this workbook. It has some sim-

ple macros that enable you to display the character set for any font installed

on your system.This workbook requires Excel 97 or later.

Two functions come into play when dealing with character codes: CODE and
CHAR. These functions aren’t very useful by themselves. However, they can prove
quite useful in conjunction with other functions. I discuss these functions in the
following sections.

The CODE and CHAR functions work only with ANSI strings.These functions

will not work with double-byte Unicode strings.

THE CODE FUNCTION
Excel’s CODE function returns the character code for its argument. The formula that
follows returns 65, the character code for uppercase A:

=CODE(“A”)

If the argument for CODE consists of more than one character, the function uses
only the first character. Therefore, this formula also returns 65:

=CODE(“Abbey Road”)

THE CHAR FUNCTION
The CHAR function is essentially the opposite of the CODE function. Its argument
should be a value between 1 and 255, and the function should return the corre-
sponding character. The following formula, for example, returns the letter A:

=CHAR(65)

To demonstrate the opposing nature of the CODE and CHAR functions, try enter-
ing this formula:

=CHAR(CODE(“A”))

This formula (illustrative rather than useful) returns the letter A. First, it converts
the character to its code value (65), and then it converts this code back to the cor-
responding character.

118 Part II: Using Functions in Your Formulas

4800-x Ch05.F 8/27/01 11:55 AM Page 118

Assume cell A1 contains the letter A (uppercase). The following formula returns
the letter a (lowercase):

=CHAR(CODE(A1)+32)

This formula takes advantage of the fact that the alphabetic characters all appear
in alphabetical order within the character set, and the lowercase letters follow the
uppercase letters (with a few other characters tossed in between). Each lowercase let-
ter lies exactly 32 character positions higher than its corresponding uppercase letter.

Determining Whether Two Strings Are Identical
You can set up a simple logical formula to determine whether two cells contain the
same entry. For example, use this formula to determine whether cell A1 has the
same contents as cell A2:

=A1=A2

Chapter 5: Manipulating Text 119

How to Find Special Characters
If you use Excel 2002, don’t overlook the handy Symbol dialog box (which appears
when you select Insert � Symbol). This dialog box makes it easy to insert special
characters (including Unicode characters) into cells. For example, you might (for some
strange reason) want to include a smiley face character in your spreadsheet. Access
Excel’s Symbol dialog box and select the Wingdings font (see the accompanying
figure). Examine the characters, locate the smiley face, and click Insert. You’ll also find
out that this character has a code of 74.

If you use an earlier version of Excel, you can get similar functionality with the
Windows Character Map program (charmap.exe).

4800-x Ch05.F 8/27/01 11:55 AM Page 119

Excel acts a bit lax in its comparisons when text is involved. Consider the case
in which A1 contains the word January (initial capitalization), and A2 contains
JANUARY (all uppercase). You’ll find that the previous formula returns TRUE, even
though the contents of the two cells are not really the same. In other words, the
comparison is not case sensitive.

In many cases, you don’t need to worry about the case of the text. But if you
need to make an exact, case-sensitive comparison, you can use Excel’s EXACT
function. The formula that follows returns TRUE only if cells A1 and A2 contain
exactly the same entry:

=EXACT(A1,A2)

The following formula returns FALSE because the first string contains a trailing
space:

=EXACT(“zero “,”zero”)

Joining Two or More Cells
Excel uses an ampersand as its concatenation operator. Concatenation is simply a
fancy term that describes what happens when you join the contents of two or more
cells. For example, if cell A1 contains the text San Diego, and cell A2 contains the
text California, the following formula will return San DiegoCalifornia:

=A1&A2

Notice that the two strings are joined together without an intervening space. To
add a space between the two entries (to get San Diego California), use a formula like
this one:

=A1&” “&A2

Or, even better, use a comma and a space to produce San Diego, California:

=A1&”, “&A2

Another option is to eliminate the quote characters and use the CHAR function,
with an appropriate argument. Note this example of using the CHAR function to
represent a comma (44) and a space (32):

=A1&CHAR(44)&CHAR(32)&A2

If you’d like to force a “word wrap,” concatenate the strings using CHAR (10),
and make sure you apply the wrap text format to the cell. The following example
joins the text in cell A1 and the text in cell B1, with a line break in between:

120 Part II: Using Functions in Your Formulas

4800-x Ch05.F 8/27/01 11:55 AM Page 120

=A1&CHAR(10)&B1

Here’s another example of the CHAR function. The following formula returns the
string Stop by concatenating four characters returned by the CHAR function:

=CHAR(83)&CHAR(116)&CHAR(111)&CHAR(112)

Here’s a final example of using the & operator. In this case, the formula com-
bines text with the result of an expression that returns the maximum value in col-
umn C:

=”The largest value in Column C is “ &MAX(C:C)

Excel also has a CONCATENATE function, which takes up to 30 arguments.

This function simply combines the arguments into a single string. You can

use this function if you like, but using the & operator results in shorter

formulas.

Displaying Formatted Values as Text
Excel’s TEXT function enables you to display a value in a specific number format.
Although this function may appear to have dubious value, it does serve some use-
ful purposes, as the examples in this section demonstrate. Figure 5-2 shows a sim-
ple worksheet. The formula in cell D1 is:

=”The net profit is “ & B3

Figure 5-2: The formula in D1 doesn’t display the formatted
number.

This formula essentially combines a text string with the contents of cell B3 and
displays the result. Note, however, that the contents of B3 are not formatted in any
way. You might want to display B3’s contents using a currency number format.

Chapter 5: Manipulating Text 121

4800-x Ch05.F 8/27/01 11:55 AM Page 121

Contrary to what you might expect, applying a number format to the cell

that contains the formula has no effect.This is because the formula returns a

string, not a value.

Note this revised formula that uses the TEXT function to apply formatting to the
value in B3:

=”The net profit is “ & TEXT(B3,”$#,##0.00”)

This formula displays the text along with a nicely formatted value: The net profit
is $104,616.52.

The second argument for the TEXT function consists of a standard Excel number
format string. You can enter any valid number format string for this argument.

The preceding example uses a simple cell reference (B3). You can, of course, use
an expression instead. Here’s an example that combines text with a number result-
ing from a computation:

=”Average Expenditure: “& TEXT(AVERAGE(A:A),”$#,##0.00”)

This formula might return a string such as Average Expenditure: $7,794.57.
Here’s another example that uses the NOW function (which returns the current

date and time). The TEXT function displays the date and time, nicely formatted.

=”Report printed on “&TEXT(NOW(),”mmmm d, yyyy at h:mm AM/PM”)

The formula might display the following: Report printed on July 22, 2001 at
3:23 PM.

Refer to Appendix C for details on Excel number formats.

Displaying Formatted Currency Values as Text
Excel’s DOLLAR function converts a number to text using the currency format. It
takes two arguments: the number to convert, and the number of decimal places to
display. The DOLLAR function uses the regional currency symbol (for example, a $).

122 Part II: Using Functions in Your Formulas

4800-x Ch05.F 8/27/01 11:55 AM Page 122

You can sometimes use the DOLLAR function in place of the TEXT function. The
TEXT function, however, is much more flexible since it doesn’t limit you to a spe-
cific number format.

The following formula returns Total: $1,287.37. The second argument for the
DOLLAR function specifies the number of decimal places.

=”Total: “&DOLLAR(1287.367, 2)

Repeating a Character or String
The REPT function repeats a text string (first argument) any number of times you
specify (second argument). For example, this formula returns HoHoHo:

=REPT(“Ho”,3)

You can also use this function to create crude vertical dividers between cells.
This example displays a squiggly line, 20 characters in length:

=REPT(“~”,20)

Creating a Text Histogram
A clever use for the REPT function is to create a simple histogram directly in a
worksheet (chart not required). Figure 5-3 shows an example of such a histogram.
You’ll find this type of graphical display especially useful when you need to visu-
ally summarize many values. In such a case, a standard chart may be unwieldy.

Figure 5-3: Using the REPT function to create a histogram in a worksheet
range

The formulas in columns E and G graphically depict monthly budget variances
by displaying a series of characters in the Wingdings font. This example uses the

Chapter 5: Manipulating Text 123

4800-x Ch05.F 8/27/01 11:55 AM Page 123

character n, which displays as a small square in the Wingdings font. A formula
using the REPT function determines the number of characters displayed. Key for-
mulas include:

E3: =IF(D3<0,REPT(“n”,-ROUND(D3*100,0)),””)
F3: =A3
G3: =IF(D3>0,REPT(“n”,ROUND(D3*100,0)),””)

Assign the Wingdings font to cells E3 and G3, and then copy the formulas down
the columns to accommodate all the data. Right-align the text in column E and
adjust any other formatting. Depending on the numerical range of your data, you
may need to change the scaling. Experiment by replacing the 100 value in the for-
mulas. You can substitute any character you like for the n in the formulas to pro-
duce a different character in the chart.

The workbook shown in Figure 5-3 also appears on the companion CD-ROM.

Padding a Number
You’re probably familiar with a common security measure (frequently used on
printed checks) in which numbers are padded with asterisks on the right. The fol-
lowing formula displays the value in cell A1, along with enough asterisks to make
24 characters total:

=(A1 & REPT(“*”,24-LEN(A1)))

Or, if you’d prefer to pad the number with asterisks on the left, use this formula:

=REPT(“*”,24-LEN(A1))&A1

The following formula displays asterisk padding on both sides of the number. It
will return 24 characters when the number in cell A1 contains an even number of
characters; otherwise, it returns 23 characters.

=REPT(“*”,12-LEN(A1)/2)&A1&REPT(“*”,12-LEN(A1)/2)

The preceding formulas are a bit deficient since they don’t show any number
formatting. Note this revised version that displays the value in A1 (formatted),
along with the asterisk padding on the right:

124 Part II: Using Functions in Your Formulas

4800-x Ch05.F 8/27/01 11:55 AM Page 124

=(TEXT(A1,”$#,##0.00”)&REPT(“*”,24-LEN(TEXT(A1,”$#,##0.00”))))

Figure 5-4 shows this formula in action.

Figure 5-4: Using a formula to pad a number
with asterisks

You can also pad a number by using a custom number format. To repeat the next
character in the format to fill the column width, include an asterisk (*) in the cus-
tom number format code. For example, use this number format to pad the number
with dashes:

$#,##0.00*-

To pad the number with asterisks, use two asterisks, like this:

$#,##0.00**

Refer to Appendix C for more information about custom number formats,

including additional examples using the asterisk format code.

Removing Excess Spaces and
Nonprinting Characters
Often, data imported into an Excel worksheet contains excess spaces or strange
(often unprintable) characters. Excel provides you with two functions to help whip
your data into shape: TRIM and CLEAN.

� TRIM: Removes all leading and trailing spaces, and replaces internal
strings of multiple spaces by a single space.

� CLEAN: Removes all nonprinting characters from a string. These
“garbage” characters often appear when you import certain types of data.

Chapter 5: Manipulating Text 125

4800-x Ch05.F 8/27/01 11:55 AM Page 125

Of the 255 ANSI character codes, 39 of them comprise nonprinting char-
acters. Specifically, the nonprinting character codes include 1–31,
128–129, 141–144, and 157–158.

This example uses the TRIM function. The formula returns Fourth Quarter
Earnings (with no excess spaces):

=TRIM(“ Fourth Quarter Earnings “)

Counting Characters in a String
Excel’s LEN function takes one argument and returns the number of characters in
the cell. For example, assume the string September Sales is contained in cell A1.
The following formula will return 15:

=LEN(A1)

Notice that space characters are included in the character count.
The following formula returns the total number of characters in the range

A1:A3:

=SUM(LEN(A1),LEN(A2),LEN(A3))

You will see example formulas that demonstrate how to count the number

of specific characters within a string later in this chapter. Also, you may find

relevant material in Chapter 7 on counting techniques and Chapter 15 on

performing magic with array formulas.

Changing the Case of Text
Excel provides three handy functions to change the case of text:

� UPPER: Converts the text to ALL UPPERCASE

� LOWER: Converts the text to all lowercase

� PROPER: Converts the text to “proper” case (The First Letter In Each Word
Is Capitalized)

These functions are quite straightforward. The formula that follows, for example,
converts the text in cell A1 to proper case. If cell A1 contained the text MR. JOHN
Q. PUBLIC, the formula would return Mr. John Q. Public.

126 Part II: Using Functions in Your Formulas

4800-x Ch05.F 8/27/01 11:55 AM Page 126

=PROPER(A1)

These functions operate only on alphabetic characters; they simply ignore all
other characters and return them unchanged.

Extracting Characters from a String
Excel users often need to extract characters from a string. For example, you may
have a list of employee names (first and last names) and need to extract the
last name from each cell. Excel provides several useful functions for extracting
characters:

� LEFT: Returns a specified number of characters from the beginning of a
string

� RIGHT: Returns a specified number of characters from the end of a string

� MID: Returns a specified number of characters beginning at any position
within a string

The formula that follows returns the last 10 characters from cell A1. If A1 con-
tains fewer than 10 characters, the formula returns all of the text in the cell.

=RIGHT(A1,10)

This next formula uses the MID function to return five characters from cell A1,
beginning at character position 2. In other words, it returns characters 2–6.

=MID(A1,2,5)

The following example returns the text in cell A1, with only the first letter in
uppercase. It uses the LEFT function to extract the first character and convert it to
uppercase. This then concatenates to another string that uses the RIGHT function to
extract all but the first character (converted to lowercase).

=UPPER(LEFT(A1))&RIGHT(LOWER(A1),LEN(A1)-1)

If cell A1 contained the text FIRST QUARTER, the formula would return First
quarter.

Replacing Text with Other Text
In some situations, you may need to replace a part of a text string with some other
text. For example, you may import data that contains asterisks, and you need to

Chapter 5: Manipulating Text 127

4800-x Ch05.F 8/27/01 11:55 AM Page 127

convert the asterisks to some other character. You could use Excel’s Edit � Replace
command to make the replacement. If you prefer a formula-based solution, you can
take advantage of either of two functions:

� SUBSTITUTE: Replaces specific text in a string. Use this function when
you know the character(s) to be replaced, but not the position.

� REPLACE: Replaces text that occurs in a specific location within a string.
Use this function when you know the position of the text to be replaced,
but not the actual text.

The following formula uses the SUBSTITUTE function to replace 2001 with 2002
in the string 2001 Budget. The formula returns 2002 Budget.

=SUBSTITUTE(“2001 Budget”,”2001”,”2002”)

The following formula uses the SUBSTITUTE function to remove all spaces from
a string. In other words, it replaces all space characters with an empty string. The
formula returns the title of an excellent Liz Phair CD: Whitechocolatespaceegg.

=SUBSTITUTE(“White chocolate space egg”,” “,””)

The following formula uses the REPLACE function to replace one character
beginning at position 5 with nothing. In other words, it removes the fifth character
(a hyphen) and returns Part544.

=REPLACE(“Part-544”,5,1,””)

You can, of course, nest these functions to perform multiple replacements in a
single formula. The formula that follows demonstrates the power of nested SUBSTI-
TUTE functions. The formula essentially strips out any of the following seven char-
acters in cell A1: space, hyphen, colon, asterisk, underscore, left parenthesis, and
right parenthesis.

=SUBSTITUTE(SUBSTITUTE(SUBSTITUTE(
SUBSTITUTE(SUBSTITUTE(SUBSTITUTE(SUBSTITUTE(
A1,” “,””),”-”,””),”:”,””),”*”,””),”_”,””),”(“,””),”)”,””)

Therefore, if cell A1 contains the string Part-2A - Z(4M1)_A*, the formula
returns Part2AZ4M1A.

Finding and Searching within a String
Excel’s FIND and SEARCH functions enable you to locate the starting position of a
particular substring within a string:

128 Part II: Using Functions in Your Formulas

4800-x Ch05.F 8/27/01 11:55 AM Page 128

� FIND: Finds a substring within another text string and returns the starting
position of the substring. You can specify the character position at which
to begin searching. Use this function for case-insensitive text compar-
isons. Wildcard comparisons are not supported.

� SEARCH: Finds a substring within another text string and returns the
starting position of the substring. You can specify the character position
at which to begin searching. Use this function for non–case-sensitive text,
or when you need to use wildcard characters.

The following formula uses the FIND function and returns 7, the position of the
first m in the string. Notice that this formula is case sensitive.

=FIND(“m”,”Big Mamma Thornton”,1)

The formula that follows, which uses the SEARCH function, returns 5, the posi-
tion of the first m (either uppercase or lowercase):

=SEARCH(“m”,”Big Mamma Thornton”,1)

You can use the following wildcard characters within the first argument for the
SEARCH function:

� Question mark (?): Matches any single character

� Asterisk (*): Matches any sequence of characters

If you want to find an actual question mark or asterisk character, type a tilde

(~) before the question mark or asterisk.

The next formula examines the text in cell A1 and returns the position of the
first three-character sequence that has a hyphen in the middle of it. In other words,
it looks for any character followed by a hyphen and any other character. If cell A1
contains the text Part-A90, the formula returns 4.

=SEARCH(“?-?”,A1,1)

Searching and Replacing within a String
You can use the REPLACE function in conjunction with the SEARCH function to
replace part of a text string with another string. In effect, you use the SEARCH
function to find the starting location used by the REPLACE function.

Chapter 5: Manipulating Text 129

4800-x Ch05.F 8/27/01 11:55 AM Page 129

For example, assume cell A1 contains the text “Annual Profit Figures.” The fol-
lowing formula searches for the word “Profit,” and replaces it with the word “Loss”:

=REPLACE(A1,SEARCH(“Profit”,A1),6,”Loss”)

This next formula uses the SUBSTITUTE function to accomplish the same effect
in a more efficient manner:

=SUBSTITUTE(A1,”Profit”,”Loss”)

Advanced Text Formulas
The examples in this section appear more complex than the examples in the previous
section. But, as you’ll see, they can perform some very useful text manipulations.

You can access all of the examples in this section on the companion

CD-ROM.

Counting Specific Characters in a Cell
This formula counts the number of Bs (uppercase only) in the string in cell A1:

=LEN(A1)-LEN(SUBSTITUTE(A1,”B”,””))

This formula works by using the SUBSTITUTE function to create a new string (in
memory) that has all of the Bs removed. Then the length of this string is subtracted
from the length of the original string. The result reveals the number of Bs in the
original string.

The following formula is a bit more versatile. It counts the number of Bs (both
upper- and lowercase) in the string in cell A1.

=LEN(A1)-LEN(SUBSTITUTE(SUBSTITUTE(A1,”B”,””),”b”,””))

Counting the Occurrences of a Substring in a Cell
The formulas in the preceding section count the number of occurrences of a partic-
ular character in a string. The following formula works with more than one charac-
ter. It returns the number of occurrences of a particular substring (contained in
cell B1) within a string (contained in cell A1). The substring can consist of any
number of characters.

130 Part II: Using Functions in Your Formulas

4800-x Ch05.F 8/27/01 11:55 AM Page 130

=(LEN(A1)-LEN(SUBSTITUTE(A1,B1,””)))/LEN(B1)

For example, if cell A1 contains the text Blonde On Blonde and B1 contains the
text Blonde, the formula returns 2.

The comparison is case sensitive, so if B1 contains the text blonde, the formula
returns 0. The following formula is a modified version that performs a case-insen-
sitive comparison:

=(LEN(A1)-LEN(SUBSTITUTE(UPPER(A1),UPPER(B1),””)))/LEN(B1)

Expressing a Number as an Ordinal
You may need to express a value as an ordinal number. For example, Today is the
21st day of the month. In this case, the number 21 converts to an ordinal number
by appending the characters st to the number.

The characters appended to a number depend on the number. There is no clear
pattern, making the construction of a formula more difficult. Most numbers will use
the th suffix. Exceptions occur for numbers that end with 1, 2, or 3 — except if the
preceding number is a 1 (numbers that end with 11, 12, or 13). These may seem like
fairly complex rules, but you can translate them into an Excel formula.

The formula that follows converts the number in cell A1 (assumed to be an inte-
ger) to an ordinal number:

=A1&IF(OR(VALUE(RIGHT(A1,2))={11,12,13}),”th”,IF(OR(VALUE(RIGHT(A1))
={1,2,3}),CHOOSE(RIGHT(A1),”st”,”nd”,”rd”),”th”))

This is a rather complicated formula, so it may help to examine its components.
Basically, the formula works as follows:

1. If the last two digits of the number consist of 11, 12, or 13, then use th.

2. If Rule #1 does not apply, then check the last digit. If the last digit is 1,
use st. If the last digit is 2, use nd. If the last digit is 3, use rd.

3. If neither Rule #1 nor Rule #2 apply, use th.

The formula uses two arrays, specified by brackets. Refer to Chapter 14 for

more information about using arrays in formulas.

Chapter 5: Manipulating Text 131

4800-x Ch05.F 8/27/01 11:55 AM Page 131

Figure 5-5 shows the formula in use.

Figure 5-5: Using a formula to express
a number as an ordinal

Determining a Column Letter for
a Column Number
This next formula returns a worksheet column letter (ranging from A to IV) for the
value contained in cell A1. For example, if A1 contains 29, the formula returns AC.

=IF(A1>26,CHAR(64+INT((A1-1)/26)),””)&CHAR(65+MOD(A1-1,26))

Note that the formula doesn’t check for a valid column number. In other words,
if A1 contains a value less than 1 or greater than 256, the formula will still give an
answer — albeit a meaningless one. The following modified version includes an IF
function to ensure a valid column:

=IF(AND(A1>0,A1<257),IF(A1>26,CHAR(64+INT((A1-1)/26)),””)
&CHAR(65+MOD(A1-1,26)),””)

Extracting a Filename from a Path Specification
The following formula returns the filename from a full path specification. For
example, if cell A1 contains c:\windows\desktop\myfile.xls, the formula returns
myfile.xls.

=MID(A1,FIND(“*”,SUBSTITUTE(A1,”\”,”*”,LEN(A1)-
LEN(SUBSTITUTE(A1,”\”,””))))+1,LEN(A1))

132 Part II: Using Functions in Your Formulas

4800-x Ch05.F 8/27/01 11:55 AM Page 132

This formula assumes that the system path separator consists of a backslash (\).
It essentially returns all of the text following the last backslash character. If cell A1
doesn’t contain a backslash character, the formula returns an error.

Extracting the First Word of a String
To extract the first word of a string, a formula must locate the position of the first
space character, and then use this information as an argument for the LEFT func-
tion. The following formula does just that:

=LEFT(A1,FIND(“ “,A1)-1)

This formula returns all of the text prior to the first space in cell A1. However,
the formula has a slight problem: It returns an error if cell A1 consists of a single
word. A slightly more complex formula that checks for the error with an IF func-
tion solves that problem:

=IF(ISERR(FIND(“ “,A1)),A1,LEFT(A1,FIND(“ “,A1)-1))

Extracting the Last Word of a String
Extracting the last word of a string is more complicated, since the FIND function
only works from left to right. Therefore, the problem rests with locating the last
space character. The formula that follows, however, solves this problem. It returns
the last word of a string (all of the text following the last space character):

=RIGHT(A1,LEN(A1)-FIND(“*”,SUBSTITUTE(A1,” “,”*”,LEN(A1)-
LEN(SUBSTITUTE(A1,” “,””)))))

This formula, however, has the same problem as the first formula in the preced-
ing section: It fails if the string does not contain at least one space character. The
following modified formula uses an IF function to count the number of spaces in
cell A1. If it contains no spaces, the entire contents of cell A1 are returned.
Otherwise, the previous formula kicks in.

=IF(LEN(A1)-LEN(SUBSTITUTE(A1,” “,””))=0,A1,RIGHT(A1,LEN(A1)-
FIND(“*”,SUBSTITUTE(A1,” “,”*”,LEN(A1)-LEN(SUBSTITUTE(A1,”
“,””))))))

Extracting All but the First Word of a String
The following formula returns the contents of cell A1, except for the first word:

=RIGHT(A1,LEN(A1)-FIND(“ “,A1,1))

If cell A1 contains 2002 Operating Budget, the formula returns Operating Budget.

Chapter 5: Manipulating Text 133

4800-x Ch05.F 8/27/01 11:55 AM Page 133

Extracting First Names, Middle Names,
and Last Names
Suppose you have a list consisting of people’s names in a single column. You have
to separate these names into three columns: one for the first name, one for the mid-
dle name or initial, and one for the last name. This task is more complicated than
you may think, since not every name has a middle initial. However, you can still
do it.

The task becomes a lot more complicated if the list contains names with

titles (such as Mr. or Dr.) or names followed by additional details (such as Jr.

or III). In fact, the following formulas will not handle these complex cases.

However, they still give you a significant head start if you’re willing to do a

bit of manual editing to handle the special cases.

The formulas that follow all assume that the name appears in cell A1.
You can easily construct a formula to return the first name:

=LEFT(A1,FIND(“ “,A1)-1)

Returning the middle name or initial is much more complicated since not all
names have a middle initial. This formula returns the middle name (if it exists).
Otherwise, it returns nothing.

=IF(ISERR(MID(A1,FIND(“ “,A1)+1,IF(ISERR(FIND(
“ “,A1,FIND(“ “,A1)+1)),FIND(“ “,A1),FIND(“ “,A1,FIND(
“ “,A1)+1))-FIND(“ “,A1)-1)),””,MID(A1,FIND(“ “,A1)+1,
IF(ISERR(FIND(“ “,A1,FIND(“ “,A1)+1)),FIND(“ “,A1),
FIND(“ “,A1,FIND(“ “,A1)+1))-FIND(“ “,A1)-1))

Finally, this formula returns the last name:

=RIGHT(A1,LEN(A1)-FIND(“*”,SUBSTITUTE(A1,” “,”*”,LEN(A1)-
LEN(SUBSTITUTE(A1,” “,””)))))

The formula that follows is a much shorter way to extract the middle name. This
formula is useful if you use the other formulas to extract the first name and the last
name. It assumes that the first name is in B1 and the last name is in D1.

=IF(LEN(B1&D1)+2>=LEN(A1),””,MID(A1,LEN(B1)+2,LEN(A1)-LEN(B1&D1)-2)

134 Part II: Using Functions in Your Formulas

4800-x Ch05.F 8/27/01 11:55 AM Page 134

As you can see in Figure 5-6, the formulas work fairly well. There are a few
problems, however — notably names that contain four “words.” But, as I mentioned
earlier, you can clean these cases up manually.

If you want to know how I created these complex formulas, refer to Chapter

20 for a discussion of megaformulas.

Figure 5-6: This worksheet uses formulas to extract
the first name, middle name (or initial), and last
name from a list of names in column A.

Removing Titles from Names
You can use the formula that follows to remove three common titles (Mr., Ms., and
Mrs.) from a name. For example, if cell A1 contains Mr. Fred Munster, the formula
would return Fred Munster.

=IF(OR(LEFT(A1,2)=”Mr”,LEFT(A1,3)=”Mrs”,LEFT(A1,2)=”Ms”),RIGHT(A1,LE
N(A1) -FIND(“ “,A1)),A1)

Counting the Number of Words in a Cell
The following formula returns the number of words in cell A1:

=LEN(TRIM(A1))-LEN(SUBSTITUTE(TRIM(A1),” “,””))+1

The formula uses the TRIM function to remove excess spaces. It then uses the
SUBSTITUTE function to create a new string (in memory) that has all the space
characters removed. The length of this string is subtracted from the length of the
original (trimmed) string to get the number of spaces. This value is then incre-
mented by 1 to get the number of words.

Chapter 5: Manipulating Text 135

4800-x Ch05.F 8/27/01 11:55 AM Page 135

Note that this formula will return 1 if the cell is empty. The following modifica-
tion solves that problem:

=IF(LEN(A1)=0,0,LEN(TRIM(A1))-LEN(SUBSTITUTE(TRIM(A1),” “,””))+1)

Custom VBA Text Functions
Excel has many functions that work with text, but likely you’ll run into a situation
in which the appropriate function just doesn’t exist. In such a case, you can often
create your own worksheet function using VBA.

Chapter 25 contains several additional text functions, written in VBA.

I briefly describe these functions here.

136 Part II: Using Functions in Your Formulas

Splitting Text Strings without Using Formulas
In many cases, you can eliminate the use of formulas and use Excel’s Data � Text to
Columns command to parse strings into their component parts. Selecting this
command displays Excel’s Convert Text to Columns Wizard, which consists of a series
of dialog boxes that walk you through the steps to convert a single column of data
into multiple columns. Generally, you’ll want to select the Delimited option (in Step 1)
and use Space as the delimiter (in Step 2).

4800-x Ch05.F 8/27/01 11:55 AM Page 136

� REVERSETEXT: Returns the text in a cell backwards. For example, using
Evian as the argument returns naivE.

� ACRONYM: Returns the first letter of each word in its argument. For
example, using Power Utility Pak as the argument returns PUP.

� SPELLDOLLARS: Returns a number “spelled out” in text — as on a check.
For example, using 123.45 as the argument returns One hundred twenty-
three and 45/100 dollars.

� SCRAMBLE: Returns the contents of its argument randomized. For exam-
ple, using Microsoft as the argument may return oficMorts — or some other
random permutation.

� ISLIKE: Returns TRUE if a string matches a pattern composed of text and
wildcard characters.

� CELLHASTEXT: Returns TRUE if the cell argument contains text, or a
value formatted as Text. This function overcomes the problems described
at the beginning of this chapter (see “Determining Whether a Cell
Contains Text”).

� EXTRACTELEMENT: Extracts an element from a string based on a speci-
fied separator character (such as a hyphen).

Summary
This chapter provided some background on how Excel deals with text entered
into cells. It also presented many useful examples that incorporate Excel’s text
functions.

The next chapter presents formulas that enable you to calculate dates, times, and
other time-period values.

Chapter 5: Manipulating Text 137

4800-x Ch05.F 8/27/01 11:55 AM Page 137

4800-x Ch05.F 8/27/01 11:55 AM Page 138

Chapter 6

Working with Dates
and Times

IN THIS CHAPTER

� An overview of using dates and times in Excel

� Excel’s date-related functions

� Excel’s time-related functions

BEGINNERS OFTEN FIND THAT working with dates and times in Excel can be frustrat-
ing. To eliminate this frustration, you’ll need a good understanding of how Excel
handles time-based information. This chapter provides the information you need to
create powerful formulas that manipulate dates and times.

The dates in this chapter correspond to the United States English date

format: month/day/year. For example, the date 3/1/1952 refers to March 1,

1952, not January 3, 1952. I realize that this is very illogical, but that’s the way

we Americans have been trained. I trust that the non-American readers of

this book can make the adjustment.

How Excel Handles Dates and Times
This section presents a quick overview of how Excel deals with dates and times. It
includes coverage of Excel’s date and time serial number system, and offers tips for
entering and formatting dates and times.

Other chapters in this book contain additional date-related information. For

example, refer to Chapter 7 for counting examples that use dates. Chapter 25

contains some VBA functions that work with dates.

139

4800-x Ch06.F 8/27/01 11:55 AM Page 139

Understanding Date Serial Numbers
To Excel, a date is simply a number. More precisely, a date is a “serial number” that
represents the number of days since January 0, 1900. A serial number of 1 corre-
sponds to January 1, 1900; a serial number of 2 corresponds to January 2, 1900,
and so on. This system makes it possible to deal with dates in formulas. For exam-
ple, you can create a formula to calculate the number of days between two dates.

You may wonder about January 0, 1900. This “non-date” (which corresponds to
date serial number 0) is actually used to represent times that are not associated with
a particular day. This will become clear later in this chapter.

To view a date serial number as a date, you must format the cell as a date. Use
the Format Cells dialog box (Number tab) to apply a date format.

Excel 97 and later versions support dates from January 1, 1900 through

December 31, 9999 (serial number = 2,958,465). Previous versions of Excel

support a much smaller range of dates: from January 1, 1900 through

December 31, 2078 (serial number = 65,380).

140 Part II: Using Functions in Your Formulas

Choose Your Date System: 1900 or 1904
Excel actually supports two date systems: the 1900 date system and the 1904 date
system. Which system you use in a workbook determines what date serves as the basis
for dates. The 1900 date system uses January 1, 1900 as the day assigned to date
serial number 1. The 1904 date system uses January 1, 1904 as the base date. By
default, Excel for Windows uses the 1900 date system, and Excel for Macintosh uses
the 1904 date system. Excel for Windows supports the 1904 date system for
compatibility with Macintosh files. You can choose the date system from the Options
dialog box (select Tools � Options and select the Calculation tab). You cannot change
the date system if you use Excel for Macintosh.

Generally, you should use the default 1900-date system. And you should exercise
caution if you use two different date systems in workbooks that are linked together.
For example, assume Book1 uses the 1904 date system and contains the date
1/15/1999 in cell A1. Assume Book2 uses the 1900 date system and contains a link to
cell A1 in Book1. Book2 will display the date as 1/14/1995. Both workbooks will use
the same date serial number (34713), but they will be interpreted differently.

One advantage to using the 1904 date system is that it enables you to display
negative time values. With the 1900 date system, a calculation that results in a
negative time (for example, 4:00 PM – 5:30 PM) cannot be displayed. When using the
1904 date system, the negative time displays as –1:30 (that is, a difference of one
hour and 30 minutes).

4800-x Ch06.F 8/27/01 11:55 AM Page 140

Entering Dates
You can enter a date directly as a serial number (if you know it), but more often
you’ll enter a date using any of several recognized date formats. Excel automati-
cally converts your entry into the corresponding date serial number (which it uses
for calculations), and also applies the default date format to the cell so it displays as
an actual date rather than a cryptic serial number.

For example, if you need to enter June 1, 2002, you can simply enter the date by
typing June 1, 2002 (or use any of several different date formats). Excel interprets
your entry and stores the value 37408, the date serial number for that date. It also
applies the default date format, so the cell contents may not appear exactly as you
typed them.

Depending on your regional settings, entering a date in a format such as

June 1, 2002 may be interpreted as a text string. In such a case, you would

need to enter the date in a format such as 1 June, 2002.

When you activate a cell that contains a date, the formula bar shows the cell
contents formatted using the default date format — which corresponds to your sys-
tem’s short date style. The formula bar does not display the date’s serial number. If
you need to find out the serial number for a particular date, format the cell using a
non-date number format.

To change the default date format, you need to change a system-wide set-

ting. Access the Windows Control Panel, and select Regional Settings. In the

Regional Settings dialog box, select the Date tab. The selected item for the

Short date style determines the default date format used by Excel.

Table 6-1 shows a sampling of the date formats that Excel recognizes (using the
U.S. settings). Results will vary if you use a different regional setting.

TABLE 6-1 DATE ENTRY FORMATS RECOGNIZED BY EXCEL

Entry Excel’s Interpretation (U.S. Settings)

6-1-01 June 1, 2001

6-1-2001 June 1, 2001

Continued

Chapter 6: Working with Dates and Times 141

4800-x Ch06.F 8/27/01 11:55 AM Page 141

TABLE 6-1 DATE ENTRY FORMATS RECOGNIZED BY EXCEL (Continued)

Entry Excel’s Interpretation (U.S. Settings)

6/1/01 June 1, 2001

6/1/2001 June 1, 2001

6-1/01 June 1, 2001

June 1, 2001 June 1, 2001

Jun 1 June 1 of the current year

June 1 June 1 of the current year

6/1 June 1 of the current year

6-1 June 1 of the current year

1-Jun-2001 June 1, 2001

2001/6/1 June 1, 2001

As you can see in Table 6-1, Excel is rather intelligent when it comes to recog-
nizing dates entered into a cell. It’s not perfect, however. For example, Excel does
not recognize any of the following entries as dates:

� June 1 2001

� Jun-1 2001

� Jun-1/2001

Rather, it interprets these entries as text. If you plan to use dates in formulas,
make sure that Excel can recognize the date you enter as a date; otherwise, the for-
mulas that refer to these dates will produce incorrect results.

If you attempt to enter a date that lies outside of the supported date range, Excel
interprets it as text. If you attempt to format a serial number that lies outside of the
supported range as a date, the value displays as a series of hash marks
(#########).

Understanding Time Serial Numbers
When you need to work with time values, you simply extend Excel’s date serial
number system to include decimals. In other words, Excel works with times by
using fractional days. For example, the date serial number for June 1, 2001, is
37043. Noon (halfway through the day) is represented internally as 37043.5.

142 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 142

The serial number equivalent of one minute is approximately 0.00069444. The
formula that follows calculates this number by multiplying 24 hours by 60 minutes,
and dividing the result into 1. The denominator consists of the number of minutes
in a day (1,440).

=1/(24*60)

Similarly, the serial number equivalent of one second is approximately
0.00001157, obtained by the following formula (1 divided by 24 hours times 60
minutes times 60 seconds). In this case, the denominator represents the number of
seconds in a day (86,400).

=1/(24*60*60)

In Excel, the smallest unit of time is one one-thousandth of a second. The time
serial number shown here represents 23:59:59.999, or one one-thousandth of a sec-
ond before midnight:

0.99999999

Table 6-2 shows various times of day, along with each associated time serial
number.

TABLE 6-2 TIMES OF DAY AND THEIR CORRESPONDING SERIAL NUMBERS

Time of Day Time Serial Number

12:00:00 AM (midnight) 0.00000000

1:30:00 AM 0.06250000

Continued

Chapter 6: Working with Dates and Times 143

Searching for Dates
If your worksheet uses many dates, you may need to search for a particular date by
using Excel’s Find dialog box (which you can access with the Edit � Find command, or
Ctrl+F). You’ll find that Excel is rather picky when it comes to finding dates. You must
enter a full four-digit date into the Find what field in the Find dialog box. The format
must correspond to your system’s short date format (this is the format that displays in
the formula bar).

4800-x Ch06.F 8/27/01 11:55 AM Page 143

TABLE 6-2 TIMES OF DAY AND THEIR CORRESPONDING
SERIAL NUMBERS (Continued)

Time of Day Time Serial Number

3:00:00 AM 0.12500000

4:30:00 AM 0.18750000

6:00:00 AM 0.25000000

7:30:00 AM 0.31250000

9:00:00 AM 0.37500000

10:30:00 AM 0.43750000

12:00:00 PM (noon) 0.50000000

1:30:00 PM 0.56250000

3:00:00 PM 0.62500000

4:30:00 PM 0.68750000

6:00:00 PM 0.75000000

7:30:00 PM 0.81250000

9:00:00 PM 0.87500000

10:30:00 PM 0.93750000

Entering Times
As with entering dates, you normally don’t have to worry about the actual time ser-
ial numbers. Just enter the time into a cell using a recognized format. Table 6-3
shows some examples of time formats that Excel recognizes:

TABLE 6-3 TIME ENTRY FORMATS RECOGNIZED BY EXCEL

Entry Excel’s Interpretation

11:30:00 am 11:30 AM

11:30:00 AM 11:30 AM

11:30 pm 11:30 PM

144 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 144

Entry Excel’s Interpretation

11:30 11:30 AM

13:30 1:30 PM

Because the preceding samples don’t have a specific day associated with them,
Excel (by default) uses a date serial number of 0, which corresponds to the non-day
January 0, 1900. Often, you’ll want to combine a date and time. Do so by using a
recognized date entry format, followed by a space, and then a recognized time-
entry format. For example, if you enter the text that follows in a cell, Excel inter-
prets it as 11:30 a.m. on June 1, 2001. Its date/time serial number is
37043.4791666667.

6/1/2001 11:30

When you enter a time that exceeds 24 hours, the associated date for the time
increments accordingly. For example, if you enter the following time into a cell, it
is interpreted as 1:00 AM on January 1, 1900. The day part of the entry increments
because the time exceeds 24 hours.

25:00:00

Similarly, if you enter a date and a time (and the time exceeds 24 hours), the date
that you entered is adjusted. The following entry, for example, is interpreted as
9/2/1999 1:00:00 AM.

9/1/1999 25:00:00

If you enter a time only (without an associated date), you’ll find that the maxi-
mum time that you can enter into a cell is 9999:59:59 (just under 10,000 hours).
Excel adds the appropriate number of days. In this case, 9999:59:59 is interpreted
as 3:59:59 PM on 02/19/1901. If you enter a time that exceeds 10,000 hours, the
time appears as a text string.

Formatting Dates and Times
You have a great deal of flexibility in formatting cells that contain dates and times.
For example, you can format the cell to display the date part only, the time part
only, or both the date and time parts.

You format dates and times by selecting the cells, and then using the Number tab
of the Format Cells dialog box, shown in Figure 6-1. The Date category shows
built-in date formats, and the Time category shows built-in time formats. Some of

Chapter 6: Working with Dates and Times 145

4800-x Ch06.F 8/27/01 11:55 AM Page 145

the formats include both date and time displays. Just select the desired format from
the Type list and click OK.

Figure 6-1: Use the Number tab in the Format Cells dialog
box to change the appearance of dates and times.

When you create a formula that refers to a cell containing a date or a time,

Excel automatically formats the formula cell as a date or a time. Sometimes,

this is very helpful; other times, it’s completely inappropriate and downright

annoying. Unfortunately, you cannot turn off this automatic date formatting.

You can, however, use a shortcut key combination to remove all number for-

matting from the cell and return to the default “General” format. Just select

the cell and press Ctrl+Shift+~.

If none of the built-in formats meet your needs, you can create a custom num-
ber format. Select the Custom category, and then type the custom format codes into
the Type box. (See Appendix C for information on creating custom number
formats.)

A particularly useful custom number format for displaying times is:

[h]:mm:ss

Using square brackets around the hour part of the format string causes

Excel to display hours beyond 24 hours.You will find this useful when adding

times that exceed 24 hours. For an example, see “Summing Times That

Exceed 24 Hours,” later in this chapter.

146 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 146

Problems with Dates
Excel has some problems when it comes to dates. Many of these problems stem
from the fact that Excel was designed many years ago, before the acronym Y2K
became a household term. And, as I describe, the Excel designers basically emulated
Lotus 1-2-3’s limited date and time features, which contain a nasty bug duplicated
intentionally in Excel. In addition, versions of Excel show inconsistency in how
they interpret a cell entry that has a two-digit year. And finally, how Excel inter-
prets a date entry depends on your regional date settings.

If Excel were being designed from scratch today, I’m sure it would be much more
versatile in dealing with dates. Unfortunately, we’re currently stuck with a product
that leaves much to be desired in the area of dates.

EXCEL’S LEAP YEAR BUG
A leap year, which occurs every four years, contains an additional day (February
29). Although the year 1900 was not a leap year, Excel treats it as such. In other
words, when you type the following into a cell, Excel does not complain. It inter-
prets this as a valid date and assigns a serial number of 60:

2/29/1900

If you type the following invalid date, Excel correctly interprets it as a mistake
and doesn’t convert it to a date. Rather, it simply makes the cell entry a text string:

2/29/1901

How can a product used daily by millions of people contain such an obvious
bug? The answer is historical. The original version of Lotus 1-2-3 contained a bug
that caused it to consider 1900 as a leap year. When Excel was released some time
later, the designers knew of this bug, and chose to reproduce it in Excel to maintain
compatibility with Lotus worksheet files.

Why does this bug still exist in later versions of Excel? Microsoft asserts that the
disadvantages of correcting this bug outweigh the advantages. If the bug were
eliminated, it would mess up hundreds of thousands of existing workbooks. In
addition, correcting this problem would affect compatibility between Excel and
other programs that use dates. As it stands, this bug really causes very few prob-
lems because most users do not use dates before March 1, 1900.

PRE-1900 DATES
The world, of course, didn’t begin on January 1, 1900. People who work with his-
torical information using Excel often need to work with dates before January 1,
1900. Unfortunately, the only way to work with pre-1900 dates is to enter the date
into a cell as text. For example, you can enter the following into a cell and Excel
won’t complain:

July 4, 1776

Chapter 6: Working with Dates and Times 147

4800-x Ch06.F 8/27/01 11:55 AM Page 147

You can’t, however, perform any manipulation on dates recognized as text. For
example, you can’t change its numeric formatting, you can’t determine which day
of the week this date occurred on, and you can’t calculate the date that occurs
seven days later.

The companion CD-ROM contains an add-in that I developed called

Extended Date Functions. When you install this add-in, you’ll have access to

eight new worksheet functions that enable you to work with any date in the

years 0100 through 9999. Figure 6-2 shows a worksheet that uses these

functions in column D to perform calculations that involve pre-1900 dates.

Figure 6-2: The Extended Date Functions add-in enables
you to work with pre-1900 dates.

INCONSISTENT DATE ENTRIES
You need to exercise caution when entering dates by using two digits for the year.
When you do so, Excel has some rules that kick in to determine which century to
use. And those rules vary depending on the version of Excel that you use.

For Excel 97, two-digit years between 00 and 29 are interpreted as 21st century
dates, and two-digit years between 30 and 99 are interpreted as 20th century dates.
For example, if you enter 12/5/28, Excel interprets your entry as December 5, 2028.
But if you enter 12/5/30, Excel sees it as December 5, 1930. If you use Excel 2000
or later (running on Windows 98 or later), you can use the default boundary year of
2029, or change it using the Windows Control Panel (use the Date tab of the
Regional Settings Properties dialog box).

For previous versions of Excel (Excel 3 through Excel 95), two-digit years
between 00 and 19 are interpreted as 21st century dates, and two-digit years
between 20 and 99 are interpreted as 20th century dates. For example, if you enter
12/5/19, Excel interprets your entry as December 5, 2019. But if you enter 12/5/20,
Excel sees it as December 5, 1920.

If, for some unknown reason, you still use Excel 2, when you enter a two-digit
date, it is always interpreted as a 20th century date. Table 6-4 summarizes these
differences for various versions of Excel.

148 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 148

TABLE 6-4 HOW TWO-DIGIT YEARS ARE INTERPRETED
IN VARIOUS EXCEL VERSIONS

Excel Version 20th Century Years 21st Century Years

2 00–99 N/A

3, 4, 5, 7 (95) 20–99 00–19

8 (97), 9 (2000), 10 (2002) 30–99 00–29

To avoid any surprises, you should simply enter all years using all four digits for
the year.

Date-Related Functions
Excel has quite a few functions that work with dates. When you use the Insert
Function dialog box, these functions appear in the Date & Time function category.

Table 6-5 summarizes the date-related functions available in Excel. Some of
Excel’s date functions require that you install the Analysis ToolPak.

TABLE 6-5 DATE-RELATED FUNCTIONS

Function Description

DATE Returns the serial number of a particular date

DATEDIF Calculates the number of days, months, or years between two dates

DATEVALUE Converts a date in the form of text to a serial number

DAY Converts a serial number to a day of the month

DAYS360 Calculates the number of days between two dates based on a 360-
day year

EDATE* Returns the serial number of the date that represents the indicated
number of months before or after the start date

EOMONTH* Returns the serial number of the last day of the month before or
after a specified number of months

Continued

Chapter 6: Working with Dates and Times 149

4800-x Ch06.F 8/27/01 11:55 AM Page 149

TABLE 6-5 DATE-RELATED FUNCTIONS (Continued)

Function Description

MONTH Converts a serial number to a month

NETWORKDAYS* Returns the number of whole workdays between two dates

NOW Returns the serial number of the current date and time

TODAY Returns the serial number of today’s date

WEEKDAY Converts a serial number to a day of the week

WEEKNUM* Returns the week number in the year

WORKDAY* Returns the serial number of the date before or after a specified
number of workdays

YEAR Converts a serial number to a year

YEARFRAC* Returns the year fraction representing the number of whole days
between start_date and end_date

*Function is available only when the Analysis ToolPak add-in is installed.

Displaying the Current Date
The following function displays the current date in a cell:

=TODAY()

You can also display the date, combined with text. The formula that follows, for
example, displays text such as Today is Monday, April 9, 2001.

=”Today is “&TEXT(TODAY(),”dddd, mmmm d, yyyy”)

It’s important to understand that the TODAY function is updated whenever the
worksheet is calculated. For example, if you enter either of the preceding formulas
into a worksheet, they will display the current date. But when you open the work-
book tomorrow, they will display the current date (not the date when you entered
the formula).

150 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 150

To enter a “date stamp” into a cell, press Ctrl+; (semicolon). This enters the

date directly into the cell and does not use a formula.Therefore, the date will

not change.

Displaying Any Date
As explained earlier in this chapter, you can easily enter a date into a cell by sim-
ply typing it, using any of the date formats that Excel recognizes. You can also cre-
ate a date by using the DATE function, which takes three arguments: the year, the
month, and the day. The following formula, for example, returns a date comprised
of the year in cell A1, the month in cell B1, and the day in cell C1:

=DATE(A1,B1,C1)

The DATE function accepts invalid arguments, and adjusts the result accord-

ingly. For example, this next formula uses 13 as the month argument, and

returns January 1, 2002. The month argument is automatically translated as

month 1 of the following year.

=DATE(2001,13,1)

Often, you’ll use the DATE function with other functions as arguments. For
example, the formula that follows uses the YEAR and TODAY functions to return
the date for Independence Day (July 4th) of the current year:

=DATE(YEAR(TODAY()),7,4)

The DATEVALUE function converts a text string that looks like a date into a date
serial number. The following formula returns 37490, the date serial number for
August 22, 2002:

=DATEVALUE(“8/22/2002”)

To view the result of this formula as a date, you need to apply a date number
format to the cell.

Chapter 6: Working with Dates and Times 151

4800-x Ch06.F 8/27/01 11:55 AM Page 151

Be careful when using the DATEVALUE function. A text string that “looks like

a date” in your country, may not look like a date in another country. The pre-

ceding example works fine if your system is set for U.S. date formats, but it

returns an error for other regional date formats because Excel is looking for

the eighth day of the 22nd month!

Generating a Series of Dates
Often, you’ll want to insert a series of dates into a worksheet. For example, in
tracking weekly sales, you may want to enter a series of dates, each separated by
seven days. These dates will serve to identify the sales figures.

The most efficient way to enter a series of dates doesn’t require any formulas.
Use Excel’s AutoFill feature to insert a series of dates. Enter the first date, and drag
the cell’s fill handle while pressing the right mouse button. Release the mouse but-
ton and select an option from the shortcut menu (see Figure 6-3).

Figure 6-3: Using Excel’s AutoFill feature to create a series of dates

The advantage of using formulas to create a series of dates is that you can
change the first date and the others will update automatically. You need to enter the
starting date into a cell, and then use formulas (copied down the column) to gener-
ate the additional dates.

The following examples assume that you entered the first date of the series into
cell A1, and the formula into cell A2. You can then copy this formula down the col-
umn as many times as needed.

152 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 152

To generate a series of dates separated by seven days, use this formula:

=A1+7

To generate a series of dates separated by one month, use this formula:

=DATE(YEAR(A1),MONTH(A1)+1,DAY(A1))

To generate a series of dates separated by one year, use this formula:

=DATE(YEAR(A1)+1,MONTH(A1),DAY(A1))

To generate a series of weekdays only (no Saturdays or Sundays), use the for-
mula that follows. This formula assumes that the date in cell A1 is not a weekend.

=IF(WEEKDAY(A1)=6,A1+3,A1+1)

Converting a Non-Date String to a Date
You may import data that contains dates coded as text strings. For example, the
following text represents August 21, 2001 (a four-digit year followed by a two-digit
month, followed by a two-digit day):

20010821

To convert this string to an actual date, you can use a formula such as this one
(it assumes the coded data is in cell A1):

=DATE(LEFT(A1,4),MID(A1,5,2),RIGHT(A1,2))

This formula uses text functions (LEFT, MID, and RIGHT) to extract the digits,
and then uses these extracted digits as arguments for the DATE function.

Refer to Chapter 5 for more information about using formulas to manipulate

text.

Calculating the Number of Days
between Two Dates
A common type of date calculation determines the number of days between two
dates. For example, you may have a financial worksheet that calculates interest

Chapter 6: Working with Dates and Times 153

4800-x Ch06.F 8/27/01 11:55 AM Page 153

earned on a deposit account. The interest earned depends on the number of days
the account is open. If your sheet contains the open date and the close date for the
account, you can calculate the number of days the account was open.

Because dates store as consecutive serial numbers, you can use simple subtrac-
tion to calculate the number of days between two dates. For example, if cells A1
and B1 both contain a date, the following formula returns the number of days
between these dates:

=A1-B1

Excel will automatically format this formula cell as a date, rather than a numeric
value. Therefore, you will need to change the number format so the result is dis-
played as a non-date. If cell B1 contains a more recent date than the date in cell A1,
the result will be negative.

If this formula does not display the correct value, make sure that A1 and B1

both contain actual dates — not text that looks like a date.

Sometimes, calculating the difference between two days is more difficult. To
demonstrate, consider the common “fence-post” analogy. If somebody asks you
how many units make up a fence, you can respond with either of two answers: the
number of fence posts, or the number of gaps between the fence posts. The number
of fence posts is always one more than the number of gaps between the posts.

To bring this analogy into the realm of dates, suppose you start a sales promo-
tion on February 1, and end the promotion on February 9. How many days was the
promotion in effect? Subtracting February 1 from February 9 produces an answer
of eight days. Actually, the promotion lasted nine days. In this case, the correct
answer involves counting the fence posts, not the gaps. The formula to calculate
the length of the promotion (assuming you have appropriately named cells) appears
like this:

=EndDay-StartDay+1

Calculating the Number of Work Days
between Two Dates
When calculating the difference between two dates, you may want to exclude
weekends and holidays. For example, you may need to know how many business
days fall in the month of November. This calculation should exclude Saturdays,
Sundays, and holidays. The NETWORKDAYS function can help out. (You can access
this function only when you install the Analysis ToolPak.)

154 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 154

The NETWORKDAYS function has a very misleading name. This function has

nothing to do with networks or networking. Rather, it calculates the net

workdays between two dates.

The NETWORKDAYS function calculates the difference between two dates,
excluding weekend days (Saturdays and Sundays). As an option, you can specify a
range of cells that contain the dates of holidays, which are also excluded. Excel has
absolutely no way of determining which days are holidays, so you must provide
this information in a range.

Figure 6-4 shows a worksheet that calculates the workdays between two dates.
The range A2:A11 contains a list of holiday dates. The formulas in column C calcu-
late the workdays between the dates in column A and column B. For example, the
formula in cell C15 is:

=NETWORKDAYS(A15,B15,A2:A11)

Figure 6-4: Using the NETWORKDAYS function to calculate
the number of working days between two dates

This formula returns 4, which means that the seven-day period beginning with
January 1 contains four workdays. In other words, the calculation excludes one
holiday, one Saturday, and one Sunday. The formula in cell C16 calculates the total
number of work days in the year.

This workbook is available on the companion CD-ROM.

Chapter 6: Working with Dates and Times 155

4800-x Ch06.F 8/27/01 11:55 AM Page 155

Offsetting a Date Using Only Work Days
The WORKDAY function, which is available only when you install the Analysis
ToolPak, is the opposite of the NETWORKDAYS function. For example, if you start
a project on January 4, and the project requires 10 working days to complete, the
WORKDAY function can calculate the date you will finish the project.

The following formula uses the WORKDAY function to determine the date 10
working days from January 4, 2001. A working day consists of a weekday (Monday
through Friday).

=WORKDAY(“1/4/2001”,10)

The formula returns January 18, 2001 (four weekend dates fall between January
4 and January 18).

The preceding formula may return a different result, depending on your

regional date setting (the hard-coded date may be interpreted as April 1,

2001). A better formula is:

=WORKDAY(DATE(2001,1,4),10)

The second argument for the WORKDAY function can be negative. And, as with
the NETWORKDAYS function, the WORKDAY function accepts an optional third
argument (a reference to a range that contains a list of holiday dates).

Calculating the Number of Years
between Two Dates
The following formula calculates the number of years between two dates. This for-
mula assumes that cells A1 and B1 both contain dates:

=YEAR(A1)-YEAR(B1)

This formula uses the YEAR function to extract the year from each date, and
then subtracts one year from the other. If cell B1 contains a more recent date than
the date in cell A1, the result will be negative.

Note that this function doesn’t calculate full years. For example, if cell A1 con-
tains 12/31/2001 and cell B1 contains 01/01/2002, the formula returns a difference
of one year, even though the dates differ by only one day.

Calculating a Person’s Age
A person’s age indicates the number of full years that the person has been alive.
The formula in the previous section (for calculating the number of years between

156 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 156

two dates) won’t calculate this value correctly. You can use two other formulas,
however, to calculate a person’s age.

The following formula returns the age of the person whose date of birth you
enter into cell A1. This formula uses the YEARFRAC function, which is available
only when you install the Analysis ToolPak add-in.

=INT(YEARFRAC(TODAY(),A1,1))

The following formula, which doesn’t rely on an Analysis ToolPak function, uses
the DATEDIF function to calculate an age (see the sidebar, “Where’s the DATEDIF
Function?”):

=DATEDIF(A1,TODAY(),”Y”)

If you’re a stickler for detail, use the following formula to calculate the exact age
in years, months, and days.

=DATEDIF(A1,NOW(),”y”) & “ years, “ & DATEDIF(A1,NOW(),”ym”) &
“ months, “ & DATEDIF(A1,NOW(),”md”) & “ days”

This formula will return a text string such as 49 years, 3 months, 29 days.

Determining the Day of the Year
January 1 is the first day of the year, and December 31 is the last day. But what
about all of those days in between? The following formula returns the day of the
year for a date stored in cell A1:

=A1-DATE(YEAR(A1),1,0)

The day of the year is sometimes referred to as a Julian date.
The following formula returns the number of days remaining in the year from a

particular date (assumed to be in cell A1):

=DATE(YEAR(A1),12,31)-A1

When you enter either of these formulas, Excel applies date formatting to the
cell. You need to apply a non-date number format to view the result as a number.

To convert a particular day of the year (for example, the 90th day of the year) to
an actual date in a specified year, use the formula that follows. This formula
assumes the year is stored in cell A1, and the day of the year is stored in cell B1.

=DATE(A1,1,B1)

Chapter 6: Working with Dates and Times 157

4800-x Ch06.F 8/27/01 11:55 AM Page 157

Determining the Day of the Week
The WEEKDAY function accepts a date argument, and returns an integer between 1
and 7 that corresponds to the day of the week. The following formula, for example,
returns 3 because the first day of the year 2002 falls on a Tuesday:

=WEEKDAY(DATE(2002,1,1))

158 Part II: Using Functions in Your Formulas

Where’s the DATEDIF Function?
In several places throughout this chapter, I refer to the DATEDIF function. You may
notice that this function does not appear in the Paste Function dialog box. Therefore,
when you use this function, you must always enter it manually.

The DATEDIF function has its origins in Lotus 1-2-3, and apparently Excel provides it
for compatibility purposes. For some reason, Microsoft wants to keep this function a
secret. Versions prior to Excel 2000 failed to even mention the DATEDIF function in
the online help. Interestingly, references to this function were removed from the
online help for Excel 2002 (although the function is still available).

DATEDIF is a handy function that calculates the number of days, months, or years
between two dates. The function takes three arguments: start_date, end_date, and a
code that represents the time unit of interest. The following table displays valid codes
for the third argument (you must enclose the codes in quotation marks).

Unit Code Returns

“y” The number of complete years in the period.

“m” The number of complete months in the period.

“d” The number of days in the period.

“md” The difference between the days in start_date and end_date. The
months and years of the dates are ignored.

“ym” The difference between the months in start_date and end_date.
The days and years of the dates are ignored.

“yd” The difference between the days of start_date and end_date. The
years of the dates are ignored.

The start_date argument must be earlier than the end_date argument, or the function
returns an error.

4800-x Ch06.F 8/27/01 11:55 AM Page 158

The WEEKDAY function uses an optional second argument that specifies the day
numbering system for the result. If you specify 2 as the second argument, the func-
tion returns 1 for Monday, 2 for Tuesday, and so on. If you specify 3 as the second
argument, the function returns 0 for Monday, 1 for Tuesday, and so on.

You can also determine the day of the week for a cell that contains a date by

applying a custom number format. A cell that uses the following custom

number format displays the day of the week, spelled out:

dddd

Chapter 6: Working with Dates and Times 159

Power Utility Pak Date Utilities
My Power Utility Pak add-in (available on the companion CD-ROM) includes several
utilities that work with dates:

� Perpetual Calendar: Displays a calendar for any month, creates a graphic cal-
endar image, and creates calendars in worksheets.

� Insert-A-Date: Simplifies date entries. You can insert a date into a cell by
clicking a calendar and choosing from a list of common date formats.

� Reminder Alarm: Displays a reminder (with sound) at a specified time of day,
or after a specified period of time has elapsed.

� Time Tracker: Tracks the amount of time spent working on up to six different
projects.

� Date Report: Creates a useful report that describes all dates in a workbook.
This utility is useful for spotting potential Y2K problems.

4800-x Ch06.F 8/27/01 11:55 AM Page 159

Determining the Date of the Most Recent Sunday
You can use the following formula to return the date for the previous Sunday. If the
current day is a Sunday, the formula returns the current date:

=TODAY()-MOD(TODAY()-1,7)

To modify this formula to find the date of a day other than Sunday, change the
1 to a different number between 2 (for Monday) and 7 (for Saturday).

Determining the First Day
of the Week after a Date
This next formula returns the specified day of the week that occurs after a particu-
lar date. For example, use this formula to determine the date of the first Monday
after June 1, 2001. The formula assumes that cell A1 contains a date, and cell A2
contains a number between 1 and 7 (1 for Sunday, 2 for Monday, and so on).

=A1+A2-WEEKDAY(A1)+(A2<WEEKDAY(A1))*7

If cell A1 contains June 1, 2001 and cell A2 contains 2 (for Monday), the formula
returns June 4, 2001. This is the first Monday after June 1, 2001 (which is a Friday).

Determining the nth Occurrence of a Day
of the Week in a Month
You may need a formula to determine the date for a particular occurrence of a
weekday. For example, suppose your company payday falls on the second Friday of
each month, and you need to determine the paydays for each month of the year.
The following formula will make this type of calculation:

=DATE(A1,A2,1)+A3-WEEKDAY(DATE(A1,A2,1))+
(A4-(A3>=WEEKDAY(DATE(A1,A2,1))))*7

The formula in this section assumes:

� Cell A1 contains a year

� Cell A2 contains a month

� Cell A3 contains a day number (1 for Sunday, 2 for Monday, etc.)

� Cell A4 contains the occurrence number (for example, 2 to select the sec-
ond occurrence of the weekday specified in cell A3)

If you use this formula to determine the date of the first Friday in June 2002, it
returns June 7, 2002.

160 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 160

If the value in cell A4 exceeds the number of the specified day in the month,

the formula returns a date from a subsequent month. For example, if you

attempt to determine the date of the fifth Friday in June 2002 (there is no

such date), the formula returns the first Friday in July.

Counting the Occurrences of a Day of the Week
You can use the following formula to count the number of occurrences of a partic-
ular day of the week for a specified month. It assumes that cell A1 contains a date,
and cell B1 contains a day number (1 for Sunday, 2 for Monday, etc.). The formula
is an array formula, so you must enter it using Ctrl+Shift+Enter.

{=SUM((WEEKDAY(DATE(YEAR(A1),MONTH(A1),ROW(INDIRECT(“1:”&
DAY(DATE(YEAR(A1),MONTH(A1)+1,0))))))=B1)*1)}

If cell A1 contains the date January 5, 2002, and cell B1 contains the value 3 (for
Tuesday), the formula returns 5, which reveals that January 2002 contains five
Tuesdays.

The preceding array formula calculates the year and month by using the YEAR
and MONTH functions. You can simplify the formula a bit if you store the year and
month in separate cells. The following formula (also an array formula) assumes that
the year appears in cell A1, the month in cell A2, and the day number in cell B1:

{=SUM((WEEKDAY(DATE(A1,A2,ROW(INDIRECT(“1:”&
DAY(DATE(A1,A2+1,0))))))=B1)*1)}

Figure 6-5 shows this formula used in a worksheet. In this case, the formula uses
mixed cell references so you can copy it. For example, the formula in cell C3 is:

{=SUM((WEEKDAY(DATE(B2,$A3,ROW(INDIRECT(“1:”&
DAY(DATE(B2,$A3+1,0))))))=C$1)*1)}

Additional formulas use the SUM function to calculate the number of days per
month (column J) and the number of each weekday in the year (row 15).

The workbook shown in Figure 6-5 is available on the companion CD-ROM.

Chapter 6: Working with Dates and Times 161

4800-x Ch06.F 8/27/01 11:55 AM Page 161

Figure 6-5: Calculating the number of each weekday in each month of a year

Expressing a Date as an Ordinal Number
You may want to express the day portion of a date as an ordinal number. For
example, you can display 4/6/2000 as April 6th, 2000. The following formula
expresses the date in cell A1 as an ordinal date:

=TEXT(A1,”mmmm “)&DAY(A1)&IF(INT(MOD(DAY(A1),100)/10)=1,
“th”,IF(MOD(DAY(A1),10)=1,
“st”,IF(MOD(DAY(A1),10)=2,”nd”,IF(MOD(DAY(A1),10)=3,
“rd”,”th”))))&TEXT(A1,”, yyyy”)

The result of this formula is text, not an actual date.

The following formula shows a variation that expresses the date in cell A1 in
day-month-year format. For example, 4/6/2000 would appear as 4th April, 2000.
Again, the result of this formula represents text, not an actual date.

=DAY(A1)&IF(INT(MOD(DAY(A1),100)/10)=1, “th”, IF(MOD(DAY(A1),10)=1,
“st”,IF(MOD(DAY(A1),10)=2,”nd”, IF(MOD(DAY(A1),10)=3, “rd”,”th”))))&
“ “ &TEXT(A1,”mmmm, yyyy”)

The companion CD-ROM contains a workbook that demonstrates the for-

mulas for expressing dates as ordinal numbers.

162 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 162

Calculating Dates of Holidays
Determining the date for a particular holiday can be tricky. Some, such as New
Year’s Day and U.S. Independence Day, are no-brainers, because they always occur
on the same date. For these kinds of holidays, you can simply use the DATE
function, which I covered earlier in this chapter. To enter New Year’s Day (which
always falls on January 1) for a specific year in cell A1, you can enter this function:

=DATE(A1,1,1)

Other holidays are defined in terms of a particular occurrence of a particular
weekday in a particular month. For example, Labor Day falls on the first Monday in
September.

Figure 6-6 shows a workbook with formulas to calculate the date for 10 U.S. hol-
idays. The formulas reference the year in cell A1. Notice that because New Year’s
Day, Independence Day, Veterans Day, and Christmas Day all fall on the same days
of the year, the DATE function calculates their dates.

Figure 6-6: Using formulas to determine the date for various holidays

The workbook shown in Figure 6-6 also appears on the companion CD-ROM.

MARTIN LUTHER KING JR. DAY
This holiday occurs on the third Monday in January. This formula calculates Martin
Luther King Jr. Day for the year in cell A1:

=DATE(A1,1,1)+IF(2<WEEKDAY(DATE(A1,1,1)),7-WEEKDAY
(DATE(A1,1,1))+2,2-WEEKDAY(DATE(A1,1,1)))+((3-1)*7)

Chapter 6: Working with Dates and Times 163

4800-x Ch06.F 8/27/01 11:55 AM Page 163

PRESIDENTS’ DAY
Presidents’ Day occurs on the third Monday in February. This formula calculates
Presidents’ Day for the year in cell A1:

=DATE(A1,2,1)+IF(2<WEEKDAY(DATE(A1,2,1)),7-WEEKDAY
(DATE(A1,2,1))+2,2-WEEKDAY(DATE(A1,2,1)))+((3-1)*7)

MEMORIAL DAY
The last Monday in May is Memorial Day. This formula calculates Memorial Day for
the year in cell A1:

=DATE(A1,6,1)+IF(2<WEEKDAY(DATE(A1,6,1)),7-WEEKDAY
(DATE(A1,6,1))+2,2-WEEKDAY(DATE(A1,6,1)))+((1-1)*7)-7

Notice that this formula actually calculates the first Monday in June, and then
subtracts 7 from the result to return the last Monday in May.

LABOR DAY
Labor Day occurs on the first Monday in September. This formula calculates Labor
Day for the year in cell A1:

=DATE(A1,9,1)+IF(2<WEEKDAY(DATE(A1,9,1)),7-WEEKDAY
(DATE(A1,9,1))+2,2-WEEKDAY(DATE(A1,9,1)))+((1-1)*7)

COLUMBUS DAY
This holiday occurs on the second Monday in October. This formula calculates
Columbus Day for the year in cell A1:

=DATE(A1,10,1)+IF(2<WEEKDAY(DATE(A1,10,1)),7-WEEKDAY
(DATE(A1,10,1))+2,2-WEEKDAY(DATE(A1,10,1)))+((2-1)*7)

THANKSGIVING DAY
Thanksgiving Day is celebrated on the fourth Thursday in November. This formula
calculates Thanksgiving Day for the year in cell A1:

=DATE(A1,11,1)+IF(5<WEEKDAY(DATE(A1,11,1)),7-WEEKDAY
(DATE(A1,11,1))+5,5-WEEKDAY(DATE(A1,11,1)))+((4-1)*7)

164 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 164

Determining the Last Day of a Month
To determine the date that corresponds to the last day of a month, you can use the
DATE function. However, you need to increment the month by 1, and use a day
value of 0. In other words, the “0th” day of the next month is the last day of the
current month.

The following formula assumes that a date is stored in cell A1. The formula
returns the date that corresponds to the last day of the month.

=DATE(YEAR(A1),MONTH(A1)+1,0)

You can use a variation of this formula to determine how many days comprise a
specified month. The formula that follows returns an integer that corresponds to
the number of days in the month for the date in cell A1:

=DAY(DATE(YEAR(A1),MONTH(A1)+1,0))

Determining Whether a Year Is a Leap Year
To determine whether a particular year is a leap year, you can write a formula that
determines whether the 29th day of February occurs in February or March. You can
take advantage of the fact that Excel’s DATE function adjusts the result when you
supply an invalid argument — for example, a day of 29 when February contains
only 28 days.

Chapter 6: Working with Dates and Times 165

Calculating Easter
You’ll notice that I omitted Easter from the previous section. Easter is an unusual
holiday because its date is determined based on the phase of the moon and not by the
calendar. Because of this, determining when Easter occurs proves a bit of a challenge.

Hans Herber, an Excel master in Germany, once sponsored an Easter formula contest
at his Web site. The goal was to create the shortest formula possible that correctly
determined the date of Easter for the years 1900 through 2078.

Twenty formulas were submitted, ranging in length from 44 characters up to 154
characters. Some of these formulas, however, work only with European date settings.
The following formula, submitted by Thomas Jansen, is the shortest formula that
works with any date setting. This formula returns the date for Easter, and assumes the
year is stored in cell A1:

=DOLLAR((“4/”&A1)/7+MOD(19*MOD(A1,19)-7,30)*14%,)*7-6

Please don’t ask me to explain this formula. I haven’t a clue!

4800-x Ch06.F 8/27/01 11:55 AM Page 165

The following formula returns TRUE if the year of the date in cell A1 is a leap
year. Otherwise, it returns FALSE.

=IF(MONTH(DATE(YEAR(A1),2,29))=2,TRUE,FALSE)

This function returns the wrong result (TRUE) if the year is 1900. See “Excel’s

Leap Year Bug,” earlier in this chapter.

Determining a Date’s Quarter
For financial reports, you might find it useful to present information in terms of
quarters. The following formula returns an integer between 1 and 4 that corre-
sponds to the calendar quarter for the date in cell A1:

=ROUNDUP(MONTH(A1)/3,0)

This formula divides the month number by 3, and then rounds up the result.

Converting a Year to Roman Numerals
Fans of old movies will like this one. The following formula converts the year 1945
to Roman numerals. It returns MCMXLV.

=ROMAN(1945)

You can access the ROMAN function once you install the Analysis ToolPak. This
function returns a text string, so you can’t perform any calculations using the
result! Unfortunately, Excel doesn’t provide a function to convert Roman numerals
back to normal numbers.

Creating a Calendar in a Range
The example calendar you see in Figure 6-7 uses a single formula (an array formula)
to display a calendar in a range of cells. The scroll bars are linked to cells that con-
tain the month and year. The month is stored in cell B2 (named m) and the year is
stored in cell D2 (named y). Enter the following array formula into the range B6:H11:

{=IF(MONTH(DATE(y,m,1))<>MONTH(DATE(y,m,1)-(WEEKDAY
(DATE(y,m,1))-1)+{0;1;2;3;4;5}*7+{1,2,3,4,5,6,7}-1),
“”,DATE(y,m,1)-(WEEKDAY(DATE(y,m,1))-1)+{0;1;2;3;4;5}
*7+{1,2,3,4,5,6,7}-1)}

166 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 166

Figure 6-7: You can generate this calendar by using a single array formula,
entered into 42 cells.

You can access the workbook shown in Figure 6-7 on the companion

CD-ROM.

Time-Related Functions
Excel, as you might expect, also includes a number of functions that enable you to
work with time values in your formulas. This section contains examples that
demonstrate the use of these functions.

Table 6-6 summarizes the time-related functions available in Excel. When you
use the Paste Function dialog box, these functions appear in the Date & Time func-
tion category.

Chapter 6: Working with Dates and Times 167

4800-x Ch06.F 8/27/01 11:55 AM Page 167

TABLE 6-6 TIME-RELATED FUNCTIONS

Function Description

HOUR Converts a serial number to an hour

MINUTE Converts a serial number to a minute

MONTH Converts a serial number to a month

NOW Returns the serial number of the current date and time

SECOND Converts a serial number to a second

TIME Returns the serial number of a particular time

TIMEVALUE Converts a time in the form of text to a serial number

Displaying the Current Time
This formula displays the current time as a time serial number (or, a serial number
without an associated date):

=NOW()-TODAY()

To enter a time stamp into a cell, press Ctrl+Shift+: (colon).

You need to format the cell with a time format to view the result as a recogniz-
able time. For example, you can apply the following number format:

hh:mm AM/PM

You can also display the time, combined with text. The formula that follows dis-
plays the text, “The current time is 6:28 PM”.

=”The current time is “&TEXT(NOW(),”h:mm AM/PM”)

168 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 168

These formulas are updated only when the worksheet is calculated.

Displaying Any Time
Earlier in this chapter, I described how to enter a time value into a cell: Just type it
into a cell, making sure that you include at least one colon (:). You can also create
a time by using the TIME function. For example, the following formula returns a
time comprised of the hour in cell A1, the minute in cell B1, and the second in
cell C1:

=TIME(A1,B1,C1)

Like the DATE function, the TIME function accepts invalid arguments and
adjusts the result accordingly. For example, the following formula uses 80 as the
minute argument, and returns 10:20:15 AM. The 80 minutes are simply added to
the hour, with 20 minutes remaining.

=TIME(9,80,15)

If you enter a value greater than 24 as the first argument for the TIME func-

tion, the result may not be what you expect. Logically, a formula such as the

one that follows should produce a date/time serial number of 1.041667 (that

is, one day and one hour).

=TIME(25,0,0)

In fact, this formula is equivalent to the following:

=TIME(1,0,0)

You can also use the DATE function along with the TIME function in a single
cell. The formula that follows generates 37229.7708333333, the serial number that
represents 6:30 PM on December 4, 2001:

=DATE(2001,12,4)+TIME(18,30,0)

Chapter 6: Working with Dates and Times 169

4800-x Ch06.F 8/27/01 11:55 AM Page 169

The TIMEVALUE function converts a text string that looks like a time into a
time serial number. This formula returns 0.2395833333, the time serial number for
5:45 AM:

=TIMEVALUE(“5:45 am”)

To view the result of this formula as a time, you need to apply number format-
ting to the cell. The TIMEVALUE function doesn’t recognize all common time for-
mats. For example, the following formula returns an error because Excel doesn’t
like the periods in “a.m.”

=TIMEVALUE(“5:45 a.m.”)

Summing Times That Exceed 24 Hours
Many people are surprised to discover that, when you sum a series of times that
exceed 24 hours, Excel doesn’t display the correct total. Figure 6-8 shows an exam-
ple. The range B2:B8 contains times that represent the hours and minutes worked
each day. The formula in cell B9 is:

=SUM(B2:B8)

As you can see, the formula returns a seemingly incorrect total (18 hours, 30
minutes). The total should read 42 hours, 30 minutes. The problem is that the for-
mula is really displaying a date/time serial number of 1.770833, but the cell for-
matting is not displaying the “date” part of the date/time.

Figure 6-8: Using the SUM function to add a series of times. The
answer is incorrect because cell B9 has the wrong number format.

To view a time that exceeds 24 hours, you need to change the number format for
the cell so square brackets surround the hour part of the format string. Applying the
number format here to cell B9 displays the sum correctly:

[h]:mm

170 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 170

Figure 6-9 shows another example of a worksheet that manipulates times. This
worksheet keeps track of hours worked during a week (regular hours and overtime
hours).

Figure 6-9: An employee timesheet workbook

The week’s starting date appears in cell D5, and the formulas in column B fill in
the dates for the days of the week. Times appear in the range D8:G14, and formu-
las in column H calculate the number of hours worked each day. For example, the
formula in cell H8 is:

=IF(E8<D8,E8+1-D8,E8-D8)+IF(G8<F8,G8+1-G8,G8-F8)

The first part of this formula subtracts the time in column D from the time in
column E to get the total hours worked before lunch. The second part subtracts the
time in column F from the time in column G to get the total hours worked after
lunch. I use IF functions to accommodate graveyard shift cases that span
midnight — for example, an employee may start work at 10:00 PM and begin lunch
at 2:00 AM. Without the IF function, the formula returns a negative result.

The following formula in cell H17 calculates the weekly total by summing the
daily totals in column H:

=SUM(H8:H14)

Chapter 6: Working with Dates and Times 171

4800-x Ch06.F 8/27/01 11:55 AM Page 171

This worksheet assumes that hours that exceed 40 hours in a week are consid-
ered overtime hours. The worksheet contains a cell named Overtime (not shown in
Figure 6-9). This cell contains the following formula:

=1+TIME(16,0,0)

This formula returns 40:00 (that is, 24 hours plus 16 hours). If your standard
workweek consists of something other than 40 hours, you can change this formula.

The following formula (in cell H18) calculates regular (non-overtime) hours.
This formula returns the smaller of two values: the total hours, or the overtime
hours.

=MIN(E17,Overtime)

The final formula, in cell H19, simply subtracts the regular hours from the total
hours to yield the overtime hours.

=E17-E18

The times in H17:H19 may display time values that exceed 24 hours, so these
cells use a custom number format:

[h]:mm

The workbook shown in Figure 6-9 also appears on the companion CD-ROM.

Calculating the Difference between Two Times
Because times are represented as serial numbers, you can subtract the earlier time
from the later time to get the difference. For example, if cell A2 contains 5:30:00
and cell B2 contains 14:00:00, the following formula returns 08:30:00 (a difference
of eight hours and 30 minutes):

=B2-A2

If the subtraction results in a negative value, however, it becomes an invalid
time; Excel displays a series of hash marks (#######) because a time without a

172 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 172

date has a date serial number of 0. A negative time results in a negative serial num-
ber, which is not permitted.

If the direction of the time difference doesn’t matter, you can use the ABS func-
tion to return the absolute value of the difference:

=ABS(B2-A2)

This “negative time” problem often occurs when calculating an elapsed time —
for example, calculating the number of hours worked given a start time and an end
time. This presents no problem if the two times fall in the same day. But if the work
shift spans midnight, the result is an invalid negative time. For example, you may
start work at 10:00 PM and end work at 6:00 AM the next day. Figure 6-10 shows
a worksheet that calculates the hours worked. As you can see, the shift that spans
midnight presents a problem.

Figure 6-10: Calculating the number of hours worked
returns an error if the shift spans midnight.

Using the ABS function (to calculate the absolute value) isn’t an option in this
case because it returns the wrong result (16 hours). The following formula, how-
ever, does work:

=(B2+(B2<A2)-A2)

Another, simpler, formula can do the job:

=MOD(B2-A2,1)

Negative times are permitted if the workbook uses the 1904 date system.To

switch to the 1904 date system, select Tools � Options, and click the

Calculation tab. Place a check mark next to the 1904 date system option. But

beware! When changing the workbook’s date system, if the workbook uses

dates, the dates will be off by four years.

Chapter 6: Working with Dates and Times 173

4800-x Ch06.F 8/27/01 11:55 AM Page 173

Converting from Military Time
Military time is expressed as a four-digit number from 0000 to 2359. For example,
1:00 AM is expressed as 0100 hours, and 3:30 PM is expressed as 1530 hours. The
following formula converts such a number (assumed to appear in cell A1) to a stan-
dard time:

=TIMEVALUE(LEFT(A1,2)&”:”&RIGHT(A1,2))

The formula returns an incorrect result if the contents of cell A1 do not contain
four digits. The following formula corrects the problem, and returns a valid time for
any military time value from 0 to 2359:

=TIMEVALUE(LEFT(TEXT(A1,”0000”),2)&”:”&RIGHT(A1,2))

Following is a simpler formula that uses the TEXT function to return a formatted
string, and then uses the TIMEVALUE function to express the result in terms of a
time:

=TIMEVALUE(TEXT(A1,”00\:00”))

Converting Decimal Hours, Minutes,
or Seconds to a Time
To convert decimal hours to a time, divide the decimal hours by 24. For example, if
cell A1 contains 9.25 (representing hours), this formula returns 09:15:00 (nine
hours, 15 minutes):

=A1/24

To convert decimal minutes to a time, divide the decimal hours by 1,440 (the
number of minutes in a day). For example, if cell A1 contains 500 (representing
minutes), the following formula returns 08:20:00 (eight hours, 20 minutes):

=A1/1440

To convert decimal seconds to a time, divide the decimal hours by 86,400 (the
number of seconds in a day). For example, if cell A1 contains 65,000 (representing
seconds), the following formula returns 18:03:20 (18 hours, three minutes, and 20
seconds):

=A1/86400

174 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 174

Adding Hours, Minutes, or Seconds to a Time
You can use the TIME function to add any number of hours, minutes, or seconds to
a time. For example, assume cell A1 contains a time. The following formula adds
two hours and 30 minutes to that time and displays the result:

=A1+TIME(2,30,0)

You can use the TIME function to fill a range of cells with incremental times.
Figure 6-11 shows a worksheet with a series of times in 10-minute increments. Cell
A1 contains a time that was entered directly. Cell A2 contains the following for-
mula, which copied down the column:

=A1+TIME(0,10,0)

Figure 6-11: Using a formula to create a series
of incremental times

Converting between Time Zones
You may receive a worksheet that contains dates and times in Greenwich Mean
Time (GMT, sometimes referred to as Zulu time), and you need to convert these val-
ues to local time. To convert dates and times into local times, you need to deter-
mine the difference in hours between the two time zones. For example, to convert
GMT times to U.S. Central Standard Time, the hour conversion factor is –6.

You can’t use the TIME function with a negative argument, so you need to take
a different approach. One hour equals 1/24 of a day, so you can divide the time
conversion factor by 24, and then add it to the time.

Figure 6-12 shows a worksheet set up to convert dates and times (expressed in
GMT) to local times. Cell B1 contains the hour conversion factor (–5 hours for U.S.
Eastern Standard Time). The formula in B4, which copies down the column, is:

=A4+(B1/24)

Chapter 6: Working with Dates and Times 175

4800-x Ch06.F 8/27/01 11:55 AM Page 175

Figure 6-12: This worksheet converts dates and times
between time zones.

This formula effectively adds x hours to the date and time in column A. If cell B1
contains a negative hour value, the value subtracts from the date and time in col-
umn A. Note that, in some cases, this also affects the date.

Rounding Time Values
You may need to create a formula that rounds a time to a particular value. For
example, you may need to enter your company’s time records rounded to the near-
est 15 minutes. This section presents examples of various ways to round a time
value.

The following formula rounds the time in cell A1 to the nearest minute:

=ROUND(A1*1440,0)/1440

The formula works by multiplying the time by 1440 (to get total minutes). This
value is passed to the ROUND function, and the result is divided by 1440. For
example, if cell A1 contains 11:52:34, the formula returns 11:53:00.

The following formula resembles this example, except that it rounds the time in
cell A1 to the nearest hour:

=ROUND(A1*24,0)/24

If cell A1 contains 5:21:31, the formula returns 5:00:00.
The following formula rounds the time in cell A1 to the nearest 15 minutes:

=ROUND(A1*24/0.25,0)*(0.25/24)

176 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 176

In this formula, 0.25 represents the fractional hour. To round a time to the near-
est 30 minutes, change 0.25 to 0.5, as in the following formula:

=ROUND(A1*24/0.5,0)*(0.5/24)

Working with Non–Time-of-Day Values
Sometimes, you may want to work with time values that don’t represent an actual
time of day. For example, you might want to create a list of the finish times for a
race, or record the time you spend jogging each day. Such times don’t represent a
time of day. Rather, a value represents the time for an event (in hours, minutes, and
seconds). The time to complete a test, for instance, might take 35 minutes and 40
seconds. You can enter that value into a cell as:

00:35:45

Excel interprets such an entry as 12:35:45 AM, which works fine (just make sure
that you format the cell so it appears as you like). When you enter such times that
do not have an hour component, you must include at least one zero for the hour. If
you omit a leading zero for a missing hour, Excel interprets your entry as 35 hours
and 45 minutes.

Figure 6-13 shows an example of a worksheet set up to keep track of someone’s
jogging activity. Column A contains simple dates. Column B contains the distance,
in miles. Column C contains the time it took to run the distance. Column D contains
formulas to calculate the speed, in miles per hour. For example, the formula in cell
D2 is:

=B2/(C2*24)

Figure 6-13: This worksheet uses times not associated with
a time of day.

Chapter 6: Working with Dates and Times 177

4800-x Ch06.F 8/27/01 11:55 AM Page 177

Column E contains formulas to calculate the pace, in minutes per mile. For
example, the formula in cell E2 is:

=(C2*60*24)/B2

Columns F and G contain formulas that calculate the year-to-date distance
(using column B), and the cumulative time (using column C). The cells in column G
are formatted using the following number format (which permits time displays that
exceed 24 hours):

[hh]:mm:ss

You can also access the workbook shown in Figure 6-13 on the companion

CD-ROM.

Summary
This chapter explored the date- and time-related features of Excel. I provided an
overview of Excel’s serial number date and time system, and I described how to
enter dates and times into cells. The chapter also listed many examples of formulas
that use dates and times.

The next chapter presents various techniques to count data in a spreadsheet.

178 Part II: Using Functions in Your Formulas

4800-x Ch06.F 8/27/01 11:55 AM Page 178

Chapter 7

Counting and Summing
Techniques

IN THIS CHAPTER

� Information on counting and summing cells

� Information on counting and summing records in databases and pivot
tables

� Basic counting formulas

� Advanced counting formulas

� Formulas for performing common summing tasks

� Conditional summing formulas using a single criterion

� Conditional summing formulas using multiple criteria

� The use of VBA to perform counting and summing tasks

MANY OF THE MOST FREQUENTLY ASKED spreadsheet questions involve counting and
summing values and other worksheet elements. It seems that people are always
looking for formulas to count or sum various items in a worksheet. If I’ve done my
job, this chapter will answer the vast majority of such questions.

Counting and Summing
Worksheet Cells
Generally, a counting formula returns the number of cells in a specified range that
meet certain criteria. A summing formula returns the sum of the values of the cells
in a range that meet certain criteria. The range you want counted or summed may
or may not consist of a worksheet database.

Table 7-1 lists Excel’s worksheet functions that come into play when creating
counting and summing formulas. If none of the functions in Table 7-1 can solve
your problem, it’s likely that an array formula can come to the rescue.

179

4800-x Ch07.F 8/27/01 11:55 AM Page 179

See Part V for detailed information and examples of array formulas used for

counting and summing.

TABLE 7-1 EXCEL’S COUNTING AND SUMMING FUNCTIONS

Function Description

COUNT Returns the number of cells in a range that contain a numeric value

COUNTA Returns the number of nonblank cells in a range

COUNTBLANK Returns the number of blank cells in a range

COUNTIF Returns the number of cells in a range that meet a specified criterion

DCOUNT Counts the number of records in a worksheet database that meet
specified criteria

DCOUNTA Counts the number of nonblank records in a worksheet database that
meet specified criteria

DEVSQ Returns the sum of squares of deviations of data points from the
sample mean; used primarily in statistical formulas

DSUM Returns the sum of a column of values in a worksheet database that
meet specified criteria

FREQUENCY Calculates how often values occur within a range of values, and
returns a vertical array of numbers; used only in a multicell array
formula

SUBTOTAL When used with a first argument of 2 or 3, returns a count of cells
that comprise a subtotal; when used with a first argument of 9,
returns the sum of cells that comprise a subtotal

SUM Returns the sum of its arguments

SUMIF Returns the sum of cells in a range that meet a specified criterion

SUMPRODUCT Multiplies corresponding cells in two or more ranges, and returns the
sum of those products

SUMSQ Returns the sum of the squares of its arguments; used primarily in
statistical formulas

180 Part II: Using Functions in Your Formulas

4800-x Ch07.F 8/27/01 11:55 AM Page 180

Function Description

SUMX2PY2 Returns the sum of the sum of squares of corresponding values in
two ranges; used primarily in statistical formulas

SUMXMY2 Returns the sum of squares of the differences of corresponding
values in two ranges; used primarily in statistical formulas

SUMX2MY2 Returns the sum of the differences of squares of corresponding
values in two ranges; used primarily in statistical formulas

Counting or Summing Records in
Databases and Pivot Tables
Special database functions and pivot tables provide additional ways to achieve
counting and summing. Excel’s DCOUNT and DSUM functions are database func-
tions. They work in conjunction with a worksheet database, and require a special
criterion range that holds the counting or summing criteria.

Chapter 9 covers the database functions and provides information about

counting and summing using a worksheet database.

Creating a pivot table is a great way to get a count or sum of items without
using formulas. Like the database function, using a pivot table is appropriate when
your data appears in the form of a database.

Refer to Chapter 18 for information about pivot tables.

Chapter 7: Counting and Summing Techniques 181

4800-x Ch07.F 8/27/01 11:55 AM Page 181

Basic Counting Formulas
The basic counting formulas presented here are all straightforward and relatively
simple. They demonstrate the ability of Excel’s counting functions to count the
number of cells in a range that meet specific criteria. Figure 7-1 shows a worksheet
that uses formulas (in column E) to summarize the contents of range A1:B10 — a
20-cell range named Data.

You can access the workbook shown in Figure 7-1 on the companion

CD-ROM.

182 Part II: Using Functions in Your Formulas

Getting a Quick Count or Sum
In Excel 97, Microsoft introduced a feature known as AutoCalculate. This feature
displays, in the status bar, information about the selected range. Normally, the status
bar displays the sum of the values in the selected range. You can, however, right-click
the AutoCalculate display to bring up a menu with some other options.

If you select Count, the status bar displays the number of nonempty cells in the
selected range. If you select Count Nums, the status bar displays the number of
numeric cells in the selected range.

4800-x Ch07.F 8/27/01 11:55 AM Page 182

Figure 7-1: Formulas provide various counts of the
data in A1:B10.

Counting the Total Number of Cells
To get a count of the total number of cells in a range, use the following formula.
This formula returns the number of cells in a range named Data. It simply multi-
plies the number of rows (returned by the ROWS function) by the number of
columns (returned by the COLUMNS function).

=ROWS(Data)*COLUMNS(Data)

Counting Blank Cells
The following formula returns the number of blank (empty) cells in a range named
Data:

=COUNTBLANK(Data)

Chapter 7: Counting and Summing Techniques 183

About This Chapter’s Examples
Many of the examples in this chapter consist of array formulas. An array formula, as
explained in Chapter 14, is a special type of formula. You can spot an array formula
because it is enclosed in brackets when it is displayed in the formula bar. For example:

{=Data*2}

When you enter an array formula, press Ctrl+Shift+Enter (not just Enter). And don’t
type the brackets (Excel inserts the brackets for you).

4800-x Ch07.F 8/27/01 11:55 AM Page 183

The COUNTBLANK function also counts cells containing a formula that returns
an empty string. For example, the formula that follows returns an empty string if
the value in cell A1 is greater than 5. If the cell meets this condition, then the
COUNTBLANK function counts that cell.

=IF(A1>5,””,A1)

The COUNTBLANK function does not count cells that contain a zero value,

even if you uncheck the Zero values option in the Options dialog box (select

Tools � Options, then click the View tab).

You can use the COUNTBLANK function with an argument that consists of entire
rows or columns. For example, this next formula returns the number of blank cells
in column A:

=COUNTBLANK(A:A)

The following formula returns the number of empty cells on the entire worksheet
named Sheet1. You must enter this formula on a sheet other than Sheet1, or it will
create a circular reference.

=COUNTBLANK(Sheet1!1:65536)

Counting Nonblank Cells
The following formula uses the COUNTA function to return the number of non-
blank cells in a range named Data:

=COUNTA(Data)

The COUNTA function counts cells that contain values, text, or logical values
(TRUE or FALSE).

If a cell contains a formula that returns an empty string, that cell is included

in the count returned by COUNTA, even though the cell appears to be

blank.

184 Part II: Using Functions in Your Formulas

4800-x Ch07.F 8/27/01 11:55 AM Page 184

Counting Numeric Cells
To count only the numeric cells in a range, use the following formula (which
assumes the range is named Data):

=COUNT(Data)

Cells that contain a date or a time are considered to be numeric cells. Cells that
contain a logical value (TRUE or FALSE) are not considered to be numeric cells.

Counting Nontext Cells
The following array formula uses Excel’s ISNONTEXT function, which returns TRUE
if its argument refers to any nontext cell (including a blank cell). This formula
returns the count of the number of cells not containing text (including blank cells):

{=SUM(IF(ISNONTEXT(Data),1))}

Counting Text Cells
To count the number of text cells in a range, you need to use an array formula. The
array formula that follows returns the number of text cells in a range named Data:

{=SUM(IF(ISTEXT(Data),1))}

Counting Logical Values
The following array formula returns the number of logical values (TRUE or FALSE)
in a range named Data:

{=SUM(IF(ISLOGICAL(Data),1))}

Error Values in a Range
Excel has three functions that help you determine whether a cell contains an error
value:

� ISERROR: Returns TRUE if the cell contains any error value (#N/A,
#VALUE!, #REF!, #DIV/0!, #NUM!, #NAME?, or #NULL!)

� ISERR: Returns TRUE if the cell contains any error value except #N/A

� ISNA: Returns TRUE if the cell contains the #N/A error value

Chapter 7: Counting and Summing Techniques 185

4800-x Ch07.F 8/27/01 11:55 AM Page 185

You can use these functions in an array formula to count the number of error
values in a range. The following array formula, for example, returns the total num-
ber of error values in a range named Data:

{=SUM(IF(ISERROR(data),1))}

Depending on your needs, you can use the ISERR or ISNA function in place of
ISERROR.

If you would like to count specific types of errors, you can use the COUNTIF
function. The following formula, for example, returns the number of #DIV/0! error
values in the range named Data:

=COUNTIF(Data,”#DIV/0!”)

Advanced Counting Formulas
Most of the basic examples I presented previously use functions or formulas that
perform conditional counting. The advanced counting formulas that I present here
represent more complex examples for counting worksheet cells, based on various
types of criteria.

Counting Cells Using the COUNTIF Function
Excel’s COUNTIF function is useful for single-criterion counting formulas. The
COUNTIF function takes two arguments:

� range: The range that contains the values that determine whether to
include a particular cell in the count.

� criteria: The logical criteria that determine whether to include a particular
cell in the count.

Listed here are several examples of formulas that use the COUNTIF function.
These formulas all work with a range named Data. As you can see, the criteria
argument proves quite flexible. You can use constants, expressions, functions, cell
references, and even wildcard characters (* and ?).

The following formula returns the number of cells containing the value 12:

=COUNTIF(Data,12)

The following formula returns the number of cells containing a negative value:

=COUNTIF(Data,”<0”)

186 Part II: Using Functions in Your Formulas

4800-x Ch07.F 8/27/01 11:55 AM Page 186

The following formula returns the number of cells not equal to 0:

=COUNTIF(Data,”<>0”)

The following formula returns the number of cells greater than 5:

=COUNTIF(Data,”>5”)

The following formula returns the number of cells equal to the contents of cell A1:

=COUNTIF(Data,A1)

The following formula returns the number of cells greater than the value in
cell A1:

=COUNTIF(Data,”>”&A1)

The following formula returns the number of cells containing text:

=COUNTIF(Data,”*”)

The following formula returns the number of text cells containing exactly three
characters:

=COUNTIF(Data,”???”)

The following formula returns the number of cells containing the single word
budget (not case sensitive):

=COUNTIF(Data,”budget”)

The following formula returns the number cells containing the text budget any-
where within the text:

=COUNTIF(Data,”*budget*”)

The following formula returns the number of cells containing text that begins
with the letter A (not case sensitive):

=COUNTIF(Data,”A*”)

The following formula returns the number of cells containing the current date:

=COUNTIF(Data,TODAY())

Chapter 7: Counting and Summing Techniques 187

4800-x Ch07.F 8/27/01 11:55 AM Page 187

The following formula returns the number of cells with a value greater than the
average:

=COUNTIF(Data,”>”&AVERAGE(Data))

The following formula returns the number of values exceeding three standard
deviations above the mean:

=COUNTIF(Data,”>”&AVERAGE(Data)+STDEV(Data)*3)

The following formula returns the number of cells containing the value 3 or –3:

=COUNTIF(Data,3)+COUNTIF(Data,-3)

The following formula returns the number of cells containing logical TRUE:

=COUNTIF(Data,TRUE)

The following formula returns the number of cells containing a logical value
(TRUE or FALSE):

=COUNTIF(Data,TRUE)+COUNTIF(Data,FALSE)

The following formula returns the number of cells containing the #N/A error
value:

=COUNTIF(Data,”#N/A”)

Counting Cells Using Multiple Criteria
In many cases, your counting formula will need to count cells only if two or more
criteria are met. These criteria can be based on the cells that are being counted, or
based on a range of corresponding cells.

Figure 7-2 shows a simple worksheet that I use for the examples in this section.
This sheet shows sales data categorized by Month, SalesRep, and Type. The work-
sheet contains named ranges that correspond to the labels in row 1.

This workbook is available on the companion CD-ROM.

188 Part II: Using Functions in Your Formulas

4800-x Ch07.F 8/27/01 11:55 AM Page 188

Figure 7-2: This worksheet demonstrates
various counting techniques that use
multiple criteria.

USING AND CRITERIA
An And criterion counts cells if all specified conditions are met. A common exam-
ple is a formula that counts the number of values that fall within a numerical
range. For example, you may want to count cells that contain a value greater than
0 and less than or equal to 12. Any cell that has a positive value less than or equal
to 12 will be included in the count. For this example, the COUNTIF function will do
the job:

=COUNTIF(Data,”>0”)-COUNTIF(Data,”>12”)

This formula counts the number of values that are greater than 0 and then sub-
tracts the number of values that are greater than 12. The result is the number of
cells that contain a value greater than 0 and less than or equal to 12.

Creating this type of formula can be confusing, because the formula refers to a
condition “>12” even though the goal is to count values that are less than or equal
to 12. An alternate technique is to use an array formula, such as the one that fol-
lows. You may find creating this type of formula easier.

{=SUM((Data>0)*(Data<=12))}

Chapter 7: Counting and Summing Techniques 189

4800-x Ch07.F 8/27/01 11:55 AM Page 189

Sometimes, the counting criteria will be based on cells other than the cells being
counted. You may, for example, want to count the number of sales that meet the
following criteria:

� Month is January, and

� SalesRep is Brooks, and

� Amount is greater than 1000

The following array formula returns the number of items that meet all three
criteria:

{=SUM((Month=”January”)*(SalesRep=”Brooks”)*(Amount>1000))}

USING OR CRITERIA
To count cells using an Or criterion, you can sometimes use multiple COUNTIF
functions. The following formula, for example, counts the number of 1s, 3s, and 5s
in the range named Data:

=COUNTIF(Data,1)+COUNTIF(Data,3)+COUNTIF(Data,5)

You can also use the COUNTIF function in an array formula. The following array
formula, for example, returns the same result as the previous formula:

{=SUM(COUNTIF(Data,{1,3,5}))}

But if you base your Or criteria on cells other than the cells being counted, the
COUNTIF function won’t work. Refer back to Figure 7-2. Suppose you want to
count the number of sales that meet the following criteria:

� Month is January, or

� SalesRep is Brooks, or

� Amount is greater than 1000

The following array formula returns the correct count:

{=SUM(IF((Month=”January”)+(SalesRep=”Brooks”)+(Amount>1000),1))}

COMBINING AND AND OR CRITERIA
You can combine And and Or criteria when counting. For example, perhaps you
want to count sales that meet the following criteria:

� Month is January, and

� SalesRep is Brooks, or SalesRep is Cook

190 Part II: Using Functions in Your Formulas

4800-x Ch07.F 8/27/01 11:55 AM Page 190

This array formula returns the number of sales that meet the criteria:

{=SUM((Month=”January”)*IF((SalesRep=”Brooks”)+
(SalesRep=”Cook”),1))}

Counting the Most Frequently Occurring Entry
Excel’s MODE function returns the most frequently occurring value in a range.
Figure 7-3 shows a worksheet with values in range A1:A10 (named Data). The for-
mula that follows returns 10 because that value appears most frequently in the Data
range:

=MODE(Data)

Figure 7-3: The MODE function returns the most
frequently occurring value in a range.

To count the number of times the most frequently occurring value appears in the
range (in other words, the frequency of the mode), use the following formula:

=COUNTIF(Data,MODE(Data))

This formula returns 3, because the modal value (10) appears three times in the
Data range.

The MODE function works only for numeric values. It simply ignores cells that
contain text. To find the most frequently occurring text entry in a range, you need
to use an array formula.

To count the number of times the most frequently occurring item (text or values)
appears in a range named Data, use the following array formula:

{=MAX(COUNTIF(Data,Data))}

This next array formula operates like the MODE function, except that it works
with both text and values:

{=INDEX(Data,MATCH(MAX(COUNTIF(Data,Data)),COUNTIF(Data,Data),0))}

Chapter 7: Counting and Summing Techniques 191

4800-x Ch07.F 8/27/01 11:55 AM Page 191

Counting the Occurrences of Specific Text
The examples in this section demonstrate various ways to count the occurrences of
a character or text string in a range of cells. Figure 7-4 shows a worksheet used for
these examples. Various text appears in the range A1:A10 (named Data); cell B1 is
named Text.

Figure 7-4: This worksheet demonstrates various ways to count characters in a range.

The companion CD-ROM contains a workbook that demonstrates the

formulas in this section.

ENTIRE CELL CONTENTS
To count the number of cells containing the contents of the Text cell (and nothing
else), you can use the COUNTIF function. The following formula demonstrates:

=COUNTIF(Data,Text)

For example, if the Text cell contains the string “Alpha”, the formula returns 2
because two cells in the Data range contain this text. This formula is not case sen-
sitive, so it counts both “Alpha” (cell A2) and “alpha” (cell A10). Note, however, that
it does not count the cell that contains “Alpha Beta” (cell A8).

192 Part II: Using Functions in Your Formulas

4800-x Ch07.F 8/27/01 11:55 AM Page 192

The following array formula is similar to the preceding formula, but this one is
case sensitive:

{=SUM(IF(EXACT(Data,Text),1))}

PARTIAL CELL CONTENTS
To count the number of cells that contain a string that includes the contents of the
Text cell, use this formula:

=COUNTIF(Data,”*”&Text&”*”)

For example, if the Text cell contains the text “Alpha”, the formula returns 3,
because three cells in the Data range contain the text “alpha” (cells A2, A8, and
A10). Note that the comparison is not case sensitive.

If you need a case-sensitive count, you can use the following array formula:

{=SUM(IF(LEN(Data)-LEN(SUBSTITUTE(Data,Text,””))>0,1))}

If the Text cells contain the text “Alpha”, the preceding formula returns 2
because the string appears in two cells (A2 and A8).

TOTAL OCCURRENCES IN A RANGE
To count the total number of occurrences of a string within a range of cells, use the
following array formula:

{=(SUM(LEN(Data))-SUM(LEN(SUBSTITUTE(Data,Text,””))))/
LEN(Text)}

If the Text cell contains the character “B,” the formula returns 7 because the
range contains seven instances of the string. This formula is case sensitive.

The following array formula is a modified version that is not case sensitive:

{=(SUM(LEN(Data))-SUM(LEN(SUBSTITUTE(UPPER(Data),
UPPER(Text),””))))/LEN(Text)}

Counting the Number of Unique Values
The following array formula returns the number of unique values in a range named
Data:

{=SUM(1/COUNTIF(Data,Data))}

Chapter 7: Counting and Summing Techniques 193

4800-x Ch07.F 8/27/01 11:55 AM Page 193

To understand how this formula works, you need a basic understanding of array
formulas. (See Chapter 14 for an introduction to this topic.) In Figure 7-5, range
A1:A12 is named Data. Range C1:C12 contains the following array formula
(entered into all 12 cells in the range):

{=COUNTIF(Data,Data)}

Figure 7-5: Using an array formula to count the
number of unique values in a range

You can access the workbook shown in Figure 7-5 on the companion

CD-ROM.

The array in range C1:C12 consists of the count of each value in Data. For
example, the number 100 appears three times, so each array element that corre-
sponds to a value of 100 in the Data range has a value of 3.

Range D1:D12 contains the following array formula:

{=1/C1:C12}

This array consists of each value in the array in range C1:C12, divided into 1.
For example, each cell in the original Data range that contains a 200 has a value of
0.5 in the corresponding cell in D1:D12.

Summing the range D1:D12 gives the number of unique items in Data. The array
formula presented at the beginning of this section essentially creates the array that
occupies D1:D12, and sums the values.

This formula has a serious limitation: If the range contains any blank cells, it
returns an error. The following array formula solves this problem:

{=SUM(IF(COUNTIF(Data,Data)=0,””,1/COUNTIF(Data,Data)))}

194 Part II: Using Functions in Your Formulas

4800-x Ch07.F 8/27/01 11:55 AM Page 194

To create an array formula that returns a list of unique items in a range, refer

to Chapter 15.

Creating a Frequency Distribution
A frequency distribution basically comprises a summary table that shows the fre-
quency of each value in a range. For example, an instructor may create a frequency
distribution of test scores. The table would show the count of As, Bs, Cs, and so on.
Excel provides a number of ways to create frequency distributions. You can:

� Use the FREQUENCY function

� Create your own formulas

� Use the Analysis ToolPak add-in

A workbook that demonstrates these three techniques appears on the

companion CD-ROM.

If your data is in the form of a database, you can also use a pivot table to

create a frequency distribution.

THE FREQUENCY FUNCTION
Using Excel’s FREQUENCY function presents the easiest way to create a frequency
distribution. This function always returns an array, so you must use it in an array
formula entered into a multicell range.

Figure 7-6 shows some data in range A1:E20 (named Data). These values range
from 1 to 500. The range G2:G11 contains the bins used for the frequency distribu-
tion. Each cell in this bin range contains the upper limit for the bin. In this case, the
bins consist of 1–50, 51–100, 101–150, and so on. See the sidebar, “Creating Bins
for a Frequency Distribution” to discover an easy way to create a bin range.

Chapter 7: Counting and Summing Techniques 195

4800-x Ch07.F 8/27/01 11:55 AM Page 195

Figure 7-6: Creating a frequency distribution for
the data in A1:E20

To create the frequency distribution, select a range of cells that correspond to the
number of cells in the bin range. Then enter the following array formula:

{=FREQUENCY(Data,G2:G11)}

The array formula enters the count of values in the Data range that fall into each
bin. To create a frequency distribution that consists of percentages, use the follow-
ing array formula:

{=FREQUENCY(Data,G2:G10)/COUNT(Data)}

Figure 7-7 shows two frequency distributions — one in terms of counts, and one
in terms of percentages. The figure also shows a chart (histogram) created from the
frequency distribution.

USING FORMULAS TO CREATE A FREQUENCY DISTRIBUTION
Figure 7-8 shows a worksheet that contains test scores for 50 students in column B
(the range is named Grades). Formulas in columns G and H calculate a frequency
distribution for letter grades. The minimum and maximum values for each letter
grade appear in columns D and E. For example, a test score between 80 and 89
(inclusive) qualifies for a B.

196 Part II: Using Functions in Your Formulas

4800-x Ch07.F 8/27/01 11:55 AM Page 196

Figure 7-7: Frequency distributions created using the FREQUENCY function

Figure 7-8: Creating a frequency distribution of test scores

Chapter 7: Counting and Summing Techniques 197

4800-x Ch07.F 8/27/01 11:55 AM Page 197

The formula in cell G2 that follows is an array formula that counts the number
of scores that qualify for an A:

{=SUM((Grades>=D2)*(Grades<=E2))}

You may recognize this formula from a previous section in this chapter (see
“Counting Cells Using Multiple Criteria”). This formula was copied to the four cells
below G2.

The formulas in column H calculate the percentage of scores for each letter
grade. The formula in H2, which was copied to the four cells below H2, is:

=G2/SUM(G2:G6)

USING THE ANALYSIS TOOLPAK TO CREATE
A FREQUENCY DISTRIBUTION
Once you install the Analysis ToolPak add-in, you can use the Histogram option
to create a frequency distribution. Start by entering your bin values in a range.
Then select Tools � Data Analysis to display the Data Analysis dialog box. Next,
select Histogram and click OK. You should see the Histogram dialog box shown in
Figure 7-9.

198 Part II: Using Functions in Your Formulas

Creating Bins for a Frequency Distribution
When creating a frequency distribution, you must first enter the values into the bin
range. The number of bins determines the number of categories in the distribution.
Most of the time, each of these bins will represent an equal range of values.

To create 10 evenly spaced bins for values in a range named Data, enter the following
array formula into a range of 10 cells in a column:

{=MIN(Data)+(ROW(INDIRECT(“1:10”))*
(MAX(Data)-MIN(Data)+1)/10)-1}

This formula creates 10 bins, based on the values in the Data range. The upper bin will
always equal the maximum value in the range.

To create more or fewer bins, use a value other than 10 and enter the array formula
into a range that contains the same number of cells. For example, to create five bins,
enter the following array formula into a five-cell vertical range:

{=MIN(Data)+(ROW(INDIRECT(“1:5”))*(MAX(Data)-MIN(Data)+1)/5)-1}

4800-x Ch07.F 8/27/01 11:55 AM Page 198

Figure 7-9: The Analysis ToolPak’s Histogram dialog box

Specify the ranges for your data (Input Range), bins (Bin Range), and results
(Output Range), and then select any options. Figure 7-10 shows a frequency distri-
bution (and chart) created with the Histogram option.

Figure 7-10: A frequency distribution and chart generated by the Analysis ToolPak’s
Histogram option

Note that the frequency distribution consists of values, not formulas.

Therefore, if you make any changes to your input data, you need to rerun the

Histogram procedure to update the results.

Chapter 7: Counting and Summing Techniques 199

4800-x Ch07.F 8/27/01 11:55 AM Page 199

USING ADJUSTABLE BINS TO CREATE A HISTOGRAM
Figure 7-11 shows a worksheet with student grades listed in column B (67 students
total). Columns D and E contain formulas that calculate the upper and lower limits
for bins, based on the entry in cell E1 (named BinSize). For example, if BinSize is
10 (as in the figure), then each bin contains 10 scores (1–10, 11–20, and so on).

Figure 7-11: The chart displays a histogram; the contents of cell E1 determine the number
of categories.

The workbook shown in Figure 7-11 also appears on the companion

CD-ROM.

The chart uses two dynamic names in its SERIES formula. You can define the
name Categories with the following formula:

=OFFSET(Sheet1!E4,0,0,ROUNDUP(100/BinSize,0))

You can define the name Frequencies with this formula:

=OFFSET(Sheet1!F4,0,0,ROUNDUP(100/BinSize,0))

The net effect is that the chart adjusts automatically when you change the
BinSize cell.

200 Part II: Using Functions in Your Formulas

4800-x Ch07.F 8/27/01 11:55 AM Page 200

See Chapter 17 for more about creating a chart that uses dynamic names in

its SERIES formula.

Summing Formulas
The examples in this section demonstrate how to perform common summing tasks
using formulas. The formulas range from very simple to relatively complex array
formulas that compute sums using multiple criteria.

Summing All Cells in a Range
It doesn’t get much simpler than this. The following formula returns the sum of all
values in a range named Data:

=SUM(Data)

The SUM function can take up to 32 arguments. The following formula, for
example, returns the sum of the values in five noncontiguous ranges:

=SUM(A1:A9,C1:C9,E1:E9,G1:G9,I1:I9)

You can use complete rows or columns as an argument for the SUM function.
The formula that follows, for example, returns the sum of all values in column A. If
this formula appears in a cell in column A, it generates a circular reference error.

=SUM(A:A)

The following formula returns the sum of all values on Sheet1. To avoid a circu-
lar reference error, this formula must appear on a sheet other than Sheet1.

=SUM(Sheet1!1:65536)

The SUM function is very versatile. The arguments can be numerical values,
cells, ranges, text representations of numbers (which are interpreted as values),
logical values, and even embedded functions. For example, consider the following
formula:

=SUM(B1,5,”6”,,SQRT(4),A1:A5,TRUE)

Chapter 7: Counting and Summing Techniques 201

4800-x Ch07.F 8/27/01 11:55 AM Page 201

This formula, which is a perfectly valid formula, contains all of the following
types of arguments, listed here in the order of their presentation:

� A single cell reference

� A literal value

� A string that looks like a value

� A missing argument

� An expression that uses another function

� A range reference

� A logical TRUE value

The SUM function is versatile, but it’s also inconsistent when you use logical

values (TRUE or FALSE). Logical values stored in cells are always treated as 0.

But logical TRUE, when used as an argument in the SUM function, is treated

as 1.

Computing a Cumulative Sum
You may want to display a cumulative sum of values in a range — sometimes
known as a “running total.” Figure 7-12 illustrates a cumulative sum. Column B
shows the monthly amounts, and column C displays the cumulative (year-to-date)
totals.

Figure 7-12: Simple formulas in column C display a
cumulative sum of the values in column B.

202 Part II: Using Functions in Your Formulas

4800-x Ch07.F 8/27/01 11:55 AM Page 202

The formula in cell C2 is:

=SUM(B$2:B2)

Notice that this formula uses a mixed reference. The first cell in the range refer-
ence always refers to row 2. When this formula is copied down the column, the
range argument adjusts such that the sum always starts with row 2 and ends with
the current row. For example, after copying this formula down column C, the for-
mula in cell C8 is:

=SUM(B$2:B8)

You can use an IF function to hide the cumulative sums for rows in which data
hasn’t been entered. The following formula, entered in cell C2 and copied down the
column, is:

=IF(B2<>””,SUM(B$2:B2),””)

Figure 7-13 shows this formula at work.

Figure 7-13: Using an IF function to hide
cumulative sums for missing data

This workbook is available on the companion CD-ROM.

Chapter 7: Counting and Summing Techniques 203

4800-x Ch07.F 8/27/01 11:55 AM Page 203

Summing the “Top n” Values
In some situations, you may need to sum the n largest values in a range— for exam-
ple, the top 10 values. One approach is to sort the range in descending order, and then
use the SUM function with an argument consisting of the first n values in the sorted
range. An array formula such as this one accomplishes the task without sorting:

{=SUM(LARGE(Data,{1,2,3,4,5,6,7,8,9,10}))}

This formula sums the 10 largest values in a range named Data. To sum the 10
smallest values, use the SMALL function instead of the LARGE function:

{=SUM(SMALL(Data,{1,2,3,4,5,6,7,8,9,10}))}

These formulas use an array constant comprised of the arguments for the LARGE
or SMALL function. If the value of n for your top-n calculation is large, you may
prefer to use the following variation. This formula returns the sum of the top 30
values in the Data range. You can, of course, substitute a different value for 30.

{=SUM(LARGE(Data,ROW(INDIRECT(“1:30”))))}

Conditional Sums Using
a Single Criterion
Often, you need to calculate a conditional sum. With a conditional sum, values in a
range that meet one or more conditions are included in the sum. This section pre-
sents examples of conditional summing using a single criterion.

The SUMIF function is very useful for single-criterion sum formulas. The SUMIF
function takes three arguments:

� range: The range containing the values that determine whether to include
a particular cell in the sum.

� criteria: An expression that determines whether to include a particular cell
in the sum.

� sum_range: Optional. The range that contains the cells you want to sum.
If you omit this argument, the function uses the range specified in the
first argument.

The examples that follow demonstrate the use of the SUMIF function. These for-
mulas are based on the worksheet shown in Figure 7-14, set up to track invoices.
Column F contains a formula that subtracts the date in column E from the date in
column D. A negative number in column F indicates a past-due payment. The
worksheet uses named ranges that correspond to the labels in row 1.

204 Part II: Using Functions in Your Formulas

4800-x Ch07.F 8/27/01 11:55 AM Page 204

Figure 7-14: A negative value in column F indicates a
past-due payment.

Chapter 7: Counting and Summing Techniques 205

Let a Wizard Create Your Formula
Beginning with Excel 97, Excel ships with an add-in called Conditional Sum Wizard.
Once you install this add-in, you can invoke the Wizard by selecting Tools �

Conditional Sum.

You can specify various conditions for your summing, and the add-in creates the
formula for you (always an array formula). The Conditional Sum Wizard add-in,
although a handy tool, is not all that versatile. For example, you can combine multiple
criteria using an And condition, but not an Or condition.

By the way, the data table shown in the Conditional Sum Wizard dialog box does not
use your actual data.

4800-x Ch07.F 8/27/01 11:55 AM Page 205

All of the examples in this section also appear on the companion CD-ROM.

Summing Only Negative Values
The following formula returns the sum of the negative values in column F. In other
words, it returns the total number of past-due days for all invoices. For this work-
sheet, the formula returns –58.

=SUMIF(Difference,”<0”)

Because you omit the third argument, the second argument (“<0”) applies to the
values in the Difference range.

You can also use the following array formula to sum the negative values in

the Difference range:

{=SUM(IF(Difference<0,Difference))}

You do not need to hard-code the arguments for the SUMIF function into your
formula. For example, you can create a formula such as the following, which gets
the criteria argument from the contents of cell G2:

=SUMIF(Difference,G2)

This formula returns a new result if you change the criteria in cell G2.

Summing Values Based on a Different Range
The following formula returns the sum of the past-due invoice amounts (in
column C):

=SUMIF(Difference,”<0”,Amount)

This formula uses the values in the Difference range to determine whether the
corresponding values in the Amount range contribute to the sum.

206 Part II: Using Functions in Your Formulas

4800-x Ch07.F 8/27/01 11:55 AM Page 206

You can also use the following array formula to return the sum of the values

in the Amount range, where the corresponding value in the Difference range

is negative:

{=SUM(IF(Difference<0,Amount))}

Summing Values Based on a Text Comparison
The following formula returns the total invoice amounts for the Oregon office:

=SUMIF(Office,”=Oregon”,Amount)

Using the equal sign is optional. The following formula has the same result:

=SUMIF(Office,”Oregon”,Amount)

To sum the invoice amounts for all offices except Oregon, use this formula:

=SUMIF(Office,”<>Oregon”,Amount)

Summing Values Based on a Date Comparison
The following formula returns the total invoice amounts that have a due date after
June 1, 1999:

=SUMIF(DateDue,”>=”&DATE(1999,6,1),Amount)

Notice that the second argument for the SUMIF function is an expression. The
expression uses the DATE function, which returns a date. Also, the comparison
operator, enclosed in quotation marks, is concatenated (using the & operator) with
the result of the DATE function.

The formula that follows returns the total invoice amounts that have a future
due date (including today):

=SUMIF(DateDue,”>=”&TODAY(),Amount)

Chapter 7: Counting and Summing Techniques 207

4800-x Ch07.F 8/27/01 11:55 AM Page 207

Conditional Sums Using
Multiple Criteria
The examples in the preceding section all used a single comparison criterion. The
examples in this section involve summing cells based on multiple criteria. Because
the SUMIF function does not work with multiple criteria, you need to resort to
using an array formula. Figure 7-15 shows the sample worksheet again, for your
reference.

Figure 7-15: This worksheet demonstrates summing based
on multiple criteria.

Using And Criteria
Suppose you want to get a sum of the invoice amounts that are past due, and asso-
ciated with the Oregon office. In other words, the value in the Amount range will be
summed only if both of the following criteria are met:

� The corresponding value in the Difference range is negative.

� The corresponding text in the Office range is “Oregon.”

The following array formula does the job:

{=SUM((Difference<0)*(Office=”Oregon”)*Amount)}

This formula creates two new arrays (in memory):

� A Boolean array that consists of TRUE if the corresponding Difference
value is less than zero; FALSE otherwise

� A Boolean array that consists of TRUE if the corresponding Office value
equals “Oregon”; FALSE otherwise

208 Part II: Using Functions in Your Formulas

4800-x Ch07.F 8/27/01 11:55 AM Page 208

Multiplying Boolean values results in the following:

TRUE * TRUE = 1
TRUE * FALSE = 0
FALSE * FALSE = 0

Therefore, the corresponding Amount value returns non-zero only if the corre-
sponding values in the memory arrays are both TRUE. The result produces a sum of
the Amount values that meet the specified criteria.

You may think that you can rewrite the previous array function as follows,

using the SUMPRODUCT function to perform the multiplication and

addition:

=SUMPRODUCT((Difference<0),(Office=”Oregon”),Amount)

For some reason, the SUMPRODUCT function does not handle Boolean val-

ues properly, so the formula does not work. The following formula, which

multiplies the Boolean values by 1, does work:

=SUMPRODUCT(1*(Difference<0),1*(Office=”Oregon”),Amount
)

Using Or Criteria
Suppose you want to get a sum of past-due invoice amounts, or ones associated
with the Oregon office. In other words, the value in the Amount range will be
summed if either of the following criteria is met:

� The corresponding value in the Difference range is negative.

� The corresponding text in the Office range is “Oregon.”

The following array formula does the job:

{=SUM(IF((Office=”Oregon”)+(Difference<0),1,0)*Amount)}

A plus sign (+) joins the conditions; you can include more than two conditions.

Using And and Or Criteria
As you might expect, things get a bit tricky when your criteria consists of both And
and Or operations. For example, you might want to sum the values in the Amount
range when the following conditions are met:

� The corresponding value in the Difference range is negative.

Chapter 7: Counting and Summing Techniques 209

4800-x Ch07.F 8/27/01 11:55 AM Page 209

� The corresponding text in the Office range is “Oregon” or “California.”

Notice that the second condition actually consists of two conditions, joined with
Or. The following array formula does the trick:

{=SUM((Difference<0)*IF((Office=”Oregon”)+
(Office=”California”),1)*Amount)}

Using VBA Functions to
Count and Sum
Some types of counting and summing tasks are simply impossible using Excel’s
built-in functions, or even array formulas. Fortunately, Excel has a powerful tool
that enables you to create custom functions. Excel’s Visual Basic for Applications
(VBA) language can usually come to the rescue when all else fails.

I devote Part IV of this book to VBA. Chapter 25 contains several custom func-
tions relevant to counting and summing. I briefly describe these functions here:

� COUNTBETWEEN: Returns the number of cells that contain a value
between two specified values.

� COUNTVISIBLE: Returns the number of visible cells in a range.

� DATATYPE: Returns a string that describes the type of data in a cell. This
function enables you to count cells that contain dates (something not nor-
mally possible).

� ISBOLD, ISITALIC, FILLCOLOR: These functions return TRUE if a specified
cell has a particular type of formatting (bold, italic, or a specific color).
You can use these functions to sum or count cells based on their
formatting.

� NUMBERFORMAT: Returns the number format string for a cell. This func-
tion enables you to count or sum cells based on their number format.

� SUMVISIBLE: Returns the sum of the visible cells in a range.

Summary
This chapter provided many examples of functions and formulas that count or sum
cells meeting certain criteria. Many of these formulas are array formulas.

The next chapter covers using formulas to look up specific information in tables
or ranges of data.

210 Part II: Using Functions in Your Formulas

4800-x Ch07.F 8/27/01 11:55 AM Page 210

Chapter 8

Lookups
IN THIS CHAPTER

� An introduction to formulas that look up values in a table

� An overview of the worksheet functions used to perform lookups

� Basic lookup formulas

� More sophisticated lookup formulas

THIS CHAPTER DISCUSSES VARIOUS techniques that you can use to look up a value in
a table. Excel has three functions (LOOKUP, VLOOKUP, and HLOOKUP) designed for
this task, but you may find that these functions don’t quite cut it. This chapter pro-
vides many lookup examples, including alternative techniques that go well beyond
Excel’s normal lookup capabilities.

What Is a Lookup Formula?
A lookup formula essentially returns a value from a table (in a range) by looking up
another value. A common telephone directory provides a good analogy. If you want
to find a person’s telephone number, you first locate the name (look it up), and then
retrieve the corresponding number.

Figure 8-1 shows a simple worksheet that uses several lookup formulas. This
worksheet contains a table of employee data (named EmpData), beginning in row
9. When you enter a name into cell C2, lookup formulas in D2:G2 retrieve the
matching information from the table. The following lookup formulas use the
VLOOKUP function:

D2 =VLOOKUP(C2,EmpData,2,FALSE)

E2 =VLOOKUP(C2,EmpData,3,FALSE)

F2 =VLOOKUP(C2,EmpData,4,FALSE)

G2 =VLOOKUP(C2,EmpData,5,FALSE)

This particular example uses four formulas to return information from the
EmpData range. In many cases, you’ll only want a single value from the table, so
use only one formula. 211

4800-x Ch08.F 8/27/01 11:55 AM Page 211

Figure 8-1: Lookup formulas in row 2 look up the information for the
employee name in cell C2.

Functions Relevant to Lookups
Several Excel functions are useful when writing formulas to look up information in
a table. Table 8-1 lists and describes these functions.

TABLE 8-1 FUNCTIONS USED IN LOOKUP FORMULAS

Function Description

CHOOSE Returns a specific value from a list of values (up to 29) supplied as
arguments.

HLOOKUP Horizontal lookup. Searches for a value in the top row of a table and
returns a value in the same column from a row you specify in the table.

INDEX Returns a value (or the reference to a value) from within a table or range.

LOOKUP Returns a value either from a one-row or one-column range.

MATCH Returns the relative position of an item in a range that matches a
specified value.

OFFSET Returns a reference to a range that is a specified number of rows and
columns from a cell or range of cells.

VLOOKUP Vertical lookup. Searches for a value in the first column of a table and
returns a value in the same row from a column you specify in the table.

212 Part II: Using Functions in Your Formulas

4800-x Ch08.F 8/27/01 11:55 AM Page 212

The examples in this chapter use the functions listed in Table 8-1.

Basic Lookup Formulas
You can use Excel’s basic lookup functions to search a column or row for a lookup
value to return another value as a result. Excel provides three basic lookup functions:
HLOOKUP, VLOOKUP, and LOOKUP. The MATCH and INDEX functions are often used
together to return a cell or relative cell reference for a lookup value.

The VLOOKUP Function
The VLOOKUP function looks up the value in the first column of the lookup table
and returns the corresponding value in a specified table column. The lookup table
is arranged vertically. The syntax for the VLOOKUP function is:

VLOOKUP(lookup_value,table_array,col_index_num,range_lookup)

The VLOOKUP function’s arguments are as follows:

� lookup_value: The value to be looked up in the first column of the lookup
table.

� table_array: The range that contains the lookup table.

� col_index_num: The column number within the table from which the
matching value is returned.

� range_lookup: Optional. If TRUE or omitted, an approximate match is
returned (if an exact match is not found, the next largest value that is less
than lookup_value is returned). If FALSE, VLOOKUP will search for an
exact match. If VLOOKUP cannot find an exact match, the function
returns #N/A.

If the range_lookup argument is TRUE or omitted, the first column of the

lookup table must be in ascending order. If lookup_value is smaller than the

smallest value in the first column of table_array, VLOOKUP returns #N/A. If

the range_lookup argument is FALSE, the first column of the lookup table

need not be in ascending order. If an exact match is not found, the function

returns #N/A.

Chapter 8: Lookups 213

4800-x Ch08.F 8/27/01 11:55 AM Page 213

Although not indicated in the online help, if the lookup_value argument is

text, it can include wildcard characters * and ?.

The classic example of a lookup formula involves an income tax rate schedule
(see Figure 8-2). The tax rate schedule shows the income tax rates for various
income levels. The following formula (in cell B3) returns the tax rate for the income
in cell B2:

=VLOOKUP(B2,D2:F7,3)

Figure 8-2: Using VLOOKUP to look up a tax rate

You can access the workbook shown in Figure 8-2 on the companion

CD-ROM.

The lookup table resides in a range that consists of three columns (D2:F7).
Because the last argument for the VLOOKUP function is 3, the formula returns the
corresponding value in the third column of the lookup table.

Note that an exact match is not required. If an exact match is not found in the
first column of the lookup table, the VLOOKUP function uses the next largest value
that is less than the lookup value. In other words, the function uses the row in
which the value you want to look up is greater than or equal to the row value, but
less than the value in the next row. In the case of a tax table, this is exactly what
you want to happen.

214 Part II: Using Functions in Your Formulas

4800-x Ch08.F 8/27/01 11:55 AM Page 214

The HLOOKUP Function
The HLOOKUP function works just like the VLOOKUP function, except that the
lookup table is arranged horizontally instead of vertically. The HLOOKUP function
looks up the value in the first row of the lookup table and returns the correspond-
ing value in a specified table row.

The syntax for the HLOOKUP function is:

HLOOKUP(lookup_value,table_array,row_index_num,range_lookup)

The HLOOKUP function’s arguments are as follows:

� lookup_value: The value to be looked up in the first row of the lookup
table.

� table_array: The range that contains the lookup table.

� row_index_num: The row number within the table from which the match-
ing value is returned.

� range_lookup: Optional. If TRUE or omitted, an approximate match is
returned (if an exact match is not found, the next largest value less than
lookup_value is returned). If FALSE, VLOOKUP will search for an exact
match. If VLOOKUP cannot find an exact match, the function returns #N/A.

Although not indicated in the online help, if the lookup_value argument is

text, it can include wildcard characters * and ?.

Figure 8-3 shows the tax rate example with a horizontal lookup table (in the
range E1:J3). The formula in cell B3 is:

=HLOOKUP(B2,E1:J3,3)

Figure 8-3: Using HLOOKUP to look up a tax rate

Chapter 8: Lookups 215

4800-x Ch08.F 8/27/01 11:55 AM Page 215

The LOOKUP Function
The LOOKUP function has the following syntax:

LOOKUP(lookup_value,lookup_vector,result_vector)

The function’s arguments are as follows:

� lookup_value: The value to be looked up in the lookup_vector.

� lookup_vector: A single-column or single-row range that contains the val-
ues to be looked up. These values must be in ascending order.

� result_vector: The single-column or single-row range that contains the
values to be returned. It must be the same size as the lookup_vector.

The LOOKUP function looks in a one-row or one-column range (lookup_vector)
for a value (lookup_value) and returns a value from the same position in a second
one-row or one-column range (result_vector).

Values in the lookup_vector must be in ascending order. If lookup_value is

smaller than the smallest value in lookup_vector, LOOKUP returns #N/A.

The online help also lists an “array” syntax for the LOOKUP function. This

alternative syntax is included for compatibility with other spreadsheet prod-

ucts. In general, you can use the VLOOKUP or HLOOKUP functions rather

than the array syntax.

Figure 8-4 shows the tax table again. This time, the formula in cell B3 uses the
LOOKUP function to return the corresponding tax rate. The formula in B3 is:

=LOOKUP(B2,D2:D7,F2:F7)

If the values in the first column are not arranged in ascending order, the

LOOKUP function may return an incorrect value.

216 Part II: Using Functions in Your Formulas

4800-x Ch08.F 8/27/01 11:55 AM Page 216

Figure 8-4: Using LOOKUP to look up a tax rate

Note that LOOKUP (as opposed to VLOOKUP) requires two range references (a
range to be looked in, and a range that contains result values). VLOOKUP, on the
other hand, uses a single range for the lookup table and the third argument deter-
mines which column to use for the result. This argument, of course, can consist of
a cell reference.

Combining the MATCH and INDEX Functions
The MATCH and INDEX functions are often used together to perform lookups. The
MATCH function returns the relative position of a cell in a range that matches a
specified value. The syntax for MATCH is:

MATCH(lookup_value,lookup_array,match_type)

The MATCH function’s arguments are as follows:

� lookup_value: The value you want to match in lookup_array. If
match_type is 0 and the lookup_value is text, this argument can include
wildcard characters “*” and “?”

� lookup_array: The range being searched

� match_type: An integer (–1, 0, or 1) that specifies how the match is
determined

If match_type is 1, MATCH finds the largest value less than or equal to

lookup_value (lookup_array must be in ascending order). If match_type is 0,

MATCH finds the first value exactly equal to lookup_value. If match_type

is –1, MATCH finds the smallest value greater than or equal to lookup_value

(lookup_array must be in descending order). If you omit match_type, it is

assumed to be 1.

Chapter 8: Lookups 217

4800-x Ch08.F 8/27/01 11:55 AM Page 217

The INDEX function returns a cell from a range. The syntax for the INDEX
function is:

INDEX(array,row_num,column_num)

The INDEX function’s arguments are as follows:

� array: A range

� row_num: A row number within array

� col_num: A column number within array

If array contains only one row or column, the corresponding row_num or

column_num argument is optional.

Figure 8-5 shows a worksheet with dates, day names, and amounts in columns
D, E, and F. When you enter a date in cell B1, the following formula (in cell B2)
searches the dates in column D and returns the corresponding amount from column
F. The formula in B2 is:

=INDEX(F2:F21,MATCH(B1,D2:D21,0))

Figure 8-5: Using the INDEX and MATCH functions
to perform a lookup

218 Part II: Using Functions in Your Formulas

4800-x Ch08.F 8/27/01 11:55 AM Page 218

To understand how this works, start with the MATCH function. This function
searches the range D2:D21 for the date in cell B1. It returns the relative row num-
ber where the date is found. This value is then used as the second argument for the
INDEX function. The result is the corresponding value in F2:F21.

Specialized Lookup Formulas
You can use some additional types of lookup formulas to perform more specialized
lookups. For instance, you can look up an exact value, search in another column
besides the first in a lookup table, perform a case-sensitive lookup, return a value
from among multiple lookup tables, and perform other specialized and complex
lookups.

Chapter 8: Lookups 219

When a Blank Is Not a Zero
Excel’s lookup functions treat empty cells in the result range as zeros. The worksheet
in the accompanying figure contains a two-column lookup table and this formula
looks up the name in cell B1 and returns the corresponding amount:

=VLOOKUP(B1,D2:E8,2)

Note that the Amount cell for Charlie is blank, but the formula returns a 0.

If you need to distinguish zeros from blank cells, you must modify the lookup formula
by adding an IF function to check if the length of the returned value is 0. When the
looked up value is blank, the length of the return value is 0. In all other cases, the
length of the returned value is non-zero. The following formula displays an empty
string (a blank) whenever the length of the looked-up value is zero, and the actual
value whenever the length is anything but zero:

=IF(LEN(VLOOKUP(B1,D2:E8,2))=0,””,(VLOOKUP(B1,D2:E8,2)))

4800-x Ch08.F 8/27/01 11:55 AM Page 219

Looking Up an Exact Value
As demonstrated in the previous examples, VLOOKUP and HLOOKUP don’t neces-
sarily require an exact match between the value to be looked up and the values in
the lookup table. An example is looking up a tax rate in a tax table. In some cases,
you may require a perfect match. For example, when looking up an employee num-
ber, you would probably require a perfect match for the number.

To look up an exact value only, use the VLOOKUP (or HLOOKUP) function with
the optional fourth argument set to FALSE.

Figure 8-6 shows a worksheet with a lookup table that contains employee num-
bers (column C) and employee names (column D). The lookup table is named
EmpList. The formula in cell B2, which follows, looks up the employee number
entered in cell B1 and returns the corresponding employee name:

=VLOOKUP(B1,EmpList,2,FALSE)

Figure 8-6: This lookup table requires an exact match.

Because the last argument for the VLOOKUP function is FALSE, the function
returns a value only if an exact match is found. If the value is not found, the for-
mula returns #N/A. This, of course, is exactly what you want to happen because
returning an approximate match for an employee number makes no sense. Also,
notice that the employee numbers in column C are not in ascending order. If the
last argument for VLOOKUP is FALSE, the values need not be in ascending order.

If you prefer to see something other than #N/A when the employee number

is not found, you can use an IF function to test for the #N/A result (using the

ISNA function) and substitute a different string. The following formula dis-

plays the text “Not Found” rather than #N/A:

=IF(ISNA(VLOOKUP(B1,EmpList,2,FALSE)),”Not Found”,
VLOOKUP(B1,EmpList,2,FALSE))

220 Part II: Using Functions in Your Formulas

4800-x Ch08.F 8/27/01 11:55 AM Page 220

Looking Up a Value to the Left
The VLOOKUP function always looks up a value in the first column of the lookup
range. But what if you want to look up a value in a column other than the first col-
umn? It would be helpful if you could supply a negative value for the third argu-
ment for VLOOKUP — but you can’t.

Figure 8-7 illustrates the problem. Suppose you want to look up the batting
average (column B, in a range named Averages) of a player in column C (in a range
named Players). The player you want data for appears in a cell named LookupValue.
The VLOOKUP function won’t work because the data is not arranged correctly. One
option is to rearrange your data, but sometimes that’s not possible.

Figure 8-7: The VLOOKUP function can’t look up a value in column B,
based on a value in column C.

One solution is to use the LOOKUP function, which requires two range argu-
ments. The following formula (in cell F3) returns the batting average from column
B of the player name contained in the cell named LookupValue:

=LOOKUP(LookupValue,Players,Averages)

Using the VLOOKUP function requires that the lookup range (in this case, the
Players range) is in ascending order. In addition to this limitation, the formula suf-
fers from a slight problem: If you enter a nonexistent player (in other words, the
LookupValue cell contains a value not found in the Players range), the formula
returns an erroneous result.

A better solution uses the INDEX and MATCH functions. The formula that fol-
lows works just like the previous one, except that it returns #N/A if the player is not
found. Another advantage is that the player names need not be sorted.

=INDEX(Averages,MATCH(LookupValue,Players,0))

Chapter 8: Lookups 221

4800-x Ch08.F 8/27/01 11:55 AM Page 221

You can access a workbook that demonstrates both of the formulas in this

section on the companion CD-ROM.

Performing a Case-Sensitive Lookup
Excel’s lookup functions (LOOKUP, VLOOKUP, and HLOOKUP) are not case sensi-
tive. For example, if you write a lookup formula to look up the text budget, the for-
mula considers any of the following a match: BUDGET, Budget, or BuDgEt.

Figure 8-8 shows a simple example. Range D2:D7 is named Range1, and range
E2:E7 is named Range2. The word to be looked up appears in cell B1 (named Value).

Figure 8-8: Using an array formula to perform
a case-sensitive lookup

The array formula that follows is in cell B2. This formula does a case-sensitive
lookup in Range1 and returns the corresponding value in Range2.

{=INDEX(Range2,MATCH(TRUE,EXACT(Value,Range1),0))}

The formula looks up the word DOG (uppercase) and returns 300. The following
standard LOOKUP formula returns 400:

=LOOKUP(Value,Range1,Range2)

When entering an array formula, remember to use Ctrl+Alt+Enter.

222 Part II: Using Functions in Your Formulas

4800-x Ch08.F 8/27/01 11:55 AM Page 222

Choosing among Multiple Lookup Tables
You can, of course, have any number of lookup tables in a worksheet. In some
cases, your formula may need to decide which lookup table to use. Figure 8-9
shows an example.

Figure 8-9: This worksheet demonstrates the use of multiple lookup tables.

This workbook calculates sales commission and contains two lookup tables:
G3:H9 (named Table1) and J3:K8 (named Table2). The commission rate for a partic-
ular sales representative depends on two factors: the sales rep’s years of service
(column B) and the amount sold (column C). Column D contains formulas that look
up the commission rate from the appropriate table. For example, the formula in cell
D2 is:

=VLOOKUP(C2,IF(B2<3,Table1,Table2),2)

The second argument for the VLOOKUP function consists of an IF formula that
uses the value in column B to determine which lookup table to use.

The formula in column E simply multiplies the sales amount in column C by the
commission rate in column D. The formula in cell E2, for example, is:

=C2*D2

You can access the workbook shown in Figure 8-9 on the companion

CD-ROM.

Chapter 8: Lookups 223

4800-x Ch08.F 8/27/01 11:55 AM Page 223

Determining Letter Grades for Test Scores
A common use of a lookup table is to assign letter grades for test scores. Figure
8-10 shows a worksheet with student test scores. The range E2:F6 (named
GradeList) displays a lookup table used to assign a letter grade to a test score.

Figure 8-10: Looking up letter grades for test scores

The companion CD-ROM contains a workbook that demonstrates both for-

mulas in this section.

Column C contains formulas that use the VLOOKUP function and the lookup
table to assign a grade based on the score in column B. The formula in C2, for
example, is:

=VLOOKUP(B2,GradeList,2)

When the lookup table is small (as in the example shown in Figure 8-10), you
can use a literal array in place of the lookup table. The formula that follows, for
example, returns a letter grade without using a lookup table. Rather, the informa-
tion in the lookup table is hard-coded into a literal array. See Chapter 14 for more
information about literal arrays.

=VLOOKUP(B2,{0,”F”;40,”D”;70,”C”;80,”B”;90,”A”},2)

Another approach, which uses a more legible formula, is to use the LOOKUP
function with two array arguments:

=LOOKUP(B2,{0,40,70,80,90},{“F”,“D”,“C”,“B”,“A”})

224 Part II: Using Functions in Your Formulas

4800-x Ch08.F 8/27/01 11:55 AM Page 224

Calculating a Grade Point Average
A student’s grade point average (GPA) is a numerical measure of the average grade
received for classes taken. This discussion assumes a letter grade system, in which
each letter grade is assigned a numeric value (A=4, B=3, C=2, D=1, and F=0). The
GPA comprises an average of the numeric grade values, weighted by the credit
hours of the course. A one-hour course, for example, receives less weight than a
three-hour course. The GPA ranges from 0 (all Fs) to 4.00 (all As).

Figure 8-11 shows a worksheet with information for a student. This student took
five courses, for a total of 13 credit hours. Range B2:B6 is named CreditHours. The
grades for each course appear in column C (Range C2:C6 is named Grades). Column
D uses a lookup formula to calculate the grade value for each course. The lookup
formula in cell D2, for example, follows. This formula uses the lookup table in
G2:H6 (named GradeTable).

=VLOOKUP(C2,GradeTable,2,FALSE)

Figure 8-11: Using multiple formulas to calculate a GPA

Formulas in column E calculate the weighted values. The formula in E2 is:

=D2*B2

Cell B8 computes the GPA using the following formula:

=SUM(E2:E6)/SUM(B2:B6)

The preceding formulas work fine, but you can streamline the GPA calculation
quite a bit. In fact, you can use a single array formula to make this calculation and
avoid using the lookup table and the formulas in columns D and E. This array for-
mula does the job:

{=SUM((MATCH(Grades,{“F”,”D”,”C”,”B”,”A”},0)-1)*CreditHours)
/SUM(CreditHours)}

Chapter 8: Lookups 225

4800-x Ch08.F 8/27/01 11:55 AM Page 225

You can access a workbook that demonstrates both the multiformula and

the array formula techniques on the companion CD-ROM.

Performing a Two-Way Lookup
Figure 8-12 shows a worksheet with a table that displays product sales by month.
To retrieve sales for a particular month and product, the user enters a month in cell
B1 and a product name in cell B2.

Figure 8-12: This table demonstrates a two-way lookup.

The companion CD-ROM contains the workbook shown in Figure 8-12.

To simplify things, the worksheet uses the following named ranges:

Name Refers To

Month B1

Product B2

Table D1:H14

MonthList D1:D14

ProductList D1:H1

226 Part II: Using Functions in Your Formulas

4800-x Ch08.F 8/27/01 11:55 AM Page 226

The following formula (in cell B4) uses the MATCH function to return the posi-
tion of the Month within the MonthList range. For example, if the month is
January, the formula returns 2 because January is the second item in the MonthList
range (the first item is a blank cell, D1).

=MATCH(Month,MonthList,0)

The formula in cell B5 works similarly, but uses the ProductList range.

=MATCH(Product,ProductList,0)

The final formula, in cell B6, returns the corresponding sales amount. It uses the
INDEX function with the results from cells B4 and B5.

=INDEX(Table,B4,B5)

You can, of course, combine these formulas into a single formula, as shown
here:

=INDEX(Table,MATCH(Month,MonthList,0),MATCH(Product,ProductList,0))

If you use Excel 97 or later, you can use the Lookup Wizard add-in to create

this type of formula (see Figure 8-13). The Lookup Wizard add-in is distrib-

uted with Excel.

Figure 8-13: The Lookup Wizard add-in
can create a formula that performs
a two-way lookup.

Chapter 8: Lookups 227

4800-x Ch08.F 8/27/01 11:55 AM Page 227

Another way to accomplish a two-way lookup is to provide a name for each

row and column of the table. A quick way to do this is to select the table and

use Insert � Name � Create. After creating the names, you can use a simple

formula such as:

= Sprockets July

This formula, which uses the range intersection operator (a space), returns

July sales for Sprockets. See Chapter 3 for details.

Performing a Two-Column Lookup
Some situations may require a lookup based on the values in two columns. Figure
8-14 shows an example.

Figure 8-14: This workbook performs a lookup using information
in two columns (D and E).

The workbook shown in Figure 8-14 also appears on the companion

CD-ROM.

The lookup table contains automobile makes and models, and a corresponding
code for each. The worksheet uses named ranges, as shown here:

F2:F12 Code

B1 Make

B2 Model

228 Part II: Using Functions in Your Formulas

4800-x Ch08.F 8/27/01 11:55 AM Page 228

D2:D12 Range1

E2:E12 Range2

The following array formula displays the corresponding code for an automobile
make and model:

{=INDEX(Code,MATCH(Make&Model,Range1&Range2,0))}

This formula works by concatenating the contents of Make and Model, and then
searching for this text in an array consisting of the concatenated corresponding
text in Range1 and Range2.

Determining the Address of
a Value within a Range
Most of the time, you want your lookup formula to return a value. You may, how-
ever, need to determine the cell address of a particular value within a range. For
example, Figure 8-15 shows a worksheet with a range of numbers that occupy a
single column (named Data). Cell B1, which contains the value to look up, is named
Target.

Figure 8-15: The formula in cell B2 returns the
address in the Data range for the value in cell B1.

The formula in cell B2, which follows, returns the address of the cell in the Data
range that contains the Target value:

=ADDRESS(ROW(Data)+MATCH(Target,Data,0)-1,COLUMN(Data))

Chapter 8: Lookups 229

4800-x Ch08.F 8/27/01 11:55 AM Page 229

If the Data range occupies a single row, use this formula to return the address of
the Target value:

=ADDRESS(ROW(Data),COLUMN(Data)+MATCH(Target,Data,0)-1)

The companion CD-ROM contains the workbook shown in Figure 8-15.

If the Data range contains more than one instance of the Target value, the
address of the first occurrence is returned. If the Target value is not found in the
Data range, the formula returns #N/A.

Looking Up a Value Using the Closest Match
The VLOOKUP and HLOOKUP functions are useful in the following situations:

� You need to identify an exact match for a target value. Use FALSE as the
function’s fourth argument.

� You need to locate an approximate match. If the function’s fourth argu-
ment is TRUE or omitted and an exact match is not found, the next
largest value less than the lookup value is returned.

But what if you need to look up a value based on the closest match? Neither
VLOOKUP nor HLOOKUP can do the job.

Figure 8-16 shows a worksheet with student names in column A and values in
column B. Range B2:B20 is named Data. Cell E2, named Target, contains a value to
search for in the Data range. Cell E3, named ColOffset, contains a value that repre-
sents the column offset from the Data range.

You can access the workbook shown in Figure 8-16 on the companion

CD-ROM.

The array formula that follows identifies the closest match to the Target value in
the Data range, and returns the names of the corresponding student in column A
(i.e., the column with an offset of –1). The formula returns Leslie (with a matching
value of 8,000, which is the one closest to the Target value of 8,025).

230 Part II: Using Functions in Your Formulas

4800-x Ch08.F 8/27/01 11:55 AM Page 230

Figure 8-16: This workbook demonstrates how to perform
a lookup using the closest match.

{=INDIRECT(ADDRESS(ROW(Data)+MATCH(MIN(ABS(Target-Data)),
ABS(Target-Data),0)-1,COLUMN(Data)+ColOffset))}

If two values in the Data range are equidistant from the Target value, the for-
mula uses the first one in the list.

The value in ColOffset can be negative (for a column to the left of Data), positive
(for a column to the right of Data), or 0 (for the actual closest match value in the
Data range).

To understand how this formula works, you need to understand the INDIRECT
function. This function’s first argument is a text string in the form of a cell refer-
ence (or a reference to a cell that contains a text string). In this example, the text
string is created by the ADDRESS function, which accepts a row and column refer-
ence and returns a cell address.

Looking Up a Value Using Linear Interpolation
Interpolation refers to the process of estimating a missing value by using existing
values. To illustrate, refer to Figure 8-17. Column D contains a list of values (named
x) and column E contains corresponding values (named y).

The worksheet also contains a chart that depicts the relationship between the x
range and the y range graphically. As you can see, there is an approximate linear
relationship between the corresponding values in the x and y ranges: as x increases,
so does y. Notice that the values in the x range are not strictly consecutive. For
example, the x range doesn’t contain the following values: 3, 6, 7, 14, 17, 18,
and 19.

Chapter 8: Lookups 231

4800-x Ch08.F 8/27/01 11:55 AM Page 231

Figure 8-17: This workbook demonstrates a table lookup using linear interpolation.

You can create a lookup formula that looks up a value in the x range and returns
the corresponding value from the y range. But what if you want to estimate the y
value for a missing x value? A normal lookup formula does not return a very good
result because it simply returns an existing y value (not an estimated y value). For
example, the following formula looks up the value 3, and returns 18.00 (the value
that corresponds to 2 in the x range):

=LOOKUP(3,x,y)

In such a case, you probably want to interpolate. In other words, because the
lookup value (3) is halfway between existing x values (2 and 4), you want the for-
mula to return a y value of 21.000 — a value halfway between the corresponding y
values 18.00 and 24.00.

FORMULAS TO PERFORM A LINEAR INTERPOLATION
Figure 8-18 shows a worksheet with formulas in column B. The value to be looked
up is entered into cell B1. The final formula, in cell B16, returns the result. If the
value in B3 is found in the x range, the corresponding y value is returned. If the
value in B3 is not found, the formula in B16 returns an estimated y value, obtained
using linear interpolation.

The companion CD-ROM contains the workbook shown in Figure 8-18.

232 Part II: Using Functions in Your Formulas

4800-x Ch08.F 8/27/01 11:56 AM Page 232

Figure 8-18: Column B contains formulas that perform
a lookup using linear interpolation.

It’s critical that the values in the x range appear in ascending order. If B1 con-
tains a value less than the lowest value in x or greater than the largest value in x,
the formula returns an error value. Table 8-2 lists and describes these formulas.

TABLE 8-2 FORMULAS FOR A LOOKUP USING LINEAR INTERPOLATION

Cell Formula Description

B3 =LOOKUP(B1,x,y) Performs a standard lookup, and returns looked-
up value in the x range.

B4 =B1=B3 Returns TRUE if the looked-up value equals the
value to be looked up.

B6 =MATCH(B3,x,0) Returns the row number of the x range that
contains the matching value.

B7 =IF(B4,B6,B6+1) Returns the same row as the formula in B6 if an
exact match is found. Otherwise, it adds 1 to the
result in B6.

B9 =INDEX(x,B6) Returns the x value that corresponds to the row
in B6.

B10 =INDEX(x,B7) Returns the x value that corresponds to the row
in B7.

B12 =LOOKUP(B9,x,y) Returns the y value that corresponds to the x
value in B9.

Continued

Chapter 8: Lookups 233

4800-x Ch08.F 8/27/01 11:56 AM Page 233

TABLE 8-2 FORMULAS FOR A LOOKUP USING LINEAR INTERPOLATION (Continued)

Cell Formula Description

B13 =LOOKUP(B10,x,y) Returns the y value that corresponds to the x
value in B10.

B15 =IF(B4,0,(B1-B3)/ Calculates an adjustment factor based on
(B10-B9)) the difference between the x values.

B16 =B12+((B13-B12)*B15) Calculates the estimated y value using the
adjustment factor in B15.

COMBINING THE LOOKUP AND TREND FUNCTIONS
Another slightly different approach, which you may find preferable to performing
lookup using linear interpolation, uses the LOOKUP and TREND functions. One
advantage is that it requires only one formula (see Figure 8-19).

Figure 8-19: This worksheet uses a formula that utilizes
the LOOKUP function and the TREND function.

The formula in cell B3 follows. This formula uses an IF function to make a deci-
sion. If an exact match is found in the x range, the formula returns the correspond-
ing y value (using the LOOKUP function). If an exact match is not found, the
formula uses the TREND function to return the calculated “best-fit” y value (it does
not perform a linear interpolation).

=IF(B1=LOOKUP(B1,x,x),LOOKUP(INDEX(x,MATCH(LOOKUP(B1,x,x),x,0)),x,y)
,TREND(y,x,B1))

234 Part II: Using Functions in Your Formulas

4800-x Ch08.F 8/27/01 11:56 AM Page 234

Summary
This chapter presented an overview of the functions available to perform table
lookups. It included many formula examples demonstrating basic lookups, as well
as not-so-basic lookups.

The next chapter discusses useful formulas for summarizing information con-
tained in a database.

Chapter 8: Lookups 235

4800-x Ch08.F 8/27/01 11:56 AM Page 235

4800-x Ch08.F 8/27/01 11:56 AM Page 236

Chapter 9

Databases and Lists
IN THIS CHAPTER

� Basic information about using lists or worksheet databases

� Using AutoFiltering to filter a list using simple criteria

� Using advanced filtering to filter a list using more complex criteria

� Understanding how to create a criteria range for use with advanced filter-
ing or database functions

� Using the SUBTOTAL function to summarize data in a list

A WORKSHEET DATABASE (also known as a list) is an organized collection of infor-
mation. More specifically, it consists of a row of headers (descriptive text), followed
by additional rows of data comprised of values or text. This chapter provides an
overview of Excel’s worksheet database features, and presents some powerful for-
mulas to help you get a handle on even the most unwieldy database.

Be aware that the term database is used loosely. An Excel worksheet data-

base is more like a single table in a standard database. Unlike a conventional

database, Excel does not allow you to set up a relationship between tables.

Worksheet Lists or Databases
Figure 9-1 shows an example of a worksheet list (or database). This particular list
has its headers in row 1 and has 20 rows of data. Notice that the data consists of
several different types: text, numerical values, dates, and logical values. Column C
contains a formula that calculates the monthly salary from the value in column B.

237

4800-x Ch09.F 8/27/01 11:56 AM Page 237

Figure 9-1: A simple worksheet list

People often refer to the columns in a list as fields and to the rows as records.
Using this terminology, the list shown in the figure has six fields (Name, Annual
Salary, Monthly Salary, Location, Date Hired, and Exempt) and 20 records.

The size of a list that you develop in Excel is limited by the size of a single work-
sheet. In other words, a list can have no more than 256 fields and can consist of no
more than 65,535 records (one row contains the field names). A list of this size
requires a great deal of memory and, even then, may prove impossible. At the other
extreme, a list can consist of a single cell — not very useful, but still considered a
list.

In versions prior to Excel 97, a worksheet contains only 16,384 rows.

Why are lists used? People use worksheet lists for a wide variety of purposes. For
some users, a list simply keeps track of information (for example, customer infor-
mation); others use lists to store data that ultimately appears in a report. Common
list operations include:

� Entering data into the list

� Filtering the list to display only the rows that meet certain criteria

� Sorting the list

� Inserting formulas to calculate subtotals

238 Part II: Using Functions in Your Formulas

4800-x Ch09.F 8/27/01 11:56 AM Page 238

� Creating formulas to calculate results on the list, filtered by certain
criteria

� Creating a summary table of the data in the list (often done by using a
pivot table)

When creating lists, it helps to plan the organization of your list information.
This sidebar on designing lists has guidelines to help you create lists.

Chapter 9: Databases and Lists 239

Designing a List
Although Excel is quite accommodating with regard to the information that is stored
in a list, planning the organization of your list information is important, and makes
the list easier to work with. Remember the following guidelines when you create lists:

� Insert descriptive labels (one for each column) in the first row (the
header row) of the list. If you use lengthy labels, consider using the Wrap
Text format so that you don’t have to widen the columns.

� Make sure that each column contains only one type of information. For
example, don’t mix dates and text in a single column.

� Consider using formulas that perform calculations on other fields in the
same record. If you use formulas that refer to cells outside the list, make
these absolute references; otherwise, you get unexpected results when you
sort the list.

� Don’t leave any empty rows within the list. For list operations, Excel deter-
mines the list boundaries automatically, and an empty row signals the end of
the list.

� Keep the list on a worksheet by itself, to obtain the best results. If you
must place other information on the same worksheet as the list, place the
information above or below the list. In other words, don’t use the cells to the
left or right of a list.

� Freeze the first row. Select the cell in the first column and first row of your
table, then choose Window � Freeze Panes to make sure that you can see the
headings when you scroll the list.

� Preformat the entire column to ensure that the data has the same format.
For example, if a column contains dates, format the entire column with the
same date format.

4800-x Ch09.F 8/27/01 11:56 AM Page 239

Using AutoFiltering
Filtering a list involves the process of hiding all rows in the list except those rows
that meet some criteria that you specify. For example, if you have a list of cus-
tomers, you can filter the list to show only those who live in Oregon. Filtering is a
common (and very useful) technique.

Excel provides two ways to filter a list. AutoFiltering is useful for simple filter-

ing criteria. Advanced filtering (discussed later in this chapter) is for more

complex filtering.

AutoFiltering Basics
To use Excel’s AutoFilter feature to filter a list, place the cell pointer anywhere
within the list and then choose Data � Filter � AutoFilter. Excel determines the
range occupied by the list, and adds drop-down arrows to the field names in the
header row (as shown in Figure 9-2).

Figure 9-2: When you choose the Data � Filter � AutoFilter command,
Excel adds drop-down arrows to the field names in the header row.

When you click the arrow in one of these drop-down lists, the list expands to
show the unique items in that column. Select an item, and Excel hides all rows
except those that include the selected item. You can filter the list using a single
field or multiple fields. The drop-down arrow changes color to remind you that you
filtered the list by a value in that column.

240 Part II: Using Functions in Your Formulas

4800-x Ch09.F 8/27/01 11:56 AM Page 240

AutoFiltering has a limit. Only the first 1,000 unique items in the column

appear in the drop-down list. If your list exceeds this limit, you can use

advanced filtering, which I describe later.

Besides showing every item in the column, the drop-down list offers five other
choices:

� All: Displays all items in the column. Use this to remove filtering for a
column.

� Top 10: Filters to display the “top 10” items in the list. Actually, this
option is a misnomer; you can display the “top n” items (you choose the
number).

� Custom: Enables you to filter the list by multiple items (see Figure 9-3).

� Blanks: Filters the list by showing rows that contain blanks in this col-
umn. This option is available only if the column contains one or more
blank cells.

� NonBlanks: Filters the list by showing rows that contain nonblanks in this
column. This option is available only if the column contains one or more
blank cells.

Figure 9-3: The Custom AutoFilter dialog box
gives you more filtering options.

Excel automatically creates a hidden name (_FilterDatabase) for the range

occupied by the filtered list. Note that the name begins with an underscore

character.You can use this name in a VBA macro or in a formula.To select the

filtered data range, press Ctrl+G to bring up the Go To dialog box. The hid-

den name does not appear in the list of names, so you need to enter it man-

ually.Type _FilterDatabase in the Reference field and click OK.

Chapter 9: Databases and Lists 241

4800-x Ch09.F 8/27/01 11:56 AM Page 241

Custom AutoFiltering is useful, but it definitely has limitations. For example, if
you want to filter a list to show only three values in a field (such as New York or
New Jersey or Connecticut), you can’t do it through AutoFiltering. Such filtering
tasks require the advanced filtering feature, which I discuss later in this chapter.

To display the entire unfiltered list again, click the arrow and choose All — the
first item on the drop-down list. Or, you can select Data � Filter � Show All. To exit
AutoFilter mode and remove the drop-down arrows from the field names, choose
Data � Filter � AutoFilter again.

Counting and Summing Filtered Data
You can create a formula to display the number of filtered records. The formula that
follows, for example, displays the number of filtered records by using the SUBTO-
TAL function, with 3 as the first argument:

=SUBTOTAL(3,A5:A400)

The first argument for the SUBTOTAL function determines the type of “totalling”
that is performed. An argument of 3 specifies that the totalling will be equivalent to
using Excel’s COUNTA function.

Make sure that the range argument for the SUBTOTAL function begins with the
first row of the list, and extends (at least) to the last row of the list.

You should put this formula in a row above or below the list. Otherwise, fil-

tering the list may hide the row that contains the formula. Also, be aware

that the count returned by the SUBTOTAL function does not include blank

cells.

To display the sum of filtered records, use 9 as the first argument for the SUBTO-
TAL function. The following formula, for example, returns the sum of the filtered
values in column C:

=SUBTOTAL(9,C5:C400)

Figure 9-4 shows the result of these formulas when applied to a filtered list.

242 Part II: Using Functions in Your Formulas

4800-x Ch09.F 8/27/01 11:56 AM Page 242

Figure 9-4: The formulas in cells C1 and C2
use the SUBTOTAL function.

The SUBTOTAL function is the only function that recognizes data hidden by

AutoFiltering. If you have other formulas that refer to data in a filtered list,

these formulas don’t adjust to use only the visible cells. For example, if a cell

contains a formula that sums values in column C, the formula continues to

show the sum for all the values in column C, not just those in the visible

rows.

You can use the SUBTOTAL function to generate consecutive numbers for

nonhidden rows in a filtered list. The numbering will adjust as you apply fil-

tering to hide or display rows. If your list has the field names in row 1, enter

this formula in cell A2, and then copy it down for each row in your list:

=SUBTOTAL(3,B$2:B2)

For more about the SUBTOTAL function, refer to “Creating Subtotals,” later in
this chapter.

Copying and Deleting Filtered Data
Some of the standard spreadsheet operations work differently with a filtered list.
For example, you might use the Format � Row � Hide command to hide rows. If
you then copy a range that includes those hidden rows, all the data gets copied
(even the hidden rows). But when you copy data in an AutoFiltered list, only the
visible rows are copied.

Similarly, you can select and delete the visible rows in the table, and the rows
hidden by AutoFiltering will not be affected.

Chapter 9: Databases and Lists 243

4800-x Ch09.F 8/27/01 11:56 AM Page 243

Using Advanced Filtering
In many cases, AutoFiltering does the job just fine. But if you run up against its
limitations, you need to use advanced filtering. Advanced filtering is much more
flexible than AutoFiltering, but it takes a bit of up-front work to use it. Advanced
filtering provides you with the following capabilities:

� You can specify more complex filtering criteria.

244 Part II: Using Functions in Your Formulas

About the SUBTOTAL Function
The SUBTOTAL function is very versatile. It’s unique in that it is the only Excel function
that ignores cells in hidden rows. There is one caveat, however: The rows must be
hidden as a result of autofiltering or an outline. Simply hiding rows manually will have
no effect on the results calculated by the SUBTOTAL function.

The first argument for the SUBTOTAL function determines the actual function used.
For example, when the first argument is 1, the SUBTOTAL function works like the
AVERAGE function. The following table shows the possible values for the first
argument for the SUBTOTAL function:

Value Function

1 AVERAGE

2 COUNT

3 COUNTA

4 MAX

5 MIN

6 PRODUCT

7 STDEV

8 STDEVP

9 SUM

10 VAR

11 VARP

4800-x Ch09.F 8/27/01 11:56 AM Page 244

� You can specify computed filtering criteria.

� You can extract a copy of the rows that meet the criteria to another
location.

Chapter 9: Databases and Lists 245

Filling in the Gaps
When you import data, you can end up with a worksheet that looks something like the
one in the accompanying figure. In this example, an entry in column A applies to
several rows of data. If you sort such a list, you can end up with a mess and you won’t
be able to tell who sold what.

When you have a small list, you can enter the missing cell values manually. But if
you have a huge database, you need a better way of filling in those cell values.
Here’s how:

1. Select the range (A3:A14 in this example).

2. Press Ctrl+G to display the Go To dialog box.

3. In the Go To dialog box, click Special.

4. Select the Blanks option.

5. In the formula bar, type = followed by the address of the first cell with an
entry in the column (=A3 in this example), and press Ctrl+Enter.

6. Reselect the range and choose Edit � Copy.

7. Select Edit � Paste Special, choose the Values option, and click OK.

4800-x Ch09.F 8/27/01 11:56 AM Page 245

Setting Up a Criteria Range
Before you can use the advanced filtering feature, you must set up a criteria range,
a designated range on a worksheet that conforms to certain requirements. The cri-
teria range holds the information that Excel uses to filter the list. It must conform
to the following specifications:

� It must consist of at least two rows, and the first row must contain some
or all field names from the list.

� The other rows of the criteria range must consist of your filtering criteria.

You can put the criteria range anywhere in the worksheet, or even in a different
worksheet. You should avoid putting it in rows where you placed the list. Because
Excel may hide some of these rows when filtering the list, you may find that your
criteria range is no longer visible after filtering. Therefore, you should generally
place the criteria range above or below the list.

Figure 9-5 shows a criteria range, located in A1:B2, above the list that it uses.
Notice that the criteria range does not include all of the field names from the list.
You can include only the field names for fields that you use in the selection criteria.

Figure 9-5: A criteria range for a list

In this example, the criteria range has only one row of criteria. The fields in each
row of the criteria range (except for the header row) are joined with an AND oper-
ator. Therefore, after applying the advanced filter, the list shows only the rows in
which the Month column equals Jan AND the Region column equals North. You
may find specifying criteria in the criteria range a bit tricky. I discuss this topic in
detail later in this chapter. See “Specifying Advanced Filter Criteria.”

246 Part II: Using Functions in Your Formulas

4800-x Ch09.F 8/27/01 11:56 AM Page 246

Filtering a List
To perform the filtering, select any cell within your list. Then choose Data �
Filter � Advanced filter. Excel displays the Advanced Filter dialog box, shown in
Figure 9-6. Excel guesses your List range (you can change it if necessary), but you
need to specify the criteria range. To filter the list in place (i.e., hide rows that don’t
qualify), select the option labeled Filter the list, in-place. If you select the Copy to
another location option, you need to specify a range in the Copy to box. Click OK,
and Excel filters the list by the criteria that you specify.

Figure 9-6: The Advanced Filter dialog box

When you copy filtered records to another location (in other words, when you
select the Copy to another location option), you can specify which columns to
include in the copy. Before displaying the Advanced Filter dialog box, copy the
desired field labels to the first row of the area where you plan to paste the filtered
rows. In the Advanced Filter dialog box, specify a reference to the copied column
labels in the Copy to box. The copied rows then include only the columns for which
you copied the labels.

Chapter 9: Databases and Lists 247

Extracting Unique Records From a List
A common question among Excel users is, “How can I get rid of duplicate records in a
list?”

Perhaps the easiest solution uses advanced filtering. Activate any cell within your list
and choose Data � Filter � Advanced filter. In the Advanced Filter dialog box, select
Copy to another location and specify a new location in the Copy to box (the new
location must be on the same worksheet). Then, place a check mark next to Unique
records only. Click OK and you’ll have a copy of your list, without the duplicate
records. By the way, this is the only Advanced Filter operation that does not require a
criteria range.

4800-x Ch09.F 8/27/01 11:56 AM Page 247

You can access the JWalk Enhanced Data Form add-in on the companion

CD-ROM.

Specifying Advanced Filter Criteria
Microsoft’s enhancements to list-related features in Excel have focused exclusively
on AutoFiltering. The use of a separate criteria range for advanced filtering origi-
nated with the original version of Lotus 1-2-3. Excel adapted this method, and it

248 Part II: Using Functions in Your Formulas

Working with Data in a List
Excel’s Data � Form command displays a dialog box to help you work with a list. This
dialog enables you to enter new data, delete rows, and search for rows that match
certain criteria.

Excel’s Data Form is handy, but by no means ideal. If you like the idea of using a
dialog box to work with data in a list, check out my Enhanced Data Form add-in. It
offers many advantages over Excel’s Data Form.

After you install the add-in, activate any cell in a list and then choose Data � JWalk
Enhanced Data Form. Data that makes up the current record appears in the dialog box.
Use the horizontal scrollbar (or the Previous/Next buttons) to scroll through the
database. Changes you make to the data are written to the database, and undo is
available. The form handles an unlimited number of fields, and a wildcard-capable
search window permits quick retrieval of the desired record based on any field.

4800-x Ch09.F 8/27/01 11:56 AM Page 248

has never been changed, despite the fact that specifying advanced filtering criteria
remains one of the most confusing aspects of Excel. This section presents plenty of
examples to help you understand how to create a criteria range that extracts the
information you need.

The examples in this section use the list shown in Figure 9-7. This list, which has
125 records and eight fields, was designed to use a good assortment of data types:
values, text strings, logicals, and dates. The list occupies the range A8:H133 (rows
above the list are used for the criteria range).

Figure 9-7: This list contains information about real estate listings.

The workbook shown in Figure 9-7 is available on the companion CD-ROM.

Specifying a Single Criterion
The examples in this section use a single-selection criterion. In other words, the
contents of a single field determine the record selection.

You also can use AutoFiltering to perform this type of filtering.

Chapter 9: Databases and Lists 249

4800-x Ch09.F 8/27/01 11:56 AM Page 249

To select only the records that contain a specific value in a specific field, enter
the field name in the first row of the criteria range, and the value to match in the
second row. Figure 9-8, for example, shows the criteria range (A1:A2) that selects
records containing the value 4 in the Bedrooms field.

Figure 9-8: The criteria range (A1:A2) selects records that describe properties
with four bedrooms.

Note that the criteria range does not need to include all of the fields from the list.
If you work with different sets of criteria, you may find it more convenient to list
all of the field names in the first row of your criteria range.

USING COMPARISON OPERATORS
You can use comparison operators to refine your record selection. For example, you
can select records based on any of the following:

� Homes that have at least four bedrooms

� Homes with a square footage less than 2,000

� Homes with a list price of no more than $200,000

To select the records that describe homes that have at least four bedrooms, make
the following entries in the criterion range:

A1: Bedrooms
A2: >=4

Table 9-1 lists the comparison operators that you can use with text or value cri-
teria. If you don’t use a comparison operator, Excel assumes the equal sign opera-
tor (=).

250 Part II: Using Functions in Your Formulas

4800-x Ch09.F 8/27/01 11:56 AM Page 250

TABLE 9-1 COMPARISON OPERATORS

Operator Comparison Type

= Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

< > Not equal to

Table 9-2 shows examples of some criteria that use comparison operators.

TABLE 9-2 EXAMPLES OF COMPARISON OPERATORS

Criteria Selects

>100 Records that contain a value greater than 100

<>0 Records that contain a value not equal to 0

=500 Records that contain a value of 500 (omitting the equal sign gives the
same result)

<5000 Records that contain a value less than 5000

>=5000 Records that contain a value less than or equal to 5000

USING WILDCARD CHARACTERS
Criteria that use text also can make use of two “wildcard” characters: an asterisk (*)
matches any number of characters; a question mark (?) matches any single charac-
ter. Table 9-3 shows examples of criteria that use text. Some of these are a bit
counter-intuitive. For example, to select records that match a single character, you
must enter the criterion as a formula (refer to the last entry in the table).

Chapter 9: Databases and Lists 251

4800-x Ch09.F 8/27/01 11:56 AM Page 251

TABLE 9-3 EXAMPLES OF TEXT CRITERIA

Criteria Selects

=”=January” Records that contain the text January (and nothing else). You must
enter this exactly as shown: as a formula, with an initial equal sign.

January Records that begin with the text January.

C Records that contain text that begins with the letter C.

<>C* Records that contain any text, except text that begins with the
letter C.

>K Records that contain text that begins with the letters L through Z.

County Records that contain text that includes the word COUNTY.

Sm* Records that contain text that begins with the letters SM.

s*s Records that contain text that begins with S and have a subsequent
occurrence of the letter S.

s?s Records that contain text that begins with S and has another S as its
third character. Note that this does not select only three-character
words.

=”=s*s” Records that contain text that begins and ends with S. You must enter
this exactly as shown: as a formula, with an initial equal sign.

<>*c Records that contain text that does not end with the letter C.

<>????? All records that don’t contain exactly five letters.

<>*c* Records that do not contain the letter C.

~? Records that contain a single question mark character.

= Records that contain a blank.

<> Records that contain any nonblank entry.

=”=c” Records that contain the single character C. You must enter this
exactly as shown: as a formula, with an initial equal sign.

The text comparisons are not case sensitive. For example, se* matches

Seligman, seller, and SEC.

252 Part II: Using Functions in Your Formulas

4800-x Ch09.F 8/27/01 11:56 AM Page 252

Specifying Multiple Criteria
Often, you may want to select records based on criteria that use more than one field
or multiple values within a single field. These selection criteria involve logical OR
or AND comparisons. Following are a few examples of the types of multiple crite-
ria that you can apply to the real estate database:

� A list price less than $250,000, and square footage of at least 2,000

� Single-family home with a pool

� At least four bedrooms, at least three bathrooms, and square footage less
than 3,000

� A home listed for no more than one month, with a list price greater than
$300,000

� A condominium with square footage between 1,000 and 1,500

� A single-family home listed in the month of March

To join criteria with an AND operator, use multiple columns in the criteria range.
Figure 9-9 shows a criteria range that selects records with a list price of less than
$250,000 and a square footage of at least 2,000.

Figure 9-9: This criteria range uses multiple columns that select records using
a logical AND operation.

Figure 9-10 shows another example. This criteria range selects records that were
listed in the month of March. Notice that the field name (Date Listed) appears twice
in the criteria range. The criteria selects the records in which the Date Listed date
is greater than or equal to March 1 AND the Date Listed date is less or equal to
March 31.

Chapter 9: Databases and Lists 253

4800-x Ch09.F 8/27/01 11:56 AM Page 253

The criteria shown in Figure 9-9 may not work properly for systems that don’t

use the U.S. date formats.To ensure compatibility with different date systems,

use the DATE function to define such criteria, as in the following formulas

=”>=”&DATE(2001,3,1)
=”<=”&DATE(2001,3,31)

Figure 9-10: This criteria range selects records that describe properties that
were listed in the month of March.

To join criteria with a logical OR operator, use more than one row in the criteria
range. A criteria range can have any number of rows, each of which joins with the
others via an OR operator. Figure 9-11 shows a criteria range (A1:C3) with two rows
of criteria.

Figure 9-11: This criteria range has two sets of criteria, each of which is in
a separate row.

254 Part II: Using Functions in Your Formulas

4800-x Ch09.F 8/27/01 11:56 AM Page 254

In this example, the filtered list shows the rows that meet either of the following
conditions:

� A condo with a square footage of at least 1,800, OR

� A single-family home with a list price under $210,000

You cannot perform this type of filtering using AutoFiltering.

Specifying Computed Criteria
Using computed criteria can make filtering even more powerful. Computed criteria
filter the list based on one or more calculations. Figure 9-12 shows a criteria range
that selects records in which the list price is less than the average list price of all
records. The formula in cell B2 is as follows:

=ListPrice>AVERAGE(A:A)

This formula will generate a #NAME? error if you are not using the Accept

labels in formulas option. This setting is specified in the Calculation tab of

the Options dialog box. If you are not using this option, the #NAME? error

will not cause any problems.

Figure 9-12: This criteria range uses computed criteria.

Chapter 9: Databases and Lists 255

4800-x Ch09.F 8/27/01 11:56 AM Page 255

Keep these following points in mind when using computed criteria:

� Computed criteria formula are always logical formulas: They must return
either TRUE or FALSE.

� You can use the field label in your formula. In the preceding example,
ListPrice is not a named range. It is a field label in the database.
Alternatively, you can use a reference to the cell in the first data row in
the field of interest (not a reference to the cell that contains the field
name). In this example, the cell in the first data row for the ListPrice field
is cell A9. The following formula returns the same result as the previous
example:

=A9>AVERAGE(A:A)

� Ignore the values returned by formulas in the criteria range. These refer to
the first row of the list. Sometimes, using a field label in the formula
results in an error value such as #NAME? or #VALUE!. You can just
ignore this error. It does not affect how the list is filtered.

� When you use computed criteria, do not use an existing field label in your
criteria range. In Figure 9-12, notice that cell B1 contains Above Avg,
which is not a field name from the list. A computed criteria essentially
computes a new field for the list. Therefore, you must supply a new field
name in the first row of the criteria range. Or, if you prefer, you can sim-
ply leave the field name cell blank.

� You can use a reference to an entire column in a computed criteria for-
mula. In the preceding example, the AVERAGE function used A:A as its
argument. If you do so, the criteria formula must be in a different column
than the column referenced. Failure to do so results in a circular reference.
If you prefer, you can simply use the actual address of the column within
your list.

� You can use any number of computed criteria and mix and match them
with noncomputed criteria.

� If your computed formula refers to a value outside the list, use an absolute
reference rather than a relative reference. For example, use C1 rather
than C1.

COMPUTED CRITERIA EXAMPLES
Figure 9-13 shows another example of computed criteria. This criteria selects
records in which the sum of the bedrooms and bathrooms is greater than 8. The
label in cell A1 is descriptive and does not affect the filtering.

Notice that the computed criteria formula returns an error value because the for-
mula refers to field names. The filtering works correctly, despite the error.

256 Part II: Using Functions in Your Formulas

4800-x Ch09.F 8/27/01 11:56 AM Page 256

=Bedrooms+Baths>8

Alternatively, you can write this formula, which refers to the first data row in the
list:

=D9+E9>8

Using this formula does not return an error, but the formula isn’t as easy to
understand.

Figure 9-13: This criteria range uses computed criteria.

Following is another example of a computed criteria formula. This formula
selects the records listed within the past 60 days.

=B9>TODAY()-60
=Date Listed>TODAY()-60

USING ARRAYS WITH COMPUTED CRITERIA
Excel also supports arrays in computed criteria formulas. To see how this may be
useful, consider a situation in which you want to identify properties that don’t have
a “half bath.” Filter out records that have 3.5, 4.5, or some other noninteger value
in the Baths field. Figure 9-14 displays one example. The criteria range, A1:A5,
uses four OR criteria to make the selection.

Chapter 9: Databases and Lists 257

4800-x Ch09.F 8/27/01 11:56 AM Page 257

Figure 9-14: Using four OR criteria to select records with noninteger bathrooms

Another option uses this single-computed criteria formula:

=OR(Baths={2,3,4,5,6,7})

This formula returns TRUE if the value in the Bath field equals any of the values
in the array.

Using Database Functions with Lists
To create formulas that return results based on filtering criteria, use Excel’s data-
base worksheet functions. These functions all begin with the letter D, and are listed
in the Database category of the Insert Function dialog box.

Table 9-4 lists Excel’s database functions. Each of these functions operates on a
single field in the database.

TABLE 9-4 EXCEL’S DATABASE WORKSHEET FUNCTIONS

Function Description

DAVERAGE Returns the average of database entries that match the criteria

DCOUNT Counts the cells containing numbers from the specified database and
criteria

DCOUNTA Counts nonblank cells from the specified database and criteria

DGET Extracts from a database a single field from a single record that matches
the specified criteria

258 Part II: Using Functions in Your Formulas

4800-x Ch09.F 8/27/01 11:56 AM Page 258

Function Description

DMAX Returns the maximum value from selected database entries

DMIN Returns the minimum value from selected database entries

DPRODUCT Multiplies the values in a particular field of records that match the
criteria in a database

DSTDEV Estimates the standard deviation of the selected database entries
(assumes that the data is a sample from a population) of selected
database entries

DSTDEVP Calculates the standard deviation of the selected database entries, based
on the entire population of selected database entries

DSUM Adds the numbers in the field column of records in the database that
match the criteria

DVAR Estimates the variance from selected database entries (assumes the data
is a sample from a population)

DVARP Calculates the variance, based on the entire population of selected
database entries

The database functions all require a separate criteria range, which is specified as
the last argument for the function. The database functions use exactly the same
type of criteria range as discussed earlier in “Specifying Advanced Filter Criteria.”

Refer to Figure 9-15. The formula in cell C2, which follows, uses the DSUM
function to calculate the sum of values in a list that meet certain criteria.
Specifically, the formula returns the sum of the Sales column for records in which
the Month is “Feb” and the Region is “North” or the Region is “South.”

=DSUM(Database,3,Criteria)

In this case, the list is named Database, 3 is the field number of the column you
are summing, and Criteria is the name of the criteria range (A1:B3).

Following is an alternate version of this formula that uses the field name instead
of the field number. This version is easy to read and will continue to function if a
new field is inserted before column 3.

=DSUM(Database,”Sales”,Criteria)

Chapter 9: Databases and Lists 259

4800-x Ch09.F 8/27/01 11:56 AM Page 259

Figure 9-15: Using the DSUM function to sum
a list using a criteria range.

You may find it cumbersome to set up a criteria range every time you need

to use a database function. Fortunately, Excel provides some alternative

ways to perform conditional sums and counts. Refer to Chapter 7 for exam-

ples that use SUMIF, COUNTIF, and various other techniques.

If you’re an array formula aficionado, you might be tempted to use a literal array
in place of the criteria range. In theory, the following array formula should work
(and would eliminate the need for a separate criteria range). Unfortunately, the
database functions do not support arrays, and this formula simply returns a
#VALUE! error.

{=DSUM(Database,3,{“Month”,”Region”;”Feb”,”North”})}

In the original release of Excel 97, the database functions do not work cor-

rectly if the first argument refers to a range that contains more than 32,768

rows. Excel 97 SR-1 corrected this problem.

260 Part II: Using Functions in Your Formulas

4800-x Ch09.F 8/27/01 11:56 AM Page 260

Appendix A contains more information about working with 1-2-3 files.

Summarizing a List with
a Data Table
This section describes a technique that you can use to summarize the information
in a database. It uses the Data � Table command to create a dynamic summary
table. A pivot table is often your best choice for this type of thing, but this tech-
nique offers one advantage: The data table is updated automatically (you do not
need to refresh it, as in a pivot table).

Figure 9-16 shows part of a simple sales list that occupies five columns. The list
contains a monthly sales total (column E) for each sales representative, along with
the number of sales contacts made (column D) and the sales rep’s region (either
North or South, in column C). For example, in January, Bob (a sales rep for the
North region), made 58 contacts for total sales of $283,800.

Chapter 9: Databases and Lists 261

Working with a Lotus 1-2-3 File?
If you open a 1-2-3 file in Excel, be aware that Excel evaluates the database criteria
ranges differently. This may affect the results obtained when using advanced filtering
and database functions.

For example, in 1-2-3, a criteria such as “John” finds only rows with cells that contain
the text “John.” When you open a 1-2-3 file in Excel, the “transition formula
evaluation” is in effect. If you don’t change this setting, the criteria ranges will be
evaluated as they are in 1-2-3.

But if you select Tools � Options, and clear the Transition formula evaluation check
box (in the Transition tab of the Options dialog box), Excel evaluates the criteria range
using its rules (which are different). For example, the “John” criteria finds any rows
that contain cells with text beginning with “John”; this includes cells that contain
“John,” “John Smith,” and “Johnson.”

4800-x Ch09.F 8/27/01 11:56 AM Page 261

Figure 9-16: A data table is a good way
to summarize this list.

The list contains 76 records, and the entire list (A1:E77) is named Database.
Range G1:H2 stores a criteria range for the list. This range is named Criteria. The
goal is to create a summary table that shows key information by month. Figure
9-17 shows the summary table in G8:K23 — created using the Data � Table
command.

Figure 9-17: Use the Data � Table command to create this summary table.

262 Part II: Using Functions in Your Formulas

4800-x Ch09.F 8/27/01 11:56 AM Page 262

The workbook shown in Figure 9-17 is available on the companion CD-ROM.

For comparison, the workbook also contains a pivot table summary, plus a

table that uses array formulas (as described in Chapter 7).

To create this data table:

1. Enter the month names in G10:G21.

2. Enter the descriptive labels shown in H8:K8.

3. Enter the formulas from Table 9-5 into cells in row 9.

4. Select the range G9:K21.

5. Choose Data � Table. Excel displays the Table dialog box shown in Figure
9-18.

6. In the Table dialog box, enter G2 into the field labeled Column input cell
(leave the Row input cell field empty).

7. Click OK.

TABLE 9-5 FORMULAS TO ENTER

Cell Formula

H9 =DCOUNTA(Database,”Sales Rep”,Criteria)

I9 =DSUM(Database,”Contacts”,Criteria)

J9 =DSUM(Database,”Sales”,Criteria)

K9 =J9/I9

Figure 9-18: The Table dialog box,
used for creating a data table.

Chapter 9: Databases and Lists 263

4800-x Ch09.F 8/27/01 11:56 AM Page 263

Excel inserts a single array formula into H10:K21. The formula is as follows:

=TABLE(,G2)

This formula uses the information in the cells to the left (G10:G21) and above
(H9:K9) to perform calculations. It evaluates the formulas in row 9, substituting the
corresponding month in column G. In other words, the single criteria range is being
treated as if it were a series of criteria ranges.

You can enter a region name (either North or South) in cell H2 and the data table
will show the information for that region. If H2 is blank, the data table shows infor-
mation for all regions.

Creating Subtotals
Excel’s Data � Subtotals command is a handy tool that inserts formulas into a list
automatically. These formulas use the SUBTOTAL function, which actually does
more than simply sum data. To use this feature, your list must be sorted, because
the formulas are inserted whenever the value in a specified field changes.

Figure 9-19 shows an example of a list that is appropriate for subtotals. This list
is sorted by the Month field, and then by the Region field.

Figure 9-19: This list is a good candidate for subtotals, which are inserted
at each change of the month and at each change of the region.

To insert subtotal formulas into a list automatically, move the cell pointer any-
where in the list and choose Data � Subtotals. You will see the Subtotal dialog box,
shown in Figure 9-20.

264 Part II: Using Functions in Your Formulas

4800-x Ch09.F 8/27/01 11:56 AM Page 264

Figure 9-20: The Subtotal dialog box automatically
inserts subtotal formulas into a sorted list.

The Subtotal dialog box offers the following choices:

� At each change in: This drop-down list displays all fields in your list. You
must have sorted the list by the field that you choose.

� Use function: Choose from 11 functions (Sum is the default).

� Add subtotal to: This list box shows all the fields in your list. Place a
check mark next to the field or fields that you want to subtotal.

� Replace current subtotals: If checked, Excel removes any existing subtotal
formulas and replaces them with the new subtotals.

� Page break between groups: If checked, Excel inserts a manual page break
after each subtotal.

� Summary below data: If checked, Excel places the subtotals below the
data (the default). Otherwise, the subtotal formulas appear above the data.

� Remove All: This button removes all subtotal formulas in the list.

When you click OK, Excel analyzes the list and inserts formulas as specified —
and even creates an outline for you. Figure 9-21 shows a worksheet after adding
two sets of subtotals: one that summarizes by month, and another that summarizes
by region. You can, of course, use the SUBTOTAL function in formulas that you
create manually. Using the Data � Subtotals command is usually easier.

Chapter 9: Databases and Lists 265

4800-x Ch09.F 8/27/01 11:56 AM Page 265

Figure 9-21: Excel adds the subtotal formulas automatically —
and even creates an outline.

If you add subtotals to a filtered list, the subtotals may no longer be accu-

rate when you remove the filter.

The formulas all use the SUBTOTAL worksheet function. For example, the for-
mula in cell E9 (total sales for January) is as follows:

=SUBTOTAL(9,E2:E7)

Although this formula refers to two other cells that contain a SUBTOTAL for-
mula (E5 and E8), those cells are not included in the sum to avoid double-counting.

You can use the outline controls to adjust the level of detail shown. Figure 9-22,
for example, shows only the summary rows from the subtotaled list. These rows
contain the SUBTOTAL formulas.

266 Part II: Using Functions in Your Formulas

4800-x Ch09.F 8/27/01 11:56 AM Page 266

Figure 9-22: Using the outline controls to hide the detail
and display only the summary rows

Summary
This chapter presented various formula techniques relevant to working with a list.
A list (also known as a worksheet database) is an organized collection of informa-
tion. The first row contains field names, and subsequent rows contain data
(records). AutoFiltering presents a useful method of filtering a list using simple cri-
teria; for more complex criteria, you need to use advanced filtering, which requires
a criteria range. This chapter also discussed Excel’s database functions (which also
require a criteria range) and the SUBTOTAL function.

Chapter 10 covers a wide variety of miscellaneous calculations.

Chapter 9: Databases and Lists 267

4800-x Ch09.F 8/27/01 11:56 AM Page 267

4800-x Ch09.F 8/27/01 11:56 AM Page 268

Chapter 10

Miscellaneous Calculations
IN THIS CHAPTER

� Conversion factors for a wide variety of measurement units

� Formulas for calculating the various parts of a right triangle

� Calculations for area, surface, circumference, and volume

� Matrix functions to solve simultaneous equations

� Formulas that demonstrate various ways to round numbers

THIS CHAPTER CONTAINS REFERENCE information that may be useful to you at some
point. Consider it a cheat sheet to help you remember the stuff you may have
learned, but have long since forgotten.

Unit Conversions
You know the distance from New York to London in miles, but your European
office needs the numbers in kilometers. What’s the conversion factor? The informa-
tion in this section contains many useful conversion factors that you can use in
your formulas.

Excel’s CONVERT function (available only when you install the Analysis

ToolPak add-in) can calculate many unit conversions (refer to the online help

for complete details). In some cases, however, you may find it more efficient

to create your own conversion formulas so you don’t need to rely on the

Analysis ToolPak. To create your own conversion formula, you need to know

the specific conversion factor for the measurement units.

Using the Unit Conversion Tables
To convert from one measurement unit to another, locate the appropriate conver-
sion table in this section and determine the conversion factor. For example, to
convert meters to inches, use the Distance Conversion Factors table. Refer to the

269

4800-x Ch10.F 8/27/01 11:56 AM Page 269

third row of the table (labeled Meter) and then locate the column labeled Inch. The
meter-to-inch conversion factor is 39.37007874.

You can then use the conversion factor in a formula. For example, if cell A1
contains the value in meters, enter the following formula to convert it to inches:

=A1*39.37007874

Converting Metric Units
To convert to or from other metric units, you need to use an additional metric con-
version factor from Table 10-1. To use this table, multiply the basic metric unit by
the metric conversion factor. For example, consider the meter unit of distance mea-
surement. A kilometer is 1 meter times 1E+03, or 1,000 meters. A millimeter, con-
versely, is 1 meter times 1E-03, or 1/1,000 meters.

The companion CD-ROM includes a workbook that contains all the conver-

sion tables in this chapter.

In some cases, the values shown in the tables in this chapter are rounded.

The conversion tables in the workbook contain values with full precision. For

increased accuracy, make sure that you use the values in the workbook.

TABLE 10-1 METRIC CONVERSION FACTORS

Metric Prefix Metric Conversion Factor

Exa 1E+18

Peta 1E+15

Tera 1E+12

Giga 1E+09

Mega 1E+06

Kilo 1E+03

Hecto 1E+02

270 Part II: Using Functions in Your Formulas

4800-x Ch10.F 8/27/01 11:56 AM Page 270

Metric Prefix Metric Conversion Factor

Deci 1E-01

Centi 1E-02

Milli 1E-03

Micro 1E-06

Nano 1E-09

Pico 1E-12

Femto 1E-15

Atto 1E-18

If you want to convert from a metric unit to a nonmetric unit, multiply the con-
version factor by the metric conversion factor. If you convert from a nonmetric unit
to a metric unit, divide the conversion factor by the metric conversion factor.

For example, suppose cell A1 contains a value in millimeters and you need to
convert it to inches. Multiply the value in A1 by the meter-to-inch conversion fac-
tor (39.37007874) and multiply the result by the metric conversion factor (1E-03).
The resulting formula is as follows:

=A1*39.37007874*1E-03

You can, of course, simplify the formula be replacing the second multiplication
operation with its result:

=A1*0.03937007874

Now, assume cell A1 contains a value in inches and you need to convert it to
millimeters. In this case, the inch-to-meter distance unit conversion factor is 0.0254
and the metric conversion factor is 1E-03. The formula to convert from inches to
millimeters is as follows:

=A1*0.0254/1E-03

Or, in simpler terms:

=A1*25.4

Chapter 10: Miscellaneous Calculations 271

4800-x Ch10.F 8/27/01 11:56 AM Page 271

Distance Conversions
Table 10-2 shows conversion factors for six common units of measurement. For
details on using this table, see the subsection, “Using the Unit Conversion Tables,”
earlier in the chapter.

Weight Conversions
Table 10-3 shows conversion factors for three common units of weight. For details
on using this table, see the subsection “Using the Unit Conversion Tables” earlier in
the chapter.

Liquid Measurement Conversions
Table 10-4 shows conversion factors for eight common liquid measurement units.
For details on using this table, see the subsection “Using the Unit Conversion
Tables” earlier in the chapter.

Surface Conversions
Table 10-5 shows conversion factors for seven common units of surface (or area).
For details on using this table, see the subsection “Using the Unit Conversion
Tables” earlier in the chapter.

Volume Conversions
Table 10-6 shows conversion factors for four common volume measurement units.
For details on using this table, see the subsection “Using the Unit Conversion
Tables” earlier in this chapter.

Force Conversions
Table 10-7 shows conversion factors for three common units of force. For details on
using this table, see the subsection “Using the Unit Conversion Tables” earlier in
this chapter.

Energy Conversions
Table 10-8 shows conversion factors for nine common units of energy. For details
on using this table, see the subsection “Using the Unit Conversion Tables” earlier in
this chapter.

Time Conversions
Table 10-9 shows conversion factors for five common units of time. For details on
using this table, see the subsection “Using the Unit Conversion Tables” earlier in
this chapter.

272 Part II: Using Functions in Your Formulas

4800-x Ch10.F 8/27/01 11:56 AM Page 272

TA
BL

E
10

-2
DI

ST
AN

CE
 C

O
N

VE
RS

IO
N

 F
AC

TO
RS

Fo
ot

In
ch

M
et

er
N

au
ti

ca
l M

ile
St

at
ut

e
M

ile
Ya

rd

Fo
ot

1
12

0.
30

48
0.

00
01

64
57

9
0.

00
01

89
39

4
0.

33
33

33
33

3

In
ch

0.
08

33
33

33
3

1
0.

02
54

1.
37

14
9E

-0
5

1.
57

82
8E

-0
5

0.
02

77
77

77
8

M
et

er
3.

28
08

39
89

5
39

.3
70

07
87

4
1

0.
00

05
39

95
7

0.
00

06
21

37
1

1.
09

36
13

29
8

N
au

tic
al

 m
ile

60
76

.1
15

48
6

72
91

3.
38

58
3

18
52

1
1.

15
07

79
44

8
20

25
.3

71
82

8

St
at

ut
e

m
ile

52
80

63
36

0
16

09
.3

44
0.

86
89

76
24

2
1

17
59

.9
99

99
9

Ya
rd

3
36

0.
91

44
0.

00
04

93
73

7
0.

00
05

68
18

2
1

TA
BL

E
10

-3
W

EI
GH

T
CO

N
VE

RS
IO

N
 F

AC
TO

RS

Gr
am

O
un

ce
Po

un
d

G
ra

m
1

0.
03

52
74

0.
00

22
05

O
un

ce
28

.3
49

52
1

0.
06

25

Po
un

d
45

3.
59

23
16

1

Chapter 10: Miscellaneous Calculations 273

4800-x Ch10.F 8/27/01 11:56 AM Page 273

TA
BL

E
10

-4
LI

Q
UI

D
M

EA
SU

RE
M

EN
T

CO
N

VE
RS

IO
N

 F
AC

TO
RS

Cu
p

Fl
ui

d
O

un
ce

Ga
llo

n
Li

te
r

Pi
nt

Q
ua

rt
Ta

bl
e-

sp
oo

n
Te

as
po

on

Cu
p

1
8

0.
06

25
0.

23
66

4
0.

5
0.

25
16

48

Fl
ui

d
ou

nc
e

0.
12

5
1

0.
00

78
13

0.
02

95
8

0.
06

25
0.

03
12

5
2

6

G
al

lo
n

16
12

8
1

3.
78

62
35

8
4

25
6

76
8

Li
te

r
4.

22
58

33
33

.8
06

67
0.

26
41

15
1

2.
11

29
17

1.
05

64
58

67
.6

13
33

20
2.

84

Pi
nt

2
16

0.
12

5
0.

47
32

79
1

0.
5

32
96

Q
ua

rt
4

32
0.

25
0.

94
65

59
2

1
64

19
2

Ta
bl

es
po

on
0.

06
25

0.
5

0.
00

39
06

0.
01

47
9

0.
03

12
5

0.
01

56
25

1
3

Te
as

po
on

0.
02

08
33

0.
16

66
67

0.
00

13
02

0.
00

49
3

0.
01

04
17

0.
00

52
08

0.
33

33
33

1

274 Part II: Using Functions in Your Formulas

4800-x Ch10.F 8/27/01 11:56 AM Page 274

TA
BL

E
10

-5
SU

RF
AC

E
M

EA
SU

RE
M

EN
T

CO
N

VE
RS

IO
N

 F
AC

TO
RS

Ac
re

H
ec

ta
re

Sq
ua

re
 F

oo
t

Sq
ua

re
 In

ch
Sq

ua
re

 M
et

er
Sq

ua
re

 M
ile

Sq
ua

re
 Y

ar
d

Ac
re

1
0.

40
46

85
64

2
43

56
0

62
72

64
0

40
46

.8
56

42
2

0.
00

15
62

5
48

39
.9

99
99

7

H
ec

ta
re

2.
47

10
53

81
5

1
10

76
39

.1
04

2
15

50
00

31
10

00
0

0.
00

38
61

02
2

11
95

9.
90

04
6

Sq
ua

re
 F

oo
t

2.
29

56
8E

-0
5

9.
29

03
E-

06
1

14
4

0.
09

29
03

04
3.

58
70

1E
-0

8
0.

11
11

11
11

1

Sq
ua

re
 In

ch
1.

59
42

3E
-0

7
6.

45
16

E-
08

0.
00

69
44

44
4

1
0.

00
06

45
16

2.
49

09
8E

-1
0

0.
00

07
71

60
5

Sq
ua

re
 M

et
er

0.
00

02
47

10
5

1E
-0

4
10

.7
63

91
04

2
15

50
.0

03
1

1
3.

86
10

2E
-0

7
1.

19
59

90
04

6

Sq
ua

re
 M

ile
64

0
25

8.
99

88
11

27
87

84
00

40
14

48
96

00
25

89
98

8.
11

1
30

97
59

9.
99

8

Sq
ua

re
 Y

ar
d

0.
00

02
06

61
2

8.
36

12
7E

-0
5

9
12

96
0.

83
61

27
36

1
3.

22
83

1E
-0

7
1

TA
BL

E
10

-6
VO

LU
M

E
M

EA
SU

RE
M

EN
T

CO
N

VE
RS

IO
N

 F
AC

TO
RS

Cu
bi

c
Fo

ot
Cu

bi
c

In
ch

Cu
bi

c
M

et
er

Cu
bi

c
Ya

rd

Cu
bi

c
Fo

ot
1

17
28

0.
02

83
16

84
7

0.
03

70
37

03
7

Cu
bi

c
In

ch
0.

00
05

78
70

4
1

1.
63

87
1E

-0
5

2.
14

33
5E

-0
5

Cu
bi

c
M

et
er

35
.3

14
66

67
2

61
02

3.
74

40
9

1
1.

30
79

50
61

8

Cu
bi

c
Ya

rd
27

46
65

6
0.

76
45

54
85

9
1

Chapter 10: Miscellaneous Calculations 275

4800-x Ch10.F 8/27/01 11:56 AM Page 275

TA
BL

E
10

-7
FO

RC
E

CO
N

VE
RS

IO
N

 F
AC

TO
RS

Dy
ne

N
ew

to
n

Po
un

d
Fo

rc
e

Dy
ne

1
0.

00
00

1
2.

25
E-

06

N
ew

to
n

10
00

00
1

0.
22

48
09

Po
un

d
fo

rc
e

44
48

22
.2

4.
44

82
22

1

TA
BL

E
10

-8
EN

ER
GY

 C
O

N
VE

RS
IO

N
 F

AC
TO

RS

BT
U

Ca
lo

rie
 (

IT
)

Ca
lo

rie

El
ec

tr
on

 V
ol

t
Er

g
Fo

ot
-p

ou
nd

H
or

se
po

w
er

-
Jo

ul
e

W
at

t-
ho

ur
(T

h’
m

ic
)

ho
ur

BT
U

1
25

1.
99

66
25

2.
16

55
6.

59
E+

21
1.

06
E+

10
25

03
6.

98
0.

00
03

93
10

55
.0

58
0.

29
30

72

Ca
lo

rie
 (I

T)
0.

00
39

68
1

1.
00

06
7

2.
61

E+
19

41
86

79
28

99
.3

54
41

1.
56

E-
06

4.
18

67
95

0.
00

11
63

Ca
lo

rie
 (T

h’
m

ic
)

0.
00

39
66

0.
99

93
3

1
2.

61
E+

19
41

83
98

90
99

.2
87

87
1.

56
E-

06
4.

18
39

91
0.

00
11

62

El
ec

tr
on

 v
ol

t
1.

52
E-

22
3.

83
E-

20
3.

83
E-

20
1

1.
6E

-1
2

3.
8E

-1
8

5.
97

E-
26

1.
6E

-1
9

4.
45

E-
23

Er
g

9.
48

E-
11

2.
39

E-
08

2.
39

E-
08

6.
24

E+
11

1
2.

37
E-

06
3.

73
E-

14
1E

-0
7

2.
78

E-
11

Fo
ot

-p
ou

nd
3.

99
E-

05
0.

01
00

65
0.

01
00

72
2.

63
E+

17
42

13
99

.8
1

1.
57

E-
08

0.
04

21
4

1.
17

E-
05

H
or

se
po

w
er

-h
ou

r2
54

4.
42

6
64

11
86

.8
64

16
16

.4
1.

68
E+

25
2.

68
E+

13
63

70
47

32
1

26
84

51
7

74
5.

69
97

Jo
ul

e
0.

00
09

48
0.

23
88

46
0.

23
90

06
6.

24
E+

18
99

99
99

5
23

.7
30

42
3.

73
E-

07
1

0.
00

02
78

W
at

t-
ho

ur
3.

41
21

33
85

9.
84

59
86

0.
42

21
2.

25
E+

22
3.

6E
+1

0
85

42
9.

48
0.

00
13

41
35

99
.9

98
1

276 Part II: Using Functions in Your Formulas

4800-x Ch10.F 8/27/01 11:56 AM Page 276

TABLE 10-9 TIME CONVERSION FACTORS

Day Hour Minute Second Year

Day 1 24 1440 86400 0.002738

Hour 0.041667 1 60 3600 0.000114

Minute 0.000694 0.016667 1 60 1.9E-06

Second 1.16E-05 0.000278 0.016667 1 3.17E-08

Year 365.25 8766 525960 31557600 1

Temperature Conversions
This section presents formulas for conversion among three units of temperature:
Fahrenheit, Celsius, and Kelvin. Temperature conversions, unlike the unit conver-
sions discussed previously in this chapter, do not use a simple conversion factor.
Rather, you need to use a formula to calculate the conversion. The formulas in
Table 10-10 assume that the temperature for conversion is in a cell named temp.

TABLE 10-10 TEMPERATURE CONVERSION FORMULAS

Type of Conversion Formula

Fahrenheit to Celsius =(temp-32)*(5/9)

Fahrenheit to Kelvin =(temp-32)*(5/9)+273

Celsius to Fahrenheit =(temp*1.8)+32

Celsius to Kelvin =temp+273

Kelvin to Celsius =temp-273

Kelvin to Fahrenheit =((temp-273)*1.8)+32

Solving Right Triangles
A right triangle has six components: three sides and three angles. Figure 10-1
shows a right triangle with its various parts labeled. Angles are labeled A, B, and C;
sides are labeled Hypotenuse, Base, and Height. Angle C is always 90 degrees (or
PI/2 radians). If you know any two of these components (excluding Angle C, which
is always known), you can use formulas to solve for the others.

Chapter 10: Miscellaneous Calculations 277

4800-x Ch10.F 8/27/01 11:56 AM Page 277

Figure 10-1: A right triangle’s components

The Pythagorean theorem states that

Height^2 + Base^2 = Hypotenuse^2

Therefore, if you know two sides of a right triangle, you can calculate the
remaining side. The formula to calculate a right triangle’s height (given the length
of the hypotenuse and base) is shown below.

=SQRT(hypotenuse^2-base^2)

278 Part II: Using Functions in Your Formulas

Need to Convert Other Units?
This chapter, of course, doesn’t list every possible unit conversion factor. To calculate
other unit conversions, you need to find the appropriate conversion factor. The
Internet is a good source for such information. Use any Web search engine and enter
search terms that correspond to the units you use. Likely, you’ll find the information
you need.

Also, you can download a copy of Josh Madison’s popular (and free) Convert software.
This excellent program can handle just about any conceivable unit conversion you
throw at it. The URL is as follows:

http://www.joshmadison.com/software/

4800-x Ch10.F 8/27/01 11:56 AM Page 278

The formula to calculate a right triangle’s base (given the length of the
hypotenuse and height) is as follows:

=SQRT((hypotenuse^2)-(height^2))

The formula to calculate a right triangle’s hypotenuse (given the length of the
base and height) is as follows:

=SQRT((height^2)+(Base_Length^2))

Other useful trigonometric identities are:

SIN(A) = Height/Hypotenuse
SIN(B) = Base/Hypotenuse
COS(A) = Base/Hypotenuse
COS(B) = Height/Hypotenuse
TAN(A) = Height/Base
SIN(A) = Base/Height

Excel’s trigonometric functions all assume that the angle arguments are in

radians.To convert degrees to radians, use the RADIANS function.To convert

radians to degrees, use the DEGREES function.

If you know the height and base, you can use the following formula to calculate
the angle formed by the hypotenuse and base (Angle A).

=ATAN(height/base)

The preceding formula returns radians. To convert to degrees, use this formula:

=DEGREES(ATAN(height/base))

If you know the height and base, you can use the following formula to calculate
the angle formed by the hypotenuse and height (Angle B):

=PI()/2-ATAN(height/base)

The preceding formula returns radians. To convert to degrees, use this formula:

=90-DEGREES(ATAN(height/base))

Chapter 10: Miscellaneous Calculations 279

4800-x Ch10.F 8/27/01 11:56 AM Page 279

The companion CD-ROM contains a workbook with formulas that calculate

various parts of a right triangle, given two known parts.These formulas give

you some insight on working with right triangles.

Figure 10-2 shows a workbook containing formulas to calculate the various
parts of a right triangle.

Figure 10-2: This workbook is useful for working with right triangles.

Area, Surface, Circumference, and
Volume Calculations
This section contains formulas for calculating the area, surface, circumference, and
volume for common two- and three-dimensional shapes.

Calculating the Area and Perimeter of a Square
To calculate the area of a square, square the length of one side. The following for-
mula calculates the area of a square for a cell named side.

=side^2

To calculate the perimeter of a square, multiply one side by 4. The following for-
mula uses a cell named side to calculate the perimeter of a square.

=side*4

280 Part II: Using Functions in Your Formulas

4800-x Ch10.F 8/27/01 11:56 AM Page 280

Calculating the Area and Perimeter of a Rectangle
To calculate the area of a rectangle, multiply its height by its base. The following
formula returns the area of a rectangle, using cells named height and base.

=height*base

To calculate the perimeter of a rectangle, multiply the height by 2, and add it to
the width multiplied by 2. The following formula returns the perimeter of a rectan-
gle, using cells named height and width.

=(height*2)+(width*2)

Calculating the Area and Perimeter of a Circle
To calculate the area of a circle, multiply the square of the radius by π. The follow-
ing formula returns the area of a circle. It assumes that a cell named radius con-
tains the circle’s radius.

=PI()*(radius^2)

The radius of a circle is equal to one-half of the diameter.
To calculate the circumference of a circle, multiply the diameter of the circle by

π. The following formula calculates the circumference of a circle using a cell named
diameter.

=diameter*PI()

The diameter of a circle is the radius times 2.

Calculating the Area of a Trapezoid
To calculate the area of a trapezoid, add the two parallel sides, multiply by the
height, and then divide by 2. The following formula calculates the area of a trape-
zoid, using cells named side and height.

=((side*2)*height)/2

Calculating the Area of a Triangle
To calculate the area of a triangle, multiply the base by the height, and then divide
by 2. The following formula calculates the area of a triangle, using cells named base
and height.

=(base*height)/2

Chapter 10: Miscellaneous Calculations 281

4800-x Ch10.F 8/27/01 11:56 AM Page 281

Calculating the Surface and Volume of a Sphere
To calculate the surface of a sphere, multiply the square of the radius by π, and then
multiply by 4. The following formula returns the surface of a sphere, the radius of
which is in a cell named radius.

=PI()*(radius^2)*4

To calculate the volume of a sphere, multiply the cube of the radius by 4 times π,
and then divide by 3. The following formula calculates the volume of a sphere. The
cell named radius contains the sphere’s radius.

=((radius^3)*(4*PI()))/3

Calculating the Surface and Volume of a Cube
To calculate the surface area of a cube, square one side and multiply by 6. The fol-
lowing formula calculates the surface of a cube using a cell named side, which con-
tains the length of a side of the cube.

=(side^2)*6

To calculate the volume of a cube, raise the length of one side to the third power.
The following formula returns the volume of a cube, using a cell named side.

=side^3

Calculating the Surface and Volume of a Cone
The following formula calculates the surface of a cone (including the surface of the
base). This formula uses cells named radius and height.

=PI()*radius*(SQRT(height^2+radius^2)+radius))

To calculate the volume of a cone, multiply the square of the radius of the base
by π, multiply by the height, and then divide by 3. The following formula returns
the volume of a cone, using cells named radius and height.

=(PI()*(radius^2)*height)/3

Calculating the Volume of a Cylinder
To calculate the volume of a cylinder, multiply the square of the radius of the base
by π, and then multiply by the height. The following formula calculates the volume
of a cylinder, using cells named radius and height.

282 Part II: Using Functions in Your Formulas

4800-x Ch10.F 8/27/01 11:56 AM Page 282

=(PI()*(radius^2)*height)

Calculating the Volume of a Pyramid
Calculate the area of the base, then multiply by the height and divide by 3. This
next formula calculates the volume of a pyramid. It assumes cells named width (the
width of the base), length (the length of the base), and height (the height of the
pyramid).

=(width*length*height)/3

Solving Simultaneous Equations
This section describes how to use formulas to solve simultaneous linear equations.
The following is an example of a set of simultaneous linear equations.

3x + 4y = 8
4x + 8y = 1

Solving a set of simultaneous equations involves finding the values for x and y
that satisfy both equations. For this set of equations, the solution is as follows:

x = 7.5
y = -3.625

The number of variables in the set of equations must be equal to the number of
equations. The preceding example uses two equations with two variables. Three
equations are required to solve for three variables (x, y, and z).

The general steps for solving a set of simultaneous equations follow. See Figure
10-3, which uses the equations presented at the beginning of this section.

1. Express the equations in standard form. If necessary, use simple algebra to
rewrite the equations such that the variables all appear on the left side of
the equal sign. The two equations that follow are identical, but the second
one is in standard form.

3x -8 = -4y
3x + 4y = 8

2. Place the coefficients in an n-by-n range of cells, where n represents the
number of equations. In Figure 10-3, the coefficients are in the range
G6:H7.

3. Place the constants (the numbers on the right side of the equal sign) in a
vertical range of cells. In Figure 10-3, the constants are in the range J6:J7.

Chapter 10: Miscellaneous Calculations 283

4800-x Ch10.F 8/27/01 11:56 AM Page 283

4. Use an array formula to calculate the inverse of the coefficient matrix. In
Figure 10-3, the following array formula is entered into the range
G10:H11.

{=MINVERSE(G6:H7)}

5. Use an array formula to multiply the inverse of the coefficient matrix by
the constant matrix. In Figure 10-3, the following array formula is entered
into the range H14:H15. This range holds the solution.

{=MMULT(G10:H11,J6:J7)}

Chapter 16 demonstrates how to use iteration to solve some simultaneous

equations.

Figure 10-3: Using formulas to solve simultaneous equations

You can access the workbook shown in Figure 10-3 on the companion

CD-ROM. This workbook solves simultaneous equations with two or three

variables.

284 Part II: Using Functions in Your Formulas

4800-x Ch10.F 8/27/01 11:56 AM Page 284

Rounding Numbers
Excel provides quite a few functions that round values in various ways. Table 10-11
summarizes these functions.

It’s important to understand the difference between rounding a value and

formatting a value. When you format a number to display a specific number

of decimal places, formulas that refer to that number use the actual value,

which may differ from the displayed value. When you round a number, for-

mulas that refer to that value use the rounded number.

TABLE 10-11 EXCEL’S ROUNDING FUNCTIONS

Function Description

CEILING Rounds a number up (away from zero) to the nearest specified multiple

DOLLARDE* Converts a dollar price expressed as a fraction into a decimal number

DOLLARFR* Converts a dollar price expressed as a decimal into a fractional number

EVEN Rounds a number up (away from zero) to the nearest even integer

FLOOR Rounds a number down (toward zero) to the nearest specified multiple

INT Rounds a number down to make it an integer

MROUND* Rounds a number to a specified multiple

ODD Rounds a number up (away from zero) to the nearest odd integer

ROUND Rounds a number to a specified number of digits

ROUNDDOWN Rounds a number down (toward zero) to a specified number of digits

ROUNDUP Rounds a number up (away from zero) to a specified number of digits

TRUNC Truncates a number to a specified number of significant digits

* This function is available only when the Analysis ToolPak add-in is installed.

Chapter 10: Miscellaneous Calculations 285

4800-x Ch10.F 8/27/01 11:56 AM Page 285

Chapter 6 contains examples of rounding time values.

The following sections provide examples of formulas that use various types of
rounding.

Basic Rounding Formulas
The ROUND function is useful for basic rounding to a specified number of digits.
You specify the number of digits in the second argument for the ROUND function.
For example, the formula that follows returns 123.40 (the value is rounded to one
decimal place).

=ROUND(123.37,1)

If the second argument for the ROUND function is zero, the value is rounded to
the nearest integer. The formula that follows, for example, returns 123.00.

=ROUND(123.37,0)

The second argument for the ROUND function can also be negative. In such a
case, the number is rounded to the left of the decimal point. The following formula,
for example, returns 120.00.

=ROUND(123.37,-1)

The ROUND function rounds either up or down. But how does it handle a num-
ber such as 12.5, rounded to no decimal places? You’ll find that the ROUND func-
tion rounds such numbers away from zero. The formula that follows, for instance,
returns 13.0.

=ROUND(12.5,0)

The next formula returns -13.00 (the rounding occurs away from zero).

=ROUND(-12.5,0)

To force rounding to occur in a particular direction, use the ROUNDUP or
ROUNDDOWN functions. The following formula, for example, returns 12.0. The
value rounds down.

=ROUNDDOWN(12.5,0)

286 Part II: Using Functions in Your Formulas

4800-x Ch10.F 8/27/01 11:56 AM Page 286

The formula that follows returns 13.0. The value rounds up to the nearest whole
value.

=ROUNDUP(12.43,0)

Rounding to the Nearest Multiple
The MROUND function (part of the Analysis ToolPak add-in) is useful for rounding
values to the nearest multiple. For example, you can use this function to round a
number to the nearest 5. The formula below returns 135.

=MROUND(133,5)

Rounding Dollar Values
Often, you need to round dollar values to the nearest penny. For example, a calcu-
lated price may be something like $45.78923. In such a case, you’ll want to round
the calculated price to the nearest penny. This may sound simple, but there are
actually three ways to round such a value:

� Round it up to the nearest penny.

� Round it down to the nearest penny.

� Round it to the nearest penny (the rounding may be up or down).

The following formula assumes a dollar and cents value is in cell A1. The for-
mula rounds the value to the nearest penny. For example, if cell A1 contains
$12.421, the formula returns $12.42.

=ROUND(A1,2)

If you need to round the value up to the nearest penny, use the CEILING func-
tion. The following formula rounds the value in cell A1 up to the nearest penny. If,
for example, cell A1 contains $12.421, the formula returns $12.43.

=CEILING(A1,0.01)

To round a dollar value down, use the FLOOR function. The following formula,
for example, rounds the dollar value in cell A1 down to the nearest penny. If cell
A1 contains $12.421, the formula returns $12.42.

=FLOOR(A1,0.01)

To round a dollar value up to the nearest nickel, use this formula:

=CEILING(A1,0.05)

Chapter 10: Miscellaneous Calculations 287

4800-x Ch10.F 8/27/01 11:56 AM Page 287

Working with Fractional Dollars
The DOLLARFR and DOLLARDE functions are useful when working with fractional
dollar value, as in stock market quotes. To access these functions, you must install
the Analysis ToolPak add-in.

Consider the value $9.25. You can express the decimal part as a fractional value
($9 1/4, $9 2/8, $9 4/16, and so on). The DOLLARFR function takes two arguments:
the dollar amount and the denominator for the fractional part. The following for-
mula, for example, returns 9.1 (the .1 decimal represents 1/4).

=DOLLARFR(9.25,4)

It’s important to understand that you cannot use the value returned by the

DOLLARFR function in other calculations. In the preceding example, the

result of the function will be interpreted as 9.1, not 9.25. To perform calcula-

tions on such a value, you need to convert it back to a decimal value by using

the DOLLARDE function.

The DOLLARDE function converts a dollar value expressed as a fraction to a dec-
imal amount. It also uses a second argument to specify the denominator of the frac-
tional part. The following formula, for example, returns 9.25.

=DOLLARDE(9.1,4)

The DOLLARDE and DOLLARFR functions aren’t limited to dollar values. For

example, you can use these functions to work with feet and inches. You

might have a value that represents 8.5 feet. Use the following formula to

express this value in terms of feet and inches. The formula returns 8.06

(which represents 8 feet, six inches).

=DOLLARFR(8.5,12)

Another example is baseball statistics. A pitcher may work 6 and 2/3 innings,

and this is usually represented as 6.2.The following formula displays 6.2:

=DOLLARFR(6+2/3,3)

Using the INT and TRUNC Functions
On the surface, the INT and TRUNC functions seem similar. Both convert a value to
an integer. The TRUNC function simply removes the fractional part of a number.

288 Part II: Using Functions in Your Formulas

4800-x Ch10.F 8/27/01 11:56 AM Page 288

The INT function rounds a number down to the nearest integer, based on the value
of the fractional part of the number.

In practice, INT and TRUNC return different results only when using negative
numbers. For example, the following formula returns -14.0.

=TRUNC(-14.2)

The next formula returns -15.0 because -14.3 is rounded down to the next lower
integer.

=INT(-14.2)

The TRUNC function takes an additional (optional) argument that’s useful for
truncating decimal values. For example, the formula that follows returns 54.33 (the
value truncated to two decimal places).

=TRUNC(54.3333333,2)

Rounding to an Even or Odd Integer
The ODD and EVEN functions are provided for situations in which you need to
round a number up to the nearest odd or even integer. These functions take a sin-
gle argument and return an integer value. The EVEN function rounds its argument
up to the nearest even integer. The ODD function rounds its argument up to the
nearest odd integer. Table 10-12 shows some examples of these functions.

TABLE 10-12 RESULTS USING THE EVEN AND ODD FUNCTIONS

Number EVEN Function ODD Function

-3.6 -4 -5

-3.0 -4 -3

-2.4 -4 -3

-1.8 -2 -3

-1.2 -2 -3

-0.6 -2 -1

0.0 0 1

0.6 2 1

Continued

Chapter 10: Miscellaneous Calculations 289

4800-x Ch10.F 8/27/01 11:56 AM Page 289

TABLE 10-12 RESULTS USING THE EVEN AND ODD FUNCTIONS (Continued)

Number EVEN Function ODD Function

1.2 2 3

1.8 2 3

2.4 4 3

3.0 4 3

3.6 4 5

Rounding to n Significant Digits
In some cases, you may need to round a value to a particular number of significant
digits. For example, you might want to express the value 1,432,187 in terms of two
significant digits (that is, as 1,400,000). The value 9,187,877 expressed in terms of
three significant digits is 9,180,000.

If the value is a positive number with no decimal places, the following formula
does the job. This formula rounds the number in cell A1 to two significant digits. To
round to a different number of significant digits, replace the 2 in this formula with
a different number.

=ROUNDDOWN(A1,2-LEN(A1))

For non-integers and negative numbers, the solution gets a bit trickier. The for-
mula that follows provides a more general solution that rounds the value in cell A1
to the number of significant digits specified in cell A2. This formula works for pos-
itive and negative integers and non-integers.

=ROUND(A1,A2-1-INT(LOG10(ABS(A1))))

For example, if cell A1 contains 1.27845 and cell A2 contains 3, the formula
returns 1.28000 (the value, rounded to three significant digits).

Summary
This chapter covered several topics: unit conversions, trigonometric formulas, cal-
culations for various two- and three-dimensional shapes, simultaneous equations,
and rounding.

In the next chapter, we turn to array formulas.

290 Part II: Using Functions in Your Formulas

4800-x Ch10.F 8/27/01 11:56 AM Page 290

Financial Formulas
CHAPTER 11

Introducing Financial Formulas

CHAPTER 12
Discounting and Depreciation Financial Functions

CHAPTER 13
Advanced Uses of Financial Functions and Formulas

Part III

4800-x PO3.F 8/27/01 11:56 AM Page 291

4800-x PO3.F 8/27/01 11:56 AM Page 292

Chapter 11

Introducing Financial
Formulas

IN THIS CHAPTER

� Introducing the fundamental concept of time value of money

� Using Excel’s basic financial functions PV, FV, NPER, PMT, and RATE

� Converting nominal and effective interest rates

� Calculating effective cost of loans using different rate quotation systems

� Calculating cumulative payments of interest and principal using the
CUMIPMT and CUMPRINC functions

� Matching different interest and payment frequencies

� Understanding the limitations of the PV, FV, NPER, PMT, RATE,
CUMIPMT, and CUMPRINC functions

IT’S A SAFE BET that the most common use of Excel is to perform calculations
involving money. Every day, people make hundreds of thousands of financial deci-
sions based on the numbers that are calculated in a spreadsheet. These decisions
range from simple (Can I afford to buy a new car?) to complex (Will purchasing
XYZ Corporation result in a positive cash flow in the next 18 months?). This is the
first of three chapters that discuss financial calculations that you can perform with
the assistance of Excel.

Excel’s Basic Financial Functions
This chapter presents many examples that use Excel’s five basic financial functions.
The syntax for these functions is shown here (arguments in bold are required
arguments):

� PV(rate, nper, pmt, fv, type)

� FV(rate, nper, pmt, pv, type)

� PMT(rate, nper, pv, fv, type) 293

4800-x Ch11.F 8/27/01 11:56 AM Page 293

� RATE(nper, pmt, pv, fv, type, guess)

� NPER(rate, pmt, pv, fv, type)

As you’ll see, these functions are extremely flexible, and are useful for a wide
variety of problems. To use these function effectively, you will need to understand
three basic concepts:

� Signing of money flows as positive or negative

� The basic concept of time value of money

� The concept of equivalent interest rates

These concepts are all covered in this chapter and will be put to further use in
subsequent chapters.

294 Part III: Financial Formulas

Basic Terminology
� Present Value (PV): The is the principal amount. If you invest $5,000 in a

bank CD (certificate of deposit), this amount represents the principal, or pre-
sent value, of the money you invested. If you borrow $15,000 to purchase a
car, this amount represents the principal or present value of the loan. Present
Value may be positive or negative.

� Future Value (FV): This is the principal plus interest. If you invest $5,000 for
five years and earn 6% annual interest, you receive $6,312.38 at the end of
the five-year term. The amount is the future value of your $5,000 invest-
ment. If you take out a three-year auto loan for $15,000 and pay 7% annual
interest, you pay a total of $16,673.16. This amount represents the principal
plus the interest you paid. Future Value may be either positive or negative.

� Payment (PMT): This is either principal, or principal plus interest. If you
deposit $100 per month into a savings account, $100 is the payment. If you
have a monthly mortgage payment of $825, the $825 is made up of principal
and interest.

� Interest Rate: Interest is a percentage of the principal, usually expressed on
an annual basis. For example, you might earn 5.5% annual interest on a bank
CD. Or your mortgage loan may have a 7.75% interest rate.

� Period: This represents the point in time when interest is paid or earned. For
example, a bank CD that pays interest quarterly or an auto loan that requires
monthly payments.

� Term: This is the amount of time of interest. A 12-month bank CD has a term
of one year. A 30-year mortgage loan has a term of 30 years.

4800-x Ch11.F 8/27/01 11:56 AM Page 294

Signing of Money Flows Convention
Look at your bank statement, and it will become very apparent that money flows!
When dealing with Excel’s financial functions, it is critical that you understand
how to “sign” cash flows. In other words, do you use a positive sign or a negative
sign?

Chapter 11: Introducing Financial Formulas 295

The Relationship between NPER, PMT, and RATE
Excel “knows” nothing about different time periods such as months, weeks, or years. It
merely counts them and expects you to label them appropriately and to make sure
that you don’t mix them up.

The accompanying diagram represents the time value of the money concept used by
the Excel functions PV, FV, PMT, NPER, and RATE. The arrows represent flows of
money, and their direction (positive or negative). Any solvable problem consists of four
known variables and one unknown variable. The unknown variable is the function
name, and the known variables represent the function arguments.

The diagram must be in balance in terms of discounted or accumulated negative and
positive flows. The concept allows only a single rate of interest, which must be the
effective rate for the period of time measured by NPER. Similarly, only one level of
payment is allowed, and that must be a payment per period of time measured by
NPER. The Type argument in the concept shows whether payments are in advance or
in arrears.

If you can fill in four of the five variables, Excel can solve the problem. There’s one
exception: If payments are involved, Excel needs to know when the payments occur
(that is, the Type argument).

4800-x Ch11.F 8/27/01 11:56 AM Page 295

To solve financial problems using Excel’s basic financial functions, you need to
perform two preliminary steps:

1. Determine the perspective of the owner of the cash flows. For example, in
a simple accumulation problem, are you looking at it from the perspective
of the depositor or the bank? In a mortgage problem, are you the bor-
rower or the lender? When calculating the value of a series of future pay-
ments, are you the purchaser (paying out for the right to receive), or are
you the seller (receiving a payment for giving up that right)?

2. Determine whether any particular present value, payment, or future value
comes towards you (positive sign), or goes away from you (negative sign).

When you have a firm handle on these two points, you’ll be able to use Excel’s
financial functions to create effective financial formulas — and be able to interpret
the results returned by the formulas.

Generally, money that comes in to you is signed positive. Money that goes away
from you is signed negative. For example, if a present value problem returns a neg-
ative value, it means that this amount is paid out at time-period zero. If it is posi-
tive, the money is received. Consider an example of calculating mortgage
payments. If you are the borrower, the loan “comes towards you,” and the calcu-
lated payments have a negative sign (which indicates that you pay them out). When
calculating the rate of interest on a mortgage loan, you must take care to sign the
loan value and the payments properly. Otherwise, Excel will assume that they are
all in one direction and will generate an error. For example, a formula may display
#NUM!, which indicates an infinitely high rate of return (everything comes towards
you and nothing is paid out for it).

Accumulation, Discounting, and
Amortization Functions
This section contains a number of examples that demonstrate the use of Excel’s five
basic functions to solve accumulation and amortization problems. Although we
tend to look at amortization and accumulation as separate problems, they are
essentially the same. In fact, the only difference is in the signing of the cash flows.

We can classify these problems into simple and complex problems. In simple
problems, we are dealing with only two of the three cash variables (present value,
payment, and future value). In complex problems, we are dealing with all three.
Although we classify these as simple and complex problems, Excel still requires a
value for all three of the cash variables. Therefore, we use zero for the “missing”
element.

296 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 296

Simple Accumulation Problems
This section contains seven examples that demonstrate simple accumulation
problems.

All of the examples in this section are available on the companion CD-ROM.

EXAMPLE 1
How much does $1,000 accumulate to after three years, at 7% interest per year?

Figure 11-1 shows this problem set up on a worksheet.

Figure 11-1: Calculating a future value

Function required: FV(rate, nper, pmt, pv, type)
This formula returns $1,225.04:

=FV(7%,3,0,-1000,0)

The formula examples in this chapter use hard-coded values for function

arguments.The examples on the companion CD-ROM use cell references for

the function arguments.

Chapter 11: Introducing Financial Formulas 297

4800-x Ch11.F 8/27/01 11:56 AM Page 297

Note that this problem is stated from the perspective of the depositor. Therefore,
the initial deposit (the pv argument) is negative. No regular payments are made, so
the pmt argument is 0. With no payments, the type argument is irrelevant.

When entering numeric data as function arguments, make sure that you

don’t insert thousands separators. For example, type 1000, not 1,000.

Depending on your regional settings, the thousands separator may be the

same character as the argument separator.

EXAMPLE 2
If $1,000 has accumulated to $2,000 in eight years, what has been the average
annual growth rate?

Function required: RATE(nper, pmt, pv, fv, type, guess)
This formula returns 9.050773%:

=RATE(8,0,-1000,2000,0)

This example is from the perspective of the depositor, so the pv argument is neg-
ative and the fv argument (a right to receive) is positive. Because the term was
expressed in years, the rate is the effective rate per annum.

EXAMPLE 3
If I deposit $100,000 and can earn 14% per annum, how long will it take me to
become a millionaire?

Function required: NPER(rate, pmt, pv, fv, type)
This formula returns 17.573:

=NPER(14%,0,-100000,1000000,0)

This example is from the perspective of a depositor. Therefore, the pv argument
is negative and the fv argument (the right to receive the $1 million) is positive.
Because the rate is quoted in annual effective terms, the result is in years.

EXAMPLE 4
If I have $10,573.45 in my account and I have earned 1% interest per month for 12
months, what was the original deposit?

Function required: PV(rate, nper, pmt, fv, type)
This formula returns –$9,383.40:

=PV(1%,12,0,10573.45,0)

298 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 298

With no regular payments, the pmt argument is 0 and the type argument is irrel-
evant. Because the $10,573.45 in the account is a right to receive, the fv argument
takes a positive sign and the calculated present value is negative.

EXAMPLE 5
If I deposit $300 per month (starting today) in an account earning 1% per month,
how much will I have after two years?

Function required: FV(rate, nper, pmt, pv, type)
This formula returns $8,172.96:

=FV(1%,24,-300,0,1)

In this example, the term is quoted in years, but the interest and payments are
monthly. This requires a preliminary calculation. The most direct approach is to
convert years to months. Another option is to convert the interest rate to an annual
effective rate, and then convert the $300 to an equivalent amount per year. This
would produce the same result, but it is an overly complicated approach.

Note that payments start “today” and are, therefore, in advance, Consequently,
the type argument is 1. No present balance is stated, so the pv argument is 0.

In all of the preceding examples, the questions can be rephrased such that the
negatives become positives, and the positives become negatives. Therefore,
Example 1 can be rephrased as follows.

EXAMPLE 6
If I borrow $1,000 for three years at 7% interest, how much do I have to pay back?

Function required: FV(rate, nper, pmt, pv, type)
This formula returns –$1,225.04:

=FV(7%,3,0,1000,0)

Here the question is from the perspective of the borrower, and the formula has
been modified such that the initial borrowing (the pv argument) is positive. No reg-
ular payments are made, so the pmt argument is 0. With no payments, the type
argument is irrelevant.

Examples 2 through 5 can also be rephrased as such: The depositor becomes the
borrower, and the borrower becomes the depositor.

EXAMPLE 7
If $1,000 has accumulated to $3,000 in eight years, what has been the average
annual growth rate?

Function required: RATE(nper, pmt, pv, fv, type, guess)
This formula returns 14.720269%:

=RATE(8,0,-1000,3000,0)

Chapter 11: Introducing Financial Formulas 299

4800-x Ch11.F 8/27/01 11:56 AM Page 299

This example is from the perspective of the depositor. Therefore, the pv argu-
ment is negative and the fv argument (a right to receive) is positive. Because the
term was expressed in years, the rate is the effective rate per annum. With no reg-
ular payments, the pmt argument is 0 and the type argument is irrelevant.

An important feature of financial calculations is that they can be cross-

checked to establish the accuracy of the answer. This can be done “off

spreadsheet” using a financial calculator, or it can be done using the under-

lying formula or another function.

The following steps demonstrate a method to verify the result of 14.720269% for
this example:

1. Calculate how much $1,000 accumulates to in eight years at the calcu-
lated rate. This formula returns $3,000:

=FV(14.720269%,8,0,-1000,0)

2. Calculate the present value of $3,000, discounting at the calculated rate
for eight years. The following formula returns –$1,000:

=PV(14.720269%,8,0,3000,0)

3. Calculate how long it takes $1,000 to accumulate to $3,000 at the calcu-
lated rate. The following formula returns eight:

=NPER(14.720269%,0,-1000,3000,0)

4. Calculate the result using the following formula, which returns
14.720269%:

=(3000/--1000)^(1/8)-1

One technique for cross-checking is to compare the check calculation with the
original data in such a way that the method produces an error of 0. In all of the pre-
vious checks, subtracting the original data from the check calculation produces an
error of zero. If all calculations are checked and errors calculated this way, the sum
of all errors on a spreadsheet will approach zero. It is unlikely to be exactly zero
because of rounding errors.

The examples on the CD-ROM contain error-checking formulas.

300 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 300

Complex Accumulation Problems
This section describes four examples of complex accumulation problems. There are
two types of complex accumulation problems:

� Problems that have non-zero values for any two of the key parameters
(present value, payment, and future value), and require a solution for the
third parameter.

� Problems that have non-zero inputs for all three parameters (present
value, payment, and future value), and require a solution for either RATE
or NPER.

All of the examples in this section are available on the companion CD-ROM,

along with a cross-check to ensure their accuracy.

EXAMPLE 8
With a beginning balance of $5,500 and payments of $500 per month (at the end
of each month), how much will I accumulate over three years if I earn 0.75% per
month?

Figure 11-2 shows this example, set up on a worksheet.

Figure 11-2: Calculating a future value

Chapter 11: Introducing Financial Formulas 301

4800-x Ch11.F 8/27/01 11:56 AM Page 301

Function required: FV(rate, nper, pmt, pv, type)
This formula returns $27,773.91:

=FV(.75%,36,-500,-5500,0)

The negative sign for the pv argument may be confusing, because it represents a
current balance (a right to receive). However, because we are looking forward in
time, it is treated as a deposit. Payments and rates are quoted on a monthly basis;
therefore, the term of three years must be converted to months. The FV is returned
as positive, which is a right to receive.

EXAMPLE 9
My account balance five years ago was $25,000, and I have added $4,500 at the
end of each year. The present balance is $70,000. What has been my average
annual return?

Function required: RATE(nper, pmt, pv, fv, type, guess)
This formula returns 10.9382%:

=RATE(5,-4500,-25000,70000,0,0)

RATE is a particularly powerful function, because the solution can only be

obtained by iteration. Only rarely is it necessary to insert a guess rate as the

optional sixth argument. If omitted, Excel supplies the default guess of 0.

EXAMPLE 10
My account has an overdraft of $12,000 and I deposit $1,000 at the end of each
month. How long will it take me to become a millionaire if I earn an average return
of 0.6% per month?

Function required: NPER(rate, pmt, pv, fv, type)
The following formula returns 337.78 months:

=NPER(6%,-1000,12000,1000000,0)

Note that the question is phrased such that the overdraft is a deposit. Therefore,
it requires the negative sign for the pv argument.

If the overdraft is viewed as a loan, the future value would be positive. In such a
case, two calculations would be required if the overdraft rate was not equal to the
deposit rate. First we would calculate time taken to achieve zero balance, and then
we would calculate the time to achieve $1 million.

302 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 302

Using rates of 0.8% for overdraft and 0.6% for deposits, this formula returns
337.96 months:

=NPER(0.8%,-1000,12000,0,0)+NPER(0.6%,-1000,0,1000000,0)

EXAMPLE 11
I deposit $1,000 per month (at the end of each month) and intend to do so for the
next ten years. If I need to accumulate $1,000,000, how much should I deposit now
if the account earns 0.7% per month?

Function required: PV(rate, nper, pmt, fv, type)
This formula returns $351,972.24:

=PV(0.7%,120,-1000,1000000,0)

We need to convert years to months to ensure matching of the pmt, rate, and
nper arguments.

If you’ve worked through the first 11 examples, you should be getting the hang
of the process:

1. Determine the function required.

2. Determine the signs of pmt, pv, and fv inputs.

3. Ensure that periods of time for rate, nper, and pmt are the same (or con-
vert them to make them the same).

4. Insert the arguments in the correct order (preferably by using cell
references).

5. Consider the meaning of the answer.

6. Determine which function or calculations are required for a cross-check.

7. Ensure that the error approaches zero.

Simple Discounting Problems
You can think of discounting as “accumulation in reverse.” Rather than accumulat-
ing a present value to a future value, we are determining the present worth of a
future amount.

As with accumulations, we can have problems that involve two or three of the
monetary values of PV, FV, or PMT. Where only two are involved, we call it simple
discounting and with all three involved, we call it complex discounting.

Chapter 11: Introducing Financial Formulas 303

4800-x Ch11.F 8/27/01 11:56 AM Page 303

All of the examples in this section are available on the companion CD-ROM.

Each example also contains a cross-check to ensure the accuracy of the

calculation.

EXAMPLE 12
What is the present value of the right to receive $25,000 in five years, discounting
at 6.5% per annum?

Figure 11-3 shows this example, set up on a worksheet.

Figure 11-3: Calculating a present value

Function required: PV(rate, nper, pmt, fv, type)
This formula returns –$18,247.02:

=PV(6.5%,5,0,25000,0)

Note the logic of the signs. If we have a right to receive, the fv argument is pos-
itive — we must pay out in the present to receive this positive right in the future.
With no payment, the type argument is irrelevant.

The accuracy of the computation can be assured by cross-checking the answer
with another function. In this case, we might check whether $18,247.02 will accu-
mulate to $25,000 in five years at 6.5%. The following cross-check formula does
indeed return $25,000:

=FV(6.5%,5,0,-18247.02,0)

304 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 304

EXAMPLE 13
A property yields a rental of $25,000 for the next 25 years. If I discount at 8%,
how much should I pay? Assume a zero value after 25 years and that rent is paid
annually in arrears.

Function required: PV(rate, nper, pmt, fv, type)
The following formula returns –$266,869.40:

=PV(8%,25,25000,0,0)

This result can be checked using the RATE function. This formula returns 8.00%:

=RATE(25,25000,-266869.40,0,0)

Typically, real estate payments are made in advance. In such a case, Example 13
would be modified by making the Type argument 1.

EXAMPLE 14
Assume that the Example 13 rent of $25,000 is received in perpetuity. If we dis-
count at 8%, how much should we pay?

This is an example of a discounting problem that Excel can’t solve using its
functions. The problem is that we can’t use “perpetuity” as the nper argument. The
solution is to use a very long time period, such as 1,000 years. The result is cer-
tainly accurate enough for most purposes.

Function required: PV(rate, nper, pmt, fv, type)
The following formula returns –$312,500.00:

=PV(8%,1000,25000,0,0)

Another option is to use a formula to calculate the present value:

PV = PMT/RATE

For this example, the following formula returns $312,500.00:

=25000/0.08

Note that the sign is different because the formula has not adopted the strict sign
convention.

If rent is paid in advance, we merely adapt this “cheating” approach by using 1
for the Type argument. The following formula returns $337,500.00:

=PV(8%,1000,25000,0,1)

Chapter 11: Introducing Financial Formulas 305

4800-x Ch11.F 8/27/01 11:56 AM Page 305

The formula approach is varied, and the general formula for valuing income in
advance is as follows:

PV = PMT*(1+RATE)/RATE

For this example, the following formula returns $337,500.00:

=25000*(1+.08)/.08

Other examples can be expressed in discounting terms, but were covered earlier
in the “Simple Accumulation Problems” section.

EXAMPLE 15
A property currently worth $2,000,000 is subject to a lease at a peppercorn rent for
five years. A purchaser has paid $1,750,000 for it. Assuming no future growth in
value, what was the discount rate?

A peppercorn rent is a nominal rent that is intended to demonstrate that a

property is leasehold and not freehold.

Function required: RATE(nper, pmt, pv, fv, type, guess)
The following formula returns 2.706609%:

=RATE(5,0,-1750000,2000000,0)

The payment today represents a negative present value. The value in five years
is a (positive) right to receive.

To check the answer, use this formula (which returns $2,000,000.03):

=FV(2.706609%,5,-1750000,0)

The rounding error is caused by hard-coding the rate to only six decimal places.
Normally, the argument would be a cell reference, not a hard-coded value.

EXAMPLE 16
A leasehold interest in a property was recently sold for $230,000. The lease had
four years to run, and rent was payable at $6,000 per month in advance without
rent review or escalation. If we accept a yield of 0.75%, what profit rent is shown
by the transaction? Profit rent is the rental value minus the rent paid.

306 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 306

Function required: PMT(rate, nper, pv, fv, type)
The following formula returns $5,680.95:

=PMT(0.75%,48,-230000,0,1)

Adding the rent paid ($6,000) produces a rental value of $11,680.95.

Complex Discounting Problems
Complex discounting problems involve the use of all three monetary amounts: pre-
sent value, payment, and future value. The examples of complex discounting in this
section are essentially re-expressions of the complex accumulation problems.

All the examples in this section are available on the companion CD-ROM.

EXAMPLE 17
If I discount at 0.75% per month, how much should I pay for a property yielding
$25,000 per month in advance (which I estimate will be worth $5,000,000 in five
years)?

Function required: PV(rate, nper, pmt, fv, type)
The following formula returns –$4,406,865.34:

=PV(0.75%,60,25000,5000000,1)

This example uses a rate per month, and payments are monthly. Therefore, the
nper argument has been converted to months.

We can check this calculation by using the RATE function. The following for-
mula returns 0.75%:

=RATE(60,25000,-4406865.34,5000000,1)

EXAMPLE 18
I paid $1,200,000 for a property that yields a rent of $12,000 per month in
advance. If I sell it in five years for $1,500,000, what yield will I receive?

Function required: RATE(nper, pmt, pv, fv, type, guess)
The following formula returns 1.29136%:

=RATE(60,12000,-1200000,1500000,1)

Chapter 11: Introducing Financial Formulas 307

4800-x Ch11.F 8/27/01 11:56 AM Page 307

This result can be verified by using the PV function. The following formula
returns –$1,200,000.00:

=PV(1.29136%,60,12000,1500000,1)

It’s important to understand that the rent is quoted monthly in advance, but the
term is five years. This discrepancy is resolved by converting the years to months.
Therefore, the formula returns a monthly rate of interest.

Note that the rent is not converted to an annual rent. This is because a rent

of $12,000 per month in advance is not the same as a rent of $144,000 per

annum in advance. To achieve the equivalent annual amount we would

need to know the rate of discount — which is the one piece of information

we are trying to calculate.

EXAMPLE 19
A property has been purchased for $1,600,000. It yields a rent of $10,000 per
month in advance. If I am to secure a yield of 1% per month, what must the prop-
erty be worth in five years when I plan to sell it?

Function required: FV(rate, nper, pmt, pv, type)
This formula returns $2,081,851.05:

=FV(1%,60,10000,-1600000,1)

This result can be verified using the following formula (which returns
–$1,600,000):

=PV(1%,60,10000,2081851.05,1)

Amortization Problems
Amortization is the term given to the process of paying back loans. This chapter, in
fact, has already covered most of the calculations required, but the problems were
expressed in terms of accumulation.

All the basic examples in this section are available on the companion

CD-ROM.

308 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 308

EXAMPLE 20
What are the payments on a loan of $200,000 over 10 years, at 0.5% interest per
month (with payments in arrears)?

This example is illustrated in Figure 11-4.

Figure 11-4: Calculating a loan payment

Function required: PMT(rate, nper, pv, fv, type)
The following formula returns $2,220.41:

=PMT(0.5%,120,200000,0,0)

This result can be verified by using the PV function to calculate the loan
amount. The following formula returns $200,000:

=PV(0.5%,120,-2220.41,0,0)

In this example, the loan is fully repaid after 10 years, and the fv argument is
zero. Also note that the payments are to be monthly, and the monthly loan rate has
been quoted. Therefore, the 10-year term is converted to months.

EXAMPLE 21
I can afford payments of $2,500 per month, and can borrow at 0.45% (per month)
over 20 years. How much can I afford to borrow on a fully redeemable mortgage?

Function required: PV(rate, nper, pmt, fv, type)
This formula returns $366,433.74:

=PV(0.45%,240,-2500,0,0)

Chapter 11: Introducing Financial Formulas 309

4800-x Ch11.F 8/27/01 11:56 AM Page 309

Note that, with mortgages, we always assume payments are in arrears and that
the type argument is 0. Also note that the rate of interest (and the payments) are
monthly. Therefore, the term of 20 years must be converted to months.

You can check the answer by using the calculated answer to determine the rate
on a mortgage of $366,433.74 over 240 months. The following formula returns
0.45%:

=RATE(240,-2500,366433.74,0,0)

EXAMPLE 22
I currently owe $150,000 on a mortgage, and make payments of $1,900 per month.
The current interest rate is 0.45% per month. How long will it take to repay the
loan?

Function required: NPER(rate, pmt, pv, fv, type)
The following formula returns 97.76:

=NPER(0.45%,-1900,150000,0,0)

Because interest and payments are monthly, the formula returns the amortiza-
tion period in months. This answer, although correct in mathematical terms, has a
practical implication. Payments are actually made on exact monthly anniversaries.
This calculation implies that the loan somehow gets repaid 0.76 of the way through
the 98th month. In reality, you have a choice: make an additional payment at the
end of 97 months, or make a reduced level payment after 98 months. These options
can be calculated using the FV function.

To calculate the additional payment at the end of 97 months, calculate the
amount due using this formula (which returns –$1,429.85):

=FV(0.45%,97,-1900,150000,0)

Therefore, the final payment after 97 months is –$3,329.85 (that is, the normal
payment of –$1,900 plus –$1,429.85).

To calculate the reduced payment after 98 months, use this formula (which
returns +$463.72):

=FV(0.45%,98,-1900,150000,0)

Therefore, the final payment after 98 months is –$1,436.28 (that is, the normal
payment of –$1,900 plus $463.72).

A relatively frequent problem arises where the payment is less than the

amount of the interest portion on the outstanding balance. In this example,

the outstanding loan is $150,000, and interest in the first month is $675

($150,000 * 0.45%). If the payment is less than this amount, the outstanding

310 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 310

balance will continue to increase, and the loan will extend to infinity (rather

than seem to last for infinity). If this happens, the NPER function returns the

error message #NUM!.

EXAMPLE 23
A consumer credit agreement provides that I borrow $1,000 and pay $100 per
month in advance for 12 months. What is the rate of interest?

Function required: RATE(nper, pmt, pv, fv, type, guess)
The following formula returns 3.503153%:

=RATE(12,-100,1000,0,1)

Before you start to think how generous this agreement is, remember that pay-
ments are per month. Therefore, the result is the monthly effective rate!

The annual effective equivalent rate is 51.16%, calculated as follows:

=((1+0.03503153)^12)-1

The annual rate, based on the nominal compounded monthly basis, returns
42.05%, calculated as follows:

=3.503153 * 12

There is a large difference between the annual effective rate and the equiva-

lent nominal rate compounded monthly.The size of the difference increases

with the level of the rates used.

EXAMPLE 24
I borrow $300,000 on a balloon mortgage over 15 years, with monthly payments on
$100,000. The balance of $200,000 is due at the end of the term. The rate of inter-
est is 0.4% per month, and payments are made monthly in arrears. What will the
payments be?

A common type of mortgage (used to increase the amount that can be borrowed)
is the so-called “balloon” mortgage. The loan is divided into two elements: 1) the
“payment” element, where payments fully redeem part of the loan by the end of the
term, and 2) the “balloon” element. During the loan term, interest only (no princi-
pal) is paid on the balloon element. The principal balance is paid as a lump sum at
the end of the loan.

Chapter 11: Introducing Financial Formulas 311

4800-x Ch11.F 8/27/01 11:56 AM Page 311

The ability to use an fv argument in the PV, PMT, RATE, and NPER functions
make it relatively easy to perform balloon mortgage calculations.

Function required: PMT(rate, nper, pv, fv, type)
The following formula returns –$1,580.41:

=PMT(0.4%,180,300000,-200000,0)

Note that the total mortgage of $300,000 is used for the pv argument.
This calculation can be checked using the calculated payment to determine the

PV. This formula returns $299,999.43 (the rounding error is caused by using a
rounded payment amount):

=PV(0.4%,180,-1580.41,-200000,0)

The payments on a balloon basis can be compared with payments on a tradi-
tional mortgage. This formula returns $202,509.64 (traditional mortgage):

=PV(0.4%,180,-1580.41,0,0)

And payments for the $300,000 traditional mortgage are –$2,341.24, calculated
with this formula:

=PMT(0.4%,180,300000,0,0)

The previous amortization calculation examples can be modified for balloon
mortgages by providing an fv argument in the PV, PMT, NPER, and RATE functions.

You can also calculate the balloon mortgage element itself with the FV function.
This is a calculation that requires a careful interpretation of the sign of the result. If
the FV function returns a positive value, that means that the original mortgage has
been overpaid and this amount is now due to the borrower. If it returns a negative
amount, this is the amount of the balloon element. A balloon element will exist in
cases where the amount of the payments do not fully pay the loan during the mort-
gage term at the quoted interest rate.

Typically, these calculations are made in two stages. First, calculate the payment
on the normal amortization loan (usually in accordance with lender rules). Second,
calculate how much “balloon” element an additional payment will allow. Example
25 provides the details.

EXAMPLE 25
If the bank insists on an amortization of $200,000 of a loan, how much extra can I
borrow on the balloon mortgage basis if I can afford payments of $3,000 per
month? The term of the loan is 10 years, and the current rate is 0.4% per month.

312 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 312

Function required: PMT(rate, nper, pv, fv, type)
The first step is to calculate the payment for a $200,000 normal amortization

loan. The following formula returns –$2,101.81:

=PMT(0.4%,120,200000,0,0)

If payments of $3,000 are affordable, the additional amount of $898.19 can be
paid as interest on the balloon element (that is, $3,000 – $2,101.81). The balloon
element can now be calculated because the amount of interest is known. This for-
mula, which represents the balloon element, returns $224,546.88:

=898.19 / 0.4%

The calculation can be checked by calculating the payment based on a total
mortgage of $424,546.88 with a balloon element of $224,546.88. The following
formula returns –$3,000:

=PMT(0.4%,120,424546.88,-224546.88,0)

Converting Interest Rates
The previous examples have been conveniently expressed to allow easy matching
of the interest rate with the payment frequency and total term. Often, however,
interpreting a financial problem will be more difficult. There are two situations in
which interest rate conversions must be made:

� When you must do calculations involving a frequency of payments or a
number of time periods, and the rate that you are required to use does not
match the frequency of payments or time period.

� When you have done calculations involving a frequency of payments or a
number of time periods, and you need to express the resulting interest rate
in terms of a rate per year or some other period of time.

To create accurate formulas, you will need to understand the principle of equiv-
alence of interest rates. Stated simply, any given interest rate for one period of time
is equivalent to another interest rate for a different period of time.

Methods of Quoting Interest Rates
There are three commonly used methods of quoting interest rates:

� Nominal rate: The interest is quoted on an annual basis, along with a
compounding frequency per year. For example, the commonly quoted
APR of, say, 6% compounded monthly, where 0.5% is charged per month.

Chapter 11: Introducing Financial Formulas 313

4800-x Ch11.F 8/27/01 11:56 AM Page 313

� Annual effective rate: A rate of interest in which the given rate represents
the percentage earned in one year. For example, with a 10% annual effec-
tive rate, $1,000 earns $100 interest at the end of a year.

� Periodic effective rate: A rate of interest in which the given rate represents
the percentage earned during a period of less than a year. For example,
with a rate of 3% per half year, $300 earns $9 after six months.

An interest rate quoted using any of these three methods can be converted to
any of the other three methods. For example, consider an interest rate of 1% per
month on $100. In the first month, the investment earns $1 in interest. If the inter-
est credited is not withdrawn, it will be added to the principal, and the subsequent
interest will be based on the new balance. A 1% monthly interest rate is equivalent
to a 12.6825% per annum interest rate (the effective rate). This is calculated by
using the following formula:

=(1+0.01)^12 – 1

Another example of a nominal rate is an interest rate quoted as 6% per annum,
compounded quarterly. This means that 1.5% (that is, 6% / 4) is paid or received
every three months.

Most banks and financial institutions quote interest on a nominal basis com-
pounded monthly. However, when reporting returns from investments or when
comparing interest rates, it is common to quote annual effective returns, which
makes it easier to compare rates. For example, we know that 12% per annum com-
pounded monthly is more than 12% per annum compounded quarterly — but we
don’t know (without an intermediate conversion calculation) how much more it is.

Converting Interest Rates Using
the Financial Functions Add-in
As you will see, 10 different conversions may be required in converting among
Nominal, Annual Effective, and Periodic Effective systems.

The companion CD-ROM contains an add-in (named Financial Functions),

written by Norman Harker. This add-in provides custom functions (written in

VBA) to calculate interest rate conversions. You’ll also find a workbook that

demonstrates the use of these functions. In addition, these functions are used

in many of the examples in this and subsequent chapters. For your conve-

nience, the VBA functions are defined in the example workbooks. Therefore,

you do not need to install the add-in to work with the example workbooks.

314 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 314

When using the Financial Functions add-in, you can either enter the function
manually, or use Excel’s Insert Function dialog box (the functions are located in the
Financial category). Table 11-1 lists the 10 interest rate conversion functions con-
tained in the Financial Functions add-in. The table also shows (where applicable)
the equivalent Excel formula.

TABLE 11-1 CUSTOM VBA INTEREST RATE CONVERSION FUNCTIONS

Add-in Function Description Equivalent Excel
Formula

Effx_Nomx Converts an Effective rate (none)
(Effx,Freqx) for a period of less than a

year to the equivalent
Nominal rate for that
frequency.

Effx_AnnEff Converts an Effective rate =EFFECT(Effx*
(Effx,Freqx) for a frequency of less than Freqx,Freqx)

a year to an equivalent
Annual Effective rate.

Effx_Nomy(Effx, Converts an Effective rate =NOMINAL(EFFECT(Effx*
Freqx,Freqy) for a frequency of less than Freqx,Freqx),Freqy)

a year to an equivalent
Nominal rate for a different
frequency.

Effx_Effy(Effx, Converts an Effective rate =NOMINAL(EFFECT(Effx
for a frequency of less than *Freqx,Freqx,Freqy)
a year to an equivalent Freqx),Freqy)/Freqy
Effective rate for a different
frequency, which is also less
than a year.

Nomx_Effx Converts a Nominal rate to (none)
(Nomx,Effx) the equivalent Effective rate

for the frequency of the
Nominal rate.

Nomx_AnnEff Converts a Nominal rate to =EFFECT(Nomx,Freqx)
(Nomx,Freqx) the equivalent Annual

Effective rate.

Continued

Chapter 11: Introducing Financial Formulas 315

4800-x Ch11.F 8/27/01 11:56 AM Page 315

TABLE 11-1 CUSTOM VBA INTEREST RATE CONVERSION FUNCTIONS (Continued)

Add-in Function Description Equivalent Excel
Formula

Nomx_Nomy(Nomx, Converts a Nominal rate for =NOMINAL(EFFECT
Freqx,Freqy) a frequency to an equivalent (Nomx,Freqx),Freqy)

Nominal rate (for a different
frequency).

Nomx_Effy(Nomx, Converts a Nominal rate to =NOMINAL(EFFECT
Freqx,Freqy) an equivalent Effective rate (Nomx,Freqx)

for a frequency of less than ,Freqy)/Freqy
a year, which is not the
frequency of the given
Nominal rate.

AnnEff_Effx Converts an Annual Effective =NOMINAL(AnnEff,Freqx)
(AnnEff,Freqx) rate to an equivalent Effective /Freqx

rate for a frequency of less
than a year.

AnnEff_Nomx Converts an Annual Effective =NOMINAL(AnnEff,Freqx)
(AnnEff,Freqx) rate to an equivalent

Nominal rate.

The function names and arguments may appear confusing at first, but you will
soon get the hang of them. The name of each function is made up of three parts:

� The interest rate you have (Effx, AnnEff, or Nomx). Note that the com-
pounding frequency of the effective and nominal rates are denoted by x.

� The linking symbol, which is an underscore character (_).

� The interest rate you want (Effx, Effy, AnnEff, Nomx, or Nomy). Again,
compounding frequencies are denoted by x (if it is the same as the fre-
quency of the rate you have), or y (if it is different).

The ordering of arguments is also easy to master:

� The first argument is always the interest rate you have.

� The second argument is always the Freqx, which is the frequency of the
Effx or Nomx rate. Note that every conversion function uses a Freqx
argument, and it is always the second argument.

316 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 316

� If there is a second known frequency other than x or annual, there is a
third argument, Freqy.

Effective Cost of Loans
Lending institutions typically advertise their “headline” rates to make them appear
as low as possible. A savvy borrower is able to interpret these rates to determine
how much the loan is really costing. The only safe and constant comparison is to
look at the effective cost in terms of the annual effective interest rate, or some other
common rate such as the annual nominal rate compounded monthly.

This section presents four examples that demonstrate how to calculate the effec-
tive cost of loans.

All of the examples in this section are available on the companion CD-ROM.

These examples use the custom VBA interest rate conversion functions.

Impact of Fees and Charges
upon Effective Interest
In addition to the interest on a mortgage, banks often charge “points,” or set-up
fees, and account service fees. These fees add to the effective cost of the loan. But
by how much?

EXAMPLE 26
A bank quotes a mortgage rate of 7% nominal compounded monthly, and you are
interested in borrowing $150,000 over 10 years with monthly payments. The bank
charges an up-front loan arrangement fee of 2% of the loan, plus an account ser-
vice fee of $25 per month. What is the annual effective cost of the loan?

Figure 11-5 shows a worksheet that’s set up to solve this problem. The known
information is entered into the Base Data section of the worksheet. Table 11-2 lists
the key formulas that perform the calculations. For clarity, the formulas are shown
using actual values rather than cell references.

Chapter 11: Introducing Financial Formulas 317

4800-x Ch11.F 8/27/01 11:56 AM Page 317

Figure 11-5: This worksheet calculates the effective cost of a loan.

TABLE 11-2 FORMULAS USED IN FIGURE 11-5

Cell Calculation Formula (Using Actual Values)

B16 Set-up fee =$150,000 * 2%

B17 Effective borrowing =$150,000 – $3,000

B18 Loan term periods =10 * 12

B19 Loan rate period =Nomx_Effx(7%,12)

B20 Loan payment =PMT(0.583333%,120,150000,0,0)

B21 Loan payment + fee =–$1,741.63–$25

B22 Effective cost of =RATE(120,
the loan –1766.63,147000,0,0)

Cell B19 uses a custom VBA function.

318 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 318

The payments are based on the loan amount of $150,000, but the effective cost
is based upon the fact that, after deducting the set-up fee, the borrower receives
only $147,000. Similarly, actual payments are higher by the amount of the account
service fee.

The impact of these costs varies according to the term: The shorter the term, the
greater the impact. If a mortgage is not capable of being transferred to a new house
when the borrower moves, the calculation should be based on the likely time that
the mortgage will last — usually about seven years.

“Flat” Rate Loans
Many consumer credit agreements use a loan agreement in which a percentage of
the loan is added to the loan, and payments are based on the aggregate of the loan
amount plus the flat interest divided by the number of payments. You can use
Excel’s RATE function to calculate the effective costs of such loans.

EXAMPLE 27
A consumer finances his car purchase with a flat rate loan of $15,000 over 18
months. Interest of 10% * 1.5 of this amount is added to the loan and he pays 1/18
of this amount each month in advance for 18 months. What is the effective cost of
the loan?

The easiest way to solve this function is to use the Effx_AnnEff function (a cus-
tom VBA function). The following formula returns 3.62%:

=Effx_AnnEff(RATE(18,-17250/18,15000,0,1),12)

Note that if the term of such a loan is only 12 months, the rate is slightly more
than double the flat rate. Most states and countries have legislated that such loan
agreements shall have the annual nominal rate compounded monthly stated clearly
in the loan agreement.

Interest-Free Loans
Another interesting calculation is the effective cost of a so-called “interest-free”
loan offer. In making these calculations, you need to know the price for which you
could get the product elsewhere (without the interest-free package).

EXAMPLE 28
A consumer buys a hi-fi system at a list price of $3,000 on “interest-free” terms
over 12 months, with the payments in advance. He could have purchased an iden-
tical system for $2,500 cash or on normal credit terms. What is the effective cost of
this loan?

Again, the Effx_AnnEff VBA function provides the simplest solution. This for-
mula returns 51.16%:

=Effx_AnnEff(RATE(12,-(3000/12),2500,0,1),12)

Chapter 11: Introducing Financial Formulas 319

4800-x Ch11.F 8/27/01 11:56 AM Page 319

Such calculations are often more difficult when the equivalent cash price is sub-
jective (for example, the used car market).

You can perform similar calculations for other types of agreement, such as “Pay
25% down today, no more to pay for 12 months.” Again, the key is to establish the
equivalent cash price, and then compare the calculations with that price, rather
than a price that is inflated by the retailer who’s offering the credit.

Most states and countries have consumer credit legislation that governs the quo-
tation of interest rates. In many localities, the only major regulation of interest-free
type agreements is that the retailer may not offer the same product at a cash price
different from that quoted in the interest-free agreement.

“Annual Payments / 12” Loan Costs
A practice that is rooted in the precalculator days is to calculate payments on an
“annual in arrears” basis, and to charge the borrower 1/12 of that amount each
month. That calculation was facilitated by preprepared tables of monthly payments
per $1,000 of loan. The practice prevails (especially in UK Building Societies) partly
because it produces a lower advertised rate than Nominal or Effective rate regimes.

EXAMPLE 29
A bank offers a mortgage of $100,000 at a rate of 7% over 10 years, where pay-
ments per month are based on 1/12 of the annually calculated payment being paid
monthly in arrears. What is the annual effective cost?

The following formula (which uses the Effx_AnnEff VBA function) returns
.7522% (the per annum effective rate):

=Effx_AnnEff(RATE(10*12,PMT(7%,10,100000,0,0)/12,100000,0,0),12)

Calculating the Interest and
Principal Components
This section discusses four Excel functions that enable you to:

� Calculate the interest or principal components of a particular payment
(the IPMT and PPMT functions)

� Calculate cumulate interest or principal components between any two
time periods

320 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 320

The examples in this section are available on the companion CD-ROM.

Using the IPMT and PPMT Functions
You may need to know (or simply be curious about) how much of a particular pay-
ment constitutes interest, and how much of the payment goes toward the principal.
This information might be useful in determining tax effects on interest payments. If
you’ve studied any of the loan amortization examples, you know that the interest
element is not constant over the life of a loan. Rather, the interest component
decreases, while the principal component increases.

If you’ve created an amortization schedule, these functions are not particu-

larly useful, because you can simply refer to the schedule. The IPMT and

PPMT functions are most useful when you need to determine the

interest/principal breakdown of a particular payment.

The syntax for these two functions is as follows (bold arguments are required):

IPMT(rate,per,nper,pv,fv,type)
PPMT(rate,per,nper,pv,fv,type)

As with all amortization functions, the rate, per, and nper must match in terms
of the time period. If the loan term is measured in months, the rate argument must
be the effective rate per month, and the per argument (that is, the period of interest)
must be a particular month.

EXAMPLE 30
A consumer obtains a three-year car loan (monthly payments) for $20,000 at an
annual rate of 8%. What are the interest and principal portions for the final loan
payment?

Figure 11-6 shows the solution, set up in a worksheet.

Chapter 11: Introducing Financial Formulas 321

4800-x Ch11.F 8/27/01 11:56 AM Page 321

Figure 11-6: This worksheet calculates the
interest and principal components for any
periods of a loan.

Function required: IPMT(rate,per,nper,pv,fv,type)
This formula calculates the interest portion of the final payment, and returns

–$4.15:

=IPMT(8%/12,36,36,20000,0,0)

The following formula calculates the principal portion of the final payment, and
returns –$622.58:

=PPMT(8%/12,36,36,20000,0,0)

By the end of the loan term, practically all of the payment goes toward the prin-
cipal. To compare this with the first loan period, change the per argument to 1.
After doing so, the formulas return –$133.33 (interest) and –$493.39 (principal).

You can check the calculations by using the PMT function (which returns the

total payment, interest plus principal). The following formula returns

–$626.73, which is the loan payment amount (and the sum of the two previ-

ous formulas):

=PMT(8%/12,36,-20000,0)

322 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 322

Chapter 11: Introducing Financial Formulas 323

Using the CUMIPMT and CUMPRINC Functions
The IPMT and PPMT functions can be useful. But, more often, you will need to
know the interest or principal component for a group of consecutive periods. In this
case, the CUMIPMT and CUMPRINC functions are of greater service. These func-
tions are useful for creating annualized amortization schedules, and for establish-
ing qualifying interest for tax return purposes.

The syntax for these functions is shown here (all arguments are required):

CUMIPMT(rate,nper,pv,start_period,end_period,type)
CUMPRINC(rate,nper,pv,start_period,end_period,type)

These functions are available only when the Analysis ToolPak add-in is

installed.

EXAMPLE 31
A consumer is borrowing $250,000 on a mortgage, repayable over 10 years at 5.6%
nominal compounded monthly with payments monthly in arrears. What will the
payments of interest and principal be in the first year of the loan?

The following formula, for principal payments, returns $13,512.31:

=CUMIPMT(Nomx_Effx(5.6%,12),10*12,250000,1,12,0)

The following formula returns $19,194.42 (total interest payments):

=CUMPRINC(Nomx_Effx(5.6%,12),10*12,250000,1,12,0)

We can check these answers using the PMT function to calculate the aggregate
of the payments. The following formula returns $32,706.74, which is the aggregate
of the preceding results:

=PMT(Nomx_Effx(5.6%,12),10*12,250000,0,0)*12

These formulas all use the Nomx_Effx custom VBA function.

4800-x Ch11.F 8/27/01 11:56 AM Page 323

Matching Different Interest and
Payment Frequencies
Previous examples involved nominal interest compounding frequencies that match
the frequency of payments. Thus, for example, we might have a quoted nominal
rate compounded monthly with payments that are also monthly. As usual, the real
world isn’t always as cooperative.

EXAMPLE 32
A bank quotes a nominal rate compounded monthly of 6.3%, but allows payments
weekly at the equivalent interest rate. If I borrow $300,000 over 10 years, what will
the weekly payments be?

The easy way to resolve such problems is to use the custom Nomx_Effy interest
conversion function. This formula returns $777.51:

=PMT(Nomx_Effy(6.3%,12,52),10*52,300000,0,0)

EXAMPLE 33
We have set up annual accounts, but need to handle a monthly outgoing of
$12,500. Rather than annualize by multiplying by 12, what is the equivalent
annual amount using a deposit rate of 7% per annum nominal compounded
monthly? The monthly payment is in arrears, and the equivalent amount is to be
calculated at the end of each year.

First, calculate the monthly effective rate (using a custom VBA function). The
following formula returns 0.58333%:

=Nomx_Effx(7%,12)

Then, calculate the equivalent annual amount using the FV function. This for-
mula returns –$154,907.29:

=-FV(0.58333%,12,-12500,0,0)

In this example, the signs can be confusing. Normally we would treat the

outgoing as a negative and return a positive future value. However, we will

be using the result as an outgoing, so the signs are reversed. This can be

done either by using –12,500 as the outgoing, or by reversing the sign of the

result by using –FV (as in the example).

If the equivalent amount is to be calculated in advance, we would use the same
principles and apply the PV function.

324 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 324

Limitations of Excel’s Financial
Functions
Excel’s primary financial functions (PV, FV, PMT, RATE, NPER, CUMIPMT, and
CUMPRINC) are very useful, but they have two common limitations:

� They can handle only one level of interest rate.

� They can handle only one level of payment.

For example, the NPER function cannot handle the variations in payments that
arise with credit card calculations. In such calculations, the monthly payment is
based upon a reducing outstanding balance, and may also be subject to a minimum
amount rule.

The common solution to the problem of varying payments is to create a cash
flow schedule and use other financial functions that can handle multiple payments
and rates. Examples of the process appear in the next two chapters. Briefly, the
functions involved are:

� FVSCHEDULE, which handles accumulation of a Present Value at different
rates and which, when used in a formula, can calculate the present value
of a future amount at different rates.

� IRR, which handles the calculation of a single rate from regular cash
flows.

� NPV, which handles the calculation of the sum of the present values of
regular cash flows and which by formula can handle the sum of accumu-
lated values of regular cash flows.

� MIRR, which is a specialist IRR aimed at avoiding the multiple IRR prob-
lem by applying different rates to negative and positive regular cash
flows.

� XIRR, which handles the calculation of a single rate from irregular cash
flows.

� XNPV, which handles the calculation of the sum of the present values of
irregular cash flows and which, in a formula, can handle the sum of accu-
mulated values of irregular cash flows.

In a situation that involves only one or two variations, it may be possible to
avoid cash flow construction by using formulas nested in or applied to the basic
amortization formulas.

Chapter 11: Introducing Financial Formulas 325

4800-x Ch11.F 8/27/01 11:56 AM Page 325

Deferred Start to a Series of Regular Payments
In some cases, a series of cash flows may have a deferred start. We can calculate the
PV of a regular series of cash flows with a deferred start by using a formula like
this:

=PV(RATE,NPER,PMT,FV,Type)*(1+RATE)^-DEFER_PER

Here, DEFER_PER represents the number of periods for which the first cash flow
is deferred.

EXAMPLE 34
I want to borrow money on a deferred payment basis. The deferment period will be
one year. Thereafter, the loan will be for 10 years with monthly payments in
arrears. The interest rate is 8% per annum effective. The loan is to be secured on a
property that I am building, and the bank is prepared to lend, subject to payments
not exceeding 75% of the estimated income of $9,500 per month. How much can I
borrow?

The following formula uses the custom AnNEff_Effx function, and returns
$550,422.02:

=PV(AnnEff_Effx(8%,12,10*12,-9500*75%,0,0)*(1+AnnEff_Effx(8%,12))^-
12

Valuing a Series of Regular Payments
We can extend the basic principle of discounting successive, but different, levels of
payment by chaining the PV functions. For example, if PV1, PV2, and PV3 repre-
sent different present values of series of payments for time periods NPER1, NPER2,
and NPER3, the discounted value of all series of payments can be found by:

PV1 + PV2(1+I)^-NPER1 + PV2(1+I)^-(NPER1+NPER2)

EXAMPLE 35
What is the present value of a property yielding an income of $5,000 per month for
four years, rising to $6,500 per month for the next three years, and rising to $8,500
per month for the final three years? After 10 years, the property will be worth an
estimated $1,300,000. A discount rate of 10% per annum may be assumed and all
payments are in advance.

The following formula returns –$978,224.54:

=PV(AnnEff_Effx(10%,12),48,5000,0,1) +
PV(AnnEff_Effx(10%,12),36,6500,0,1)*
(1+AnnEff_Effx(10%,12))^-48 +
PV(AnnEff_Effx(10%,12),36,8500,1300000,1)*
(1+AnnEff_Effx(10%,12))^-(48+36)

326 Part III: Financial Formulas

4800-x Ch11.F 8/27/01 11:56 AM Page 326

Note how the final value of $1,300,000 has been nested in the final PV function.
The same answer could be achieved by “nesting” the successive Present Value

inside the preceding function as future values. But remembering that as the PV at
that time represents a right to the future income stream, the sign would have to be
reversed. The following formula returns $978,224.54:

=PV(AnnEff_Effx(10%,12),48,5000,-
PV(AnnEff_Effx(10%,12),36,6500,-
PV(AnnEff_Effx(10%,12),36,8500,1300000,1),1),1)

Of these two approaches, the first formula (using the basic discounting formulas)
looks easier as a method; it looks easier to build using the megaformula technique
or to break up into three cells that are then added together.

The following formula returns $200,344.00:

=PV(AnnEff_Effx(10%,12),48,5000,0,1)

This formula returns $139,559.07:

=PV(AnnEff_Effx(10%,12),36,6500,0,1)*(1+AnnEff_Effx(10%,12))^-48

This formula returns $638,331.47:

=PV(AnnEff_Effx(10%,12),36,8500,1300000,1)*(1+AnnEff_Effx(10%,12))^-
(48+36)

And the total of the three elements checks at $978,224.54.
Subject to exceptions involving just one or two changes in the series of pay-

ments, the solution will be to set up a cash flow schedule. This will be covered after
the next chapter because we first have to outline the basic tools of NPV and IRR.

Summary
This chapter introduced the financial functions and provided the basic concepts of
time value of money and equivalent interest rates. The chapter presented a series of
examples that used the key financial functions for accumulations, discounting, and
loan amortization.

The next chapter presents examples that use Excel for depreciation calculations,
and introduces the techniques of calculating net present values (NPV) and internal
rates of return (IRR).

Chapter 11: Introducing Financial Formulas 327

4800-x Ch11.F 8/27/01 11:56 AM Page 327

4800-x Ch11.F 8/27/01 11:56 AM Page 328

Chapter 12

Discounting and
Depreciation Financial
Functions

IN THIS CHAPTER

� Using the NPV and IRR functions

� Understanding the various approaches for cash flows

� Using cross-checking to verify results

� Dealing with multiple internal rates of return

� Understanding the limitations of IRRs and NPVs

� Extending NPV analysis using more than one rate

� Using the NPV function to calculate accumulated values

� Using the depreciation functions

THE NPV (NET PRESENT VALUE) and IRR (Internal Rate of Return) functions are per-
haps the most commonly used of the financial analysis tools. This chapter provides
many examples of using these functions for various types of financial analysis.

Using the NPV Function
The NPV function returns the sum of any series of regular cash flows, discounted to
the present day using a single discount rate. The syntax for Excel’s NPV function is
shown here (arguments in bold are required):

NPV(rate,value1,value2, ...)

Cash inflows are represented as positive values, and cash outflows are negative
values. The NPV function is subject to the same restrictions that apply to financial
functions such as PV, PMT, FV, NPER, and RATE. The only exception is that the
payment amounts may vary. 329

4800-x Ch12.F 8/27/01 11:56 AM Page 329

If the discounted negative flows exceed the discounted positive flows, the func-
tion will return a negative amount. Similarly, if discounted positive flows exceed
discounted negative flows, the NPV function will return a positive amount.

If the NPV is positive, this indicates that at period zero, the investor could pay
out up to this additional amount and still achieve the discount rate. If the NPV is
negative, then the investor does not get the required discount rate. That rate is
often called a hurdle rate. The implication of a negative NPV is that the investor is
paying out too much. The “right price” requires the addition of the shortfall to the
Time 0 cash flow.

The discount rate used must be a single effective rate for the period used for the
cash flows. Therefore, if flows are set out monthly, you must use the monthly effec-
tive rate.

Definition of NPV
Excel’s NPV function assumes that the first cash flow is received at the end of the
first period. It is important to understand that this differs from the definition used
by most financial calculators, and it is also at odds with the definition used by
institutions such as the Appraisal Institute of America (AAI). For example, the AAI
defines NPV as the difference between the present value of positive cash flows and
the present value of negative cash flows.

If you use Excel’s NPV function without making an adjustment, the result will
not adhere to this definition.

Therefore, when using Excel’s NPV function, you will need to take into account
the time Point 0 cash flow. For this reason, the procedure to adopt when calculating
NPV using Excel is as follows:

� Treat the number of periods as points in time rather than the time period
between points.

� Always include a Point 0, even if cash flows do not arise until the end of
period 1 (Point 1).

� Use a formula like the one shown here to include the Point 0 cash flow:

=NPV(Rate,Range)*(1+Rate)

If you use this procedure, your calculations will adhere to the accepted defini-
tions of NPV, and the results will coincide with those made on your trusty financial
calculator. By the way, it’s not that Microsoft got it wrong. The online help clearly
states that the first cash flow in the range is assumed to be received at the end of
the first period. If you use the previous formula and always have a Time 0 period
(even if it is $0), you will always get the correct answer.

NPV Function Examples
This section contains a number of examples that demonstrate the NPV function.

330 Part III: Financial Formulas

4800-x Ch12.F 8/27/01 11:56 AM Page 330

All of the examples in this section are available on the companion CD-ROM.

EXAMPLE 1
Figure 12-1 shows a worksheet set up to calculate the net present value for a series
of cash flows in the range B6:B13.

Figure 12-1: This worksheet uses the NPV function.

The NPV calculation in cell B15 uses the following formula. This formula returns
–$33,629.14:

=NPV(B3,B6:B13)*(1+B3)

The worksheet in Figure 12-1 also shows a method of cross-checking the NPV
calculation. Column E contains a duplicate of the original cash flow, with one
exception. The Point 0 cash flow is equal to the original Point 0 cash flow, minus
the calculated NPV. In this example, the Point 0 cash flow is –$166,370.86. The
cross-check formula in cell E15, shown here, returns $0.00:

=NPV(B3,E6:E13)*(1+B3)

How does the cross-check work? The discount rate of 10% is used to calculate
the surplus or deficit that results from a desired 0% return. In this case, the surplus
is calculated as $33,629.14. That surplus is expressed in present value (Point 0)
terms. If the surplus is deducted from the Point 0 flow, then there should be no sur-
plus. In other words, if the reversed sign NPV is added to the Time 0 flow, the NPV
at the same rate must be 0. If it is 0, this means that the required discount rate
was met.

Chapter 12: Discounting and Depreciation Financial Functions 331

4800-x Ch12.F 8/27/01 11:56 AM Page 331

EXAMPLE 2
This example, shown in Figure 12-2, calculates the net present value of a cash flow
that begins at the end of the first period.

Figure 12-2: This worksheet calculates the NPV for a cash
flow that begins at the end of the first period.

The NPV calculation, in cell B16, uses the following formula:

=NPV(B3,B7:B14)*(1+B3)

The calculations indicate that we can afford to pay $166,370.86 for the cash
flow, in order to meet a criterion rate of return of 10%.

This example uses another method of cross-checking the result (columns C and
D). Column C contains formulas that calculate the present value factor of each cash
flow. The formula in cell C7 is:

=(1+B3)^-A7

The present values are calculated in column D, by multiplying each cash flow by
its corresponding present value factor. The formula in cell D7 is:

=C7*B7

Column D contains all the present values calculated, and the sum of that column
is the sum of the present values. By definition, the sum of the present values (cell
D16) should equal the NPV.

EXAMPLE 3
This example (see Figure 12-3) calculates the net present value of a cash flow with
an initial (Time 0) positive cash flow.

332 Part III: Financial Formulas

4800-x Ch12.F 8/27/01 11:56 AM Page 332

Figure 12-3: This worksheet calculates the net present
value for a cash flow that has an initial flow.

The net present value calculation is in cell B15, which contains the following
formula:

=NPV(B3,B6:B13)*(1+B3)

The calculation indicates that we can pay $165,939.65 for the right to receive
the cash flow, and receive a criterion rate of return of 10%. In this case, however,
we pay out $165,939.65 and have the immediate right to receive the Point 0 cash
flow of $40,000.

This example might seem unusual, but it is common in real estate situations in
which rent is paid in advance. In practice, completion rarely coincides with a rent
payment date, and the balance of rent previously paid covering the period after the
completion date is allowed for in the completion statement.

If we do not know the value, we put 0 in the capital column at period 0, and the
NPV represents the value using the required discount rate. If we know the quoting
price, we can put that in as a negative at period 0, and the NPV then represents how
much more or less we should pay to get the required discount rate.

EXAMPLE 4
This example (see Figure 12-4) calculates a net present value where there is a ter-
minal value, and where cash flows are in advance.

This example is a typical real estate cash flow of rentals payable annually in
advance, with an assumed sale after seven years for $450,000. Pay attention to
both ends of the cash flow. In this case, the investor is assumed to receive the first
rental of $30,000 immediately, and will also get the $40,000 payment made at the
end. That might not accord with the facts, and if the last payment is not receivable,
you must make it $0.

Chapter 12: Discounting and Depreciation Financial Functions 333

4800-x Ch12.F 8/27/01 11:56 AM Page 333

Figure 12-4: This worksheet demonstrates cash flows
with a terminal value.

The NPV calculation in cell D15 is:

=NPV(B3,D6:D13)*(1+B3)

EXAMPLE 5
This example, shown in Figure 12-5, is similar to Example 4, but it uses a formula
(in cell B14) to add the terminal value to the final cash flow.

Figure 12-5: This worksheet demonstrates
cash flows with terminal values.

The formula in cell B16 is:

=NPV(B3,B7:B14)*(1+B3)

Examples 4 and 5 differ only in the way the data is organized. If you want to
separate capital and revenue flows, the approach used in Example 4 is preferable.
Separating revenue and capital items (as in Example 4) makes it perfectly clear that
the flows are correct without your having to examine the formula.

334 Part III: Financial Formulas

4800-x Ch12.F 8/27/01 11:56 AM Page 334

EXAMPLE 6
This example is a simplistic valuation model that uses initial and terminal flows
(see Figure 12-6). It represents a typical investment example in which the aim is to
determine if, and by how much, an asking price exceeds a criterion rate of return.

Figure 12-6: This worksheet demonstrates cash
flows with terminal values.

The following formula indicates that, at $280,000 asking price, the discounted
positive cash at the criterion rate of return is $148,026.29:

=NPV(B3,D8:D15)*(1+B3)

Put another way, the investor could pay $428,026.29 and still achieve the crite-
rion rate of return of 10%.

EXAMPLE 7
In the previous examples, the discount rate conveniently matched the time periods
used in the cash flow. Often, you’ll be faced with a mismatch of rate and time peri-
ods. The most common situation occurs when the criterion rate of return is an
annual effective rate, and cash flows are monthly or quarterly.

The simplest solution is to use the AnnEff_Effx function (which is also used in
some of the examples in Chapter 11). This is a custom VBA function that makes it
very easy to convert an interest rate to the monthly effective basis required by a
monthly cash flow.

The AnnEff_Effx function is defined in the example workbook on the

CD-ROM. The interest rate conversion functions are also available in the

Financial Functions add-in (also on the CD-ROM).

Chapter 12: Discounting and Depreciation Financial Functions 335

4800-x Ch12.F 8/27/01 11:56 AM Page 335

Figure 12-7 shows a rental of $12,000 paid quarterly in advance. It also shows
an initial price of $700,000 and a sale (after three years) for $900,000. Note that
because rent is paid in advance, the purchaser gets a cash adjustment to the price.
However, at the end of three years (12 quarters), the same rule applies, and the rent
payable for the next quarter is received by the new owner. If we discount at 7% per
annum effective, this shows an NPV of $166,099.72.

Often, rental flows are annualized. This might sound a bit peculiar. However,
before the advent of calculators and computers, this was the approach adopted by
appraisers who used precalculated tables of annual constants that they applied to
the aggregate annual rent. Figure 12-8 shows the same data, but this time we have
adopted the approach of assuming that the rent of $48,000 per annum is paid
annually in arrears. Still discounting at 7% per annum effective, we get an NPV of
$160,635.26.

Figure 12-7: Calculating the NPV using quarterly cash flows

Figure 12-8: Calculating the NPV by annualizing
quarterly cash flows

336 Part III: Financial Formulas

4800-x Ch12.F 8/27/01 11:56 AM Page 336

Using the NPV Function to Calculate
Accumulated Amounts
This section presents two examples that use the NPV function to calculate future
values or accumulations. These examples take advantage of the fact that:

FV = PV * (1 + Rate)

EXAMPLE 8
The data for this example is shown in Figure 12-9. The net present value calcula-
tion is performed by the formula in cell B15:

=NPV(B3,B6:B13)*(1+B3)

The future value is calculated using the following formula (in cell B17):

=NPV(B3,B6:B13)*(1+B3)*(1+B3)^7

Figure 12-9: Calculating FV using the NPV function

The result is verified in column D, which calculates a running balance of the
interest. The results of the future value calculation matches the cumulative interest.
Interest is calculated using the interest rate multiplied by the previous month’s bal-
ance. The running balance is the sum of the previous balance, interest, and the cur-
rent month’s cash flow.

It is important to properly sign the cash flows. Then, if the running balance for
the previous month is negative, the interest will be negative. Signing the flows
properly and using addition is preferable to using the signs in the formulas for
interest and balance.

Chapter 12: Discounting and Depreciation Financial Functions 337

4800-x Ch12.F 8/27/01 11:56 AM Page 337

EXAMPLE 9
Chapter 11 covers the use of the PMT function to calculate payments equivalent to
a given present value. Similarly, we can use the NPV function, nested in a PMT
function, to calculate an equivalent single-level payment to a series of changing
payments.

This is a typical problem where we require a time-weighted average single pay-
ment to replace a series of varying payments. An example is an agreement in which
a schedule of rising rental payments is replaced by a single payment amount. In the
example shown in Figure 12-10, the following formula (in cell C27) returns
$10,923.24, which is the payment amount that would substitute for the varying
payment amounts in column B:

=PMT(C7,C6,-B25,0,C8)

The example in this section gives the user flexibility in choice of rate type and
frequency of the income flow. Data validation is used to allow the user to select
either Effective or Nominal in cell C3. This type of calculation is frequently used to
calculate alternatives of fixed and stepped rentals.

Figure 12-10: Calculating equivalent payments with NPV

338 Part III: Financial Formulas

4800-x Ch12.F 8/27/01 11:56 AM Page 338

Using the IRR Function
Excel’s IRR function returns the discount rate that makes the net present value of
an investment zero. In other words, the IRR function is a special-case NPV, and we
will use that feature in designing an automatic cross-check.

The syntax of the IRR function is:

IRR(range,guess)

The range argument must contain values. Empty cells are not treated as

zero. If the range contains empty cells or text, the IRR function does not

return an error. Rather, it will return an incorrect result. Thus, if range B1:B40

contains text in cells B11:B20, the IRR will calculate on the basis of 30 con-

secutive cash flows. This is especially dangerous if the text is misleading: a

blank,“-”,“nil”,“zero”, or (worst) “O” (the uppercase “o”).

In most cases, the IRR can only be calculated by iteration. The guess argument,
if supplied, acts as a “seed” for the iteration process. It has been found that a guess
of –0.9 will always produce an answer. Other guesses, such as 0, usually (but not
always) produce an answer.

An essential requirement of the IRR function is that there must be both negative
and positive income flows: To get a return, there must be an outlay and there must
be a payback. There is no essential requirement for the outlay to come first. For a
loan analysis using IRR, the loan amount will be positive (and come first) and the
repayments that follow will be negative.

The IRR is a very powerful tool, and its uses extend beyond simply calculating
the return from an investment. This function can be used in any situation in which
we need to calculate a time- and money-weighted average return.

EXAMPLE 10
This example sets up a basic matrix for IRR calculations (see Figure 12-11). This
example demonstrates the perennial problem of a cash flow frequency returning an
IRR for that frequency. Thus, if cash flows are monthly, the function will return the
monthly IRR. The example uses data validation to allow the user to select the type
of flow (1, 2, 4, 12, 13, 26, 52, 365, 366). That choice determines the appropriate
interest conversion calculation, and also affects the labels in row 5, which contain
formulas that reference the text in cell D3.

Chapter 12: Discounting and Depreciation Financial Functions 339

4800-x Ch12.F 8/27/01 11:56 AM Page 339

Figure 12-11: This worksheet allows the user to select
the time period for the cash flows.

The following formula, in cell D22, is a validity check:

=NPV(D20,D6:D18)*(1+D20)

The IRR is the rate at which the discounting of the cash flow produces an NPV of
zero. The formula in cell D22 uses the IRR in an NPV function applied to the same
cash flow. The NPV discounting at the IRR (per quarter) is $0.00 — so the calculation
checks.

EXAMPLE 11
You may have a need to calculate an average growth rate, or average rate of return.
Because of compounding, a simple arithmetic average does not yield the correct
answer. Even worse, if the flows are different, an arithmetic average will not take
these variations into account.

A solution uses the IRR function to calculate a geometric average rate of return.
This is simply a calculation that determines the single percentage per period that
exactly replaces the varying ones.

Example 11 (see Figure 12-12) shows the IRR function being used to calculate a
geometric average return based upon index data (in column B). The calculations of
the growth rate for each year are in column C. For example, the formula in cell
C5 is:

=(B5-B4)/B4

340 Part III: Financial Formulas

4800-x Ch12.F 8/27/01 11:56 AM Page 340

The remaining columns show the geometric average growth rate between differ-
ent periods. The formulas in Row 10 use the IRR function to calculate the internal
rate of return. For example, the formula in cell F10, which returns 5.241%, is:

=IRR(F4:F8,-0.9)

In other words, the growth rates of 5.21%, 4.86%, and 5.66% are equivalent to a
geometric average growth rate of 5.241%.

The IRR calculation takes into account the direction of flow, and places a greater
value on the larger flows.

Figure 12-12: Using the IRR function to calculate geometric
average growth

EXAMPLE 12
Figure 12-13 shows a worksheet that uses the present value IRR check. This check
is based on the definition of IRR: The sum of positive and negative discounted
flows is 0.

The net present value is calculated in cell B16:

=NPV(D3,B6:B14)*(1+D3)

The internal rate of return in calculated in cell B17:

=IRR(B6:B14,-0.9)

In column C, formulas calculate the present value. They use the IRR (calculated
in cell B17) as the discount rate, and use the period number (in column A) for the
exponent. For example, the formula in cell C6 is:

=B6*(1+B17)^-A6

The sum of the values in column C is 0.

Chapter 12: Discounting and Depreciation Financial Functions 341

4800-x Ch12.F 8/27/01 11:56 AM Page 341

The formulas in column D use the discount rate (in cell D3) to calculate the pre-
sent values. For example, the formula in cell D6 is:

=B6*(1+D3)^-A6

The sum of the values in column D is equal to the net present value.
For serious applications of NPV and IRR functions, it is an excellent idea to use

this type of cross-checking.

Figure 12-13: Checking IRR and NPV using sum
of PV approach

Multiple Rates of IRR and
the MIRR Function
In standard cash flows, there is only one sign change: from negative to positive, or
from positive to negative. However, there are cash flows in which the sign can
change more than once. In those cases, it is possible that more than one IRR can
exist.

EXAMPLE 13
Figure 12-14 shows an example that has two IRR calculations, each of which uses
a different “seed” value for the guess argument. As you can see, the formula pro-
duces different results.

342 Part III: Financial Formulas

4800-x Ch12.F 8/27/01 11:56 AM Page 342

Figure 12-14: A worksheet that demonstrates multiple IRRs

The IRR formula in cell B21 (which returns a result of 13.88%) is:

=IRR(B7:B16,B3)

The IRR formula in cell B22 (which returns a result of 7.04%) is:

=IRR(B7:B16,B4)

So which rate is correct? Unfortunately, both are correct. Figure 12-14 shows the
interest and running balance calculations for both of these IRR calculations. Both
show that the investor can pay and receive either rate of interest, and can secure a
(definitional) final balance of $0. Interestingly, the total interest received ($1,875) is
also the same.

But there’s a flaw. This example illustrates a “worst-case scenario” of the practi-
cal fallacy of many IRR calculations. NPV and IRR analyses make two assumptions:

� That we can actually get the assumed (for NPV) or calculated (for IRR)
interest on the outstanding balance.

� That interest does not vary according to whether the running balance is
positive or negative.

The first assumption may or may not be correct. It’s possible that balances could
be reinvested (but in forward projections in times of changing interest rates, this
might not be the case). But the real problem is with the second assumption. Banks
simply do not charge the same rate for borrowing that they pay for deposits.

Chapter 12: Discounting and Depreciation Financial Functions 343

4800-x Ch12.F 8/27/01 11:56 AM Page 343

EXAMPLE 14
The MIRR function attempts to resolve this multiple rate of return problem. The
example in this section demonstrates the use of the MIRR function.

Figure 12-15 shows a worksheet that uses the same data as in Example 13. Rates
are provided for borrowing (cell B3) and for deposits (cell B4). These are used as
arguments for the MIRR function (cell B19), and the result is 6.1279%, which is dif-
ferent from both of the IRR calculations:

=MIRR(B7:B16,B3,B4)

Figure 12-15: Multiple internal rate of return

The MIRR function works by separating out negative and positive flows, and
discounting them at the appropriate rate — the finance rate (for negative flows) and
the deposit rate (for positive flows).

We can replicate the MIRR algorithm by setting up a revised flow, which com-
pares the two NPVs (refer to Figure 12-15, columns C:E). The negative flow NPV is
placed at Period 0, and the positive flow is expressed as its equivalent future value
(by accumulating it at the deposit rate) at the end of the investment term. The IRR
of the revised flow is the same as the MIRR of the original (source) flow.

This example reveals that the methodology is suspect. In separating out negative
and positive flows, the MIRR implies that interest is charged on flows. Banks, of
course, charge interest on balances. An attempt at resolving the problem is shown
in the next example.

EXAMPLE 15
The MIRR function uses two rates: one for negative flows, and one for positive
flows. In reality, interest rates are charged on balances and not on flows. The exam-
ple in this section applies different rates on negative and positive balances. The
interest calculation uses an IF function to determine which rate to use.

344 Part III: Financial Formulas

4800-x Ch12.F 8/27/01 11:56 AM Page 344

When analyzing a project in which interest is paid and received, the end balance
must be 0. If it is greater than 0, then we have actually received more than the
stated deposit rate. If it is less than 0, then we still owe money and the finance rate
has been underestimated. This example assumes a fixed finance rate and calculates
the deposit rate needed to secure a 0 final balance.

In the Risk Rate Equivalent IRR method, the finance rate is fixed by the user. The
interest received on positive balances is initially “seeded” by the user. Interest on
negative balances is charged at the finance rate. Interest on positive balances is at
the seed rate. If the seed rate is the exact return, the final balance will be 0. Excel’s
Tools � Goal Seek command can be used to determine the exact rate by iterating
the interest rate on positive balances to derive a final balance of 0. This is the
method used in the example in Figure 12-16.

Figure 12-16: Accumulating balance approach for multiple IRRs

The revised flow, derived from changes to the running balance, should have an
IRR approaching zero. The Risk Rate Equivalent IRR may be compared with a com-
parator rate such as the Risk Free Rate of Return (traditionally 90-day Treasury
bills).

But what does this all mean? It means that if I pay 9% on negative balances, this
project gives me 8.579% rate on positive balances. The name “Risk Rate Equivalent
IRR” refers to the fact that it determines how the project compares with the return
on money invested in a bank or 90-day Treasury bills.

There is no requirement that the finance rate be fixed. A bank might do calcula-
tions in the same way, but fix the deposit rate and allow “Goal Seek” to calculate
the equivalent lending rate.

Chapter 12: Discounting and Depreciation Financial Functions 345

4800-x Ch12.F 8/27/01 11:56 AM Page 345

Using the FVSCHEDULE Function
The FVSCHEDULE function calculates the future value of an initial amount, after
applying a series of varying rates over time. Its syntax is:

FVSCHEDULE(principal,schedule)

The FVSCHEDULE function is available only when the Analysis ToolPak add-

in is installed.

EXAMPLE 16
This example, shown in Figure 12-17, uses the FVSCHEDULE function to calculate
an accumulated amount, together with other formulas that use the base data to
calculate an index and the geometric average growth rate.

This worksheet contains details of an index of share prices between 1997 and
2001, with 1997 being assigned an index of 100. This example can answer a ques-
tion such as: If we bought $1,000 of shares in 1997, what would they be worth in
2001, and what has been the average compound growth rate?

The share value, in cell B13, is $1,296.81. This is the equivalent of 6.714%
compounded on the initial investment of $1,000.

Figure 12-17: Using the FVSCHEDULE function

346 Part III: Financial Formulas

4800-x Ch12.F 8/27/01 11:56 AM Page 346

The Accumulated Amount (cell B13) is calculated with the following formula:

=FVSCHEDULE(B3,B7:B10)

Note that the FVSCHEDULE function does not follow the sign convention. It

returns a future value with the same sign as the present value. Also, be aware

that the growth rates must be the periodic effective rates for the time peri-

ods. In the example, the time period is in years, so the growth rates are in

annual terms.

The formula in cell B14 calculates the geometric average growth rate:

=RATE(4,0,-B3,B17,0)

Note that the formula uses a negative sign for the third argument (present value).
You can also calculate the geometric average rate of return by using a single for-

mula (cell B15):

=RATE(4,0,-B3, FVSCHEDULE(B3,B7:B10),0)

This example also demonstrates a convenient way to calculate an index based
on a schedule of growth rates (column C). This topic is covered in detail in the next
chapter.

Depreciation Calculations
This section covers depreciation, a critical element for many investment perfor-
mance analyses. Excel offers five functions to calculate depreciation of an asset
over time. Depreciating an asset places a value on the asset at a point in time, based
on the original value and its useful life. The function that you choose depends on
the type of depreciation method that you use.

Table 12-1 summarizes Excel’s depreciation functions and the arguments used
by each. For complete details, consult Excel’s online help system.

Chapter 12: Discounting and Depreciation Financial Functions 347

4800-x Ch12.F 8/27/01 11:56 AM Page 347

TABLE 12-1 EXCEL’S DEPRECIATION FUNCTIONS

Function Depreciation Method Arguments*

SLN Straight-line. The asset depreciates by the Cost, Salvage, Life
same amount each year of its life.

DB Declining balance. Computes depreciation at Cost, Salvage, Life,
a fixed rate. Period, [Month]

DDB Double-declining balance. Computes Cost, Salvage, Life,
depreciation at an accelerated rate. Period, Month, [Factor]
Depreciation is highest in the first period and
decreases in successive periods.

SYD Sum of the year’s digits. Allocates a large Cost, Salvage, Life, Period
depreciation in the earlier years of an asset’s
life.

VDB Variable-declining balance. Computes the Cost, Salvage, Life, Start
depreciation of an asset for any period Period, End Period,
(including partial periods) using the [Factor], [No Switch]
double-declining balance method or some
other method you specify.

*Arguments in brackets are optional.

The arguments for the depreciation functions are described as follows:

� Cost: Original cost of the asset.

� Salvage: Salvage cost of the asset after it has fully depreciated.

� Life: Number of periods over which the asset will depreciate.

� Period: Period in the Life for which the calculation is being made.

� Month: Number of months in the first year; if omitted, Excel uses 12.

� Factor: Rate at which the balance declines; if omitted, it is assumed to be
2 (that is, double-declining).

� Rate: Interest rate per period. If you make payments monthly, for exam-
ple, you must divide the annual interest rate by 12.

� No-switch: True or False. Specifies whether to switch to straight-line
depreciation when depreciation is greater than the declining balance
calculation.

348 Part III: Financial Formulas

4800-x Ch12.F 8/27/01 11:56 AM Page 348

Figure 12-18 shows depreciation calculations using the SLN, DB, DDB, and SYD
functions. The asset’s original cost, $10,000, is assumed to have a useful life of 10
years, with a salvage value of $1,000. The range labeled Depreciation Amount
shows the annual depreciation of the asset. The range labeled Value of Asset shows
the asset’s depreciated value over its life.

Figure 12-18: A comparison of four depreciation functions

The companion CD-ROM contains the workbook shown in Figure 12-18.

Figure 12-19 shows a chart that graphs the asset’s value. As you can see, the
SLN function produces a straight line; the other functions produce curved lines
because the depreciation is greater in the earlier years of the asset’s life.

The VBD function is useful if you need to calculate depreciation for multiple
periods (for example, years 2 and 3). Figure 12-20 shows a worksheet set up to cal-
culate depreciation using the VBD function. The formula in cell B12 is:

=VDB(B2,B4,B3,B6,B7,B8,B9)

Chapter 12: Discounting and Depreciation Financial Functions 349

4800-x Ch12.F 8/27/01 11:56 AM Page 349

Figure 12-19: This chart shows an asset’s value over time, using four
depreciation functions.

Figure 12-20: Using the VBD function to calculate
depreciation for multiple periods

The formula displays the depreciation for the first three years of an asset (start-
ing period of 0 and ending period of 3).

Summary
In this chapter, we have completed assembling the basic tools required for some
quite complex financial analyses.

The next chapter applies these tools and illustrates a number of very useful for-
mulas and construction techniques.

350 Part III: Financial Formulas

4800-x Ch12.F 8/27/01 11:56 AM Page 350

Chapter 13

Advanced Uses of Financial
Functions and Formulas

IN THIS CHAPTER

� Setting up dynamic schedules

� Creating amortization schedules

� Creating data tables

� Creating accumulation schedules

� Working with discounted cash flow

� Understanding credit card repayment calculations

� Analyzing investment performance

� Creating indices

THIS CHAPTER MAKES USE OF MUCH of the information contained in the two previ-
ous chapters. It contains useful examples of a wide variety of financial calculations.

Creating Dynamic Financial
Schedules
A financial schedule is a detailed listing of cash flows. Typically, each row repre-
sents a time period (such as a month), and the information for that time period is
displayed in the columns. As you are well aware, electronic spreadsheets are ideal
for creating financial schedules.

The most useful type of financial schedule is a dynamic schedule, which uses
input cells (that represent variables) to adjust itself. The best dynamic schedule is
one that allows maximum flexibility, and allows the user to change any of the key
variables used in the calculations. Obviously, you’ll want to avoid hard-coding val-
ues within formulas. Rather, the values should be stored in cells, which are refer-
enced by the formulas.

351

4800-x Ch13.F 8/27/01 11:56 AM Page 351

This task becomes a bit tricky when the schedule involves variable time
periods — for example, if the user inputs the term of the loan. In such a case, the
number of rows in the schedule will be variable.

Most dynamic schedules contain at least four basic sections:

� User inputs

� Intermediate calculations

� Summary output

� The schedule itself

These sections can be stored on a single worksheet, or in multiple worksheets. The
remainder of this chapter presents examples of some typical financial schedules.

Creating Amortization Schedules
In its simplest form, an amortization schedule tracks the payments (including inter-
est and principal components) and the loan balance for a particular loan. This sec-
tion presents several examples of amortization schedules.

A Simple Amortization Schedule
This example uses a simple loan to demonstrate the basic concepts involved in cre-
ating a dynamic schedule. Refer to the worksheet in Figure 13-1.

This example is available on the companion CD-ROM.

USER INPUT SECTION
The user input area is the range B4:B9. In this example, cell B6 contains a simple
data validation list, which allows either of two strings: Nominal or Effective. Cell
C7 contains a formula that uses a custom VBA function:

=FreqName(B7)

This formula returns a text string that describes the compounding frequency
entered into cell B7. All of the other cells in the user input section contain values.

352 Part III: Financial Formulas

4800-x Ch13.F 8/27/01 11:56 AM Page 352

Figure 13-1: A simple amortization schedule

INTERMEDIATE CALCULATIONS
In this example, formulas perform intermediate calculations in the range B12:B14.
Cell B12 uses custom VBA functions to calculate the periodic interest rate, using
cells from the input section:

=IF(B5=”Nominal”,Nomx_Effy(B4,B6,B7),Effx_Effy(B4,B6,B7))

Cell B13 contains a simple formula that calculates the number of holding peri-
ods (that is, the number of rows in the schedule):

=B9*B8

Cell B14 uses the PMT function to calculate the periodic payment:

=PMT(B12,B13,B4,0,0)

SUMMARY INFORMATION
In this example, the summary information section contains only one formula, in
cell B17. This formula calculates the total interest paid:

=SUM(C21:C381)

Chapter 13: Advanced Uses of Financial Functions and Formulas 353

4800-x Ch13.F 8/27/01 11:56 AM Page 353

Placing the summary information above the schedule itself eliminates the

need to scroll to the end of the worksheet.

THE SCHEDULE
The amortization schedule begins in row 20, which contains descriptive labels. The
standard approach is to hard code the “zero” period and the first time period, and
use formulas to derive the subsequent time periods. In this example, cells A21 and
A22 contain hard-coded values. Cells A23 downward, however, contain formulas.
The formula in cell A23 is:

=IF(A22<B13,IF(A22=0,0,A22+1),0)

This formula is copied down to cell A381. The formula increments the time
period number by 1, until the total number of time period is reached. When the
period exceeds the total number of periods, the formula returns 0. In this example,
this occurs in cell A30.

Each formula cell (columns B:F) in the schedule refers to the time period in its
corresponding row. If the time period is not 0, the formula returns a result.
Otherwise, it returns 0.

The formula in cell B22, which displays the periodic Payment, is:

=IF(A22=0,0,B14)

Interest is calculated by multiplying the preceding Balance by the interest rate
per period. Principal repaid is equal to the Payment amount less the Interest
amount. Finally, the new Balance is calculated by adding the (negative) principal
repayment to the preceding balance. The Interest formula in cell C22 is:

=IF(A22=0,0,-E21*B12)

The Principal is calculated using the following formula (cell D22):

=IF(A22=0,0,B22-C22)

The Balance (cell E2) is calculated using this formula:

=IF(A22=0,0,E21+D22)

354 Part III: Financial Formulas

4800-x Ch13.F 8/27/01 11:56 AM Page 354

These formulas are copied down as far as the reasonable maximum for the term
allows (in this example, they are copied down to row 381). Note that these formu-
las return a nonzero value only if column A contains a nonzero period.

To hide the 0’s in the unused rows, you can use the Tools � Options com-

mand, select the View tab, and remove the check from Zero values. Another

option is to use an empty string (“”) in place of the 0 in the formulas. Yet

another option is to use AutoFiltering to hide the unused rows.

Loan amortization schedules are self-checking. If everything is set up correctly,
the final balance at the end of the term is 0 (or very close to 0, given rounding
errors). Another check is to add the Principal components. The sum of these values
should equal the original loan amount.

A Detailed Amortization Schedule
The example in this section builds on the previous example. Figure 13-2 shows a
more detailed loan amortization schedule that examines the effects of loan set-up
costs, account fees, and tax relief on interest.

Figure 13-2: A detailed amortization schedule

Chapter 13: Advanced Uses of Financial Functions and Formulas 355

4800-x Ch13.F 8/27/01 11:56 AM Page 355

This example is available on the companion CD-ROM.

As you examine this example, keep the following points in mind:

� Effective borrowing is defined in Chapter 11 as the amount borrowed, less
the amount of set-up fees. Loan repayments are based on the loan
amount, but the effective cost is based on the effective borrowing.

� The payments are calculated using the PMT function, but actual payments
are adjusted by adding the amount of the account service fees.

� In this example, tax relief is allowed only on the interest component of
the loan. Tax laws may vary.

� The calculation of the effective equivalent of the nominal rate uses Excel’s
EFFECT function.

� The Effective Loan Cost Before Tax Relief (cell D17) is calculated by using
the IRR function on column H. The Effective Loan Cost After Tax Relief
(cell D18) is calculated by using the IRR function on column I.

� The schedule has the capacity for a total of 360 loan periods and an error
message will appear if this number is exceeded.

� The schedule is self-checking. The end balance is zero, and the total prin-
cipal repaid equals the original loan amount.

A Variable Loan Rate Amortization Schedule
The amortization schedules presented in this chapter have all been based on fixed-
rate loans. Many loans, however, are variable-rate loans and make use of varying
interest rates throughout the term. Typically, these loans are structured such that
payments vary along with the rate.

Figure 13-3 shows a dynamic amortization schedule for a variable-rate loan. The
user can enter loan rates in column B. The main problem, of course, is that the loan
rates are often based on an index, so the rates are not known in advance. In such a
case, this type of amortization schedule is based on assumptions about the future
rates.

The major change, relative to the previous example, is the use of a relatively
simple formula for calculating the loan repayments before fees (column C).

356 Part III: Financial Formulas

4800-x Ch13.F 8/27/01 11:56 AM Page 356

Figure 13-3: A variable-rate loan amortization schedule

This example is available on the companion CD ROM.

Loan payments (before fees) for each period are based upon a PMT function con-
structed as follows: The loan rate is based on the rate for the period (in column B),
divided by the loan repayment frequency. The loan term for each period is calcu-
lated as the Maximum loan term less the period number of the previous row. Thus,
the loan term recalculates for every repayment in the column. The borrowing (PV)
is the balance outstanding for the previous period. Again, we are recalculating the
borrowing for every repayment. The resulting formula for repayments for the first
period (cell C23) is:

=IF(A23=0,0,PMT(B23/E5,MAX(A22:A382)-A22,G22,0,0))

Cell B23 contains the interest rate for the period, and cell E5 contains the com-
pounding frequency.

Chapter 13: Advanced Uses of Financial Functions and Formulas 357

4800-x Ch13.F 8/27/01 11:56 AM Page 357

This schedule works because, at any time during the loan, the repayments

calculated must exactly pay off the outstanding balance before the end of

the term. If the borrower chose instead to vary the term of the loan rather

than vary repayments, this approach would need to be varied by adjusting

the term column with an IF function using the NPER function.

Summarizing Loan Options
Using a Data Table
Excel’s Data � Table command is a handy tool for summarizing various loan
options. This section describes how to create one-way and two-way data tables.

A workbook that demonstrates one- and two-way data tables is available

on the companion CD-ROM.

Creating a One-Way Data Table
A one-way data table shows the results of any number of calculations for different
values of a single input cell.

Figure 13-4 shows a one-way data table (in B10:I13) that displays three calcula-
tions (payment amount, total payments, and total interest) for a loan, using seven
interest rates ranging from 7.00% to 8.50%. In this example, the input cell is
cell B2.

Figure 13-4: Using a one-way data table to display three loan calculations for various
interest rates

358 Part III: Financial Formulas

4800-x Ch13.F 8/27/01 11:56 AM Page 358

To create this one-way data table, follow these steps:

1. Enter the formulas that return the results for use in the data table. In this
example, the formulas are in B6:B8.

2. Enter various values for a single input cell in successive columns. In this
example, the input value is interest rate, and the values for various inter-
est rates appear in C10:I10.

3. Create a reference to the formula cells in the column to the left of the
input values. In this example, the range B11:B13 contains simple formulas
that reference other cells. For example, B11 contains the following
formula:

=B6

4. Select the rectangular range that contains the entries from the previous
steps. In this example, select B10:I13.

5. Select the Data � Table command. Excel displays the Table dialog box
shown in Figure 13-5.

Figure 13-5: Excel’s Table dialog box

6. For the Row input cell field, specify the cell reference that corresponds to
the variable in your Data Table column header row. In this example, the
Row input cell is B2.

7. Leave the Column input cell field empty.

8. Click OK. Excel inserts an array formula that uses the TABLE function
with a single argument.

9. If you like, you can format the data table. For example, you might want to
apply shading to the row and column headers.

Note that the array formula is not entered into the entire range that you selected
in Step 4. The first column and first row of your selection are not changed.

Chapter 13: Advanced Uses of Financial Functions and Formulas 359

4800-x Ch13.F 8/27/01 11:57 AM Page 359

When you create a data table, the leftmost column of the data table (the col-

umn that contains the references entered in Step 3) contains the calculated

values for the input cell. In this example, those values are repeated in column

D.You might want to “hide” the values in column B by making the font color

the same color as the background.

Creating a Two-Way Data Table
A two-way data table shows the results of a single calculation for different values
of two input cells. Figure 13-6 shows a two-way data table (in B10:I16) that dis-
plays a calculation (payment amount) for a loan, using seven interest rates and six
loan amounts.

Figure 13-6: Using a two-way data table to display payment amounts for various loan
amounts and interest rates

To create this two-way data table, follow these steps:

1. Enter a formula that returns the results that will be used in the data table.
In this example, the formula is in cell B6. The formulas in B7:B8 are not
used.

2. Enter various values for the first input in successive columns. In this
example, the first input value is interest rate, and the values for various
interest rates appear in C10:I10.

3. Enter various values for the second input cell in successive rows, to the
left and below the input values for the first input. In this example, the
second input value is loan amount, and the values for various loan
amounts are in B11:B16.

360 Part III: Financial Formulas

4800-x Ch13.F 8/27/01 11:57 AM Page 360

4. Create a reference to the formula that will be calculated in the table. This
reference goes in the upper-left corner of the data table range. In this
example, cell B10 contains the following formula:

=B6

5. Select the rectangular range that contains the entries from the previous
steps. In this example, select B10:I16.

6. Select the Data � Table command. Excel displays the Table dialog box.

7. For the Row input cell field, specify the cell reference that corresponds to
the first input cell. In this example, the Row input cell is B2.

8. For the Column input cell field, specify the cell reference that corresponds
to the second input cell. In this example, the Row input cell is B1.

9. Click OK. Excel inserts an array formula that uses the TABLE function
with two arguments.

After you create the two-way data table, you can change the calculated cell by
changing the cell reference in the upper left cell of the data table. In this example,
you can change the formula in cell B10 to =B8 so the data table displays total inter-
est rather than payment amounts.

If you find that using data tables slows down the calculation of your work-

book, select Tools � Options. In the Options dialog box, click the Calculation

tab and change the calculation mode to Automatic except tables.

Accumulation Schedules
An accumulation schedule is similar to an amortization schedule, but the cash
flows can be both incoming and outgoing. You might use an accumulation sched-
ule to calculate details for an account with varying levels of regular contributions
and withdrawals, and occasional lump sum contributions and withdrawals. Figure
13-7 shows an example of such a schedule.

This example is available on the companion CD-ROM.

Chapter 13: Advanced Uses of Financial Functions and Formulas 361

4800-x Ch13.F 8/27/01 11:57 AM Page 361

Figure 13-7: An accumulation schedule

The most complicated part of this schedule deals with the rate of interest and
interest calculation. The user inputs the interest rate in annual terms in column F
and selects the type (cell C3), compounding frequency of the rate (cell C4), and the
schedule frequency (cell C5).

The interest calculation depends on the choice of rate and follows the standard
approach developed in Chapter 12 using custom VBA functions. The formula in cell
G10, for example, is:

=IF(C3=”Nominal”,Nomx_Effy(F10,C4,C5),Effx_Effy(F10,C4,C5)
)*H9

in this formula:

� Cell C3 is an absolute reference to the interest rate type (Nominal or
Effective).

� Cell F10 is the rate for the current period.

� Cell C4 is the absolute reference to the compounding frequency of the
rate.

� Cell C5 is an absolute reference to the frequency of the schedule.

� Cell H9 is the balance for the preceding period. The balance is the sum of
the preceding balance, payments, and withdrawals.

362 Part III: Financial Formulas

4800-x Ch13.F 8/27/01 11:57 AM Page 362

This example is available on the companion CD-ROM.

We have covered only 12 periods here, but the schedule can be continued for as
long as required.

Discounted Cash Flow Schedules
Discounted Cash Flow (DCF) is an investment analysis technique that uses either
NPV or IRR calculations on a schedule of positive and negative cash flows. The
NPV technique calculates the amount by which the discounted positive and nega-
tive flows vary. The IRR technique shows the amount of return per period of cash
flow.

DCF schedules can be very extensive, and include complex calculations of the
main elements. However, the basics are relatively simple and require little addi-
tional work as far as the formulas and functions are concerned.

Figure 13-8 shows a basic DCF schedule, with all of the essential elements,
including:

� A flow frequency (cell C3), which is vital in terms of interpreting the IRR.
The IRR (cell C7) is reported as a rate per period of flow and is used to
calculate an NPV.

� An Initial Value (cell C4), which is treated as an outgoing flow and is
negative.

� A Terminal Value (cell C5), which is treated as a receipt and is positive.

� A Discount Rate (cell C10) for calculating the NPV and a basis for quoting
that discount rate.

� The schedule itself, which details Capital, Income, and Outgoings. These
are summed to yield the Cash Flow per period.

This example is available on the companion CD-ROM.

Chapter 13: Advanced Uses of Financial Functions and Formulas 363

4800-x Ch13.F 8/27/01 11:57 AM Page 363

Figure 13-8: A discounted cash flow schedule

In this example, the flow frequency is quarterly. Therefore, the IRR is a quarterly
effective IRR. To convert to the annual effective equivalent, we use the custom VBA
function Effx_AnnEff. The formula in cell C8 is:

=Effx_AnnEff(C7,C3)

A discount rate is required for NPV calculations, and it is specified as an annual
effective rate in cell C10. This must be converted for use in the NPV function. The
formula in cell C11 is:

=NPV(AnnEff_Effx(C10,C3),E15:E27)*(1+AnnEff_Effx(C10,C3))

In this formula, cell C10 contains the Discount Rate, cell C3 contains the Flow
Frequency, and the cash flow range (including the Time 0 flow) is E15:E27.

Recall from Chapter 12 that the following formula is used to calculate an NPV,
where an initial flow is present:

=NPV(Rate,Range)*(1+Rate)

Having calculated the NPV, it is then possible to calculate a derived initial value
based on the discount rate of 11%. This initial value is derived by subtracting the
calculated NPV from the existing initial value of $1 million.

This example has stripped DCF down to the bare essentials. In practice, all of
those essentials might be subject to many different calculations.

364 Part III: Financial Formulas

4800-x Ch13.F 8/27/01 11:57 AM Page 364

Credit Card Calculations
Chapter 11 described how to use the NPER function to calculate the time required to
pay off a loan based on a specified payment amount. Examples in this chapter use
amortization schedules that, again, involve calculations based on a fixed payment.
Even when variations of interest rate are allowed, the recalculated payments were
based on a previously fixed loan term. With credit card calculations, the payment
varies according to a more complex set of criteria.

Credit card calculations represent several nonstandard problems. Excel’s finan-
cial functions (PV, FV, RATE, and NPER) require that the regular payments are at a
single level. In addition, the PMT function returns a single level of payments. With
IRR and NPV analysis, the user inserts the varying payments into a cash flow.

Credit card companies calculate payments based on the following relatively
standard set of criteria:

� A minimum payment is required. For example, a credit card account
might require a minimum payment of $25.

� The payment must be at least equal to a base percentage of the outstand-
ing debt. Usually the payment is a percentage of the outstanding balance,
but not less than a specified amount.

� The payment is rounded, usually to the nearest $0.05.

� Interest is invariably quoted at a given rate per month.

Figure 13-9 shows a worksheet set up to calculate credit card payments.

This example is available on the companion CD-ROM.

The formulas for the Payment and Interest are rather complicated — just like the
terms of a credit card. This example uses a minimum payment amount of $125,
which results in a short term. If you put real data in from a credit card statement
(for example, a $25 minimum payment), you may be surprised at how long it takes
to repay the whole balance if you make only minimum repayments (even with no
further borrowing).

Of course, things get much more complicated when additional charges are made.
In such a case, the formulas would need to account for “grace periods” for pur-
chases (but not cash withdrawals). A further complication is that interest is calcu-
lated on the daily outstanding balance at the daily effective equivalent of the
quoted rate.

Chapter 13: Advanced Uses of Financial Functions and Formulas 365

4800-x Ch13.F 8/27/01 11:57 AM Page 365

Figure 13-9: Calculating a credit card payment schedule

XIRR and XNPV Functions
As discussed in Chapter 12, the IRR and NPV functions assume regular periodic
cash flows. In some situations, however, the cash flows are not regular. In such a
case, you can use the XIRR and XNPV functions. These functions calculate IRRs
and NPVs of a cash flow against a schedule of dates, and they use a daily effective
equivalent of a given or (in the case of XNPV) calculated annual effective rate.

The XIRR and XNPV functions are available only when the Analysis ToolPak

add-in is installed.

The examples in this section are available on the companion CD-ROM.

366 Part III: Financial Formulas

4800-x Ch13.F 8/27/01 11:57 AM Page 366

The XIRR function returns the annual effective rate of return and has the fol-
lowing syntax (arguments in bold are required):

XIRR(values,dates,guess)

The syntax for the XNPV function is (all arguments are required):

XNPV(rate,values,dates)

Figure 13-10 shows a worksheet set up with a cash flow against a schedule of
dates.

Figure 13-10: Using the XIRR function

The formula in cell B15 is:

=XIRR(B4:B13,A4:A13)

Note that the XIRR is reported as an annual effective rate, which is based on a
365-day year assumption. The schedule of dates must be in sequence from the ear-
liest to the latest, and there must be no repeated dates.

The XIRR calculation can be checked by using the XNPV function, discounting
at the calculated XIRR. The discount rate must be input as the annual effective rate.

The formula in cell B16, which returns 0, is:

=XNPV(B15,B4:B13,A4:A13)

Figure 13-11 demonstrates the XNPV function, and shows a worksheet set up
with a cash flow against a schedule of dates.

Chapter 13: Advanced Uses of Financial Functions and Formulas 367

4800-x Ch13.F 8/27/01 11:57 AM Page 367

Figure 13-11: Using the XNPV function

The interest rate type (cell B4) uses data validation to allow the user to select
either Nominal or Effective. The conversion of the rate to the annual effective rate
involves a custom VBA function. The formula in cell B7 is:

=IF(B4=”Nominal”,Nomx_AnnEff(B3,B5),Effx_AnnEff(B3,B5))

If a Nominal rate is specified, it is converted to the annual effective rate required
by the XNPV function. If an Effective rate is specified, it will be converted to the
annual effective rate.

Unlike the NPV function, there is no need to multiply the XNPV by the usual

(1+DiscountRate). It seems that Excel uses the standard definition of NPV

(see Chapter 12). However, with daily effective rates being used, the differ-

ence is very small.

The XNPV calculation is checked by setting up a revised cash flow (in column C)
with the reversed sign XNPV being added to the first cash flow. The revised flow
produces an XNPV of 0 using the same discount rate and the XIRR returns the dis-
count rate used to calculate the original XNPV.

368 Part III: Financial Formulas

4800-x Ch13.F 8/27/01 11:57 AM Page 368

The XIRR function has a problem when using multiple internal rates of

return. In such a case, an XIRR of 0 is reported, even though the XNPV at that

rate is not 0. Accordingly, where multiple IRRs are possible (if the sign

changes more than once), it is essential to check the XIRR with an XNPV

function. If the result is not 0, then an answer may be obtained by calculat-

ing the Present Values of each cash flow using a Goal Seek derived discount

rate that produces a sum of the present values equaling 0. Fortunately, the

problem is very rare even for changing sign cash flows and appears only to

arise where there is a cash flow at the first date in the schedule.

Variable Rate Analysis
Variable-rate loan amortization schedules were covered earlier in this chapter.
Variable rates can also be applied to other types of cash flows.

Figure 13-12 shows a worksheet set up to analyze cash flows associated with a
building project. No significantly new formula or function concepts are introduced
here. However, the worksheet formulas make extensive use of IF functions to build
the schedule. The only value inserted into the schedule itself is the varying finance
rates (column E).

Figure 13-12: Variable rate analysis

Chapter 13: Advanced Uses of Financial Functions and Formulas 369

4800-x Ch13.F 8/27/01 11:57 AM Page 369

This example is available on the companion CD-ROM.

The project in this example is very short (for illustration purposes). Following
are some points to keep in mind:

� Formulas in column B (Purchase Sale) use an IF function that inserts the
sale proceeds at the end of the development.

� Formulas in column C (Building Costs) use an IF function to insert a fixed
proportion of the building costs during the specified building period.

� Formulas in column D (Debt) calculate the debt change by applying the
debt percentage to the amount of columns B and C.

� Column E (Finance Rate) contains the user-specified variations of interest
on debt.

� Formulas in column F (Interest) calculate the interest on outstanding debt
at the end of the previous period.

� Formulas in column G (Debt Balance) calculate the rolled-up debt by
adding the previous debt, further drawing, and interest.

� Formulas in column H (Equity) sum the equity position. These formulas
use an IF function to adjust the receipt of sale proceeds by the amount of
the debt that is fully repaid at the end.

� The formula in cell D14 uses the data in column H to calculate the return
on equity.

This is a highly simplified analysis of a project, but it illustrates all of the basic
principles involved in far more complex cases.

Creating Indices
The final topic in this chapter demonstrates how to create an index from schedules
of changing values. An index is commonly used to compare how data changes over
time. An index allows easy cross-comparison between different periods and
between different data sets.

For example, consumer price changes are recorded in an index in which the ini-
tial “shopping basket” is based to an index of 100. All subsequent changes are made
relative to that base. Therefore, any two points show the cumulative effect of
increases. Using indices also makes it easier to compare data that use vastly differ-
ent scales — such as comparing a consumer price index with a wage index.

370 Part III: Financial Formulas

4800-x Ch13.F 8/27/01 11:57 AM Page 370

Perhaps the best approach is to use a two-step illustration:

� First, convert the second and subsequent data in the series to percentage
increases from the previous item.

� Set up a column where the first entry is 100 and successive entries
increase by the percentage increases previously determined.

Although a two-step approach is not required, a major advantage is that the cal-
culation of the percentage changes is often very useful data in its own right.

The example, shown in Figure 13-13, involves rentals per square foot of differ-
ent types of space between 1995 and 2001. The raw data is contained in the first
table. This data is converted to percentage changes in the second table, and this
information is used to create the indices in the third table.

This example is available on the companion CD-ROM.

Figure 13-13: Creating an index from growth data

Chapter 13: Advanced Uses of Financial Functions and Formulas 371

4800-x Ch13.F 8/27/01 11:57 AM Page 371

The formulas for calculating the growth rates (in the second table) is simple. For
example, the formula in cell C14 is:

=(C5-B5)/C5

This formula returns –0.92%, which represents the change in retail space (from
$89 to $88). This formula is copied to the other cells in the table (range C14:H18).
This information is useful, but it is difficult to track overall performance between
periods of more than a year. That’s why indices are required.

Calculating the indices in the third table is also straightforward. The 1995 index
is set at 100 (column B) and is the base for the indices. The formula in cell C23 is:

=B23*(1+C14)

This formula is copied to the other cells in the table (range C23:H27).
These indices make it possible to compare performance of, say, offices between

any two years, and to track the relative performance over any two years of any two
types of property. So it is clear, for example, that retail property rental grew faster
than office rentals between 1995 and 2001.

The average figures (column I) are calculated using the RATE function. This
results in an annual growth rate over the entire period.

Summary
This chapter provided examples of common financial analyses. The examples

make use of the basic concepts of time value of money and equivalent interest
rates.

This concludes the Financial Formulas section of the book. The next section cov-
ers a variety of miscellaneous calculations.

372 Part III: Financial Formulas

4800-x Ch13.F 8/27/01 11:57 AM Page 372

Array Formulas
CHAPTER 14

Introducing Arrays

CHAPTER 15
Performing Magic with Array Formulas

Part IV

4800-x PO4.F 8/27/01 11:57 AM Page 373

4800-x PO4.F 8/27/01 11:57 AM Page 374

Chapter 14

Introducing Arrays
IN THIS CHAPTER

� The definition of an array and an array formula

� One-dimensional vs. two-dimensional arrays

� How to work with array constants

� Techniques for working with array formulas

� Examples of multicell array formulas

� Examples of array formulas that occupy a single cell

ONE OF EXCEL’S MOST INTERESTING (and most powerful) features is its ability to work
with arrays in a formula. When you understand this concept, you’ll be able to cre-
ate elegant formulas that appear to perform magic. This chapter introduces the con-
cept of arrays, and is required reading for anyone who wants to become a master of
Excel formulas. Chapter 15 continues with lots of useful examples.

Introducing Array Formulas
If you do any computer programming, you’ve probably been exposed to the con-
cept of an array. An array is simply a collection of items operated on collectively or
individually. In Excel, an array can be one-dimensional or two-dimensional. These
dimensions correspond to rows and columns. For example, a one-dimensional array
can be stored in a range that consists of one row (a horizontal array) or one column
(a vertical array). A two-dimensional array can be stored in a rectangular range of
cells. Excel doesn’t support three-dimensional arrays (but its VBA programming
language does).

But, as you’ll see, arrays need not be stored in cells. You can also work with
arrays that exist only in Excel’s memory. You can then use an array formula to
manipulate this information and return a result. An array formula can occupy mul-
tiple cells, or reside in a single cell.

This section presents two array formula examples: an array formula that occu-
pies multiple cells, and another array formula that occupies only one cell.

375

4800-x Ch14.F 8/27/01 11:57 AM Page 375

A Multicell Array Formula
Figure 14-1 shows a simple worksheet set up to calculate product sales. Normally,
you would calculate the value in column D (total sales per product) with a formula
such as the one that follows, and then copy this formula down the column.

=B2*C2

After copying the formula, the worksheet contains six formulas in column D.

Figure 14-1: The range D2:D7 contains a single array formula.

Another alternative uses a single formula (an array formula) to calculate all six
values in D2:D7. This single formula occupies six cells and returns an array of six
values.

To create a single array formula to perform the calculations, follow these steps:

1. Select a range to hold the results. In this case, the range is D2:D7.

2. Enter the following formula:

=B2:B7*C2:C7

3. Normally, you press Enter to enter a formula. Because this is an array for-
mula, however, press Ctrl+Shift+Enter.

The formula is entered into all six of the selected cells. If you examine the for-
mula bar, you’ll see the following:

{=B2:B7*C2:C7}

Excel places brackets around the formula to indicate that it’s an array formula.
This formula performs its calculations and returns a six-item array. The array

formula actually works with two other arrays, both of which happen to be stored in
ranges. The values for the first array are stored in B2:B7, and the values for the sec-
ond array are stored in C2:C7.

376 Part IV: Array Formulas

4800-x Ch14.F 8/27/01 11:57 AM Page 376

Because it’s not possible to display more than one value in a single cell, six cells
are required to display the resulting array. That explains why you selected six cells
before you entered the array formula.

This array formula, of course, returns exactly the same values as these six nor-
mal formulas entered into individual cells in D2:D7:

=B2*C2
=B3*C3
=B4*C4
=B5*C5
=B6*C6
=B7*C7

Using a single array formula rather than individual formulas does offer a few
advantages:

� It’s a good way of ensuring that all formulas in a range are identical.

� Using a multicell array formula makes it less likely you will overwrite a
formula accidentally. You cannot change one cell in a multicell array
formula.

� Using a multicell array formula will almost certainly prevent novices from
tampering with your formulas.

A Single-Cell Array Formula
Now it’s time to take a look at a single-cell array formula. Refer again to Figure
14-1. The following array formula occupies a single cell:

{=SUM(B2:B7*C2:C7)}

You can enter this formula into any cell. But when you enter this formula, make
sure you use Ctrl+Shift+Enter (and don’t type the curly brackets).

This array formula returns the sum of the total product sales. It’s important to
understand that this formula does not rely on the information in column D. In fact,
you can delete column D and the formula will still work.

This formula works with two arrays, both of which are stored in cells. The first
array is stored in B2:B7, and the second array is stored in C2:C7. The formula mul-
tiplies the corresponding values in these two arrays and creates a new array (which
exists only in memory). The SUM function then operates on this new array and
returns the sum of its values.

Chapter 14: Introducing Arrays 377

4800-x Ch14.F 8/27/01 11:57 AM Page 377

Creation of an Array Constant
The examples in the previous section used arrays stored in worksheet ranges. The
examples in this section demonstrate an important concept: An array does not have
to be stored in a range of cells. This type of array, which is stored in memory, is
referred to as an array constant.

You create an array constant by listing its items and surrounding them with
brackets. Here’s an example of a five-item vertical array constant:

{1,0,1,0,1}

The following formula uses the SUM function, with the preceding array constant
as its argument. The formula returns the sum of the values in the array (which is 3).
Notice that this formula uses an array, but it is not an array formula. Therefore, you
do not use Ctrl+Shift+Enter to enter the formula.

=SUM({1,0,1,0,1})

When you specify an array directly (as shown previously), you must provide

the brackets around the array elements. When you enter an array formula,

on the other hand, you do not supply the brackets.

At this point, you probably don’t see any advantage to using an array constant.
The formula that follows, for example, returns the same result as the previous
formula:

=SUM(1,0,1,0,1)

Keep reading, and the advantages will become apparent.
Following is a formula that uses two array constants:

=SUM({1,2,3,4}*{5,6,7,8})

This formula creates a new array (in memory) that consists of the product of the
corresponding elements in the two arrays. The new array is:

{5,12,21,32}

This new array is then used as an argument for the SUM function, which returns
the result (70). The formula is equivalent to the following formula, which doesn’t
use arrays:

=SUM(1*5,2*6,3*7,4*8)

378 Part IV: Array Formulas

4800-x Ch14.F 8/27/01 11:57 AM Page 378

A formula can work with both an array constant and an array stored in a range.
The following formula, for example, returns the sum of the values in A1:D1, each
multiplied by the corresponding element in the array constant:

=SUM((A1:D1*{1,2,3,4}))

This formula is equivalent to:

=SUM(A1*1,B1*2,C1*3,D1*4)

Array Constant Elements
An array constant can contain numbers, text, logical values (TRUE or FALSE), and
even error values such as #N/A. Numbers can be in integer, decimal, or scientific
format. You must enclose text in double quotation marks (for example, “Tuesday”).
You can use different types of values in the same array constant, as in this
example:

{1,2,3,TRUE,FALSE,TRUE,”Moe”,”Larry”,”Curly”}

An array constant cannot contain formulas, functions, or other arrays. Numeric
values cannot contain dollar signs, commas, parentheses, or percent signs. For
example, the following is an invalid array constant:

{SQRT(32),$56.32,12.5%}

Understanding the Dimensions
of an Array
As stated previously, an array can be either one-dimensional or two-dimensional. A
one-dimensional array’s orientation can be either vertical or horizontal.

One-Dimensional Horizontal Arrays
The elements in a one-dimensional horizontal array are separated by commas. The
following example is a one-dimensional horizontal array constant:

{1,2,3,4,5}

To display this array in a range requires five consecutive cells in a row. To enter
this array into a range, select a range of cells that consists of one row and five
columns. Then enter ={1,2,3,4,5} and press Ctrl+Shift+Enter.

Chapter 14: Introducing Arrays 379

4800-x Ch14.F 8/27/01 11:57 AM Page 379

If you enter this array into a horizontal range that consists of more than five
cells, the extra cells will contain #N/A (which denotes unavailable values). If you
enter this array into a vertical range of cells, only the first item (1) will appear in
each cell.

The following example is another horizontal array; it has seven elements and is
made up of text strings:

{“Sun”,”Mon”,”Tue”,”Wed”,”Thu”,”Fri”,”Sat”}

To enter this array, select seven cells in a row, and type the following (followed
by Ctrl+Shift+Enter):

={“Sun”,”Mon”,”Tue”,”Wed”,”Thu”,”Fri”,”Sat”}

One-Dimensional Vertical Arrays
The elements in a one-dimensional vertical array are separated by semicolons. The
following is a six-element vertical array constant:

{10;20;30;40;50;60}

Displaying this array in a range requires six cells in a column. To enter this array
into a range, select a range of cells that consists of six rows and one column. Then
enter the following formula, followed by Ctrl+Shift+Enter:

={10;20;30;40;50;60}

The following is another example of a vertical array; this one has four elements:

{“Widgets”;”Sprockets”;”Do-Dads”;”Thing-A-Majigs”}

Two-Dimensional Arrays
A two-dimensional array uses commas to separate its horizontal elements, and
semicolons to separate its vertical elements. The following example shows a 3 × 4
array constant:

{1,2,3,4;5,6,7,8;9,10,11,12}

To display this array in a range requires 12 cells. To enter this array into a range,
select a range of cells that consists of three rows and four columns. Then type the
following formula, followed by Ctrl+Shift+Enter:

={1,2,3,4;5,6,7,8;9,10,11,12}

380 Part IV: Array Formulas

4800-x Ch14.F 8/27/01 11:57 AM Page 380

Figure 14-2 shows how this array appears when entered into a range (in this
case, B3:E5).

Figure 14-2: A 3 × 4 array, entered into a range of cells

If you enter an array into a range that has more cells than array elements, Excel
displays #N/A in the extra cells. Figure 14-3 shows a 3 × 4 array entered into a 10
× 5 cell range.

Figure 14-3: A 3 × 4 array, entered into a 10 × 5 cell range

Each row of a two-dimensional array must contain the same number of items.
The array that follows, for example, is not valid because the third row contains
only three items:

{1,2,3,4;5,6,7,8;9,10,11}

Excel will not allow you to enter a formula that contains an invalid array.

Naming Array Constants
You can create an array constant, give it a name, and then use this named array in
a formula. Technically, a named array is a named formula.

Chapter 14: Introducing Arrays 381

4800-x Ch14.F 8/27/01 11:57 AM Page 381

Chapter 3 covers the topic of names and named formulas in detail.

Figure 14-4 shows a named array being created using the Define Name dialog
box. The name of the array is DayNames, and it refers to the following array
constant:

{“Sun”,”Mon”,”Tue”,”Wed”,”Thu”,”Fri”,”Sat”}

Figure 14-4: Creating a named array constant

Notice that, in the Define Name dialog box, the array is defined using a leading
equal sign (=). Without this equal sign, the array is interpreted as a text string
rather than an array. Also, you must type the curly brackets when defining a named
array constant; Excel does not enter them for you.

After creating this named array, you can use it in a formula. Figure 14-5 shows
a worksheet that contains a single array formula entered into the range A1:G1. The
formula is:

{=DayNames}

Figure 14-5: Using a named array in an array formula

Because commas separate the array elements, the array has a horizontal orienta-
tion. Use semicolons to create a vertical array. Or you can use Excel’s TRANSPOSE
function to insert a horizontal array into a vertical range of cells (see “Transposing

382 Part IV: Array Formulas

4800-x Ch14.F 8/27/01 11:57 AM Page 382

an Array,” later in this chapter). The following array formula, which is entered into
a seven-cell vertical range, uses the TRANSPOSE function:

{=TRANSPOSE(DayNames)}

You also can access individual elements from the array by using Excel’s INDEX
function. The following formula, for example, returns Wed, the fourth item in the
DayNames array:

=INDEX(DayNames,4)

Working with Array Formulas
This section deals with the mechanics of selecting cells that contain arrays, and
entering and editing array formulas. These procedures differ a bit from working
with ordinary ranges and formulas.

Entering an Array Formula
When you enter an array formula into a cell or range, you must follow a special
procedure so Excel knows that you want an array formula rather than a normal for-
mula. You enter a normal formula into a cell by pressing Enter. You enter an array
formula into one or more cells by pressing Ctrl+Shift+Enter.

You can easily identify an array formula, because the formula is enclosed in
curly brackets in the formula bar. The following formula, for example, is an array
formula:

{=SUM(LEN(A1:A5))}

Don’t enter the curly brackets when you create an array formula; Excel inserts
them for you. If the result of an array formula consists of more than one value, you
must select all of the cells in the results range before you enter the formula. If you
fail to do this, only the first element of the result is returned.

Selecting an Array Formula Range
You can select the cells that contain a multicell array formula manually, by using
the normal cell selection procedures. Or you can use either of the following
methods:

� Activate any cell in the array formula range. Select Edit � Go To (or press
F5), click the Special button, and then choose the Current Array option.
Click OK to close the dialog box.

Chapter 14: Introducing Arrays 383

4800-x Ch14.F 8/27/01 11:57 AM Page 383

� Activate any cell in the array formula range and press Ctrl+/ to select the
entire array.

Editing an Array Formula
If an array formula occupies multiple cells, you must edit the entire range as
though it is a single cell. The key point to remember is that you can’t change just
one element of an array formula. If you attempt to do so, Excel displays the mes-
sages shown in Figure 14-6.

Figure 14-6: Excel’s warning message reminds you that
you can’t edit just one cell of a multicell array formula.

The following rules apply to multicell array formulas. If you try to do any of
these things, Excel lets you know about it.

� You can’t change the contents of any individual cell that makes up an
array formula.

� You can’t move cells that make up part of an array formula (but you can
move an entire array formula).

� You can’t delete cells that form part of an array formula (but you can
delete an entire array).

� You can’t insert new cells into an array range. This rule includes inserting
rows or columns that would add new cells to an array range.

To edit an array formula, select all the cells in the array range and activate the
formula bar as usual (click it or press F2). Excel removes the brackets from the for-
mula while you edit it. Edit the formula and then press Ctrl+Shift+Enter to enter the
changes. All of the cells in the array now reflect your editing changes.

If you accidentally press Ctrl+Enter (instead of Ctrl+Shift+Enter) after editing

an array formula, the formula will be entered into each selected cell, but it

will no longer be an array formula.

384 Part IV: Array Formulas

4800-x Ch14.F 8/27/01 11:57 AM Page 384

Although you can’t change any individual cell that makes up a multicell array
formula, you can apply formatting to the entire array or to only parts of it.

Expanding or Contracting a Multicell
Array Formula
Often, you may need to expand a multicell array formula (to include more cells) or
contract it (to include fewer cells). Doing so requires a few steps:

1. Select the entire range that contains the array formula.

2. Press F2 to enter Edit mode.

3. Press Ctrl+Enter. This step enters an identical (non-array) formula into
each selected cell.

4. Change your range selection to include additional or fewer cells.

5. Press F2.

6. Press Ctrl+Shift+Enter.

Chapter 14: Introducing Arrays 385

Array Formulas: The Downside
If you’ve followed along in this chapter, you probably understand some of the
advantages of using array formulas. The main advantage, of course, is that an array
formula enables you to perform otherwise impossible calculations. As you gain more
experience with arrays, you undoubtedly will discover some disadvantages.

Array formulas are one of the least understood features of Excel. Consequently, if you
plan to share a workbook with someone who may need to make modifications, you
should probably avoid using array formulas. Encountering an array formula when you
don’t know what it is can be very confusing.

You might also discover that you can easily forget to enter an array formula by
pressing Ctrl+Shift+Enter. If you edit an existing array, you still must use these keys to
complete the edits. Except for logical errors, this is probably the most common
problem that users have with array formulas. If you press Enter by mistake after
editing an array formula, just press F2 to get back into Edit mode, and then press
Ctrl+Shift+Enter.

Another potential problem with array formulas is that they can slow your worksheet’s
recalculations, especially if you use very large arrays. On a faster system, this may not
be a problem. But, conversely, using an array formula is almost always faster than
using a custom VBA function.

4800-x Ch14.F 8/27/01 11:57 AM Page 385

Using Multicell Array Formulas
This section contains examples that demonstrate additional features of multicell
array formulas (array formulas that are entered into a range of cells). These features
include creating arrays from values, performing operations, using functions, trans-
posing arrays, and generating consecutive integers.

Creating an Array from Values in a Range
The following array formula creates an array from a range of cells. Figure 14-7
shows a workbook with some data entered into A1:C4. The range D8:F11 contains
a single array formula:

{=A1:C4}

Figure 14-7: Creating an array from a range

The array in D8:F11 is linked to the range A1:C4. Change any value in A1:C4
and the corresponding cell in D8:F11 reflects that change.

Creating an Array Constant from
Values in a Range
In the previous example, the array formula in D8:F11 essentially created a link to
the cells in A1:C4. It’s possible to “sever” this link and create an array constant
made up of the values in A1:C4.

To do so, select the cells that contain the array formula (the range D8:F11, in this
example). Then press F2 to edit the array formula. Press F9 to convert the cell ref-
erences to values. Press Ctrl+Shift+Enter to reenter the array formula (which now
uses an array constant). The array constant is:

{1,”dog”,3;4,5,”cat”;7,8,9;”monkey”,11,12}

Figure 14-8 shows how this looks in the formula bar.

386 Part IV: Array Formulas

4800-x Ch14.F 8/27/01 11:57 AM Page 386

Figure 14-8: After you’ve pressed F9, the formula bar displays the
array constant.

Performing Operations on an Array
So far, most of the examples in this chapter simply entered arrays into ranges. The
following array formula creates a rectangular array and multiplies each array ele-
ment by 2:

{={1,2,3,4;5,6,7,8;9,10,11,12}*2}

Figure 14-9 shows the result when you enter this formula into a range:

Figure 14-9: Performing a mathematical operation on an array

The following array formula multiplies each array element by itself. Figure
14-10 shows the result when you enter this formula into a range:

{={1,2,3,4;5,6,7,8;9,10,11,12}*{1,2,3,4;5,6,7,8;9,10,11,12}}

Chapter 14: Introducing Arrays 387

4800-x Ch14.F 8/27/01 11:57 AM Page 387

Figure 14-10: Multiplying each array element by itself

The following array formula is a simpler way of obtaining the same result:

{={1,2,3,4;5,6,7,8;9,10,11,12}^2}

If the array is stored in a range (such as A1:C4), the array formula returns the
square of each value in the range, as follows:

{=A1:C4^2}

Using Functions with an Array
As you might expect, you also can use functions with an array. The following array
formula, which you can enter into a 10-cell vertical range, calculates the square
root of each array element in the array constant:

{=SQRT({1;2;3;4;5;6;7;8;9;10})}

If the array is stored in a range, an array formula such as the one that follows
returns the square root of each value in the range:

{=SQRT(A1:A10)}

Transposing an Array
When you transpose an array, you essentially convert rows to columns and
columns to rows. In other words, you can convert a horizontal array to a vertical
array (and vice versa). Use Excel’s TRANSPOSE function to transpose an array.

Consider the following one-dimensional horizontal array constant:

{1,2,3,4,5}

You can enter this array into a vertical range of cells by using the TRANSPOSE
function. To do so, select a range of five cells that occupy five rows and one col-
umn. Then enter the following formula and press Ctrl+Shift+Enter:

=TRANSPOSE({1,2,3,4,5})

388 Part IV: Array Formulas

4800-x Ch14.F 8/27/01 11:57 AM Page 388

The horizontal array is transposed, and the array elements appear in the vertical
range.

Transposing a two-dimensional array works in a similar manner. Figure 14-11
shows a two-dimensional array entered into a range normally, and entered into a
range using the TRANSPOSE function. The formula in A1:D3 is:

{={1,2,3,4;5,6,7,8;9,10,11,12}}

Figure 14-11: Using the TRANSPOSE function to transpose
a rectangular array

The formula in A6:C9 is:

{=TRANSPOSE({1,2,3,4;5,6,7,8;9,10,11,12})}

You can, of course, use the TRANSPOSE function to transpose an array stored in
a range. The following formula, for example, uses an array stored in A1:C4 (four
rows, three columns). You can enter this array formula into a range that consists of
three rows and four columns.

{=TRANSPOSE(A1:C4)}

Generating an Array of Consecutive Integers
As you will see in Chapter 15, it’s often useful to generate an array of consecutive
integers for use in an array formula. Excel’s ROW function, which returns a row
number, is ideal for this. Consider the array formula shown here, entered into a ver-
tical range of 12 cells:

{=ROW(1:12)}

This formula generates a 12-element array that contains integers from 1 to 12.
To demonstrate, select a range that consists of 12 rows and one column, and enter
the array formula into the range. You’ll find that the range is filled with 12 consec-
utive integers (see Figure 14-12).

Chapter 14: Introducing Arrays 389

4800-x Ch14.F 8/27/01 11:57 AM Page 389

Figure 14-12: Using an array formula to generate
consecutive integers

If you want to generate an array of consecutive integers, a formula like the one
shown previously is good — but not perfect. To see the problem, insert a new row
above the range that contains the array formula. You’ll find that Excel adjusts the
row references so the array formula now reads:

{=ROW(2:13)}

The formula that originally generated integers from 1 to 12, now generates inte-
gers from 2 to 13.

For a better solution, use this formula:

{=ROW(INDIRECT(“1:12”))}

This formula uses the INDIRECT function, which takes a text string as its argu-
ment. Excel does not adjust the references contained in the argument for the INDI-
RECT function. Therefore, this array formula always returns integers from 1 to 12.

Chapter 15 contains several examples that use the technique for generat-

ing consecutive integers.

Using Single-Cell Array Formulas
The examples in the previous section all used a multicell array formula — a single
array formula entered into a range of cells. The real power of using arrays becomes
apparent when you use single-cell array formulas. This section contains examples
of array formulas that occupy a single cell.

390 Part IV: Array Formulas

4800-x Ch14.F 8/27/01 11:57 AM Page 390

Counting Characters in a Range
Suppose you have a range of cells that contains text entries (see Figure 14-13). If
you need to get a count of the total number of characters in that range, the “tradi-
tional” method involves creating a formula like the one that follows and copying it
down the column:

=LEN(A1)

Figure 14-13: A single array formula can count the number
of characters in a range of text.

Then, you use a SUM formula to calculate the sum of the values returned by the
intermediate formulas.

The following array formula does the job without using any intermediate
formulas:

{=SUM(LEN(A1:A14))}

The array formula uses the LEN function to create a new array (in memory) that
consists of the number of characters in each cell of the range. In this case, the new
array is:

Chapter 14: Introducing Arrays 391

Worksheet Functions That Return an Array
Several of Excel’s worksheet functions use arrays; you must enter a formula that uses
one of these functions into multiple cells as an array formula. These functions are as
follows: FORECAST, FREQUENCY, GROWTH, LINEST, LOGEST, MINVERSE, MMULT, and
TREND. Consult the online help for more information.

4800-x Ch14.F 8/27/01 11:57 AM Page 391

{10,9,8,5,6,5,5,10,11,14,6,8,8,7}

The array formula is then reduced to:

=SUM({10,9,8,5,6,5,5,10,11,14,6,8,8,7})

Summing the Three Smallest Values in a Range
The following formula returns the sum of the three smallest values in a range
named Data:

{=SUM(SMALL(Data,{1,2,3}))}

The function uses an array constant as the second argument for the SMALL
function. This generates a new array, which consists of the three smallest values in
the range. This array is then passed to the SUM function, which returns the sum of
the values in the new array.

Figure 14-14 shows an example in which the range A1:A10 is named Data. The
SMALL function is evaluated three times, each time with a different second argu-
ment. The first time, the SMALL function has a second argument of 1, and it returns
–5. The second time, the second argument for the SMALL function is 2, and it
returns 0 (the second smallest value in the range). The third time, the SMALL func-
tion has a second argument of 3, and returns the third smallest value of 2.

Figure 14-14: An array formula returns the
sum of the three smallest values in A1:A10.

Therefore, the array that’s passed to the SUM function is:

{-5,0,2)

The formula returns the sum of the array (–3).

Counting Text Cells in a Range
The following array formula uses the IF function to examine each cell in a range. It
then creates a new array (of the same size and dimensions as the original range)
that consists of 1s and 0s, depending on whether the cell contains text. This new

392 Part IV: Array Formulas

4800-x Ch14.F 8/27/01 11:57 AM Page 392

array is then passed to the SUM function, which returns the sum of the items in the
array. The result is a count of the number of text cells in the range.

{=SUM(IF(ISTEXT(A1:D5),1,0))}

This general array formula type (that is, an IF function nested in a SUM func-

tion) is very useful for counting. Refer to Chapter 7 for additional examples.

Figure 14-15 shows an example of the preceding formula in cell C8. The array
created by the IF function is:

{0,1,1,1;1,0,0,0;1,0,0,0;1,0,0,0;1,0,0,0}

Figure 14-15: An array formula returns the
number of text cells in the range.

Notice that this array contains four rows of three elements (the same dimensions
as the range).

A variation on this formula follows:

{=SUM(ISTEXT(A1:D5)*1)}

This formula eliminates the need for the IF function and takes advantage of the
fact that:

TRUE * 1 = 1

and

FALSE * 1 = 0

Chapter 14: Introducing Arrays 393

4800-x Ch14.F 8/27/01 11:57 AM Page 393

Eliminating Intermediate Formulas
One of the main benefits of using an array formula is that you can eliminate inter-
mediate formulas in your worksheet. This makes your worksheet more compact,
and eliminates the need to display irrelevant calculations. Figure 14-16 shows a
worksheet that contains pre-test and post-test scores for students. Column D con-
tains formulas that calculate the changes between the pre-test and the post-test
scores. Cell D17 contains a formula, shown here, that calculates the average of the
values in column D:

=AVERAGE(D2:D15)

Figure 14-16: Without an array formula, calculating the
average change requires intermediate formulas in column D.

With an array formula, you can eliminate column D. The following array for-
mula calculates the average of the changes, but does not require the formulas in
column D:

{=AVERAGE(C2:C15-B2:B15)}

How does it work? The formula uses two arrays, the values of which are stored
in two ranges (B2:B15 and C2:C15). The formula creates a new array that consists
of the differences between each corresponding element in the other arrays. This
new array is stored in Excel’s memory, not in a range. The AVERAGE function then
uses this new array as its argument and returns the result.

The new array consists of the following elements:

{11,15,-6,1,19,2,0,7,15,1,8,23,21,-11}

The formula, therefore, is reduced to:

=AVERAGE({11,15,-6,1,19,2,0,7,15,1,8,23,21,-11})

394 Part IV: Array Formulas

4800-x Ch14.F 8/27/01 11:57 AM Page 394

You can use additional array formulas to calculate other measures for the data in
this example. For instance, the following array formula returns the largest change
(that is, the greatest improvement). This formula returns 23, which represents
Linda’s test scores.

{=MAX(C2:C15-B2:B15)}

The following array formula returns the smallest change (that is, the least
improvement). This formula returns –11, which represents Nancy’s test scores.

{=MIN(C2:C15-B2:B15)}

Using an Array in Lieu of a Range Reference
If your formula uses a function that requires a range reference, you may be able to
replace that range reference with an array constant. This is useful in situations in
which the values in the referenced range do not change.

A notable exception to using an array constant in place of a range reference

in a function is with the database functions that use a reference to a criteria

range (for example, DSUM). Unfortunately, using an array constant instead of

a reference to a criteria range does not work.

Figure 14-17 shows a worksheet that uses a lookup table to display a word that
corresponds to an integer. For example, looking up a value of 9 returns Nine from
the lookup table in D1:E10. The formula in cell C1 is:

=VLOOKUP(B1,D1:E10,2,FALSE)

Figure 14-17: You can replace the lookup table
in D1:E10 with an array constant.

Chapter 14: Introducing Arrays 395

4800-x Ch14.F 8/27/01 11:57 AM Page 395

You can use a two-dimensional array in place of the lookup range. The follow-
ing formula returns the same result as the previous formula, but it does not require
the lookup range in D1:E1:

=VLOOKUP(B1,{1,”One”;2,”Two”;3,”Three”;4,”Four”;5,”Five”;
6,”Six”;7,”Seven”;8,”Eight”;9,”Nine”;10,”Ten”},2,FALSE)

Summary
This chapter introduced the concept of arrays, collections of items that reside in a
range or in Excel’s memory. An array formula operates on a range and returns a
single value or an array of values.

The next chapter continues this discussion and presents several useful examples
that help clarify the concept.

396 Part IV: Array Formulas

4800-x Ch14.F 8/27/01 11:57 AM Page 396

Chapter 15

Performing Magic with
Array Formulas

IN THIS CHAPTER

� More examples of single-cell array formulas

� More examples of multicell array formulas

� Returning an array from a custom VBA function

THE PREVIOUS CHAPTER PROVIDED an introduction to arrays and array formulas, and
presented some basic examples to whet your appetite. This chapter continues the
saga and provides many useful examples that further demonstrate the power of this
feature.

I selected the examples in this chapter to provide a good assortment of the vari-
ous uses for array formulas. Most can be used as-is. You will, of course, need to
adjust the range names or references used. Also, you can modify many of the
examples easily to work in a slightly different manner.

Each of the examples in this chapter is demonstrated in a file on the com-

panion CD-ROM.

Working with Single-Cell
Array Formulas
As I described in the previous chapter, you enter single-cell array formulas into a
single cell (not into a range of cells). These array formulas work with arrays con-
tained in a range, or that exist in memory. This section provides some additional
examples of such array formulas.

397

4800-x Ch15.F 8/27/01 11:57 AM Page 397

398 Part IV: Array Formulas

Summing a Range That Contains Errors
You’ve probably discovered that Excel’s SUM function doesn’t work if you attempt
to sum a range that contains one or more error values (such as #DIV/0! or #N/A).
Figure 15-1 shows an example. The SUM formula in cell C9 returns an error value
because the range that it sums (C2:C8) contains errors.

Figure 15-1: An array formula can sum a range
of values, even if the range contains errors.

The following array formula returns a sum of the values in a range named Data,
even if the range contains error values:

{=SUM(IF(ISERROR(Data),””,Data))}

This formula works by creating a new array that contains the original values,
but without the errors. The IF function effectively filters out error values by replac-
ing them with an empty string. The SUM function then works on this “filtered”
array. This technique also works with other functions, such as MIN and MAX.

You may want to use a function other than ISERROR. The ISERROR function

returns TRUE for any error value: #N/A, #VALUE!, #REF!, #DIV/0!, #NUM!,

#NAME?, or #NULL!. The ISERR function returns TRUE for any error except

#N/A.The ISNA function returns TRUE only if the cell contains #N/A.

Counting the Number of Error Values in a Range
The following array formula is similar to the previous example, but it returns a
count of the number of error values in a range named Data:

{=SUM(IF(ISERROR(Data),1,0))}

This formula creates an array that consists of 1s (if the corresponding cell con-
tains an error) and 0s (if the corresponding cell does not contain an error value).

4800-x Ch15.F 8/27/01 11:57 AM Page 398

You can simplify the formula a bit by removing the third argument for the IF
function. If this argument is not specified, the IF function returns FALSE if the con-
dition is not satisfied (that is, the cell does not contain an error value). The array
formula shown here performs exactly like the previous formula, but doesn’t use the
third argument for the IF function:

{=SUM(IF(ISERROR(Data),1))}

Actually, you can simplify the formula even more:

{=SUM(ISERROR(Data)*1)}

This version of the formula relies on the fact that:

TRUE * 1 = 1

and

FALSE * 1 = 0

Summing Based on a Condition
Often, you need to sum values based on one or more conditions. The array formula
that follows, for example, returns the sum of the positive values (it excludes nega-
tive values) in a range named Data:

{=SUM(IF(Data>0,Data))}

The IF function creates a new array that consists only of positive values and
False values. This array is passed to the SUM function, which ignores the False val-
ues and returns the sum of the positive values. The Data range can consist of any
number of rows and columns.

You can also use Excel’s SUMIF function for this example. The following for-
mula, which is not an array formula, returns the same result as the previous array
formula:

=SUMIF(Data,”>0”)

For multiple conditions, however, using SUMIF gets tricky. For example, if you
want to sum only values that are greater than 0 and less than or equal to 5, you can
use this non-array formula:

SUMIF(data,”>0”,data)-SUMIF(data,”>5”,data)

Chapter 15: Performing Magic with Array Formulas 399

4800-x Ch15.F 8/27/01 11:57 AM Page 399

This formula sums the values that are greater than zero, and then subtracts the
sum of the values that are greater than 5. This can be confusing.

Following is an array formula that performs the same calculation:

{=SUM((Data>0)*(Data<=5)*Data)}

This formula also has a limitation: It will return an error if the Data range con-
tains one or more non-numeric cells.

Contrary to what you might expect, you cannot use the AND function in an

array formula.The following array formula, while quite logical, doesn’t return

the correct result:

{=SUM(IF(AND(Data>0,Data<=5),Data))}

400 Part IV: Array Formulas

Illogical Behavior from Logical Functions
Excel’s AND and OR functions are logical functions that return TRUE or FALSE.
Unfortunately, these functions do not perform as expected when used in an array
formula.

As shown here, columns A and B contain logical values. The AND function returns
TRUE if all of its arguments are TRUE. Column C contains non-array formulas that
work as expected. For example, cell C3 contains the following function:

=AND(A3,B3)

The range D3:D6 contains this array formula:

{=AND(A3:A6,B3:B6)}

You might expect this array formula to return the following array:

{TRUE,FALSE,FALSE,FALSE}

4800-x Ch15.F 8/27/01 11:57 AM Page 400

You can also write an array formula that combines criteria using an OR condi-
tion. For example, to sum the values that are less than 0 or greater than 5, use the
following array formula:

{=SUM(IF((Data<0)+(Data>5),Data))}

As with the AND function, you cannot use the OR function in an array for-

mula.The following formula, for example, does not return the correct result:

{=SUM(IF(OR(Data<0,Data>5),Data))}

For an explanation of the workarounds required for using logical functions in an
array formula, refer to the following sidebar, “Illogical Behavior from Logical
Functions.”

Chapter 15: Performing Magic with Array Formulas 401

Rather, it returns only a single item: FALSE. In fact, both the AND function and the OR
function always return a single result (never an array). Even when using array
constants, the AND function still returns only a single value. For example, this array
formula does not return an array:

{=AND({TRUE,TRUE,FALSE,FALSE},{TRUE,FALSE,TRUE,FALSE})}

I don’t know if this is by design or if it’s a bug. In any case, it certainly is inconsistent
with how the other functions operate.

Column E contains another array formula, which follows, that returns an array of 0s
and 1s. These 0s and 1s correspond to FALSE and TRUE, respectively.

{=A3:A6*B3:B6}

In array formulas, you must use this syntax in place of the AND function.

The following array formula, which uses the OR function, does not return an array (as
you might expect):

=OR(A3:A6,B3:B6)

Rather, you can use a formula such as the following, which does return an array
comprised of logical OR using the corresponding elements in the ranges:

{=A3:A6+B3:B6}

4800-x Ch15.F 8/27/01 11:57 AM Page 401

Summing the n Largest Values in a Range
The following array formula returns the sum of the 10 largest values in a range
named Data:

{=SUM(LARGE(Data,ROW(INDIRECT(“1:10”))))}

The LARGE function is evaluated 10 times, each time with a different second
argument (1, 2, 3, and so on up to 10). The results of these calculations are stored in
a new array, and that array is used as the argument for the SUM function.

To sum a different number of values, replace the 10 in the argument for the
INDIRECT function with another value. To sum the n smallest values in a range, use
the SMALL function instead of the LARGE function.

Computing an Average That Excludes Zeros
Figure 15-2 shows a simple worksheet that calculates average sales. The formula in
cell B11 is:

=AVERAGE(B2:B9)

Figure 15-2: The calculated average includes cells that
contain a 0.

This formula, of course, calculates the average of the values in B2:B9. Two of the
sales staff had the week off, however, so this average doesn’t accurately describe
the average sales per representative.

The AVERAGE function ignores blank cells, but does not ignore cells that

contain 0.

402 Part IV: Array Formulas

4800-x Ch15.F 8/27/01 11:57 AM Page 402

The following array formula returns the average of the range, but excludes the
cells containing 0:

{=AVERAGE(IF(B2:B9<>0,B2:B9))}

This formula creates a new array that consists only of the non-zero values in the
range. The AVERAGE function then uses this new array as its argument. You also
can get the same result with a regular (non-array) formula:

=SUM(B2:B9)/COUNTIF(B2:B9,”<>0”)

This formula uses the COUNTIF function to count the number of non-zero values
in the range. This value is divided into the sum of the values.

Determining Whether a Particular Value
Appears in a Range
To determine whether a particular value appears in a range of cells, you can choose
the Edit � Find command and do a search of the worksheet. But you also can make
this determination by using an array formula.

Figure 15-3 shows a worksheet with a list of names in A3:E22 (named
NameList). An array formula in cell D1 checks the name entered into cell C1
(named TheName). If the name exists in the list of names, the formula displays the
text Found. Otherwise, it displays Not Found.

Figure 15-3: Using an array formula to determine if
a range contains a particular value.

Chapter 15: Performing Magic with Array Formulas 403

4800-x Ch15.F 8/27/01 11:57 AM Page 403

The array formula in cell D1 is:

{=IF(OR(TheName=NameList),”Found”,”Not Found”)}

This formula compares TheName to each cell in the NameList range. It builds a
new array that consists of logical TRUE or FALSE values. The OR function returns
TRUE if any one of the values in the new array is TRUE. The IF function uses this
result to determine which message to display.

A simpler form of this formula follows. This formula displays TRUE if the name
is found, and returns FALSE otherwise.

{=OR(TheName=NameList)}

Counting the Number of Differences
in Two Ranges
The following array formula compares the corresponding values in two ranges
(named MyData and YourData), and returns the number of differences in the two
ranges. If the contents of the two ranges are identical, the formula returns 0.

{=SUM(IF(MyData=YourData,0,1))}

The two ranges must be the same size and of the same dimensions.
This formula works by creating a new array of the same size as the ranges being

compared. The IF function fills this new array with 0s and 1s (0 if a difference is
found, 1 if the corresponding cells are the same). The SUM function then returns
the sum of the values in the array.

The following formula, which is simpler, is another way of calculating the same
result.

{=SUM(1*(MyData<>YourData))}

This version of the formula relies on the fact that:

TRUE * 1 = 1

and

FALSE * 1 = 0

Returning the Location of the Maximum
Value in a Range
The following array formula returns the row number of the maximum value in a
single-column range named Data:

404 Part IV: Array Formulas

4800-x Ch15.F 8/27/01 11:57 AM Page 404

{=MIN(IF(Data=MAX(Data),ROW(Data), “”))}

The IF function creates a new array that corresponds to the Data range. If the
corresponding cell contains the maximum value in Data, then the array contains
the row number; otherwise, it contains an empty string. The MIN function uses this
new array as its second argument and returns the smallest value, which corre-
sponds to the row number of the maximum value in Data.

If the Data range contains more than one cell that has the maximum value, the
row of the first maximum cell is returned.

The following array formula is similar to the previous one, but it returns the
actual cell address of the maximum value in the Data range. It uses the ADDRESS
function, which takes two arguments: a row number and a column number.

{=ADDRESS(MIN(IF(Data=MAX(Data),ROW(Data), “”)),COLUMN(Data))}

Finding the Row of a Value’s nth
Occurrence in a Range
The following array formula returns the row number within a single-column range
named Data that contains the nth occurrence of a cell named Value:

{=SMALL(IF(Data=Value,ROW(Data), “”),n)}

The IF function creates a new array that consists of the row number of values
from the Data range that are equal to Value. Values from the Data range that are
not equal to Value are replaced with an empty string. The SMALL function works
on this new array, and returns the nth smallest row number.

The formula returns #NUM! if the Value is not found or if n exceeds the number
of the values in the range.

Returning the Longest Text in a Range
The following array formula displays the text string in a range (named Data) that
has the most characters. If multiple cells contain the longest text string, the first
cell is returned.

{=INDEX(Data,MATCH(MAX(LEN(Data)),LEN(Data),FALSE),1)}

This formula works with two arrays, both of which contain the length of each
item in the Data range. The MAX function determines the largest value, which cor-
responds to the longest text item. The MATCH function calculates the offset of the
cell that contains the maximum length. The INDEX function returns the contents of
the cell containing the most characters. This function works only if the Data range
consists of a single column.

Chapter 15: Performing Magic with Array Formulas 405

4800-x Ch15.F 8/27/01 11:57 AM Page 405

Determining Whether a Range
Contains Valid Values
You might have a list of items that you need to check against another list. For
example, you might import a list of part numbers into a range named MyList, and
you want to ensure that all of the part numbers are valid. You can do this by com-
paring the items in the imported list to the items in a master list of part numbers
(named Master).

The following array formula returns TRUE if every item in the range named
MyList is found in the range named Master. Both of these ranges must consist of a
single column, but they don’t need to contain the same number of rows.

{=ISNA(MATCH(TRUE,ISNA(MATCH(MyList,Master,0)),0))}

The array formula that follows returns the number of invalid items. In other
words, it returns the number of items in MyList that do not appear in Master.

{=SUM(1*ISNA(MATCH(MyList,Master,0)))}

To return the first invalid item in MyList, use the following array formula:

{=INDEX(MyList,MATCH(TRUE,ISNA(MATCH(MyList,Master,0)),0))}

Summing the Digits of an Integer
The following array formula calculates the sum of the digits in a positive integer,
which is stored in cell A1. For example, if cell A1 contains the value 409, the for-
mula returns 13 (the sum of 4, 0, and 9).

{=SUM(MID(A1,ROW(INDIRECT(“1:”&LEN(A1))),1)*1)}

To understand how this formula works, let’s start with the ROW function, shown
here:

=ROW(INDIRECT(“1:”&LEN(A1)))

This function returns an array of consecutive integers beginning with 1 and end-
ing with the number of digits in the value in cell A1. For example, if cell A1 con-
tains the value 409, then the LEN function returns 3 and the array generated by the
ROW functions is:

{1,2,3}

406 Part IV: Array Formulas

4800-x Ch15.F 8/27/01 11:57 AM Page 406

For more information about using the INDIRECT function to return this

array, see Chapter 14.

This array is then used as the second argument for the MID function. The MID
part of the formula, simplified a bit and expressed as values, is the following:

=MID(409,{1,2,3},1)*1

This function generates an array with three elements:

{4,0,9}

By simplifying again and adding the SUM function, the formula looks like this:

=SUM({4,0,9})

This produces the result of 13.

The values in the array created by the MID function are multiplied by 1

because the MID function returns a string. Multiplying by 1 forces a numeric

value result. Alternatively, you can use the VALUE function to force a numeric

string to become a numeric value.

Notice that the formula does not work with a negative value because the nega-
tive sign is not a numeric value. The following formula solves this problem by
using the ABS function to return the absolute value of the number. Figure 15-4
shows a worksheet that uses this formula in cell B2.

{=SUM(VALUE(MID(ABS(A2),ROW(INDIRECT(“1:”&LEN(ABS(A2)))),1)))}

The formula was copied down to calculate the sum of the digits for other values
in column A.

Chapter 15: Performing Magic with Array Formulas 407

4800-x Ch15.F 8/27/01 11:57 AM Page 407

Figure 15-4: An array formula calculates
the sum of the digits in an integer.

Summing Rounded Values
Figure 15-5 shows a simple worksheet that demonstrates a common spreadsheet
problem: rounding errors. As you can see, the grand total in cell E5 appears to dis-
play an incorrect amount (that is, it’s off by a penny). The values in column E use a
number format that displays two decimal places. The actual values, however, con-
sist of additional decimal places that do not display due to rounding (as a result of
the number format). The net effect of these rounding errors is a seemingly incorrect
total. The total, which is actually $168.320997, displays as $168.32.

Figure 15-5: Using an array formula to correct rounding errors

The following array formula creates a new array that consists of values in col-
umn E, rounded to two decimal places:

{=SUM(ROUND(E2:E4,2))}

This formula returns $168.31.
You also can eliminate these types of rounding errors by using the ROUND func-

tion in the formula that calculates each row total in column E. This technique does
not require an array formula.

408 Part IV: Array Formulas

4800-x Ch15.F 8/27/01 11:57 AM Page 408

Refer to Chapter 10 for more information about Excel’s functions that are

relevant to rounding.

Summing Every nth Value in a Range
Suppose you have a range of values and you want to compute the sum of every
third value in the list — the first, the fourth, the seventh, and so on. One solution is
to hard code the cell addresses in a formula. But a better solution is to use an array
formula.

Refer to the data in Figure 15-6. The values are stored in a range named Data,
and the value of n is in cell E6 (named n).

Figure 15-6: An array formula returns the sum of every nth value
in the range.

The following array formula returns the sum of every nth value in the range:

{SUM(IF(MOD(ROW(INDIRECT(“1:”&COUNT(Data)))-1,n)=0,Data,””))}

This formula generates an array of consecutive integers, and the MOD function
uses this array as its first argument. The second argument for the MOD function is
the value of n. The MOD function creates another array that consists of the remain-
ders when each row number is divided by n. When the array item is 0 (that is, the
row is evenly divisible by n), the corresponding item in the Data range will be
included in the sum.

Chapter 15: Performing Magic with Array Formulas 409

4800-x Ch15.F 8/27/01 11:57 AM Page 409

You’ll find that this formula fails when n is 0 (that is, sums no items). The mod-
ified array formula that follows uses an IF function to handle this case:

{=IF(n=0,0,SUM(IF(MOD(ROW(INDIRECT(“1:”&COUNT(data)))-
1,n)=0,data,””)))}

This formula works only when the Data range consists of a single column of val-
ues. It does not work for a multicolumn range, or for a single row of values.

To make the formula work with a horizontal range, you need to transpose the
array of integers generated by the ROW function. The modified array formula that
follows works only with a horizontal Data range:

{=IF(n=0,0,SUM(IF(MOD(TRANSPOSE(ROW(INDIRECT(“1:”&COUNT(Data))))-
1,n)=0,Data,””)))}

Removing Non-Numeric Characters from a String
The following array formula extracts a number from a string that contains text. For
example, consider the string ABC145Z. The formula returns the numeric part, 145.

{=MID(A1,MATCH(0,(ISERROR(MID(A1,ROW(INDIRECT(“1:”&LEN(A1))),1)
*1)*1),0),LEN(A1)-SUM((ISERROR(MID(A1,ROW
(INDIRECT(“1:”&LEN(A1))),1)*1)*1)))}

This formula works only with a single embedded number. For example, it fails
with a string such as X45Z99.

Determining the Closest Value in a Range
The array formula that follows returns the value in a range named Data that is clos-
est to a another value (named Target):

{=INDEX(Data,MATCH(SMALL(ABS(Target-Data),1),ABS(Target-Data),0))}

If two values in the Data range are equidistant from the Target value, the for-
mula returns the first one in the list. Figure 15-7 shows an example of this formula.
In this case, the Target value is 45. The array formula in cell D3 returns 48 — the
value closest to 45.

Returning the Last Value in a Column
Suppose you have a worksheet that you update frequently by adding new data to
columns. You might need a way to reference the last value in column A (the value
most recently entered). If column A contains no empty cells, the solution is rela-
tively simple, and doesn’t require an array formula:

=OFFSET(A1,COUNTA(A:A)-1,0)

410 Part IV: Array Formulas

4800-x Ch15.F 8/27/01 11:57 AM Page 410

Figure 15-7: An array formula returns the closest match.

This formula uses the COUNTA function to count the number of nonempty cells
in column A. This value (minus 1) is used as the second argument for the OFFSET
function. For example, if the last value is in row 100, COUNTA returns 100. The
OFFSET function returns the value in the cell 99 rows down from cell A1, in the
same column.

If column A has one or more empty cells interspersed, which is frequently the
case, the preceding formula won’t work because the COUNTA function doesn’t
count the empty cells.

The following array formula returns the contents of the last nonempty cell in the
first 500 rows of column A:

{=INDEX(A1:A500,MAX(ROW(A1:A500)*(A1:A500<>””)))}

You can, of course, modify the formula to work with a column other than col-
umn A. To use a different column, change the four column references from A to
whatever column you need. If the last nonempty cell occurs in a row beyond row
500, you need to change the two instances of “500” to a larger number. The fewer
rows referenced in the formula, the faster the calculation speed.

You cannot use this formula, as written, in the same column with which it’s

working. Attempting to do so generates a circular reference. You can, how-

ever, modify it. For example, to use the function in cell A1, change the refer-

ences so they begin with row 2.

Chapter 15: Performing Magic with Array Formulas 411

4800-x Ch15.F 8/27/01 11:57 AM Page 411

Returning the Last Value in a Row
The following array formula is similar to the previous formula, but it returns the
last nonempty cell in a row (in this case, row 1):

{=INDEX(1:1,MAX(COLUMN(1:1)*(1:1<>””)))}

To use this formula for a different row, change the 1:1 reference to correspond to
the row.

Ranking Data with an Array Formula
Often, computing the rank orders for the values in a range of data is helpful. If you
have a worksheet containing the annual sales figures for 20 salespeople, for exam-
ple, you may want to know how each person ranks, from highest to lowest.

If you’ve used Excel’s RANK function, you may have noticed that the ranks pro-
duced by this function don’t handle ties the way that you may like. For example, if
two values are tied for third place, the RANK function gives both of them a rank of
3. You may prefer to assign each an average (or midpoint) of the ranks — in other
words, a rank of 3.5 for both values tied for third place.

Figure 15-8 shows a worksheet that uses two methods to rank a column of val-
ues (named Sales). The first method (column C) uses Excel’s RANK function.
Column D uses array formulas to compute the ranks.

Figure 15-8: Ranking data with Excel’s RANK function and with
array formulas

The following is the array formula in cell D2:

{=SUM(1*(B2<=Sales))-(SUM(1*(B2=Sales))-1)/2}

412 Part IV: Array Formulas

4800-x Ch15.F 8/27/01 11:57 AM Page 412

This formula is copied to the cells below it.

Each ranking is computed with a separate array formula, not with an array

formula entered into multiple cells.

Each array function works by computing the number of higher values and sub-
tracting one half of the number of equal values minus 1.

Creating a Dynamic Crosstab Table
A crosstab table tabulates or summarizes data across two dimensions. Take a look
at the data in Figure 15-9. This worksheet shows a simple expense account listing.
Each item consists of the date, the expense category, and the amount spent. Each
column of data is a named range, indicated in the first row.

Figure 15-9: You can use array formulas to summarize data such as
this in a dynamic crosstab table.

Array formulas summarize this information into a handy table that shows the
total expenses — by category — for each day. Cell F3 contains the following array
formula, which is copied to the remaining 14 cells in the table:

{=SUM(($E3=Date)*(F$2=Category)*Amount)}

Chapter 15: Performing Magic with Array Formulas 413

4800-x Ch15.F 8/27/01 11:57 AM Page 413

These array formulas display the totals for each day, by category.
The formula sums the values in the Amount range, but does so only if the row

and column names in the summary table match the corresponding entries in the
Date and Category ranges. It does so by multiplying two Boolean values by the
Amount. If both Boolean values are True, the result is the Amount. If one or both of
the Boolean values is False, the result is 0.

You can customize this technique to hold any number of different categories and
any number of dates. You can eliminate the dates, in fact, and substitute people’s
names, departments, regions, and so on.

You also can use Excel’s pivot table feature to summarize data in this way.

However, pivot tables do not update automatically when the data changes,

so the array formula method described here has at least one advantage.

Working with Multicell Array
Formulas
The previous chapter introduced array formulas entered into multicell ranges. In
this section, I present a few more array multicell formulas. Most of these formulas
return some or all of the values in a range, but rearranged in some way.

Returning Only Positive Values from a Range
The following array formula works with a single-column vertical range (named
Data). The array formula is entered into a range that’s the same size as Data, and
returns only the positive values in the Data range (0s and negative numbers are
ignored).

{=INDEX(Data,SMALL(IF(Data>0,ROW(INDIRECT(“1:”&ROWS(Data)))),
ROW(INDIRECT(“1:”&ROWS(Data)))))}

As you can see in Figure 15-10, this formula works but not perfectly. The Data
range is A2:A21, and the array formula is entered into C2:C21. However, the array
formula displays #NUM! error values for cells that don’t contain a value.

This more complex array formula avoids the error value display:

{=IF(ISERR(SMALL(IF(Data>0,ROW(INDIRECT(“1:”&ROWS(Data)))),
ROW(INDIRECT(“1:”&ROWS(Data))))),””,INDEX(Data,SMALL(IF
(Data>0,ROW(INDIRECT(“1:”&ROWS(Data)))),ROW(INDIRECT
(“1:”&ROWS(Data))))))}

414 Part IV: Array Formulas

4800-x Ch15.F 8/27/01 11:57 AM Page 414

Figure 15-10: Using an array formula to
return only the positive values in a range

Returning Nonblank Cells from a Range
The following formula is a variation on the formula in the previous section. This
array formula works with a single-column vertical range named Data. The array
formula is entered into a range of the same size as Data, and returns only the non-
blank cell in the Data range.

{=IF(ISERR(SMALL(IF(Data<>””,ROW(INDIRECT(“1:”&ROWS(Data)))),
ROW(INDIRECT(“1:”&ROWS(Data))))),””,INDEX(Data,SMALL(IF(Data
<>””,ROW(INDIRECT(“1:”&ROWS(Data)))),ROW(INDIRECT(“1:”&ROWS
(Data))))))}

Reversing the Order of the Cells in a Range
The following array formula works with a single-column vertical range (named
Data). The array formula, which is entered into a range of the same size as Data,
returns the values in Data, but in reverse order.

{=IF(INDEX(Data,ROWS(data)-ROW(INDIRECT(“1:”&ROWS(Data)))+1)
=””,””,INDEX(Data,ROWS(Data)-ROW(INDIRECT(“1:”&ROWS(Data)))
+1))}

Figure 15-11 shows this formula in action. The range A2:A20 is named Data,
and the array formula is entered into the range C2:C20.

Chapter 15: Performing Magic with Array Formulas 415

4800-x Ch15.F 8/27/01 11:57 AM Page 415

Figure 15-11: A multicell array formula reverses
the order of the values in the range.

Sorting a Range of Values Dynamically
Suppose your worksheet contains a single-column vertical range named Data. The
following array formula, entered into a range with the same number of rows as
Data, returns the values in Data, sorted from highest to lowest. This formula works
only with numeric values, not with text.

{=LARGE(Data,ROW(INDIRECT(“1:”&ROWS(Data))))}

To sort the values in Data from lowest to highest, use this array formula:

{=SMALL(Data,ROW(INDIRECT(“1:”&ROWS(Data))))}

This formula can be useful if you need to have your data entry sorted immedi-
ately. Start by defining the range name Data as your data entry range. Then enter
the array formula into another range with the same number of rows as Data.

You’ll find that the array formula returns #NUM! for cells that don’t have a
value. This can be annoying if you’re entering data. The modified version, which
follows, is more complex, but it eliminates the display of the error value:

{=IF(ISERR(LARGE(Data,ROW(INDIRECT(“1:”&ROWS(Data))))),””,
LARGE(Data,ROW(INDIRECT(“1:”&ROWS(Data)))))}

Returning a List of Unique Items in a Range
If you have a single-column range named Data, the following array formula
returns a list of the unique items in the range:

416 Part IV: Array Formulas

4800-x Ch15.F 8/27/01 11:57 AM Page 416

{=INDEX(Data,SMALL(IF(MATCH(Data,Data,0)=ROW(INDIRECT(“1:”&ROWS(Data
))),
MATCH(Data,Data,0),””),ROW(INDIRECT(“1:”&ROWS(Data)))))}

This formula does not work if the Data range contains any blank cells. The
unfilled cells of the array formula display #NUM!. Figure 15-12 shows an example.
Range A2:A20 is named Data, and the array formula is entered into range C2:C20.

Figure 15-12: Using an array formula to return
unique items from a list

Displaying a Calendar in a Range
Figure 15-13 shows a calendar displayed in a range of cells. The worksheet has two
defined names: m (for the month) and y (for the year). A single array formula,
entered into 42 cells, displays the corresponding calendar. The following array for-
mula is entered into the range B6:H11:

{=IF(MONTH(DATE(y,m,1))<>MONTH(DATE(y,m,1)-(WEEKDAY(DATE(y,m,1))-
1)+{0;7;14;21;28;35}+
{0,1,2,3,4,5,6}),””,DATE(y,m,1)-(WEEKDAY(DATE(y,m,1))-
1)+{0;7;14;21;28;35}+{0,1,2,3,4,5,6})}

The array formula actually returns date values, but the cells are formatted to dis-
play only the day portion of the date. Also, notice that the array formula uses array
constants. You can simplify the array formula quite a bit by removing the IF
function.

{=DATE(y,m,1)-(WEEKDAY(DATE(y,m,1))-1)+{0;7;14;21;28;35}+
{0,1,2,3,4,5,6}}

Chapter 15: Performing Magic with Array Formulas 417

4800-x Ch15.F 8/27/01 11:57 AM Page 417

Figure 15-13: Displaying a calendar using a single array formula

See Chapter 14 for more information about array constants.

This version of the formula displays the days from the preceding month and the
next month. The IF function in the original formula checks each date to make sure
it’s in the current month. If not, the IF function returns an empty string.

Returning an Array from a Custom
VBA Function
The chapter’s final example demonstrates one course of action you can take if you
can’t figure out a particular array formula. If Excel doesn’t provide the tools you
need, you need to create your own.

For example, I struggled for several hours in an attempt to create an array for-
mula that returns a sorted list of text entries. Although you can create an array for-
mula that returns a sorted list of values (see “Sorting a Range of Values
Dynamically,” earlier in this chapter), doing the same for text entries is much more
challenging.

The following formula works, but only if the Data range does not contain any
duplicate entries.

418 Part IV: Array Formulas

4800-x Ch15.F 8/27/01 11:57 AM Page 418

{=INDEX(Data,MATCH(ROW(INDIRECT(“1:”&COUNTA(Data))),
COUNTIF(Data,”<=”&Data),0))}

Therefore, I created a custom VBA function called SORTED, which I list here:

Function SORTED(rng, Optional ascending) As Variant
Dim SortedData() As Variant
Dim CellCount As Long
Dim Temp As Variant, i As Long, j As Long
CellCount = rng.Count
ReDim SortedData(1 To CellCount)

‘ Check optional argument
If IsMissing(ascending) Then ascending = True

‘ Exit with an error if not a single column
If rng.Columns.Count > 1 Then

SORTED = CVErr(xlErrValue)
Exit Function

End If

‘ Transfer data to SortedData
For i = 1 To CellCount

SortedData(i) = rng(i)
If TypeName(SortedData(i)) = “Empty” _
Then SortedData(i) = “”

Next i
On Error Resume Next

‘ Sort the SortedData array
For i = 1 To CellCount

For j = i + 1 To CellCount
If SortedData(j) <> “” Then

If ascending Then
If SortedData(i) > SortedData(j) Then

Temp = SortedData(j)
SortedData(j) = SortedData(i)
SortedData(i) = Temp

End If
Else

If SortedData(i) < SortedData(j) Then
Temp = SortedData(j)
SortedData(j) = SortedData(i)
SortedData(i) = Temp

End If

Chapter 15: Performing Magic with Array Formulas 419

4800-x Ch15.F 8/27/01 11:57 AM Page 419

End If
End If
Next j

Next i

‘ Transpose it
SORTED = Application.Transpose(SortedData)

End Function

Refer to Part V for information about creating custom VBA functions.

The SORTED function takes two arguments: a range reference and an optional
second argument that specifies the sort order. The default sort order is ascending
order. If you specify FALSE as the second argument, the range is returned sorted in
descending order.

Once the SORTED function procedure is entered into a VBA module, you can use
the SORTED function in your formulas. The following array formula, for example,
returns the contents of a single-column range named Data, but sorted in ascending
order. You enter this formula into a range the same size as the Data range.

{=SORTED(Data)}

This array formula returns the contents of the Data range, but sorted in descend-
ing order:

{=SORTED(Data,False)}

As you can see, using a custom function results in a much more compact for-
mula. Custom functions, however, are usually much slower than formulas that use
Excel’s built-in functions.

Figure 15-14 shows an example of this function used in an array formula. Range
A2:A17 is named Data, and the array formula is entered into range C2:C17.

420 Part IV: Array Formulas

4800-x Ch15.F 8/27/01 11:57 AM Page 420

Figure 15-14: Using a custom worksheet
function in an array formula

Summary
This chapter provided many examples of useful array formulas. You can use these
formulas as is, or adapt them to your needs. It also presented a custom worksheet
function that returns an array.

The next chapter presents intentional circular references.

Chapter 15: Performing Magic with Array Formulas 421

4800-x Ch15.F 8/27/01 11:57 AM Page 421

4800-x Ch15.F 8/27/01 11:57 AM Page 422

Miscellaneous Formula Techniques
CHAPTER 16

Intentional Circular References

CHAPTER 17
Charting Techniques

CHAPTER 18
Pivot Tables

CHAPTER 19
Conditional Formatting and Data Validation

CHAPTER 20
Creating Megaformulas

CHAPTER 21
Tools and Methods for Debugging Formulas

Part V

4800-x PO5.F 8/27/01 11:57 AM Page 423

4800-x PO5.F 8/27/01 11:57 AM Page 424

Chapter 16

Intentional Circular
References

IN THIS CHAPTER

� General information regarding how Excel handles circular references

� Why you might want to use an intentional circular reference

� How Excel determines calculation and iteration settings

� Examples of formulas that use intentional circular references

� Potential problems when using intentional circular references

WHEN MOST SPREADSHEET users hear the term circular reference, they immediately
think of an error condition. Generally, a circular reference represents an accident —
something that you need to correct. Sometimes, however, a circular reference can
be a good thing. This chapter presents some examples that demonstrate intentional
circular references.

What Are Circular References?
When entering formulas in a worksheet, you occasionally may see a message from
Excel, such as the one shown in Figure 16-1. This demonstrates Excel’s way of
telling you that the formula you just entered will result in a circular reference. A
circular reference occurs when a formula refers to its own cell, either directly or
indirectly. For example, you create a circular reference if you enter the following
formula into cell A10 because the formula refers to the cell that contains the
formula:

=SUM(A1:A10)

425

4800-x Ch16.F 8/27/01 11:57 AM Page 425

Figure 16-1: Excel’s way of telling you that your formula
contains a circular reference

Every time the formula in A10 is calculated, it must be recalculated because A10
has changed. In theory, the calculation could continue forever while the value in
cell A10 tried to reach infinity.

Correcting an Accidental Circular Reference
When you see the circular reference message after entering a formula, Excel gives
you three options:

� Click OK to attempt to locate the circular reference (Excel’s Circular
Reference toolbar displays). This also has the annoying side effect of dis-
playing a help screen whether you need it or not.

� Click Cancel to enter the formula as is.

� Click Help to read about circular references in the online help.

Most circular reference errors are caused by simple typographical errors or
incorrect range specifications. For example, when creating a SUM formula in cell
A10, you might accidentally specify an argument of A1:A10 instead of A1:A9.

If you know the source of the problem, click Cancel. Excel displays a message in
the status bar to remind you that a circular reference exists. In this case, the mes-
sage reads “Circular: A10.” If you activate a different workbook or worksheet, the
message simply displays “Circular” (without the cell reference). You can then edit
the formula and fix the problem.

If you get the circular message error, but you don’t know what formula caused
the problem, you can click OK. When you do so, Excel displays the Help topic on
circular references and the Circular Reference toolbar (see Figure 16-2). On the
Circular Reference toolbar, click the first cell in the Navigate Circular Reference
drop-down list box, and then examine the cell’s formula. If you cannot determine
whether that cell caused the circular reference, click the next cell in the Navigate
Circular Reference box. Continue to review the formulas until the status bar no
longer displays Circular.

426 Part V: Miscellaneous Formula Techniques

4800-x Ch16.F 8/27/01 11:57 AM Page 426

Figure 16-2: The Circular Reference toolbar

Excel won’t display its Circular Reference dialog box if you have the Iteration

setting turned on. You can check this in the Options dialog box (in the

Calculation tab). I discuss more about this setting later.

Understanding Indirect Circular References
Usually, a circular reference appears quite obvious and, therefore, easy to identify
and correct. Sometimes, however, circular references are indirect. In other words,
one formula may refer to another formula that refers to a formula that refers back
to the original formula. In some cases, you need to conduct a bit of detective work
to figure out the problem.

For more information about tracking down a circular reference, refer to

Chapter 21.

Chapter 16: Intentional Circular References 427

About Circular References
For a practical, real-life demonstration of a circular reference, refer to the sidebar,
“More about Circular References,” later in this chapter.

4800-x Ch16.F 8/27/01 11:57 AM Page 427

Intentional Circular References
As mentioned previously, you can use a circular reference to your advantage in
some situations. A circular reference, if set up properly, can serve as the functional
equivalent of a Do-Loop construct used in a programming language such as VBA.
An intentional circular reference introduces recursion or iteration into a problem.
Each intermediate “answer” from a circular reference calculation functions in the
subsequent calculation. Eventually, the solution converges to the final value.

By default, Excel does not permit iterative calculations. You must explicitly tell
Excel that you want it to perform iterative calculations in your workbook. You do
this on the Calculation tab of the Options dialog box (see Figure 16-3).

Figure 16-3: To calculate a circular reference, you must
check the Iteration check box.

Figure 16-4 shows a simple example of a worksheet that uses an intentional cir-
cular reference. A company has a policy of contributing five percent of its net
profit to charity. The contribution itself, however, is considered an expense and is
therefore subtracted from the net profit figure. This produces a circular reference.

Figure 16-4: The company also deducts the five percent contribution
of net profits as an expense, creating an intentional circular reference.

428 Part V: Miscellaneous Formula Techniques

4800-x Ch16.F 8/27/01 11:57 AM Page 428

You cannot resolve the circular reference unless you turn on the Iteration

setting.

The text in column A corresponds to the named cells in column B, and cell C3 is
named Pct. The Contributions cell (B3) contains the following formula:

=Pct*Net_Profit

The Net_Profit cell (B4) contains the following formula:

=Gross_Income-Expenses-Contributions

These formulas produce a resolvable circular reference. Excel keeps calculating
until the formula results converge on a solution.

A reader of the first edition of this book pointed out another way to

approach this problem without using a circular reference. Use the following

formula to calculate the Net_Profit cell:

=(Gross_Income-Expenses)/(1+Pct)

Then calculate the Contributions cell using this formula:

=Pct*Net_Profit

You can access the workbook shown in Figure 16-4 on the companion

CD-ROM. For your convenience, the worksheet includes a button that, when

clicked, displays the Calculation tab of the Options dialog box. This makes it

easy to experiment with various iteration settings. In addition, the CD-ROM

contains a file that demonstrates how to perform this calculation without

using a circular reference.

The Calculation tab of the Options dialog box contains three controls relevant to
circular references:

� Iteration check box: If unchecked, Excel does not perform iterative calcu-
lations, and Excel displays a warning dialog box if you create a formula
that has a circular reference. When creating an intentional circular refer-
ence, you must check this check box.

Chapter 16: Intentional Circular References 429

4800-x Ch16.F 8/27/01 11:57 AM Page 429

� Maximum iterations: Determines the maximum number of iterations that
Excel will perform. This value cannot exceed 32,767.

� Maximum change: Determines when iteration stops. For example, if this
setting is .01, iterations stops when a calculation produces a result that
differs by less than 1 percent of the previous value.

Calculation continues until Excel reaches the number of iterations specified

in the Maximum iterations box, or until a recalculation changes all cells by

less than the amount you set in the Maximum change box (whichever is

reached first). Depending on your application, you may need to adjust the

settings in the Maximum iterations field or the Maximum change field. For a

more accurate solution, make the Maximum change field smaller. If the

result doesn’t converge after 100 iterations, you can increase the Maximum

iterations field.

To get a feel for how this works, open the example workbook presented in the
previous section. Then:

1. Access the Calculation tab in the Options dialog box and make sure the
Iteration check box is checked.

2. Set the Maximum iterations setting to 1.

3. Set the Maximum change setting to .001.

4. Enter a different value into the Gross_Income cell (cell B1).

5. Press F9 to calculate the sheet.

Because the Maximum iteration setting is 1, pressing F9 performs just one itera-
tion. You’ll find that the Contributions cell has not converged. Press F9 a few more
times, and you’ll see the result converge on the solution. When the solution is
found, pressing F9 has no noticeable effect. If the Maximum iterations setting
reflects a large value, the solution appears almost immediately (unless it involves
some slow calculations).

How Excel Determines Calculation
and Iteration Settings
You should understand that all open workbooks use the same calculation and iter-
ation settings. For example, if you have two workbooks open, you cannot have one

430 Part V: Miscellaneous Formula Techniques

4800-x Ch16.F 8/27/01 11:57 AM Page 430

of them set to automatic calculation and the other set to manual calculation.
Although you can save a workbook with particular settings (for example, manual
calculation with no iterations), those settings can change if you open another
workbook.

Excel follows these general rules to determine which calculation and iteration
settings to use:

� The first workbook opened uses the calculation mode saved with that
workbook. If you open other workbooks, they use the same calculation
mode.

For example, suppose you have two workbooks: Book1 and Book2. Book1
has its Iteration setting turned off (the default setting), and Book2 (which
uses intentional circular references) has its Iteration setting turned on. If
you open Book1 and then Book2, both workbooks will have the iteration
setting turned off. If you open Book2 and then Book1, both workbooks
will have their iteration setting turned on.

� Changing the calculation mode for one workbook changes the mode for
all workbooks.

If you have both Book1 and Book2 open, changing the calculation mode
or Iteration setting of either workbook affects both workbooks.

� All worksheets in a workbook use the same mode of calculation.

� If you have all workbooks closed and you create a new workbook, the
new workbook uses the same calculation mode as the last closed work-
book. One exception: if you create the workbook from a template. If so,
the workbook uses the calculation mode specified in the template.

� If the mode of calculation in a workbook changes, and you save the file,
the current mode of calculation saves with the workbook.

Circular Reference Examples
Following are a few more examples of using intentional circular references. They
demonstrate creating circular references for time stamping a cell, calculating
an all-time-high value, solving a recursive equation, and solving simultaneous
equations.

For these examples to work properly, you must have the Iteration setting in

effect. Select Tools � Options, and click the Calculation tab. Make sure the

Iteration check box is checked.

Chapter 16: Intentional Circular References 431

4800-x Ch16.F 8/27/01 11:57 AM Page 431

Time Stamping a Cell Entry
Figure 16-5 shows a worksheet designed such that entries in column A are “time
stamped” in column B. The formulas in column B monitor the corresponding cell in
column A. When you insert an entry in column A, the formula enters the current
date and time.

Figure 16-5: Using circular reference formulas to
time stamp entries in column A

The workbook shown in Figure 16-5 also appears on the companion

CD-ROM.

The formula in cell B2, which is copied down to other cells in column B, is:

=IF(ISBLANK(A2),””,IF(B2=””,NOW(),B2))

This formula uses an IF function to check cell A2. If the cell is empty, the for-
mula returns an empty string. If A2 is not empty, the formula checks the value
in cell B2 (that is, a self-reference). If B2 is empty, the formula returns the date
and time. Using the second IF statement ensures that the NOW function does not
recalculate.

Calculating an All-Time-High Value
Figure 16-6 shows a worksheet that displays the sales made by sales representa-
tives. This sheet updates every month: New sales figures replace the values in
column B.

432 Part V: Miscellaneous Formula Techniques

4800-x Ch16.F 8/27/01 11:57 AM Page 432

Figure 16-6: Using a circular reference formula to keep
track of the highest value ever entered in column B

The formula in cell C1 keeps track of the all-time-high sales — the largest value
ever entered into column B. This formula, which uses a circular reference, appears
as follows:

=MAX(B:B,C1)

The formula uses the MAX function to return the maximum value in column B,
or in cell C1. In this example, the formula displays 98,223. This reflects a value
from a previous month (in other words, a value not currently in column B).

The companion CD-ROM contains the workbook shown in Figure 16-6.

Generating Unique Random Integers
You can take advantage of a circular reference to generate unique random integers
in a range. The worksheet in Figure 16-7 generates 15 random integers between 1
and 30 in column A. The integers are generated such that they produce unique
numbers (that is, not duplicated). You may want to use this technique to generate
random lottery number picks.

Column B contains formulas that count the number of times a particular number
appears in the range A1:A15. For example, the formula in cell B1 follows. This for-
mula displays the number of times the value in cell A1 appears in the range
A1:A15:

=COUNTIF(A1:A15,A1)

Chapter 16: Intentional Circular References 433

4800-x Ch16.F 8/27/01 11:57 AM Page 433

Figure 16-7: Using circular reference formulas to
generate unique random integers in column A

Each formula in column A contains a circular reference. The formula examines
the sum of the cells in column B. If this sum does not equal 15, a new random inte-
ger generates. When the sum of the cells in column B equals 15, the values in col-
umn A are all unique. The formula in cell A1 appears like this:

=IF(SUM(B1:B15)<>15,INT(RAND()*30+1),A1)

Cell D1, which follows, contains a formula that displays the status. If the sum of
the cells in column B does not equal 15, the formula displays the text CALC AGAIN
(press F9 to perform more iterations). When column B contains all 1s, the formula
displays SOLUTION FOUND.

=IF(SUM(B1:B15)<>15,”CALC AGAIN”,”SOLUTION FOUND”)

To generate a new set of random integers, select any cell in column B. Then press
F2 to edit the cell, and press Enter to reenter it. The number of calculations required
depends on:

� The Iteration setting on the Calculation tab of the Options dialog box. If
you specify a higher number of iterations, you have a better chance of
finding 15 unique values.

� The number of values requested, compared to the number of possible val-
ues. This example seeks 15 unique integers from a pool of 30. Fewer cal-
culations are required if, for example, you request 15 unique values from
a pool of 100.

434 Part V: Miscellaneous Formula Techniques

4800-x Ch16.F 8/27/01 11:57 AM Page 434

Solving a Recursive Equation
A recursive equation refers to an equation in which a variable appears on both
sides of the equal sign. The following equations represent examples of recursive
equations:

x = 1/(x+1)
x = COS(x)
x = SQRT(X+5)
x = 2^(1/x)
x = 5 + (1/x)

To solve a recursive equation, make sure that you turn on the Iteration setting.
Then convert the equation into a self-referencing formula. To solve the first equa-
tion, enter the following formula into cell A1:

=1/(A1+1)

The formula converges at 0.618033988749895, the value of x that satisfies the
equation.

Sometimes, this technique doesn’t work. For example, consider the following
recursive equation:

x = 5 + (1/x)

If you enter the formula that follows into cell A1, you’ll find that it returns a
#DIV/0! error because the iterations begin with 0 (and dividing by 0 results in an
error):

=5+(1/A1)

To solve this type of equation, you need to use two cells. The following step-by-
step instructions demonstrate:

1. Enter any non-zero value in cell A1.

2. Enter the following formula in cell A2:

=5+(1/A1)

3. Enter the following formula in cell A1:

=A2

Both cells A1 and A2 display 5.19258235429625, the value of x that satisfies the
equation. Note that, in Step 1, entering a non-zero value essentially provides a
non-zero seed for the recursion. After you replace this value with the formula (in

Chapter 16: Intentional Circular References 435

4800-x Ch16.F 8/27/01 11:57 AM Page 435

Step 3), the initial value in cell A1 still operates as the starting value for the for-
mula in cell A2.

The seed cell must reside to the left or above the formula because of the

way Excel performs calculations.

Figure 16-8 shows a worksheet that calculates several recursive equations. Note
that the equations in rows 5 and 6 require a seed value. The formulas in column E
use the values in column C to provide a check of the results. For example, the for-
mula in cell E2 is:

=1/(C2+1)

Figure 16-8: This workbook uses circular references to calculate several
recursive equations.

You can access the workbook shown in Figure 16-8 on the companion

CD-ROM.

Solving Simultaneous Equations
Using a Circular Reference
In some cases, you can use circular references to solve simultaneous equations.
Consider the two simultaneous equations listed here:

3x + 4y = 8
3x + 8y = 20

436 Part V: Miscellaneous Formula Techniques

4800-x Ch16.F 8/27/01 11:57 AM Page 436

You need to find the value of x and the value of y that satisfies both equations.
First, rewrite the equations to express them in terms of x and y. The following rep-
resents the first equation, expressed in terms of x:

x = (8 - 4y)/3

The following equation represents the second equation, expressed in terms of y:

y = (20 - 3x)/8

As shown in Figure 16-9, cell B5 is named X and cell B6 is named Y. The for-
mulas in these cells mirror the previous equations. The formula in B5 (X) appears
like this:

=(8-(4*Y))/3

Figure 16-9: This worksheet solves two simultaneous equations.

The formula is cell B6 (Y) is:

=(20-(3*X))/8

The figure also shows a chart that plots the two equations. The intersection of
the two lines represents the values of X and Y that solve the equations.

Chapter 16: Intentional Circular References 437

4800-x Ch16.F 8/27/01 11:57 AM Page 437

Note the circular reference. The X cell refers to the Y cell, and the Y cell refers to
the X cell. These cells converge to display the solution:

X = -1.333
Y = 3.000

Using intentional circular references to solve simultaneous equations is more of
an interesting demonstration than a practical approach. You’ll find that some iter-
ative calculations never converge. In other words, successive recalculations will
never hone in on a solution. For example, consider the simultaneous equations that
follow. A solution does exist, but you cannot use circular references to find it.

x = 4 - y/2
y = 3 + 2x

The use of matrices presents the best approach for solving simultaneous

equations with Excel. See Chapter 10 for examples.

The companion CD-ROM contains a workbook with two sets of simultane-

ous equations.You can solve one set by using intentional circular references;

you cannot solve the other set using this technique.

Potential Problems with Intentional
Circular References
Although intentional circular references can be useful, using this feature has some
potential problems. Perhaps the best advice is to use this feature with caution, and
make sure you understand how it works.

438 Part V: Miscellaneous Formula Techniques

More about Circular References
For a practical, real-life demonstration of a circular reference, refer to the sidebar,
“About Circular References,” earlier in this chapter.

4800-x Ch16.F 8/27/01 11:57 AM Page 438

To take advantage of an intentional circular reference, you must have the
Iteration setting in effect. When the Iteration setting is in effect, Excel does not
warn you of circular references. Therefore, you run the risk of creating an acciden-
tal circular reference without even knowing about it.

The number of iterations specified in the Maximum iteration field applies to all
formulas in the workbook, not just those that use circular references. If your work-
book contains many complex formulas, these additional iterations can slow things
down considerably. Therefore, when you use intentional circular references, keep
your worksheets very simple.

You may need to distribute a workbook that uses intentional circular references
to other users. If Excel’s Iteration setting is not active when you open the work-
book, Excel displays the circular reference error message, which probably confuses
all but the most sophisticated users.

Summary
This chapter provided an overview of how Excel handles circular references.
Although most circular references indicate an error, there exist some benefits to
writing formulas that use intentional circular references. To take advantage of a
circular reference, you must have the Iteration setting in effect.

The next chapter demonstrates how formulas can expand your chart-making
capabilities.

Chapter 16: Intentional Circular References 439

4800-x Ch16.F 8/27/01 11:57 AM Page 439

4800-x Ch16.F 8/27/01 11:57 AM Page 440

Chapter 17

Charting Techniques
IN THIS CHAPTER

� Creating charts from any number of worksheets or different workbooks

� Plotting functions with one and two variables

� Creating awesome designs with formulas

� Working with linear and nonlinear trendlines

� Useful charting tricks for working with charts

EXCEL SUPPORTS MORE THAN 100 different chart types, and you have almost
complete control over nearly every aspect of each chart. This chapter, which
assumes that you’re familiar with Excel’s charting feature, demonstrates some use-
ful charting techniques — most of which involve formulas.

Representing Data in Charts
Basically, a chart presents a table of numbers visually. Displaying data in a well-
conceived chart can make the data more understandable. Because a chart presents
a picture, charts are particularly useful for understanding a lengthy series of
numbers and their interrelationships. Making a chart can help you to spot trends
and patterns that you otherwise could not identify when examining a range of
numbers.

You create charts from numbers that appear in a worksheet. You can enter these
numbers directly, or you can derive them as the result of formulas. Normally, the
data used by a chart resides in a single worksheet, within one file, but that’s not a
strict requirement. A single chart can use data from any number of worksheets, or
even from different workbooks.

Understanding the SERIES Formula
A chart consists of one or more data series, and each data series appears as a line,
column, bar, and so on. A chart has a SERIES formula for each series in the chart.
When you select a data series in a chart, its SERIES formula appears in the formula

441

4800-x Ch17.F 8/27/01 11:57 AM Page 441

bar. This is not a “real” formula. In other words, you can’t use it in a cell and you
can’t use worksheet functions within the SERIES formula. You can, however, edit
the arguments in the SERIES formula. A SERIES formula has the following syntax:

=SERIES(name, category_labels, values, order)

The arguments you can use in the SERIES formula include:

� name: (Optional) The name used in the legend. If the chart has only one
series, the name argument is used as the title.

� category_labels: (Optional) The range that contains the labels for the cate-
gory axis. If omitted, Excel uses consecutive integers beginning with 1.

� values: (Required) The range that contains the values.

� order: (Required) An integer that specifies the plotting order of the series
(relevant only if the chart has more than one series).

Range references in a SERIES formula are always absolute, and they always
include the sheet name. For example:

=SERIES(Sheet1!B1,,Sheet1!B2:B7,1)

A range reference can consist of a noncontiguous range. If so, each range is sep-
arated by a comma and the argument is enclosed in parentheses. In the following
SERIES formula, the values range consists of B2:B3 and B5:B7:

=SERIES(,,(Sheet1!B2:B3,Sheet1!B5:B7),1)

Although a SERIES formula can refer to data in other worksheets, the data for a
series must reside on a single sheet. The following SERIES formula, for example, is
not valid because the data series references two different worksheets:

=SERIES(,,(Sheet1!B2,Sheet2!B2),1)

USING NAMES IN A SERIES FORMULA
You can substitute range names for the range references in a SERIES formula.
When you do so, Excel changes the reference in the SERIES formula to include the
workbook name. For example, the SERIES formula shown here uses a range named
MyData (located in a workbook named budget.xls). Excel added the workbook
name and exclamation point.

=SERIES(Sheet1!B1,,budget.xls!MyData,1)

442 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:57 AM Page 442

Chapter 17: Charting Techniques 443

Chart-Making Tips
Here I present a number of chart-making tips that you might find helpful:

� To create a chart with a single keystroke, select the data you want to chart
and press F11. The result is a new chart sheet that contains a chart of the
default chart type.

� You can size the chart in a chart sheet according to the window size by using
the View � Sized with Window command. When you enable this setting, the
chart adjusts itself when you resize the workbook window (it always fits per-
fectly in the window). In this mode, the chart that you’re working on may or
may not correspond to how it looks when printed.

� If you have many charts of the same type to create, changing the default
chart format to the chart type with which you’re working is much more effi-
cient than separately formatting each chart. Then you can create all of your
charts without having to select the chart type. To change the default chart
type, select Chart � Chart Type and choose the new default chart type. Then
click the Set as default chart type button. You can also save it as a user-
defined custom chart type so that you can reuse it later. To do so, click the
Custom Types tab and click the Add button.

� To print an embedded chart on a separate page, select the chart and choose
File � Print (or click the Print button). Excel prints the chart on a page by
itself and does not print the worksheet.

� If you don’t want a particular embedded chart to appear on your printout,
right-click the chart and choose Format Chart Area from the shortcut menu.
Click the Properties tab in the Format Chart Area dialog box and remove the
check mark from the Print object check box.

� Sometimes, using a mouse to select a particular chart element is tricky. You
may find it easier to use the keyboard to select a chart element. When a
chart is activated, press the up arrow or down arrow to cycle through all
parts in the chart. When a data series is selected, press the right arrow or left
arrow to select individual points in the series.

� When you select a chart element, you’ll find that many of the toolbar but-
tons that you normally use for worksheet formatting also work with the
selected chart element. For example, if you select the chart’s Plot Area, you
can change its color by using the Fill Color tool on the Formatting toolbar. If
you select an element that contains text, you can use the Font Color tool to
change the color of the text.

Continued

4800-x Ch17.F 8/27/01 11:57 AM Page 443

Using names in a series formula provides a significant advantage: If you change
the range reference for the name, the chart automatically reflects the new data. In
the preceding SERIES formula, for example, assume the range named MyData refers
to A1:A20. The chart displays the 20 values in that range. You can then use the
Insert � Name � Define command to redefine MyData as a different range, say
A1:A30. The chart then displays the 30 data points defined by MyData (no chart
editing is necessary).

As I noted previously, a SERIES formula cannot use worksheet functions. You
can, however, create named formulas (which use functions) and use these named
formulas in your SERIES formula. As you see later in this chapter, this technique
enables you to perform charting tricks that seem impossible.

UNLINKING A CHART SERIES FROM ITS DATA RANGE
Normally, an Excel chart uses data stored in a range. Change the data in the range,
and the chart updates automatically. In some cases, you may want to “unlink” the
chart from its data ranges and produce a static chart — a chart that never changes.
For example, if you plot data generated by various what-if scenarios, you may
want to save a chart that represents some baseline so you can compare it with other
scenarios. There are two ways to create such a chart:

� Paste it as a picture: Activate the chart and then press Shift and choose
Edit � Copy Picture (the Paste Picture command is available only if you
press Shift when you select the Edit menu). Then press the Shift key and
select Edit � Paste Picture. The result is a picture of the copied chart.

444 Part V: Miscellaneous Formula Techniques

Chart-Making Tips (Continued)
� Prior to Excel 97, clicking an embedded chart selected the chart object. You

could then adjust its properties. To activate the chart, you actually had to
double-click it. Beginning with Excel 97, clicking an embedded chart acti-
vates the chart contained inside the chart object. You can adjust the chart
object’s properties by using the Properties tab of the Format Chart dialog
box. To select the chart object itself, press Ctrl while you click the chart.
You may want to select the chart object to change its name by using the
Name box.

� You can delete all data series from a chart. If you do so, the chart appears
empty. It retains its settings, however. Therefore, you can add a data series to
an empty chart and it again looks like a chart.

� For more control over positioning your chart, press Ctrl while you click the
chart. Then use the arrow keys to move the chart one pixel at a time.

� To create a line that continues through a point that has no information, type
the formula =NA() in the blank cells in your range.

4800-x Ch17.F 8/27/01 11:57 AM Page 444

� Convert the range references to arrays: Click a chart series and then click
the formula bar to activate the SERIES formula. Press F9 to convert the
ranges to arrays. Repeat this for each series in the chart. This technique
(as opposed to creating a picture) enables you to continue to edit the
chart. This technique will not work for large amounts of data because
there is a limit to the length of a SERIES formula.

Creating Links to Cells
You can add cell links to various elements of a chart. Adding cell links can make
your charts more dynamic. You can set dynamic links for chart titles, data labels,
additional descriptive text, and pictures.

ADDING TITLE LINKS
The labels in a chart (Chart Title, Category Axis Title, and Value Axis Title) are nor-
mally not linked to any cell. In other words, they contain static text that changes
only when you edit them manually. You can, however, create a link so a title refers
to a worksheet cell.

To create a linked title, first make sure the chart contains the chart element title
that you want. You can use the Chart Options dialog box to add titles to a chart that
doesn’t already have them (select Chart � Chart Options to display this dialog box).
Next, select the title and click in the formula bar. Type an equal sign and then click
the cell that contains the title text. The result is a formula that contains the sheet
reference and the cell reference as an absolute reference (for example,
=Sheet1!A1). Press Enter to attach the formula to the chart title. Figure 17-1
shows a chart in which the Chart Title is linked to cell A1.

Figure 17-1: The Chart Title linked to cell A1

Chapter 17: Charting Techniques 445

4800-x Ch17.F 8/27/01 11:57 AM Page 445

ADDING LINKS TO DATA LABELS
You probably know that Excel enables you to label each data point in a chart. You
do this on the Data Labels tab in the Format Data Series dialog box. Unfortunately,
this feature isn’t very flexible. For example, you can’t specify a range that contains
the labels. You can, however, edit individual data labels. To do so, click once on any
data label to select them all, then click a second time to select the single data label.
Once a single data label is selected, you can add any text you like. Or, you can
specify a link to a cell by clicking the formula bar and entering a reference formula
(such as =Sheet1!A1).

The Power Utility Pak includes a handy utility that makes it easy to add data

labels to your charts by specifying a worksheet range — an often-requested

feature that Microsoft refuses to add. A trial version of the Power Utility Pak

is available on the companion CD-ROM.

ADDING TEXT LINKS
You might want your chart to display some other text (such as a descriptive note)
that’s stored in a cell. Doing so is easy. First, activate the chart. Then click in the
formula bar, type an equal sign, and click the cell that contains the text. Press
Enter. Excel creates a Text Box in the center of your chart (see Figure 17-2). You
can drag this Text Box to its desired location and apply any type of formatting you
like.

Figure 17-2: A Text Box linked to a cell

446 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:57 AM Page 446

To add an unlinked Text Box, just select the chart, type the text in the formula
bar, and press Enter.

Adding objects, such as Text Boxes, to a chart can be very tricky. For example,

you may find that subsequent operations to the chart (such as removing

axes or the legend) may cause the object to disappear from view. This is a

long-time bug that Microsoft refuses to address. For best results, add the

Text Box after you’ve made all other modifications to the chart.

ADDING PICTURE LINKS
Excel has a feature that enables you to display a data table inside of a chart. You
can select this option in Step 3 of the Chart Wizard, or add a data table to an exist-
ing chart by using the Data Table tab of the Chart Options dialog box. The data
table option displays a table that shows the values used in a chart. This can be a
handy feature, but it’s not very flexible. For example, you have limited formatting
options, and you have no control over the position of the data table (it always
appears below the chart). A linked picture of a range presents an alternative to the
data table (see Figure 17-3 for an example).

Figure 17-3: This chart contains a linked picture of the A1:B8 range.

Chapter 17: Charting Techniques 447

4800-x Ch17.F 8/27/01 11:57 AM Page 447

A workbook that demonstrates the use of a linked picture in a chart is avail-

able on the companion CD-ROM.

To create a linked picture in a chart, first create the chart as you normally would.
Then perform the following steps:

1. Select the range that you would like to include in the chart.

2. Select Edit � Copy.

3. Activate the chart.

4. Press Shift, and then select Edit � Paste Picture. This pastes an unlinked
picture of the range.

5. To create the link, select the picture and then type a reference to the range
in the formula bar. You can do this easily by typing an equal sign and
then reselecting the range.

The picture now contains a live link to the range. If you change the values or cell
formatting, the changes will be reflected in the linked picture. This technique also
works with chart sheets.

Charting Progress toward a Goal
You’re probably familiar with a “thermometer” type display that shows the percent-
age of a task that’s completed. It’s relatively easy to create such a display in Excel.
The trick involves creating a chart that uses a single cell (which holds a percentage
value) as a data series.

Figure 17-4 shows a worksheet set up to track daily progress toward a goal:
1,000 new customers in a 15-day period. Cell B18 contains the goal value, and cell
B19 contains a simple sum formula:

=SUM(B2:B16)

Cell B21 contains a formula that calculates the percent of goal:

=B19/B18

As you enter new data in column B, the formulas display the current results.
To create the chart, select cell B21 and click the Chart Wizard button. Notice the

blank row before cell B21. Without this blank row, Excel uses the entire data block
for the chart, not just the single cell. Since B21 is isolated from the other data, the
Chart Wizard uses only the single cell. In Step 1 of the Chart Wizard dialog, specify
a Column chart with the first subtype (Clustered Column). Click Next twice and

448 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:57 AM Page 448

make some additional adjustments on the Step 3 page: add a Chart Title (Title tab),
remove Category (x) axis (Axes tab), remove the legend (Legend tab), and specify
Show value (Data Labels tab). Click Finish to create the chart.

Figure 17-4: This chart displays progress toward a goal.

Then make some additional customizations. Double-click the column to display
the Format Data Series dialog. Click the Options tab, and set the Gap width to 0
(this makes the column occupy the entire width of the plot area). You also may
want to change the pattern used in the column. Do this in the Patterns tab. The
example uses a gradient fill effect. Next, double-click the vertical axis to bring up
the Format Axis dialog. In the Scale tab, set the Minimum to 0 and the Maximum
to 1.

You can make other cosmetic changes as you like. For example, you may want
to change the chart’s width to make it look more like a thermometer, as well as
adjust fonts, colors, and so on.

The workbook containing the progress chart also appears on the compan-

ion CD-ROM.

Creating a Gantt Chart
Gantt charts represent the time required to perform each task in a project. Figure
17-5 shows data used to create the simple Gantt chart shown in Figure 17-6.
Creating a Gantt chart isn’t difficult when using Excel, but it does require some set-
up work.

Chapter 17: Charting Techniques 449

4800-x Ch17.F 8/27/01 11:57 AM Page 449

Figure 17-5: Data used in the Gantt chart

Figure 17-6: You can create a Gantt chart from a bar chart.

You can access a workbook that demonstrates setting up a Gantt chart on

the companion CD-ROM.

Follow these steps to create this chart:

1. Enter the data as shown in Figure 17-5. The formula in cell D2, which was
copied to the rows below it, is:

=B2+C2-1

2. Use the Chart Wizard to create a stacked bar chart from the range A2:C13.
Use the second subtype, labeled Stacked Bar.

450 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:57 AM Page 450

3. In Step 2 of the Chart Wizard, select the Columns option. Also, notice that
Excel incorrectly uses the first two columns as the Category axis labels.

4. In Step 2 of the Chart Wizard, click the Series tab and add a new data
series. Then set the chart’s series to the following:

Series 1: B2:B13

Series 2: C2:C13

Category (x) axis labels: A2:A13

5. In Step 3 of the Chart Wizard, remove the legend and then click Finish to
create an embedded chart.

6. Adjust the height of the chart so that all the axis labels are visible. You
can also accomplish this by using a smaller font size.

7. Access the Format Axis dialog box for the horizontal axis. Adjust the hor-
izontal axis Minimum and Maximum scale values to correspond to the
earliest and latest dates in the data (note that you can enter a date into
the Minimum or Maximum edit box). You also may want to change the
date format for the axis labels.

8. Access the Format Axis dialog box for the vertical axis, and click the
Scale tab. Select the option labeled Categories in Reverse Order, and also
set the option labeled Value (Y) Axis Crosses at Maximum.

9. Select the first data series and access the Format Data Series dialog box.
On the Patterns tab, set Border to None and Area to None. This makes the
first data series invisible.

10. Apply other formatting as desired.

Creating a Comparative Histogram
With a bit of creativity, you can create charts that you thought impossible with
Excel. For example, Figure 17-7 shows a comparative histogram chart. Such a
chart, sometimes known as a population pyramid, often displays population data.

Chapter 17: Charting Techniques 451

4800-x Ch17.F 8/27/01 11:57 AM Page 451

Figure 17-7: Producing this comparative histogram chart requires a few tricks.

The companion CD-ROM contains a workbook that demonstrates a

comparative histogram chart.

Follow these steps to create the chart:

1. Enter the data as shown in Figure 17-7. Notice that the values for females
are entered as negative numbers.

2. Select A1:C8 and create a 2D bar chart. Use the subtype labeled Clustered
Bar.

3. Apply the following custom number format to the horizontal axis:

0%;0%;0%

This custom format eliminates the negative signs in the percentages.

4. Select the vertical axis and access the Format Axis dialog box. Click the
Patterns tab and remove all tick marks. Set the Tick mark labels option to
Low. This keeps the axis in the center of the chart, but displays the axis
labels at the left side.

5. Select either of the data series and then access the Format Data Series dialog
box. Click the Options tab and set the Overlap to 100 and the Gap width to 0.

6. Delete the legend.

7. Add two Text Boxes to the chart (Females and Males), to substitute for the
legend.

8. Apply other formatting as desired.

452 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:57 AM Page 452

Creating a Box Plot
A box plot (sometimes known as a quartile plot) is often used to summarize data.
Figure 17-8 shows a box plot created for four groups of data. The raw data appears
in columns A through D. The range G2:J7, used in the chart, contains formulas that
summarize the data. Table 17-1 shows the formulas in column G (which were
copied to the three columns to the right).

Figure 17-8: This box plot summarizes the data in columns A through D.

TABLE 17-1 FORMULAS USED TO CREATE A BOX PLOT

Cell Calculation Formula

G2 25th Percentile =QUARTILE(A2:A26,1)

G3 Minimum =MIN(A2:A26)

G4 Mean =AVERAGE(A2:A26)

G5 50th Percentile =QUARTILE(A2:A26,2)

G6 Maximum =MAX(A2:A26)

G7 75th Percentile =QUARTILE(A2:A26,3)

Chapter 17: Charting Techniques 453

4800-x Ch17.F 8/27/01 11:57 AM Page 453

Follow these steps to create the box plot:

1. Select the range F1:J7.

2. Click the Chart Wizard button.

3. In Step 1 of the Chart Wizard, select a Line chart type and the fourth chart
subtype (Line with markers). Click Next.

454 Part V: Miscellaneous Formula Techniques

Handling Missing Data
Sometimes, data that you chart may lack one or more data points. Excel offers several
ways to handle the missing data. You don’t specify these options in the Format Data
Series dialog box or even in the Chart Options dialog box. Rather, you must select the
chart, choose Tools � Options, and then click the Chart tab, shown here.

This setting applies only to the active chart. You must have an active chart when you
open the Options dialog box. Otherwise, the option is grayed. This is an excellent
example of a setting that shows up in an unexpected dialog box.

The options that you set apply to the entire active chart, and you can’t set a different
option for different series in the same chart. The following are the options in the
Chart panel for the active chart:

� Not plotted (leave gaps): Missing data gets ignored, causing the data series
to have a gap

� Zero: Missing data is treated as zero

� Interpolated: Missing data is calculated by using data on either side of the
missing point(s). This option is available only for line charts.

4800-x Ch17.F 8/27/01 11:57 AM Page 454

4. In Step 2 of the Chart Wizard, select the Rows option. Click Finish to cre-
ate the chart.

5. Activate the first data series (25th Percentile), open the Format Data Series
dialog box, and click the Patterns tab. Set the Line option to None. Set the
Marker Style to None. Click the Options tab and place a check mark next
to High-low lines and Up-down bars. Adjust the colors if desired.

6. Activate the second data series (Minimum), open the Format Data Series
dialog box, and click the Patterns tab. Set the Line option to None. Set the
Marker Style to a horizontal bar. Adjust the colors if desired.

7. Activate the third data series (Mean), open the Format Data Series dialog
box, and click the Patterns tab. Set the Line option to None. Set the
Marker Style to a diamond shape. Adjust the colors if desired.

8. Activate the fourth data series (50th Percentile), open the Format Data
Series dialog box, and click the Patterns tab. Set the Line option to None.
Set the Marker Style to a horizontal bar. Adjust the colors if desired.

9. Activate the fifth data series (Maximum), open the Format Data Series dia-
log box, and click the Patterns tab. Set the Line option to None. Set the
Marker Style to a horizontal bar. Adjust the colors if desired.

10. Activate the sixth data series (75th Percentile), open the Format Data
Series dialog box, and click the Patterns tab. Set the Line option to None.
Set the Marker Style to None. Adjust the colors if desired.

After performing all of these steps, you may want to create a custom chart

type to simplify the creation of additional box plots. Activate the chart, and

select Chart � Chart Type. Click the Custom Types tab and choose the User-

defined option. Click the Add button and specify a name and description for

your chart.

Plotting Every nth Data Point
Normally, Excel doesn’t plot data that resides in a hidden row or column. You can
sometimes use this to your advantage, because it’s an easy way to control what
data appears in the chart.

Suppose you have a lot of data in a column, and you want to plot only every
tenth data point. One way to accomplish this is to use AutoFilter in conjunction
with a formula. Figure 17-9 shows a worksheet with AutoFilter in effect. The chart
plots only the data in the visible (filtered) rows and ignores the values in the hidden
rows.

Chapter 17: Charting Techniques 455

4800-x Ch17.F 8/27/01 11:57 AM Page 455

Figure 17-9: This chart plots every nth data point (specified in A1) by ignoring
data in the rows hidden by AutoFiltering.

The workbook shown in Figure 17-9 also appears on the companion

CD-ROM.

Cell A1 contains the value 10. The value in this cell determines which rows to
hide. Column B contains identical formulas that use the value in cell A1. For exam-
ple, the formula in cell B3 is:

=MOD(ROW(),A1)

This formula uses the MOD function to calculate the remainder when the row
number (returned by the ROW function) is divided by the value in A1. As a result,
every nth cell (the value in cell A1 determines n) contains 0. Then use the Data �
Filter � AutoFilter command to turn on AutoFiltering. Set up the AutoFilter to dis-
play only the rows that contain a 0 in column B. Note that if you change the value
in cell A1, you need to respecify the AutoFilter criteria for column B (the rows will
not hide automatically).

The preceding formula uses the row number to determine which cells are visible.
If you would prefer that the chart always includes the first data point, use the fol-
lowing formula, which refers to the cell (A4) that contains the first data point:

=MOD(ROW()-ROW(A4),A1)

456 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:57 AM Page 456

In some cases, you may not like the idea that hidden data is not displayed in

your chart.To override this, activate the chart and select the Tools � Options

command. In the Options dialog box, click the Chart tab and remove the

check mark from the check box labeled Plot visible cells only.

Updating a Data Series Automatically
It’s not difficult to change the data range used by a chart, but in some cases you
may prefer a chart that updates automatically when you enter new data. If you
have a chart that displays daily sales, for example, you probably need to change the
chart’s data range each day you add new data. This section describes a way to force
Excel to update the chart’s data range whenever you add new data to your
worksheet.

A workbook that demonstrates automatically updating a data series appears

on the companion CD-ROM.

To force Excel to update your chart automatically when you add new data, fol-
low these steps:

1. Create the worksheet shown in Figure 17-10.

2. Select Insert � Name � Define to bring up the Define Name dialog box. In
the Names in workbook field, enter Date. In the Refers to field, enter this
formula:

=OFFSET(Sheet1!A2,0,0,COUNTA(Sheet1!$A:$A)-1)

3. Click Add. Notice that the OFFSET function refers to the first data point
(cell A2) and uses the COUNTA function to get the number of data points
in the column. Because column A has a heading in row 1, the formula
subtracts 1 from the number.

4. Type Sales in the Names in workbook field. Enter this formula in the
Refers to field:

=OFFSET(Sheet1!B2,0,0,COUNTA(Sheet1!$B:$B)-1)

5. Click Add and then OK to close the dialog box.

6. Activate the chart and select the data series.

Chapter 17: Charting Techniques 457

4800-x Ch17.F 8/27/01 11:57 AM Page 457

7. Replace the range references with the names that you defined in Steps 2
and 4. The formula should read:

=SERIES(,Sheet1!Date,Sheet1!Sales,1)

Figure 17-10: This chart updates automatically whenever
you add new data to columns A and B.

After you perform these steps, the chart updates automatically when you add
data to columns A and B.

To use this technique for your own data, make sure that the first argument

for the OFFSET function refers to the first data point, and that the argument

for COUNTA refers to the entire column of data. Also, if the columns used for

the data contain any other entries, COUNTA returns an incorrect value.

Plotting the Last n Data Points
You can use a technique that makes your chart show only the most recent data
points in a column. For example, you can create a chart that always displays the
most recent 12 months of data (see Figure 17-11).

The instructions that follow describe how to create the chart in this figure.

1. Create a worksheet like the one shown in Figure 17-11.

2. Select Insert � Name � Define to bring up the Define Name dialog box. In
the Names in workbook field, enter Dates. In the Refers to field, enter this
formula:

=OFFSET(Sheet1!A1,COUNTA(Sheet1!$A:$A)-12,0,12,0)

458 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:57 AM Page 458

Figure 17-11: This chart displays the 12 most recent data points.

3. Click Add. Notice that the OFFSET function refers to cell A1 (not the cell
with the first month).

4. Type Sales in the Names in workbook field. Enter this formula in the
Refers to field:

=OFFSET(Sheet1!B1,COUNTA(Sheet1!$B:$B)-12,0,12,1)

5. Click Add and then click OK to close the dialog box.

6. Activate the chart and select the data series.

7. Replace the range references with the names that you defined in Steps 2
and 4. The formula should read:

=SERIES(,Sheet1!Dates,Sheet1!Sales,1)

To plot a different number of data points, adjust the formulas entered in

Steps 2 and 4. Replace both occurrences of 12 with your new value.

Chapter 17: Charting Techniques 459

4800-x Ch17.F 8/27/01 11:57 AM Page 459

Plotting Data Interactively
This section describes two techniques that you can use to get maximum value out
of a single chart. As you’ll see, the user determines data plotted by the chart — either
by activating a row or selecting from a drop-down list.

Plotting Based on the Active Row
Figure 17-12 shows a chart that displays the data in the row that contains the cell
pointer. When you move the cell pointer, press F9 and the chart displays the data
from that row.

Figure 17-12: Pressing F9 displays the data in the row that contains the
cell pointer.

The chart uses two named formulas, each with a mixed reference (the column
part is absolute, but the row part is relative). The following names assume that cell
A3 was active when the names were created. ChartTitle is defined as:

=OFFSET($A3,0,0)

ChartData is defined as:

=OFFSET($A3,0,1,1,5)

460 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:57 AM Page 460

The SERIES formula for the chart’s data series uses these named formulas. The
SERIES formula looks like this:

=SERIES(Sheet1!ChartTitle,Sheet1!B2:F2,Sheet1!ChartData,1)

When the worksheet is recalculated, the named formulas get updated based on
the active cell.

You can access the workbook shown in Figure 17-12 on the companion

CD-ROM.

The worksheet contains a button that executes a simple VBA macro that deter-
mines if the cell pointer appears in a row that contains data (in other words, rows 3
through 16). If so, the sheet is calculated. If not, nothing happens. The macro list-
ing follows:

Sub UpdateChart()
If ActiveCell.Row > 2 And ActiveCell.Row < 17 Then _
ActiveSheet.Calculate

End Sub

Selecting Data from a Combo Box
Figure 17-13 shows a chart that displays data as specified by a drop-down control
(known as a Combo Box). The chart uses the data in B1:E2, but the month selected
in the Combo Box determines the contents of these cells. Range A6:D17 contains
the monthly data, and formulas in B2:E2 display the data using the value in cell
A2. For example, when cell A4 contains the value 4, the chart displays data for
April (the fourth month).

The formula in cell B2 is:

=INDEX(A6:A17,A2)

This formula was copied to C2:E2.
The key here is to get the Combo Box to display the month names and place the

selected month index into cell A2. To create the Combo Box:

1. Select View � Toolbars � Forms to display the Forms toolbar.

2. On the Forms toolbar, click the control labeled Combo Box, and drag it
into the worksheet to create the control.

Chapter 17: Charting Techniques 461

4800-x Ch17.F 8/27/01 11:57 AM Page 461

Figure 17-13: Selecting data to plot using a Combo Box

3. Double-click the Combo Box to display the Format Control dialog box.

4. In the Format Control dialog box, click the Control tab.

5. Specify A6:A17 as the Input range, and A2 as the Cell link.

You’ll find that the Combo Box displays the month names and puts the index
number of the selected month into cell A2. The formulas in row 2 display the
appropriate data, which displays in the chart.

The workbook containing the Combo Box example appears on the com-

panion CD-ROM.

Plotting Functions with One Variable
Excel’s charting tools can plot various mathematical and trigonometric functions. For
example, Figure 17-14 shows a plot of the SIN function, for values of x (expressed in
radians) from –5 to +5 in increments of 0.5. The function is expressed as:

y = SIN(x)
The chart is an XY Scatter chart, with the x values stored in column A and the y

values in column B. Each pair of x and y values appear as a data point in the chart,
and the points connect with a line.

462 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:57 AM Page 462

Figure 17-14: This chart plots the SIN(x).

CREATING PLOTS
The key to creating plots of functions, of course, lies in coming up with two data
ranges: one for the x values and one for the y values. The y values will be generated
by formulas.

When plotting functions, make sure you select the XY chart type. If you use

any other chart type, Excel always uses equal increments on the x-axis.

A BETTER WAY TO PLOT FUNCTIONS
You can use a technique developed by Stephen Bullen, an Excel expert extraordinaire.
This method plots functions or formulas automatically, without actually generating
any values in the worksheet! This is one of the most impressive Excel applications I’ve
seen, and I’m grateful to Stephen for allowing me to use it in this book.

The companion CD-ROM features a workbook that demonstrates Stephen

Bullen’s plotting technique.

Figure 17-15 shows an example that plots the following function for 25 x values
ranging from –5 to +5:

y = (x^3)*(x^2)

Chapter 17: Charting Techniques 463

4800-x Ch17.F 8/27/01 11:57 AM Page 463

Figure 17-15: Plotting functions using a technique developed by Stephen Bullen

Stephen’s technique uses two named formulas: X and Y. The SERIES function in
the chart, which uses these defined names, looks like this:

=SERIES(,Sheet1!X,Sheet1!Y,1)

To plot a function using this worksheet:

1. Enter the formula as text into cell B7.

2. Enter the beginning value for x into cell C10.

3. Enter the ending value for x into cell C11.

4. Specify the number of points to plot in cell C12.

So how does it work? Let’s start by analyzing the X formula, which generates the
x values for the chart series:

=C10+(ROW(OFFSET(B1,0,0,C12,1))-1)*(C11-C10)/(C12-1)

Use Excel’s Insert � Name � Define command to examine the named for-

mulas in this workbook.

This formula uses the OFFSET function to generate an array of n values, where
the value in cell C12 determines n. The array begins with the value in C10 and ends

464 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:57 AM Page 464

with the value in C11. The following expression calculates the increment between
successive x values (calculated by subtracting the ending value from the beginning
value, and dividing by the number of points minus 1):

=(C11-C10)/(C12-1)

As an example, when x begins with –3, ends with 3, and contains five data
points, the following array is created:

{-3, -1.5, 0, 1.5, 3}

The Y formula uses the EVALUATE function to create an array of y values for the
chart:

=EVALUATE(B7&”+x*0”)

EVALUATE is an XLM macro function, and it cannot be used in a worksheet for-
mula. This function essentially evaluates a string expression and returns a result.
Although you cannot use the EVALUATE function in a worksheet formula, you can
use it in a name.

Suppose B7 contains the string SIN(x), and the first x value is –3. The Y formula
for the first data point is:

=EVALUATE(“SIN(x)”&”+x*0”)
Simplified, the function’s argument is:SIN(X)+X*0

The “+x*0” portion of the formula forces the result to be numeric.

The EVALUATE function grabs the first value (–3) from the array generated by
the X formula, evaluates the following expression, and returns the result as the first
y value:

SIN(-3)-3*0

The workbook also contains a formula in cell G8, which is hidden by the chart.
The chart’s title is linked to this cell, which contains the following formula:

=A7&B7&TEXT(NOW(),””)

Chapter 17: Charting Techniques 465

4800-x Ch17.F 8/27/01 11:57 AM Page 465

This formula concatenates cells A7 and B7, and uses the NOW function to force
an update of the chart if either of these cells is changed.

Plotting Functions with Two Variables
The preceding section described how to plot functions that use a single variable.
For example, you can plot the following function for various values of x:

y = x^2

You also can plot functions that use two variables. For example, the following
function calculates a value of z for various values of two variables (x and y):

z = SIN(x) * COS(y)

Figure 17-16 shows a surface chart that plots the value of z for x values ranging
from –3.0 to 0, and for y values ranging from 2.0 to 5.0. Both x and y use an incre-
ment of 0.15.

Figure 17-16: Using a surface chart to plot a function with two variables

If you work with surface charts, you may notice that this chart type has some
serious limitations. Ideally, you want to create an “XYZ surface chart,” in which
you supply various values for X, Y, and Z. Unfortunately, Excel does not support
this type of chart.

A surface chart in Excel essentially shows a 3-D view of what looks like a rub-
ber sheet stretched over a 3-D column chart. The example in Figure 17-16 contains
21 data series (corresponding to values of y), each of which contains 21 data points
(corresponding to values of x).

466 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:57 AM Page 466

To create a meaningful 3-D surface chart, you need to start with a 2-D range
with the upper left cell empty. The top row should contain increasing or decreasing
values of x with a constant difference between each x value. The left column should
contain increasing or decreasing values of y with a constant difference between y
values. The z values fill in the remaining cells corresponding to the respective x-y
pair. Select the entire range as the source data for the chart.

Chapter 17: Charting Techniques 467

“Secret” Formatting Tips for Surface Charts
You may discover that Excel does not permit you to select an individual data series in
a surface chart. Because of this, you cannot perform the types of formatting normally
available in the Format Data Series dialog box.

You can apply some types of formatting to a Surface chart, but Excel makes you jump
through a few hoops to get to the proper dialog box — Format Legend Key (see the
accompanying figure). To get to this dialog box, make sure the Surface chart displays
a legend. Then click the legend to select it and then click any legend key (a colored
square to the left of the legend entry). Double-click the selected legend key and you’ll
get the Format Legend Key dialog box.

� Use the Patterns tab to change the color of the selected legend key; this also
changes the color of the corresponding data series. If you would like your Surface
chart to display using a single color, you need to change each legend key.

� Use the Options tab to change the depth of the chart. You can change the
chart’s depth by changing this setting while any legend key is selected.

� You can also apply 3-D shading in the Options tab. Again, this setting applies
to the entire chart, not just the data series that corresponds to the selected
legend entry.

4800-x Ch17.F 8/27/01 11:57 AM Page 467

Creating Awesome Designs
Figure 17-17 shows an example of an XY chart that displays “hypocycloid” curves
using random values. This type of curve is the same as that generated by Hasbro’s
popular SpiroGraph toy, which you may remember from childhood.

Figure 17-17: A hypocycloid curve

The companion CD-ROM contains a workbook with a more sophisticated

example of the technique shown in Figure 17-17.

The chart uses data in columns D and E (the x and y ranges). These columns con-
tain formulas that rely on data in columns A through C. The first column (column
D) consists of the following formula:

=(A5-B5)*COS(C5)+B5*COS((A5/B5-1)*C5)

The formula in the second column (column E) is as follows:

=(A5-B5)*SIN(C5)-B5*SIN((A5/B5-1)*C5)

468 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:58 AM Page 468

Pressing F9 recalculates the worksheet, which generates new increment values
(random) for columns A through C, and creates a new display in the chart. The vari-
ety (and beauty) of charts generated using these formulas may amaze you.

Working with Trendlines
With some charts, you may want to plot a trendline that describes the data. A
trendline points out general trends in your data. In some cases, you can forecast
future data with trendlines. A single series can have more than one trendline.

In general, only XY Scatter charts should use a trendline. If you use a different

chart type (such as Column or Line), the x values are assumed to be a series

of integers that begin with 1.

Excel makes adding a trendline to a chart quite simple. Although you might
expect this option to appear in the Format Data Series dialog box, it doesn’t. You
must go to the Add Trendline dialog box, shown in Figure 17-18, which you access
by selecting Chart � Add Trendline. This command is available only when a data
series is selected.

Figure 17-18: The Add Trendline dialog box
offers several types of automatic trendlines.

The type of trendline that you choose depends on your data. Linear trends are
the most common type, but you can describe some data more effectively with
another type. When you click the Options tab in the Add Trendline dialog box,
Excel displays the options shown in Figure 17-19.

Chapter 17: Charting Techniques 469

4800-x Ch17.F 8/27/01 11:58 AM Page 469

Figure 17-19: The Options tab in the Add
Trendline dialog box

The Options tab enables you to specify a name to appear in the legend and the
number of periods that you want to forecast. Additional options enable you to set
the intercept value, specify that the equation used for the trendline should appear
on the chart, and choose whether the R-squared value appears on the chart.

When Excel inserts a trendline, it may look like a new data series, but it’s not.
It’s a new chart element with a name, such as Series 1 Trendline 1. And, of course,
it does not have a corresponding SERIES formula. You can double-click a trendline
to change its formatting or its options.

Linear Trendlines
Figure 17-20 shows two charts. The chart on the left depicts a data series without a
trendline. As you can see, the data seems to be “linear” over time. The chart on the
right is the same chart, but with a linear trendline that shows the trend in the data.

Figure 17-20: Before (left chart) and after (right chart) adding a linear trendline
to a chart

470 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:58 AM Page 470

The workbook shown in Figure 17-21 also appears on the companion

CD-ROM.

The second chart also uses the options to display the equation and the R-squared
value. In this example, the equation is:

y = 53.194x + 514.93

The R-squared value is 0.6748.

To display more or fewer decimal places in the equation and R-squared

value, select the box and click the Increase Decimal or Decrease Decimal

button on the Formatting toolbar.

What do these numbers mean? You can describe a straight line with an equation
of the form:

y = mx +b

For each value of x (in this case, column B), you can calculate the predicted
value of y (the value on the trendline) by using this equation. The variable m repre-
sents the slope of the line and b represents the y-intercept. For example, the month
of February has an x value of 2 and a y value of 743. The predicted value for
February, obtained using the following formula, is 621.318:

=(53.194*2)+514.93

The R-squared value, sometimes referred to as the coefficient of determination,
ranges in value from 0 to 1. This value indicates how closely the estimated values
for the trendline correspond to your actual data. A trendline is most reliable when
its R-squared value is at or near 1.

CALCULATING THE SLOPE AND Y-INTERCEPT
As you know, Excel can display the equation for the trendline in a chart. This equa-
tion shows the slope (m) and y-intercept (b) of the best-fit trendline. You can calcu-
late the value of the slope and y-intercept yourself, using the LINEST function in a
formula.

Figure 17-21 shows 10 data points (x values in column B, y values in column C).

Chapter 17: Charting Techniques 471

4800-x Ch17.F 8/27/01 11:58 AM Page 471

Figure 17-21: Using the LINEST function to calculate slope and
y-intercept

The formula that follows is an array formula that displays its result (the slope
and y-intercept) in two cells:

{=LINEST(C2:C11,B2:B11) }

To enter this formula, start by selecting two cells (in this example, G2:H2). Then
type the formula (without the brackets), and press Ctrl+Shift+Enter. Cell G2 displays
the slope; cell H2 displays the y-intercept.

CALCULATING PREDICTED VALUES
Once you know the values for the slope and y-intercept, you can calculate the pre-
dicted y value for each x. Figure 17-22 shows the result. Cell E2 contains the fol-
lowing formula, which is copied down the column:

=(B2*G2)+H2

Figure 17-22: Column D contains formulas that calculate the
predicted values for y.

The calculated values in column E represent the values used to plot the linear
trendline. You can calculate predicted values of y without first computing the slope

472 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:58 AM Page 472

and y-intercept. You do so with an array formula that uses the TREND function.
Select D2:D11, type the following formula (without the brackets), and press
Ctrl+Shift+Enter:

{=TREND(C2:C11,B2:B11)}

LINEAR FORECASTING
When your chart contains a trendline, you can instruct Excel to forecast and plot
additional values. You do this on the Options tab in the Format Trendline dialog
box (or the Options tab in the Add Trendline dialog box). Just specify the number
of periods to forecast. Figure 17-23 shows a chart that forecasts results for two sub-
sequent periods.

Figure 17-23: Using a trendline to forecast values for two additional
periods of time

If you know the values of the slope and y-intercept (see “Calculating the Slope
and Y-Intercept,” earlier in the chapter), you can calculate forecasts for other val-
ues of x. For example, to calculate the value of y when x = 11 (November), use the
following formula:

=(53.194*11)+514.93

You can also forecast values by using the FORECAST function. The following
formula, for example, forecasts the value for November (that is, x = 11) using
known x and known y values:

=FORECAST(11,C2:C11,B2:B11)

Chapter 17: Charting Techniques 473

4800-x Ch17.F 8/27/01 11:58 AM Page 473

CALCULATING R-SQUARED
The accuracy of forecasted values depends on how well the linear trendline fits
your actual data. The value of R-squared represents the degree of fit. R-squared
values closer to 1 indicate a better fit — and more accurate predictions. In other
words, you can interpret R-squared as the proportion of the variance in y attribut-
able to the variance in x.

As described previously, you can instruct Excel to display the R-squared value in
the chart. Or, you can calculate it directly in your worksheet using the RSQ func-
tion. The following formula calculates R-squared for x values in B1:B11 and y val-
ues for C1:C11.

=RSQ(B2:B11,C2:C11)

The value of R-squared calculated by the RSQ function is valid only for a lin-

ear trendline.

Nonlinear Trendlines
Curve fitting refers to the process of making projections beyond a data range
(extrapolation) or for making estimates between acquired data points (interpola-
tion). Besides linear trendlines, an Excel chart can display trendlines of the follow-
ing types:

� Logarithmic: Used when the rate of change in the data increases or
decreases quickly, and then flattens out.

� Power: Used when the data consists of measurements that increase at a
specific rate. The data cannot contain zero or negative values.

� Exponential: Used when data values rise or fall at increasingly higher
rates. The data cannot contain zero or negative values.

� Polynomial: Used when data fluctuates. You can specify the order of the
polynomial (from 2 to 6) depending on the number of fluctuations in the
data.

The Type tab in the Trendline dialog box offers the option of Moving aver-

age, which really isn’t a trendline. This option, however, can be useful for

smoothing out “noisy” data. The Moving average option enables you to

specify the number of data points to include in each average. For example, if

you select 5, Excel averages every group of five data points.

474 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:58 AM Page 474

Earlier in this chapter, I described how to calculate the slope and y-intercept for
the linear equation that describes a linear trendline. Nonlinear trendlines also have
equations, as described in the sections that follow.

The companion CD-ROM contains a workbook with the nonlinear trendline

examples described in this section.

LOGARITHMIC TRENDLINE
The equation for a logarithmic trendline is:

y = (c * LN(x)) - b

Figure 17-24 shows a chart with a logarithmic trendline added. A single array
formula in E2:F2 calculates the values for c and b. The formula is:

{=LINEST(C2:C11,LN(B2:B11))}

Figure 17-24: A chart displaying a logarithmic trendline

Chapter 17: Charting Techniques 475

4800-x Ch17.F 8/27/01 11:58 AM Page 475

Column C shows the predicted y values for each value of x, using the calculated
values for b and c. For example, the formula in cell C2 is:

=(E2*LN(A2))+F2

As you can see, a logarithmic trendline does not provide a good fit for this data.
The R-square value is low, and the trendline does not match the data.

POWER TRENDLINE
The equation for a power trendline looks like this:

y = c * x^b

Figure 17-25 shows a chart with a power trendline added. The first element in a
two-cell array formula in E2:F2 calculates the values for b. The formula is:

=LINEST(LN(B2:B11),LN(A2:A11),,TRUE)

Figure 17-25: A chart displaying a power trendline

The following formula, in cell F3, calculates the value for c:

=EXP(F2)

476 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:58 AM Page 476

Column C shows the predicted y values for each value of x, using the calculated
values for b and c. For example, the formula in cell C2 is:

=F3*(A2^E2)

EXPONENTIAL TRENDLINE
The equation for an exponential trendline looks like this:

y = c * EXP(b * x)

Figure 17-26 shows a chart with an exponential trendline added. The first
element in a two-cell array formula in F2:G2 calculates the values for b. The
formula is:

{=LINEST(LN(B2:B11),A2:A11)}

Figure 17-26: A chart displaying an exponential trendline

The following formula, in cell G3, calculates the value for c:

=EXP(G2)

Chapter 17: Charting Techniques 477

4800-x Ch17.F 8/27/01 11:58 AM Page 477

Column C shows the predicted y values for each value of x, using the calculated
values for b and c. For example, the formula in cell C2 is:

=G3*EXP(F2*A2)

Column D uses the GROWTH function in an array formula to generate predicted
y values. The array formula, entered in D2:D10, appears like this:

{=GROWTH(B2:B11,A2:A11)}

POLYNOMIAL TRENDLINE
When you request a polynomial trendline, you also need to specify the order of the
polynomial (ranging from 2 through 6). The equation for a polynomial trendline
depends on the order. The following equation, for example, is for a third-order
polynomial trendline:

y = (c3 * x^3) + (c2 * x^2) + (c1 * x^1) + b
Notice that there are three c coefficients (one for each order).
Figure 17-27 shows a chart with a third-order polynomial trendline added. A

four-element array formula entered in F2:I2 calculates the values for each of three
c coefficients and the b coefficient. The formula is:

{=LINEST(B2:B11,A2:A11^{1,2,3})}

Figure 17-27: A chart displaying a polynomial trendline

478 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:58 AM Page 478

Column C shows the predicted y values for each value of x, using the calculated
values for b and the three c coefficients. For example, the formula in cell C2 is:

=(F2*A2^3)+(G2*A2^2)+(H2*A2)+I2

Useful Chart Tricks
This section contains a number of useful charting tricks that I’ve accumulated over
the years. These tricks include storing multiple charts on a chart sheet, viewing an
embedded chart in a window, changing worksheet values by dragging data points
in a chart, and animating charts.

Storing Multiple Charts on a Chart Sheet
Most Excel users would agree that a chart sheet holds a single chart. Most of the
time, that’s a true statement. However, it’s certainly possible to store multiple charts
on a single chart sheet. In fact, Excel enables you to do this directly. If you activate
an embedded chart and then select Chart � Location, Excel displays its Chart
Location dialog box. If you select the As new sheet option and specify an existing
chart sheet as the location, you see the dialog box shown in Figure 17-28. Click OK
and the chart appears on top of the chart in the chart sheet.

Figure 17-28: Excel enables you to relocate
an embedded chart to an existing chart sheet.

Generally, you’ll want to add embedded charts to an empty chart sheet. To create
an empty chart sheet, select a single blank cell and press F11. Or, you can select the
chart area in a chart sheet and press Del.

By storing multiple charts on a chart sheet, you can take advantage of the
View � Sized with Window command to automatically scale the charts to the win-
dow size and dimensions. Figure 17-29 shows an example of a chart sheet that con-
tains six embedded charts.

This workbook is available on the companion CD-ROM.

Chapter 17: Charting Techniques 479

4800-x Ch17.F 8/27/01 11:58 AM Page 479

Figure 17-29: This chart sheet contains six embedded charts.

Viewing an Embedded Chart in a Window
When you activate an embedded chart, the chart actually is contained in a window
that is normally invisible. To see an embedded chart in its own window, right-click
the embedded chart and select Chart Window from the shortcut menu. The embed-
ded chart remains on the worksheet, but the chart also appears in its own floating
window. You can move and resize this window (but you can’t maximize it). If you
move the window, you’ll notice that the embedded chart still displays in its original
location. Activating any other window makes the embedded chart window invisible
again.

Changing a Worksheet Value
by Dragging a Data Point
Excel provides an interesting chart-making feature that also can prove somewhat
dangerous. This feature enables you to change the value in a worksheet by drag-
ging the data markers on two-dimensional line charts, bar charts, column charts,
XY charts, and bubble charts.

480 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:58 AM Page 480

Here’s how it works. Select an individual data point in a chart series (not the
entire series) and then drag the point in the direction in which you want to adjust
the value. As you drag the data marker, the corresponding value in the worksheet
changes to correspond to the data point’s new position on the chart.

If the value of a data point that you move is the result of a formula, Excel dis-
plays its Goal Seek dialog box. Use this dialog box to specify the cell that Excel
should adjust to make the formula produce the result that you pointed out on the
chart. This technique is useful if you know what a chart should look like and you
want to determine the values that will produce the chart.

Obviously, this feature can be dangerous, because you inadvertently can

change values that you shouldn’t — so exercise caution.

Using Animated Charts
Most people don’t realize it, but Excel is capable of performing simple animations
using shapes and charts (animations require macros). Consider the XY chart shown
in Figure 17-30.

Figure 17-30: A simple VBA procedure turns this chart into an interesting animation.

The x values (column A) depend on the value in cell A1. The value in each row
represents the previous row’s value, plus the value in A1. Column B contains for-
mulas that calculate the SIN of the corresponding value in column A. The follow-
ing simple procedure produces an interesting animation. It simply changes the
value in cell A1, which causes the values in the x and y ranges to change.

Chapter 17: Charting Techniques 481

4800-x Ch17.F 8/27/01 11:58 AM Page 481

Sub AnimateChart()
Range(“A1”) = 0
For i = 1 To 150

Range(“A1”) = Range(“A1”) + 0.035
Next i
Range(“A1”) = 0

End Sub

The companion CD-ROM contains a workbook that features this animated

chart, plus several other animation examples.

Creating a “Gauge” Chart
Figure 17-31 shows what appears to be a new chart type that resembles a gauge.
Actually, it’s a standard pie chart, but with one hidden slice. The hidden slice occu-
pies 50 percent of the chart, and it was hidden by setting its fill color to transpar-
ent and specifying no border.

The pie chart uses the values in range A1:A3. Cell A1 contains the value 1, and
this represents the hidden slice. Cell A2 contains the value that will appear in the
gauge. Cell A3 contains this simple formula:

=1-A2

Figure 17-31: Hiding one slice of a pie chart creates a gauge chart.

482 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:58 AM Page 482

Creating a “Clock” Chart
Figure 17-32 shows an XY chart formatted to look like a clock. It not only looks
like a clock, but it also functions like a clock. There is really no reason why anyone
would need to display a clock such as this on a worksheet, but creating the work-
book was challenging, and you may find it instructive.

Figure 17-32: This fully functional clock is actually an XY chart in disguise.

The chart uses four data series: one for the hour hand, one for the minute hand,
one for the second hand, and one for the numbers. The last data series draws a cir-
cle with 12 points. The numbers consist of manually entered data labels. (See the
sidebar, “Plotting a Circle.”)

The formulas listed in Table 17-2 calculate the data series for the clock hands
(the range G4:L4 contains zero values, not formulas).

TABLE 17-2 FORMULAS USED TO GENERATE A CLOCK CHART

Cell Description Formula

G5 Origin of hour hand =0.5*SIN((HOUR(NOW())+(MINUTE(NOW())/60))
*(2*PI()/12))

H5 End of hour hand =0.5*COS((HOUR(NOW())+(MINUTE(NOW())/60))
*(2*PI()/12))

Continued

Chapter 17: Charting Techniques 483

4800-x Ch17.F 8/27/01 11:58 AM Page 483

TABLE 17-2 FORMULAS USED TO GENERATE A CLOCK CHART (Continued)

Cell Description Formula

I5 Origin of minute hand =0.8*SIN((MINUTE(NOW())+(SECOND(NOW())/60))
*(2*PI()/60))

J5 End of minute hand =0.8*COS((MINUTE(NOW())+(SECOND(NOW())/60))
*(2*PI()/60))

K5 Origin of second hand =0.85*SIN(SECOND(NOW())*
(2*PI()/60))

L5 End of second hand =0.85*COS(SECOND(NOW())
*(2*PI()/60))

This workbook uses a simple VBA procedure, which recalculates the worksheet
every second.

In addition to the clock chart, the workbook contains a text box that displays the
time using the NOW() function, as shown in Figure 17-33. Normally hidden, you
can display this text box by deselecting the Analog clock check box. A simple VBA
procedure attached to the check box hides and unhides the chart, depending on the
status of the check box.

Figure 17-33: Displaying a digital clock in
a worksheet is much easier, but not as fun
to create.

The workbook with the animated clock example appears on the companion

CD-ROM. The CD also includes a different version of this file that uses VBA

procedures instead of formulas.

484 Part V: Miscellaneous Formula Techniques

4800-x Ch17.F 8/27/01 11:58 AM Page 484

When you examine the workbook, keep the following points in mind:

� The ChartObject, named ClockChart, covers up a range named
DigitalClock — used to display the time digitally.

� The two buttons on the worksheet are from the Forms toolbar, and each
has a VBA procedure assigned to it (StartClock and StopClock).

� The CheckBox control (named cbClockType) on the worksheet is from the
Forms toolbar, not from the Control Toolbox toolbar. Clicking the object
executes a procedure named cbClockType_Click, which simply toggles the
Visible property of the ChartObject. When invisible, the digital clock is
revealed.

� The chart is an XY chart with four data series. These series represent the
hour hand, the minute hand, the second hand, and the 12 numbers.

Chapter 17: Charting Techniques 485

Plotting a Circle
You can create an XY chart that draws a perfect circle. To do so, you need two ranges,
one for the x values and another for the y values. The number of data points in the
series determines the smoothness of the circle. Or, you simply select the Smoothed
line option in the Format Series dialog box (Patterns tab) for the data series.

The example shown (available on the companion CD-ROM) uses 13 points to create
the circle. If you work in degrees, generate a series of values such as the ones shown
in column A. The series starts with 0 and has 30-degree increments. If you work in
radians (column B), the first series starts with 0 and increments by π/6.

Continued

4800-x Ch17.F 8/27/01 11:58 AM Page 485

� The UpdateClock procedure executes when you click the Start Clock but-
ton. This procedure determines which clock is visible and performs the
appropriate updating.

� The UpdateClock procedure uses the OnTime method of the Application
object. This method enables you to execute a procedure at a specific time.
Before the UpdateClock procedure ends, it sets up a new OnTime event
that occurs in one second. In other words, the UpdateClock procedure is
called every second.

� The UpdateClock procedure uses some basic trigonometry to determine the
angles at which to display the hands on the clock.

Drawing with an XY Chart
The final example has absolutely no practical value, but you may find it interesting
(and maybe even a bit entertaining). The worksheet consists of an embedded XY
chart, along with a number of controls. (These controls, from the Forms toolbar, are
not ActiveX controls.)

486 Part V: Miscellaneous Formula Techniques

Plotting a Circle (Continued)
The ranges used in the chart appear in columns D and E. If you work in degrees, the
formula in D3 is:

=SIN(RADIANS(A3))

The formula in E3 is:

=COS(RADIANS(A3))

If you work in radians, use this formula in D3:

=SIN(A3)

And use this formula in E3:

=COS(A3)

The formulas in D3 and E3 simply copy down to subsequent rows.

To plot a circle with more data points, you need to adjust the increment value in
columns A and B (or C and D if working in radians). The final value should be the same
as those shown in row 15. In degrees, the increment is 360 divided by the number of
data points minus 1. In radians, the increment is π divided by the number of data
points minus 1, divided by 2.

4800-x Ch17.F 8/27/01 11:58 AM Page 486

The workbook demonstrating drawing with an XY chart appears on the

companion CD-ROM.

Clicking one of the arrow buttons draws a line in the chart, the size of which is
determined by the step value, set with one of the Spin controls. With a little prac-
tice (and patience) you can create simple sketches. Figure 17-34 shows an example.

Figure 17-34: This drawing is actually an embedded XY chart.

Clicking an arrow button executes a macro that adds two values to a range: an x
value and a y value. It then redefines two range names (XRange and YRange) used
in the chart’s SERIES formula. Particularly handy is the multilevel Undo button.
Clicking this button simply erases the last two values in the range, and then rede-
fines the range names. Additional accoutrements include the capability to change
the color of the lines, and the capability to display smoothed lines.

Summary
This chapter presented details on the SERIES formula used in charts, and presented
several examples of nonstandard charts that you can produce with Excel. The chap-
ter also discussed various types of trendlines and provided techniques for plotting
functions. It presented a variety of useful chart tips and techniques that you can
adapt for use with your charts.

The next chapter covers formula techniques with pivot tables.

Chapter 17: Charting Techniques 487

4800-x Ch17.F 8/27/01 11:58 AM Page 487

4800-x Ch17.F 8/27/01 11:58 AM Page 488

Chapter 18

Pivot Tables
IN THIS CHAPTER

� An introduction to pivot tables

� How to create a pivot table from a database

� How to group items in a pivot table

� How to create a calculated field or a calculated item in a pivot table

EXCEL’S PIVOT TABLE FEATURE probably represents the most technologically sophis-
ticated component in Excel. This chapter may seem a bit out of place in this book.
After all, a pivot table does its job without using formulas. That’s exactly the point.
If you haven’t yet discovered the power of pivot tables, this chapter will demon-
strate how using a pivot table can serve as an excellent alternative to creating
many complex formulas.

About Pivot Tables
A pivot table is essentially a dynamic summary report generated from a database.
The database can reside in a worksheet or in an external file. A pivot table can help
transform endless rows and columns of numbers into a meaningful presentation of
the data.

For example, a pivot table can create frequency distributions and cross-
tabulations of several different data dimensions. In addition, you can display
subtotals and any level of detail that you want. Perhaps the most innovative aspect
of a pivot table lies in its interactivity. After you create a pivot table, you can
rearrange the information in almost any way imaginable, and even insert special
formulas that perform new calculations. You even can create post hoc groupings of
summary items (for example, combine Northern Region totals with Western Region
totals).

As far as I can tell, the term pivot table is unique to Excel. The name stems from
the fact that you can rotate (that is, pivot) the table’s row and column headings
around the core data area to give you different views of your summarized data.

One minor drawback to using a pivot table is that, unlike a formula-based sum-
mary report, a pivot table does not update automatically when you change the
source data. This does not pose a serious problem, however, since a single click of
the Refresh toolbar button forces a pivot table to use the latest data.

489

4800-x Ch18.F 8/27/01 11:58 AM Page 489

A Pivot Table Example
The best way to understand the concept of a pivot table is to see one. Start with
Figure 18-1, which shows the data used in creating the pivot table in this chapter.

Figure 18-1: This database is used to create a pivot table.

This database consists of daily new-account information for a three-branch
bank. The database contains 350 records, and tracks the following:

� The date that each account was opened

� The opening amount

� The account type (CD, checking, savings, or IRA)

� Who opened the account (a teller or a new-account representative)

� The branch at which it was opened (Central, Westside, or North County)

� Whether a new customer or an existing customer opened the account

The workbook shown in Figure 18-1 also appears on the companion

CD-ROM.

490 Part V: Miscellaneous Formula Techniques

4800-x Ch18.F 8/27/01 11:58 AM Page 490

The bank accounts database contains a lot of information. But in its current
form, the data does not reveal much. To make the data more useful, you need to
summarize it. Summarizing a database is essentially the process of answering ques-
tions about the data. Following are a few questions that may be of interest to the
bank’s management:

� What is the total deposit amount for each branch, broken down by
account type?

� How many accounts were opened at each branch, broken down by
account type?

� What’s the dollar distribution of the different account types?

� What types of accounts do tellers open most often?

� How does the Central branch compare to the other two branches?

� Which branch opens the most accounts for new customers?

You could, of course, write formulas to answer these questions. Often, however,
a pivot table is a better choice. Creating a pivot table takes only a few seconds and
doesn’t require a single formula.

Figure 18-2 shows a pivot table created from the database displayed in Figure
18-1. This pivot table shows the amount of new deposits, broken down by branch
and account type. This particular summary represents one of dozens of summaries
that you can produce from this data.

Figure 18-2: A simple pivot table

Figure 18-3 shows another pivot table generated from the bank data. This pivot
table uses a page field for the Customer item. In this case, the pivot table displays
the data only for existing customers (the user could also select New or All from
page field list). Notice the changes in the orientation of the table; branches appear
in rows and account types appear in columns. This is another example of the flex-
ibility of a pivot table.

Chapter 18: Pivot Tables 491

4800-x Ch18.F 8/27/01 11:58 AM Page 491

492 Part V: Miscellaneous Formula Techniques

Pivot Table Terminology
Understanding the terminology associated with pivot tables is the first step in
mastering this feature. Refer to the accompanying figure to get your bearings.

� Column field: A field that has a column orientation in the pivot table. Each
item in the field occupies a column. In the figure, Customer represents a col-
umn field that contains two items (Existing and New). You can have nested
column fields.

� Data area: The cells in a pivot table that contain the summary data. Excel
offers several ways to summarize the data (sum, average, count, and so on).
In the figure, the Data area includes C5:E20.

� Grand totals: A row or column that displays totals for all cells in a row or
column in a pivot table. You can specify that grand totals be calculated for
rows, columns, or both (or neither). The pivot table in the figure shows grand
totals for both rows and columns.

� Group: A collection of items treated as a single item. You can group items
manually or automatically (group dates into months, for example). The pivot
table in the figure does not have any defined groups.

� Item: An element in a field that appears as a row or column header in a pivot
table. In the figure, Existing and New are items for the Customer field. The
Branch field has three items: Central, North County, and Westside. AcctType
has four items: CD, Checking, IRA, and Savings.

4800-x Ch18.F 8/27/01 11:58 AM Page 492

Figure 18-3: A pivot table that uses a page field

Data Appropriate for a Pivot Table
Not all data can be used to create a pivot table. The data that you summarize must
be in the form of a database. You can store the database in either a worksheet
(sometimes known as a list) or an external database file. Although Excel can gener-
ate a pivot table from any database, not all databases benefit.

Generally speaking, fields in a database table can consist of two types:

� Data: Contains a value or data to be summarized. In Figure 18-1, the
Amount field is a data field.

� Category: Describes the data. In Figure 18-1, the Date, AcctType,
OpenedBy, Branch, and Customer fields are category fields because they
describe the data in the Amount field.

Chapter 18: Pivot Tables 493

� Page field: A field that has a page orientation in the pivot table — similar to a
slice of a three-dimensional cube. You can display only one item (or all
items) in a page field at one time. In the figure, OpenedBy represents a page
field that displays the New Accts item; the pivot table shows data only for
New Accts.

� Refresh: To recalculate the pivot table after making changes to the source
data.

� Row field: A field that has a row orientation in the pivot table. Each item in
the field occupies a row. You can have nested row fields. In the figure,
Branch and AcctType both represent row fields.

� Source data: The data used to create a pivot table. It can reside in a work-
sheet or an external database.

� Subtotals: A row or column that displays subtotals for detail cells in a row or
column in a pivot table. The pivot table in the figure displays subtotals for
each branch.

4800-x Ch18.F 8/27/01 11:58 AM Page 493

A single database table can have any number of data fields and category fields.
When you create a pivot table, you usually want to summarize one or more of the
data fields. Conversely, the values in the category fields appear in the pivot table as
rows, columns, or pages.

Exceptions exist, however, and you may find Excel’s pivot table feature useful
even for databases that don’t contain actual numerical data fields. The database in
Figure 18-4, for example, doesn’t contain any numerical data, but you can create a
useful pivot table that counts the items in fields rather than sums them.

You can summarize information in a pivot table by using methods other than
summing. For example, the pivot table that you see in Figure 18-5 cross-tabulates
the Month Born field by the Sex field; the intersecting cells show the count for each
combination of month and gender.

Figure 18-4: This database doesn’t have any numerical fields,
but you can use it to generate a pivot table.

Figure 18-5: This pivot table summarizes non-numeric fields
by displaying a count rather than a sum.

494 Part V: Miscellaneous Formula Techniques

4800-x Ch18.F 8/27/01 11:58 AM Page 494

Creating a Pivot Table
You create a pivot table using a series of steps presented in the PivotTable and
PivotChart Wizard. You access this wizard by choosing Data � PivotTable and
PivotChart Report. Then, carry out the steps outlined here.

This discussion assumes you use Excel 2000 or later.The procedure differs

slightly in earlier versions of Excel.

Step1: Specifying the Data Location
When you choose Data � PivotTable and PivotChart Report, you’ll see the dialog
box shown in Figure 18-6.

Figure 18-6: The first of three PivotTable and
PivotChart Wizard dialog boxes

In this step, you identify the data source. Excel is quite flexible in the data that
you can use for a pivot table. (See the sidebar, “Pivot Table Data Sources.”) This
example uses a worksheet database.

You see different dialog boxes while you work through the wizard, depend-

ing on the location of the data that you want to analyze. The following sec-

tions present the wizard’s dialog boxes for data located in an Excel list or

database.

Chapter 18: Pivot Tables 495

4800-x Ch18.F 8/27/01 11:58 AM Page 495

Step 2: Specifying the Data
To move on to the next step of the wizard, click the Next button. Step 2 of the
PivotTable and PivotChart Wizard prompts you for the data. Remember, the dialog
box varies depending on your choice in the first dialog box; Figure 18-7 shows the
dialog box that appears when you select an Excel list or database in Step 1.

496 Part V: Miscellaneous Formula Techniques

Pivot Table Data Sources
The data used in a pivot table can come from a variety of sources, including Excel
databases or lists, data sources external to Excel, multiple tabled ranges, and other
pivot tables. I describe these sources here.

Excel List or Database

Usually, the data that you analyze is stored in a worksheet database (also known as a
list). Databases stored in a worksheet have a limit of 65,535 records and 256 fields.
Working with a database of this size isn’t efficient, however (and memory may not
even permit it). The first row in the database should contain field names. No other
rules exist. The data can consist of values, text, or formulas.

External Data Source

If you use the data in an external database for a pivot table, use Query (a separate
application) to retrieve the data. You can use dBASE files, SQL Server data, or other
data that your system is set up to access. Step 2 of the PivotTable and PivotChart
Wizard prompts you for the data source. Note that in Excel 2000 or later, you also can
create a pivot table from an OLAP (OnLine Analytical Processing) database.

Multiple Consolidation Ranges

You also can create a pivot table from multiple tables. This procedure is equivalent to
consolidating the information in tables. When you create a pivot table to consolidate
information in tables, you have the added advantage of using all of the pivot table
tools while working with the consolidated data.

Another Pivot Table

Excel enables you to create a pivot table from an existing pivot table. Actually, this is
a bit of a misnomer. The pivot table that you create is based on the data that the first
pivot table uses (not the pivot table itself). If the active workbook has no pivot tables,
this option is grayed — meaning you can’t choose it. If you need to create more than
one pivot table from the same set of data, the procedure is more efficient (in terms of
memory usage) if you create the first pivot table and then use that pivot table as the
source for subsequent pivot tables.

4800-x Ch18.F 8/27/01 11:58 AM Page 496

Figure 18-7: In Step 2, you specify the data range.

If you place the cell pointer anywhere within the worksheet database when you
select Data � PivotTable Report, Excel identifies the database range automatically
in Step 2 of the PivotTable and PivotChart Wizard.

You can use the Browse button to open a different worksheet and select a range.
To move on to Step 3, click the Next button.

If the source range for a pivot table is named Database, you can use Excel’s

built-in Data Form to add new data to the range. The named range will

extend automatically to include the new records.

Step 3: Completing the Pivot Table
Figure 18-8 shows the dialog box for the final step of the PivotTable and
PivotChart Wizard. In this step, you specify the location for the pivot table.

Figure 18-8: In Step 3, you specify the pivot table’s location.

If you select the New worksheet option, Excel inserts a new worksheet for the
pivot table. If you select the Existing worksheet option, the pivot table appears on
the current worksheet (you can specify the starting cell location).

At this point, you can click the Options button to select some options that deter-
mine how the table appears. (Refer to the sidebar “Pivot Table Options.”) You can
set these options at any time after you create the pivot table, so you do not need to
do so before creating the pivot table.

Chapter 18: Pivot Tables 497

4800-x Ch18.F 8/27/01 11:58 AM Page 497

You can set up the actual layout of the pivot table by using either of two
techniques:

� By clicking the Layout button in Step 3 of the PivotTable and PivotChart
Wizard. You then can use a dialog box to lay out the pivot table.

� By clicking the Finish button to create a blank pivot table. You then can
use the PivotTable Field List toolbar to lay out the pivot table.

I describe both of these options in the following subsections.

USING A DIALOG BOX TO LAY OUT A PIVOT TABLE
When you click the Layout button of the wizard’s last dialog box, you get the dia-
log box shown in Figure 18-9. The fields in the database appear as buttons along
the right side of the dialog box. Simply drag the buttons to the appropriate area of
the pivot table diagram (which appears in the center of the dialog box).

Figure 18-9: Specify the table layout

For versions prior to Excel 2000, this dialog box appears as Step 3 of the wiz-

ard. For these versions, this is the only way to lay out a pivot table.

The pivot table diagram has four areas:

� Page: Values in the field appear as page items in the pivot table.

� Row: Values in the field appear as row items in the pivot table.

� Data: The field is summarized in the pivot table.

� Column: Values in the field appear as column items in the pivot table.

498 Part V: Miscellaneous Formula Techniques

4800-x Ch18.F 8/27/01 11:58 AM Page 498

You can drag as many field buttons as you want to any of these locations, and
you don’t have to use all the fields. Any fields that you don’t use simply don’t
appear in the pivot table.

When you drag a field button to the Data area, the PivotTable and PivotChart
Wizard applies the Sum function if the field contains numeric values; it applies the
Count function if the field contains non-numeric values.

While you set up the pivot table, you can double-click a field button to cus-
tomize it. You can specify, for example, to summarize a particular field as a Count
or other function. You also can specify which items in a field to hide or omit. If you
drag a field button to an incorrect location, just drag it off the table diagram to get
rid of it. Note that you can customize fields at any time after you create the pivot
table; I demonstrate this later in the chapter.

Figure 18-10 shows how the dialog box looks after dragging some field buttons
to the pivot table diagram. This pivot table displays the sum of the Amount field,
broken down by AcctType (as rows) and Customer (as columns). In addition, the
Branch field appears as a page field. Click OK to redisplay the PivotTable and
PivotChart Wizard — Step 3 of the dialog box.

Figure 18-10: The table layout after dragging field
buttons to the pivot table diagram

USING THE PIVOTTABLE FIELD LIST TOOLBAR
TO LAY OUT A PIVOT TABLE
You may prefer to lay out your pivot table directly in the worksheet, using the
PivotTable Field List toolbar. The technique closely resembles the one just
described, because you still drag and drop fields. But in this case, you drag fields
from the toolbar into the worksheet.

You cannot use this technique with versions prior to Excel 2000. Also, note

that Excel 2000 doesn’t have a PivotTable Field List toolbar. Rather, the fields

are displayed as buttons on the PivotTable toolbar.

Chapter 18: Pivot Tables 499

4800-x Ch18.F 8/27/01 11:58 AM Page 499

500 Part V: Miscellaneous Formula Techniques

Pivot Table Options
Excel provides plenty of options that determine how your pivot table looks and works.
To access these options, click the Options button in the final step of the PivotTable
and PivotChart Wizard to display the PivotTable Options dialog box. You also can
access this dialog box after you create the pivot table. Right-click any cell in the pivot
table and then select Table Options from the shortcut menu. The accompanying figure
shows the PivotTable Options dialog box. Following, I list its choices:

� Name: You can provide a name for the pivot table. Excel provides default
names in the form of PivotTable1, PivotTable2, and so on.

� Grand totals for columns: Check this box if you want Excel to calculate grand
totals for items displayed in columns.

� Grand totals for rows: Check this box if you want Excel to calculate grand
totals for items displayed in rows.

� AutoFormat table: Check this box if you want Excel to apply one of its
AutoFormats to the pivot table. Excel uses the AutoFormat even if you
rearrange the table layout.

� Subtotal hidden page items: Check this box if you want Excel to include hid-
den items in the page fields in the subtotals.

� Merge labels: Check this box if you want Excel to merge the cells for outer
row and column labels. Doing so may make the table more readable.

� Preserve formatting: Check this box if you want Excel, when it updates the
pivot table, to keep any of the formatting that you applied.

4800-x Ch18.F 8/27/01 11:58 AM Page 500

Chapter 18: Pivot Tables 501

� Repeat item labels on each printed page: Check this box to set row titles that
appear on each page when you print a PivotTable report.

� Mark Totals with *: Available only if you generated the pivot table from an
OLAP data source. If checked, displays an asterisk after every subtotal and
grand total to indicate that these values include any hidden items as well as
displayed items.

� Page layout: You can specify the order in which you want the page fields to
appear.

� Fields per column: You can specify the number of page fields to show before
starting another row of page fields.

� For error values, show: You can specify a value to show for pivot table cells
that display an error.

� For empty cells, show: You can specify a value to show for empty pivot table
cells.

� Set print titles: Check this box to set column titles that appear at the top of
each page when you print a PivotTable report.

� Save data with table layout: If you check this option, Excel stores an addi-
tional copy of the data (called a pivot table cache), enabling Excel to recalcu-
late the table more quickly when you change the layout. If memory is an
issue, you should keep this option unchecked (which slows updating a bit).

� Enable drill to details: If checked, you can double-click a cell in the pivot
table to view the records that contributed to the summary value.

� Refresh on open: If checked, the pivot table refreshes whenever you open the
workbook.

� Refresh every x minutes: If you are connected to an external database, you
can specify how often you want the pivot table refreshed while the workbook
is open.

� Save password: If you use an external database that requires a password, you
can store the password as part of the query so that you don’t have to
reenter it.

� Background query: If checked, Excel runs the external database query in the
background while you continue your work.

� Optimize memory: This option reduces the amount of memory used when
you refresh an external database query.

4800-x Ch18.F 8/27/01 11:58 AM Page 501

Complete the first two steps of the PivotTable and PivotChart Wizard. If you
want, set options for the pivot table by using the Options button that appears in the
third dialog box of the wizard. Don’t bother with the Layout button, however.
Select a location for the pivot table and choose Finish. Excel displays a pivot table
template similar to the one you see in Figure 18-11. The template provides you with
hints about where to drop various types of fields.

Drag and drop fields from the PivotTable Field List toolbar onto the template. Or
select the field name, choose the location from the drop-down list, and click the
Add To button. Excel continues to update the pivot table as you add or remove
fields. For this reason, you’ll find this method easiest to use if you drag and drop
data items last. In other words, set up the field items, then specify the data to
summarize.

Figure 18-11: Use the PivotTable Field List toolbar to drag and drop fields onto
the pivot table template that Excel displays.

If you make a mistake, simply drag the field off the template and drop it on the
worksheet — Excel removes it from the pivot table template. All fields remain on the
PivotTable Field List toolbar, even if you use them.

THE FINISHED PRODUCT
Figure 18-12 shows the result of this example. Notice that the page field displays as
a drop-down box. You can choose which item in the page field to display by choos-
ing it from the list. You also can choose an item called All, which displays all the
data.

502 Part V: Miscellaneous Formula Techniques

4800-x Ch18.F 8/27/01 11:58 AM Page 502

Figure 18-12: The pivot table created by the PivotTable and PivotChart Wizard

Grouping Pivot Table Items
One of the more useful features of a pivot table is the ability to combine items into
groups. To group objects, select them, right-click, and choose Group and Outline �
Group from the shortcut menu.

When a field contains dates, Excel can create groups automatically. Figure 18-13
shows a simple database table with two fields: Date and Sales. This table has 370
records and covers dates between June 1, 2000 and November 1, 2001. The goal is
to summarize the sales information by month.

Figure 18-13: You can use a pivot table to summarize the sales data by month.

Figure 18-14 shows a pivot table created from the data. Not surprisingly, it looks
exactly like the input data because the dates have not been grouped. To group the
items by month, right-click the Data heading and select Group and Show Detail �
Group. You’ll see the Grouping dialog box shown in Figure 18-15.

Chapter 18: Pivot Tables 503

4800-x Ch18.F 8/27/01 11:58 AM Page 503

In versions prior to Excel 2002, the shortcut menu command is Group and

Outline � Group.

Figure 18-14: The pivot table, before grouping by month

504 Part V: Miscellaneous Formula Techniques

Copying a Pivot Table
A pivot table is a special type of object, and you cannot manipulate it as you may
expect. For example, you can’t insert a new row or enter formulas within the pivot
table. If you want to manipulate a pivot table in ways not normally permitted, make a
copy of it.

To copy a pivot table, select the table and choose Edit � Copy. Then activate a new
worksheet and choose Edit � Paste Special. Select the Values option and click OK. The
contents of the pivot table are copied to the new location so you can do whatever you
like to them. You also might want to repeat the Edit � Paste Special command and
select Formats (to copy the formatting from the pivot table).

This technique is also useful when you want to create a standard chart. If you attempt
to create a chart from a pivot table, Excel will always create a pivot chart that
contains field buttons. Sometimes you may prefer a standard chart.

Note that the copied information is no longer linked to the source data. If the source
data changes, your copied pivot table does not reflect these changes.

4800-x Ch18.F 8/27/01 11:58 AM Page 504

Figure 18-15: Use the Grouping dialog box
to group items in a pivot table.

In the list box, select Months and Years, and verify that the starting and ending
dates are correct. Click OK. The Date items in the pivot table are grouped by years
and by months (see Figure 18-16).

Figure 18-16: The pivot table, after grouping by month

If you select only Months in the Grouping list box, months in different years

combine together. For example, the June item would display sales for both

2000 and 2001.

Chapter 18: Pivot Tables 505

4800-x Ch18.F 8/27/01 11:58 AM Page 505

Creating a Calculated Field or
Calculated Item
Once you create a pivot table, you can create two types of formulas for further
analysis:

� A calculated field: A new field created from other fields in the pivot table.
A calculated field must reside in the Data area of the pivot table (you
can’t use a calculated field in the Page, Row, or Column areas).

� A calculated item: A calculated item uses the contents of other items
within a field of the pivot table. A calculated item must reside in the Page,
Row, or Column area of a pivot table (you can’t use a calculated item in
the Data area).

The formulas used to create calculated fields and calculated items are not stan-
dard Excel formulas. In other words, you do not enter the formulas into cells.
Rather, you enter these formulas in a dialog box, and they are stored along with the
pivot table data.

Beginning with Excel 2000, you can use an OLAP database as the source for

a pivot table. You can’t, however, create calculated fields or items in a pivot

table based on an OLAP database.

The examples in this section use the worksheet database table shown in Figure
18-17. The table consists of five fields and 48 records. Each record describes
monthly sales information for a particular sales representative. For example, Amy
is a sales rep for the North region, and she sold 239 units in January for total sales
of $23,040.

Figure 18-18 shows the basic pivot table created from the data. This pivot table
shows sales, broken down by month and sales rep.

The examples that follow will create:

� A calculated field, to compute average sales per unit

� A calculated item, to summarize the data by quarters

506 Part V: Miscellaneous Formula Techniques

4800-x Ch18.F 8/27/01 11:58 AM Page 506

Figure 18-17: This data demonstrates calculated fields and calculated items.

Figure 18-18: This pivot table was created from the data in Figure 18-17.

Creating a Calculated Field in a Pivot Table
Because a pivot table is a special type of data range, you can’t insert new rows or
columns within the pivot table. This means that you can’t insert formulas to per-
form calculations with the data in a pivot table. However, you can create calculated
fields for a pivot table. A calculated field consists of a calculation that can involve
other fields.

A calculated field is basically a way to display new information in a pivot table.
It essentially presents an alternative to creating a new Data field in your source
database. A calculated field cannot be used as a Row, Column, or Page field.

Chapter 18: Pivot Tables 507

4800-x Ch18.F 8/27/01 11:58 AM Page 507

In the sales example, for instance, suppose you want to calculate the average
sales amount per unit. You can compute this value by dividing the Sales field by
the Units Sold field. The result shows a new field (a calculated field) for the pivot
table.

Use the following procedure to create a calculated field that consists of the Sales
field divided by the Units Sold field:

1. Move the cell pointer anywhere within the pivot table.

2. Using the Pivot Table toolbar, choose PivotTable � Formulas � Calculated
Field. Excel displays the Insert Calculated Field dialog box.

3. Enter a descriptive name in the Name field and specify the formula in the
Formula field (see Figure 18-19). The formula can use other fields and
worksheet functions. For this example, the calculated field name is Avg
Unit Price, and the formula appears as the following:

=Sales/’Units Sold’

4. Click Add to add this new field.

5. Click OK to close the Insert Calculated Field dialog box.

Figure 18-19: The Insert Calculated Field dialog box

You can create the formula manually by typing it, or by double-clicking

items in the Fields list box. Double-clicking an item transfers it to the

Formula field. Because the Units Sold field contains a space, Excel adds single

quotes around the field name.

After you create the calculated field, Excel adds it to the Data area of the pivot
table. You can treat it just like any other field, with one exception: You can’t move
it to the Page, Row, or Column area (it must remain in the Data area).

508 Part V: Miscellaneous Formula Techniques

4800-x Ch18.F 8/27/01 11:58 AM Page 508

Figure 18-20 shows the pivot table after you’ve added the calculated field. The
new field displays a Sum of Avg Unit Price (you can change this text, if desired, by
editing any of the cells in which that text appears). The calculated field also appears
on the PivotTable Field List toolbar, along with the other fields available for use in
the pivot table.

Figure 18-20: This pivot table uses a calculated field.

The formulas that you develop can also use worksheet functions, but the func-

tions cannot refer to cells or named ranges.

Inserting a Calculated Item into a Pivot Table
The previous section describes how to create a calculated field. Excel also enables
you to create a calculated item for a pivot table field. The sales example uses a field
named Month, which consists of text strings. You can create a calculated item
(called Qtr-1, for example) that displays the sum of Jan, Feb, and Mar.

You also can do this by grouping the items, but using grouping hides the indi-
vidual months and shows only the total of the group. Creating a calculated item for
quarterly totals is more flexible because it shows the total and the individual
months.

Chapter 18: Pivot Tables 509

4800-x Ch18.F 8/27/01 11:58 AM Page 509

To create a calculated item to sum the data for Jan, Feb, and Mar, use these steps:

1. Move the cell pointer to the Row, Column, or Page area of the pivot table
that contains the item that will be calculated. In this example, the cell
pointer should be in the Month area.

2. Use the Pivot Table toolbar, and choose PivotTable � Formulas �
Calculated Item from the shortcut menu. Excel displays the Insert
Calculated Item dialog box.

3. Enter a name for the new item in the Name field and specify the formula
in the Formula field (see Figure 18-21). The formula can use items in other
fields, but it can’t use worksheet functions. For this example, the new item
is named Qtr-1, and the formula appears as follows:

=Jan+Feb+Mar

4. Click Add.

5. Repeat Steps 3 and 4 to create additional calculated items for Qtr-2
(=Apr+May+Jun), Qtr-3 (=Jul+Aug+Sep), and Qtr-4 (=Oct+Nov+Dec).

6. Click OK to close the dialog box.

Figure 18-21: The Insert Calculated Item dialog box

If you use a calculated item in your pivot table, you may need to turn off the

Grand Total display to avoid double counting.

After you create the items, they appear in the pivot table. Figure 18-22 shows
the pivot table after you’ve added the four calculated items. Notice that the calcu-
lated items are added to the end of the Month items. You can rearrange the items by
selecting and dragging. Figure 18-23 shows the pivot table after rearranging the
items logically. (I also made the calculated items bold.)

510 Part V: Miscellaneous Formula Techniques

4800-x Ch18.F 8/27/01 11:58 AM Page 510

Figure 18-22: This pivot table uses calculated items for quarterly totals.

Figure 18-23: The pivot table, after rearranging the calculated items

A calculated item appears in a pivot table only if the field on which it is

based also appears. If you remove or pivot a field from either the Row or

Column category into the Data category, the calculated item does not

appear.

Chapter 18: Pivot Tables 511

4800-x Ch18.F 8/27/01 11:58 AM Page 511

Summary
This chapter presented an introduction to pivot tables and demonstrated how to
create a pivot table, group items, and create calculated fields and calculated items.
A pivot table often provides an excellent alternative to creating formulas for sum-
marizing a database.

The next chapter discusses the use of conditional formatting and data validation.

512 Part V: Miscellaneous Formula Techniques

4800-x Ch18.F 8/27/01 11:58 AM Page 512

Chapter 19

Conditional Formatting
and Data Validation

IN THIS CHAPTER

� An overview of Excel’s conditional formatting feature

� Practical examples of using conditional formatting formulas

� An overview of Excel’s data validation feature

� Practical examples of using data validation formulas

THIS CHAPTER EXPLORES TWO VERY useful Excel features: conditional formatting and
data validation. You may not think these features have much to do with formulas.
But as you’ll see, when you toss formulas into the mix, these features can perform
some amazing feats.

Excel 97 introduced conditional formatting and data validation. Therefore,

this chapter does not apply if you use an earlier version of Excel.

Conditional Formatting
Conditional formatting enables you to apply cell formatting selectively and auto-
matically, based on the contents of the cells. For example, you can set things up
such that all negative values in a range have a light yellow background color.
When you enter or change a value in the range, Excel examines the value and eval-
uates the conditional formatting rules for the cell. If the value is negative, the back-
ground is shaded. If not, no formatting is applied.

513

4800-x Ch19.F 8/27/01 11:58 AM Page 513

Conditional formatting is very useful for quickly identifying erroneous cell
entries, or cells of a particular type. You can use a format (such as bright red cell
shading) to make particular cells easy to identify.

Is this a handy feature? No doubt. But dig a little deeper and you’ll see that a lot
more lurks in the shadows, and this feature can do things you may not have
thought possible. The key, as you’ll see, is specifying your conditions by using for-
mulas. In this section, I describe Excel’s conditional formatting feature and point
out some of its limitations — as well as a potentially serious design flaw.

Specifying Conditional Formatting
To apply conditional formatting to a cell or range:

1. Select the cell or range.

2. Choose Format � Conditional Formatting. Excel displays its Conditional
Formatting dialog box, shown in Figure 19-1.

Figure 19-1: The Conditional Formatting dialog box

3. In the drop-down box, select either Cell Value Is (for simple conditional
formatting), or Formula Is (for formatting based on a formula).

4. Specify the condition (or enter a formula).

5. Click the Format button and specify the formatting to apply if the condi-
tion is TRUE.

6. To add additional conditions (up to two more), click Add and then repeat
steps 3 through 5.

7. Click OK.

After you’ve performed these steps, the cell or range will be formatted based
on the condition(s) you specify. This formatting, of course, is dynamic: If you
change the contents of a cell, Excel reevaluates the new contents and applies
or removes the formatting accordingly.

514 Part V: Miscellaneous Formula Techniques

4800-x Ch19.F 8/27/01 11:58 AM Page 514

Formatting Types You Can Apply
When you click the Format button in the Conditional Formatting dialog box, you
get the Format Cells dialog box shown in Figure 19-2. This is a modified version of
the standard Format Cells dialog box — it does not have the Number, Alignment,
and Protection tabs, but it includes a Clear button. You can specify any of the fol-
lowing formats:

� Font style (regular, bold, or italic)

� Font underline

� Font color

� Font strikethrough

� Border outline

� Border line style

� Border line color

� Cell shading color

� Cell background pattern

Figure 19-2: The Format Cells dialog box
used in conditional formatting

Notice that you can’t specify the font or font size; presumably, this is because
the font size can affect row heights. The designers probably decided that changing
row heights automatically could be distracting, or introduce other problems such as
pagination when printing.

Chapter 19: Conditional Formatting and Data Validation 515

4800-x Ch19.F 8/27/01 11:58 AM Page 515

The colors available in the Format Cells dialog box are the 56 colors in the

workbook’s color palette. If none of these colors is satisfactory, you can mod-

ify the workbook’s color palette. To do so, select Tools � Options, and click

the Color tab in the Options dialog box. Select a color and click the Modify

button to change the color. But exercise caution, because changing a color

may affect other color formatting in your workbook.

The Find and Replace dialog box in Excel 2002 allows you to search your

worksheet to locate cells that contain specific formatting. This feature does

not locate cells that contain formatting resulting from conditional

formatting.

Specifying Conditions
The leftmost drop-down list in the Conditional Formatting dialog box enables you
to choose one of two options:

� Cell Value Is: For simple conditions

� Formula Is: For more complex, formula-based conditions

I discuss these two types of conditions in the sections that follow.

SIMPLE CONDITIONS
When you select Cell Value Is, you can specify conditions of the following types:

� between (you specify two values)

� not between (you specify two values)

� equal to (you specify one value)

� not equal to (you specify one value)

� greater than (you specify one value)

� less than (you specify one value)

� greater than or equal to (you specify one value)

� less than or equal to (you specify one value)

You can either enter the value(s) directly, or specify a cell reference.

516 Part V: Miscellaneous Formula Techniques

4800-x Ch19.F 8/27/01 11:58 AM Page 516

FORMULA-BASED CONDITIONS
When you select Formula Is, you can specify a formula. Do so by specifying a cell
that contains a formula, or by entering a formula directly into the dialog box (see
Figure 19-3).

Figure 19-3: Entering a formula directly into the
Conditional Formatting dialog box

You must specify a logical formula that returns either TRUE or FALSE. If the

formula evaluates to TRUE, the condition is satisfied and the conditional for-

matting is applied. If the formula evaluates to FALSE, the conditional

formatting is not applied.

As you’ll see by studying the examples later in this chapter, the real power of
conditional formatting is apparent when you enter a formula directly into the
Conditional Formatting dialog box.

If the formula that you enter into the Conditional Formatting dialog box con-
tains a cell reference, that reference is considered a relative reference, based on the
upper left cell in the selected range. For example, suppose you want to set up a con-
ditional formatting condition that applies shading to blank cells in the range
B2:B10. Follow these steps:

1. Select the range B2:B10.

2. Choose Format � Conditional Formatting.

3. Select the Formula Is item from the drop-down list.

4. Enter the following formula in the formula box:

=B2=””

5. Click the Format button and specify a pattern for the cell shading.

6. Click OK twice.

Chapter 19: Conditional Formatting and Data Validation 517

4800-x Ch19.F 8/27/01 11:58 AM Page 517

Notice that the formula entered contains a reference to the upper left cell in the
selected range. To demonstrate that the reference is relative, select cell B5 and
examine its conditional formatting formula. You’ll see that the conditional format-
ting formula for this cell is:

=B5=””

Generally, when entering a conditional formatting formula for a range of cells,
you’ll use a reference to the upper left cell in the selected range. One exception:
when you need to refer to a specific cell. For example, suppose you select range
A1:B20, and you want to apply formatting to all cells in the range that exceed the
value in cell C1. Enter this conditional formatting formula:

=A1>C1

In this case, the reference to cell C1 is an absolute reference; it will not be
adjusted for the cells in the selected range. In other words, the conditional format-
ting formula for cell A2 looks like this:

=A2>C1

The relative cell reference is adjusted, but the absolute cell reference is not.

Working with Conditional Formats
This section describes some additional information about conditional formatting
that you might find useful.

MULTIPLE CONDITIONS
As noted previously, you can specify as many as three conditions by clicking the
Add button in the Conditional Formatting dialog box. For example, you might
enter the following three conditions (and specify different formatting for each):

518 Part V: Miscellaneous Formula Techniques

Changing Font Color Using Custom Number Formats
In some cases, you can avoid conditional formatting and take advantage of a custom
number format that changes font color conditionally. For example, the custom number
format that follows displays positive values in black, negative values in red, and zero
values in blue:

[Black]General;[Red]-General;[Blue]General

For more information about creating custom number formats, refer to Appendix C.

4800-x Ch19.F 8/27/01 11:58 AM Page 518

Cell Value Is less than 0
Cell Value Is equal to 0
Cell Value Is greater than 0

In this case, the sign of the value (negative, 0, or positive) determines the applied
formatting.

If none of the specified conditions is TRUE, the cells keep their existing formats.
If you specify multiple conditions and more than one condition is TRUE, Excel
applies only the formatting for the first TRUE condition. For example, you may
specify the following two conditions:

Cell Value Is between 1 and 12
Cell Value Is less than 6

Entering a value of 4 satisfies both conditions. Therefore, the cell will be format-
ted using the format specified for the first condition.

BE CAREFUL WHEN PASTING
It’s important to keep in mind that it’s very easy (too easy) to wipe out the condi-
tional formatting in a cell or range by pasting copied data to the cell.

Copying a cell and pasting it to a cell or range that contains conditional for-

matting wipes out the conditional formatting in the destination range. You

get no warning. This, of course, is a serious design flaw on the part of

Microsoft — one that you should keep in mind if you use conditional for-

matting in your workbook.

COPYING CELLS THAT CONTAIN CONDITIONAL FORMATTING
Conditional formatting information is stored with a cell much like standard format-
ting information is stored with a cell. This means that when you copy a cell that
contains conditional formatting, the conditional formatting is also copied.

To copy only the conditional formats, select cells you want to format and

include at least one cell in the selection that has the conditional formats you

want to copy. Select Format � Conditional Formatting and then click OK.

Inserting rows or columns within a range that contains conditional formatting
causes the new cells to have the same conditional formatting.

Chapter 19: Conditional Formatting and Data Validation 519

4800-x Ch19.F 8/27/01 11:58 AM Page 519

DELETING CONDITIONAL FORMATTING
When you press Del to delete the contents of a cell, you do not delete the condi-
tional formatting for the cell (if any). To remove all conditional formats (as well as
all other cell formatting), select the cells and choose Edit � Clear � Formats.

To remove only conditional formatting (and leave the other formatting intact),
you need to use the Conditional Formatting dialog box. Select the cells, then
choose Format � Conditional Formatting. Click the Delete button in the Conditional
Formatting dialog box and you get another dialog box (see Figure 19-4) that
enables you to specify the conditions that you want to delete. This dialog box
always displays check boxes for three conditions, even if you haven’t defined
that many.

Figure 19-4: Use the Delete Conditional Format
dialog box to remove one or more conditions.

You also can remove conditional formatting from a cell by simply copying a

cell that doesn’t have conditional formatting and then pasting it to the cell or

range.This, of course, also copies the cell’s value (or formula) as well as other

formatting.

LOCATING CELLS THAT CONTAIN CONDITIONAL FORMATTING
You cannot tell, just by looking at a cell, whether it contains conditional format-
ting. You can, however, use Excel’s Go To dialog box to select such cells.

Select Edit � Go To (or press F5) to display the Go To dialog box. Click the
Special button, and then select the Conditional formats option (see Figure 19-5). To
select all cells on the worksheet containing conditional formatting, select the All
option. To select only the cells that contain the same conditional formatting as the
active cell, select the Same option. Click OK and the cells will be selected for you.

USING REFERENCES TO OTHER SHEETS
If you enter a conditional formatting formula that uses one or more references to
other sheets, Excel responds with an error message. If you need to refer to a cell on
a different sheet, you must create a reference to that cell on the sheet that contains
the conditional formatting. For example, if your conditional formatting formula
needs to refer to cell A1 on Sheet3, you can insert the following formula into a cell
on the active sheet.

520 Part V: Miscellaneous Formula Techniques

4800-x Ch19.F 8/27/01 11:58 AM Page 520

Figure 19-5: Use the Go To Special dialog box to locate
cells that contain conditional formatting.

=Sheet3!A1

Then, use a reference to that cell in your conditional formatting formula.

Another option is to create a name for the cell (by using Insert � Name �

Define). After defining the name, you can use the name in place of the cell

reference in the Conditional Formatting dialog box. If you use this tech-

nique, the named cell can be in any worksheet in the workbook.

Conditional Formatting Formulas
This section contains a number of examples that demonstrate various uses for con-
ditional formatting. Each of these examples uses a formula entered directly into the
Conditional Formatting dialog box. You decide the type of formatting that you
apply conditionally.

You can access all of the examples in this section on the companion

CD-ROM.

IDENTIFYING NONNUMERIC DATA
The following conditional formatting formula applies formatting to cell A1 only if
the cell contains text:

=ISTEXT(A1)

To apply this conditional formatting formula to a range, select the range first.
The argument for the ISTEXT function should be the upper left cell in the range.

Chapter 19: Conditional Formatting and Data Validation 521

4800-x Ch19.F 8/27/01 11:58 AM Page 521

IDENTIFYING ABOVE-AVERAGE CELLS
I applied the following conditional formatting formula to range A1:D12. It applies
formatting to all cells in the range A1:D12 that are above the average (see
Figure 19-6):

=A1>AVERAGE(A1:D12)

Figure 19-6: Using conditional formatting to highlight all
above-average cells

Notice that the first cell reference (A1) is a relative reference, but the range argu-
ment for the AVERAGE formula is absolute.

IDENTIFYING DATES IN A PARTICULAR MONTH
Conditional formatting also works with dates. The conditional formatting formula
that follows applies formatting only if the cell contains a date in the month of
June:

=MONTH(A1)=6

This formula assumes that cell A1 is the upper left cell in the selected range. It
works by using the MONTH function, which returns the month number for a date.

The MONTH function does not distinguish between dates and nondates. In

other words, the MONTH function is applied to all cells, even if they don’t

contain a date.

522 Part V: Miscellaneous Formula Techniques

4800-x Ch19.F 8/27/01 11:58 AM Page 522

IDENTIFYING TODAY’S DATE
Excel’s TODAY function returns the current date. If you have a series of dates in a
worksheet, you can use conditional formatting to make it easy to identify data
for the current date. The conditional formatting formula that follows applies
formatting only if the cell contains the current date. This assumes that you selected
a range beginning with cell A1 when you entered the conditional formatting
formula.

=A1=TODAY()

IDENTIFYING WEEKEND DATES
Excel’s WEEKDAY function returns an integer that represents the day of the week (1
is Sunday, 2 is Monday, and so on). You can use this function in a custom format-
ting formula to identify weekends. The following custom formatting formula
applies formatting to cells that contain a date that falls on a Saturday or Sunday
(see Figure 19-7):

=OR(WEEKDAY(A1)=7,WEEKDAY(A1)=1)

Figure 19-7: Using conditional formatting to highlight
cells that contain a weekend date

This formula uses the OR function, so it returns TRUE if the WEEKDAY function
returns either 7 or 1. You’ll find that the WEEKDAY function returns 7 if its argu-
ment is an empty cell. Therefore, if your range contains empty cells, you should use
this formula:

=IF(ISBLANK(A1),””,OR(WEEKDAY(A1)=7,WEEKDAY(A1)=1))

Chapter 19: Conditional Formatting and Data Validation 523

4800-x Ch19.F 8/27/01 11:58 AM Page 523

HIDING ERROR VALUES
You can use conditional formatting to hide error values in your cells. In this case,
hiding the contents of a cell consists of setting its font color equal to its back-
ground color. The following conditional formatting formula applies formatting to
the cell if it returns an error value (for example, #DIV/0!):

=ISERROR(A1)

The applied formatting sets the font color to the background color.

Although setting the background color equal to the font color technique

works, it’s usually not the best way to handle the display of error values. Cells

that reference the erroneous cell display an error, and the user easily can

change the background color. In many cases, a better approach is to use an

IF function that displays an empty string if the formula returns an error. The

following formula displays an empty string if B1/C1 generates an error:

=IF(ISERR(B1/C1),””,(B1/C1))

A new feature in Excel 2002 lets you specify how cell error values are printed.

You can choose to print errors as blanks, dashes, or #N/A. You control this in

the Sheet tab of the Page Setup dialog box.

IDENTIFYING THE MAXIMUM VALUE IN A RANGE
Excel’s MAX function returns the maximum value in a range. If you want to make
this value stand out, you can use a conditional formatting formula such as this one:

=A1=MAX(A1:A30)

In this case, the conditional formatting is applied to all cells in A1:A30, and the
maximum value in that range will be formatted. You can, of course, modify this
formula to use the MIN function (which returns the smallest value in a range).

IDENTIFYING THE THREE LARGEST VALUES IN A RANGE
Excel’s LARGE function returns the nth largest value in a range (n is specified as
the second argument). The following conditional formatting formula applies for-
matting to the three largest values in the range A1:A30: This formula returns TRUE
for cells that are greater than or equal to the third largest value in the range.

=A1>=LARGE(A1:A30,3)

524 Part V: Miscellaneous Formula Techniques

4800-x Ch19.F 8/27/01 11:58 AM Page 524

DISPLAYING ALTERNATE ROW SHADING
The conditional formatting formula that follows was applied to the range A1:D18,
shown in Figure 19-8, to apply shading to alternate rows. This formula is quite use-
ful for making your spreadsheets easier to read.

=MOD(ROW(),2)=0

Figure 19-8: Using conditional formatting to apply
formatting to alternate rows

This formula uses the ROW function (which returns the row number) and the
MOD function (which returns the remainder of its first argument divided by its sec-
ond argument). For cells in even-numbered rows, the MOD function returns 0, and
cells in that row are formatted. For alternate shading of columns, use the COLUMN
function instead of the ROW function.

You can use variations on this conditional formatting formula to get other types
of row shading. For example, the conditional formatting formula that follows
shades every third row:

=MOD(ROW(),3)=0

The following conditional formatting formula applies alternate shading in
groups of four rows (four rows shaded, followed by four rows not shaded):

=MOD(INT((ROW()-1)/4)+1,2)

Need checkerboard shading, as shown in Figure 19-9? This conditional format-
ting formula does just that:

=MOD(ROW(),2)=MOD(COLUMN(),2)

Chapter 19: Conditional Formatting and Data Validation 525

4800-x Ch19.F 8/27/01 11:58 AM Page 525

Figure 19-9: Using conditional formatting to create a
checkerboard effect

IDENTIFYING DUPLICATE VALUES IN A RANGE
You might find it helpful to identify duplicate values within a range (see Figure
19-10). You can use a conditional formatting formula such as the one that follows.
In this case, formatting is applied to all cells that are not unique within the range
A1:D12.

=COUNTIF(A1:D12,A1)>1

Figure 19-10: Using conditional formatting to identify
duplicate values in a range

To apply formatting only to nonduplicated values in a range, use a formula such
as this:

=COUNTIF(A1:D12,A1)=1

526 Part V: Miscellaneous Formula Techniques

4800-x Ch19.F 8/27/01 11:58 AM Page 526

IDENTIFYING NONSORTED VALUES IN A RANGE
If you have a single-column range of values that should be in ascending order, you
can use a conditional formatting formula to quickly spot values that are out of
order. This example assumes that your sorted values begin in cell A1. Select the
range of values beginning with A2, and then specify the following conditional for-
matting formula:

=A2<A1

Conditional formatting will be applied to any cell that is less than the cell
above it.

IDENTIFYING UPWARD OR DOWNWARD TRENDS
In some cases, you might find it helpful to visually identify upward or downward
trends in a column of data. This example assumes that the data begins in cell A1.
You need to select the range beginning in A2 and then specify two conditions, as
follows.

=A2>A1
=A2<A1

Specify a different format for each condition, so you can spot the trends without
creating a chart. Figure 19-11 shows an example.

Figure 19-11: Use conditional formatting to identify upward
and downward trends.

Chapter 19: Conditional Formatting and Data Validation 527

4800-x Ch19.F 8/27/01 11:58 AM Page 527

IDENTIFYING CELLS CONTAINING MORE THAN ONE WORD
You also can use conditional formatting with text. For example, you can use the
following conditional formatting formula to apply formatting to cells that contain
more than one word:

=LEN(TRIM(A1))-LEN(SUBSTITUTE(A1,” “,””))>0

This formula assumes that the selected range begins in cell A1. The formula
works by counting the space characters in the cell (using the TRIM function to strip
out multiple spaces). If the count is greater than 1, the formula returns TRUE and
the conditional formatting is applied.

IDENTIFYING CELLS CONTAINING A SPECIFIC CHARACTER
The conditional formatting formula that follows applies formatting to cells (begin-
ning in cell A1) that contain the letter A (either upper- or lowercase):

=LEN(A1)-LEN(SUBSTITUTE(LOWER(A1),”a”,””))>0

DISPLAYING A RESULT ONLY WHEN ALL DATA IS ENTERED
This example uses conditional formatting to display a result only when you have
entered all the necessary data. In Figure 19-12, a formula in cell B5 calculates the
sum of the four values above. The objective is to hide the total until you enter all
four values.

Figure 19-12: Conditional formatting hides the contents of
A5:B5 unless you enter a value for each cell in B1:B4.

Select A5:B5 and format these cells so the font color matches the background
color — for example, make the font color white. This effectively makes these two
cells invisible. With A5:B5 still selected, enter the following conditional formatting
formula:

=COUNT(B1:B4)=4

528 Part V: Miscellaneous Formula Techniques

4800-x Ch19.F 8/27/01 11:58 AM Page 528

This formula returns TRUE only when all of the cells in B1:B4 are not empty.
Specify the conditioning of your choice. For example, you can make the back-
ground color black. Figure 19-13 shows the result when you have entered all of the
required data.

Figure 19-13: The contents of A5:B5 are visible only
when all cells in B1:B4 contain data.

IDENTIFYING POSITIVE CHANGES
Figure 19-14 shows data for a group of students who took two tests. Conditional
formatting is used to highlight the rows in which the students’ post-test scores were
higher than their pre-test scores.

Figure 19-14: Using conditional formatting to identify
students who scored higher on the post-test

The conditional formatting formula for the range A2:C12 is:

=$C2>$B2

Notice that this formula uses mixed references. The column part is absolute, but
the row part is relative.

Chapter 19: Conditional Formatting and Data Validation 529

4800-x Ch19.F 8/27/01 11:58 AM Page 529

Using Custom Functions in Conditional
Formatting Formulas
Conditional formatting formulas also work with custom worksheet functions cre-
ated using VBA. This section provides four examples.

Part V provides an overview of VBA, with specific information about

creating custom worksheet functions.

IDENTIFYING FORMULA CELLS
Oddly, Excel does not have a function that determines whether a cell contains a for-
mula. When Excel lacks a feature, you often can overcome the limitation by using
VBA. The following VBA function uses VBA’s HasFormula property. The function,
which is entered into a VBA module, returns TRUE if the cell (specified as its argu-
ment) contains a formula; otherwise, it returns FALSE.

Function ISFORMULACELL(cell) As Boolean
ISFORMULACELL = cell.HasFormula

End Function

After you enter this function into a VBA module, you can use the function in
your worksheet formulas. For example, the following formula returns TRUE if cell
A1 contains a formula:

=ISFORMULACELL(A1)

And, you also can use this function in a conditional formatting formula. The
worksheet in Figure 19-15, for example, uses conditional formatting to highlight
all cells that contain a formula.

Another way to identify formula cells is to use the Edit � Go To command.

This command displays the Go To dialog box. Click the Special button to dis-

play the Go To Special dialog box. Then choose the Formulas option and

click OK.This will select all cells that contain a formula.

530 Part V: Miscellaneous Formula Techniques

4800-x Ch19.F 8/27/01 11:58 AM Page 530

Figure 19-15: Using a custom VBA function to apply conditional
formatting to cells that contain a formula

IDENTIFYING DATE CELLS
Excel also lacks a function to determine whether a cell contains a date. The follow-
ing VBA function, which uses VBA’s IsDate function, overcomes this limitation. The
custom HASDATE function returns TRUE if the cell contains a date.

Function HASDATE(cell) As Boolean
HASDATE = IsDate(cell)

End Function

You can use this function to improve the conditional formatting formulas pre-
sented earlier in this chapter (see “Identifying Dates in a Particular Month” and
“Identifying Weekends”). Neither of the conditional formatting formulas presented
could distinguish between cells that contain a date and cells that contain a normal
value. You can use the AND function to ensure that the formatting applies only to
date cells.

The following conditional formatting formula applies formatting to cell A1 if it
contains a date and the month is June:

=AND(HASDATE(A1),MONTH(A1)=6)

The following conditional formatting formula applies formatting to cell A1 if it
contains a date and the date falls on a weekend:

=AND(HASDATE(A1),OR(WEEKDAY(A1)=7,WEEKDAY(A1)=1))

Chapter 19: Conditional Formatting and Data Validation 531

4800-x Ch19.F 8/27/01 11:58 AM Page 531

IDENTIFYING LINK FORMULAS
You may want to identify cells that contain a link formula (a formula that uses a
reference in a different workbook). The following VBA function returns TRUE if the
cell contains a formula that contains an external link. The HASLINK function uses
VBA’s versatile Like operator to determine whether a formula contains a set of
square brackets.

Function HASLINK(cell)
If cell.HasFormula Then

HASLINK = cell.Formula Like “*[[]*”
Else

HASLINK = False
End If

End Function

To apply conditional formatting to cells that contain a link, you can create a
conditional formatting formula such as the following:

=HASLINK(A1)

The HASLINK function is not perfect. In some cases it will falsely identify a

formula as being a linked formula. For example, the following formula con-

tains a set of square brackets, but it is not a linked formula. The HASLINK

function, however, reports otherwise.

=”[“&A1&”]”

IDENTIFYING INVALID DATA
You might have a situation in which the data entered must adhere to some very
specific rules, and you’d like to apply special formatting if the data entered is not
valid. You might have part numbers that consist of seven characters: four upper-
case alphabetic characters, followed by a hyphen, and then a two-digit number. For
example: ADSS-09 or DYUU-43.

You can write a conditional formatting formula to determine if part numbers
adhere to this structure, but the formula is very complex. The following formula,
for example, returns TRUE only if the value in A1 meets the part number rules
specified:

=AND(LEN(A1)=7,AND(LEFT(A1)>=”A”,LEFT(A1)<=”Z”),
AND(MID(A1,2,1)>=”A”,MID(A1,2,1)<=”Z”),AND(MID(A1,3,1)>=”A”,
MID(A1,3,1)<=”Z”),AND(MID(A1,4,1)>=”A”,MID(A1,4,1)<=”Z”),
MID(A1,5,1)=”-”,AND(VALUE(MID(A1,6,2))>=0,
VALUE(MID(A1,6,2))<=99))

532 Part V: Miscellaneous Formula Techniques

4800-x Ch19.F 8/27/01 11:58 AM Page 532

For a simpler approach, write a custom VBA worksheet function. VBA’s Like
operator makes this sort of comparison relatively easy. The following VBA function
procedure returns TRUE if its argument does not correspond to the part number
rules outlined previously:

Function INVALIDPART(n) As Boolean
If n Like “[A-Z][A-Z][A-Z][A-Z]-##” Then

INVALIDPART = False
Else

INVALIDPART = True
End If

End Function

After defining this function in a VBA module, you can enter the following con-
ditional formatting formula to apply special formatting if cell A1 contains an
invalid part number:

=INVALIDPART(A1)

Figure 19-16 shows a range that uses the INVALIDPART function in a condi-
tional formatting formula. Cells that contain invalid part numbers have a colored
background.

In many cases, you can simply take advantage of Excel’s data validation
feature — which is described next.

Figure 19-16: Using conditional formatting to highlight
cells with invalid entries

Data Validation
The data validation feature, available in Excel 97 and later versions, is similar in
many respects to the conditional formatting feature. This feature enables you to set
up certain rules that dictate what you can enter into a cell. For example, you may

Chapter 19: Conditional Formatting and Data Validation 533

4800-x Ch19.F 8/27/01 11:58 AM Page 533

want to limit data entry to whole numbers between 1 and 12. If the user makes an
invalid entry, you can display a custom message such as the one shown in
Figure 19-17.

Figure 19-17: Displaying a message when the user makes
an invalid entry

As with the conditional formatting feature, you can use a formula to specify
your data validation criteria.

The data validation feature suffers the same problem as conditional format-

ting: If the user copies a cell and pastes it to a cell that contains data valida-

tion, the data validation rules are deleted. Consequently, the cell then

accepts any type of data.

Specifying Validation Criteria
To specify the type of data allowable in a cell or range:

1. Select the cell or range.

2. Choose Data � Validation. Excel displays its Data Validation dialog box.

3. Click the Settings tab (see Figure 19-18).

Figure 19-18: The Settings tab of the Data Validation dialog box

534 Part V: Miscellaneous Formula Techniques

4800-x Ch19.F 8/27/01 11:58 AM Page 534

4. Choose an option from the drop-down box labeled Allow. To specify a
formula, select Custom.

5. Specify the conditions by selecting from the drop-down box labeled Data.
Your selection determines what other controls you can access.

6. Click the Input Message tab (see Figure 19-19) and specify which message
to display when a user selects the cell. You can use this optional step to
tell the user what type of data is expected.

Figure 19-19: The Input Message tab of the
Data Validation dialog box

7. Click the Error Alert tab (see Figure 19-20) and specify which error mes-
sage to display when a user makes an invalid entry. The selection for Style
determines what choices users have when they make invalid entries. To
prevent an invalid entry, choose Stop. This step is optional.

8. Click OK.

Figure 19-20: The Error Alert tab of the
Data Validation dialog box

Chapter 19: Conditional Formatting and Data Validation 535

4800-x Ch19.F 8/27/01 11:58 AM Page 535

After you’ve performed these steps, the cell or range contains the validation cri-
teria you specified.

Types of Validation Criteria You Can Apply
The Settings tab of the Data Validation dialog box enables you to specify any of the
following data validation criteria:

� Any value: Selecting this option removes any existing data validation.
Note, however, that the input message, if any, still displays if the check
box is checked in the Input Message tab.

� Whole number: The user must enter a whole number. You specify a valid
range of whole numbers by using the Data drop-down list. For example,
you can specify that the entry must be a whole number greater than or
equal to 100.

� Decimal: The user must enter a number. You specify a valid range of num-
bers by using the Data drop-down list. For example, you can specify that
the entry must be greater than or equal to 0, and less than or equal to 1.

� List: The user must choose from a list of entries you provide. Specify the
range that contains the list using the Source control (the range must be a
single row or column). If you have a short list, you can enter it directly
into the Source control (separate each item with list separator specified in
your regional settings — a comma if you use the U.S. regional settings).

If you specify a range for a list, it must be on the same sheet. If your list is in a

range on a different worksheet, you can provide a name for the range and

then use the name as your list source (preceded by an equal sign). For exam-

ple, if the list is contained in a range named MyList, enter the following:

=MyList

� Date: The user must enter a date. You specify a valid date range by using
the Data drop-down list. For example, you can specify that the entered
data must be greater than or equal to January 1, 2001, and less than or
equal to December 31, 2001.

� Time: The user must enter a time. You specify a valid time range by using
the Data drop-down list. For example, you can specify that the entered
data must be greater than 12:00 PM.

� Text length: The length of the data (number of characters) is limited. You
specify a valid length by using the Data drop-down list. For example, you
can specify that the length of the entered data be 1 (a single alphanumeric
character).

536 Part V: Miscellaneous Formula Techniques

4800-x Ch19.F 8/27/01 11:58 AM Page 536

� Custom: A logical formula determines the validity of the user’s entry. You
can enter the formula directly into the Formula control, or specify a cell
reference that contains a formula. This chapter contains examples of use-
ful formulas.

The Settings tab of the Data Validation dialog box contains two other options:

� Ignore blank: If checked, blank entries are allowed.

� Apply these changes to all other cells with the same setting: If checked,
the changes you make apply to all other cells that contain the original
data validation criteria.

It’s important to understand that, even with data validation in effect, the user
could enter invalid data. If the Style setting in the Error Alert tab of the Data
Validation dialog box is set to anything except Stop, invalid data can be entered.

After your data is entered, you can look for entries that are outside the limits

you set. When you click Circle Invalid Data on the Formula Auditing toolbar,

circles appear around cells that contain incorrect entries (see Figure 19-21).

If you correct an invalid entry, the circle disappears.

Figure 19-21: Circles are drawn around invalid entries (cells that contain a value).

Using Formulas for Data Validation Rules
For simple data validation, the data validation feature is quite straightforward and
easy to use. But the real power of this feature becomes apparent when you use data
validation formulas.

Chapter 19: Conditional Formatting and Data Validation 537

4800-x Ch19.F 8/27/01 11:58 AM Page 537

The formula that you specify must be a logical formula that returns either

TRUE or FALSE. If the formula evaluates to TRUE, the data is considered valid

and remains in the cell. If the formula evaluates to FALSE, a message box

appears that displays the message specified in the Error Alert tab of the Data

Validation dialog box.

As noted earlier, you specify a formula in the Data Validation dialog box by
selecting the Custom option in the Allow drop-down list of the Settings tab. You
can enter the formula directly into the Formula control, or enter a reference to a
cell that contains a formula.

If the formula that you enter contains a cell reference, that reference will be con-
sidered to be a relative reference, based on the upper left cell in the selected range.
This works exactly the same as using a formula for conditional formatting (see
“Formula-Based Conditions,” earlier in this chapter).

Using Data Validation Formulas
to Accept Only Specific Entries
Each of the following data validation examples uses a formula entered directly into
the Data Validation dialog box. You can set up these formulas to accept only text,
a certain value, nonduplicate entries, or text that begins with a specific letter.

All of the examples in this section are available on the companion CD-ROM.

ACCEPTING TEXT ONLY
To force a range to accept only text (no values), use the following data validation
formula:

=ISTEXT(A1)

This formula assumes that the upper left cell in the selected range is cell A1.

ACCEPTING A LARGER VALUE THAN THE PREVIOUS CELL
The following data validation formula allows the user to enter a value only if it’s
greater than the value in the cell directly above it:

=A2>A1

538 Part V: Miscellaneous Formula Techniques

4800-x Ch19.F 8/27/01 11:58 AM Page 538

This formula assumes that A2 is the upper left cell in the selected range. Note
that you can’t use this formula for a cell in row 1.

ACCEPTING NONDUPLICATE ENTRIES ONLY
The following data validation formula does not permit the user to make a duplicate
entry in the range A1:C20:

=COUNTIF(A1:C20,A1)=1

This formula assumes that A1 is the upper left cell in the selected range. Note
that the first argument for COUNTIF is an absolute reference. The second argument
is a relative reference, and it adjusts for each cell in the validation range. Figure
19-22 shows this validation criteria in effect, using a custom error alert message.

Figure 19-22: Using data validation to prevent duplicate entries in a range

ACCEPTING TEXT THAT BEGINS WITH “A”
The following data validation formula demonstrates how to check for a specific
character. In this case, the formula ensures that the user’s entry is a text string that
begins with the letter A (either upper- or lowercase).

=LEFT(A1)=”a”

This formula assumes that the upper left cell in the selected range is cell A1.
The following formula is a variation of this validation formula. In this case, the

formula ensures that the entry begins with the letter A and contains exactly five
characters.

=COUNTIF(A1,”A????”)=1

Chapter 19: Conditional Formatting and Data Validation 539

4800-x Ch19.F 8/27/01 11:58 AM Page 539

Part VI of this book covers custom VBA functions.

Summary
This chapter provided an overview of two useful features available in Excel 97 or
later: conditional formatting and data validation. It also provided many examples
of using formulas in conjunction with these features.

The next chapter covers a concept that I call megaformulas.

540 Part V: Miscellaneous Formula Techniques

Using Custom Worksheet Functions in
Data Validation Formulas
Earlier in this chapter, I described how to use custom VBA functions for custom
formatting (see “Using Custom Functions in Conditional Formatting Formulas”). For
some reason, Excel does not permit you to use a custom VBA function in a data
validation formula. If you attempt to do so, you get the following (erroneous) error
message: A named range you specified cannot be found.

To bypass this limitation, you can use the custom function in a cell formula, and then
specify a data validation formula that refers to that cell.

4800-x Ch19.F 8/27/01 11:58 AM Page 540

Chapter 20

Creating Megaformulas
IN THIS CHAPTER

� What is a megaformula, and why would you want to use such a thing?

� How to create a megaformula

� Examples of megaformulas

� Pros and cons of using megaformulas

THIS CHAPTER DESCRIBES A USEFUL TECHNIQUE that lets you combine several formu-
las into a single formula — what I call a megaformula. This technique can eliminate
intermediate formulas and may even speed up recalculation. The downside, as
you’ll see, is that the resulting formula is virtually incomprehensible and may be
impossible to edit.

What Is a Megaformula?
Often, spreadsheets require intermediate formulas to produce a desired result. In
other words, a formula may depend on other formulas, which in turn depend on
other formulas. After you get all these formulas working correctly, you often can
eliminate the intermediate formulas and create a single (and more complex) for-
mula. For lack of a better term, I call such a formula a megaformula.

What are the advantages of employing megaformulas? They use fewer cells (less
clutter), and recalculation may be faster. And, you can impress people in the know
with your formula-building abilities. The disadvantages? The formula probably will
be impossible to decipher or modify, even by the person who created it.

The techniques described in this chapter helped to create many of the

complex formulas presented elsewhere in this book.

A limitation to the megaformula technique is that Excel formulas can contain no
more than 1,024 characters. 541

4800-x Ch20.F 8/27/01 11:58 AM Page 541

Creating a Megaformula:
A Simple Example
Creating a megaformula basically involves copying formula text and pasting it into
another formula. Let’s start with a relatively simple example. Examine the spread-
sheet shown in Figure 20-1. This sheet uses formulas to calculate mortgage loan
information.

Figure 20-1: This spreadsheet uses multiple formulas
to calculate mortgage loan information.

This workbook is available on the companion CD-ROM.

The Result Cells section of the worksheet uses information entered into the Input
Cells section and contains the formulas shown in Table 20-1.

TABLE 20-1 FORMULAS USED TO CALCULATE TOTAL INTEREST

Cell Formula What It Does

C10 =C4*C5 Calculates the down payment amount

C11 =C4-C10 Calculates the loan amount

C12 =PMT(C7/12,C6,-C11) Calculates the monthly payment

C13 =C12*C6 Calculates the total payments

C14 =C13-C11 Calculates the total interest

542 Part V: Miscellaneous Formula Techniques

4800-x Ch20.F 8/27/01 11:58 AM Page 542

Suppose you’re really interested in the total interest paid (cell C14). You could, of
course, simply hide the rows that contain the extraneous information. But, it’s also
possible to create a single formula that does the work of several intermediary
formulas.

The formula that calculates total interest depends on the formulas in cells C11
and C13 (these are the direct precedent cells). In addition, the formula in cell C13
depends on the formula in cell C12. And cell C12, in turn, depends on cell C11.
Therefore, calculating the total interest uses five formulas. The steps that follow
describe how to create a single formula to calculate total interest so you can elimi-
nate the intermediate formulas. C14 contains the following formula:

=C13-C11

The steps that follow describe how to convert this formula into a megaformula:

1. Substitute the formula contained in cell C13 for the reference to cell C13.
Before doing this, add parentheses around the formula in C13. Now the
formula in C14 is:

=(C12*C6)-C11

2. Substitute the formula contained in cell C12 for the reference to cell C12.
Now the formula in C14 is:

=(PMT(C7/12,C6,-C11)*C6)-C11

3. Substitute the formula contained in cell C11 for the two references to cell
C11. Before copying the formula, you need to insert parentheses around it.
Now the formula in C14 is:

=(PMT(C7/12,C6,-(C4-C10))*C6)-(C4-C10)

4. Substitute the formula contained in C10 for the two references to cell C10.
Before copying the formula, insert parentheses around it. After you’ve
done so, the formula in C14 is:

=(PMT(C7/12,C6,-(C4-(C4*C5)))*C6)-(C4-(C4*C5))

At this point, the formula contains references only to input cells. You can safely
delete the formulas in C10:C13. The single megaformula now does the work previ-
ously performed by the intermediary formulas.

Unless you’re a world-class Excel formula wizard, it’s quite unlikely that you
could arrive at that formula without first creating intermediate formulas.

I designed this previous exercise to demonstrate how to create a megafor-

mula. This technique is not the most efficient way to calculate total interest

on a loan. Excel provides a more direct way to make that calculation: Use the

CUMIPMT function contained in the Analysis ToolPak.

Chapter 20: Creating Megaformulas 543

4800-x Ch20.F 8/27/01 11:58 AM Page 543

Megaformula Examples
This section contains three additional examples of megaformulas. These examples
provide a thorough introduction to applying the megaformula technique for
streamlining a variety of tasks including cleaning up a list of names by removing
middle names and initials, returning the position of the last space character in a
string, and determining if a credit card number is valid.

Using a Megaformula to Remove Middle Names
Consider a worksheet with a column of people’s names, like the one shown in
Figure 20-2. Suppose you have a worksheet with thousands of such names, and you
need to remove all the middle names and middle initials from the names. Editing
the cells manually takes hours, and you’re not up to writing a VBA macro. So that
leaves a formula-based solution. Notice that not all the names have a middle name
or initial, which makes the task a bit trickier. Although this is not a difficult task, it
normally involves several intermediate formulas.

544 Part V: Miscellaneous Formula Techniques

Copying Text from a Formula
Creating megaformulas involves copying formula text and then replacing a cell
reference with the copied text. To copy the contents of a formula, activate the cell
and press F2. Then select the formula text (without the equal sign) by pressing
Shift+Home, followed by Shift+→. Then press Ctrl+C to copy the selected text to the
clipboard. Activate the cell that contains the megaformula and press F2. Use the
arrow keys, and hold down Shift to select the cell reference you want to replace.
Finally, press Ctrl+V to replace the selected text with the clipboard contents.

In some cases, you need to insert parentheses around the copied formula text to make
the formula calculate correctly. If the formula returns a different result after you paste
the formula text, press Ctrl+Z to undo the paste. Insert parentheses around the
formula you want to copy and try again.

Creating a megaformula essentially involves substituting formula text for
cell references in a formula. You perform substitutions until the megaformula
contains no references to formula cells. At each step along the way, you can
check your work by ensuring that the formula continues to display the same
result. In the previous example, a few of the steps required you to use paren-
theses around the copied formula.

4800-x Ch20.F 8/27/01 11:58 AM Page 544

Figure 20-2: The goal is to remove the middle name or
middle initial from each name.

Figure 20-3 shows the results of the more conventional solution, which requires
six intermediate formulas as shown in Table 20-2. The names are in column A; col-
umn H displays the end result. Columns B through G hold the intermediate
formulas.

Figure 20-3: Removing the middle names and initials requires six intermediate formulas.

TABLE 20-2 INTERMEDIATE FORMULAS IN THE FIRST ROW OF SHEET1 IN
FIGURE 20-3

Cell Intermediate Formula What It Does

B1 =TRIM(A1) Removes excess spaces

C1 =FIND(“ “,B1,1) Locates the first space

D1 =FIND(“ “,B1,C1+1) Locates the second space, if any

E1 =IF(ISERROR(D1),C1,D1) Uses the first space if no second space exists

F1 =LEFT(B1,C1-1) Extracts the first name

G1 =RIGHT(B1,LEN(B1)-E1) Extracts the last name

H1 =F1&” “&G1 Concatenates the two names

Chapter 20: Creating Megaformulas 545

4800-x Ch20.F 8/27/01 11:58 AM Page 545

Notice that the result isn’t perfect. For example, it will not work if the cell

contains only one name (for example, Madonna). And, this method also fails

if a name has two middle names (such as John Jacob Robert Smith). That

occurs because the formula simply searches for the second space character

in the name. In this example, the megaformula returns John Robert Smith.

Later in this chapter, I present an array formula method to identify the last

space character in a string.

With a bit of work, you can eliminate all the intermediate formulas and replace
them with a single megaformula. You do so by creating all the intermediate formu-
las and then editing the final result formula (in this case, the formula in column H)
by replacing each cell reference with a copy of the formula in the cell referred to.
Fortunately, you can use the clipboard to copy and paste (see the previous sidebar,
“Copying Text from a Formula”). Keep repeating this process until cell H1 contains
nothing but references to cell A1. You end up with the following megaformula in
one cell:

=LEFT(TRIM(A1),FIND(“ “,TRIM(A1),1)-1)&” “&RIGHT
(TRIM(A1),LEN(TRIM(A1))-IF(ISERROR(FIND(“ “,
TRIM(A1),FIND(“ “,TRIM(A1),1)+1)),FIND(“ “,TRIM(A1),1),
FIND(“ “,TRIM(A1),FIND(“ “,TRIM(A1),1)+1)))

When you’re satisfied that the megaformula works, you can delete the columns
that hold the intermediate formulas because they are no longer used.

THE STEP-BY-STEP PROCEDURE
If you’re still not clear about this process, take a look at these step-by-step
procedures:

1. Examine the formula in H1. This formula contains two cell references (F1
and G1):

=F1&” “&G1

2. Activate cell G1 and copy the contents of the formula (without the equal
sign) to the clipboard.

3. Activate cell H1 and replace the reference to cell G1 with the clipboard
contents. Now cell H1 contains the following formula:

=F1&” “&RIGHT(B1,LEN(B1)-E1)

4. Activate cell F1 and copy the contents of the formula (without the equal
sign) to the clipboard.

546 Part V: Miscellaneous Formula Techniques

4800-x Ch20.F 8/27/01 11:58 AM Page 546

5. Activate cell H1 and replace the reference to cell F1 with the clipboard
contents. Now the formula in cell H1 is:

=LEFT(B1,C1-1)&” “&RIGHT(B1,LEN(B1)-E1)

6. Now cell H1 contains references to three cells (B1, C1, and E1). The for-
mulas in those cells will replace each of the three references.

7. Replace the reference to cell E1 with the formula in E1. The result is:

=LEFT(B1,C1-1)&” “&RIGHT(B1,LEN(B1)-IF(ISERROR(D1),C1,D1))

8. Notice that the formula in cell H1 now contains two references to cell D1.
Copy the formula from D1 and replace both of the references to cell D1.
The formula now looks like this:

=LEFT(B1,C1-1)&” “&RIGHT(B1,LEN(B1)-IF(ISERROR(FIND
(“ “,B1,C1+1)),C1,FIND(“ “,B1,C1+1)))

9. Replace the four references to cell C1 with the formula contained in cell
C1. The formula in cell H1 is:

=LEFT(B1,FIND(“ “,B1,1)-1)&” “&RIGHT(B1,LEN(B1)-IF
(ISERROR(FIND(“ “,B1,FIND(“ “,B1,1)+1)),FIND(“ “,B1,1),
FIND(“ “,B1,FIND(“ “,B1,1)+1)))

10. Finally, replace the nine references to cell B1 with the formula in cell B1.
The result is:

=LEFT(TRIM(A1),FIND(“ “,TRIM(A1),1)-1)&” “&RIGHT(TRIM(A1),
LEN(TRIM(A1))-IF(ISERROR(FIND(“ “,TRIM(A1),FIND(“ “,
TRIM(A1),1)+1)),FIND(“ “,TRIM(A1),1),FIND(“ “,TRIM(A1),
FIND(“ “,TRIM(A1),1)+1)))

Notice that the formula in cell H1 now contains references only to cell A1. The
megaformula is complete, and it performs exactly the same tasks as all the inter-
mediate formulas (which you can now delete).

You can access the workbook for removing middle names and initials on

the companion CD-ROM.

COMPARING SPEED AND EFFICIENCY
Because a megaformula is so complex, you may think that using one slows down
recalculation. Actually, that’s not the case. As a test, I created a workbook that used
the megaformula 65,536 times. Then I created another workbook that used six

Chapter 20: Creating Megaformulas 547

4800-x Ch20.F 8/27/01 11:58 AM Page 547

intermediate formulas to compute the 65,536 results. I compared the results with a
custom VBA function that performs the same operation. Table 20-3 shows the sta-
tistics regarding the three methodologies.

TABLE 20-3 COMPARING INTERMEDIATE FORMULAS, A MEGAFORMULA, AND
A VBA FUNCTION

Method Recalculation Time (Seconds) File Size

Intermediate formulas 10.8 24.4MB

Megaformula 6.2 8.9MB

VBA function 106.7 8.6MB

The actual results will of course vary depending on system speed and the
amount of memory installed.

As you can see, using a megaformula in this case resulted in faster recalculations
as well as a much smaller workbook. The VBA function was much slower — in fact,
it wasn’t even in the same ballpark. This is fairly typical of VBA functions; they are
always slower than built-in Excel functions.

Using a Megaformula to Return a String’s Last
Space Character Position
As previously noted, the “remove middle name” example presented earlier contains
a flaw: To identify the last name, the formula searches for the second space charac-
ter. A better solution is to search for the last space character. Unfortunately, Excel
doesn’t provide any simple way to locate the position of the first occurrence of a
character from the end of a string. The example in this section solves that problem
and describes a way to determine the position of the first occurrence of a specific
character beginning from the end of a text string.

This technique involves arrays, so you might want to review the material in

Part IV to familiarize yourself with this topic.

This example describes how to create a megaformula that returns the character
position of the last space character in a string. You can, of course, modify the for-
mula to work with any other character.

548 Part V: Miscellaneous Formula Techniques

4800-x Ch20.F 8/27/01 11:58 AM Page 548

CREATING THE INTERMEDIATE FORMULAS
The general plan is to create an array of characters in the string, but in reverse
order. Once that array is created, we can use the MATCH function to locate the first
space character in the array.

Refer to Figure 20-4, which shows the results of the intermediate formulas. Cell
A1 contains an arbitrary name, which happens to be comprised of 12 characters.
The range B1:B12 contains the following array formula:

{=ROW(INDIRECT(“1:”&LEN(A1)))}

Figure 20-4: These intermediate formulas will eventually be
converted to a single megaformula.

You enter this formula into the entire B1:B12 range by selecting the range, typ-
ing the formula, and pressing Ctrl+Shift+Enter. Don’t type the curly brackets. Excel
adds the brackets to indicate an array formula. This formula returns an array of 12
consecutive integers.

The range C1:C12 contains the following array formula:

{=LEN(A1)+1-B1:B12}

This formula essentially reverses the integers generated in column B.
The range D1:D12 contains the following array formula:

{=MID(A1,C1:C12,1)}

This formula uses the MID function to extract the individual characters in cell
A1. The MID function uses the array in C1:C12 as its second argument. The result is
an array of characters in reverse order.

The formula in cell E1 is:

=MATCH(“ “,D1:D12,0)

Chapter 20: Creating Megaformulas 549

4800-x Ch20.F 8/27/01 11:58 AM Page 549

This formula, which is not an array formula, uses the MATCH function to return
the position of the first space character in the range D1:D12. In the example shown
in Figure 20-4, the formula returns 6, which means that the first space character is
six characters from the end of the text in A1.

The formula in cell F1 is:

=LEN(A1)+1-E1

This formula returns the character position of the last space in the string.
You may wonder how all of these formulas can possibly be combined into a sin-

gle formula. Keep reading for the answer.

CREATING THE MEGAFORMULA
At this point, cell F1 contains the result we are looking for. The challenge is con-
solidating all of those intermediate formulas into a single formula. The goal is to
produce a formula that contains only references to cell A1. These steps will get you
to that goal:

1. The formula in cell F1 contains a reference to cell E1. Replace that refer-
ence with the text of the formula in cell E1. As a result, the formula in
cell F1 becomes:

=LEN(A1)+1-MATCH(“ “,D1:D12,0)

2. Now the formula contains a reference to D1:D12. This range contains a
single array formula. Replacing the reference to D1:D12 with the array
formula results in the following array formula in cell F1:

{=LEN(A1)+1-MATCH(“ “,MID(A1,C1:C12,1),0)}

Because an array formula replaced the reference in cell F1, you now must

enter the formula in F1 as an array formula (enter it with Ctrl+Shift+Enter).

3. Now the formula in cell F1 contains a reference to C1:C12, which also
contains an array formula. Replace the reference to C1:C12 with the array
formula in C1:C12 to get this array formula in cell F1:

{=LEN(A1)+1-MATCH(“ “,MID(A1,LEN(A1)+1-B1:B12,1),0)}

4. Next, replace the reference to B1:B12 with the array formula in B1:B12.
The result is:

{=LEN(A1)+1-MATCH(“ “,MID(A1,LEN(A1)+1-ROW(INDIRECT
(“1:”&LEN(A1))),1),0)}

550 Part V: Miscellaneous Formula Techniques

4800-x Ch20.F 8/27/01 11:58 AM Page 550

Now the array formula in cell F1 refers only to cell A1, which is exactly what we
want. The megaformula does all of the work, and you can delete all of the interme-
diate formulas.

Although you use a 12-digit value and arrays stored in 12-row ranges to create
the formula, the final formula does not use any of these range references.
Consequently, the megaformula works with a value of any length.

PUTTING THE MEGAFORMULA TO WORK
Figure 20-5 shows a worksheet with names in column A. Column B contains the
megaformula developed in the previous section. Column C contains a formula that
extracts the characters beginning after the last space, which represents the last
name of the name in column A.

Figure 20-5: Column B contains a megaformula that returns the
character position of the last space of the name in column A.

Cell C1, for example, contains this formula:

=RIGHT(A1,LEN(A1)-B1)

If you like, you can eliminate the formulas in column B and create a specialized
formula that returns the last name. To do so, substitute the formula in B1 for the
reference to B1 in the formula. The result is the following array formula:

{=RIGHT(A1,LEN(A1)-(LEN(A1)+1-MATCH(“ “,MID(A1,LEN(A1)+1-
ROW(INDIRECT(“1:”&LEN(A1))),1),0)))}

You must insert parentheses around the formula text copied from cell B1.

Without the parentheses, the formula does not evaluate correctly.

Chapter 20: Creating Megaformulas 551

4800-x Ch20.F 8/27/01 11:58 AM Page 551

The workbook for locating a string’s last space character is available on the

companion CD-ROM.

Using a Megaformula to Determine the Validity
of a Credit Card Number
You may not know it, but you can determine the validity of a credit card number
by using a relatively complex algorithm to analyze the digits of the number. In
addition, you can determine the type of credit card by examining the initial digits
and the length of the number. Table 20-4 shows information about four major
credit cards.

TABLE 20-4 INFORMATION ABOUT FOUR CREDIT CARDS

Credit Card Prefix Digits Total Digits

Mastercard 51–55 16

Visa 4 13 or 16

American Express 34 or 37 15

Discover 6011 16

“Validity,”as used here, means whether the credit card number itself is a valid

number. This technique, of course, cannot determine if the number repre-

sents an active credit card account.

You can test the validity of a credit card account number by processing its
checksum digits. All account numbers used in major credit cards use a “mod 10”
check digit algorithm. The general process follows these steps:

1. Add leading zeros to the account number to make the total digits equal 16.

2. Beginning with the first digit, double the value of alternate digits of the
account number. If the result is a two-digit number, add the two digits
together.

552 Part V: Miscellaneous Formula Techniques

4800-x Ch20.F 8/27/01 11:58 AM Page 552

3. Add the eight values generated in Step 2 to the sum of the skipped digits
of the original number.

4. If the sum obtained in Step 3 is evenly divisible by 10, the number is a
valid credit card number.

The example in this section describes a megaformula that determines if a credit
card number is a valid number.

THE BASIC FORMULAS
Figure 20-6 shows a worksheet set up to analyze a credit card number and determine
its validity. This workbook uses quite a few formulas to make the determination.

Figure 20-6: The formulas in this workbook determine the validity of a credit card number.

In this workbook, the credit card number is entered in cell F1, with no spaces or
hyphens. The formula in cell F2 follows. This formula appends leading zeros, if
necessary, to make the card number exactly 16 digits. The other formulas use the
string in cell F2.

=REPT(“0”,16-LEN(F1))&F1

When entering a credit card number that contains more than 15 digits, you

must be careful that Excel does not round the number to 15 digits. You can

precede the number with an apostrophe or preformat the cell as Text (using

the Number Format tab of the Format Cells dialog box).

Chapter 20: Creating Megaformulas 553

4800-x Ch20.F 8/27/01 11:58 AM Page 553

Column A contains a series of integers from 1 to 16, representing the digit posi-
tions of the credit card.

Column B contains formulas that extract each digit from cell F2. For example,
the formula in cell B5 is:

=MID(F2,A5,1)

Column C contains the multipliers for each digit: alternating 2s and 1s.
Column D contains formulas that multiply the digit in column B by the multi-

plier in column C. For example, the formula in cell D5 is:

=B5*C5

Column E contains formulas that sum the digits displayed in column D. A single
digit value in column D is returned directly. For two-digit values, the sum of the
digits is displayed in Column E. For example, if column D displays 12, the formula
in column E returns 3 (that is, 1 + 2). The formula that accomplishes this is:

=INT((D5/10)+MOD((D5),10))

Cell E21 contains a simple SUM formula to add the values in column E:

=SUM(E5:E20)

The formula in cell G1, which follows, calculates the remainder when cell E21 is
divided by 10. If the remainder is 0, the card number is valid and the formula dis-
plays VALID. Otherwise, the formula displays INVALID.

=IF(MOD(E21,10)=0,”VALID”,”INVALID”)

CONVERT TO ARRAY FORMULAS
It’s important to understand that the megaformula that we’ll create will be an array
formula because the intermediary formulas occupy multiple rows.

First, you need to convert all of the formulas to array formulas. Note that
columns A and C consist of values, not formulas. To use the values in a megafor-
mula, they must be generated by formulas — more specifically, array formulas.

Enter the following array formula into the range A5:A20. This array formula
returns a series of 16 consecutive integers.

{=ROW(INDIRECT(“1:16”))}

For column B, select B5:B20 and enter the following array formula, which
extracts the digits from the credit card number:

{=MID(F2,A5:A20,1)}

554 Part V: Miscellaneous Formula Techniques

4800-x Ch20.F 8/27/01 11:58 AM Page 554

Next, column C requires an array formula that generates alternating values of 2
and 1. Such a formula, entered into the range C5:C20, is shown here:

{=(MOD(ROW(INDIRECT(“1:16”)),2)+1)}

For column D, select D5:D20 and enter the following array formula:

{=B5:B20*C5:C20}

Finally, select E5:E20 and enter this array formula:

{=INT((D5:D20/10)+MOD((D5:D20),10))}

Now there are five columns of 16 rows, but only five actual formulas. These are
multicell array formulas.

BUILD THE MEGAFORMULA
To create the megaformula for this task, start with cell G1, which is the cell that has
the final result. The original formula in G1 is:

=IF(MOD(E21,10)=0,”VALID”,”INVALID”)

First, replace the reference to cell E21 with the formula in E21. Doing so results
in the following formula in cell G1:

=IF(MOD(SUM(E5:E20),10)=0,”VALID”,”INVALID”)

Next, replace the reference to E5:E20 with the array formula contained in that
range. Now the formula becomes an array formula so you must enter it with
Ctrl+Shift+Enter. After the replacement, the formula in G1 is:

{=IF(MOD(SUM(INT((D5:D20/10)+MOD((D5:D20),10))),10)=0,
“VALID”,”INVALID”)}

Replace the two references to range D5:D20 with the array formula contained in
D5:20. Doing so results in the following array formula in cell G1:

{=IF(MOD(SUM(INT((B5:B20*C5:C20/10)+MOD((B5:B20*C5:C20),10))),
10)=0,”VALID”,”INVALID”)}

Chapter 20: Creating Megaformulas 555

4800-x Ch20.F 8/27/01 11:58 AM Page 555

Next, replace the references to cell C5:C20 with the array formula in C5:C20.
Note that you must have a set of parentheses around the copied formula text. The
result is as follows:

{=IF(MOD(SUM(INT((B5:B20*(MOD(ROW(INDIRECT(“1:16”)),2)+1)/10)+
MOD((B5:B20*(MOD(ROW(INDIRECT(“1:16”)),2)+1)),10))),10)=0,
“VALID”,”INVALID”)}

Replacing the references to B5:B20 with the array formula contained in B5:B20
yields the following:

{=IF(MOD(SUM(INT((MID(F2,A5:A20,1)*(MOD(ROW(INDIRECT(“1:16”)),2)
+1)/10)+MOD((MID(F2,A5:A20,1)*(MOD(ROW(INDIRECT(“1:16”)),
2)+1)),10))),10)=0,”VALID”,”INVALID”)}

Substitute the array formula in range A5:A20 for the references to that range.
The resulting array formula is:

{=IF(MOD(SUM(INT((MID(F2,ROW(INDIRECT(“1:16”)),1)*(MOD(ROW
(INDIRECT(“1:16”)),2)+1)/10)+MOD((MID(F2,ROW(INDIRECT(“1:16”)),1)*
(MOD(ROW(INDIRECT(“1:16”)),2)+1)),10))),10)=0,”VALID”,”INVALID”)}

Finally, substitute the formula in cell F2 for the two references to cell F2. After
making the substitutions, the formula is as follows:

{=IF(MOD(SUM(INT((MID(REPT(“0”,16-LEN(F1))&F1,
ROW(INDIRECT(“1:16”)),1)*(MOD(ROW(INDIRECT(“1:16”)),2)+1)/
10)+MOD((MID(REPT(“0”,16-LEN(F1))&F1,ROW(INDIRECT(“1:16”)),1)*
(MOD(ROW(INDIRECT(“1:16”)),2)+1)),10))),10)=0,”VALID”,
“INVALID”)}

You can delete the now superfluous intermediate formulas. The final megafor-
mula, a mere 229 characters in length, does the work of 51 intermediary formulas!

You can access the credit card number validation workbook on the com-

panion CD-ROM.

556 Part V: Miscellaneous Formula Techniques

4800-x Ch20.F 8/27/01 11:58 AM Page 556

The Pros and Cons of Megaformulas
If you followed the examples in this chapter, you probably realize that the main
advantage of creating a megaformula is to eliminate intermediate formulas. Doing
so can streamline your worksheet, reduce the size of your workbook files, and even
result in faster recalculations.

The downside? Creating a megaformula does, of course, require some additional
time and effort. And, as you’ve undoubtedly noticed, a megaformula is virtually
impossible for anyone (even the author) to figure out. If you decide to use megafor-
mulas, take extra care to ensure that the intermediate formulas are performing cor-
rectly before you start building a megaformula. Even better, keep a single copy of
the intermediate formulas somewhere in case you discover an error or need to make
a change.

Summary
This chapter described a useful technique that involves combining multiple formu-
las into a single, complex formula (a megaformula). I presented several examples of
creating such formulas.

The next chapter takes a look at formulas you can create for debugging
purposes.

Chapter 20: Creating Megaformulas 557

4800-x Ch20.F 8/27/01 11:58 AM Page 557

4800-x Ch20.F 8/27/01 11:58 AM Page 558

Chapter 21

Tools and Methods for
Debugging Formulas

IN THIS CHAPTER

� What is formula debugging?

� How to identify and correct common formula errors

� A description of Excel’s auditing tools

� Auditing tools available from third-party providers

ERRORS HAPPEN. AND WHEN YOU CREATE Excel formulas, errors happen very frequently.
This chapter describes common formula errors, and discusses tools and methods that
you can use to help create formulas that work as they are intended to work.

Formula Debugging?
The term debugging refers to the process of identifying and correcting errors in a
computer program. Strictly speaking, an Excel formula is not a computer program.
Formulas, however, are subject to the same types of problems that occur in a com-
puter program. If you create a formula that does not work as it should, then you
need to identify and correct the problem.

The ultimate goal in developing a spreadsheet solution is to generate accurate
results. For simple worksheets, this is not difficult, and you can usually tell whether
the results are correct. But as your worksheets grow in size or complexity, ensuring
accuracy becomes more difficult.

Making a change in a worksheet — even a relatively minor change — may pro-
duce a ripple effect that introduces errors in other cells. For example, accidentally
entering a value into a cell that previously held a formula is all too easy to do. This
simple error can have a major impact on other formulas, and you may not discover
the problem until long after you make the change. Or, you may never discover the
problem.

559

4800-x Ch21.F 8/27/01 11:59 AM Page 559

Formula Problems and Solutions
Formula errors tend to fall into one of the following six general categories:

� Syntax errors: You have a problem with the syntax of a formula. For
example, a formula may have mismatched parentheses, or you may have
spelled a function name incorrectly.

� Logical errors: A formula does not return an error, but it contains a logi-
cal flaw that causes it to return an incorrect result.

� Incorrect reference errors: The logic of the formula is correct, but the for-
mula uses an incorrect cell reference. As a simple example, the range ref-
erence in a SUM formula may not include all of the data that you want
to sum.

� Circular references: A circular reference occurs when a formula refers to
its own cell, either directly or indirectly. Circular references are useful in a
few cases, but most of the time a circular reference indicates a problem.

� Array formula entry error: When entering (or editing) an array formula,
you must use Ctrl+Shft+Enter to enter the formula. If you fail to do so,
Excel does not recognize the formula as an array formula.

� Incomplete calculation errors: The formulas simply aren’t calculated
fully. Microsoft has acknowledged some problems with Excel’s calculation
engine in some versions of Excel. To ensure that your formulas are fully
calculated, use Ctrl+Alt+F9.

560 Part V: Miscellaneous Formula Techniques

Research on Spreadsheet Errors
Using a spreadsheet can be hazardous to your company’s bottom line. It’s far too easy
to simply assume that your spreadsheet produces accurate results. If you use the
results of a spreadsheet to make a major decision, it’s especially important to make
sure that the formulas return accurate and meaningful results.

Researchers have conducted quite a few studies that deal with spreadsheet errors.
Generally, these studies have found that between 20 and 40 percent of all
spreadsheets contain some type of error. If this type of research interests you, I urge
you to check out the Spreadsheet Research (SSR) Web site maintained by Ray Panko
of the University of Hawaii. The URL is:

http://panko.cba.hawaii.edu/ssr/

4800-x Ch21.F 8/27/01 11:59 AM Page 560

Syntax errors are usually the easiest to identify and correct. In most cases, you
will know when your formula contains a syntax error. For example, Excel won’t
permit you to enter a formula with mismatched parentheses. Other syntax errors
also usually result in an error display in the cell.

The remainder of this section describes some common formula problems and
offers advice on identifying and correcting them.

Mismatched Parentheses
In a formula, every left parenthesis must have a corresponding right parenthesis. If
your formula has mismatched parentheses, Excel usually won’t permit you to enter
it. An exception to this rule involves a simple formula that uses a function. For
example, if you enter the following formula (which is missing a closing parenthe-
sis), Excel accepts the formula and provides the missing parenthesis.

=SUM(A1:A500

A formula may have an equal number of left and right parentheses, but the
parentheses may not match properly. For example, consider the following formula,
which converts a text string such that the first character is uppercase and the
remaining characters are lowercase. This formula has five pairs of parentheses, and
they match properly.

=UPPER(LEFT(A1))&RIGHT(LOWER(A1),LEN(A1)-1)

The following formula also has five pairs of parentheses, but they are mis-
matched. The result displays a syntactically correct formula that simply returns the
wrong result.

=UPPER(LEFT(A1)&RIGHT(LOWER(A1),LEN(A1)-1))

Often, parentheses that are in the wrong location will result in a syntax error —
which is usually a message that tells you that you entered too many or too few
arguments for a function.

Excel can help you out with mismatched parentheses. When you edit a for-

mula, move the cursor to a parenthesis and pause. Excel displays it (and its

matching parenthesis) in bold for about one second.

Chapter 21: Tools and Methods for Debugging Formulas 561

4800-x Ch21.F 8/27/01 11:59 AM Page 561

Cells Are Filled with ##########
A cell is filled with a series of hash marks (#) for one of two reasons:

� The column is not wide enough to accommodate the formatted numeric
value. To correct it, you can make the column wider or use a different
number format.

� The cell contains a formula that returns an invalid date or time. For
example, Excel does not support dates prior to 1900 or the use of negative
time values. Attempting to display either of these will result in a cell filled
with hash marks. Widening the column won’t fix it.

562 Part V: Miscellaneous Formula Techniques

Using Formula AutoCorrect
When you enter a formula that has a syntax error, Excel attempts to determine the
problem and offers a suggested correction. The accompanying figure shows an
example of a proposed correction.

Exercise caution when accepting corrections for your formulas from Excel, because it
does not always guess correctly. For example, I entered the following formula (which
has mismatched parentheses):

=AVERAGE(SUM(A1:A12,SUM(B1:B12))

Excel then proposed the following correction to the formula:

=AVERAGE(SUM(A1:A12,SUM(B1:B12)))

You may be tempted to accept the suggestion without even thinking. In this case, the
proposed formula is syntactically correct — but not what I intended. The correct
formula is:

=AVERAGE(SUM(A1:A12),SUM(B1:B12))

4800-x Ch21.F 8/27/01 11:59 AM Page 562

Blank Cells Are Not Blank
Some Excel users have discovered that by pressing the spacebar, the contents of a
cell seem to erase. Actually, pressing the spacebar inserts an invisible space charac-
ter, which is not the same as erasing the cell.

For example, the following formula returns the number of non-empty cells in
range A1:A10. If you “erase” any of these cells by using the spacebar, these cells are
included in the count, and the formula returns an incorrect result.

=COUNTA(A1:A10)

If your formula does not ignore blank cells the way that it should, check to make
sure that the blank cells are really blank cells.

Formulas Returning an Error
A formula may return any of the following error values:

� #DIV/0!

� #NA

� #NAME?

� #NULL!

� #NUM!

� #REF!

� #VALUE!

The following sections summarize possible problems that may cause these errors.

A new feature in Excel 2002 lets you choose how error values are printed.To

access this feature, select File � Page Setup and click the Sheet tab. You can

choose to print error values as blank cells, dashes, or #N/A.

Chapter 21: Tools and Methods for Debugging Formulas 563

Tracing Error Values
The Trace Error button on the Auditing toolbar helps you to identify the cell that is
causing an error value to appear. Often, an error in one cell is the result of an error in
a precedent cell. Activate a cell containing an error, and then click the Trace Error
button. Excel draws arrows to indicate the error source.

4800-x Ch21.F 8/27/01 11:59 AM Page 563

#DIV/0! ERRORS
Division by zero is not permitted. If you attempt to do so, Excel displays its famil-
iar #DIV/0! error value.

Because Excel considers a blank cell to be zero, you also get this error if your
formula divides by a missing value. This is a common problem when you create
formulas for data that you haven’t entered yet, as shown in Figure 21-1. The for-
mula in cell D2, which was copied to the cells below it, is:

=(C2-B2)/C2

Figure 21-1: #DIV/0! errors occur when the data in column C is missing.

This formula calculates the percent change between the values in columns B and
C. Data is not available for months beyond May, so the formula returns a #DIV/0!
error.

To avoid the error display, you can use an IF function to check for a blank cell in
column C:

= IF(C2=0,””,(C2-B2)/C2)

This formula displays an empty string if cell C2 is blank or contains 0; otherwise,
it displays the calculated value.

Another approach is to use an IF function to check for any error condition. The
following formula, for example, displays an empty string if the formula results in
any type of error.

=IF(ISERROR((C2-B2)/C2),””,(C2-B2)/C2)

564 Part V: Miscellaneous Formula Techniques

4800-x Ch21.F 8/27/01 11:59 AM Page 564

#N/A ERRORS
The #N/A error occurs if any cell referenced by a formula displays #N/A.

Some users like to enter =NA() or #N/A explicitly for missing data. This

method makes it perfectly clear that the data is not available and hasn’t

been deleted accidentally. When you create a line chart from cells that con-

tain #N/A, the missing data is interpolated. If you plot an empty cell, on the

other hand, the line chart will show a gap for the missing data.

The #N/A error also occurs when a lookup function (HLOOKUP, LOOKUP,
MATCH, or VLOOKUP) can’t find a match.

#NAME? ERRORS
The #NAME? error occurs under these conditions:

� The formula contains an undefined range or cell name.

� The formula contains text that Excel interprets as an undefined name. A
misspelled function name, for example, generates a #NAME? error.

� The formula uses a worksheet function that’s defined in an add-in, and
the add-in is not installed.

Excel has a bit of a problem with range names. If you delete a name for a cell

or range and the name is used in a formula, the formula continues to use the

name, even though it’s no longer defined. As a result, the formula displays

#NAME?. You may expect Excel to automatically convert the names to their

corresponding cell references, but this does not happen.

#NULL! ERRORS
The #NULL! error occurs when a formula attempts to use an intersection of two
ranges that don’t actually intersect. Excel’s intersection operator is a space. The
following formula, for example, returns #NULL! because the two ranges don’t
intersect.

=SUM(B5:B14 A16:F16)

Chapter 21: Tools and Methods for Debugging Formulas 565

4800-x Ch21.F 8/27/01 11:59 AM Page 565

The following formula does not return #NULL!, but displays the contents of cell
B9 — which represents the intersection of the two ranges.

=SUM(B5:B14 A9:F9)

#NUM! ERRORS
A formula returns a #NUM! error if any of the following occurs:

� You pass a non-numerical argument to a function when a numerical
argument is expected.

� A function that uses iteration can’t calculate a result. Examples of func-
tions that use iteration are IRR and RATE.

� A formula returns a value that is too large or too small. Excel supports
values between 1E-307 and 1E+307.

#REF! ERRORS
The #REF! error occurs when a formula uses an invalid cell reference. This error can
occur in the following situations:

� You delete a cell that is referenced by the formula. For example, the fol-
lowing formula displays a #REF! error if row 1, column A, or column B is
deleted.

=A1/B1

� You copy a formula to a location that invalidates the relative cell references.
For example, if you copy the following formula from cell A2 to cell A1, the
formula returns #REF! because it attempts to refer to a nonexistent cell.

=A1-1

� You delete a cell that is referenced by the formula. For example, the fol-
lowing formula will display a #REF! error if row 1, column A, or column
B is deleted.

=A1/B1

� You cut a cell (using Edit � Cut) and then paste it to a cell that’s refer-
enced by a formula. The formula will display #REF!.

566 Part V: Miscellaneous Formula Techniques

4800-x Ch21.F 8/27/01 11:59 AM Page 566

#VALUE! ERRORS
The #VALUE! error is very common and can occur under the following conditions:

� An argument for a function is of an incorrect data type or the formula
attempts to perform an operation using incorrect data. For example, a for-
mula that adds a value to a text string returns the #VALUE! error.

� A function’s argument is a range when it should be a single value.

� A custom worksheet function is not calculated. With some versions of
Excel, inserting or moving a sheet may cause this error. You can use
Ctrl+Alt+F9 to force a recalculation.

� A custom worksheet function attempts to perform an operation that is not
valid. For example, custom functions cannot modify the Excel environ-
ment or make changes to other cells.

� You forget to press Ctrl+Shift+Enter when entering an array formula.

Absolute/Relative Reference Problems
As described in Chapter 2, a cell reference can be relative (for example, A1),
absolute (for example, A1), or mixed (for example, $A1 or A$1). The type of cell
reference that you use in a formula is relevant only if the formula will be copied to
other cells.

A common problem is to use a relative reference when you should use an
absolute reference. As shown in Figure 21-2, cell C1 contains a tax rate, which is
used in the formulas in column C. The formula in cell C4 is:

=B4+(B4*C1)

Chapter 21: Tools and Methods for Debugging Formulas 567

Pay Attention to the Colors
When you edit a cell that contains a formula, Excel color-codes the cell and range
references in the formula. Excel also outlines the cells and ranges used in the formula
by using corresponding colors. Therefore, you can see at a glance the cells that are
used in the formula.

You also can manipulate the colored outline to change the cell or range reference. To
change the references that are used, drag the outline’s border or fill handle (at the
lower-right corner of the outline).

4800-x Ch21.F 8/27/01 11:59 AM Page 567

Figure 21-2: Formulas in the range C4:C6 use an absolute
reference to cell C1.

Notice that the reference to cell C1 is an absolute reference. When the formula is
copied to other cells in column C, the formula continues to refer to cell C1. If the
reference to cell C1 were a relative reference, the copied formulas would return an
incorrect result.

Operator Precedence Problems
Excel has some straightforward rules about the order in which mathematical oper-
ations are performed. In Table 21-1, operations with a lower precedence are per-
formed before operations with a higher precedence. This table, for example, shows
that multiplication has a higher precedence than addition. Therefore, multiplication
is performed first.

TABLE 21-1 OPERATOR PRECEDENCE IN EXCEL FORMULAS

Symbol Operator Precedence

- Negation 1

% Percent 2

^ Exponentiation 3

* and / Multiplication and division 4

+ and - Addition and subtraction 5

& Text concatenation 6

=, <, >, and <> Comparison 7

568 Part V: Miscellaneous Formula Techniques

4800-x Ch21.F 8/27/01 11:59 AM Page 568

When in doubt (or when you simply need to clarify your intentions), you should
use parentheses to ensure that operations are performed in the correct order. For
example, the following formula multiplies A1 by A2, and then adds 1 to the result.
The multiplication is performed first, because it has a higher order of precedence.

= 1+A1*A2

The following is a clearer version of this formula. The parentheses aren’t neces-
sary, but, in this case, the order of operations is perfectly obvious.

=1+(A1*A2)

Notice that the negation operator symbol is exactly the same as the subtraction
operator symbol. This, as you may expect, can cause some confusion. Consider
these two formulas:

=-3^2
=0-3^2

The first formula, as expected, returns 9. The second formula, however, returns
-9. Squaring a number always produces a positive result, so how is it that Excel can
return the -9 result?

In the first formula, the minus sign is a negation operator and has the highest
precedence. However, in the second formula, the minus sign is a subtraction opera-
tor, which has a lower precedence than the exponentiation operator. Therefore, the
value 3 is squared and the result is subtracted from zero, which produces a negative
result.

Excel is a bit unusual in interpreting the negation operator. Other spread-

sheet products (for example, 1-2-3 and Quattro Pro) return -9 for both for-

mulas. In addition, Excel’s VBA language also returns -9 for these expressions.

Using parentheses, as shown in the following formula, causes Excel to interpret
the operator as a minus sign rather than a negation operator. This formula returns 9.

=0+(-3^2)

Formulas Are Not Calculated
If you use custom worksheet functions written in VBA, you may find that formulas
that use these functions fail to get recalculated and may display incorrect results.
To force a recalculation of all formulas, press Ctrl+Alt+F9.

Chapter 21: Tools and Methods for Debugging Formulas 569

4800-x Ch21.F 8/27/01 11:59 AM Page 569

Prior to Excel 2000, this key combination was not documented.

Actual versus Displayed Values
You may encounter a situation in which values in a range don’t appear to add up
properly. For example, Figure 21-3 shows a worksheet with the following formula
entered into each cell in the range B2:B4:

=1/3

Figure 21-3: A simple demonstration of numbers that appear to
add up incorrectly

Cell B5 contains the following formula:

=SUM(B2:B4)

All of the cells are formatted to display with three decimal places. As you can
see, the formula in cell B5 appears to display an incorrect result (you may expect it
to display 0.999). The formula, of course, does return the correct result. The formula
uses the actual values in the range B2:B4, not the displayed values.

You can instruct Excel to use the displayed values by checking the Precision as
displayed checkbox on the Calculation tab of the Options dialog box (choose
Tools � Options to display this dialog box).

Checking the Precision as displayed checkbox also affects normal values

(non-formulas) that have been entered into cells. For example, if a cell con-

tains the value 4.68 and is displayed with no decimal places (that is, 5), then

checking the Precision as displayed checkbox converts 4.68 to 5.00. This

change is permanent and you can’t restore the original value if you later

uncheck the Precision as displayed checkbox.

570 Part V: Miscellaneous Formula Techniques

4800-x Ch21.F 8/27/01 11:59 AM Page 570

Floating Point Number Errors
Computers, by their very nature, don’t have infinite precision. Excel stores numbers
in binary format by using eight bytes, which can handle numbers with 15-digit
accuracy. Some numbers can’t be expressed precisely by using eight bytes, so the
number stores as an approximation.

To demonstrate how this may cause problems, enter the following formula into
cell A1:

=(5.1-5.2)+1

The result should be 0.9. However, if you format the cell to display 15 decimal
places, you’ll discover that Excel calculates the formula with a result of
0.899999999999999. This occurs because the operation in parentheses is performed
first, and this intermediate result stores in binary format by using an approxima-
tion. The formula then adds 1 to this value, and the approximation error is propa-
gated to the final result.

In many cases, this type of error does not present a problem. However, if you
need to test the result of that formula by using a logical operator, it may present a
problem. For example, the following formula (which assumes that the previous for-
mula is in cell A1) returns FALSE:

=A1=.9

One solution to this type of error is to use Excel’s ROUND function. The follow-
ing formula, for example, returns TRUE because the comparison is made by using
the value in A1 rounded to one decimal place.

=ROUND(A1,1)=0.9

Here’s another example of a “precision” problem. Try entering the following
formula:

=1.333+1.225-1.333-1.225

If you use Excel 97 or a later version, the formula returns 0. Previous versions
return 2.22044604925031E-16 (a number very close to zero).

Beginning with Excel 97, if an addition or subtraction operation results in a

value at or very close to zero, the calculation engine compensates for any

error introduced as a result of converting an operand to and from binary.

When you perform the previous example in Excel 97 (and later versions), it

correctly displays 0.

Chapter 21: Tools and Methods for Debugging Formulas 571

4800-x Ch21.F 8/27/01 11:59 AM Page 571

“Phantom Link” Errors
You may open a workbook, and see a message like the one shown in Figure 21-4. This
message sometimes appears even when a workbook contains no linked formulas.

Figure 21-4: Excel’s way of asking you if you want to update
links in a workbook

In the vast majority of cases, this phantom link problem occurs because of an
erroneous name. Select Insert � Name � Define and scroll through the list of
names. If you see a name that refers to #REF!, delete the name.

These phantom links may be created when you copy a worksheet that con-

tains names. See Chapter 3 for more information about names.

Circular Reference Errors
A circular reference is a formula that contains a reference to the cell that contains
the formula. The reference may be direct or indirect. For help tracking down a cir-
cular reference, see “Excel’s Auditing Tools,” later in this chapter.

As described in Chapter 14, you may encounter some situations in which

you create an intentional circular reference.

Excel’s Auditing Tools
Excel includes a number of tools that can help you track down formula errors. This
section describes the auditing tools built into Excel.

572 Part V: Miscellaneous Formula Techniques

4800-x Ch21.F 8/27/01 11:59 AM Page 572

Identifying Cells of a Particular Type
The Go To Special dialog box enables you to specify the type of cells that you want
Excel to select. To display this dialog box, choose Edit � Go To (or press F5 or
Ctrl+G). The Go To dialog box appears. Click the Special button, which displays the
Go To Special dialog box, as shown in Figure 21-5.

Figure 21-5: The Go To Special dialog box

If you select a multicell range before choosing Edit � Go To, the command

operates only within the selected cells. If a single cell is selected, the com-

mand operates on the entire worksheet.

You can use the Go To Special dialog box to select cells of a certain type, which
can often help in identifying errors. For example, if you choose the Formulas
option, Excel selects all of the cells that contain a formula. If you zoom the work-
sheet out to a small size, you can get a good idea of the worksheet’s organization
(see Figure 21-6).

Selecting the formula cells may also help you to spot a common error — a for-
mula that has been replaced accidentally with a value. If you find a cell that’s not
selected amid a group of selected formula cells, chances are good that the cell pre-
viously contained a formula that has been replaced by a value.

Viewing Formulas
You can become familiar with an unfamiliar workbook by displaying the formulas
rather than the results of the formulas. Select Tools � Options, and check the check-
box labeled “Formulas” on the View tab. You may want to create a new window for
the workbook before issuing this command. This way, you can see the formulas in
one window and the results of the formula in the other window. Use the Window �
New Window command to open a new window.

Chapter 21: Tools and Methods for Debugging Formulas 573

4800-x Ch21.F 8/27/01 11:59 AM Page 573

Figure 21-6: Zooming out and selecting all formula cells can give you a good overview of how
the worksheet is designed.

You can use Ctrl+` to toggle between Formula view and Normal view.

In Excel 2002, you can also use the Tools � Formula Auditing � Formula

Auditing Mode command to toggle formula view on and off. When formula

view is in effect, the Formula Auditing Toolbar is also displayed.

Figure 21-7 shows an example of a worksheet displayed in two windows. The
window on the top shows Normal view (formula results), and the window on
the bottom displays the formulas.

When Formula view is in effect, Excel highlights the cells that are used by the
formula in the active cell. In Figure 21-7, for example, the active cell is C11.
The cells used by this formula are highlighted in both windows.

574 Part V: Miscellaneous Formula Techniques

4800-x Ch21.F 8/27/01 11:59 AM Page 574

Figure 21-7: Displaying formulas (bottom window) and their results (top window)

If you need a printed list of your formulas, you’ll soon find that Excel’s

Formula view is not really designed for printing. My Power Utility Pak add-in

(on the companion CD-ROM) includes a utility that will generate a handy,

printable list of all formulas in a worksheet or workbook.

Tracing Cell Relationships
To understand how to trace cell relationships, you need to familiarize yourself with
the following two concepts:

� Cell precedents: Applicable only to cells that contain a formula, a formula
cell’s precedents are all the cells that contribute to the formula’s result. A
direct precedent is a cell that you use directly in the formula. An indirect
precedent is a cell that is not used directly in the formula, but is used by a
cell that you refer to in the formula.

� Cell dependents: These are formula cells that depend on a particular cell.
A cell’s dependents consist of all formula cells that use the cell. Again, the
formula cell can be a direct dependent or an indirect dependent.

Chapter 21: Tools and Methods for Debugging Formulas 575

4800-x Ch21.F 8/27/01 11:59 AM Page 575

Identifying cell precedents for a formula cell often sheds light on why the for-
mula is not working correctly. Conversely, knowing which formula cells depend on
a particular cell is also helpful. For example, if you’re about to delete a formula,
you may want to check whether it has any dependents.

IDENTIFYING PRECEDENTS
You can identify cells used by a formula in the active cell in a number of ways.

� Press F2. The cells that are used directly by the formula are outlined in
color, and the color corresponds to the cell reference in the formula. This
technique is limited to identifying cells on the same sheet as the formula.

� Select Edit � Go To (or press F5) to display the Go To dialog box. Then
click the Special button to display the Go To Special dialog box. Select the
Precedents option, and then select either Direct only (for direct precedents
only) or All levels (for direct and indirect precedents). Click OK and Excel
highlights the precedent cells for the formula. This technique is limited to
identifying cells on the same sheet as the formula.

� Press Ctrl+[to select all direct precedent cells on the active sheet.

� Press Ctrl+Shift+[to select all precedent cells (direct and indirect) on the
active sheet.

� Display the Formula Auditing toolbar by selecting Tools � Formula
Auditing � Show Formula Auditing Toolbar. Click the Trace Precedents
button to draw arrows to indicate a cell’s precedents. Click this button
multiple times to see additional levels of precedents. Figure 21-8 shows a
worksheet with precedent arrows drawn to indicate the precedents for the
formula in cell C13.

IDENTIFYING DEPENDENTS
You can identify formula cells that use a particular cell in a number of ways.

� Select Edit � Go To (or press F5) to display the Go To dialog box. Then
click the Special button to display the Go To Special dialog box. Select the
Dependents option, and then select either Direct only (for direct depen-
dents only) or All levels (for direct and indirect dependents). Click OK;
Excel highlights the cells that depend on the active cell. This technique is
limited to identifying cells on the active sheet only.

� Press Ctrl+] to select all direct dependent cells on the active sheet.

� Press Ctrl+Shift+] to select all dependent cells (direct and indirect) on the
active sheet.

576 Part V: Miscellaneous Formula Techniques

4800-x Ch21.F 8/27/01 11:59 AM Page 576

� Display the Formula Auditing toolbar by selecting Tools � Formula
Auditing � Show Formula Auditing Toolbar. Click the Trace Dependents
button to draw arrows to indicate a cell’s dependents. Click this button
multiple times to see additional levels of dependents.

Figure 21-8: This worksheet displays lines that indicate cell precedents for the
formula in cell C13.

Tracing Error Values
The Trace Error button on the Formula Auditing toolbar helps you to identify the
cell that is causing an error value to appear. An error in one cell is often the result
of an error in a precedent cell. Activate a cell that contains an error and click the
Trace Error button. Excel draws arrows to indicate the error source.

Fixing Circular Reference Errors
If you accidentally create a circular reference formula, Excel displays a warning
message. If you click OK, Excel displays the Circular Reference toolbar (see Figure
21-9). If you can’t figure out the source of the problem, use the Navigate Circular
Reference tools (a drop-down list control) on the toolbar to select a cell involved in
the circular reference. Start by selecting the first cell listed, and then work your way
down the list until you figure out the problem.

Figure 21-9: The Circular Reference toolbar

Chapter 21: Tools and Methods for Debugging Formulas 577

4800-x Ch21.F 8/27/01 11:59 AM Page 577

Using Excel 2002’s Background Error
Checking Feature
If you use Excel 2002, you may find it helpful to take advantage of the new auto-
matic error checking feature.

The information in this section applies only to Excel 2002.

The Options dialog box in Excel 2002 contains several new tabs, including the
Error Checking tab (see Figure 21-10). Error checking is turned on or off by using
the checkbox labeled “Enable background error checking.” In addition, you can
specify which types of errors to check for by using the checkboxes in the Rules
section.

Figure 21-10: Excel 2002 can check your formulas for potential errors.

When error checking is turned on, Excel continually evaluates your worksheet,
including its formulas. If a potential error is identified, Excel places a small triangle
in the upper left corner of the cell. When the cell is activated, a Smart Tag appears.
Clicking this Smart Tag provides you with some options. Figure 21-11 shows the
options that appear when you click the Smart Tag in a cell that contains a #DIV/0
error. The options vary, depending on the type of error.

578 Part V: Miscellaneous Formula Techniques

4800-x Ch21.F 8/27/01 11:59 AM Page 578

Figure 21-11: Clicking an error Smart Tag gives you a list of options.

In many cases, you will choose to ignore an error by selecting the Ignore Error
option. Selecting this option eliminates the cell from subsequent error checks.
However, all previously ignored errors can be reset so that they appear again (use
the Reset Ignored Errors button in the Error Checking tab of the Options
dialog box).

You can use the Tools � Error Checking command to display a dialog box that
displays each potential error cell in sequence, much like using a spell checking pro-
gram. Figure 21-12 shows the Error Checking dialog box. Note that this is a “mod-
eless” dialog box, so you can still access your worksheet when the Error Checking
dialog box is displayed.

Figure 21-12: Using the Error Checking dialog box to cycle through
potential errors identified by Excel

It’s important to understand that the error checking feature is not perfect. In

fact, it’s not even close to perfect. In other words, you can’t assume that you

have an error-free worksheet simply because Excel does not identify any

potential errors! Also, be aware that this error checking feature won’t catch a

very common type of error — that of overwriting a formula cell with a value.

Chapter 21: Tools and Methods for Debugging Formulas 579

4800-x Ch21.F 8/27/01 11:59 AM Page 579

Using Excel 2002’s Formula Evaluator
Excel 2002 includes a new feature called the “Formula Evaluator,” which lets you
see the various parts of a nested formula evaluated in the order that the formula is
calculated.

The information in this section applies only to Excel 2002.

To use the Formula Evaluator, select the cell that contains the formula and
choose Tools � Formula Auditing � Evaluate Formula. Or, click the Evaluate
Formula button on the Formula Auditing toolbar. Either of these actions displays
the Evaluate Formula dialog box, as shown in Figure 21-13.

Figure 21-13: Excel 2002’s Formula Evaluator shows a formula being
calculated one step at a time.

Click the Evaluate button to show the result of calculating the expressions
within the formula. Each click of the button performs another calculation. This fea-
ture may be useful in some situations, but overall it leaves much to be desired.

Third-Party Auditing Tools
A few third-party auditing tools for Excel are available — namely the Power Utility
Pak, the Spreadsheet Detective, and the Excel Auditor. I describe them in the fol-
lowing sections.

580 Part V: Miscellaneous Formula Techniques

4800-x Ch21.F 8/27/01 11:59 AM Page 580

Power Utility Pak
My Power Utility Pak includes a number of useful utilities relevant to auditing a
worksheet. These utilities are:

� Workbook Summary Report: Produces a handy summary report of the
entire workbook.

� Workbook Link Report: Produces a report that describes all links in the
workbook.

� Worksheet Map: Creates a handy map that makes it easy to identify cells
of various types (see Figure 21-14).

Figure 21-14: The Power Utility Pak produced this Worksheet Map.

� Compare Sheets or Ranges: Performs a cell-by-cell comparison of two
worksheets or ranges.

� Date Report: Creates a useful report that summarizes all date-related cells.

� Name Lister: Lists all names in a workbook. Unlike Excel’s Define Name
dialog box, this utility also lists hidden names.

� Formula Report: Generates a useful (and printable) listing of all formulas
in a worksheet (see Figure 21-15). This is much more useful than Excel’s
formula view.

� VBA Project Summary Report: Generates a report that describes the VBA
procedures contained in a workbook.

Chapter 21: Tools and Methods for Debugging Formulas 581

4800-x Ch21.F 8/27/01 11:59 AM Page 581

Figure 21-15: The Power Utility Pak can generate a useful report that lists all
formulas in a worksheet.

A trial version of Power Utility Pak is available on this book’s companion

CD-ROM.You can use the coupon in the back of the book to order a copy at

a significant discount.

Spreadsheet Detective
The Spreadsheet Detective, available from Southern Cross Software, is a compre-
hensive auditing tool for Excel workbooks. For complete information (including a
free evaluation version), visit the following URL:

http://www.uq.net.au/detective/

Excel Auditor
The Excel Auditor is available from Byg Software, based in the United Kingdom.
This product includes many tools to help you identify and correct spreadsheet
errors. For complete information, visit the following URL:

http://www.bygsoftware.com

582 Part V: Miscellaneous Formula Techniques

4800-x Ch21.F 8/27/01 11:59 AM Page 582

Summary
This chapter discussed the types of formula errors that you are likely to encounter.
I described how to identify such errors and some general guidelines on correcting
them. I also described the auditing tools that are built into Excel, plus three third-
party auditing tools that you may find helpful.

The next chapter is the first of four chapters to provide information about
creating custom worksheet functions by using VBA.

Chapter 21: Tools and Methods for Debugging Formulas 583

4800-x Ch21.F 8/27/01 11:59 AM Page 583

4800-x Ch21.F 8/27/01 11:59 AM Page 584

Developing Custom
Worksheet Functions

CHAPTER 22
Introducing VBA

CHAPTER 23
Function Procedure Basics

CHAPTER 24
VBA Programming Concepts

CHAPTER 25
VBA Custom Function Examples

Part VI

4800-x PO6.F 8/27/01 11:59 AM Page 585

4800-x PO6.F 8/27/01 11:59 AM Page 586

Chapter 22

Introducing VBA
IN THIS CHAPTER

� An introduction to Visual Basic for Applications — Excel’s programming
language

� How to use the Visual Basic Editor

� How to work in the code windows of the Visual Basic Editor

THIS CHAPTER INTRODUCES YOU to Visual Basic for Applications (VBA). VBA is
Excel’s programming language, and it is used to create custom worksheet func-
tions. Before you can create custom functions by using VBA, you need to have
some basic background knowledge of VBA, as well as some familiarity with the
Visual Basic Editor.

About VBA
Excel 5 was the first application on the market to feature Visual Basic for
Applications. VBA is best thought of as Microsoft’s common application scripting
language. It’s now included with all Office 2002 applications, and it’s also available
in applications from other vendors. In Excel, VBA has two primary uses:

� Enables you to automate spreadsheet tasks.

� Enables you to create custom functions that you can use in your work-
sheet formulas.

Excel also includes another way of creating custom functions by using the

XLM macro language. XLM is pretty much obsolete, but it is still supported

for compatibility purposes.This book completely ignores the XLM language

and focuses on VBA.

587

4800-x Ch22.F 8/27/01 11:59 AM Page 587

VBA is a complex topic — far too complex to be covered completely in this book.
Because this book deals with formulas, I hone in on one important (and useful)
aspect of VBA — that of creating custom worksheet functions. You can use a custom
worksheet function (sometimes known as a user-defined function) in formulas.

If your goal is to become a VBA expert, this book nudges you in that direc-

tion, but it does not get you to your final destination.You may want to check

out another book of mine: Excel 2002 Power Programming with VBA.This book

covers all aspects of VBA programming for Excel.

Introducing the Visual Basic Editor
Before you can begin creating custom functions, you need to become familiar with
the Visual Basic Editor, or VB Editor for short. The VB Editor enables you to work
with VBA modules, which are containers for your VBA code.

In Excel 5 and Excel 95, a VBA module appeared as a separate sheet in a work-
book. Beginning with Excel 97, VBA modules no longer show up as sheets in a
workbook. Rather, you use the VB Editor to view and work with VBA modules. In
Excel 97 and later versions, VBA modules are still stored with workbook files; they
just aren’t visible unless you activate the VB Editor.

This chapter assumes that you use Excel 97 or a later version. Previous ver-

sions don’t have a separate VB Editor.

Activating the VB Editor
When you work in Excel, you can switch to the VB Editor by using any of the fol-
lowing techniques:

� Press Alt+F11.

� Select Tools � Macro � Visual Basic Editor.

� Click the Visual Basic Editor button, located on the Visual Basic toolbar
(not visible, by default).

588 Part VI: Developing Custom Worksheet Functions

4800-x Ch22.F 8/27/01 11:59 AM Page 588

Figure 22-1 shows the VB Editor. Chances are that your VB Editor window won’t
look exactly like the window shown in the figure. This window is highly customiz-
able. You can hide windows, change their sizes, “dock” them, rearrange them, and
so on.

Figure 22-1: The Visual Basic Editor window

The VB Editor Components
The VB Editor consists of a number of components. I briefly describe some of the
key components in the following sections.

MENU BAR
The VB Editor menu bar works like every other menu bar that you’ve encountered.
It contains commands that you use to work with the various components in the VB
Editor. The VB Editor also features shortcut menus. Right-click virtually anything
in a VB Editor window and you get a shortcut menu of common commands.

TOOLBARS
The standard toolbar, directly under the menu bar by default, is one of six VB
Editor toolbars that are available. VB Editor toolbars work just like those in Excel:
You can customize toolbars, move them around, display other toolbars, and so
forth.

Chapter 22: Introducing VBA 589

4800-x Ch22.F 8/27/01 11:59 AM Page 589

PROJECT WINDOW
The Project window displays a tree diagram that consists of every workbook that’s
currently open in Excel (including add-ins and hidden workbooks). In the VB
Editor, each workbook is known as a project. I discuss the Project window in more
detail in the next section (“Using the Project Window”). If the Project window is not
visible, press Ctrl+R.

CODE WINDOW
A code window contains VBA code. Every item in a project has an associated code
window. To view a code window for an object, double-click the object in the Project
window. Or, select the item and click the View Code button at the top of the
Explorer window.

For example, to view the code window for the Sheet1 object for a particular
workbook, double-click Sheet1 in the Project window. Unless you’ve added some
VBA code, the code window will be empty. I discuss code windows later on in this
chapter (see “Using Code Windows”).

PROPERTIES WINDOW
The Properties window contains a list of all properties for the selected object. Use
this window to examine and change properties. You can use the F4 shortcut key to
display the Properties window.

IMMEDIATE WINDOW
The Immediate window is most useful for executing VBA statements directly, test-
ing statements, and debugging your code. This window may or may not be visible.
If the Immediate window is not visible, press Ctrl+G. To close the Immediate win-
dow, click the Close button on its title bar.

Using the Project Window
When you work in the VB Editor, each Excel workbook and add-in that’s currently
open is considered a project. You can think of a project as a collection of objects
arranged as an outline. You can expand a project by clicking the plus sign (+) at the
left of the project’s name in the Project window. You contract a project by clicking
the minus sign (-) to the left of a project’s name. Figure 22-2 shows the Project
window with three projects listed (one add-in and two workbooks).

If you try to expand a project that is protected with a password, you are
prompted to enter the password.

Every project expands to show at least one “node” called “Microsoft Excel
Objects.” This node expands to show an item for each worksheet and chart sheet in
the workbook (each sheet is considered an object), and another object called
“ThisWorkbook” (which represents the Workbook object). If the project has any
VBA modules, the project listing also shows a Modules node with the modules

590 Part VI: Developing Custom Worksheet Functions

4800-x Ch22.F 8/27/01 11:59 AM Page 590

listed there. A project may also contain a node called “Forms” (which contains
UserForm objects), and a node called “Class Modules” (which contain Class Module
objects). This book focuses exclusively on standard VBA modules and does not
cover the objects contained in the Microsoft Excel Objects node, UserForms node,
or Class Modules node.

Figure 22-2: A Project window with three projects listed

If you use Excel 2002, a project may have another node called “References.”

This node contains a list of all references that are used by the project.

References are added or removed by using the Tools � References com-

mand. Unlike other items listed in the Project window, Reference items don’t

have an associated code module.

RENAMING A PROJECT
By default, all projects are named “VBAProject.” In the Project window, the work-
book name appears (in parentheses) next to the project name. For example, a pro-
ject may appear as:

VBAProject (budget.xls)

You may prefer to change the name of your project to a more descriptive name.
To do so:

1. Select the project in the Project window

2. Make sure that the Properties window is displayed (press F4 if it’s not dis-
played).

3. Change the name from VBAProject to something else

After making the change, the Project window displays the new name.

Chapter 22: Introducing VBA 591

4800-x Ch22.F 8/27/01 11:59 AM Page 591

ADDING A NEW VBA MODULE
A new Excel workbook does not have any VBA modules. To add a VBA module to
a project, select the project’s name in the Project window and choose Insert �
Module.

When you create custom functions, they must reside in a standard VBA mod-

ule and not in a code window for a Sheet object or the ThisWorkbook object.

If the code for your custom function does not reside in a VBA module, it

won’t work!

RENAMING A MODULE
VBA modules have default names, such as “Module1,” “Module2,” and so on. To
rename a VBA module, select it in the Project window and then change the Name
property by using the Properties window (a VBA module has only one property —
Name). If the Properties window is not visible, press F4 to display it. Figure 22-3
shows a VBA module that is being renamed “MyModule.”

Figure 22-3: Use the Properties window to change the name of a VBA module.

592 Part VI: Developing Custom Worksheet Functions

4800-x Ch22.F 8/27/01 11:59 AM Page 592

REMOVING A VBA MODULE
If you want to remove a VBA module from a project, select the module’s name in
the Project window and choose File � Remove xxx, (where xxx is the name of the
module). You are asked if you want to export the module before removing it.
Exporting a module makes a backup file of the module’s contents. You can import
an exported module into any other project.

Using Code Windows
With the exception of Reference objects, each object in a project has an associated
code window. To summarize, these objects can be:

� The workbook itself (the item named “ThisWorkbook” in the Project
window)

� A worksheet or chart sheet in a workbook (for example, Sheet1 or Chart1
in the Project window)

� A VBA module

� A UserForm

� A class module (a special type of module that enables you to create new
object classes)

� A reference (Excel 2002 only)

This book focuses exclusively on VBA modules, which is where custom

worksheet functions are stored.

MINIMIZING AND MAXIMIZING WINDOWS
At any given time, the VB Editor may have lots of code windows. Figure 22-4
shows an example.

Code windows are much like worksheet windows in Excel. You can minimize
them, maximize them, hide them, rearrange them, and so on. Most people find that
it’s much easier to maximize the code window that they’re working on. Sometimes,
however, you may want to have two or more code windows visible. For example,
you may want to compare the code in two modules, or copy code from one module
to another.

Minimizing a code window gets it out of the way. You also can click the Close
button in a code window’s title bar to close the window completely. To open it
again, just double-click the appropriate object in the Project window.

You can’t close a workbook from the VB Editor. You must reactivate Excel and
close it from there.

Chapter 22: Introducing VBA 593

4800-x Ch22.F 8/27/01 11:59 AM Page 593

Figure 22-4: Code window overload

STORING VBA CODE
In general, a module can hold three types of code:

� Sub procedures: A procedure is a set of instructions that performs some
action. For example, you may have a Sub procedure that combines
various parts of a workbook into a concise report.

� Function procedures: A function is a set of instructions that returns a
single value or an array. You can use Function procedures in worksheet
formulas.

� Declarations: A declaration is information about a variable that you pro-
vide to VBA. For example, you can declare the data type for variables that
you plan to use.

A single VBA module can store any number of procedures and declarations.

594 Part VI: Developing Custom Worksheet Functions

4800-x Ch22.F 8/27/01 11:59 AM Page 594

This book focuses exclusively on Function procedures. A Function procedure

is the only type of procedure that you can use in worksheet formulas.

Entering VBA Code
This section describes the various ways of entering VBA code in a code window. For
Function procedures, the code window will always be a VBA module. You can add
code to a VBA module in three ways:

� Use your keyboard to type it.

� Use Excel’s macro-recorder feature to record your actions and convert
them into VBA code.

� Copy the code from another module and paste it into the module that you
are working on.

ENTERING CODE MANUALLY
Sometimes, the most direct route is the best one. Type the code by using your key-
board. Entering and editing text in a VBA module works just as you expect. You
can select text and copy it, or cut and paste it to another location.

Use the Tab key to indent the lines that logically belong together — for example,
the conditional statements between an If and an End If statement. Indentation is
not necessary, but it makes the code easier to read.

A single instruction in VBA can be as long as you want. For the sake of read-
ability, however, you may want to break a lengthy instruction into two or more
lines. To do so, end the line with a space followed by an underscore character, and
then press Enter and continue the instruction on the following line. The following
code, for example, is a single statement split over three lines.

If IsNumeric(MyCell) Then _
Result = “Number” Else _
Result = “Non-Number”

Notice that I indented the last two lines of this statement. Doing this is optional,
but it helps to clarify the fact that these three lines comprise a single statement.

After you enter an instruction, the VB Editor performs the following actions to
improve readability:

� It inserts spaces between operators. If you enter Ans=1+2 (without any
spaces), for example, VBA converts it to

Ans = 1 + 2

Chapter 22: Introducing VBA 595

4800-x Ch22.F 8/27/01 11:59 AM Page 595

� The VB Editor adjusts the case of the letters for keywords, properties, and
methods. If you enter the following text:

user=application.username

VBA converts it to

user = Application.UserName

� Because variable names are not case sensitive, the VB Editor adjusts the
names of all variables with the same letters so that their case matches the
case of letters that you most recently typed. For example, if you first spec-
ify a variable as myvalue (all lowercase) and then enter the variable as
MyValue (mixed case), VBA changes all other occurrences of the variable
to MyValue. An exception to this occurs if you declare the variable with
Dim or a similar statement; in this case, the variable name always appears
as it was declared.

� The VB Editor scans the instruction for syntax errors. If it finds an error, it
changes the color of the line and may display a message describing the
problem. You can set various options for the VB Editor in the Options dia-
log box (accessible by selecting Tools � Options).

Like Excel, the VB Editor has multiple levels of Undo and Redo. Therefore, if

you find that you mistakenly deleted an instruction, you can click the Undo

button (or press Ctrl+Z) repeatedly until the instruction returns. After undo-

ing the action, you can select Edit � ReDo Delete (or click the ReDo Delete

toolbar button) to redo previously undone changes.

USING THE MACRO RECORDER
Another way to get code into a VBA module is to record your actions by using
Excel’s macro recorder. No matter how hard you try, you cannot record a Function
procedure (the type of procedure that is used for a custom worksheet function). All
recorded macros are Sub procedures. Using the macro recorder can help you to
identify various properties that you can use in your custom functions. For example,
turn on the macro recorder to record your actions while you change the user name.
Follow these steps in Excel:

1. Select Tools � Macro � Record New Macro.

2. In the Record Macro dialog box, accept the default settings and click OK
to begin recording. Excel displays a small toolbar named “Stop
Recording.”

596 Part VI: Developing Custom Worksheet Functions

4800-x Ch22.F 8/27/01 11:59 AM Page 596

3. Select Tools � Options.

4. In the Options dialog box, click the General tab.

5. Make a change (any change) to the User Name box.

6. Click OK to close the Options dialog box.

7. Click the Stop Recording button on the Stop Recording toolbar.

8. Press Alt+F11 to activate the VB Editor.

9. In the Project window, select the project that corresponds to your
workbook.

10. Double-click the VBA module that contains your recorded code. Generally,
this will be the module with the highest number (for example, Module3).

You’ll find a VBA procedure that looks something like this:

Sub Macro1()
‘
‘ Macro1 Macro
‘ Macro recorded 6/1/2001 by Bob Smith
‘

With Application
.UserName = “Robert Smith”
.StandardFont = “Arial”
.StandardFontSize = “10”
.DefaultFilePath = “d:\xlfiles”
.EnableSound = False
.RollZoom = False

End With
End Sub

Note that this is a Sub procedure, not a Function procedure. In other words, you
can’t use this procedure in a worksheet formula. If you examine the code, however,
you’ll see a reference to the UserName property. You can use this information when
creating a Function procedure. For example, the following Function procedure uses
the UserName property. This function, when used in a worksheet formula, returns
the name of the user.

Function USER()
USER = Application.UserName

End Function

Chapter 22: Introducing VBA 597

4800-x Ch22.F 8/27/01 11:59 AM Page 597

You can consult the online help system to identify various properties, but using
the macro recorder is often more efficient if you don’t know exactly what you’re
looking for. After you identify what you need, you can check the online help for
details.

COPYING VBA CODE
This section has covered entering code directly and recording your actions to gen-
erate VBA code. The final method of getting code into a VBA module is to copy it
from another module. For example, you may have written a custom function for
one project that would also be useful in your current project. Rather than reenter
the code, you can open the workbook, activate the module, and use the normal
Clipboard copy-and-paste procedures to copy it into your current VBA module.

You also can copy VBA code from other sources. For example, you may find a
listing on a Web page or in a newsgroup. In such a case, you can select the text in
your browser (or newsreader), copy it to the Clipboard, and then paste it into a
module.

Saving Your Project
As with any application, you should save your work frequently while working in
the VB Editor. To do so, use the File � Save command, press Ctrl+S, or click the
Save button on the standard toolbar.

When you save your project, you actually save your Excel workbook. By the

same token, if you save your workbook in Excel, you also save the changes

made in the workbook’s VB project.

The VB Editor does not have a File � Save As command. To save your project
with a different name, activate Excel and use Excel’s File � Save As command.

Summary
This chapter provided an introduction to VBA, which is the language used to create
custom worksheet functions. I introduced the various components of the VB Editor
and described several ways to enter code into a VBA module.

The next chapter covers the basics of VBA Function procedures.

598 Part VI: Developing Custom Worksheet Functions

4800-x Ch22.F 8/27/01 11:59 AM Page 598

Chapter 23

Function Procedure Basics
IN THIS CHAPTER

� Why you may want to create custom functions

� An introductory VBA function example

� About VBA Function procedures

� Using the Paste Function dialog box to add a function description and
assign a function category

� Tips for testing and debugging functions

� Creating an add-in to hold your custom functions

PREVIOUS CHAPTERS IN THIS book examined Excel’s worksheet functions and how
you can use them to build more complex formulas. These functions, as well as those
available in the Analysis ToolPak add-in, provide a great deal of flexibility when
creating formulas. However, you may encounter situations that call for custom
functions. This chapter discusses the reasons that you may want to use custom
functions, how you can create a VBA Function procedure, and methods for testing
and debugging them.

Why Create Custom Functions?
You are, of course, familiar with Excel’s worksheet functions — even novices know
how to use the most common worksheet functions, such as SUM, AVERAGE, and IF.
Excel includes more than 300 predefined worksheet functions, plus additional
functions available through the Analysis ToolPak add-in.

You can use Visual Basic for Applications (VBA) to create additional worksheet
functions, which are known as custom functions or user-defined functions (UDFs).
With all the functions that are available in Excel and VBA, you may wonder why
you would ever need to create new functions. The answer: To simplify your work
and give your formulas more power.

For example, you can create a custom function that can significantly shorten
your formulas. Shorter formulas are more readable and easier to work with.
However, it’s important to understand that custom functions in your formulas are
usually much slower than built-in functions. But on a fast system, the speed differ-
ence often goes unnoticed.

599

4800-x Ch23.F 8/27/01 11:59 AM Page 599

The process of creating a custom function is not difficult. In fact, many people
(this author included) enjoy creating custom functions. This book provides you with
the information that you need to create your own functions. In this and subsequent
chapters, you’ll find many custom function examples that you can adapt for your
own use.

An Introductory VBA Function
Example
Without further ado, I’ll show you a simple VBA Function procedure. This function,
named USER, does not accept any arguments. When used in a worksheet formula,
this function simply displays the user’s name, in uppercase characters. To create
this function:

1. Start with a new workbook (this is not really necessary, but keep it simple
for right now).

2. Press Alt+F11 to activate the VB Editor.

3. Click your workbook’s name in the Project window. If the Project window
is not visible, press Ctrl+R to display it.

4. Choose Insert � Module to add a VBA module to the project.

5. Type the following code in the code window.

Function USER()
‘ Returns the user’s name

USER = Application.UserName
USER = UCase(USER)

End Function

I gave this warning in the previous chapter, but it’s worth repeating: When

you create a custom function, make sure that it resides in a normal VBA mod-

ule and not in a code module for a Sheet or ThisWorkbook.

To try out the User function, activate Excel (press Alt+F11) and enter the follow-
ing formula into any cell in the workbook.

=USER()

600 Part VI: Developing Custom Worksheet Functions

4800-x Ch23.F 8/27/01 11:59 AM Page 600

If you entered the VBA code correctly, the Function procedure executes and your
name displays (in uppercase characters) in the cell.

If your formula returns an error, make sure that the VBA code for the USER

function is in a VBA module (and not a module for a Sheet or ThisWorkbook

object). Also, make sure that the module is in the project associated with the

workbook into which you enter the formula.

When Excel calculates your worksheet, it encounters the USER custom function.
Each instruction in the function is evaluated, and the result is returned to your
worksheet. You can use this function any number of times in any number of cells.

You’ll find that this custom function works just like any other worksheet func-
tion. You can insert it into a formula by using the Insert � Function command or
the Insert Function button. In the Insert Function dialog box, custom functions
appear in the User Defined category. As with any other function, you can use it in
a more complex formula. For example, try this:

=”Hello “&USER()

Or, use this formula to display the number of characters in your name:

=LEN(USER())

Chapter 23: Function Procedure Basics 601

What Custom Worksheet Functions Can’t Do
As you develop custom worksheet functions, you should understand a key point. A
function procedure used in a worksheet formula must be passive. In other words, it
can’t change things in the worksheet.

You may be tempted to try to write a custom worksheet function that changes the
formatting of a cell. For example, you may find it useful to have a function that
changes the color of text in a cell based on the cell’s value. Try as you might, a
function such as this is impossible to write — everybody tries this, and no one
succeeds. No matter what you do, the function always returns an error because the
code attempts to change something on the worksheet. Remember that a function can
return only a value. It can’t perform actions with objects.

4800-x Ch23.F 8/27/01 11:59 AM Page 601

If you don’t like the fact that your name is in uppercase, edit the procedure as
follows:

Function USER()
‘ Returns the user’s name

USER = Application.UserName
End Function

After editing the function, reactivate Excel and press F9 to recalculate. Any cell
that uses the USER function displays a different result.

About Function Procedures
Function procedures have a structure. Here, we’ll look at some of the technical
details that apply to Function procedures. These are general guidelines for declaring
functions, naming functions, using custom functions in formulas, and using argu-
ments in custom functions.

Declaring a Function
The official syntax for declaring a function is as follows:

[Public | Private][Static] Function name ([arglist]) [As type]
[statements]
[name = expression]
[Exit Function]
[statements]
[name = expression]

End Function

� Public indicates that the function is accessible to all other procedures in
all other modules in the workbook (optional).

� Private indicates that the function is accessible only to other procedures
in the same module (optional). If you use the Private keyword, your
functions won’t appear in the Insert Function dialog box.

� Static indicates that the values of variables declared in the function are
preserved between calls (optional).

� Function is a keyword that indicates the beginning of a Function proce-
dure (required).

602 Part VI: Developing Custom Worksheet Functions

4800-x Ch23.F 8/27/01 11:59 AM Page 602

� Name can be any valid variable name. When the function finishes, the
result of the function is the value assigned to the function’s name
(required).

� Arglist is a list of one or more variables that represent arguments passed
to the function. The arguments are enclosed in parentheses. Use a comma
to separate arguments. (Arguments are optional.)

� Type is the data type returned by the function (optional).

� Statements are valid VBA statements (optional).

� Exit Function is a statement that causes an immediate exit from the
function (optional).

� End Function is a keyword that indicates the end of the function
(required).

Choosing a Name for Your Function
Each function must have a unique name, and function names must adhere to a few
rules:

� You can use alphabetic characters, numbers, and some punctuation char-
acters, but the first character must be alphabetic.

� You can use any combination of uppercase and lowercase letters.

� You can’t use a name that looks like a worksheet cell’s address (such as
J21). Actually, you can use such a name for a function, but Excel won’t
interpret it as a function.

� VBA does not distinguish between cases. To make a function name more
readable, you can use mixed cases (InterestRate rather than interestrate).

� You can’t use spaces or periods. To make function names more readable,
you can use the underscore character (Interest_Rate).

� The following characters can’t be embedded in a function’s name: #, $, %,
&, or !. These are type declaration characters that have a special meaning
in VBA.

� A function name can consist of as many as 255 characters — but nobody
creates function names that long!

Chapter 23: Function Procedure Basics 603

4800-x Ch23.F 8/27/01 11:59 AM Page 603

Using Functions in Formulas
Using a custom VBA function in a worksheet formula is like using a built-in work-
sheet function, except that you must ensure that Excel can locate the Function pro-
cedure. If the Function procedure is in the same workbook as the formula, you don’t
have to do anything special. If it’s in a different workbook, you may have to tell
Excel where to find it. You can do so in three ways:

� Precede the function’s name with a file reference. For example, if you
want to use a function called CountNames that’s defined in a workbook
named Myfuncs.xls, you can use a formula like the following:

=Myfuncs.xls!CountNames(A1:A1000)

If you insert the function with the Paste Function dialog box, the work-
book reference is inserted automatically.

� Set up a reference to the workbook. You do this with the VB Editor’s
Tools ’ References command (see Figure 23-1). If the function is defined in
a referenced workbook, you don’t need to use the worksheet name. Even
when the dependent workbook is assigned as a reference, the Insert
Function dialog box continues to insert the workbook reference (even
though it’s not necessary).

Figure 23-1: Use the References dialog box to create
a reference to a project that contains a custom VBA function.

604 Part VI: Developing Custom Worksheet Functions

4800-x Ch23.F 8/27/01 11:59 AM Page 604

By default, all projects are named VBAProject — and that’s the name that

appears in the Available References list in the References dialog box. To

make sure that you select the correct project in the References dialog box,

keep your eye on the bottom of the dialog box, which shows the workbook

name for the selected item. Better yet, change the name of the project to be

more descriptive.To change the name, select the project, press F4 to display

the Properties window, and then change the Name property to something

other than VBAProject.

� Create an add-in. When you create an add-in from a workbook that has
Function procedures, you don’t need to use the file reference when you use
one of the functions in a formula; however, the add-in must be installed. I
discuss add-ins later in this chapter (see “Creating Add-Ins”).

Using Function Arguments
Custom functions, like Excel’s built-in functions, vary in their use of arguments.
Keep the following points in mind regarding VBA Function procedure arguments:

� A function can have no argument.

� A function can have a fixed number of required arguments (from 1 to 60).

� A function can have a combination of required and optional arguments.

See Chapter 23 for examples of functions that use various types of

arguments.

Using the Insert Function
Dialog Box
Excel’s Insert Function dialog box is a handy tool that enables you to choose a par-
ticular worksheet function from a list of available functions. The Insert Function
dialog box also displays a list of your custom worksheet functions and prompts you
for the function’s arguments.

Chapter 23: Function Procedure Basics 605

4800-x Ch23.F 8/27/01 11:59 AM Page 605

Custom Function procedures defined with the Private keyword don’t

appear in the Paste Function dialog box.

By default, custom functions are listed under the User Defined category, but you
can have them appear under a different category. You also can add some text that
describes the function.

Adding a Function Description
When you select a function in the Paste Function dialog box, a brief description of
the function appears (see Figure 23-2).

Figure 23-2: Excel’s Insert Function dialog box displays a brief
description of the selected function.

If you don’t provide a description for your custom function, the Insert

Function dialog box displays the following text: Choose the help button for

help on this function and its arguments. In Excel 2002, the message is more

accurate: No help available.

The following steps describe how to provide a description for a custom function.

1. Create your function in the VB Editor.

2. Activate Excel, and select Tools � Macro � Macros (or press Alt+F8). The
Macro dialog box lists available Sub procedures, but not functions.

606 Part VI: Developing Custom Worksheet Functions

4800-x Ch23.F 8/27/01 11:59 AM Page 606

3. Type the name of your function in the Macro Name box. Make sure that
you spell it correctly.

4. Click the Options button to display the Macro Options dialog box. If the
Options button is not disabled, you probably spelled the function’s name
incorrectly.

5. Enter the function description in the Description box (see Figure 23-3).
The Shortcut key field is irrelevant for functions.

6. Click OK, and then click Cancel.

Figure 23-3: Providing a function description in the
Macro Options dialog box

When you use the Insert Function dialog box to enter a function, the

Function Arguments dialog box kicks in after you click OK. For built-in func-

tions, the Function Arguments dialog displays a description for each of the

function’s arguments. Unfortunately, it is not possible to provide descrip-

tions like these for your custom function arguments.

Specifying a Function Category
Oddly, Excel does not provide a direct way to assign a custom function to a partic-
ular function category. If you want your custom function to appear in a function
category other than User Defined, you need to execute some VBA code in order to
do so.

For example, assume that you’ve created a custom function named COMMIS-
SION, and assume that you want this function to appear in the Financial category
(that is, category 1) in the Insert Function dialog box. To accomplish this, you will
need to execute the following VBA statement:

Application.MacroOptions Macro:=”COMMISSION”, Category:=1

Chapter 23: Function Procedure Basics 607

4800-x Ch23.F 8/27/01 11:59 AM Page 607

One way to execute this statement is to use the Immediate window in the VB
Editor. Figure 23-4 shows an example. Just type the statement and press Enter.
Then, save the workbook, and the category assignment is also stored in the work-
book. This statement needs to be executed only one time. In other words, it is not
necessary to assign the function to a new category every time the workbook is
opened.

Figure 23-4: Executing a VBA statement that assigns a function to a particular
function category

Alternatively, you can create a Sub procedure, and then execute the procedure.

Sub AssignToFunctionCategory()
Application.MacroOptions Macro:=”COMMISSION”, Category:=1

End Sub

After you’ve executed the procedure, you can delete it.
You will, of course, substitute the actual name of your function, and you can

specify a different function category. The AssignToFunctionCategory procedure can
contain any number of statements — one for each of your functions.

Table 23-1 lists the function category numbers that you can use. Notice that a
few of these categories (10–13) normally don’t display in the Insert Function dialog
box. If you assign your function to one of these categories, the category then
appears.

608 Part VI: Developing Custom Worksheet Functions

4800-x Ch23.F 8/27/01 11:59 AM Page 608

TABLE 23-1 FUNCTION CATEGORIES

Category Number Category Name

0 All (no specific category)

1 Financial

2 Date & Time

3 Math & Trig

4 Statistical

5 Lookup & Reference

6 Database

7 Text

8 Logical

9 Information

10 Commands

11 Customizing

12 Macro Control

13 DDE/External

14 User Defined

15 Engineering

Testing and Debugging
Your Functions
Naturally, testing and debugging your custom function is an important step that
you must take to ensure that it carries out the calculation that you intend. This sec-
tion describes some debugging techniques that you may find helpful.

If you’re new to programming, the information in this section will make a

lot more sense after you’re familiar with the material in Chapter 22.

Chapter 23: Function Procedure Basics 609

4800-x Ch23.F 8/27/01 11:59 AM Page 609

VBA code that you write can contain three general types of errors:

� Syntax errors: An error in writing the statement — for example, a mis-
spelled keyword, a missing operator, or mismatched parentheses. The VB
Editor lets you know about syntax errors by displaying a pop-up error
box. You can’t use the function until you correct all syntax errors.

� Runtime errors: Errors that occur as the function executes. For example,
attempting to perform a mathematical operation on a string variable gen-
erates a runtime error. Unless you spot it beforehand, you won’t be aware
of a runtime error until it occurs.

� Logical errors: Code that runs, but simply returns the wrong result

To force the code in a VBA module to be checked for syntax errors, select

Debug � Compile. This highlights the first syntax error, if any exists. Correct

the error and issue the command again until you find all of the errors.

An error in code is sometimes called a bug. The process of locating and correct-
ing such an error is known as debugging.

When you test a Function procedure by using a formula in a worksheet, runtime
errors can be difficult to locate because (unlike syntax errors) they don’t appear in
a pop-up error box. If a runtime error occurs, the formula that uses the function
simply returns an error value (#VALUE!). This section describes several approaches
to debugging custom functions.

When you test a custom function, it’s a good idea to use the function in only

one formula in the worksheet. If you use the function in more than one for-

mula, the code is executed for each formula.

Using VBA’s MsgBox Statement
The MsgBox statement, when used in your VBA code, displays a pop-up box. You
can use MsgBox statements at strategic locations within your code to monitor the
value of specific variables. The following example is a Function procedure that
should reverse a text string passed as its argument. For example, passing Hello as
the argument should return olleH. If you try to use this function in a formula, how-
ever, you will see that it does not work — it contains a logical error.

610 Part VI: Developing Custom Worksheet Functions

4800-x Ch23.F 8/27/01 11:59 AM Page 610

Function REVERSETEXT(text) As String
‘ Returns its argument, reversed

TextLen = Len(text)
For i = TextLen To 1 Step -1

REVERSETEXT = Mid(text, i, 1) & REVERSETEXT
Next i

End Function

You can insert a temporary MsgBox statement to help you figure out the source
of the problem. Here’s the function again, with the MsgBox statement inserted
within the loop:

Function REVERSETEXT(text) As String
‘ Returns its argument, reversed

TextLen = Len(text)
For i = TextLen To 1 Step -1

REVERSETEXT = Mid(text, i, 1) & REVERSETEXT
MsgBox REVERSETEXT

Next i
End Function

When this function is evaluated, a pop-up message box appears, once for each
time through the loop. The message box shows the current value of REVERSETEXT.
In other words, this technique enables you to monitor the results as the function is
executed. Figure 23-5 shows an example.

Figure 23-5: Use a MsgBox statement to monitor the value of a
variable as a Function procedure executes.

The information displayed in the series of message boxes shows that the text
string is being built within the loop, but the new text is being added to the begin-
ning of the string, not the end. The corrected assignment statement is:

REVERSETEXT = REVERSETEXT & Mid(text, i, 1)

Chapter 23: Function Procedure Basics 611

4800-x Ch23.F 8/27/01 11:59 AM Page 611

When the function is working properly, make sure that you remove all of the
MsgBox statements. They get very annoying.

To display more than one variable in a message box, you need to concatenate
the variables and insert a space character between each variable. The statement
below, for example, displays the value of three variables (x, y, and z) in a
message box.

MsgBox x & “ “ & y & “ “ & z

If you omit the blank space, you can’t distinguish the separate values.

Using Debug.Print Statements in Your Code
If you find that using MsgBox statements is too intrusive, a better option is to insert
some temporary code that writes values directly to VB Editor’s Immediate window
(see the sidebar, “Using the Immediate Window”). You use the Debug.Print state-
ment to write the values of selected variables.

For example, if you want to monitor a value inside a loop, use a routine like the
following:

Function VOWELCOUNT(r)
Count = 0
For i = 1 To Len(r)

Ch = UCase(Mid(r, i, 1))
If Ch Like “[AEIOU]” Then

Count = Count + 1
Debug.Print Ch, i

End If
Next i
VOWELCOUNT = Count

End Function

In this case, the value of two variables (Ch and i) print to the Immediate window
whenever the Debug.Print statement is encountered. Figure 23-6 shows the result
when the function has an argument of California.

When your function is debugged, make sure that you remove the Debug.Print
statements.

612 Part VI: Developing Custom Worksheet Functions

4800-x Ch23.F 8/27/01 11:59 AM Page 612

Figure 23-6: Using the VB Editor’s Immediate window to display results while a
function is running

Calling the Function from a Sub Procedure
Another way to test a Function procedure is to call the function from a Sub proce-
dure. To do this, simply add a temporary Sub procedure to the module and insert a
statement that calls your function. This is particularly useful because runtime errors
display as they occur.

The following Function procedure contains an error (a runtime error). As I noted
previously, the runtime errors don’t display when testing a function by using a
worksheet formula. Rather, the function simply returns an error (#VALUE!).

Function REVERSETEXT(text) As String
‘ Returns its argument, reversed

TextLen = Len(text)
For i = TextLen To 1 Step -1

REVERSETEXT = REVERSETEXT And Mid(text, i, 1)
Next i

End Function

To help identify the source of the runtime error, insert the following Sub
procedure:

Sub Test()
x = REVERSETEXT(“Hello”)
MsgBox x

End Sub

Chapter 23: Function Procedure Basics 613

4800-x Ch23.F 8/27/01 11:59 AM Page 613

This Sub procedure simply calls the REVERSETEXT function and assigns the
result to a variable named x. The MsgBox statement displays the result.

You can execute the Sub procedure directly from the VB Editor. Simply move the
cursor anywhere within the procedure and select Run � Run Sub/UserForm (or, just
press F5). When you execute the Test procedure, you see the error message that is
shown in Figure 23-7.

Figure 23-7: A runtime error identified by VBA

Click the Debug button, and the VB Editor highlights the statement causing the
problem (see Figure 23-8). The error message does not tell you how to correct the
error, but it does narrow your choices. After you’ve identified the statement that’s
causing the error, you can examine it more closely or use the Immediate window
(see the sidebar, “Using the Immediate Window”) to help locate the exact problem.

In this case, the problem is the user of the And operator instead of the concate-
nation operator (&). The correct statement is:

REVERSETEXT = REVERSETEXT & Mid(text, i, 1)

When you click the Debug button, the procedure is still running — it’s just

halted and is in “break mode.”After you make the correction, press F5 to con-

tinue execution, press F8 to continue execution on a line-by-line basis, or

click the Rest button to halt execution.

614 Part VI: Developing Custom Worksheet Functions

4800-x Ch23.F 8/27/01 11:59 AM Page 614

Figure 23-8: The highlighted statement has generated a runtime error.

Chapter 23: Function Procedure Basics 615

Using the Immediate Window
The VB Editor’s Immediate window can be helpful when debugging code. To activate
the Immediate window, press Ctrl+G.

You can type VBA statements in the Immediate window and see the result
immediately. For example, type the following code in the Immediate window and press
Enter:

Print Sqr(1156)

The VB Editor prints the result of this square root operation (34). To save a few
keystrokes, you can use a single question mark (?) in place of the Print keyword.

The Immediate window is particularly useful for debugging runtime errors when VBA
is in break mode. For example, you can use the Immediate window to check the
current value for variables, or to check the data type of a variable.

Errors often occur because data is of the wrong type. The following statement, for
example, displays the data type of a variable named Counter (which you probably
think is an Integer variable).

? TypeName(Counter)

If you discover that Counter is of a data type other than Integer, you may have solved
your problem.

4800-x Ch23.F 8/27/01 11:59 AM Page 615

Setting a Breakpoint in the Function
Another debugging option is to set a breakpoint in your code. Execution pauses
when VBA encounters a breakpoint. You can then use the Immediate window to
check the values of variable, or you can use F8 to step through your code line
by line.

To set a breakpoint, move the cursor to the statement at which you want to
pause execution, and select Debug � Toggle Breakpoint. Alternatively, you can
press F9, or click the vertical bar to the left of the code window. Any of these
actions highlights the statement to remind you that a breakpoint is in effect (you
also see a dot in the code window margin). You can set any number of breakpoints
in your code. To remove a breakpoint, move the cursor to the statement and press
F9. Figure 23-9 shows a Function procedure that contains a breakpoint.

Figure 23-9: The highlighted statement contains a breakpoint.

Creating Add-Ins
If you create some custom functions that you use frequently, you may want to store
these functions in an add-in file. A primary advantage to this is that you can use
the functions in formulas in any workbook without a filename qualifier.

Assume that you have a custom function named ZAPSPACES and that it’s stored
in Myfuncs.xls. To use this function in a formula in a workbook other than
Myfuncs.xls, you need to enter the following formula:

=Myfuncs.xls!ZAPSPACES(A1:C12)

If you create an add-in from Myfuncs.xls and the add-in is loaded, you can omit
the file reference and enter a formula like the following:

=ZAPSPACES(A1:C12)

616 Part VI: Developing Custom Worksheet Functions

4800-x Ch23.F 8/27/01 11:59 AM Page 616

Creating an add-in from a workbook is simple. The following steps describe how
to create an add-in from a normal workbook file:

1. Develop your functions, and make sure that they work properly.

2. Activate the VB Editor and select the workbook in the Project window.
Choose Tools � xxx Properties and click the Protection tab. Select the Lock
Project for Viewing checkbox and enter a password (twice). Click OK.

You only need to do this step if you want to prevent others from viewing
or modifying your macros or custom dialog boxes.

3. Reactivate Excel. Choose File � Properties, click the Summary tab, and
enter a brief, descriptive title in the Title field and a longer description in
the Comments field.

This step is not required, but it makes the add-in easier to use by display-
ing descriptive text in the Add-Ins dialog box.

4. Select File � Save As.

5. In the Save As dialog box, select Microsoft Excel add-in (*.xla) from the
Save As Type drop-down list (see Figure 23-10).

6. If you don’t want to use the default directory, select a different directory.

7. Click Save. A copy of the workbook is saved (with an .xla extension), and
the original XLS workbook remains open.

Figure 23-10: Saving a workbook as an add-in

Chapter 23: Function Procedure Basics 617

4800-x Ch23.F 8/27/01 11:59 AM Page 617

A workbook that you convert to an add-in must have at least one worksheet.

For example, if your workbook contains only chart sheets or Excel 5/95 dia-

log sheets, the Microsoft Excel add-in (*.xla) option does not appear in the

Save As dialog box.

With previous versions of Excel (before Excel 97), to modify an add-in, you

had to open the original XLS file, make your changes, and then recreate the

add-in. For Excel 97 and later versions, this is no longer necessary. As long as

the add-in is not protected, you can make changes to the add-in in the VB

Editor, and then save your changes. If the add-in is protected, you must enter

the password to unprotect it. Therefore, with Excel 97 or later, keeping an

XLS version of your add-in is not necessary.

After you create your add-in, you can install it by using the standard procedure:
Select Tools � Add-Ins, and click the Browse button in the Add-Ins dialog box.
Then, locate your *.xla file.

Summary
This chapter covered some essential details to help you develop effective custom
functions. I discussed the type of arguments that you can use, and I described how
to make your function appear in a specific category in the Paste Function dialog
box. This chapter also presented some techniques to help debug functions and
ended with instructions for creating an add-in to hold your functions.

The next chapter discusses VBA programming concepts.

618 Part VI: Developing Custom Worksheet Functions

A Few Words about Security
Microsoft has never promoted Excel as a product that creates applications with secure
source code. The password feature provided in Excel is sufficient to prevent casual
users from accessing parts of your application that you want to keep hidden. But, the
truth is, several password-cracking utilities are available. The security features in Excel
2002 are much better than those in previous versions, but it’s possible that these can
also be cracked. If you must absolutely be sure that no one ever sees your code or
formulas, Excel is not your best choice as a development platform.

4800-x Ch23.F 8/27/01 11:59 AM Page 618

Chapter 24

VBA Programming
Concepts

IN THIS CHAPTER

� Introducing an example function procedure

� Using comments in your code

� Understanding VBA’s language elements, including variables, data types,
and constants

� Using assignment expressions in your code

� Declaring arrays and multidimensional arrays

� Using VBA’s built-in functions

� Controlling the execution of your Function procedures

� Using ranges in your code

THIS CHAPTER DISCUSSES SOME of the key language elements and programming con-
cepts in VBA. If you’ve used other programming languages, then much of this
information may sound familiar. VBA has a few unique wrinkles, however, so even
experienced programmers may find some new information.

An Introductory Example
Function Procedure
To get the ball rolling, I’ll begin with an example Function procedure. This func-
tion, named REMOVESPACES, accepts a single argument and returns that argument
without any spaces. For example, the following formula uses the REMOVESPACES
function and returns ThisIsATest.

=REMOVESPACES(“This Is A Test”)

619

4800-x Ch24.F 8/27/01 11:59 AM Page 619

To create this function, insert a VBA module into a project, and then enter the
following Function procedure into the code window of the module:

Function REMOVESPACES(cell) As String
‘ Removes all spaces from cell

Dim CellLength As Integer
Dim Temp As String
Dim i As Integer
CellLength = Len(cell)
Temp = “”
For i = 1 To CellLength

Character = Mid(cell, i, 1)
If Character <> Chr(32) Then Temp = Temp & Character

Next i
REMOVESPACES = Temp

End Function

Look closely at this function’s code line by line:

� The first line of the function is called the function’s declaration line.
Notice that the procedure starts with the keyword Function, followed by
the name of the function (REMOVESPACES). This function uses only one
argument (cell); the argument’s name is enclosed in parentheses. As String
defines the data type of the function’s return value. The “As” part of the
function declaration is optional.

� The second line is simply a comment (optional) that describes what the
function does. The initial apostrophe designates this line as a comment.

� The next three lines use the Dim keyword to declare the three variables
used in the procedure: CellLength, Temp, and i. Declaring a variable is not
necessary, but (as you’ll see later) it’s an excellent practice.

� The procedure’s next line assigns a value to a variable named CellLength.
This statement uses VBA’s Len function to determine the length of the
contents of the argument (cell).

� The next statement creates a variable named Temp and assigns it an
empty string.

� The next four statements comprise a For-Next loop. The statements
between the For statement and the Next statement are executed a number
of times; the value of CellLength determines the number of times. For
example, assume the cell passed as the argument contains the text “Bob
Smith.” The statements within the loop would execute nine times, one
time for each character in the string.

620 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 620

� Within the loop, the Character variable holds a single character that is
extracted using VBA’s Mid function (which works just like Excel’s MID
function). The If statement determines whether the character is not a space
(VBA’s Chr function is equivalent to Excel’s CHAR function, and an argu-
ment of 32 represents a space character). If the character is not a space,
then the character is appended to the end of the string stored in the Temp
variable. If the character is a space, the Temp variable is unchanged and
the next character is processed. If you prefer, you can replace this state-
ment with the following:

If Character <> “ “) Then Temp = Temp & Character

� When the loop finishes, the Temp variable holds all of the characters that
were originally passed to the function in the cell argument, except for the
spaces.

� The string contained in the Temp variable is assigned to the function’s
name. This string is the value that the function returns.

� The Function procedure ends with an End Function statement.

The REMOVESPACES procedure uses some common VBA language elements,
including:

� A comment (the line preceded by the apostrophe)

� Variable declarations

� Three assignment statements

� Three built-in VBA functions (Len, Mid, and Chr)

� A looping structure (For-Next)

� An If-Then structure

� String concatenation (using the & operator)

Not bad for a first effort, eh? The remainder of this chapter provides more infor-
mation on these (and many other) programming concepts.

The REMOVESPACES function listed here is for instructional purposes only.

You can accomplish the same effect by using Excel’s SUBSTITUTE function,

which is much more efficient than using a custom VBA function. The follow-

ing formula, for example, removes all space characters from the text in cell

A1.

=SUBSTITUTE(A1,” “,””)

Chapter 24: VBA Programming Concepts 621

4800-x Ch24.F 8/27/01 11:59 AM Page 621

Using Comments in Your Code
A comment is descriptive text embedded within your code. VBA completely ignores
the text of a comment. It’s a good idea to use comments liberally to describe what
you do (because the purpose of a particular VBA instruction is not always obvious).

You can use a complete line for your comment, or you can insert a comment
after an instruction on the same line. A comment is indicated by an apostrophe.
VBA ignores any text that follows an apostrophe up until the end of the line. An
exception occurs when an apostrophe is contained within quotation marks. For
example, the following statement does not contain a comment, even though it has
an apostrophe:

Result = “Can’t calculate”

The following example shows a VBA Function procedure with three comments:

Function MYFUNC()
‘ This function does nothing of value

x = 0 ‘x represents nothingness
‘ Return the result

MYFUNC = x
End Function

When developing a function, you may want to test it without including a partic-
ular instruction or group of instructions. Instead of deleting the instruction, simply
convert it to a comment by inserting an apostrophe at the beginning. VBA then
ignores the instruction(s) when the routine is executed. To convert the comment
back to an instruction, delete the apostrophe.

The VB Editor’s Edit toolbar contains two very useful buttons. Select a group

of instructions and then use the Comment Block button to convert the

instructions to comments. The Uncomment Block button converts a group

of comments back to instructions.

Using Variables, Data Types,
and Constants
A variable is a named storage location in your computer’s memory. Variables can
accommodate a wide variety of data types — from simple Boolean values (TRUE or
FALSE) to large, double-precision values (see the following section). You assign a
value to a variable by using the assignment operator, which is an equal sign.

622 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 622

The following are some examples of assignment statements that use various
types of variables. The variable names are to the left of the equal sign. Each state-
ment assigns the value to the right of the equal sign to the variable on the left.

x = 1
InterestRate = 0.075
LoanPayoffAmount = 243089
DataEntered = False
x = x + 1
MyNum = YourNum * 1.25
HallOfFamer = “Tony Gwynn”
DateStarted = #3/14/2001#

VBA has many reserved words, which are words that you can’t use for variable
or procedure names. If you attempt to use one of these words, you get an error mes-
sage. For example, although the reserved word Next may make a very descriptive
variable name, the following instruction generates a syntax error:

Next = 132

Unfortunately, sometimes syntax error messages aren’t descriptive. The preced-
ing instruction generates a syntax error in Excel 2002 (earlier versions of Excel
may produce a different error). So if an assignment statement produces an error
that does not seem to make sense, check the online help to make sure that your
variable name does not have a special use in VBA.

Defining Data Types
VBA makes life easy for programmers because it can automatically handle all of the
details involved in dealing with data. Data type refers to how data is stored in
memory — as integers, real numbers, strings, and so on.

Although VBA can take care of data typing automatically, it does so at a cost —
slower execution and less efficient use of memory. If you want optimal speed for
your functions, you need to be familiar with data types. Generally, it’s best to use
the data type that uses the smallest number of bytes, yet still be able to handle all
of the data that will be assigned to it. When VBA works with data, execution speed
is a function of the number of bytes that VBA has at its disposal. In other words,
the fewer bytes used by data, the faster VBA can access and manipulate the data.
Table 24-1 lists VBA’s assortment of built-in data types.

Chapter 24: VBA Programming Concepts 623

4800-x Ch24.F 8/27/01 11:59 AM Page 623

TABLE 24-1 VBA’S DATA TYPES

Data Type Bytes Used Range of Values

Byte 1 byte 0 to 255

Boolean 2 bytes TRUE or FALSE

Integer 2 bytes –32,768 to 32,767

Long 4 bytes –2,147,483,648 to 2,147,483,647

Single 4 bytes –3.402823E38 to –1.401298E–45 (for
negative values); 1.401298E–45 to
3.402823E38 (for positive values)

Double 8 bytes –1.79769313486231E308 to
–4.94065645841247E–324 (negative
values); 4.94065645841247E–324 to
1.79769313486232E308 (positive values)

Currency 8 bytes –922,337,203,685,477.5808 to
922,337,203,685,477.5807

Decimal 14 bytes +/–79,228,162,514,264,337,593,543,
950,335 with no decimal point;
+/–7.9228162514264337593543950335
with 28 places to the right of the decimal

Date 8 bytes January 1, 0100 to December 31, 9999

Object 4 bytes Any object reference

String 10 bytes + string length 0 to approximately 2 billion
(variable-length)

String Length of string 1 to approximately 65,400
(fixed-length)

Variant 16 bytes Any numeric value up to the range of a
(with numbers) double data type

Variant 22 bytes + string length 0 to approximately 2 billion
(with characters)

Declaring Variables
Before you use a variable in a procedure, you may want to declare it. Declaring a
variable tells VBA its name and data type. Declaring variables provides two main
benefits:

624 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 624

� Your procedures run faster and use memory more efficiently. The default
data type — variant — causes VBA to repeatedly perform time-consuming
checks and reserve more memory than necessary. If VBA knows the data
type for a variable, it does not have to investigate; it can reserve just
enough memory to store the data.

� If you use an Option Explicit statement, you avoid problems involving
misspelled variable names. Suppose that you use an undeclared variable
named CurrentRate. At some point in your procedure, however, you insert
the statement CurentRate = .075. This misspelled variable name, which is
very difficult to spot, will likely cause your function to return an incorrect
result. See the sidebar, “Forcing Yourself to Declare all Variables.”

You declare a variable by using the Dim keyword. For example, the following
statement declares a variable named Count to be an integer.

Dim Count As Integer

You also can declare several variables with a single Dim statement. For example,

Dim x As Integer, y As Integer, z As Integer
Dim First As Long, Last As Double

Unlike some languages, VBA does not permit you to declare a group of vari-

ables to be a particular data type by separating the variables with commas.

For example, the following statement — although valid — does not declare

all the variables as integers:

Dim i, j, k As Integer

In the preceding statement, only k is declared to be an integer.To declare all

variables as integers, use this statement:

Dim i As Integer, j As Integer, k As Integer

If you don’t declare the data type for a variable that you use, VBA uses the
default data type — variant. Data stored as a variant acts like a chameleon: It
changes type depending on what you do with it. The following procedure demon-
strates how a variable can assume different data types.

Function VARIANT_DEMO()
MyVar = “123”
MyVar = MyVar / 2
MyVar = “Answer: “ & MyVar
VARIANT_DEMO = MyVar

End Function

Chapter 24: VBA Programming Concepts 625

4800-x Ch24.F 8/27/01 11:59 AM Page 625

In the VARIANT_DEMO Function procedure, MyVar starts out as a three-character
text string that looks like a number. Then this “string” is divided by two and MyVar
becomes a numeric data type. Next, MyVar is appended to a string, converting MyVar
back to a string. The function returns the final string: Answer: 61.5.

Using Constants
A variable’s value may — and often does — change while a procedure is executing
(that’s why it’s called a variable). Sometimes, you need to refer to a named value or
string that never changes; in other words, a constant.

You declare a constant by using the Const statement. Here are some examples:

Const NumQuarters as Integer = 4
Const Rate = .0725, Period = 12
Const CompanyName as String = “Acme Snapholytes”

The second statement declares two constants with a single statement, but it does
not declare a data type. Consequently, the two constants are variants. Because a
constant never changes its value, you normally want to declare your constants as a
specific data type. The scope of a constant depends on where it is declared within
your module:

� To make a constant available within a single procedure only, declare it
after the Sub or Function statement to make it a local constant.

� To make a constant available to all procedures in a module, declare it
before the first procedure in the module.

� To make a constant available to all modules in the workbook, use the
Public keyword and declare the constant before the first procedure in a

626 Part VI: Developing Custom Worksheet Functions

Forcing Yourself to Declare All Variables
To force yourself to declare all the variables that you use, include the following as the
first instruction in your VBA module:

Option Explicit

This statement causes your procedure to stop whenever VBA encounters an
undeclared variable name. VBA issues an error message (Compile error: Variable not
defined), and you must declare the variable before you can proceed.

To ensure that the Option Explicit statement appears in every new VBA module, enable
the Require Variable Declaration option on the Editor tab of the VB Editor’s Options
dialog box.

4800-x Ch24.F 8/27/01 11:59 AM Page 626

module. The following statement creates a constant that is valid in all
VBA modules in the workbook.

Public AppName As String = “Budget Tools”

If you attempt to change the value of a constant in a VBA procedure, you get

an error — as you would expect. A constant is a constant, not a variable.

Using constants throughout your code in place of hard-coded values or strings is
an excellent programming practice. For example, if your procedure needs to refer to
a specific value (such as an interest rate) several times, it’s better to declare the value
as a constant and use the constant’s name rather than its value in your expressions.
This technique makes your code more readable and makes it easier to change should
the need arise — you have to change only one instruction rather than several.

Using Strings
Like Excel, VBA can manipulate both numbers and text (strings). VBA supports two
types of strings:

� Fixed-length strings are declared with a specified number of characters.
The maximum length is 65,535 characters.

� Variable-length strings theoretically can hold up to 2 billion characters.

Each character in a string takes 1 byte of storage. When you declare a string
variable with a Dim statement, you can specify the maximum length if you know it
(that is, a fixed-length string), or you can let VBA handle it dynamically (a vari-
able-length string). In some cases, working with fixed-length strings may be
slightly more efficient in terms of memory usage.

In the following example, the MyString variable is declared to be a string with a
fixed length of 50 characters. YourString is also declared as a string, but with an
unspecified length.

Dim MyString As String * 50
Dim YourString As String

Using Dates
You can use a string variable to store a date, of course, but then you can’t perform
date calculations using the variable. Using the Date data type is a better way to
work with dates.

Chapter 24: VBA Programming Concepts 627

4800-x Ch24.F 8/27/01 11:59 AM Page 627

A variable defined as a Date uses 8 bytes of storage and can hold dates ranging
from January 1, 0100, to December 31, 9999. That’s a span of nearly 10,000 years —
more than enough for even the most aggressive financial forecast! The Date data
type is also useful for storing time-related data. In VBA, you specify dates and
times by enclosing them between two pound signs (#).

The range of dates that VBA can handle is much larger than Excel’s own date

range, which begins with January 1, 1900. Therefore, be careful that you

don’t attempt to use a date in a worksheet that lies outside of Excel’s accept-

able date range.

Here are some examples of declaring variables and constants as Date data types:

Dim Today As Date
Dim StartTime As Date
Const FirstDay As Date = #1/1/2002#
Const Noon = #12:00:00#

Date variables display dates according to your system’s short date format,

and times appear according to your system’s time format (either 12 or 24

hours).You can modify these system settings by using the Regional Settings

option in the Windows Control Panel.

Using Assignment Expressions
An assignment expression is a VBA instruction that evaluates an expression and
assigns the result to a variable or an object. An expression is a combination of key-
words, operators, variables, and constants that yields a string, number, or object.
An expression can perform a calculation, manipulate characters, or test data.

If you know how to create formulas in Excel, you’ll have no trouble creating
expressions in VBA. With a worksheet formula, Excel displays the result in a cell.
Similarly, you can assign a VBA expression to a variable or use it as a property value.

VBA uses the equal sign (=) as its assignment operator. Note the following exam-
ples of assignment statements (the expressions are to the right of the equal sign):

x = 1
x = x + 1
x = (y * 2) / (z * 2)
MultiSheets = True

628 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 628

Expressions often use functions. These can be VBA’s built-in functions, Excel’s
worksheet functions, or custom functions that you develop in VBA. I discuss VBA’s
built-in functions later in this chapter.

Operators play a major role in VBA. Familiar operators describe mathematical
operations, including addition (+), multiplication (*), division (/), subtraction (-),
exponentiation (^), and string concatenation (&). Less familiar operators are the
backslash (\) that’s used in integer division, and the Mod operator that’s used in
modulo arithmetic. The Mod operator returns the remainder of one integer divided
by another. For example, the following expression returns 2:

17 Mod 3

You may be familiar with Excel’s MOD function. Note that, in VBA, Mod is an
operator, not a function.

VBA also supports the same comparative operators used in Excel formulas:
Equal to (=), greater than (>), less than (<), greater than or equal to (>=), less than
or equal to (<=), and not equal to (<>). Additionally, VBA provides a full set of log-
ical operators, as shown in Table 24-2. Refer to the online help for additional infor-
mation and examples of these operators.

TABLE 24-2 VBA’S LOGICAL OPERATORS

Operator What It Does

Not Performs a logical negation on an expression.

And Performs a logical conjunction on two expressions

Or Performs a logical disjunction on two expressions

Xor Performs a logical exclusion on two expressions

Eqv Performs a logical equivalence on two expressions

Imp Performs a logical implication on two expressions

The order of precedence for operators in VBA exactly matches that in Excel. Of
course, you can add parentheses to change the natural order of precedence.

Using Arrays
An array is a group of elements of the same type that have a common name; you
refer to a specific element in the array by using the array name and an index num-
ber. For example, you may define an array of 12 string variables so that each
variable corresponds to the name of a different month. If you name the array

Chapter 24: VBA Programming Concepts 629

4800-x Ch24.F 8/27/01 11:59 AM Page 629

MonthNames, you can refer to the first element of the array as MonthNames(0), the
second element as MonthNames(1), and so on, up to MonthNames(11).

Declaring an Array
You declare an array with a Dim or Public statement just as you declare a regular
variable. You also can specify the number of elements in the array. You do so by
specifying the first index number, the keyword To, and the last index number — all
inside parentheses. For example, here’s how to declare an array comprised of
exactly 100 integers:

Dim MyArray(1 To 100) As Integer

When you declare an array, you need to specify only the upper index, in which
case VBA (by default) assumes that 0 is the lower index. Therefore, the following
two statements have the same effect:

Dim MyArray(0 to 100) As Integer
Dim MyArray(100) As Integer

In both cases, the array consists of 101 elements.
If you want VBA to assume that 1 is the lower index for all arrays that declare

only the upper index, include the following statement before any procedures in
your module:

Option Base 1

If this statement is present, the following two statements have the same effect
(both declare an array with 100 elements):

Dim MyArray(1 to 100) As Integer
Dim MyArray(100) As Integer

Declaring Multidimensional Arrays
The array examples in the preceding section are one-dimensional arrays. VBA
arrays can have up to 60 dimensions, although it’s rare to need more than 3 dimen-
sions (a 3-D array). The following statement declares a 100-integer array with two
dimensions (2-D):

Dim MyArray(1 To 10, 1 To 10) As Integer

You can think of the preceding array as occupying a 10 × 10 matrix. To refer to
a specific element in a 2-D array, you need to specify two index numbers. For
example, here’s how you can assign a value to an element in the preceding array:

MyArray(3, 4) = 125

630 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 630

A dynamic array does not have a preset number of elements. You declare a
dynamic array with a blank set of parentheses:

Dim MyArray() As Integer

Before you can use a dynamic array in your code, however, you must use the
ReDim statement to tell VBA how many elements are in the array (or ReDim
Preserve if you want to keep the existing values in the array). You can use the
ReDim statement any number of times, changing the array’s size as often as you
like.

Arrays crop up later in this chapter in the sections that discuss looping.

Using VBA’s Built-in Functions
VBA has a variety of built-in functions that simplify calculations and operations.
Many of VBA’s functions are similar (or identical) to Excel’s worksheet functions.
For example, the VBA function UCase, which converts a string argument to upper-
case, is equivalent to the Excel worksheet function UPPER.

To display a list of VBA functions while writing your code, type VBA followed

by a period (.).The VB Editor displays a list of all functions (see Figure 24-1). If

this does not work for you, make sure that you select the Auto List Members

option. Choose Tools � Options, and click the Editor tab. In addition to func-

tions, the displayed list also includes built-in constants. The VBA functions

are all described in the online help.To view help, just move the cursor over a

function name and press F1.

Here’s a statement that calculates the square root of a variable by using VBA’s
Sqr function, and then assigns the result to a variable named x.

x = Sqr(MyValue)

Having knowledge of VBA’s functions can save you lots of work. For example,
consider the REMOVESPACES Function procedure presented at the beginning of
this chapter. That function uses a For-Next loop to examine each character in a
string, and builds a new string. A much simpler (and more efficient) version of that
Function procedure uses VBA’s Replace function. The following is a rewritten ver-
sion of the Function procedure.

Chapter 24: VBA Programming Concepts 631

4800-x Ch24.F 8/27/01 11:59 AM Page 631

Figure 24-1: Displaying a list of VBA functions in the VB Editor

Function REMOVESPACES(cell) As String
‘ Removes all spaces from cell

REMOVESPACES = Replace(cell, “ “, “”)
End Function

The Replace function was introduced in the version of VBA included with

Excel 2000.This function is not available if you use an earlier version of Excel.

You can use many (but not all) of Excel’s worksheet functions in your VBA code.
To use a worksheet function in a VBA statement, just precede the function name
with WorksheetFunction and a dot.

For compatibility with earlier versions of Excel, use Application rather than

WorksheetFunction. The WorksheetFunction object was introduced in Excel

97, and it won’t work with Excel 95.The following statements are equivalent:

Result = Application.Max(x, y, z)
Result = WorksheetFunction.Max(x, y, z)

632 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 632

The following code demonstrates how to use an Excel worksheet function in a
VBA statement. Excel’s infrequently used ROMAN function converts a decimal
number into a Roman numeral.

DecValue = 1999
RValue = WorksheetFunction.Roman(DecValue)

The variable RomanValue contains the string MCMXCIX. Fans of old movies are
often dismayed when they learn that Excel does not have a function to convert a
Roman numeral to its decimal equivalent. You can, of course, create such a func-
tion. Are you up for a challenge?

It’s important to understand that you can’t use worksheet functions that have an
equivalent VBA function. For example, VBA can’t access Excel’s SQRT worksheet
function because VBA has its own version of that function: Sqr. Therefore, the fol-
lowing statement generates an error:

x = Application.SQRT(123) ‘error

Controlling Execution
Some VBA procedures start at the top and progress line by line to the bottom.
Often, however, you need to control the flow of your routines by skipping over
some statements, executing some statements multiple times, and testing conditions
to determine what the routine does next.

This section discusses several ways of controlling the execution of your VBA
procedures:

� If-Then constructs

� Select Case constructs

� For-Next loops

� Do While loops

� Do Until loops

� On Error statements

The If-Then Construct
Perhaps the most commonly used instruction grouping in VBA is the If-Then
construct. This instruction is one way to endow your applications with decision-
making capability. The basic syntax of the If-Then construct is:

If condition Then true_instructions [Else false_instructions]

Chapter 24: VBA Programming Concepts 633

4800-x Ch24.F 8/27/01 11:59 AM Page 633

The If-Then construct executes one or more statements conditionally. The Else
clause is optional. If included, it enables you to execute one or more instructions
when the condition that you test is not true.

The following Function procedure demonstrates an If-Then structure without an
Else clause. The example deals with time. VBA uses the same date-and-time serial
number system as Excel. The time of day is expressed as a fractional value — for
example, noon is represented as .5. VBA’s Time function returns a value that repre-
sents the time of day, as reported by the system clock. In the following example, the
function starts out by assigning an empty string to GreetMe. The If-Then statement
checks the time of day. If the time is before noon, the Then part of the statement
executes and the function returns Good Morning.

Function GreetMe()
GreetMe = “”
If Time < 0.5 Then GreetMe= “Good Morning”

End Function

The following function uses two If-Then statements. It displays either Good
Morning or Good Afternoon:

Function GreetMe()
If Time < 0.5 Then GreetMe = “Good Morning”
If Time >= 0.5 Then GreetMe = “Good Afternoon”

End Function

Notice that the second If-Then statement uses >= (greater than or equal to). This
covers the extremely remote chance that the time is precisely 12:00 noon when the
function is executed.

Another approach is to use the Else clause of the If-Then construct. For example,

Function GreetMe()
If Time < 0.5 Then GreetMe = “Good Morning” Else _
GreetMe = “Good Afternoon”

End Function

Notice that the preceding example uses the line continuation sequence (a space
followed by an underscore); If-Then-Else is actually a single statement.

The following is another example that uses the If-Then construct. This Function
procedure calculates a discount based on a quantity (assumed to be an integer
value). It accepts one argument (quantity) and returns the appropriate discount
based on that value.

Function Discount(quantity)
If quantity <= 5 Then Discount = 0
If quantity >= 6 Then Discount = 0.1

634 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 634

If quantity >= 25 Then Discount = 0.15
If quantity >= 50 Then Discount = 0.2
If quantity >= 75 Then Discount = 0.25

End Function

Notice that each If-Then statement in this procedure is always executed, and the
value for Discount can change as the function is executed. The final value, how-
ever, is the desired value.

The preceding examples all used a single statement for the Then clause of the If-
Then construct. However, you often need to execute multiple statements if a condi-
tion is TRUE. You can still use the If-Then construct, but you need to use an End If
statement to signal the end of the statements that comprise the Then clause. Here’s
an example that executes two statements if the If clause is TRUE.

If x > 0 Then
y = 2
z = 3

End If

You can also use multiple statements for an If-Then-Else construct. Here’s an
example that executes two statements if the If clause is TRUE, and two other state-
ments if the If clause is not TRUE.

If x > 0 Then
y = 2
z = 3

Else
y = -2
z = -3

End If

The Select Case Construct
The Select Case construct is useful for choosing among three or more options. This
construct also works with two options and is a good alternative to If-Then-Else. The
syntax for Select Case is as follows:

Select Case testexpression
[Case expressionlist-n

[instructions-n]]
[Case Else

[default_instructions]]
End Select

Chapter 24: VBA Programming Concepts 635

4800-x Ch24.F 8/27/01 11:59 AM Page 635

The following example of a Select Case construct shows another way to code the
GreetMe examples presented in the preceding section:

Function GreetMe()
Select Case Time

Case Is < 0.5
GreetMe = “Good Morning”

Case 0.5 To 0.75
GreetMe = “Good Afternoon”

Case Else
GreetMe = “Good Evening”

End Select
End Function

And here’s a rewritten version of the Discount function from the previous sec-
tion, this time using a Select Case construct:

Function Discount(quantity)
Select Case quantity

Case Is <= 5
Discount = 0

Case 6 To 24
Discount = 0.1

Case 25 To 49
Discount = 0.15

Case 50 To 74
Discount = 0.2

Case Is >= 75
Discount = 0.25

End Select
End Function

Any number of instructions can be written below each Case statement; they all
execute if that case evaluates to TRUE.

Looping Blocks of Instructions
Looping is the process of repeating a block of VBA instructions within a procedure.
You may know the number of times to loop, or it may be determined by the values
of variables in your program. VBA offers a number of looping constructs:

� For-Next Loops

� Do While Loops

� Do Until Loops

636 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 636

FOR-NEXT LOOPS
The following is the syntax for a For-Next loop:

For counter = start To end [Step stepval]
[instructions]
[Exit For]
[instructions]

Next [counter]

The following listing is an example of a For-Next loop that does not use the
optional Step value or the optional Exit For statement. This function accepts
two arguments and returns the sum of all integers between (and including) the
arguments.

Function SumIntegers(first, last)
total = 0
For num = first To last

total = total + num
Next num
SumIntegers = total

End Function

The following formula, for example, returns 55 — the sum of all integers from 1
to 10.

=SumIntegers(1,10)

In this example, num (the loop counter variable) starts out with the same value
as the first variable, and increases by 1 each time the loop repeats. The loop ends
when num is equal to the last variable. The total variable simply accumulates the
various values of num as it changes during the looping.

When you use For-Next loops, you should understand that the loop counter

is a normal variable — it is not a special type of variable. As a result, you can

change the value of the loop counter within the block of code executed

between the For and Next statements. This is, however, a very bad practice

and can cause problems. In fact, you should take special precautions to

ensure that your code does not change the loop counter.

You also can use a Step value to skip some values in the loop. Here’s the same
function rewritten to sum every other integer between the first and last arguments.

Function SumIntegers2(first, last)

Chapter 24: VBA Programming Concepts 637

4800-x Ch24.F 8/27/01 11:59 AM Page 637

total = 0
For num = first To last Step 2

total = total + num
Next num
SumIntegers2 = Total

End Function

The following formula returns 25, which is the sum of 1, 3, 5, 7, and 9.

=SumIntegers2(1,10)

For-Next loops can also include one or more Exit For statements within the loop.
When this statement is encountered, the loop terminates immediately, as the fol-
lowing example demonstrates.

Function RowOfLargest(c)
NumRows = Rows.Count
MaxVal = WorksheetFunction.Max(Columns(c))
For r = 1 To NumRows

If Cells(r, c) = MaxVal Then
RowOfLargest = r
Exit For

End If
Next r

End Function

The RowOfLargest function accepts a column number (1 through 256) for its
argument, and returns the row number of the largest value in that column. It starts
by getting a count of the number of rows in the worksheet (this varies, depending
on the version of Excel). This number is assigned to the NumRows variable. The
maximum value in the column is calculated by using Excel’s MAX function, and
this value is assigned to the MaxVal variable.

The For-Next loop checks each cell in the column. When the cell equal to
MaxVal is found, the row number (variable r, the loop counter) is assigned to the
function’s name and the Exit For statement ends the procedure. Without the Exit
For statement, the loop continues to check all cells in the column — which can take
quite a long time!

The previous examples use relatively simple loops. But you can have any num-
ber of statements in the loop, and you can even nest For-Next loops inside other
For-Next loops. The following is VBA code that uses nested For-Next loops to ini-
tialize a 10 × 10 × 10 array with the value -1. When the three loops finish execut-
ing, each of the 1,000 elements in MyArray contains -1.

Dim MyArray(1 to 10, 1 to 10, 1 to 10)
For i = 1 To 10

638 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 638

For j = 1 To 10
For k = 1 To 10

MyArray(i, j, k) = -1
Next k

Next j
Next i

DO WHILE LOOPS
A Do While loop is another type of looping structure available in VBA. Unlike a
For-Next loop, a Do While loop executes while a specified condition is met. A Do
While loop can have one of two syntaxes:

Do [While condition]
[instructions]
[Exit Do]
[instructions]

Loop

or

Do
[instructions]
[Exit Do]
[instructions]

Loop [While condition]

As you can see, VBA enables you to put the While condition at the beginning or
the end of the loop. The difference between these two syntaxes involves the point
in time when the condition is evaluated. In the first syntax, the contents of the loop
may never be executed. In the second syntax, the contents of the loop are always
executed at least one time.

The following example is the RowOfLargest function presented in the previous
section, rewritten to use a Do While loop (using the first syntax).

Function RowOfLargest(c)
NumRows = Rows.Count
MaxVal = Application.Max(Columns(c))
r = 1
Do While Cells(r, c) <> MaxVal

r = r + 1
Loop
RowOfLargest = r

End Function

Chapter 24: VBA Programming Concepts 639

4800-x Ch24.F 8/27/01 11:59 AM Page 639

The variable r starts out with a value of 1, and increments within the Do While
loop. The looping continues as long as the cell being evaluated is not equal to
MaxVal. When the cell is equal to MaxVal, the loop ends and the function is
assigned the value of r. Notice that if the maximum value is in row 1, the looping
does not occur.

The following procedure uses the second Do While loop syntax. The loop always
executes at least once.

Function RowOfLargest(c)
NumRows = Rows.Count
MaxVal = Application.Max(Columns(c))
r = 0
Do

r = r + 1
Loop While Cells(r, c) <> MaxVal
RowOfLargest = r

End Function

Do While loops can also contain one or more Exit Do statements. When an Exit
Do statement is encountered, the loop ends immediately.

DO UNTIL LOOPS
The Do Until loop structure closely resembles the Do While structure. The difference
is evident only when the condition is tested. In a Do While loop, the loop executes
while the condition is true. In a Do Until loop, the loop executes until the condition
is true. Do Until also has two syntaxes:

Do [Until condition]
[instructions]
[Exit Do]
[instructions]

Loop

or

Do
[instructions]
[Exit Do]
[instructions]

Loop [Until condition]

The following example demonstrates the first syntax of the Do Until loop. This
example makes the code a bit clearer because it avoids the negative comparison
required in the Do While example.

640 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 640

Function RowOfLargest(c)
NumRows = Rows.Count
MaxVal = Application.Max(Columns(c))
r = 1
Do Until Cells(r, c) = MaxVal

r = r + 1
Loop
RowOfLargest = r

End Function

Finally, the following function is the same procedure, but is rewritten to use the
second syntax of the Do Until loop.

Function RowOfLargest(c)
NumRows = Rows.Count
MaxVal = Application.Max(Columns(c))
r = 0
Do

r = r + 1
Loop Until Cells(r, c) = MaxVal

RowOfLargest = r
End Function

The On Error Statement
Undoubtedly, you’ve used one of Excel’s worksheet functions in a formula and dis-
covered that the formula returns an error value (for example, #VALUE!). A formula
can return an error value in a number of situations, including:

� You omitted one or more required argument(s).

� An argument was not the correct data type (for example, text instead of a
value).

� An argument is outside of a valid numeric range (division by zero, for
example).

In many cases, you can ignore error handling within your functions. If the user
does not provide the proper number of arguments, the function simply returns an
error value. It’s up to the user to figure out the problem. In fact, this is how Excel’s
worksheet functions handle errors.

In other cases, you want your code to know if errors occurred and then do some-
thing about them. Excel’s On Error statement enables you to identify and handle
errors.

Chapter 24: VBA Programming Concepts 641

4800-x Ch24.F 8/27/01 11:59 AM Page 641

To simply ignore an error, use the following statement:

On Error Resume Next

If you use this statement, you can determine whether an error occurs by check-
ing the Number property of the Err object. If this property is equal to zero, an error
did not occur. If Err.Number is equal to anything else, an error did occur.

The following example is a function that returns the name of a cell or range. If
the cell or range does not have a name, an error occurs and the formula that uses
the function returns a #VALUE! error.

Function RANGENAME(rng)
RANGENAME = rng.Name.Name

End Function

The following list shows an improved version of the function. The On Error
Resume Next statement causes VBA to ignore the error. The If Err statement checks
to see if an error occurs. If so, the function returns an empty string.

Function RANGENAME(rng)
On Error Resume Next
RANGENAME = rng.Name.Name
If Err.Number <> 0 Then RANGENAME = “”

End Function

The following statement instructs VBA to watch for errors, and if an error
occurs, continues executing at a different named location — in this case, a statement
labeled ErrHandler.

On Error GoTo ErrHandler

The following Function procedure demonstrates this statement. The DIVIDETWO
function accepts two arguments (num1 and num2) and returns the result of num1
divided by num2.

Function DIVIDETWO(num1, num2)
On Error GoTo ErrHandler
DIVIDETWO = num1 / num2
Exit Function

ErrHandler:
DIVIDETWO = “ERROR”

End Function

The On Error GoTo statement instructs VBA to jump to the statement labeled
ErrHandler if an error occurs. As a result, the function returns a string (ERROR) if

642 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 642

any type of error occurs while the function is executing. Note the use of the Exit
Function statement. Without this statement, the code continues executing and the
error handling code always executes. In other words, the function always returns
ERROR.

It’s important to understand that the DIVIDETWO function is non-standard in its
approach. Returning a string when an error occurs (ERROR) is not how Excel’s
functions work. Rather, they return an actual error value.

Chapter 25 contains several examples of the On Error statement, including

an example that demonstrates how to return an actual error value from a

function.

Using Ranges
Many of the custom functions that you develop will work with the data contained
in a cell or in a range of cells. Recognize that a range can be a single cell or a group
of cells. This section describes some key concepts to make this task easier. The
information in this section is intended to be practical, rather than comprehensive. If
you want more details, consult the online help.

Chapter 25 contains many practical examples of functions that use ranges.

Studying these examples helps to clarify the information in this section.

The For Each-Next Construct
Your Function procedures often need to loop through a range of cells. For example,
you may write a function that accepts a range as an argument. Your code needs to
examine each cell in the range and do something. The For Each-Next construct is
very useful for this sort of thing. The syntax of the For Each-Next construct is:

For Each element In group
[instructions]
[Exit For]
[instructions]

Next [element]

The following Function procedure accepts a range argument, and returns the
sum of the squared values in the range.

Chapter 24: VBA Programming Concepts 643

4800-x Ch24.F 8/27/01 11:59 AM Page 643

Function SUMOFSQUARES(rng as Range)
Dim total as Double
Dim cell as Range
total = 0
For Each cell In rng

total = total + cell ^ 2
Next cell
SUMOFSQUARES = total

End Function

The following is a worksheet formula that uses the SumOfSquares function.

=SumOfSquares(A1:C100)

In this case, the function’s argument is a range that consists of 300 cells.

In the preceding example, cell and rng are both variable names.There’s noth-

ing special about either name; you can replace them with any valid variable

name.

Referencing a Range
VBA code can reference a range in a number of different ways:

� The Range property

� The Cells property

� The Offset property

THE RANGE PROPERTY
You can use the Range property to refer to a range directly, by using a cell address
or name. The following example assigns the value in cell A1 to a variable named
Init. In this case, the statement accesses the range’s Value property.

Init = Range(“A1”).Value

In addition to the Value property, VBA enables you to access a number of other
properties of a range. For example, the following statement counts the number of
cells in a range and assigns the value to the Cnt variable.

Cnt = Range(“A1:C300”).Count

644 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 644

The Range property is also useful for referencing a single cell in a multicell
range. For example, you may create a function that is supposed to accept a single-
cell argument. If the user specifies a multicell range as the argument, you can use
the Range property to extract the upper left cell in the range. The following exam-
ple uses the Range property (with an argument of “A1”) to return the value in the
upper left cell of the range represented by the cell argument.

Function Square(cell as Range)
Dim CellValue as Double
CellValue = cell.Range(“A1”).Value
Square = CellValue ^ 2

End Function

Assume that the user enters the following formula:

=Square(C5:C12)

The Square function works with the upper left cell in C5:C12 (which is C5), and
returns the value squared.

Many of Excel’s worksheet functions work in this way.For example, if you spec-

ify a multicell range as the first argument for the LEFT function, Excel uses the

upper left cell in the range. However, Excel is not consistent. If you specify a

multicell range as the argument for the SQRT function, Excel returns an error.

THE CELLS PROPERTY
Another way to reference a range is to use the Cells property. The Cells property
accepts two arguments (a row number and a column number), and returns a single
cell. The following statement assigns the value in cell A1 to a variable named
FirstCell:

FirstCell = Cells(1, 1).Value

The following statement returns the upper left cell in the range C5:C12.

UpperLeft = Range(“C5:C12”).Cells(1,1)

If you use the Cells property without an argument, it returns a range that

consists of all cells on the worksheet. In the following example, the TotalCells

variable contains the total number of cells in the worksheet.

TotalCells = Cells.Count

Chapter 24: VBA Programming Concepts 645

4800-x Ch24.F 8/27/01 11:59 AM Page 645

The following statement uses Excel’s COUNTA function to determine the number
of non-empty cells in the worksheet:

NonEmpty =WorksheetFunction.COUNTA(Cells)

THE OFFSET PROPERTY
The Offset property (like the Range and Cells properties) also returns a Range
object. The Offset property is used in conjunction with a range. It takes two argu-
ments that correspond to the relative position from the upper left cell of the speci-
fied Range object. The arguments can be positive (down or right), negative (up or
left), or zero. The following example returns the value one cell below cell A1 (i.e.,
cell A2), and assigns it to a variable named NextCell:

NextCell = Range(“A1”).Offset(1,0).Value

The following Function procedure accepts a single-cell argument, and uses a
For-Next loop to return the sum of the 10 cells below it:

Function SumBelow(cell as Range)
Dim Total as Double
Dim i as Integer
Total = 0
For i = 1 To 10

Total = Total + cell.Offset(i, 0)
Next i
SumBelow = Total

End Function

Some Useful Properties of Ranges
Previous sections gave examples that used the Value property for a range. VBA
gives you access to many additional range properties. Some of the more useful
properties for function writers are briefly described in the following sections. For
complete information on a particular property, refer to Excel’s online help.

THE FORMULA PROPERTY
The Formula property returns the formula (as a string) contained in a cell. If you try
to access the Formula property for a range that consists of more than one cell, you
get an error. If the cell does not have a formula, this property returns a string,
which is the cell’s value as it appears in the formula bar. The following function
simply displays the formula for the upper left cell in a range:

Function CELLFORMULA(cell)
CELLFORMULA = cell.Range(“A1”).Formula

End Function

646 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 646

You can use the HasFormula property to determine whether a cell has a formula.

THE ADDRESS PROPERTY
The Address property returns the address of a range as a string. By default, it
returns the address as an absolute reference (for example, A1:C12). The fol-
lowing function, which is not all that useful, returns the address of a range.

Function RANGEADDRESS(rng)
RANGEADDRESS = rng.Address

End Function

For example, the following formula returns the string A1:C3:

=RANGEADDRESS(A1:C3)

THE COUNT PROPERTY
The Count property returns the number of cells in a range. The following function
uses the Count property:

Function CELLCOUNT(rng)
CELLCOUNT = rng.Count

End Function

The following formula returns 9:

=CELLCOUNT(A1:C3)

THE PARENT PROPERTY
The Parent property returns an object that corresponds to an object’s container
object. For a Range object, the Parent property returns a Worksheet object (the
worksheet that contains the range).

The following function uses the Parent property and returns the name of the
worksheet of the range passed as an argument:

Function SHEETNAME(rng)
SHEETNAME = rng.Parent.Name

End Function

The following formula, for example, returns the string Sheet1:

=SHEETNAME(Sheet1!A16)

Chapter 24: VBA Programming Concepts 647

4800-x Ch24.F 8/27/01 11:59 AM Page 647

THE NAME PROPERTY
The Name property returns a Name object for a cell or range. To get the actual cell
or range name, you need to access the Name property of the Name object. If the cell
or range does not have a name, the Name property returns an error.

The following Function procedure displays the name of a range or cell passed as
its argument. If the range or cell does not have a name, the function returns an
empty string. Note the use of On Error Resume Next. This handles situations in
which the range does not have a name.

Function RANGENAME(rng)
On Error Resume Next
RANGENAME = rng.Name.Name
If Err.Number <> 0 Then RANGENAME = “”

End Function

THE NUMBERFORMAT PROPERTY
The NumberFormat property returns the number format (as a string) assigned to a
cell or range. The following function simply displays the number format for the
upper left cell in a range:

Function NUMBERFORMAT(cell)
NUMBERFORMAT = cell.Range(“A1”).NumberFormat

End Function

THE FONT PROPERTY
The Font property returns a Font object for a range or cell. To actually do anything
with this Font object, you need to access its properties. For example, a Font object
has properties such as Bold, Italic, Name, Color, and so on. The following function
returns TRUE if the upper left cell of its argument is formatted as bold:

Function ISBOLD(cell)
ISBOLD = cell.Range(“A1”).Font.Bold

End Function

THE COLUMNS AND ROWS PROPERTIES
The Columns and Rows properties work with columns or rows in a range. For
example, the following function returns the number of columns in a range by
accessing the Count property:

Function COLUMNCOUNT(rng)
COLUMNCOUNT = rng.Columns.Count

End Function

648 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 648

THE ENTIREROW AND ENTIRECOLUMN PROPERTIES
The EntireRow and EntireColumn properties enable you to work with an entire row
or column for a particular cell. The following function accepts a single cell argu-
ment and then uses the EntireColumn property to get a range consisting of the
cell’s entire column. It then uses Excel’s COUNTA function to return the number of
non-empty cells in the column.

Function NONEMPTY(cell)
NONEMPTY = WorksheetFunction.CountA(cell.EntireColumn)

End Function

THE HIDDEN PROPERTY
The Hidden property is used with rows or columns. It returns TRUE if the row or
column is hidden. If you try to access this property for a range that does not con-
sist of an entire row or column, you get an error. The following function accepts a
single cell argument, and returns TRUE if either the cell’s row or the cell’s column
is hidden:

Function CELLISHIDDEN(cell)
If cell.EntireRow.Hidden Or cell.EntireColumn.Hidden Then

CELLISHIDDEN = True
Else

CELLISHIDDEN = False
End If

End Function

You can also write this function without using an If-Then-Else construct. In the
following function, the expression to the right of the equal sign returns either TRUE
or FALSE — and this value is assigned returned by the function.

Function CELLISHIDDEN(cell)
CELLISHIDDEN = cell.EntireRow.Hidden Or _
cell.EntireColumn.Hidden

End Function

The Set Keyword
An important concept in VBA is the ability to create a new Range object and assign
it to a variable — more specifically, an object variable. You do so by using the Set
keyword. The following statement creates an object variable named MyRange:

Set MyRange = Range(“A1:A10”)

Chapter 24: VBA Programming Concepts 649

4800-x Ch24.F 8/27/01 11:59 AM Page 649

After the statement executes, you can use the MyRange variable in your code in
place of the actual range reference. Examples in subsequent sections help to clarify
this concept.

Creating a Range object is not the same as creating a named range. In other

words, you can’t use the name of a Range object in your formulas.

The Intersect Function
The Intersect function returns a range that consists of the intersection of two other
ranges. For example, consider the two ranges selected in Figure 24-2. These ranges,
D3:D10 and B5:F5, contain one cell in common (D5). In other words, D5 is the
intersection of D3:D10 and B5:F5.

Figure 24-2: Use the Intersect function to work with the intersection
of two ranges.

The following Function procedure accepts two range arguments, and returns the
count of the number of cells that the ranges have in common:

Function CELLSINCOMMON(rng1, rng2)
Dim CommonCells As Range
On Error Resume Next
Set CommonCells = Intersect(rng1, rng2)
If Err.Number = 0 Then

CELLSINCOMMON = CommonCells.Count
Else

CELLSINCOMMON = 0
End If

End Function

650 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 650

The CELLSINCOMMON function uses the Intersect function to create a range
object named CommonCells. Note the use of On Error Resume Next. This statement
is necessary because the Intersect function returns an error if the ranges have no
cells in common. If the error occurs, it is ignored. The final statement checks the
Number property of the Err object. If 0, then no error occurs and the function
returns the value of the Count property for the CommonCells object. If an error does
occur, then Err.Number has a value other than 0 and the function returns 0.

The Union Function
The Union function combines two or more ranges into a single range. The follow-
ing statement uses the Union function to create a range object that consists of the
first and third columns of a worksheet:

Set TwoCols = Union(Range(“A:A”), Range(“C:C”))

The Union function can take any number of arguments.

The UsedRange Property
The UsedRange property returns a Range object that represents the used range of
the worksheet. Press Ctrl+End to activate the lower right cell of the used range. The
UsedRange property can be very useful in making your functions more efficient.

Consider the following Function procedure. This function accepts a range argu-
ment and returns the number of formula cells in the range.

Function FORMULACOUNT(rng As Range)
Dim cnt As Long
Dim cell As Range
cnt = 0
For Each cell In rng

If cell.HasFormula Then cnt = cnt + 1
Next cell
FORMULACOUNT = cnt

End Function

In many cases, the preceding function works just fine. But what if the user enters
a formula like this one?

=FORMULACOUNT(“A:C”)

With an argument that consists of one or more entire columns, the function does
not work well because it loops through every cell in the range, even those that are
well beyond the area of the sheet that’s actually used. The following function is
rewritten to make it more efficient:

Chapter 24: VBA Programming Concepts 651

4800-x Ch24.F 8/27/01 11:59 AM Page 651

Function FORMULACOUNT(rng As Range)
Dim cnt As Long
Dim cell As Range
cnt = 0
Set WorkRange = Intersect(rng, rng.Parent.UsedRange)
For Each cell In WorkRange

If cell.HasFormula Then cnt = cnt + 1
Next cell
FORMULACOUNT = cnt

End Function

This function creates a Range object named WorkRange that consists of the
intersection of the range passed as an argument and the used range of the work-
sheet. In other words, WorkRange consists of a subset of the range argument that
only includes cells in the used range of the worksheet.

Summary
This chapter provided an introduction to VBA’s language elements, including vari-
ables, data types, constants, and arrays. It also discussed the various methods that
you can use to control the flow of execution of your Function procedures. The
chapter also presented several examples of functions that demonstrate how to work
with ranges and use VBA’s built-in functions.

The next and final chapter contains examples of custom functions.

652 Part VI: Developing Custom Worksheet Functions

4800-x Ch24.F 8/27/01 11:59 AM Page 652

Chapter 25

VBA Custom Function
Examples

IN THIS CHAPTER

� Simple custom function examples

� A custom function to determine a cell’s data type

� A custom function to make a single worksheet function act like multiple
functions

� A custom function for generating random numbers and selecting cells at
random

� Custom functions for calculating sales commissions

� Custom functions for manipulating text

� Custom functions for counting and summing cells

� Custom functions that deal with dates

� A custom function example for returning the last nonempty cell in a
column or row

� Custom functions that work with multiple worksheets

� Advanced custom function techniques

THIS CHAPTER IS JAM-PACKED with a wide variety of useful (or potentially useful)
VBA custom functions. You can use many of the functions as they are written. You
may need to modify other functions to meet your particular needs. For maximum
speed and efficiency, these function procedures declare all variables that are used.

Simple Functions
The functions in this section are relatively simple, but they can be very useful. Most
of them are based on the fact that VBA can obtain lots of useful information that’s
not normally available for use in a formula. For example, your VBA code can
access a cell’s HasFormula property to determine whether a cell contains a formula.
Oddly, Excel does not have a built-in worksheet function that tells you this.

653

4800-x Ch25.F 8/27/01 11:59 AM Page 653

The companion CD-ROM contains a workbook that includes all of the func-

tions in this section.

Does a Cell Contain a Formula?
The following CELLHASFORMULA function accepts a single-cell argument and
returns TRUE if the cell has a formula.

Function CELLHASFORMULA(cell) As Boolean
‘ Returns TRUE if cell has a formula

CELLHASFORMULA = cell.Range(“A1”).HasFormula
End Function

If a multi-cell range argument is passed to the function, the function works with
the upper-left cell in the range.

Returning a Cell’s Formula
The following CELLFORMULA function returns the formula for a cell as a string. If
the cell does not have a formula, it returns an empty string.

Function CELLFORMULA(cell) As String
‘ Returns the formula in cell, or an
‘ empty string if cell has no formula

Dim UpperLeft As Range
Set UpperLeft = cell.Range(“A1”)
If UpperLeft.HasFormula Then

CELLFORMULA = UpperLeft.Formula
Else

CELLFORMULA = “”
End If

End Function

This function creates a Range object variable named UpperLeft. This variable
represents the upper-left cell in the argument that is passed to the function.

Is the Cell Hidden?
The following CELLISHIDDEN function accepts a single cell argument and returns
TRUE if the cell is hidden. It is considered a hidden cell if either its row or its col-
umn is hidden.

654 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 654

Function CELLISHIDDEN(cell) As Boolean
‘ Returns TRUE if cell is hidden

Dim UpperLeft As Range
Set UpperLeft = cell.Range(“A1”)
CELLISHIDDEN = UpperLeft.EntireRow.Hidden Or _

UpperLeft.EntireColumn.Hidden
End Function

Returning a Worksheet Name
The following SHEETNAME function accepts a single argument (a range) and
returns the name of the worksheet that contains the range. It uses the Parent prop-
erty of the Range object. The Parent property returns an object — the object that
contains the Range object.

Function SHEETNAME(rng) As String
‘ Returns the sheet name for rng

SHEETNAME = rng.Parent.Name
End Function

The following function is a variation on this theme. It does not use an argument;
rather, it relies on the fact that a function can determine the cell from which it was
called by using Application.Caller.

Function SHEETNAME2() As String
‘ Returns the sheet name of the cell that
‘ contains the function

SHEETNAME2 = Application.Caller.Parent.Name
End Function

Chapter 25: VBA Custom Function Examples 655

Using the Functions in this Chapter
If you see a function listed in this chapter that you find useful, you can use it in your
own workbook. All of the Function procedures in this chapter are available on the
companion CD-ROM. Just open the appropriate workbook (see Appendix E for a
description of the files), activate the VB Editor, and copy and paste the function listing
to a VBA module in your workbook. If you prefer, you can collect a number of
functions and create an add-in (see Chapter 23 for details).

It’s impossible to anticipate every function that you’ll ever need. However, the
examples in this chapter cover a wide variety of topics, so it’s likely that you can
locate an appropriate function and adapt the code for your own use.

4800-x Ch25.F 8/27/01 11:59 AM Page 655

In this function, Application.Caller returns a Range object that corresponds to
the cell that contains the function. For example, suppose that you have the follow-
ing formula in cell A1:

=SHEETNAME()

When the SHEETNAME function is executed, Application.Caller returns a Range
object corresponding to the cell that contains the function. The Parent property
returns the Worksheet object; and the Name property returns the name of the work-
sheet.

Returning a Workbook Name
The next function, WORKBOOKNAME, returns the name of the workbook. Notice
that it uses the Parent property twice. The first Parent property returns a Worksheet
object; the second Parent property returns a Workbook object, and the Name prop-
erty returns the name of the workbook..

Function WORKBOOKNAME() As String
‘ Returns the workbook name of the cell
‘ that contains the function

WORKBOOKNAME = Application.Caller.Parent.Parent.Name
End Function

656 Part VI: Developing Custom Worksheet Functions

Understanding Object Parents
Objects in Excel are arranged in a hierarchy. At the top of the hierarchy is the
Application object (Excel itself). Excel contains other objects, these objects contain
other objects, and so on. The following hierarchy depicts how a Range object fits into
this scheme.

Application Object (Excel)

Workbook Object

Worksheet Object

Range Object

In the lingo of object-oriented programming, a Range object’s parent is the Worksheet
object that contains it. A Worksheet object’s parent is the workbook that contains the
worksheet. And, a Workbook object’s parent is the Application object. Armed with this
knowledge, you can make use of the Parent property to create a few useful functions.

4800-x Ch25.F 8/27/01 11:59 AM Page 656

Returning the Application’s Name
The following function, although not very useful, carries this discussion of object
parents to the next logical level by accessing the Parent property three times. This
function returns the name of the Application object, which is always the string
Microsoft Excel.

Function APPNAME() As String
‘ Returns the application name of the cell
‘ that contains the function

APPNAME = Application.Caller.Parent.Parent.Parent.Name
End Function

Returning Excel’s Version Number
The following function returns Excel’s version number. For example, if you use
Excel 2002, it returns the text string 10.0.

Function EXCELVERSION() as String
‘ Returns Excel’s version number

EXCELVERSION = Application.Version
End Function

Note that the EXCELVERSION function returns a string, not a value. The follow-
ing function returns TRUE if the application is Excel 97 or later (Excel 97 is version
8). This function uses VBA’s Val function to convert the text string to a value.

Function EXCEL97ORLATER() As Boolean
EXCEL97ORLATER = Val(Application.Version) >= 8

End Function

Returning Cell Formatting Information
This section contains a number of custom functions that return information about
a cell’s formatting. These functions are useful if you need to sort data based on for-
matting (for example, sorting all bold cells together).

The functions in this section use the following statement:

Application.Volatile True

This statement causes the function to be reevaluated when the workbook is

calculated. You’ll find, however, that these functions don’t always return the

Chapter 25: VBA Custom Function Examples 657

4800-x Ch25.F 8/27/01 11:59 AM Page 657

correct value.This is because changing cell formatting, for example, does not

trigger Excel’s recalculation engine. To force a global recalculation (and

update all of the custom functions), press Ctrl+Alt+F9.

The following function returns TRUE if its single-cell argument has bold format-
ting.

Function ISBOLD(cell) As Boolean
‘ Returns TRUE if cell is bold

Application.Volatile True
ISBOLD = cell.Range(“A1”).Font.Bold

End Function

The following function returns TRUE if its single-cell argument has italic for-
matting.

Function ISITALIC(cell) As Boolean
‘ Returns TRUE if cell is italic

Application.Volatile True
ISITALIC = cell.Range(“A1”).Font.Italic

End Function

Both of the preceding functions have a slight flaw: They return an error if the
cell has mixed formatting. For example, it’s possible that only some characters are
bold. The following function returns TRUE only if all the characters in the cell are
bold. It uses VBA’s IsNull function to determine whether the Bold property of the
Font object returns Null. If so, the cell contains mixed bold formatting.

Function ALLBOLD(cell) As Boolean
‘ Returns TRUE if all characters in cell
‘ are bold

Dim UpperLeft As Range
Set UpperLeft = cell.Range(“A1”)
ALLBOLD = False
If UpperLeft.Font.Bold Then ALLBOLD = True

End Function

The following FILLCOLOR function returns an integer that corresponds to the
color index of the cell’s interior (the cell’s fill color). If the cell’s interior is not filled,
the function returns -4142.

Function FILLCOLOR(cell) As Integer
‘ Returns an integer corresponding to
‘ cell’s interior color

658 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 658

Application.Volatile True
FILLCOLOR = cell.Range(“A1”).Interior.ColorIndex

End Function

The following function returns the number format string for a cell.

Function NUMBERFORMAT(cell) As String
‘ Returns a string that represents
‘ the cell’s number format

Application.Volatile True
NUMBERFORMAT = cell.Range(“A1”).NumberFormat

End Function

If the cell uses the default number format, the function returns the string
General.

Determining a Cell’s Data Type
Excel provides a number of built-in functions that can help determine the type of
data contained in a cell. These include ISTEXT, ISLOGICAL, and ISERROR. In addi-
tion, VBA includes functions such as ISEMPTY, ISDATE, and ISNUMERIC.

The following function accepts a range argument and returns a string (Blank,
Text, Logical, Error, Date, Time, or Value) that describes the data type of the upper
left cell in the range.

Function CELLTYPE(cell)
‘ Returns the cell type of the upper left
‘ cell in a range

Dim UpperLeft As Range
Application.Volatile
Set UpperLeft = cell.Range(“A1”)
Select Case True

Case UpperLeft.NumberFormat = “@”
CELLTYPE = “Text”

Case IsEmpty(UpperLeft)
CELLTYPE = “Blank”

Case WorksheetFunction.IsText(UpperLeft)
CELLTYPE = “Text”

Case WorksheetFunction.IsLogical(UpperLeft)
CELLTYPE = “Logical”

Case WorksheetFunction.IsErr(UpperLeft)
CELLTYPE = “Error”

Case IsDate(UpperLeft)
CELLTYPE = “Date”

Chapter 25: VBA Custom Function Examples 659

4800-x Ch25.F 8/27/01 11:59 AM Page 659

Case InStr(1, UpperLeft.Text, “:”) <> 0
CELLTYPE = “Time”

Case IsNumeric(UpperLeft)
CELLTYPE = “Value”

End Select
End Function

Figure 25-1 shows the CELLTYPE function in use. Column B contains formulas
that use the CELLTYPE function with an argument from column A. For example,
cell B1 contains the following formula:

=CELLTYPE(A1)

Figure 25-1: The CELLTYPE function returns a string that
describes the contents of a cell.

A workbook that demonstrates the CELLTYPE function is available on the

companion CD-ROM.

A Multifunctional Function
This section demonstrates a technique that may be helpful in some situations — the
technique of making a single worksheet function act like multiple functions. The
following VBA function, named STATFUNCTION, takes two arguments — the range
(rng) and the operation (op). Depending on the value of op, the function returns a
value computed by using any of the following worksheet functions: AVERAGE,
COUNT, MAX, MEDIAN, MIN, MODE, STDEV, SUM, or VAR. For example, you can
use this function in your worksheet:

660 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 660

=STATFUNCTION(B1:B24,A24)

The result of the formula depends on the contents of cell A24, which should be
a string, such as Average, Count, Max, and so on. You can adapt this technique for
other types of functions.

Function STATFUNCTION(rng, op)
Select Case UCase(op)

Case “SUM”
STATFUNCTION = Application.Sum(rng)

Case “AVERAGE”
STATFUNCTION = Application.Average(rng)

Case “MEDIAN”
STATFUNCTION = Application.Median(rng)

Case “MODE”
STATFUNCTION = Application.Mode(rng)

Case “COUNT”
STATFUNCTION = Application.Count(rng)

Case “MAX”
STATFUNCTION = Application.Max(rng)

Case “MIN”
STATFUNCTION = Application.Min(rng)

Case “VAR”
STATFUNCTION = Application.Var(rng)

Case “STDEV”
STATFUNCTION = Application.StDev(rng)

Case Else
STATFUNCTION = CVErr(xlErrNA)

End Select
End Function

Figure 25-2 shows the STATFUNCTION function that is used in conjunction with
a drop-down list generated by Excel’s Data � Validation command. The formula in
cell C14 is:

=STATFUNCTION(C1:C12,B14)

The workbook shown in Figure 25-2 is available on the companion CD-ROM.

Chapter 25: VBA Custom Function Examples 661

4800-x Ch25.F 8/27/01 11:59 AM Page 661

Figure 25-2: Selecting an operation from the list displays
the result in cell B14.

The following STATFUNCTION2 function is a much simpler approach that works
exactly like the STATFUNCTION function. It uses the Evaluate method to evaluate
an expression.

Function STATFUNCTION2(rng, op)
STATFUNCTION2 = Evaluate(Op & “(“ & _

rng.Address(external:=True) & “)”)
End Function

For example, assume that the rng argument is C1:C12, and the op argument is
the string SUM. The expression that is used as an argument for the Evaluate
method is:

SUM(C1:C12)

The Evaluate method evaluates its argument and returns the result. In addition
to being much shorter, a benefit of this version of STATFUNCTION is that it’s not
necessary to list all of the possible functions.

Generating Random Numbers
This section presents two functions that deal with random numbers. One generates
random numbers that don’t change. The other selects a cell at random from a range.

662 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 662

Generating Random Numbers That Don’t Change
You can use Excel’s RAND function to quickly fill a range of cells with random val-
ues. But, as you may have discovered, the RAND function generates a new random
number whenever the worksheet is recalculated. If you prefer to generate random
numbers that don’t change with each recalculation, use the following STATICRAND
Function procedure:

Function STATICRAND()
‘ Returns a random number that doesn’t
‘ change when recalculated

STATICRAND = Rnd
End Function

The STATICRAND function uses VBA’s Rnd function, which, like Excel’s RAND
function, returns a random number between 0 and 1. When you use STATICRAND,
however, the random numbers don’t change when the sheet is calculated.

Pressing F9 does not generate new values from the STATICRAND function,

but pressing Ctrl+Alt+F9 (Excel’s “global recalc” key combination) does.

If you want to generate a series of random integers between 1 and 1000, you can
use a formula such as

=INT(STATICRAND()*1000)+1

Selecting a Cell at Random
The following function, named DRAWONE, randomly chooses one cell from an
input range and returns the cell’s contents.

Function DRAWONE(rng)
‘ Chooses one cell at random from a range

DRAWONE = rng(Int((rng.Count) * Rnd + 1))
End Function

If you use this function, you’ll find that it is not recalculated when the worksheet
is calculated. In other words, the function is not a volatile function (for more infor-
mation about controlling recalculation, see the sidebar, “Controlling Function
Recalculation,” later in this chapter). You can make the function volatile by adding
the following statement:

Application.Volatile True

Chapter 25: VBA Custom Function Examples 663

4800-x Ch25.F 8/27/01 11:59 AM Page 663

After doing so, the DRAWONE function displays a new random cell value when-
ever the sheet is calculated.

I present two additional functions that deal with randomization later in this

chapter (see “Advanced Function Techniques”).

Calculating Sales Commissions
Sales managers often need to calculate the commissions earned by their sales
forces. The calculations in the function example presented here are based on a slid-
ing scale: Employees who sell more earn a higher commission rate (see Table 25-1).

664 Part VI: Developing Custom Worksheet Functions

Controlling Function Recalculation
When you use a custom function in a worksheet formula, when is it recalculated?

Custom functions behave like Excel’s built-in worksheet functions. Normally, a custom
function is recalculated only when it needs to be recalculated — that is, when you
modify any of a function’s arguments — but you can force functions to recalculate
more frequently. Adding the following statement to a Function procedure makes the
function recalculate whenever any cell changes:

Application.Volatile True

The Volatile method of the Application object has one argument (either True or False).
Marking a function procedure as “volatile” forces the function to be calculated
whenever calculation occurs in any cell in the worksheet.

For example, the custom STATICRAND function presented in this chapter can be
changed to emulate Excel’s RAND() function by using the Volatile method, as follows:

Function NONSTATICRAND()
‘ Returns a random number that
‘ changes when the sheet is recalculated

Application.Volatile True
NONSTATICRAND = Rnd

End Function

Using the False argument of the Volatile method causes the function to be
recalculated only when one or more of its arguments change (if a function has no
arguments, this method has no effect). By default, all functions work as if they include
an Application.Volatile False statement.

4800-x Ch25.F 8/27/01 11:59 AM Page 664

For example, a salesperson with sales between $10,000 and $19,999 qualifies for a
commission rate of 10.5 percent.

TABLE 25-1 COMMISSION RATES FOR MONTHLY SALES

Monthly Sales Commission Rate

Less than $10,000 8.0%

$10,000 - $19,999 10.5%

$20,000 - $39,999 12.0%

$40,000 or more 14.0%

You can calculate commissions for various sales amounts entered into a work-
sheet in several ways. You can use a complex formula with nested IF functions,
such as the following.

=IF(A1<0,0,IF(A1<10000,A1*0.08,
IF(A1<20000,A1*0.105,
IF(A1<40000,A1*0.12,A1*0.14))))

This may not be the best approach for a couple of reasons. First, the formula is
overly complex, thus making it difficult to understand. Second, the values are
hard-coded into the formula, thus making the formula difficult to modify. And if
you have more than seven commission rates, you run up against Excel’s limit on
nested functions.

A better approach is to use a lookup table function to compute the commissions.
For example:

=VLOOKUP(A1,Table,2)*A1

Using VLOOKUP is a good alternative, but it may not work if the commission
structure is more complex. (See the following subsection, “A Function for a More
Complex Commission Structure.”). Yet another approach is to create a custom
function.

A Function for a Simple Commission Structure
The following COMMISSION function accepts a single argument (Sales) and com-
putes the commission amount.

Chapter 25: VBA Custom Function Examples 665

4800-x Ch25.F 8/27/01 11:59 AM Page 665

Function COMMISSION(Sales) As Single
‘ Calculates sales commissions

Const Tier1 As Double = 0.08
Const Tier2 As Double = 0.105
Const Tier3 As Double = 0.12
Const Tier4 As Double = 0.14
Select Case Sales

Case Is >= 40000
COMMISSION2 = Sales * Tier4

Case Is >= 20000
COMMISSION2 = Sales * Tier3

Case Is >= 10000
COMMISSION2 = Sales * Tier2

Case Is < 10000
COMMISSION2 = Sales * Tier1

End Select
End Function

The following worksheet formula, for example, returns 3,000 (the sales
amount — 25,000 — qualifies for a commission rate of 12 percent):

=COMMISSION(25000)

This function is very easy to understand and maintain. It uses constants to store
the commission rates, and a Select Case structure to determine which commission
rate to use.

When a Select Case structure is evaluated, program control exits the Select

Case structure when the first true Case is encountered.

A Function for a More Complex
Commission Structure
If the commission structure is more complex, you may need to use additional argu-
ments for your COMMISSION function. Imagine that the aforementioned sales
manager implements a new policy to help reduce turnover: The total commission
paid increases by 1 percent for each year that a salesperson stays with the
company.

The following is a modified COMMISSION function (named COMMISSION2).
This function now takes two arguments: The monthly sales (Sales) and the number
of years employed (Years).

666 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 666

Function COMMISSION2(Sales, Years) As Single
‘ Calculates sales commissions based on
‘ years in service

Const Tier1 As Double = 0.08
Const Tier2 As Double = 0.105
Const Tier3 As Double = 0.12
Const Tier4 As Double = 0.14
Select Case Sales

Case Is >= 40000
COMMISSION2 = Sales * Tier4

Case Is >= 20000
COMMISSION2 = Sales * Tier3

Case Is >= 10000
COMMISSION2 = Sales * Tier2

Case Is < 10000
COMMISSION2 = Sales * Tier1

End Select
COMMISSION2 = COMMISSION2 + (COMMISSION2 * Years / 100)

End Function

Figure 25-3 shows the COMMISSION2 function in use. The formula in cell D2 is

=COMMISSION2(B2,C2)

Figure 25-3: Calculating sales commissions based on sales
amount and years employed

The workbook shown in Figure 25-3 is available on the companion CD-ROM.

Chapter 25: VBA Custom Function Examples 667

4800-x Ch25.F 8/27/01 11:59 AM Page 667

Text Manipulation Functions
Text strings can be manipulated with functions in a variety of ways, including
reversing the display of a text string, scrambling the characters in a text string, or
extracting specific characters from a text string. This section offers a number of
function examples that manipulate text strings.

The companion CD-ROM contains a workbook that demonstrates all of the

functions in this section.

Reversing a String
The following REVERSETEXT function returns the text in a cell backwards.

Function REVERSETEXT(text) As String
‘ Returns its argument, reversed

REVERSETEXT = StrReverse(text)
End Function

This function simply uses VBA’s StrReverse function. The following formula, for
example, returns tfosorciM.

=REVERSETEXT(“Microsoft”)

The StrReverse function is not available with versions of Excel prior to Excel
2000. Therefore, if you need this functionality with an earlier version of Excel,
you’ll need to “roll your own.” The following REVERSETEXT2 function works just
like the REVERSETEXT function.

Function REVERSETEXT2(text) As String
‘ Returns its argument, reversed
‘ For use with versions prior to Excel 2000

Dim TextLen As Integer
Dim i As Integer
TextLen = Len(text)
For i = TextLen To 1 Step -1

REVERSETEXT2 = REVERSETEXT2 & Mid(text, i, 1)
Next i

End Function

668 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 668

The function uses a For-Next loop with a negative Step value. The letters are
concatenated (using &, which is the concatenation operator) to form the string in
reverse order.

Scrambling Text
The following function returns the contents of its argument with the characters
randomized. For example, using Microsoft as the argument may return oficMorts,
or some other random permutation.

Function SCRAMBLE(text)
‘ Scrambles its single-cell argument

Dim TextLen As Integer
Dim i As Integer
Dim RandPos As Integer
Dim Char As String * 1
Set text = text.Range(“A1”)
TextLen = Len(text)
For i = 1 To TextLen

Char = Mid(text, i, 1)
RandPos = Int((TextLen - 1 + 1) * Rnd + 1)
Mid(text, i, 1) = Mid(text, RandPos, 1)
Mid(text, RandPos, 1) = Char

Next i
SCRAMBLE = text

End Function

This function loops through each character, and then swaps it with another char-
acter in a randomly selected position.

You may be wondering about the use of Mid. Note that when Mid is used on the
right side of an assignment statement, it is a function. But when Mid is used on the
left side of the assignment statement, it is a statement. Consult the online help for
more information about Mid.

Returning an Acronym
The ACRONYM function returns the first letter (in uppercase) of each word in its
argument. For example, the following formula returns IBM.

=ACRONYM(“International Business Machines”)

The listing for the ACRONYM Function procedure follows:

Function ACRONYM(text) As String
‘ Returns an acronym for text

Dim TextLen As Integer

Chapter 25: VBA Custom Function Examples 669

4800-x Ch25.F 8/27/01 11:59 AM Page 669

Dim i As Integer
text = Application.Trim(text)
TextLen = Len(text)
ACRONYM = Left(text, 1)
For i = 2 To TextLen

If Mid(text, i, 1) = “ “ Then
ACRONYM = ACRONYM & Mid(text, i + 1, 1)

End If
Next i
ACRONYM = UCase(ACRONYM)

End Function

This function uses Excel’s TRIM function to remove any extra spaces from the
argument. The first character in the argument is always the first character in the
result. The For-Next loop examines each character. If the character is a space, then
the character after the space is appended to the result. Finally, the result converts to
uppercase by using VBA’s UCase function.

Does the Text Match a Pattern?
The following function returns TRUE if a string matches a pattern composed of text
and wildcard characters. The ISLIKE function is remarkably simple, and is essen-
tially a wrapper for VBA’s useful Like operator.

Function ISLIKE(text As String, pattern As String) As Boolean
‘ Returns true if the first argument is like the second

ISLIKE = text Like pattern
End Function

The supported wildcard characters are as follows:

? Matches any single character

* Matches zero or more characters

Matches any single digit (0–9)

[list] Matches any single character in the list

[!list] Matches any single character not in the list

The following formula returns TRUE because the question mark (?) matches any
single character. If the first argument were “Unit12,” then the function would
return FALSE.

=ISLIKE(“Unit1”,”Unit?”)

670 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 670

The ISLIKE function also works with values. The following formula, for example,
returns TRUE if cell A1 contains a value that begins with 1 and has exactly three
numeric digits.

=ISLIKE(A1,”1##”)

The following formula returns TRUE because the first argument is a single char-
acter contained in the list of characters specified in the second argument.

=ISLIKE(“a”,”[aeiou]”)

If the character list begins with an exclamation point (!), then the comparison is
made with characters not in the list. For example, the following formula returns
TRUE because the first argument is a single character that does not appear in the
second argument’s list.

=ISLIKE(“g”,”[!aeiou]”)

The Like operator is very versatile. For complete information about VBA’s Like
operator, consult the online help.

Does a Cell Contain Text?
Chapter 5 describes how a number of Excel’s worksheet functions are at times unre-
liable when dealing with text in a cell. The following CELLHASTEXT function
returns TRUE if the cell argument contains text or contains a value formatted as
Text.

Function CELLHASTEXT(cell) As Boolean
‘ Returns TRUE if cell contains a string
‘ or cell is formatted as Text

Dim UpperLeft as Range
CELLHASTEXT = False
Set UpperLeft = cell.Range(“A1”)
If UpperLeft.NumberFormat = “@” Then

CELLHASTEXT = True
Exit Function

End If
If Not IsNumeric(UpperLeft) Then

CELLHASTEXT = True
Exit Function

End If
End Function

Chapter 25: VBA Custom Function Examples 671

4800-x Ch25.F 8/27/01 11:59 AM Page 671

The following formula returns TRUE if cell A1 contains a text string or if the cell
is formatted as Text.

=CELLHASTEXT(A1)

Extracting the nth Element from a String
The EXTRACTELEMENT function is a custom worksheet function that extracts an
element from a text string based on a specified separator character. Assume that
cell A1 contains the following text:

123-456-789-9133-8844

For example, the following formula returns the string 9133, which is the fourth
element in the string. The string uses a hyphen (-) as the separator.

=EXTRACTELEMENT(A1,4,”-”)

The EXTRACTELEMENT function uses three arguments:

� Txt: The text string from which you’re extracting. This can be a literal
string or a cell reference.

� n: An integer that represents the element to extract.

� Separator: A single character used as the separator.

If you specify a space as the Separator character, then multiple spaces are

treated as a single space (almost always what you want). If n exceeds the

number of elements in the string, the function returns an empty string.

The VBA code for the EXTRACTELEMENT function follows:

Function EXTRACTELEMENT(Txt, n, Separator) As String
‘ Returns the nth element of a text string, where the
‘ elements are separated by a specified separator character

Dim AllElements As Variant
AllElements = Split(Txt, Separator)
EXTRACTELEMENT = AllElements(n - 1)

End Function

672 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 672

This function uses VBA’s Split function, which returns a variant array that con-
tains each element of the text string. This array begins with 0 (not 1), so using n-1
references the desired element.

The Split function was introduced in Excel 2000. If you’re using an older version
of Excel, then you’ll need to use the following function:

Function EXTRACTELEMENT2(Txt, n, Separator) As String
‘ Returns the nth element of a text string, where the
‘ elements are separated by a specified separator character

Dim Txt1 As String, TempElement As String
Dim ElementCount As Integer, i As Integer

Txt1 = Txt
‘ If space separator, remove excess spaces

If Separator = Chr(32) Then Txt1 = Application.Trim(Txt1)

‘ Add a separator to the end of the string
If Right(Txt1, Len(Txt1)) <> Separator Then _

Txt1 = Txt1 & Separator

‘ Initialize
ElementCount = 0
TempElement = “”

‘ Extract each element
For i = 1 To Len(Txt1)

If Mid(Txt1, i, 1) = Separator Then
ElementCount = ElementCount + 1
If ElementCount = n Then

‘ Found it, so exit
EXTRACTELEMENT2 = TempElement
Exit Function

Else
TempElement = “”

End If
Else

TempElement = TempElement & Mid(Txt1, i, 1)
End If

Next i
EXTRACTELEMENT2 = “”

End Function

Chapter 25: VBA Custom Function Examples 673

4800-x Ch25.F 8/27/01 11:59 AM Page 673

Spelling Out a Number
The SPELLDOLLARS function returns a number spelled out in text — as on a check.
For example, the following formula returns the string One hundred twenty-three
and 45/100 dollars.

=SPELLDOLLARS(123.45)

Figure 25-4 shows some additional examples of the SPELLDOLLARS function.
Column C contains formulas that use the function. For example, the formula in
C1 is:

=SPELLDOLLARS(A1)

Note that negative numbers are spelled out and enclosed in parentheses.

Figure 25-4: Examples of the SPELLDOLLARS function

The SPELLDOLLARS function is too lengthy to list here, but you can view

the complete listing in the workbook on the companion CD-ROM.

Counting and Summing Functions
Chapter 7 contains many formula examples to count and sum cells based on vari-
ous criteria. If you can’t arrive at a formula-based solution for a counting or sum-
ming problem, then you can probably create a custom function. This section
contains three functions that perform counting or summing.

674 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 674

The companion CD-ROM contains a workbook that demonstrates the func-

tions in this section.

Counting Cells Between Two Values
Assume that you need to count the number of values between 6 and 12 in the range
A1:A100. The following formula will do the job:

=COUNTIF(A1:A100,”<=12”)-COUNTIF(A1:A100,”<6”)

This formula works well, but setting it up can be confusing. The formula actually
counts the number of cells that are less than or equal to 12 and then subtracts the
number of cells that are less than 6.

The following COUNTBETWEEN function is essentially a “wrapper” for this type
of formula:

Function COUNTBETWEEN(rng, num1, num2)
COUNTBETWEEN = Application.CountIf(rng, “<=” & num2) _

- Application.CountIf(rng, “<” & num1)
End Function

The COUNTBETWEEN function accepts three arguments:

� rng: A range reference

� num1: The lower limit

� num2: The upper limit

The function uses Excel’s COUNTIF function, and returns the number of cells in
rng that are greater than or equal to num1 and less than or equal to num2.

Counting Visible Cells in a Range
The following COUNTVISIBLE function accepts a range argument and returns the
number of non-empty visible cells in the range. A cell is not visible if it resides in
a hidden row or a hidden column.

Function COUNTVISIBLE(rng)
‘ Counts visible cells

Dim CellCount As Long
Dim cell As Range
Application.Volatile

Chapter 25: VBA Custom Function Examples 675

4800-x Ch25.F 8/27/01 11:59 AM Page 675

CellCount = 0
Set rng = Intersect(rng.Parent.UsedRange, rng)
For Each cell In rng

If Not IsEmpty(cell) Then
If Not cell.EntireRow.Hidden And _

Not cell.EntireColumn.Hidden Then _
CellCount = CellCount + 1

End If
Next cell
COUNTVISIBLE = CellCount

End Function

This function loops though each cell in the range, checking first to see if the cell
is empty. If the cell is not empty, then this function checks the Hidden properties of
the cell’s row and column. If either the row or column is hidden, then the CellCount
variable increments.

If you’re working with AutoFilters or outlines, you may prefer to use Excel’s
SUBTOTAL function (with a first argument of 2 or 3). The SUBTOTAL function,
however, does not work properly if cells are hidden manually by using the
Format � Row � Hide or Format � Column � Hide commands. In such a case, the
COUNTVISIBLE function is the only alternative.

Summing Visible Cells in a Range
The SUMVISIBLE function is based on the COUNTVISIBLE function discussed in the
previous section. This function accepts a range argument and returns the sum of
the visible cells in the range. A cell is not visible if it resides in a hidden row or a
hidden column.

Function SUMVISIBLE(rng)
‘ Sums only visible cells

Dim CellSum As Double
Dim cell As Range
Application.Volatile
CellSum = 0
Set rng = Intersect(rng.Parent.UsedRange, rng)
For Each cell In rng

If IsNumeric(cell) Then
If Not cell.EntireRow.Hidden And _
Not cell.EntireColumn.Hidden Then _
CellSum = CellSum + cell

End If
Next cell
SUMVISIBLE = CellSum

End Function

676 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 676

Hiding and unhiding rows and columns don’t trigger a worksheet recalculation.
Therefore, you may need to press Ctrl+Alt+F9 to force a complete recalculation.

Excel’s SUBTOTAL function (with a first argument of 9) is also useful for sum-
ming visible cells in an AutoFiltered list. The SUBTOTAL function, however, does
not work properly if cells are hidden in a non-filtered list.

Date Functions
Chapter 6 presents a number of useful Excel functions and formulas for calculating
dates, times, and time periods by manipulating date and time serial values. This
section presents additional functions that deal with dates.

The companion CD-ROM contains a workbook that demonstrates the Date

functions presented in this section.

Calculating the Next Monday
The following NEXTMONDAY function accepts a date argument and returns the
date of the following Monday.

Function NEXTMONDAY(d As Date) As Date
NEXTMONDAY = d + 8 - WeekDay(d, vbMonday)

End Function

This function uses VBA’s WeekDay function, which returns an integer that rep-
resents the day of the week for a date (1 = Sunday, 2 = Monday, and so on). It also
uses a predefined constant, vbMonday.

The following formula returns 12/31/2001, which is the first Monday after
Christmas Day, 2001 (which is a Tuesday):

=NEXTMONDAY(DATE(2001,12,25))

The function returns a date serial number.You will need to change the num-

ber format of the cell to display this serial number as an actual date.

Chapter 25: VBA Custom Function Examples 677

4800-x Ch25.F 8/27/01 11:59 AM Page 677

If the argument passed to the NEXTMONDAY function is a Monday, the function
will return the following Monday. If you prefer the function to return the same
Monday, use this modified version:

Function NEXTMONDAY2(d As Date) As Date
If WeekDay(d) = 2 Then

NEXTMONDAY2 = d
Else

NEXTMONDAY2 = d + 8 - WeekDay(d, vbMonday)
End If

End Function

Calculating the Next Day of the Week
The following NEXTDAY function is a variation on the NEXTMONDAY function.
This function accepts two arguments: A date and an integer between 1 and 7 that
represents a day of the week (1 = Sunday, 2 = Monday, and so on). The NEXTDAY
function returns the date for the next specified day of the week.

Function NEXTDAY(d As Date, day As Integer) As Variant
‘ Returns the next specified day
‘ Make sure day is between 1 and 7

If day < 1 Or day > 7 Then
NEXTDAY = CVErr(xlErrNA)

Else
NEXTDAY = d + 8 - WeekDay(d, day)

End If
End Function

The NEXTDAY function uses an If statement to ensure that the day argument is
valid (that is, between 1 and 7). If the day argument is not valid, the function
returns #N/A Because the function can return a value other than a date, it is
declared as type variant.

Which Week of the Month?
The following MONTHWEEK function returns an integer that corresponds to the
week of the month for a date.

Function MONTHWEEK(d As Date) As Variant
‘ Returns the week of the month for a date

Dim FirstDay As Integer

‘ Check for valid date argument

678 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 678

If Not IsDate(d) Then
MONTHWEEK = CVErr(xlErrNA)
Exit Function

End If

‘ Get first day of the month
FirstDay = WeekDay(DateSerial(Year(d), Month(d), 1))

‘ Calculate the week number
MONTHWEEK = Application.RoundUp((FirstDay + day(d) - 1) / 7, 0)

End Function

Working with Dates Before 1900
Many users are surprised to discover that Excel can’t work with dates prior to the
year 1900. To correct this deficiency, I created an add-in called “Extended Date
Functions.” This add-in enables you to work with dates in the years 0100 through
9999.

The companion CD-ROM contains a copy of the Extended Date Functions

add-in.

When installed, the Extended Date Function add-in gives you access to eight
new worksheet functions:

� XDATE(y,m,d,fmt): Returns a date for a given year, month, and day. As
an option, you can provide a date formatting string.

� XDATEADD(xdate1,days,fmt): Adds a specified number of days to a date.
As an option, you can provide a date formatting string.

� XDATEDIF(xdate1,xdate2): Returns the number of days between two
dates.

� XDATEYEARDIF(xdate1,xdate2): Returns the number of full years
between two dates (useful for calculating ages).

� XDATEYEAR(xdate1): Returns the year of a date.

� XDATEMONTH(xdate1): Returns the month of a date.

� XDATEDAY(xdate1): Returns the day of a date.

� XDATEDOW(xdate1): Returns the day of the week of a date (as an integer
between 1 and 7).

Chapter 25: VBA Custom Function Examples 679

4800-x Ch25.F 8/27/01 11:59 AM Page 679

These functions don’t make any adjustments for changes made to the cal-

endar in 1582. Consequently, working with dates prior to October 15, 1582,

may not yield correct results.

Returning the Last Nonempty Cell
in a Column or Row
This section presents two useful functions: LASTINCOLUMN, which returns the
contents of the last nonempty cell in a column, and LASTINROW, which returns the
contents of the last nonempty cell in a row. Chapter 13 presents array formulas for
this task, but you may prefer to use a custom function.

The companion CD-ROM contains a workbook that demonstrates the func-

tions presented in this section.

Each of these functions accepts a range as its single argument. The range argu-
ment can be a column reference (for LASTINCOLUMN) or a row reference (for
LASTINROW). If the supplied argument is not a complete column or row reference
(such as 3:3 or D:D), the function uses the column or row of the upper-left cell in
the range. For example, the following formula returns the contents of the last non-
empty cell in column B:

=LASTINCOLUMN(B5)

The following formula returns the contents of the last nonempty cell in row 7:

=LASTINROW(C7:D9)

The LASTINCOLUMN Function
The following is the LASTINCOLUMN function:

Function LASTINCOLUMN(rng As Range)
‘ Returns the contents of the last non-empty cell in a column

Dim LastCell As Range
Application.Volatile
With rng.Parent

With .Cells(.Rows.Count, rng.Column)

680 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 680

If Not IsEmpty(.Value) Then
LASTINCOLUMN = .Value

ElseIf IsEmpty(.End(xlUp)) Then
LASTINCOLUMN = “”

Else
LASTINCOLUMN = .End(xlUp).Value

End If
End With

End With
End Function

Notice the references to the Parent of the range. This is done in order to make the
function work with arguments that refer to a different worksheet or workbook.

The LASTINROW Function
The following is the LASTINROW function:

Function LASTINROW(rng As Range)
‘ Returns the contents of the last non-empty cell in a row

Application.Volatile
With rng.Parent

With .Cells(rng.Row, .Columns.Count)
If Not IsEmpty(.Value) Then

LASTINROW = .Value
ElseIf IsEmpty(.End(xlToLeft)) Then

LASTINROW = “”
Else

LASTINROW = .End(xlToLeft).Value
End If

End With
End With

End Function

Multisheet Functions
You may need to create a function that works with data contained in more than one
worksheet within a workbook. This section contains two VBA functions that enable
you to work with data across multiple sheets, including a function that overcomes
an Excel limitation when copying formulas to other sheets.

Chapter 25: VBA Custom Function Examples 681

4800-x Ch25.F 8/27/01 11:59 AM Page 681

The companion CD-ROM contains a workbook that demonstrates the multi-

sheet functions presented in this section.

Returning the Maximum Value
Across All Worksheets
If you need to determine the maximum value in a cell (for example, B1) across a
number of worksheets, use a formula like this one:

=MAX(Sheet1:Sheet4!B1)

This formula returns the maximum value in cell B1 for Sheet1, Sheet4, and all of
the sheets in between. But what if you add a new sheet (Sheet5) after Sheet4? Your
formula does not adjust automatically, so you need to edit it to include the new
sheet reference:

=MAX(Sheet1:Sheet5!B1)

The following function accepts a single-cell argument, and returns the maxi-
mum value in that cell across all worksheets in the workbook. For example, the fol-
lowing formula returns the maximum value in cell B1 for all sheets in the
workbook.

=MAXALLSHEETS(B1)

If you add a new sheet, you don’t need to edit the formula.

Function MAXALLSHEETS(cell as Range)
Dim MaxVal As Double
Dim Addr As String
Dim Wksht As Object
Application.Volatile
Addr = cell.Range(“A1”).Address
MaxVal = -9.9E+307
For Each Wksht In cell.Parent.Parent.Worksheets

If Wksht.Name = cell.Parent.Name And _
Addr = Application.Caller.Address Then

‘ avoid circular reference
Else

If IsNumeric(Wksht.Range(Addr)) Then
If Wksht.Range(Addr) > MaxVal Then _
MaxVal = Wksht.Range(Addr).Value

682 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 682

End If
End If

Next Wksht
If MaxVal = -9.9E+307 Then MaxVal = 0
MAXALLSHEETS = MaxVal

End Function

The For Each statement uses the following expression to access the workbook:

cell.Parent.Parent.Worksheets

The parent of the cell is a worksheet, and the parent of the worksheet is the
workbook. Therefore, the For Each-Next loop cycles among all worksheets in the
workbook. The first If statement inside of the loop performs a check to see if the cell
being checked is the cell that contains the function. If so, that cell is ignored to
avoid a circular reference error.

You can easily modify the MAXALLSHEETS function to perform other cross-

worksheet calculations: Minimum, Average, Sum, and so on.

The SHEETOFFSET Function
A recurring complaint about Excel (including Excel 2002) is its poor support for
relative sheet references. For example, suppose that you have a multisheet work-
book, and you enter a formula like the following on Sheet2:

=Sheet1!A1+1

This formula works fine. However, if you copy the formula to the next sheet
(Sheet3), the formula continues to refer to Sheet1. Or, if you insert a sheet between
Sheet1 and Sheet2, the formula continues to refer to Sheet1 (most likely, you want
it to refer to the newly inserted sheet). In fact, you can’t create formulas that refer
to worksheets in a relative manner. However, you can use the SHEETOFFSET func-
tion to overcome this limitation.

THE SHEETOFFSET FUNCTION: TAKE ONE
Following is a VBA Function procedure named SHEETOFFSET.

Function SHEETOFFSET(offset As Integer, Ref As Range)
‘ Returns cell contents at Ref, in sheet offset

Dim WksIndex As Integer
Application.Volatile

Chapter 25: VBA Custom Function Examples 683

4800-x Ch25.F 8/27/01 11:59 AM Page 683

WksIndex = WorksheetIndex(Application.Caller.Parent)
SHEETOFFSET = Worksheets(WksIndex + offset).Range(Ref.Address)

End Function

The SHEETOFFSET function accepts two arguments:

� offset: The sheet offset, which can be positive, negative, or 0.

� ref: A single-cell reference. If the offset argument is 0, the cell reference
must not be the same as the cell that contains the formula. If so, you get a
circular reference error.

The following formula returns the value in cell A1 of the sheet before the sheet
that contains the formula:

=SHEETOFFSET(-1,A1)

The following formula returns the value in cell A1 of the sheet after the sheet
that contains the formula:

=SHEETOFFSET(1,A1)

This function works fine in most cases. For example, you can copy the formula
to other sheets and the relative referencing will be in effect in all of the copied for-
mulas. And, if you insert a worksheet, the sheet reference adjusts automatically.

This function, however, has a problem: If your workbook contains non-
worksheet sheets (that is, chart sheets or Excel 5 dialog sheets), the function may
fail because it attempts to reference a cell on a sheet that is not a worksheet.

THE SHEETOFFSET FUNCTION: TAKE TWO
You can, nevertheless, use an improved version of the SHEETOFFSET function. This
version of the function uses a second function named WorksheetIndex. The
WorksheetIndex function returns the worksheet index for a Worksheet object
passed as an argument. It then uses the value to identify another worksheet. The
following is a version of SHEETOFFSET, which essentially ignores any non-
worksheet sheets in the workbook.

Function SHEETOFFSET(offset as Integer, Ref as Range)
‘ Returns cell contents at Ref, in sheet offset

Dim WksIndex As Integer
Application.Volatile
WksIndex = WorksheetIndex(Application.Caller.Parent)
SHEETOFFSET = Worksheets(WksIndex + offset).Range(Ref.Address)

End Function

684 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 684

Private Function WorksheetIndex(x As Worksheet) As Integer
‘ Returns the Worksheets (not Sheets) Index

Dim Wks As Worksheet, WksNum As Integer
WksNum = 1
For Each Wks In x.Parent.Worksheets

If x.Name = Wks.Name Then
WorksheetIndex = WksNum
Exit Function

End If
WksNum = WksNum + 1

Next Wks
End Function

Notice that because the WorksheetIndex function is not designed for use in a
formula, it is declared with the Private keyword. Doing so prevents it from appear-
ing in the Paste Function dialog box.

Advanced Function Techniques
In this section, I explore some even more advanced functions. The examples in this
section demonstrate some special techniques that you can use with your custom
functions.

� Returning an error value from a function

� Returning an array from a function

� Using optional function arguments

� Using an indefinite number of function arguments

� Using Windows API functions

Returning an Error Value
In some cases, you may want your custom function to return a particular error
value. Consider the REVERSETEXT function, which I presented earlier in this
chapter.

Function REVERSETEXT(text) As String
‘ Returns its argument, reversed

REVERSETEXT = StrReverse(text)
End Function

Chapter 25: VBA Custom Function Examples 685

4800-x Ch25.F 8/27/01 11:59 AM Page 685

This function reverses the contents of its single-cell argument (which can be text
or a value). If the argument is a multicell range, the function returns #VALUE!

Assume that you want this function to work only with strings. If the argument
does not contain a string, you want the function to return an error value (#N/A).
You may be tempted to simply assign a string that looks like an Excel formula error
value. For example:

REVERSETEXT = “#N/A”

Although the string looks like an error value, it is not treated as such by other
formulas that may reference it. To return a real error value from a function, use
VBA’s CVErr function, which converts an error number to a real error.

Fortunately, VBA has built-in constants for the errors that you want to return
from a custom function. These constants are listed here:

� xlErrDiv0

� xlErrNA

� xlErrName

� xlErrNull

� xlErrNum

� xlErrRef

� xlErrValue

The following is the revised REVERSETEXT function:

Function REVERSETEXT(text) As Variant
‘ Returns its argument, reversed

If Application.ISNONTEXT(text) Then
REVERSETEXT = CVErr(xlErrNA)

Else
REVERSETEXT = StrReverse(text)

End If
End Function

This function uses Excel’s ISNONTEXT function to determine whether the argu-
ment is not a text string. If the argument is not a text string, the function returns
the #N/A error. Otherwise, it returns the characters in reverse order.

The data type for the original REVERSETEXT function was String, because the

function returned a text string. In this revised version, the function is declared

as a variant because it can now return something other than a string.

686 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 686

Returning an Array from a Function
Most functions that you develop with VBA return a single value. It’s possible, how-
ever, to write a function that returns multiple values in an array.

Part III deals with arrays and array formulas. Specifically, these chapters pro-

vide examples of a single formula that returns multiple values in separate

cells. As you’ll see, you can also create custom functions that return arrays.

VBA includes a useful function called “Array.” The Array function returns a
variant that contains an array. It’s important to understand that the array returned
is not the same as a normal array composed of elements of the variant type. In
other words, a variant array is not the same as an array of variants.

If you’re familiar with using array formulas in Excel, then you have a head start
understanding VBA’s Array function. You enter an array formula into a cell by
pressing Ctrl+Shift+Enter. Excel inserts brackets around the formula to indicate
that it’s an array formula. See Chapter 12 for more details on array formulas.

The lower bound of an array created by using the Array function is, by

default, 0. However, the lower bound can be changed if you use an Option

Base statement.

The following MONTHNAMES function demonstrates how to return an array
from a Function procedure.

Function MONTHNAMES() As Variant
MONTHNAMES = Array(_

“Jan”, “Feb”, “Mar”, “Apr”, _
“May”, “Jun”, “Jul”, “Aug”, _
“Sep”, “Oct”, “Nov”, “Dec”)

End Function

Figure 25-5 shows a worksheet that uses the MONTHNAMES function. You enter
the function by selecting A4:L4, and then entering the following formula:

{=MONTHNAMES()}

Chapter 25: VBA Custom Function Examples 687

4800-x Ch25.F 8/27/01 11:59 AM Page 687

Figure 25-5: The MONTHNAMES function entered as an array formula

As with any array formula, you must press Ctrl+Shift+Enter to enter the for-

mula. Don’t enter the brackets — Excel inserts the brackets for you.

The MONTHNAMES function, as written, returns a horizontal array in a single
row. To display the array in a vertical range in a single column (as in A7:A18 in
Figure 25-5), select the range and enter the following formula:

{=TRANSPOSE(MONTHNAMES())}

Alternatively, you can modify the function to do the transposition. The follow-
ing function uses Excel’s TRANSPOSE function to return a vertical array.

Function VMONTHNAMES() As Variant
VMONTHNAMES = Application.Transpose(Array(_

“Jan”, “Feb”, “Mar”, “Apr”, _
“May”, “Jun”, “Jul”, “Aug”, _
“Sep”, “Oct”, “Nov”, “Dec”))

End Function

A workbook that demonstrates MONTHNAMES and VMONTHNAMES is

available on the companion CD-ROM.

688 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 688

Returning an Array of Nonduplicated
Random Integers
The RANDOMINTEGERS function returns an array of nonduplicated integers. This
function is intended for use in a multicell array formula. Figure 25-6 shows a work-
sheet that uses the following formula in the range A1:D10.

{=RANDOMINTEGERS()}

Figure 25-6: An array formula generates nonduplicated
consecutive integers, arranged randomly.

This formula was entered into the entire range by using Ctrl+Shift+Enter. The
formula returns an array of nonduplicated integers, arranged randomly. Because 40
cells contain the formula, the integers range from 1 to 40. The following is the code
for RANDOMINTEGERS:

Function RANDOMINTEGERS()
Dim FuncRange As Range

Dim V() As Integer, ValArray() As Integer
Dim CellCount As Double
Dim i As Integer, j As Integer
Dim r As Integer, c As Integer
Dim Temp1 As Variant, Temp2 As Variant
Dim RCount As Integer, CCount As Integer
Randomize

‘ Create Range object
Set FuncRange = Application.Caller

‘ Return an error if FuncRange is too large
CellCount = FuncRange.Count
If CellCount > 1000 Then

RANDOMINTEGERS = CVErr(xlErrNA)
Exit Function

End If

Chapter 25: VBA Custom Function Examples 689

4800-x Ch25.F 8/27/01 11:59 AM Page 689

‘ Assign variables
RCount = FuncRange.Rows.Count
CCount = FuncRange.Columns.Count
ReDim V(1 To RCount, 1 To CCount)
ReDim ValArray(1 To 2, 1 To CellCount)

‘ Fill array with random numbers
‘ and consecutive integers

For i = 1 To CellCount
ValArray(1, i) = Rnd
ValArray(2, i) = i

Next i

‘ Sort ValArray by the random number dimension
For i = 1 To CellCount

For j = i + 1 To CellCount
If ValArray(1, i) > ValArray(1, j) Then

Temp1 = ValArray(1, j)
Temp2 = ValArray(2, j)
ValArray(1, j) = ValArray(1, i)
ValArray(2, j) = ValArray(2, i)
ValArray(1, i) = Temp1
ValArray(2, i) = Temp2

End If
Next j

Next i

‘ Put the randomized values into the V array
i = 0
For r = 1 To RCount

For c = 1 To CCount
i = i + 1
V(r, c) = ValArray(2, i)

Next c
Next r
RANDOMINTEGERS = V

End Function

A workbook containing the RANDOMINTEGERS function is available on the

companion CD-ROM.

690 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 690

Randomizing a Range
The following RANGERANDOMIZE function accepts a range argument and returns
an array that consists of the input range in random order.

Function RANGERANDOMIZE(rng)
Dim V() As Variant, ValArray() As Variant
Dim CellCount As Double
Dim i As Integer, j As Integer
Dim r As Integer, c As Integer
Dim Temp1 As Variant, Temp2 As Variant
Dim RCount As Integer, CCount As Integer
Randomize

‘ Return an error if rng is too large
CellCount = rng.Count
If CellCount > 1000 Then

RANGERANDOMIZE = CVErr(xlErrNA)
Exit Function

End If

‘ Assign variables
RCount = rng.Rows.Count
CCount = rng.Columns.Count
ReDim V(1 To RCount, 1 To CCount)
ReDim ValArray(1 To 2, 1 To CellCount)

‘ Fill ValArray with random numbers
‘ and values from rng

For i = 1 To CellCount
ValArray(1, i) = Rnd
ValArray(2, i) = rng(i)

Next i

‘ Sort ValArray by the random number dimension
For i = 1 To CellCount

For j = i + 1 To CellCount
If ValArray(1, i) > ValArray(1, j) Then

Temp1 = ValArray(1, j)
Temp2 = ValArray(2, j)
ValArray(1, j) = ValArray(1, i)
ValArray(2, j) = ValArray(2, i)
ValArray(1, i) = Temp1
ValArray(2, i) = Temp2

End If

Chapter 25: VBA Custom Function Examples 691

4800-x Ch25.F 8/27/01 11:59 AM Page 691

Next j
Next i

‘ Put the randomized values into the V array
i = 0
For r = 1 To RCount

For c = 1 To CCount
i = i + 1
V(r, c) = ValArray(2, i)

Next c
Next r
RANGERANDOMIZE = V

End Function

The code closely resembles the code for the RANDOMINTEGERS function. Figure
25-7 shows the function in use. The array formula in C2:C11 is:

{=RANGERANDOMIZE(A2:A11)}

Figure 25-7: The RANGERANDOMIZE function returns
the contents of a range, in random order.

This formula returns the contents of A2:A11, but in random order.

The workbook containing the RANGERANDOMIZE function is available on

the companion CD-ROM.

692 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 692

Using Optional Arguments
Many of Excel’s built-in worksheet functions use optional arguments. For example,
the LEFT function returns characters from the left side of a string. Its official syn-
tax is:

LEFT(text,num_chars)

The first argument is required, but the second is optional. If you omit the
optional argument, Excel assumes a value of 1.

Custom functions that you develop in VBA can also have optional arguments.
You specify an optional argument by preceding the argument’s name with the key-
word Optional. The following is a simple function that returns the user’s name.

Function USER()
USER = Application.UserName

End Function

Suppose that, in some cases, you want the user’s name to be returned in upper-
case letters. The following function uses an optional argument.

Function USER(Optional UpperCase As Boolean)
If IsMissing(UpperCase) Then UpperCase = False
If UpperCase = True Then

USER = Ucase(Application.UserName)
Else

USER = Application.UserName
End If

End Function

If the argument is FALSE or omitted, the user’s name is returned without any
changes. If the argument is TRUE, the user’s name converts to uppercase (using
VBA’s Ucase function) before it is returned. Notice that the first statement in the
procedure uses VBA’s IsMissing function to determine whether the argument was
supplied. If the argument is missing, the statement sets the UpperCase variable to
FALSE (the default value).

All of the following formulas are valid (and the first two have the same effect):

=USER()
=USER(False)
=USER(True)

Chapter 25: VBA Custom Function Examples 693

4800-x Ch25.F 8/27/01 11:59 AM Page 693

Using an Indefinite Number of Arguments
Some of Excel’s worksheet functions take an indefinite number of arguments. A
familiar example is the SUM function, which has the following syntax:

SUM(number1,number2...)

The first argument is required, but you can have as many as 29 additional argu-
ments. Here’s an example of a formula that uses the SUM function with four range
arguments:

=SUM(A1:A5,C1:C5,E1:E5,G1:G5)

You can mix and match the argument types. For example, the following exam-
ple uses three arguments — a range, followed by a value, and finally an expression.

=SUM(A1:A5,12,24*3)

You can create function procedures that have an indefinite number of argu-
ments. The trick is to use an array as the last (or only) argument, preceded by the
keyword ParamArray.

ParamArray can apply only to the last argument in the procedure. It is always

a variant data type, and it is always an optional argument (although you

don’t use the Optional keyword).

A SIMPLE EXAMPLE OF INDEFINITE ARGUMENTS
The following is a Function procedure that can have any number of single-value
arguments. It simply returns the sum of the arguments.

Function SIMPLESUM(ParamArray arglist() As Variant) As Double
Dim arg as Variant
For Each arg In arglist

SIMPLESUM = SIMPLESUM + arg
Next arg

End Function

The following formula returns the sum of the single-cell arguments:

=SIMPLESUM(A1,A5,12)

694 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 694

The most serious limitation of the SIMPLESUM function is that it does not han-
dle multicell ranges. This improved version does:

Function SIMPLESUM(ParamArray arglist() As Variant) As Double
Dim arg as Variant
Dim cell as Range
For Each arg In arglist

If TypeName(arg) = “Range” Then
For Each cell In arg

SIMPLESUM = SIMPLESUM + cell
Next cell

Else
SIMPLESUM = SIMPLESUM + arg

End If
Next arg

End Function

This function checks each entry in the Arglist array. If the entry is a range, then
the code uses a For Each-Next loop to sum the cells in the range.

Even this improved version is certainly no substitute for Excel’s SUM function.
Try it out by using various types of arguments and you’ll see that it fails unless
each argument is a value or a range reference. Also, if an argument consists of an
entire column, you’ll find that the function is very slow because it evaluates every
cell — even the empty ones.

EMULATING EXCEL’S SUM FUNCTION
This section presents a Function procedure called “MYSUM.” Unlike the SIMPLE-
SUM function listed in the previous section, MYSUM emulates Excel’s SUM func-
tion perfectly.

Before you look at the code for the MYSUM function, take a minute to think
about Excel’s SUM function. This very versatile function can have any number of
arguments (even “missing” arguments), and the arguments can be numerical val-
ues, cells, ranges, text representations of numbers, logical values, and even embed-
ded functions. For example, consider the following formula:

=SUM(A1,5,”6”,,TRUE,SQRT(4),B1:B5)

This formula — which is a valid formula — contains all of the following types of
arguments, listed here in the order of their presentation:

� A single cell reference (A1)

� A literal value (5)

� A string that looks like a value (“6”)

� A missing argument

Chapter 25: VBA Custom Function Examples 695

4800-x Ch25.F 8/27/01 11:59 AM Page 695

� A logical value (TRUE)

� An expression that uses another function (SQRT)

� A range reference (B1:B5)

The following is the listing for the MYSUM function that handles all of these
argument types.

Function MySum(ParamArray args() As Variant) As Variant
‘ Emulates Excel’s SUM function

‘ Variable declarations
Dim i As Variant
Dim TempRange As Range, cell As Range
Dim ECode As String
MySum = 0

‘ Process each argument
For i = 0 To UBound(args)

‘ Skip missing arguments
If Not IsMissing(args(i)) Then

‘ What type of argument is it?
Select Case TypeName(args(i))
Case “Range”

‘ Create temp range to handle full row or column ranges
Set TempRange = _
Intersect(args(i).Parent.UsedRange, args(i))
For Each cell In TempRange
If IsError(cell) Then
MySum = cell ‘ return the error
Exit Function

End If
If cell = True Or cell = False Then
MySum = MySum + 0

Else
If IsNumeric(cell) Or IsDate(cell) Then _
MySum = MySum + cell

End If
Next cell

Case “Null” ‘ignore it
Case “Error” ‘return the error
MySum = args(i)
Exit Function

Case “Boolean”
‘ Check for literal TRUE and compensate

696 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 696

If args(i) = “True” Then MySum = MySum + 1
Case “Date”
MySum = MySum + args(i)
Case Else
MySum = MySum + args(i)

End Select
End If

Next i
End Function

A workbook containing the MYSUM function is available on the companion

CD-ROM.

As you study the code for MYSUM, keep the following points in mind:

� Missing arguments (determined by the IsMissing function) are simply
ignored.

� The procedure uses VBA’s TypeName function to determine the type of
argument (Range, Error, or something else). Each argument type is han-
dled differently.

� For a range argument, the function loops through each cell in the range
and adds its value to a running total.

� The data type for the function is variant because the function needs to
return an error if any of its arguments is an error value.

� If an argument contains an error (for example, #DIV0!), the MYSUM func-
tion simply returns the error — just like Excel’s SUM function.

� Excel’s SUM function considers a text string to have a value of 0 unless it
appears as a literal argument (that is, as an actual value, not a variable).
Therefore, MySum adds the cell’s value only if it can be evaluated as a
number (VBA’s IsNumeric function is used for this).

� Dealing with Boolean arguments is tricky. For MySum to emulate SUM
exactly, it needs to test for a literal TRUE in the argument list and com-
pensate for the difference (that is, add 2 to -1 to get 1).

� For range arguments, the function uses the Intersect method to create a
temporary range that consists of the intersection of the range and the
sheet’s used range. This handles cases in which a range argument consists
of a complete row or column, which would take forever to evaluate.

Chapter 25: VBA Custom Function Examples 697

4800-x Ch25.F 8/27/01 11:59 AM Page 697

You may be curious about the relative speeds of SUM and MySum. MySum, of
course, is much slower, but just how much slower depends on the speed of your
system and the formulas themselves. On my system, a worksheet with 1,000 SUM
formulas recalculated instantly. After I replaced the SUM functions with MySum
functions, it took about 12 seconds. MySum may be improved a bit, but it can never
come close to SUM’s speed.

By the way, I hope you understand that the point of this example is not to cre-
ate a new SUM function. Rather, it demonstrates how to create custom worksheet
functions that look and work like those built into Excel.

Summary
This chapter presented many examples of custom VBA Function procedures that
you can use in your worksheet formulas. You can use many of these functions as is.
You may need to adapt others to suit your specific needs.

698 Part VI: Developing Custom Worksheet Functions

4800-x Ch25.F 8/27/01 11:59 AM Page 698

Appendix A

Working with Imported
1-2-3 Files

LOTUS 1-2-3 USED TO be the leading spreadsheet. That distinction, of course, now
belongs to Excel, which commands more than 90 percent of the spreadsheet mar-
ket. Some users, of course, continue to use 1-2-3, so you may be in a position in
which you need to import a file generated by 1-2-3. If so, the information in this
appendix may be helpful to you.

About 1-2-3 Files
Many versions of 1-2-3 have surfaced over the years, and 1-2-3 files exist in sev-
eral formats. Table A-1 describes the 1-2-3 files you may encounter.

TABLE A-1 LOTUS 1-2-3 FILE TYPES

File Extension Description

WKS Generated by 1-2-3 for DOS Release 1.0 and 1.0a. These files consist of
a single sheet. Excel can read and write these files.

WK1 Generated by 1-2-3 for DOS Release 2.x. These files consist of a single
sheet, and may have a companion *.FMT or *.ALL file that contains
formatting information. Excel can read these files, but saves only the
active sheet.

WK3 Generated by 1-2-3 for DOS Release 3.x and 1-2-3 for Windows
Release 1.0. These files may contain multiple sheets, and may have a
companion *.FM3 file that contains formatting information. Excel can
read and write these files.

WK4 Generated by 1-2-3 for Windows Release 4.0. These files may contain
multiple sheets. Excel can read and write these files.

123 Generated by 1-2-3 for Windows Release 5 and Millenium Edition.
Excel can neither read nor write these files.

699

4800-x AppA.F 8/27/01 11:59 AM Page 699

When importing or exporting 1-2-3 files, do not expect a perfect translation.
Excel’s online help describes the limitations.

Excel supports file links to 1-2-3 workbooks. However, this feature is limited

to WKS, WK1, WK3, and WK4 files (not the more recent 123 file format). In

some cases, you may need to explicitly update the links. To do so, use Edit �

Links, and click the Update Now button.

Lotus 1-2-3 Formulas
In some cases, you may find that the formulas in an imported 1-2-3 file work per-
fectly in Excel. In other cases, some formulas may not convert correctly and you
may need to do some tweaking or rewriting.

Excel evaluates some formulas differently than 1-2-3. These formulas fall into
three categories:

� Those that use text in calculation

� Those that use logical value (TRUE and FALSE)

� Those that use database criteria

To force Excel to use 1-2-3’s method of evaluating formulas, select Tools �
Options. In the Options dialog box, click the Transition tab and place a check mark
next to the Transition formula evaluation option.

When you open a 1-2-3 file, the Transition formula evaluation check box is

selected automatically for that sheet to ensure that Excel calculates the for-

mulas according to Lotus 1-2-3 rules.

700 Appendix A: Working with Imported 1-2-3 Files

Got a Case of File Bloat?
When you import a 1-2-3 file and save it as an Excel file, you may find that the file
becomes very large, making it very slow to open and save. The most likely cause is
that the imported 1-2-3 file contains entire columns that are preformatted. When
Excel imports such a file, it converts all formatted cells — even if they’re empty. The
solution is to select all blank rows below the last used cell in your worksheet, then
delete those rows. Resave the workbook and it should be a more manageable size.

4800-x AppA.F 8/27/01 11:59 AM Page 700

If you plan to make extensive use of an imported 1-2-3 file, you might want to
consider translating any formulas that aren’t evaluated correctly and turning off
the Transition formula evaluation option. Doing so helps to avoid confusion among
users unfamiliar with 1-2-3.

The following sections provide some tips on how to convert your 1-2-3 formu-
las so they work properly in Excel (without the Transition formula evaluation
setting).

Calculation Order
Excel and 1-2-3 differ in how they calculate formulas. When calculating a formula,
1-2-3 evaluates the exponentiation operator (^) before the negation operator (-). In
Excel, this order is reversed. Consider the following formula:

=-3^2

1-2-3 returns the value –9, but Excel returns +9. To obtain the same results as in
1-2-3, you need to change the formula to:

=-(3^2)

Appendix A: Working with Imported 1-2-3 Files 701

Let Excel Teach You
If you’re moving up from an older DOS version of 1-2-3, you may be surprised to know
that Excel can help you with the transition. The secret lies in the Help � Lotus 1-2-3
Help command. Selecting this command displays a dialog box with the 1-2-3
commands listed along the left side (see the accompanying figure).

Select the 1-2-3 command sequence, and Excel displays instructions, or even
demonstrates the corresponding menu command. For example, if you’re a veteran
1-2-3 for DOS user, you know that you use /rnd (for Range Name Delete) to delete a
name. If you enter this command sequence in Excel’s Help for Lotus 1-2-3 Users
dialog box, you see instructions that describe how to perform that operation in Excel.

4800-x AppA.F 8/27/01 11:59 AM Page 701

Text in Calculations
In 1-2-3, cells that contain text are considered to have a value of 0 when the cell is
used in a formula that uses mathematical operators. Excel, on the other hand,
returns an error.

If the Transition formula evaluation option is set, Excel considers text to

have a value of 0.

The following formula is perfectly valid in 1-2-3 (and it returns 12). In Excel, the
formula returns a #VALUE! error.

=”Dog”+12

Similarly, if cell A1 contains the text Dog, and cell A2 contains the value 12, the
following formula is valid in 1-2-3, but returns an error in Excel:

=A1+A2

Excel, however, does permit references to text cells in function arguments, and it
ignores such references. For example, the following formula works fine in both
1-2-3 and Excel, even if the range A1:A10 contains text:

=SUM(A1:A10)

You can take advantage of this fact to convert a 1-2-3 formula such as =A1+A2
to the following:

=SUM(A1,A2)

Logical Values
Boolean expressions in 1-2-3 are evaluated to 1 or 0. Excel displays these values
as TRUE or FALSE. TRUE is equivalent to 1-2-3’s 1, and FALSE is equivalent to
1-2-3’s 0.

If the Transition formula evaluation option is set, Excel displays 0 for FALSE

and 1 for TRUE.

702 Appendix A: Working with Imported 1-2-3 Files

4800-x AppA.F 8/27/01 11:59 AM Page 702

In 1-2-3, for example, the following formula displays either 1 or 0, depending
on the contents of cells A1 and A2. In Excel, the formula returns either TRUE or
FALSE.

=A1<A2

This distinction may be important if your worksheet uses IF functions that check
for 0 or 1. For example, the following formula has different results in 1-2-3 and
Excel:

=IF(A1<A2=1,B1,B2)

To fix this formula so it works properly in Excel, change it to:

=IF(A1<A2,B1,B2)

Lotus 1-2-3 uses the following logical operators: #AND#, #NOT#, and #OR#.
Excel uses logical functions (AND, NOT, and OR) in place of these. For example, the
following 1-2-3 formula returns the string yes if cell A1=12 and cell A2=12, and
the string no if both cells are not equal to 12:

@IF(A1=12#AND#A2=12,”yes”,”no”)

The equivalent 1-2-3 formula is:

=IF(AND(A1=12,A2=12),”yes”,”no”)

Date Problems
If the imported 1-2-3 worksheet contains dates that use a hyphen (for example,
12-31-98), these dates may not be recognized by Excel. For example, Excel will
interpret the cell as a formula:

=12-31-98

These cells will need to be edited so they display properly.

Database Criteria
If your imported worksheet uses database criteria ranges (for example, advanced
filtering), be especially careful. Database criteria ranges are evaluated differently
when you extract data, find data, and use database functions. For example, the cri-
teria “Ben” finds only rows where the value Ben is contained in the cell. In Excel,
the criteria “Ben” finds rows in which the contents of the cell begins with Ben —
including Benjamin, Benny, and Benito.

Appendix A: Working with Imported 1-2-3 Files 703

4800-x AppA.F 8/27/01 11:59 AM Page 703

If the Transition formula evaluation option is set, Excel works exactly like

1-2-3 in using database criteria.

Lotus 1-2-3 Function Compatibility
Most of the worksheet functions in 1-2-3 have equivalents in Excel. In some cases,
however, the correspondence is not perfect. Fortunately, Excel’s online help pro-
vides a thorough description of the differences between the worksheet functions
available in 1-2-3 and in Excel.

Function Equivalents
Table A-2 lists 1-2-3 functions that have equivalent Excel functions. It’s important
to understand that in some cases the correspondence is not exact. Also, for some
Excel functions, you must enter the arguments in a different order.

TABLE A-2 EXCEL EQUIVALENTS FOR 1-2-3 FUNCTIONS

Lotus 1-2-3 Function Equivalent Excel Function

@ INDIRECT

@@ INDIRECT

@ABS ABS

@ACCRUED ACCRINT

704 Appendix A: Working with Imported 1-2-3 Files

What About 1-2-3 Macros?
Excel can execute some 1-2-3 macros — the keystroke macros developed using early
versions of 1-2-3. These macros are stored directly in a worksheet and represent
keystrokes sent to the interface. Don’t expect perfect compatibility, however.

Typically, these keystroke macros are given a range name such as \t. This macro is
executed by typing Ctrl+T. These special names are valid if they are contained in an
imported file. But, you’ll find that you cannot create such a name in Excel.

If you convert 1-2-3 files to Excel, the best approach is to recreate the macros using
VBA. You’ll get much better performance and the macros will be easier to maintain.

4800-x AppA.F 8/27/01 11:59 AM Page 704

Lotus 1-2-3 Function Equivalent Excel Function

@ACOS ACOS

@ACOSH ACOSH

@ASIN ASIN

@ASINH ASINH

@ATAN ATAN

@ATAN2 ATAN2

@ATANH ATANH

@AVEDEV AVEDEV

@AVG AVERAGE, AVERAGEA

@BESSELI BESSELI

@BESSELJ BESSELJ

@BESSELK BESSELK

@BESSELY BESSELY

@BIN2DEC BIN2DEC

@BIN2HEX BIN2HEX

@BIN2OCT BIN2OCT

@BINOMIAL BINOMDIST

@CELL CELL

@CELLPOINTER CELL

@CHAR CHAR

@CHIDIST CHIINV, CHIDIST

@CHOOSE CHOOSE

@CLEAN CLEAN

@CODE CODE

@COLS COLUMNS

@COLUMN COLUMN

@COMBIN COMBIN

Continued

Appendix A: Working with Imported 1-2-3 Files 705

4800-x AppA.F 8/27/01 11:59 AM Page 705

TABLE A-2 EXCEL EQUIVALENTS FOR 1-2-3 FUNCTIONS (Continued)

Lotus 1-2-3 Function Equivalent Excel Function

@CONFIDENCE CONFIDENCE

@CONVERT CONVERT

@CORREL CORREL, PEARSON

@COS COS

@COSH COSH

@COUNT COUNTA

@COUNTBLANK COUNTBLANK

@COUNTIF COUNTIF

@COUPDAYBS COUPDAYBS

@COUPDAYS COUPDAYS

@COUPDAYSNC COUPDAYSNC

@COUPNCD COUPNCD

@COUPNUM COUPNUM

@COUPPCD COUPPCD

@COV COVAR

@CRITBINOMIAL CRITBINOM

@CTERM NPER

@D360 DAYS360

@DATE DATE

@DATEDIF DATEDIF

@DATEVALUE DATEVALUE

@DAVG DAVERAGE

@DAY DAY

@DAYS DAYS360

@DAYS360 DAYS360

@DB DB

706 Appendix A: Working with Imported 1-2-3 Files

4800-x AppA.F 8/27/01 11:59 AM Page 706

Lotus 1-2-3 Function Equivalent Excel Function

@DCOUNT DCOUNTA

@DDB DDB

@DEC2BIN DEC2BIN

@DEC2FRAC DOLLARFR

@DEC2HEX DEC2HEX

@DEC2OCT DEC2OCT

@DEGTORAD RADIANS

@DEVSQ DEVSQ

@DGET DGET

@DISC DISC

@DMAX DMAX

@DMIN DMIN

@DPURECOUNT DCOUNT, DCOUNTA

@DSTD DSTDEVP

@DSTDS DSTDEV

@DSUM DSUM

@DURATION DURATION

@DVAR DVARP

@DVARS DVAR

@ERF ERF

@ERFC ERFC

@EVEN EVEN

@EXACT EXACT

@EXP EXP

@EXPONDIST EXPONDIST

@FACT FACT

@FALSE FALSE

@FDIST FINV, FDIST

Continued

Appendix A: Working with Imported 1-2-3 Files 707

4800-x AppA.F 8/27/01 11:59 AM Page 707

TABLE A-2 EXCEL EQUIVALENTS FOR 1-2-3 FUNCTIONS (Continued)

Lotus 1-2-3 Function Equivalent Excel Function

@FIND FIND

@FISHER FISHER

@FISHERINV FISHERINV

@FORECAST FORECAST

@FRAC2DEC DOLLARDE

@FTEST FTEST

@FV FV

@FVAL FV

@GAMMALN GAMMALN

@GEOMEAN GEOMEAN

@HARMEAN HARMEAN

@HEX2BIN HEX2BIN

@HEX2DEC HEX2DEC

@HEX2OCT HEX2OCT

@HLOOKUP HLOOKUP

@HOUR HOUR

@HYPGEOMDIST HYPGEOMDIST

@IF IF

@INDEX INDEX

@INFO INFO

@INT TRUNC

@INTRATE INTRATE

@IPAYMT CUMIPMT, IMPT

@IRATE RATE

@IRR IRR

@ISEMPTY ISBLANK

@ISERR ISERR, ISERROR

708 Appendix A: Working with Imported 1-2-3 Files

4800-x AppA.F 8/27/01 11:59 AM Page 708

Lotus 1-2-3 Function Equivalent Excel Function

@ISNUMBER ISNONTEXT, ISNUMBER

@ISRANGE ISREF

@ISSTRING ISTEXT

@KURTOSIS KURT

@LARGE LARGE

@LEFT LEFT

@LENGTH LEN

@LN LN

@LOG LOG, LOG10

@LOGINV LOGINV

@LOGNORMDIST LOGNORMDIST

@LOWER LOWER

@MATCH MATCH

@MAX MAXA

@MDURATION MDURATION

@MEDIAN MEDIAN

@MID MID

@MIN MINA

@MINUTE MINUTE

@MIRR MIRR

@MOD MOD

@MODE MODE

@MONTH MONTH

@N N

@NA NA

@NEGBINOMDIST NEGBINOMDIST

@NETWORKDAYS NETWORKDAYS

Continued

Appendix A: Working with Imported 1-2-3 Files 709

4800-x AppA.F 8/27/01 11:59 AM Page 709

TABLE A-2 EXCEL EQUIVALENTS FOR 1-2-3 FUNCTIONS (Continued)

Lotus 1-2-3 Function Equivalent Excel Function

@NEXTMONTH EOMONTH, EDATE

@NORMAL NORMINV, NORMDIST, NORMSDIST

@NORMSINV NORMSINV

@NOW NOW

@NPER NPER

@NPV NPV

@OCT2BIN OCT2BIN

@OCT2DEC OCT2DEC

@OCT2HEX OCT2HEX

@ODD ODD

@PAYMT PMT

@PERCENTILE PERCENTILE

@PERMUT PERMUT

@PI PI

@PMT PMT

@POISSON POISSON

@PPAYMT CUMPRINC, PPMT

@PRANK PERCENTRANK

@PRICE PRICE

@PRICEDISC PRICEDISC

@PRICEMAT PRICEMAT

@PROB PROB

@PRODUCT PRODUCT

@PROPER PROPER

@PUREAVG AVERAGE, AVERAGEA

@PURECOUNT COUNT, COUNTA

@PUREMAX MAX, MAXA

710 Appendix A: Working with Imported 1-2-3 Files

4800-x AppA.F 8/27/01 11:59 AM Page 710

Lotus 1-2-3 Function Equivalent Excel Function

@PUREMIN MIN, MINA

@PURESTD STDEVP, STDEVPA

@PURESTDS STDEV, STDEVA

@PUREVAR VARP, VARPA

@PUREVARS VAR, VARA

@PV PV

@PVAL PV

@QUARTILE QUARTILE

@QUOTIENT QUOTIENT

@RADTODEG DEGREES

@RAND RAND

@RANDBETWEEN RANDBETWEEN

@RANK RANK

@RATE RATE

@RECEIVED RECEIVED

@REGRESSION INTERCEPT

@REPEAT REPT

@REPLACE REPLACE

@RIGHT RIGHT

@ROUND ROUND

@ROUNDDOWN INT, ROUNDDOWN

@ROUNDM CEILING, FLOOR

@ROUNDUP ROUNDUP

@ROW ROW

@ROWS ROWS

@RSQ RSQ

Continued

Appendix A: Working with Imported 1-2-3 Files 711

4800-x AppA.F 8/27/01 11:59 AM Page 711

TABLE A-2 EXCEL EQUIVALENTS FOR 1-2-3 FUNCTIONS (Continued)

Lotus 1-2-3 Function Equivalent Excel Function

@S T

@SECOND SECOND

@SERIESSUM SERIESSUM

@SIGN SIGN

@SIN SIN

@SINH SINH

@SKEWNESS SKEW

@SLN SLN

@SMALL SMALL

@SQRT SQRT

@SQRTPI SQRTPI

@STANDARDIZE STANDARDIZE

@STD STDEVPA

@STDS STDEVA

@STEYX STEYX

@STRING FIXED, TEXT

@SUM SUM

@SUMIF SUMIF

@SUMPRODUCT SUMPRODUCT

@SUMSQ SUMSQ

@SUMX2MY2 SUMX2MY2

@SUMX2PY2 SUMX2PY2

@SUMXMY2 SUMXMY2

@SYD SYD

@TAN TAN

@TANH TANH

@TBILLEQ TBILLEQ

712 Appendix A: Working with Imported 1-2-3 Files

4800-x AppA.F 8/27/01 11:59 AM Page 712

Lotus 1-2-3 Function Equivalent Excel Function

@TBILLPRICE TBILLPRICE

@TBILLYIELD TBILLYIELD

@TDIST TDIST, TINV

@TERM NPER

@TIME TIME

@TIMEVALUE TIMEVALUE

@TODAY TODAY

@TRIM TRIM

@TRIMMEAN TRIMMEAN

@TRUE TRUE

@TRUNC TRUNC

@TTEST TTEST

@UPPER UPPER

@VALUE VALUE

@VAR VARPA

@VARS VARA

@VDB VDB

@VLOOKUP VLOOKUP

@WEEKDAY WEEKDAY

@WEIBULL WEIBULL

@WORKDAY WORKDAY

@YEAR YEAR

@YEARFRAC YEARFRAC

@YIELD YIELD

@YIELDDISC YIELDDISC

@YIELDMAT YIELDMAT

@ZTEST ZTEST

Appendix A: Working with Imported 1-2-3 Files 713

4800-x AppA.F 8/27/01 11:59 AM Page 713

Converting Database Functions
There’s a common problem with 1-2-3’s database functions (for example, @DSUM
and @DCOUNT). Lotus 1-2-3 enables you to specify your criteria as an argument.
Refer to Figure A-1, which shows a 1-2-3 file imported into Excel. The following
formula (in cell E4) was not translated correctly and displays a #NAME? error:

=DCOUNTA(A1:C17,”Product”,AND(PRODUCT=”Widget”,MONTH=”January”))

Figure A-1: This imported 1-2-3 file uses an @DCOUNT function
with a criterion argument not supported by Excel.

The original 1-2-3 formula was written to return the count of records in which
the Product is Widget and the Month is January. The original 1-2-3 formula (before
conversion by Excel) was:

@DCOUNT(A1:C17,”Product”,PRODUCT=”Widget” #AND#MONTH=”January”)

Unfortunately, Excel’s database functions do not allow you to specify the crite-
ria as an argument. Rather, you need to do one of the following:

� Set up a special criteria range for the DCOUNTA function

� Use a different function — in this case, the COUNTIF function

Figure A-2 shows a criteria range in E1:F2. The following formula returns the
count of records in which the Product is Widget and the Month is January:

=DCOUNTA(A1:C17,”Product”,E1:F2)

714 Appendix A: Working with Imported 1-2-3 Files

4800-x AppA.F 8/27/01 11:59 AM Page 714

Figure A-2: Using a criteria range for the DCOUNT formula

Alternatively, you can use an array formula, which doesn’t require a criteria
range. The following formula is the Excel equivalent of the incorrectly translated
@DCOUNT formula:

{=SUM((A2:A17=”Widget”)*(C2:C17=”January”))}

Enter an array formula using Ctrl+Shift+Enter. Do not type the brackets;

Excel inserts them for you. For more information about array formulas, see

Part III. For additional counting techniques, see Chapter 7.

Appendix A: Working with Imported 1-2-3 Files 715

4800-x AppA.F 8/27/01 11:59 AM Page 715

4800-x AppA.F 8/27/01 11:59 AM Page 716

Appendix B

Excel Function Reference
THIS APPENDIX CONTAINS A complete listing of Excel’s worksheet functions. The
functions are arranged alphabetically in tables by categories used by the Insert
Function dialog box.

Excel Functions by Category
Tables B-1 through B-10 present the following 10 categories of Excel functions:
database, date and time, engineering, financial, information, logical, lookup and
reference, math and trig, statistical, and text. Some of these functions are available
only if you install the Analysis ToolPak add-in program.

For more information about a particular function, including its arguments, select
the function in the Insert Function dialog box and press F1.

Table B-1 lists Excel’s database functions.

TABLE B-1 DATABASE CATEGORY FUNCTIONS

Function What It Does

DAVERAGE Returns the average of selected database entries

DCOUNT Counts the cells containing numbers from a specified database and criteria

DCOUNTA Counts nonblank cells from a specified database and criteria

DGET Extracts from a database a single record that matches the specified criteria

DMAX Returns the maximum value from selected database entries

DMIN Returns the minimum value from selected database entries

DPRODUCT Multiplies the values in a particular field of records that match the criteria
in a database

DSTDEV Estimates the standard deviation based on a sample of selected database
entries

DSTDEVP Calculates the standard deviation based on the entire population of
selected database entries

Continued 717

4800-x AppB.F 8/27/01 11:59 AM Page 717

TABLE B-1 DATABASE CATEGORY FUNCTIONS (Continued)

Function What It Does

DSUM Adds the numbers in the field column of records in the database that
match the criteria

DVAR Estimates variance based on a sample from selected database entries

DVARP Calculates variance based on the entire population of selected database
entries

Table B-2 lists Excel’s date and time functions.

TABLE B-2 DATE AND TIME CATEGORY FUNCTIONS

Function What It Does

DATE Returns the serial number of a particular date

DATEDIF Calculates the number of days, months, or years between two dates. This
function is documented only in Excel 2000.

DATEVALUE Converts a date in the form of text to a serial number

DAY Converts a serial number to a day of the month

DAYS360 Calculates the number of days between two dates, based on a 360-day year

EDATE* Returns the serial number of the date that is the indicated number of
months before or after the start date

EOMONTH* Returns the serial number of the last day of the month before or after a
specified number of months

HOUR Converts a serial number to an hour

MINUTE Converts a serial number to a minute

MONTH Converts a serial number to a month

NETWORKDAYS* Returns the number of whole workdays between two dates

NOW Returns the serial number of the current date and time

SECOND Converts a serial number to a second

TIME Returns the serial number of a particular time

TIMEVALUE Converts a time in the form of text to a serial number

718 Appendix B: Excel Function Reference

4800-x AppB.F 8/27/01 11:59 AM Page 718

Function What It Does

TODAY Returns the serial number of today’s date

WEEKDAY Converts a serial number to a day of the week

WEEKNUM* Returns the week number in the year

WORKDAY* Returns the serial number of the date before or after a specified number of
workdays

YEAR Converts a serial number to a year

YEARFRAC* Returns the year fraction representing the number of whole days between
start_date and end_date

*Available only when the Analysis ToolPak add-in is installed.

Table B-3 lists Excel’s engineering functions.

TABLE B-3 ENGINEERING CATEGORY FUNCTIONS AVAILABLE IN THE ANALYSIS
TOOLPAK ADD-IN

Function What It Does

BESSELI Returns the modified Bessel function In(x)

BESSELJ Returns the Bessel function Jn(x)

BESSELK Returns the modified Bessel function Kn(x)

BESSELY Returns the Bessel function Yn(x)

BIN2DEC Converts a binary number to decimal

BIN2HEX Converts a binary number to hexadecimal

BIN2OCT Converts a binary number to octal

COMPLEX Converts real and imaginary coefficients into complex numbers

CONVERT Converts a number from one measurement system to another

DEC2BIN Converts a decimal number to binary

DEC2HEX Converts a decimal number to hexadecimal

DEC2OCT Converts a decimal number to octal

DELTA Tests whether two values are equal

Continued

Appendix B: Excel Function Reference 719

4800-x AppB.F 8/27/01 11:59 AM Page 719

TABLE B-3 ENGINEERING CATEGORY FUNCTIONS AVAILABLE IN THE ANALYSIS
TOOLPAK ADD-IN (Continued)

Function What It Does

ERF Returns the error function

ERFC Returns the complementary error function

FACTDOUBLE Returns the double factorial of a number

GESTEP Tests whether a number is greater than a threshold value

HEX2BIN Converts a hexadecimal number to binary

HEX2DEC Converts a hexadecimal number to decimal

HEX2OCT Converts a hexadecimal number to octal

IMABS Returns the absolute value (modulus) of a complex number

IMAGINARY Returns the imaginary coefficient of a complex number

IMARGUMENT Returns the argument theta — an angle expressed in radians

IMCONJUGATE Returns the complex conjugate of a complex number

IMCOS Returns the cosine of a complex number

IMDIV Returns the quotient of two complex numbers

IMEXP Returns the exponential of a complex number

IMLN Returns the natural logarithm of a complex number

IMLOG10– Returns the base-10 logarithm of a complex number

IMLOG2 Returns the base-2 logarithm of a complex number

IMPOWER Returns a complex number raised to an integer power

IMPRODUCT Returns the product of two complex numbers

IMREAL Returns the real coefficient of a complex number

IMSIN Returns the sine of a complex number

IMSQRT Returns the square root of a complex number

IMSUB Returns the difference of two complex numbers

IMSUM Returns the sum of complex numbers

OCT2BIN Converts an octal number to binary

OCT2DEC Converts an octal number to decimal

OCT2HEX Converts an octal number to hexadecimal

720 Appendix B: Excel Function Reference

4800-x AppB.F 8/27/01 11:59 AM Page 720

Table B-4 lists Excel’s financial functions.

TABLE B-4 FINANCIAL CATEGORY FUNCTIONS

Function What It Does

ACCRINT* Returns the accrued interest for a security that pays periodic interest

ACCRINTM* Returns the accrued interest for a security that pays interest at maturity

AMORDEGRC* Returns the depreciation for each accounting period

AMORLINC* Returns the depreciation for each accounting period

COUPDAYBS* Returns the number of days from the beginning of the coupon period to
the settlement date

COUPDAYS* Returns the number of days in the coupon period that contains the
settlement date

COUPDAYSNC* Returns the number of days from the settlement date to the next coupon
date

COUPNCD* Returns the next coupon date after the settlement date

COUPNUM* Returns the number of coupons payable between the settlement date
and maturity date

COUPPCD* Returns the previous coupon date before the settlement date

CUMIPMT* Returns the cumulative interest paid between two periods

CUMPRINC* Returns the cumulative principal paid on a loan between two periods

DB Returns the depreciation of an asset for a specified period, using the
fixed-declining balance method

DDB Returns the depreciation of an asset for a specified period, using the
double-declining balance method or some other method that you specify

DISC* Returns the discount rate for a security

DOLLARDE* Converts a dollar price (expressed as a fraction) into a dollar price
(expressed as a decimal number)

DOLLARFR* Converts a dollar price (expressed as a decimal number) into a dollar
price (expressed as a fraction)

DURATION* Returns the annual duration of a security with periodic interest
payments

Continued

Appendix B: Excel Function Reference 721

4800-x AppB.F 8/27/01 11:59 AM Page 721

TABLE B-4 FINANCIAL CATEGORY FUNCTIONS (Continued)

Function What It Does

EFFECT* Returns the effective annual interest rate

FV Returns the future value of an investment

FVSCHEDULE* Returns the future value of an initial principal after applying a series of
compound interest rates

INTRATE* Returns the interest rate for a fully invested security

IPMT Returns the interest payment for an investment for a given period

IRR Returns the internal rate of return for a series of cash flows

ISPMT Returns the interest associated with a specific loan payment

MDURATION* Returns the Macauley modified duration for a security with an assumed
par value of $100

MIRR Returns the internal rate of return where positive and negative cash
flows are financed at different rates

NOMINAL* Returns the annual nominal interest rate

NPER Returns the number of periods for an investment

NPV Returns the net present value of an investment based on a series of
periodic cash flows and a discount rate

ODDFPRICE* Returns the price per $100 face value of a security with an odd first
period

ODDFYIELD* Returns the yield of a security with an odd first period

ODDLPRICE* Returns the price per $100 face value of a security with an odd last
period

ODDLYIELD* Returns the yield of a security with an odd last period

PMT Returns the periodic payment for an annuity

PPMT Returns the payment on the principal for an investment for a given
period

PRICE* Returns the price per $100 face value of a security that pays periodic
interest

PRICEDISC* Returns the price per $100 face value of a discounted security

PRICEMAT* Returns the price per $100 face value of a security that pays interest at
maturity

722 Appendix B: Excel Function Reference

4800-x AppB.F 8/27/01 11:59 AM Page 722

Function What It Does

PV Returns the present value of an investment

RATE Returns the interest rate per period of an annuity

RECEIVED* Returns the amount received at maturity for a fully invested security

SLN Returns the straight-line depreciation of an asset for one period

SYD Returns the sum-of-years’ digits depreciation of an asset for a specified
period

TBILLEQ* Returns the bond-equivalent yield for a Treasury bill

TBILLPRICE* Returns the price per $100 face value for a Treasury bill

TBILLYIELD* Returns the yield for a Treasury bill

VDB Returns the depreciation of an asset for a specified or partial period
using a declining balance method

XIRR* Returns the internal rate of return for a schedule of cash flows that is
not necessarily periodic

XNPV* Returns the net present value for a schedule of cash flows that is not
necessarily periodic

YIELD* Returns the yield on a security that pays periodic interest

YIELDDISC* Returns the annual yield for a discounted security; for example, a
Treasury bill

YIELDMAT* Returns the annual yield of a security that pays interest at maturity

*Available only when the Analysis ToolPak add-in is installed.

Table B-5 lists Excel’s information functions.

TABLE B-5 INFORMATION CATEGORY FUNCTIONS

Function What It Does

CELL Returns information about the formatting, location, or contents of a cell

ERROR.TYPE Returns a number corresponding to an error type

INFO Returns information about the current operating environment

Continued

Appendix B: Excel Function Reference 723

4800-x AppB.F 8/27/01 11:59 AM Page 723

TABLE B-5 INFORMATION CATEGORY FUNCTIONS (Continued)

Function What It Does

ISBLANK Returns TRUE if the value is blank

ISERR Returns TRUE if the value is any error value except #N/A

ISERROR Returns TRUE if the value is any error value

ISEVEN* Returns TRUE if the number is even

ISLOGICAL Returns TRUE if the value is a logical value

ISNA Returns TRUE if the value is the #N/A error value

ISNONTEXT Returns TRUE if the value is not text

ISNUMBER Returns TRUE if the value is a number

ISODD* Returns TRUE if the number is odd

ISREF Returns TRUE if the value is a reference

ISTEXT Returns TRUE if the value is text

N Returns a value converted to a number

NA Returns the error value #N/A

TYPE Returns a number indicating the data type of a value

*Available only when the Analysis ToolPak add-in is installed.

Table B-6 lists Excel’s logical functions.

TABLE B-6 LOGICAL CATEGORY FUNCTIONS

Function What It Does

AND Returns TRUE if all of its arguments are TRUE

FALSE Returns the logical value FALSE

IF Specifies a logical test to perform

NOT Reverses the logic of its argument

OR Returns TRUE if any argument is TRUE

TRUE Returns the logical value TRUE

724 Appendix B: Excel Function Reference

4800-x AppB.F 8/27/01 12:00 PM Page 724

Table B-7 lists Excel’s lookup and reference functions.

TABLE B-7 LOOKUP AND REFERENCE CATEGORY FUNCTIONS

Function What It Does

ADDRESS Returns a reference as text to a single cell in a worksheet

AREAS Returns the number of areas in a reference

CHOOSE Chooses a value from a list of values

COLUMN Returns the column number of a reference

COLUMNS Returns the number of columns in a reference

GETPIVOTDATA Returns data stored in a pivot table

HLOOKUP Looks in the top row of an array and returns the value of the indicated
cell

HYPERLINK Creates a shortcut that opens a document on your hard drive, a server, or
the Internet

INDEX Uses an index to choose a value from a reference or array

INDIRECT Returns a reference indicated by a text value

LOOKUP Looks up values in a vector or array

MATCH Looks up values in a reference or array

OFFSET Returns a reference offset from a given reference

ROW Returns the row number of a reference

ROWS Returns the number of rows in a reference

RTD* Retrieves real-time data from a program that supports COM automation

TRANSPOSE Returns the transpose of an array

VLOOKUP Looks in the first column of an array and moves across the row to return
the value of a cell

*This function is available only in Excel 2002.

Appendix B: Excel Function Reference 725

4800-x AppB.F 8/27/01 12:00 PM Page 725

Table B-8 lists Excel’s mathematical and trigonometric functions.

TABLE B-8 MATH AND TRIG CATEGORY FUNCTIONS

Function What It Does

ABS Returns the absolute value of a number

ACOS Returns the arccosine of a number

ACOSH Returns the inverse hyperbolic cosine of a number

ASIN Returns the arcsine of a number

ASINH Returns the inverse hyperbolic sine of a number

ATAN Returns the arctangent of a number

ATAN2 Returns the arctangent from x and y coordinates

ATANH Returns the inverse hyperbolic tangent of a number

CEILING Rounds a number to the nearest integer or to the nearest multiple of
significance

COMBIN Returns the number of combinations for a given number of objects

COS Returns the cosine of a number

COSH Returns the hyperbolic cosine of a number

DEGREES Converts radians to degrees

EVEN Rounds a number up to the nearest even integer

EXP Returns e raised to the power of a given number

FACT Returns the factorial of a number

FLOOR Rounds a number down, toward 0

GCD* Returns the greatest common divisor

INT Rounds a number down to the nearest integer

LCM* Returns the least common multiple

LN Returns the natural logarithm of a number

LOG Returns the logarithm of a number to a specified base

LOG10 Returns the base-10 logarithm of a number

MDETERM Returns the matrix determinant of an array

MINVERSE Returns the matrix inverse of an array

726 Appendix B: Excel Function Reference

4800-x AppB.F 8/27/01 12:00 PM Page 726

Function What It Does

MMULT Returns the matrix product of two arrays

MOD Returns the remainder from division

MROUND* Returns a number rounded to the desired multiple

MULTINOMIAL* Returns the multinomial of a set of numbers

ODD Rounds a number up to the nearest odd integer

PI Returns the value of pi

POWER Returns the result of a number raised to a power

PRODUCT Multiplies its arguments

QUOTIENT* Returns the integer portion of a division

RADIANS Converts degrees to radians

RAND Returns a random number between 0 and 1

RANDBETWEEN* Returns a random number between the numbers that you specify

ROMAN Converts an Arabic number to Roman, as text

ROUND Rounds a number to a specified number of digits

ROUNDDOWN Rounds a number down, toward 0

ROUNDUP Rounds a number up, away from 0

SERIESSUM* Returns the sum of a power series based on the formula

SIGN Returns the sign of a number

SIN Returns the sine of the given angle

SINH Returns the hyperbolic sine of a number

SQRT Returns a positive square root

SQRTPI* Returns the square root of (number *π)

SUBTOTAL Returns a subtotal in a list or database

SUM Adds its arguments

SUMIF Adds the cells specified by a given criteria

SUMPRODUCT Returns the sum of the products of corresponding array components

Continued

Appendix B: Excel Function Reference 727

4800-x AppB.F 8/27/01 12:00 PM Page 727

TABLE B-8 MATH AND TRIG CATEGORY FUNCTIONS (Continued)

Function What It Does

SUMSQ Returns the sum of the squares of the arguments

SUMX2MY2 Returns the sum of the difference of squares of corresponding values in
two arrays

SUMX2PY2 Returns the sum of the sum of squares of corresponding values in two
arrays

SUMXMY2 Returns the sum of squares of differences of corresponding values in
two arrays

TAN Returns the tangent of a number

TANH Returns the hyperbolic tangent of a number

TRUNC Truncates a number to an integer

*Available only when the Analysis ToolPak add-in is installed.

Table B-9 lists Excel’s statistical functions.

TABLE B-9 STATISTICAL CATEGORY FUNCTIONS

Function What It Does

AVEDEV Returns the average of the absolute deviations of data points from their
mean

AVERAGE Returns the average of its arguments

AVERAGEA Returns the average of its arguments and includes evaluation of text
and logical values

BETADIST Returns the cumulative beta probability density function

BETAINV Returns the inverse of the cumulative beta probability density function

BINOMDIST Returns the individual term binomial distribution probability

CHIDIST Returns the one-tailed probability of the chi-squared distribution

CHIINV Returns the inverse of the one-tailed probability of the chi-squared
distribution

CHITEST Returns the test for independence

728 Appendix B: Excel Function Reference

4800-x AppB.F 8/27/01 12:00 PM Page 728

Function What It Does

CONFIDENCE Returns the confidence interval for a population mean

CORREL Returns the correlation coefficient between two data sets

COUNT Counts how many numbers are in the list of arguments

COUNTA Counts how many values are in the list of arguments

COUNTBLANK Counts the number of blank cells in the argument range

COUNTIF Counts the number of cells that meet the criteria you specify in the
argument

COVAR Returns covariance — the average of the products of paired deviations

CRITBINOM Returns the smallest value for which the cumulative binomial
distribution is less than or equal to a criterion value

DEVSQ Returns the sum of squares of deviations

EXPONDIST Returns the exponential distribution

FDIST Returns the F probability distribution

FINV Returns the inverse of the F probability distribution

FISHER Returns the Fisher transformation

FISHERINV Returns the inverse of the Fisher transformation

FORECAST Returns a value along a linear trend

FREQUENCY Returns a frequency distribution as a vertical array

FTEST Returns the result of an F-test

GAMMADIST Returns the gamma distribution

GAMMAINV Returns the inverse of the gamma cumulative distribution

GAMMALN Returns the natural logarithm of the gamma function, G(x)

GEOMEAN Returns the geometric mean

GROWTH Returns values along an exponential trend

HARMEAN Returns the harmonic mean

HYPGEOMDIST Returns the hypergeometric distribution

INTERCEPT Returns the intercept of the linear regression line

Continued

Appendix B: Excel Function Reference 729

4800-x AppB.F 8/27/01 12:00 PM Page 729

TABLE B-9 STATISTICAL CATEGORY FUNCTIONS (Continued)

Function What It Does

KURT Returns the kurtosis of a data set

LARGE Returns the kth largest value in a data set

LINEST Returns the parameters of a linear trend

LOGEST Returns the parameters of an exponential trend

LOGINV Returns the inverse of the lognormal distribution

LOGNORMDIST Returns the cumulative lognormal distribution

MAX Returns the maximum value in a list of arguments, ignoring logical
values and text

MAXA Returns the maximum value in a list of arguments, including logical
values and text

MEDIAN Returns the median of the given numbers

MIN Returns the minimum value in a list of arguments, ignoring logical
values and text

MINA Returns the minimum value in a list of arguments, including logical
values and text

MODE Returns the most common value in a data set

NEGBINOMDIST Returns the negative binomial distribution

NORMDIST Returns the normal cumulative distribution

NORMINV Returns the inverse of the normal cumulative distribution

NORMSDIST Returns the standard normal cumulative distribution

NORMSINV Returns the inverse of the standard normal cumulative distribution

PEARSON Returns the Pearson product moment correlation coefficient

PERCENTILE Returns the kth percentile of values in a range

PERCENTRANK Returns the percentage rank of a value in a data set

PERMUT Returns the number of permutations for a given number of objects

POISSON Returns the Poisson distribution

PROB Returns the probability that values in a range are between two limits

QUARTILE Returns the quartile of a data set

RANK Returns the rank of a number in a list of numbers

730 Appendix B: Excel Function Reference

4800-x AppB.F 8/27/01 12:00 PM Page 730

Function What It Does

RSQ Returns the square of the Pearson product moment correlation
coefficient

SKEW Returns the skewness of a distribution

SLOPE Returns the slope of the linear regression line

SMALL Returns the kth smallest value in a data set

STANDARDIZE Returns a normalized value

STDEV Estimates standard deviation based on a sample, ignoring text and
logical values

STDEVA Estimates standard deviation based on a sample, including text and
logical values

STDEVP Calculates standard deviation based on the entire population, ignoring
text and logical values

STDEVPA Calculates standard deviation based on the entire population, including
text and logical values

STEYX Returns the standard error of the predicted y-value for each x in the
regression

TDIST Returns the student’s t-distribution

TINV Returns the inverse of the student’s t-distribution

TREND Returns values along a linear trend

TRIMMEAN Returns the mean of the interior of a data set

TTEST Returns the probability associated with a student’s t-test

VAR Estimates variance based on a sample, ignoring logical values and text

VARA Estimates variance based on a sample, including logical values and text

VARP Calculates variance based on the entire population, ignoring logical
values and text

VARPA Calculates variance based on the entire population, including logical
values and text

WEIBULL Returns the Weibull distribution

ZTEST Returns the two-tailed P-value of a z-test

Appendix B: Excel Function Reference 731

4800-x AppB.F 8/27/01 12:00 PM Page 731

Table B-10 lists Excel’s text functions.

TABLE B-10 TEXT CATEGORY FUNCTIONS

Function What It Does

CHAR Returns the character specified by the code number

CLEAN Removes all nonprintable characters from text

CODE Returns a numeric code for the first character in a text string

CONCATENATE Joins several text items into one text item

DOLLAR Converts a number to text, using currency format

EXACT Checks to see whether two text values are identical

FIND Finds one text value within another (case-sensitive)

FIXED Formats a number as text with a fixed number of decimals

LEFT Returns the leftmost characters from a text value

LEN Returns the number of characters in a text string

LOWER Converts text to lowercase

MID Returns a specific number of characters from a text string, starting at
the position that you specify

PROPER Capitalizes the first letter in each word of a text value

REPLACE Replaces characters within text

REPT Repeats text a given number of times

RIGHT Returns the rightmost characters from a text value

SEARCH Finds one text value within another (not case-sensitive)

SUBSTITUTE Substitutes new text for old text in a text string

T Converts its arguments to text

TEXT Formats a number and converts it to text

TRIM Removes spaces from text

UPPER Converts text to uppercase

VALUE Converts a text argument to a number

732 Appendix B: Excel Function Reference

4800-x AppB.F 8/27/01 12:00 PM Page 732

Appendix C

Using Custom Number
Formats

THE ABILITY TO CREATE custom number formats is one of Excel’s most powerful fea-
tures. Although Excel provides a good variety of built-in number formats, you may
find that none of these suit your needs. This appendix describes how to create cus-
tom number formats and provides many examples.

About Number Formatting
By default, all cells use the General number format. This is basically a “what you
type is what you get” format. But if the cell is not wide enough to show the entire
number, the General format rounds numbers with decimals and uses scientific
notation for large numbers. In many cases, you may want to format a cell using
something other than the General number format.

The key thing to remember about number formatting is that it affects only how
a value is displayed. The actual number remains intact, and any formulas that use a
formatted number use the actual number.

An exception to this rule occurs if you specify the Precision as displayed

option in the Calculation tab of the Options dialog box. If that option is in

effect, formulas will use the values that are actually displayed in the cells.

Automatic Number Formatting
Excel is smart enough to perform some formatting for you automatically. For
example, if you enter 12.3% into a cell, Excel knows that you want to use a per-
centage format and applies it for you automatically. If you use commas to separate
thousands (such as 123,456), Excel applies comma formatting for you. And if you
precede your value with a dollar sign, Excel formats the cell for currency.

733

4800-x AppC.F 8/27/01 12:00 PM Page 733

Beginning with Excel 2000, you have an option when it comes to entering

values into cells formatted as a percentage. Select Tools � Options, and click

the Edit tab in the Options dialog box. If the check box labeled Enable auto-

matic percent entry is checked, you can simply enter a normal value into a

cell formatted to display as a percent (for example, enter 12.5 for 12.5%). If

this check box is not checked, you must enter the value as a decimal (for

example, .125 for 12.5%).

Excel automatically applies a built-in number format to a cell based on the fol-
lowing criteria:

� If a number contains a slash (/), it may be converted to a date format or a
fraction format.

� If a number contains a hyphen (-), it may be converted to a date format.

� If a number contains a colon (:), or is followed by a space and the letter A
or P, it may be converted to a time format.

� If a number contains the letter E (in either uppercase or lowercase), it may
be converted to scientific notation or exponential format.

To avoid automatic number formatting when you enter a value, preformat

the cell with the desired number format, or precede your entry with an apos-

trophe (this makes the entry text).

Formatting Numbers Using Toolbar Buttons
The Formatting toolbar contains several buttons that enable you to quickly apply
common number formats. When you click one of these buttons, the selected cells
take on the specified number format. Table C-1 summarizes the formats that these
Formatting toolbar buttons perform in the U.S. English version of Excel.

These five toolbar buttons actually apply predefined styles to the selected

cells. Access Excel’s styles by using the Format � Style command.

734 Appendix C: Using Custom Number Formats

4800-x AppC.F 8/27/01 12:00 PM Page 734

TABLE C-1 NUMBER-FORMATTING BUTTONS ON THE FORMATTING TOOLBAR

Button Name Formatting Applied

Currency Style Adds a dollar sign to the left, separates thousands with a comma, and
displays the value with two digits to the right of the decimal point

Percent Style Displays the value as a percentage, with no decimal places

Comma Style Separates thousands with a comma and displays the value with two
digits to the right of the decimal place

Increase Decimal Increases the number of digits to the right of the decimal point by one

Decrease Decimal Decreases the number of digits to the right of the decimal point by one

Using Shortcut Keys to Format Numbers
Another way to apply number formatting is to use shortcut keys. Table C-2 sum-
marizes the shortcut key combinations that you can use to apply common number
formatting to the selected cells or range.

TABLE C-2 NUMBER-FORMATTING KEYBOARD SHORTCUTS

Key Combination Formatting Applied

Ctrl+Shift+~ General number format (i.e., unformatted values)

Ctrl+Shift+$ Currency format with two decimal places (negative numbers appear
in parentheses)

Ctrl+Shift+% Percentage format, with no decimal places

Ctrl+Shift+^ Scientific notation number format, with two decimal places

Ctrl+Shift+# Date format with the day, month, and year

Ctrl+Shift+@ Time format with the hour, minute, and AM or PM

Ctrl+Shift+! Two decimal places, thousands separator, and a hyphen for negative
values

Appendix C: Using Custom Number Formats 735

4800-x AppC.F 8/27/01 12:00 PM Page 735

Using the Format Cells Dialog Box
to Format Numbers
For optimal control of number formatting, use the Number tab of the Format Cells dia-
log box. Select the cells to format, and then choose Format�Cells. The Number tab of
the Format Cells dialog box displays 12 categories of number formats from which to
choose. When you select a category from the list box, the right side of the dialog box
changes to display appropriate options. For example, Figure C-1 shows how the dialog
box looks when you click the Currency category, and select $ in the Symbol field.

Figure C-1: Options for the Currency category

Following is a list of the number-format categories, along with some general
comments:

� General: The default format; it displays numbers as integers, decimals, or
in scientific notation if the value is too wide to fit in the cell.

� Number: Enables you to specify the number of decimal places, whether to
use your system thousands separator (for example, a comma) to separate
thousands, and how to display negative numbers.

� Currency: Enables you to specify the number of decimal places, choose a
currency symbol, and display negative numbers. This format always uses
the system thousands separator symbol (for example, a comma) to
separate thousands.

� Accounting: Differs from the Currency format in that the currency sym-
bols always line up vertically.

� Date: Enables you to choose from a variety of date formats. Excel 2002
also lets you select the locale for your date formats.

� Time: Enables you to choose from a number of time formats. Excel 2002
also lets you select the locale for your time formats.

736 Appendix C: Using Custom Number Formats

4800-x AppC.F 8/27/01 12:00 PM Page 736

� Percentage: Enables you to choose the number of decimal places; always
displays a percent sign.

� Fraction: Enables you to choose from among nine fraction formats.

� Scientific: Displays numbers in exponential notation (with an E):
2.00E+05 = 200,000. 2.05E+05 = 205,000. You can choose the number
of decimal places to display to the left of E.

� Text: When applied to a value, causes Excel to treat the value as text
(even if it looks like a value). This feature is useful for items such as
numerical part numbers.

� Special: Contains additional number formats. The list varies, depending on
the Locale you choose. For the English (United States) locale, the format-
ting options are Zip Code, Zip Code +4, Phone Number, and Social
Security Number.

� Custom: Enables you to define custom number formats not included in
any of the other categories.

If the cell displays a series of hash marks (such as #########), it usually

means that the column is not wide enough to display the value by using the

number format that you selected. Either make the column wider or change

the number format. A series of hash marks also can mean that the cell con-

tains an invalid date or time.

Appendix C: Using Custom Number Formats 737

Formatting Numbers in Charts
When you create a chart, the number formatting on the chart is linked to the
worksheet cells that contain the numbers. For example, the values displayed on the
chart’s value axis or data labels use the same number format as the values used to
create the chart. If you like, you can apply number formats (including custom number
formats) to values that appear in charts.

Generally, you can double-click any part of a chart that displays a number. This brings up
the appropriate Format dialog box. Click the Number tab and specify the desired number
format. You can choose from a built-in format, or use a custom number format.

To reestablish links between a chart’s number formats and the worksheet number
formatting, select the Linked to source check box on the Number tab of the Format
dialog box.

4800-x AppC.F 8/27/01 12:00 PM Page 737

Creating a Custom Number Format
Figure C-2 shows how the Format Cells dialog box looks when you select the
Custom category. This category enables you to create number formats not included
in any of the other categories. As you can see, Excel gives you a great deal of flex-
ibility in creating custom number formats.

Figure C-2: The Custom category enables
you to create custom number formats.

Custom number formats are stored with the worksheet.To make the custom

format available in a different workbook, you can just copy a cell that uses

the custom format to the other workbook.

About Custom Number Formats
You construct a number format by specifying a series of codes as a number format
string. You enter this code sequence in the Type field after you select the Custom
category on the Number tab of the Format Cells dialog box. Here’s an example of a
simple number format code:

0.000

This code consists of placeholders and a decimal point; it tells Excel to display the
value with three digits to the right of the decimal place. Here’s another example:

00000

738 Appendix C: Using Custom Number Formats

4800-x AppC.F 8/27/01 12:00 PM Page 738

This custom number format has five placeholders and displays the value with
five digits (no decimal point). This is a good format to use when the cell holds a zip
code (in fact, this is the code actually used by the ZIP Code format in the Special
category). When you format the cell with this number format and then enter a zip
code such as 06604 (Bridgeport, CT), the value is displayed with the leading zero. If
you enter this number into a cell with the General number format, it displays 6604
(no leading zero).

Scroll through the list of number formats in the Custom category in the Format
Cells dialog box to see many more examples. In many cases, you can use one of
these codes as a starting point, and only slight customization will be needed.

Parts of a Number Format String
A custom format string enables you to specify different format codes for positive
numbers, negative numbers, zero values, and text. You do so by separating the
codes with a semicolon. The codes are arranged in the following structure:

Positive format; Negative format; Zero format; Text format

If you use only one section, the format string applies to all values. If you use two
sections, the first section applies to positive values and zeros, the second to nega-
tive values. If you use three sections, the first section applies to positive values, the
second to negative values, and the third to zeros.

The following is an example of a custom number format that specifies a differ-
ent format for each of these types:

[Green]General;[Red]General;[Black]General;[Blue]General

This example takes advantage of the fact that colors have special codes. A cell
formatted with this custom number format displays its contents in a different color,
depending on the value. When a cell is formatted with this custom number format,
a positive number is green, a negative number is red, a zero is black, and text is
blue.

If you want to apply cell formatting automatically (such as text or back-

ground color) based on the cell’s contents, a better solution is to use Excel’s

Conditional Formatting feature (available in Excel 97 or later). Chapter 19

discusses this feature.

Appendix C: Using Custom Number Formats 739

4800-x AppC.F 8/27/01 12:00 PM Page 739

Custom Number Format Codes
Table C-3 lists the formatting codes available for custom formats, along with brief
descriptions. I use most of these codes in examples later in this appendix.

TABLE C-3 CODES USED TO CREATE CUSTOM NUMBER FORMATS

Code Comments

General Displays the number in General format

Digit placeholder

0 (zero) Digit placeholder

? Digit placeholder

. Decimal point

% Percentage

, Thousands separator

E- E+ e- e+ Scientific notation

$ - + / () : space Displays this character

\ Displays the next character in the format

* Repeats the next character, to fill the column width

_ (underscore) Leaves a space equal to the width of the next character

“text” Displays the text inside the double quotation marks

@ Text placeholder

740 Appendix C: Using Custom Number Formats

Preformatting Cells
Usually, you’ll apply number formats to cells that already contain values. You also can
format cells with a specific number format before you make an entry. Then, when you
enter information, it takes on the format that you specified. You can preformat
specific cells, entire rows or columns, or even the entire worksheet.

Rather than preformat an entire worksheet, however, you can change the number
format for the Normal style (unless you specify otherwise, all cells use the Normal
style). Change the Normal style by selecting Format � Style. In the Style dialog box,
click the Modify button and then choose the new number format for the Normal style.

4800-x AppC.F 8/27/01 12:00 PM Page 740

Code Comments

[color] Displays the characters in the color specified

[COLOR n] Displays the corresponding color in the color palette, where n is a
number from 0 to 56

[condition value] Enables you to set your own criteria for each section of a number
format

Table C-4 lists the codes used to create custom formats for dates and times.

TABLE C-4 CODES USED IN CREATING CUSTOM FORMATS FOR DATES AND TIMES

Code Comments

m Displays the month as a number without leading zeros (1–12)

mm Displays the month as a number with leading zeros (01–12)

mmm Displays the month as an abbreviation (Jan–Dec)

mmmm Displays the month as a full name (January–December)

mmmmm Displays the first letter of the month (J–D)

d Displays the day as a number without leading zeros (1–31)

dd Displays the day as a number with leading zeros (01–31)

ddd Displays the day as an abbreviation (Sun–Sat)

dddd Displays the day as a full name (Sunday–Saturday)

yy or yyyy Displays the year as a two-digit number (00–99) or as a four-digit number
(1900–9999)

h or hh Displays the hour as a number without leading zeros (0–23) or as a number
with leading zeros (00–23)

m or mm Displays the minute as a number without leading zeros (0–59) or as a number
with leading zeros (00–59)

s or ss Displays the second as a number without leading zeros (0–59) or as a number
with leading zeros (00–59)

[] Displays hours greater than 24 or minutes or seconds greater than 60

AM/PM Displays the hour using a 12-hour clock; if no AM/PM indicator is used, the
hour uses a 24-hour clock

Appendix C: Using Custom Number Formats 741

4800-x AppC.F 8/27/01 12:00 PM Page 741

Custom Number Format Examples
The remainder of this appendix consists of useful examples of custom number for-
mats. You can use most of these format codes as-is. Others may require slight mod-
ification to meet your needs.

Scaling Values
You can use a custom number format to scale a number. For example, if you work
with very large numbers, you may want to display the numbers in thousands (i.e.,
displaying 1,000,000 as 1,000). The actual number, of course, will be used in calcu-
lations that involve that cell. The formatting affects only how it is displayed.

DISPLAYING VALUES IN THOUSANDS
The following format string displays values without the last three digits to the left
of the decimal place, and no decimal places. In other words, the value appears as if
it’s divided by 1,000 and rounded to no decimal places.

#,###,

A variation of this format string follows. A value with this number format
appears as if it’s divided by 1,000 and rounded to two decimal places.

#,###.00,

Table C-5 shows examples of these number formats:

742 Appendix C: Using Custom Number Formats

Where Did Those Number Formats Come From?
Excel may create custom number formats without you realizing it. When you use the
Increase Decimal or Decrease Decimal button on the Formatting toolbar, new number
formats are created that appear on the Number tab of the Format Cells dialog box. (To
access this dialog box, click Cells on the Format menu.) For example, if you click the
Increase Decimal button five times, the following custom number formats are created:

0.0
0.000
0.0000
0.000000

A format string for two decimal places is not created because that format string is
built-in.

4800-x AppC.F 8/27/01 12:00 PM Page 742

TABLE C-5 EXAMPLES OF DISPLAYING VALUES IN THOUSANDS

Value Number Format Display

123456 #,###, 123

1234565 #,###, 1,235

–323434 #,###, –323

123123.123 #,###, 123

499 #,###, (blank)

500 #,###, 1

123456 #,###.00, 123.46

1234565 #,###.00, 1,234.57

–323434 #,###.00, –323.43

123123.123 #,###.00, 123.12

499 #,###.00, .50

500 #,###.00, .50

DISPLAYING VALUES IN HUNDREDS
The following format string displays values in hundreds, with two decimal places.
A value with this number format appears as if it’s divided by 100, and rounded to
two decimal places.

0”.”00

Table C-6 shows examples of these number formats:

TABLE C-6 EXAMPLES OF DISPLAYING VALUES IN HUNDREDS

Value Number Format Display

546 0”.”00 5.46

100 0”.”00 1.00

Continued

Appendix C: Using Custom Number Formats 743

4800-x AppC.F 8/27/01 12:00 PM Page 743

TABLE C-6 EXAMPLES OF DISPLAYING VALUES IN HUNDREDS (Continued)

Value Number Format Display

9890 0”.”00 98.90

500 0”.”00 5.00

–500 0”.”00 –5.00

0 0”.”00 0.00

DISPLAYING VALUES IN MILLIONS
The following format string displays values in millions, with no decimal places. A
value with this number appears as if it’s divided by 1,000,000, and rounded to no
decimal places.

#,###,,

A variation of this format string follows. A value with this number appears as if
it’s divided by 1,000,000, and rounded to two decimal places.

#,###.00,,

Another variation follows. This adds the letter M to the end of the value.

#,###,,M

The following format string is a bit more complex. It adds the letter M to the end
of the value — and also displays negative values in parentheses as well as display-
ing zeros.

#,###.0,,”M”_);(#,###.0,,”M)”;0.0”M”_)

Table C-7 shows examples of these format strings:

TABLE C-7 EXAMPLES OF DISPLAYING VALUES IN MILLIONS

Value Number Format Display

123456789 #,###,, 123

1.23457E+11 #,###,, 123,457

744 Appendix C: Using Custom Number Formats

4800-x AppC.F 8/27/01 12:00 PM Page 744

Value Number Format Display

1000000 #,###,, 1

5000000 #,###,, 5

–5000000 #,###,, –5

0 #,###,, (blank)

123456789 #,###.00,, 123.46

1.23457E+11 #,###.00,, 123,456.7

1000000 #,###.00,, 1.00

5000000 #,###.00,, 5.00

–5000000 #,###.00,, –5.00

0 #,###.00,, .00

123456789 #,###,,”M” 123M

1.23457E+11 #,###,,”M” 123,457M

1000000 #,###,,”M” 1M

5000000 #,###,,”M” 5M

–5000000 #,###,,”M” –5M

0 #,###,,”M” M

123456789 #,###.0,,”M”_); 123.5M
(#,###.0,,”M)”;0.0”M”_)

1.23457E+11 #,###.0,,”M”_); 123,456.8M
(#,###.0,,”M)”;0.0”M”_)

1000000 #,###.0,,”M”_); 1.0M
(#,###.0,,”M)”;0.0”M”_)

5000000 #,###.0,,”M”_); 5.0M
(#,###.0,,”M)”;0.0”M”_)

–5000000 #,###.0,,”M”_); (5.0M)
(#,###.0,,”M)”;0.0”M”_)

0 #,###.0,,”M”_); 0.0M
(#,###.0,,”M)”;0.0”M”_)

Appendix C: Using Custom Number Formats 745

4800-x AppC.F 8/27/01 12:00 PM Page 745

ADDING ZEROS TO A VALUE
The following format string displays a value with three additional zeros and no
decimal places. A value with this number format appears as if it’s rounded to no
decimal places and then multiplied by 1,000.

#”,000”

Examples of this format string, plus a variation that adds six zeros, are shown in
Table C-8.

TABLE C-8 EXAMPLES OF DISPLAYING A VALUE WITH EXTRA ZEROS

Value Number Format Display

1 #”,000” 1,000

1.5 #”,000” 2,000

43 #”,000” 43,000

–54 #”,000” –54,000

5.5 #”,000” 6,000

0.5 #”,000,000” 1,000,000

0 #”,000,000” ,000,000

1 #”,000,000” 1,000,000

1.5 #”,000,000” 2,000,000

43 #”,000,000” 43,000,000

–54 #”,000,000” –54,000,000

5.5 #”,000,000” 6,000,000

0.5 #”,000,000” 1,000,000

Hiding Zeros
In the following format string, the third element of the string is empty, which
causes zero value cells to display as blank:

General;General;;@

746 Appendix C: Using Custom Number Formats

4800-x AppC.F 8/27/01 12:00 PM Page 746

Appendix C: Using Custom Number Formats 747

This format string uses the General format for positive and negative values. You
can, of course, substitute any other format codes.

Displaying Leading Zeros
To display leading zeros, create a custom number format that uses the 0 character.
For example, if you want all numbers to display with 10 digits, use the number for-
mat string that follows. Values with fewer than 10 digits will display with leading
zeros.

0000000000

You also can force all numbers to display with a fixed number of leading zeros.
The format string that follows, for instance, appends three zeros to the beginning of
each number:

“000”#

In the following example, the format string uses the repeat character code (an
asterisk) to apply leading zeros to fill the entire width of the cell:

*00

Formatting Percentages
Using a percent symbol (%) in a format string causes the cell to display in percent-
age format. Note that the percent sign also appears in the formula bar.

The following format string formats values less than or equal to 1 in Percentage
format. Values greater than 1 and text are formatted using the General format.

[<=1]0.00%;General

When you mix cells with percent and normal formatting in a column, you may
prefer to see the nonpercent values indented from the right so the values line up
properly. To do so, apply the following number format to nonpercent cells. This for-
mat string uses an underscore followed by the percent symbol. The result is a space
equal to the width of the percent symbol.

#.00_%

Figure C-3 shows a worksheet that uses this number format for the nonpercent
cells (the range C6:C12).

4800-x AppC.F 8/27/01 12:00 PM Page 747

Figure C-3: Use a custom number format to align
numbers.

Displaying Fractions
Excel supports quite a few built-in fraction number formats (select the Fraction cat-
egory). For example, to display the value .125 as a fraction with 8 as the denomi-
nator, select As eighths (4/8) from the Type list (see Figure C-4).

Figure C-4: Selecting a number format
to display a value as a fraction

You can use a custom format string to create other fractional formats. For exam-
ple, the following format string displays a value in 50ths:

??/50

The following format string displays a value in terms of fractional dollars. For
example, the value 154.87 is displayed as 154 and 87/100 Dollars.

0 “and “??/100 “Dollars”

748 Appendix C: Using Custom Number Formats

4800-x AppC.F 8/27/01 12:00 PM Page 748

The following example displays the value in sixteenths, with a quotation mark
appended to the right. This format string is useful when you deal with inches (for
example, 2/16”).

??/16\”

Displaying N/A for Text
The following number format string uses General formatting for all cell entries
except text. Text entries appear as N/A.

General;General;General;N\/A

You can, of course, modify the format string to display specific formats for val-
ues. The following variation displays values with one decimal place:

0.0;0.0;0.0;N\/A

Displaying Text in Quotes
The following format string displays numbers normally, but surrounds text with
quotation marks:

General;General;General;”@”

Repeating Text
The number format string displays the contents of the cell three times. For example,
if the cell contains the text Budget, the cell displays Budget Budget Budget.

;;;@ @ @

Appendix C: Using Custom Number Formats 749

Testing Custom Number Formats
When you create a custom number format, don’t overlook the Sample box in the
Number tab of the Format Cells dialog box. This box displays the value in the active
cell using the format string in the Type box.

It’s a good idea to test your custom number formats using the following data: a
positive value, a negative value, a zero value, and text. Often, creating a custom
number format takes several attempts. Each time you edit a format string, it is added
to the list. When you finally get the correct format string, access the Format Cells
dialog box one more time and delete your previous attempts.

4800-x AppC.F 8/27/01 12:00 PM Page 749

Displaying a Negative Sign on the Right
The following format string displays negative values with the negative sign to the
right of the number. Positive values have an additional space on the right, so both
positive and negative numbers align properly on the right.

0.00_-;0.00-

Figure C-5 shows this format string in use.

Figure C-5: Using a custom number format that
displays the negative sign on the right

Conditional Number Formatting
Conditional formatting refers to formatting that is applied based on the contents of
a cell. Excel’s Conditional Formatting feature provides the most efficient way to
perform conditional formatting, but you also can use custom number formats.

Conditional formatting is limited to three conditions — two of them explicit,

and the third one implied (that is, everything else). The conditions are

enclosed in square brackets and must be simple numeric comparisons.

The following format string uses a different format, depending on the value in
the cell. This format string essentially separates the numbers into three groups: less
than or equal to 4, greater than or equal to 8, and other. Figure C-6 shows an exam-
ple of this format string in use.

[<=4]”Low”* 0;[>=8]”High”* 0;”Medium”* 0

750 Appendix C: Using Custom Number Formats

4800-x AppC.F 8/27/01 12:00 PM Page 750

Figure C-6: Cells in column C use a conditional number format.

The following number format string displays values less than 1 with a cent sym-
bol on the right (for example, .54¢). Otherwise, values display with a dollar sign (for
example, $3.54).

[<1].00¢;$0.00_¢

The following number format is useful for telephone numbers. Values greater
than 9999999 (that is, numbers with area codes) are displayed as (xxx) xxx-xxxx.
Other values (numbers without area codes) are displayed as xxx-xxxx.

[>9999999](000) 000-0000;000-0000

For Zip codes, you might want to use the format string that follows. This dis-
plays Zip codes using five digits. But if the number is greater than 99999, it uses
the “Zip plus four” format (xxxxx-xxxx).

[>99999]00000-0000;00000

Coloring Values
Custom number format strings can display the cell contents in various colors. The
following format string, for example, displays positive numbers in red, negative
numbers in green, zero values in black, and text in blue:

[Red]General;[Green]-General;[Black]General;[Blue]General

Following is another example of a format string that uses colors. Positive values
are displayed normally; negative numbers and text display the text Error! in red.

General;[Red]”Error!”;0;[Red]”Error!”

Appendix C: Using Custom Number Formats 751

4800-x AppC.F 8/27/01 12:00 PM Page 751

Using the following format string, values that are less than 2 are displayed in
red. Values greater than 4 are displayed in green. Everything else (text, or values
between 2 and 4) displays in black.

[Red][<2]General;[Green][>4]General;[Black]General

As seen in the preceding examples, Excel recognizes color names such as [Red]
and [Blue]. It also can use other colors from the color palette, indexed by a number.
The following format string, for example, displays the cell contents using the six-
teenth color in the color palette:

[Color16]General

You cannot change cells that are colored using a number format string by

using normal cell formatting commands.

Formatting Dates and Times
When you enter a date into a cell, Excel formats the date using the system short
date format. You can change this format using the Windows Control Panel
(Regional Settings).

Excel provides many useful built-in date and time formats. The following table
shows some other date and time formats that you may find useful. The first column
of the table shows the date/time serial number.

Value Number Format Display

36676 mmmm d, yyyy (dddd) May 30, 2000 (Tuesday)

36676 “It’s” dddd! It’s Tuesday!

36676 dddd, mm/dd/yyyy Tuesday, 05/30/2000

36676 “Month: “mmm Month: May

36676 General (m/d/yyyy) 36676 (5/30/2000)

0.345 h “Hours” 8 Hours

0.345 h:mm o’clock 8:16 o’clock

0.345 h:mm a/p”m” 8:16 am

0.78 h:mm a/p”.m.” 6:43 p.m.

752 Appendix C: Using Custom Number Formats

4800-x AppC.F 8/27/01 12:00 PM Page 752

See Chapter 6 for more information about Excel’s date and time serial

number system.

Displaying Text with Numbers
The ability to display text with a value is one of the most useful benefits of using a
custom number format. To add text, just create the number format string as usual
and put the text within quotation marks. The following number format string, for
example, displays a value with the text (US Dollars) added to the end:

#,##0.00 “(US Dollars)”

Here’s another example that displays text before the number:

“Average: “0.00

If you use the preceding number format, you’ll find that the negative sign
appears before the text for negative values. To display number signs properly, use
this variation:

“Average: “0.00;”Average: “-0.00

The following format string displays a value with the words Dollars and Cents.
For example, the number 123.45 displays as 123 Dollars and .45 Cents.

0 “Dollars and” .00 “Cents”

Displaying a Zero with Dashes
The following number format string displays zero values as a series of dashes:

#,##0.0;-###0.0;------

You can, of course, create lots of variations. For example, you can replace the
six hyphens with any of the following:

<0>
-0-
~~
<NULL>
“[NULL]”

Appendix C: Using Custom Number Formats 753

4800-x AppC.F 8/27/01 12:00 PM Page 753

Note that, when using square brackets, you must place them within quotation
marks.

Using Special Symbols
Your number format strings can use special symbols, such as the copyright symbol,
degrees symbol, and so on. Figure C-7 shows some special symbols used in number
format strings.

Figure C-7: Using special symbols in number format strings

To enter a symbol, you need to know the Alt+ keyboard sequence required to
create the symbol. For example, you can produce the copyright symbol by pressing
Alt+0169 (make sure you use the numeric keypad to enter the digits).

If you’re using Excel 2002, you can determine these codes by using the

Insert � Symbol command (see Figure C-8). For earlier versions of Excel, use

the Windows Character Map program.

754 Appendix C: Using Custom Number Formats

Formatting Numbers Using the TEXT Function
Excel’s TEXT function accepts a number format string as its second argument. For
example, the following formula displays the contents of cell A1 using a custom
number format that displays a fraction:

=TEXT(A1,”# ??/50”)

Not all formatting codes function, however. For example, colors and repeating
characters are ignored. The following formula does not display the contents of cell A1
in red:

=TEXT(A1,”[Red]General”)

4800-x AppC.F 8/27/01 12:00 PM Page 754

Figure C-8: Use the Insert Symbol dialog box (in Excel 2002
only) to determine the codes for special symbols.

Another use for special symbols is to display superscript characters, such as
exponents. For example, Alt+0178 produces a “squared” symbol and Alt+0179 gen-
erates a “cubed” symbol.

You can use these special characters to display currency symbols. For example,
you might want to display the symbol for the Japanese yen (Alt+0165) or the
British pound (Alt+0162).

Suppressing Certain Types of Entries
You can use number formatting to hide certain types of entries. For example, the
following format string displays text, but not values:

;;

This format string displays values, but not text or zeros:

0.0;-0.0;;

This format string displays everything except zeros:

0.0;-0.0;;@

You can use the following format string to completely hide the contents of a
cell:

;;;

Note that when the cell is activated, however, the cell’s contents are visible on
the formula bar. A better way to hide a cell’s contents is to select the Hidden option
on the Protection tab of the Format Cells dialog box and protect the sheet.

Appendix C: Using Custom Number Formats 755

4800-x AppC.F 8/27/01 12:00 PM Page 755

If the cell contains more than 1,024 characters, the ;;; format string does not

hide the contents.

Refer to Part VI for more information about creating custom worksheet

functions using VBA.

Filling a Cell with a Repeating Character
The asterisk (*) symbol specifies a repeating character in a number format string.
The repeating character completely fills the cell and adjusts if the column width
changes. The following format string, for example, displays the contents of a cell
padded on the right with dashes:

General*-;General*-;General*-;General*-

756 Appendix C: Using Custom Number Formats

Displaying a Number Format String in a Cell
Excel doesn’t have a worksheet function that displays the number format for a
specified cell. You can, however, create your own function using VBA. Insert the
following function procedure into a VBA module:

Function NumberFormat(cell) As String
‘ Returns the number format string for a cell

Application.Volatile True
NumberFormat = cell.Range(“A1”).NumberFormat

End Function

Then you can create a formula such as the following:

=NumberFormat(C4)

This formula returns the number format for cell C4.

This function can be useful in formulas that calculate a conditional sum. For example,
you can create a formula that sums only the cells that use a particular number format.
See Chapter 7 for information about computing conditional sums.

4800-x AppC.F 8/27/01 12:00 PM Page 756

Figure C-9 shows several examples of number format strings that use an asterisk
to repeat a character.

Figure C-9: Examples of number formats that use a repeating
character

Displaying Leading Dots
The following custom number format is a variation on the accounting format.
Using this number format displays the dollar sign on the left and the value on the
right. The space in between is filled with dots.

($*.#,##0.00);_($*.(#,##0.00);_($* “-”??_);_(@_)

Appendix C: Using Custom Number Formats 757

4800-x AppC.F 8/27/01 12:00 PM Page 757

4800-x AppC.F 8/27/01 12:00 PM Page 758

Appendix D

Additional Excel
Resources

IF I’VE DONE MY job, the information provided in this book will be very useful to
you. The book, however, cannot cover every conceivable topic. Therefore, I’ve com-
piled a list of additional resources that you may find helpful. I classify these
resources into three categories: Microsoft technical support, Internet newsgroups,
and Internet Web sites.

By the way, don’t forget about Excel’s online help system. This help system
seems to get better with each release.

Microsoft Technical Support
Technical support is the common term for assistance provided by a software ven-
dor. In this case, I’m talking about assistance that comes directly from Microsoft.
Microsoft’s technical support is available in several different forms.

Support Options
To find out your support options, choose the Help � About Microsoft Excel com-
mand, and then click the Tech Support button. This opens a help file that lists
all the support options offered by Microsoft, including both free and fee-based
support.

Through my experience, I suggest you use vendor standard telephone support
only as a last resort. Chances are, you’ll run up a big phone bill (assuming you can
even get through) and spend lots of time on hold, but you may or may not find an
answer to your question.

The truth is, the people who answer the phone are equipped to answer only the
most basic questions. And the answers to these basic questions are usually readily
available elsewhere.

Microsoft Knowledge Base
Your best bet for solving a problem may be the Microsoft Knowledge Base. This is
the primary Microsoft product information source — an extensive, searchable data-
base that consists of tens of thousands of detailed articles containing technical

759

4800-x AppD.F 8/27/01 12:00 PM Page 759

information, bug lists, fix lists, and more. You have free and unlimited access to the
Knowledge Base via the Internet. The URL is:

http://search.support.microsoft.com/kb/

Microsoft Excel Home Page
The official home page of Excel is at:

http://www.microsoft.com/office/excel

Microsoft Office Tools on the Web
For information about Office 2002 (including Excel), try this site:

http://office.microsoft.com

You’ll find product updates, add-ins, examples, and lots of other useful
information.

As you know, the Internet is a dynamic entity that changes rapidly.Web sites

are often reorganized, so a particular URL listed in this appendix may not be

available when you try to access it.

Internet Newsgroups
Usenet is an Internet service that provides access to several thousand special inter-
est groups that enable you to communicate with people who share common inter-
ests. A newsgroup works like a public bulletin board. You can post a message or
questions and (usually) others reply to your message.

There are thousands of newsgroups covering virtually every topic you can think
of (and many that you haven’t thought of). Typically, questions posed on a news-
group are answered within 24 hours — assuming, of course, that you ask the ques-
tions in a manner that makes others want to reply.

Besides an Internet connection, you need special newsreader software to

access newsgroups. Microsoft Outlook Express (free) is a good choice. This

product is part of Internet Explorer.

760 Appendix D: Additional Excel Resources

4800-x AppD.F 8/27/01 12:00 PM Page 760

Spreadsheet Newsgroups
The primary Usenet newsgroup for general spreadsheet users is:

comp.apps.spreadsheets

This newsgroup is intended for users of any spreadsheet brand, but about 90 per-
cent of the postings deal with Excel.

Microsoft Newsgroups
Microsoft maintains an extensive list of newsgroups, including quite a few devoted
to Excel. If your Internet service provider doesn’t carry the Microsoft newsgroups,
you can access them directly from Microsoft’s news server. You need to configure
your newsreader software to access Microsoft’s news server at this address:

msnews.microsoft.com

Table D-1 lists the key Excel newsgroups found on Microsoft’s news server.

TABLE D-1 MICROSOFT.COM’S EXCEL-RELATED NEWSGROUPS

Newsgroup Topic

microsoft.public.excel.programming Programming Excel with VBA or XLM
macros

microsoft.public.excel.123quattro Converting 1-2-3 or Quattro Pro
sheets into Excel sheets

microsoft.public.excel.worksheet. Worksheet functions
functions

microsoft.public.excel.charting Building charts with Excel

microsoft.public.excel.printing Printing with Excel

microsoft.public.excel.queryDAO Using Microsoft Query and Data
Access Objects (DAO) in Excel

microsoft.public.excel.datamap Using the Data Map feature in Excel

microsoft.public.excel.crashesGPFs Help with General Protection Faults
or system failures

Continued

Appendix D: Additional Excel Resources 761

4800-x AppD.F 8/27/01 12:00 PM Page 761

TABLE D-1 MICROSOFT.COM’S EXCEL-RELATED NEWSGROUPS (Continued)

Newsgroup Topic

microsoft.public.excel.misc General topics that do not fit one of
the other categories

microsoft.public.excel.links Using links in Excel

microsoft.public.excel.macintosh Excel issues on the Macintosh
operating system

microsoft.public.excel.interopoledde OLE, DDE, and other cross-application
issues

microsoft.public.excel.setup Setting up and installing Excel

microsoft.public.excel.templates Spreadsheet Solutions templates and
other XLT files

microsoft.public.excel.sdk Issues regarding the Excel Software
Development Kit

Searching Newsgroups
Many people don’t realize that you can perform a keyword search on past news-
group postings. Often, this is an excellent alternative to posting a question to the
newsgroup because you can get the answer immediately. The best source for
searching newsgroup postings is Google.com, at the following Web address:

http://groups.google.com

Formerly, newsgroup searches were performed at the Deja.com Web site.

That site has closed down, and the newsgroup archives were purchased by

Google.

How does searching work? Suppose you have a problem identifying unique values
in a range of cells. You can perform a search using the following keywords: Excel,
Range, and Unique. The Google search engine probably will find dozens of news-
group postings that deal with these topics. It may take a while to sift through the
messages, but you have an excellent chance of finding an answer to your question.

762 Appendix D: Additional Excel Resources

4800-x AppD.F 8/27/01 12:00 PM Page 762

Internet Web Sites
If you have access to the World Wide Web (WWW), you can find some very useful
Web sites devoted to Excel. I list a few of my favorites here.

The Spreadsheet Page
This is my own Web site, which contains files to download, developer tips, instruc-
tions for accessing Excel Easter eggs, spreadsheet jokes, an extensive list of links to
other Excel sites, and information about my books. The URL is:

http://www.j-walk.com/ss

Appendix D: Additional Excel Resources 763

Tips for Posting to a Newsgroup
1. Make sure that your question has not already been answered. Check the

FAQ (if one exists) and also perform a Google.com search (see “Searching
Newsgroups” in this appendix).

2. Make the subject line descriptive. Postings with a subject line such as “Help
me!” and “Excel Question” are less likely to be answered than postings with a
more specific subject, such as “Need Help With Custom Worksheet Function.”

3. Specify the spreadsheet product and version that you use. In many cases, the
answer to your question depends on your version of Excel.

4. Make your question as specific as possible.

5. Keep your question brief and to the point, but provide enough information so
someone can answer it adequately.

6. Indicate what you’ve done to try to answer your own question.

7. Post in the appropriate newsgroup, and don’t cross-post to other groups
unless the question applies to multiple groups.

8. Don’t type in all uppercase or all lowercase, and check your grammar and
spelling.

9. Don’t include a file attachment.

10. Avoid posting in HTML format.

11. If you request an e-mail reply in addition to a newsgroup reply, don’t use an
“anti-spam” e-mail address that requires the responder to modify your
address. Why cause extra work for someone doing you a favor?

4800-x AppD.F 8/27/01 12:00 PM Page 763

This site also contains a list of errors that I’ve found in each of my books,

including the book you’re reading now. (Yes, a few errors have been known

to creep into these pages.)

Excel Web Source
This site, maintained by Chip Pearson, contains dozens of useful examples of VBA
and clever formula techniques. The URL is:

http://www.cpearson.com/excel.htm

Stephen Bullen’s Excel Page
Stephen’s Web site contains some fascinating examples of Excel code, including a
section titled “They Said It Couldn’t Be Done.” The URL is:

http://www.bmsltd.co.uk/excel

Spreadsheet FAQ
Many newsgroups have a FAQ — a list of frequently asked questions. The purpose of
providing a list of FAQs is to prevent the same questions from being asked over and
over. The FAQ for the comp.apps.spreadsheets newsgroup is available at:

http://www.faqs.org/faqs/spreadsheets/faq

764 Appendix D: Additional Excel Resources

4800-x AppD.F 8/27/01 12:00 PM Page 764

Appendix E

What’s on the CD-ROM
This appendix describes the contents of the companion CD-ROM.

CD-ROM Overview
The CD-ROM consists of four components:

� Chapter Examples: Excel workbooks that are discussed in the chapters of
this book.

� Power Utility Pak 2000: A 30-day trial version of the author’s popular
Excel add-in (works with Excel 97 or later). Use the coupon in this book
to order the latest version of PUP at a significant discount. The complete
VBA source code is also available for a small fee.

� Sound-Proof 2000: The demo version of the author’s audio proofreader
add-in.

� Complete, searchable version of the book in PDF format (use Acrobat
Reader to access these files).

� The latest version of Acrobat Reader from Adobe.

All CD-ROM files are read-only.Therefore, if you open a file from the CD-ROM

and make any changes to it, you need to save it to your hard drive. Also, if

you copy a file from the CD-ROM to your hard drive, the file retains its read-

only attribute. To change this attribute after copying a file, right-click the

filename or icon and select Properties from the shortcut menu. In the

Properties dialog box, click the General tab and remove the check mark from

the Read-only check box.

765

4800-x AppE.F 8/27/01 12:00 PM Page 765

Chapter Examples
Most of the chapters in this book refer to workbooks that are available on the
CD-ROM. Each chapter has its own subdirectory on the CD-ROM. For example, you
can find the files for Chapter 5 in the following directory:

chapters\chap05\

Following is a list of the chapter examples with a brief description of each. Note
that not all chapters have example files.

Chapter 5

character set.xls Displays all characters for a selected font. Requires
Excel 97 or later.

identifying text in cells.xls Examples of three functions (ISTEXT, CELL, and
TYPE) that are supposed to identify the type of data
in a cell.

text formula examples.xls Contains the example formulas described in the
chapter.

text histogram.xls Displays a histogram using text characters rather
than a chat.

Chapter 6

calendar array.xls A single array formula that displays a monthly
calendar.

day of the week count.xls Counts the number of each day of the week for a
particular year.

holidays.xls Formulas that calculate the dates of various
holidays.

jogging log.xls Formulas to keep track of jogging data.

ordinal dates.xls Formulas that express a date as an ordinal number
(such as June 13th, 1999).

time sheet.xls A workbook (with VBA macros) to keep track of
hours worked in a week. This example is not dis-
cussed in this chapter.

work days.xls Demonstrates the NETWORKDAYS function.

766 Appendix E: What’s on the CD-ROM

4800-x AppE.F 8/27/01 12:00 PM Page 766

Chapter 7

adjustable bins.xls Demonstrates a histogram with adjustable bins.

basic counting.xls Formulas that demonstrate basic counting
techniques.

conditional summing.xls Formulas that demonstrate various ways to cal-
culate conditional sums.

count unique.xls Formulas to count the number of unique entries
in a range.

counting text in a range.xls Formulas that demonstrate various ways to count
text in a range.

cumulative sum.xls Formulas to calculate a cumulative sum.

frequency distribution.xls Creates a frequency distribution using the
FREQUENCY function, the Analysis ToolPak,
and formulas.

multiple criteria counting.xls The workbook used in the multiple criteria count-
ing examples.

Chapter 8

basic lookup examples.xls Demonstrates four basic lookup techniques.

closest match.xls Demonstrates how to perform a lookup using the
closest matching value.

gpa.xls Calculates a grade point average with multiple for-
mulas or a single array formula.

grade lookup.xls Uses a lookup table to determine letter grades.

interpolated lookup.xls Demonstrates how to perform a lookup using lin-
ear interpolation.

lookup address.xls Demonstrates how to determine the cell address of
a lookup item.

lookup to the left.xls Demonstrates how to perform a lookup when the
index column is not the leftmost column in the
lookup table.

multiple lookup tables.xls Demonstrates how to use the IF function to work
with multiple lookup tables.

Appendix E: What’s on the CD-ROM 767

4800-x AppE.F 8/27/01 12:00 PM Page 767

two-column lookup.xls Demonstrates how to perform a lookup using two
columns from the lookup table.

two-way lookup.xls Demonstrates how to perform a two-way lookup
(by columns and by rows).

Chapter 9

data table summary.xls Demonstrates how to use a one-way and two-way
data table to summarize information in a list.

nested subtotals.xls Demonstrates the use of the SUBTOTAL function.

real estate database.xls A workbook that contains real estate listing infor-
mation. Used to demonstrate advanced filtering.

Chapter 10

simultaneous equations.xls Formulas to solve simultaneous equations with
two or three variables.

solve right triangle.xls Formulas to calculate various parts of a right tri-
angle; gives two known parts.

unit conversion tables.xls Contains conversion tables for a variety of mea-
surement units.

Chapter 11

Example 01-07 Examples 1–7.
(Simple Accumulations).xls

Examples 08-11 Examples 8–11.
(Complex Accumulations).xls

Examples 12-19 Examples 12–19.
(Simple Discounting).xls

Examples 20-25 Examples 20–25.
(Amortization).xls

Examples 26-29 Examples 26–29.
(Effective Cost of Loans).xls

768 Appendix E: What’s on the CD-ROM

4800-x AppE.F 8/27/01 12:00 PM Page 768

Examples 30-31 Examples 30–31.
(IPMT, PPMT, CUMIPMT, CUMPRINC).xls

Examples 32-33 Examples 32–33.
(Interest and Payment Frequencies).xls

Examples 34-35 Examples 34–35.
(Non Standard Uses of Functions).xls

Interest Conversion Functions Demo.xls Examples that demonstrate the use
of the VBA interest conversion
functions.

Chapter 12

depreciation.xls Formulas that demonstrate the use of
Excel’s depreciation functions.

Example 01-09 (NPV).xls Examples 1–9.

Example 10-12 (IRR).xls Examples 10–12.

Example 13-15 (MIRR).xls Examples 13–15.

Example 16 (FVSCHEDULE).xls Example 16.

Chapter 13

accumulation schedule.xls An example accumulation
schedule.

creating indices.xls Demonstrates how to create
indices.

credit card calculations.xls Formulas to perform credit card
calculation.

detailed loan amortization schedule.xls A detailed loan amortization
schedule.

discounted cash flow schedule.xls A discounted cash flow schedule.

loan data tables.xls Demonstrates how to use Excel’s
Data Table feature.

simple loan amortization schedule.xls A simple loan amortization
schedule.

Appendix E: What’s on the CD-ROM 769

4800-x AppE.F 8/27/01 12:00 PM Page 769

variable rate analysis.xls A variable rate analysis example.

variable rate loan amortization schedule.xls A variable rate loan amortization
schedule.

XIRR and XNPV functions.xls Demonstrates the use of Excel’s
XIRR and XNPV functions.

Chapter 15

calendar array.xls An array formula that displays a calendar.

logical functions.xls Demonstrates how to use logical functions in an
array formula.

multi-cell array formulas.xls Examples of array formulas that occupy multi-
ple cells.

single-cell array formulas.xls Examples of array formulas that occupy a
single cell.

sorted function.xls A custom VBA function that returns a
sorted range.

sum every nth.xls An array formula to sum every nth value in
a range.

Chapter 16

all-time high.xls Demonstrates how to keep track of the highest
value ever entered into a range.

circular reference.xls The introductory circular reference example
file.

net profit (circular).xls Formulas to calculate net profit using a circu-
lar reference.

net profit (not circular).xls Formulas to calculate net profit without using
a circular reference.

recursive equations.xls Demonstrates how to use a circular reference
to solve recursive equations.

simultaneous equations.xls Demonstrates how to use a circular reference
to solve simultaneous equations.

770 Appendix E: What’s on the CD-ROM

4800-x AppE.F 8/27/01 12:00 PM Page 770

time stamp.xls Demonstrates how to time-stamp a cell using a
circular reference.

unique random integers.xls Demonstrates how to generate unique random
integers by using circular references.

Chapter 17

animated shapes.xls Demonstrates animated objects (including
charts).

autoupdate chart.xls Demonstrates a technique to plot new data as
it’s added to the worksheet.

box plot.xls Demonstrates a box plot to summarize data
across groups.

bullen function plotter.xls Demonstrates a technique developed by Stephen
Bullen that plots a function automatically.

chart data in active row.xls Demonstrates a charting technique that uses the
data in the row of the active cell.

chart from combo box.xls Uses a combo box to select data to be plotted.

circle.xls Demonstrates how to plot a circle in a chart.

clock chart vba.xls An alternate version of the analog clock that
uses VBA rather than formulas.

clock chart.xls Displays an analog clock in a chart.

comparative histogram.xls Demonstrates a comparative histogram (popula-
tion pyramid).

gantt chart.xls Demonstrates a simple Gantt (timeline) chart.

gauge chart.xls Demonstrates how to create a chart that resem-
bles a gauge.

hypocycloid.xls A chart that generates interesting geometric
designs.

linear trendline.xls Demonstrates a linear trendline.

linked picture.xls Demonstrates how to use a linked picture of a
range in a chart.

multiple charts.xls Demonstrates how to display multiple charts on
a single chart sheet.

nonlinear trendline.xls Demonstrates nonlinear trendlines.

Appendix E: What’s on the CD-ROM 771

4800-x AppE.F 8/27/01 12:00 PM Page 771

plot every nth data point.xls Demonstrates a technique to plot every nth data
point.

plot last n data points.xls Demonstrates a technique to plot only the most
recent data.

surface chart.xls Demonstrates the use of a surface chart to plot a
function with two variables.

thermometer chart.xls Demonstrates a chart that displays progress
toward a goal.

xy sketch.xls Interactive drawing on a chart.

Chapter 18

bank accounts.xls A worksheet database used in several examples.

calculated field and item.xls Demonstrates creating calculated fields and
items in a pivot table.

sales by date.xls Demonstrates grouping pivot table items
by date.

Chapter 19
conditional formatting.xls Contains the conditional formatting examples.

data validation.xls Contains the data validation examples.

Chapter 20

credit card validation.xls Demonstrates a megaformula to determine
whether a credit card number is valid.

no middle name.xls Demonstrates three ways to remove the middle
name from a full name (formulas, a megafor-
mula, and a custom VBA function).

position of last space.xls Demonstrates a megaformula to return the char-
acter position of the last space character in a
string.

total interest.xls Introductory megaformula example.

772 Appendix E: What’s on the CD-ROM

4800-x AppE.F 8/27/01 12:00 PM Page 772

Chapter 25

\xdate directory A directory that holds the files for the
Extended Date Functions add-in.

celltype function.xls Demonstrates the CELLTYPE function.

commission function.xls Demonstrates the COMMISSION
function.

counting and summing functions.xls Demonstrates the counting and summing
functions.

date functions.xls Demonstrates the date functions.

last nonempty cell.xls Demonstrates the LASTINCOLUMN and
LASTINROW functions.

monthnames.xls Demonstrates the MONTHNAMES
function.

multisheet functions.xls Demonstrates the MAXALLSHEETS and
SHEETOFFSET functions.

mysum function.xls Demonstrates the MYSUM function.

random integers function.xls Demonstrates the RANOMINTEGERS
function.

range randomize function.xls Demonstrates the RANGERANDOMIZE
function.

simple functions.xls A workbook that demonstrates simple
VBA functions.

spelldollars function.xls Demonstrates the SPELLDOLLARS
function.

statfunction function.xls Demonstrates the STATFUNCTION
function.

text manipulation functions.xls Demonstrates the text manipulation
functions.

Power Utility Pak
Power Utility Pak is a collection of Excel add-ins that I developed. The companion
CD-ROM contains a copy of the trial version of this product. The trial version can
be used for 30 days.

Appendix E: What’s on the CD-ROM 773

4800-x AppE.F 8/27/01 12:00 PM Page 773

Registering Power Utility Pak
The normal registration fee for Power Utility Pak is $39.95. You can use the coupon
in this book, however, to get a free copy of the latest version of Power Utility Pak
(you pay shipping and handling only). In addition, you can purchase the complete
VBA source code for only $20.00.

Installing the trial version
To install the trial version of Power Utility Pak, follow these steps:

1. Make sure that Excel is not running.

2. Locate the PUP2000T.EXE file on the CD-ROM. This file is located in the
PUP\ directory.

3. Double-click PUP2000T.EXE. This expands the files to a directory that you
specify on your hard drive.

4. Start Excel.

5. Select Tools � Add-Ins, and click the Browse button. Locate the
PUP2000.XLA file in the directory you specified in Step 3.

6. Make sure that Power Utility Pak 2000 is checked in the add-ins list.

7. Click OK to close the Add-Ins dialog box.

After you install Power Utility Pak, it will be available whenever you start Excel,
and Excel will have a new menu: PUP 2000. Access the Power Utility Pak features
from the PUP 2000 menu or select the Create a PUP toolbar command to generate
a toolbar.

Power Utility Pak includes extensive online help. Select PUP 2000 � Help to
view the Help file.

Uninstalling Power Utility Pak
If you decide that you don’t want Power Utility Pak, follow these instructions to
remove it from Excel’s list of add-ins:

1. In Excel, select Tools � Add-Ins.

2. In the Add-Ins dialog box, remove the check mark from Power Utility
Pak 2000.

3. Click OK to close the Add-Ins dialog box.

To remove Power Utility Pak from your system after you’ve followed the preceding
steps to uninstall it from Excel, delete the directory into which you originally
installed it.

774 Appendix E: What’s on the CD-ROM

4800-x AppE.F 8/27/01 12:00 PM Page 774

Sound-Proof 2000
Sound-Proof 2000 is an Excel add-in that I developed. It uses Microsoft Agent to
read the contents of selected cells. It’s the perfect proofreading tool for anyone who
does data entry in Excel.

Excel 2002 includes a new text-to-speech feature. However, you’ll find that

Sound-Proof 2000 is more customizable and has many additional options.

Cells are read back using natural language format. For example, 154.78 is read
as “one hundred fifty-four point seven eight.” Date values are read as actual dates
(for example, “June fourteen, nineteen ninety-eight”) and time values are read as
actual times (for example, “six forty-five a.m.”).

The companion CD-ROM contains a demo version of Sound-Proof 2000. The
demo version’s only limitation is that it reads no more than 12 cells at a time. The
full version is available for $24.95. Ordering instructions are provided in the online
Help file.

Installing the demo version
To install the demo version of Sound-Proof, follow these steps:

1. Make sure that Excel is not running.

2. Locate the SP2000D.EXE file on the CD-ROM. This file is located in the
SP\ directory.

3. Double-click SP2000D.EXE. This expands the files to a directory that you
specify on your hard drive.

4. Start Excel.

5. Select Tools � Add-Ins and click the Browse button. Locate the
SP2000.XLA file in the directory you specified in Step 3.

6. Make sure that Sound-Proof 2000 is checked in the add-ins list.

7. Click OK to close the Add-Ins dialog box.

After you install Sound-Proof 2000, it will be available whenever you start
Excel, and Excel will have a new menu command: Tools � Sound-Proof 2000.

Appendix E: What’s on the CD-ROM 775

4800-x AppE.F 8/27/01 12:00 PM Page 775

Uninstalling Sound-Proof
If you decide that you don’t want Sound-Proof 2000, follow these instructions to
remove it from Excel’s list of add-ins:

1. In Excel, select Tools � Add-Ins.

2. In the Add-Ins dialog box, remove the check mark from Sound-Proof 2000.

3. Click OK to close the Add-Ins dialog box.

After performing these steps, you can reinstall Sound-Proof at any time by placing
a check mark next to the Sound-Proof 2000 item in the Add-Ins dialog box.

To remove Sound-Proof from your system after you have performed the preceding
steps to uninstall the add-in from Excel, delete the directory into which you
originally installed it.

Electronic Version of
Excel 2002 Formulas
The complete (and searchable) text of this book is on the CD-ROM in Adobe’s
Portable Document Format (PDF), readable with the Adobe Acrobat Reader (also
included). For more information on Adobe Acrobat Reader, go to www.adobe.com.

Adobe Acrobat Reader
The Adobe Acrobat Reader is a helpful program that enables you to view the
searchable version of this book, which is in .pdf format on the CD-ROM. To install
and run Adobe Acrobat Reader, follow these steps:

1. Start Windows Explorer or Windows NT Explorer and then open the
Acrobat folder on the CD-ROM.

2. In the Reader folder, double-click the .exe file and follow the instructions
presented on-screen for installing Adobe Acrobat Reader.

776 Appendix E: What’s on the CD-ROM

4800-x AppE.F 8/27/01 12:00 PM Page 776

Symbols & Numbers
& (ampersand) concatenation operator, 36, 38,

119–120, 629
’ (apostrophe)

number as text prefix, 114
Visual Basic for Applications (VBA)

comment prefix, 622
* (asterisk)

multiplication operator, 36, 38, 629
number format code, 740, 756–757
number padding with, 124–125
wildcard character, 129, 670

@ (at sign)
Lotus formula/function prefix, 14, 30, 101
number format code, 740

@DCOUNT Lotus function, 707, 714–715
\ (backslash)

integer division operator, 60
names, in, 60
number format code, 740

^ (caret) exponentiation operator, 36, 38, 629
: (colon)

number format code, 740
range reference operator, 36, 101
time values, in, 169

, (comma)
array element separator, 90, 379, 380
chart range reference separator, 442
function argument separator, 100
number format code, 740
thousands separator, 298, 733, 735
union operator, 36

{ } (curly brackets) array formula delimiters,
383

$ (dollar sign)
cell reference prefix, 42
number format code, 740

= (equal sign)
array prefix, 382
assignment operator, 622
Define Name dialog box Refers to field

prefix, 81
formula prefix, 14, 30, 35
logical comparison operator, 36, 38

> (greater than sign) greater than operator,
36, 38

>= (greater than sign, equal sign) greater than
or equal to operator, 36, 38

(hash mark)
number format code, 740
replacement character, 50, 562
Visual Basic for Applications (VBA)

date/time delimiter, 628
wildcard character, 129, 670

#AND# Lotus logical operator, 703

#DIV/0! division by zero errors, 50, 564
#N/A missing data errors, 50, 185–186, 398,

565
#NAME? undefined name/range errors, 50, 565
#NOT# Lotus logical operator, 703
#NULL! range intersection errors, 50, 565–566
#NUM! errors, 50, 566
#OR# Lotus logical operator, 703
#REF! invalid cell reference errors, 50, 566
#VALUE! errors, 50, 567, 610
< (less than sign) less than operator, 36, 38
<= (less than sign, equal sign) less than or

equal to operator, 36, 38
<> (less than sign, greater than sign) not equal

to operator, 36, 38
– (minus sign)

formula prefix, 14, 30
negation operator, 38, 569
number format code, 740
subtraction operator, 36, 38, 569, 629

() (parentheses)
entering, 39, 561
function argument delimiters, 99, 100
megaformulas, in, 551
mismatched, debugging, 561
nesting, 39–40
number format code, 740
operator precedence control using, 30,

38–40, 569
SERIES formula argument delimiters, 442

% (percent sign)
number format code, 740
percent operator, 36, 38

. (period)
number format code, 740
Visual Basic for Applications (VBA)

worksheet function prefix, 632
π (pi), returning value of, 727
+ (plus sign)

addition operator, 36, 38, 629
formula prefix, 14, 30
number format code, 740

? (question mark)
names, in, 60
number format code, 740
wildcard character, 129, 670

; (semicolon)
array element separator, 90, 380
number format string code separator, 739

/ (slash)
division operator, 36, 38, 629
number format code, 740

[] (square brackets)
hour delimiters, 146, 170
link formulas, in, 44, 532
relative cell references, in, 43

777

Index

4800-X Index.F 8/27/01 12:00 PM Page 777

~ (tilde) search operator, 129
_ (underscore)

name prefix, 60
number format code, 740

0 (zero) number format code, 740
.123 files, 699

A
A1 notation, 43–44
AAI. See Appraisal Institute of America (AAI)
ABS function, 173, 407, 726
absolute values, returning, 173, 407
Accounting number format, 736
ACCRINT function, 721
ACCRINTM function, 721
accumulation calculations

deposit, original, 298–299, 303
discounting compared, 304
Future Value (FV), 297–298, 299, 301–302,

303, 346–347
growth rate, average, 340–341
growth rate, average annual, 298, 299–300
growth rate, average geometric, 346–347
interest, 297–304, 362, 721
multi-variable, 301–304
Net Present Value (NPV), 324, 337–338,

346–347
Present Value (PV) at different rates, 324,

346–347
return rate, average annual, 302, 340–341
schedules, 361–363
time periods, 298, 303

accumulation schedule.xls (on the
CD-ROM), 769

ACOS function, 726
ACOSH function, 726
Acrobat Reader (on the CD-ROM), 765, 776
ACRONYM function, 137, 669–670
acronyms, generating, 137, 669–670
Add Trendline dialog box, 469–470, 473
add-ins. See also specific add-ins

creating using Visual Basic for Applications
(VBA), 616–618

date utilities, 148, 159
formulas referring to missing, 565
introduced, 21
names created by, hidden, 64
versions of Excel, differences in, 618

addition operators, 36, 38, 568, 629. See also
summing

ADDRESS function, 231, 405, 725
Address property, 647
adjustable bins.xls (on the CD-ROM), 767
Adobe Acrobat Reader (on the CD-ROM),

765, 776
Advanced Filter dialog box, 247

algebra
array formulas, using, 284
coefficients, 283
constants, 283
equations, linear, 283
equations, solving simultaneous, 283–284
matrix, inverse of coefficient , 284
variables, 283

.ALL files, 699
all-time high.xls (on the CD-ROM), 770
AMORDEGRC function, 721
AMORLINC function, 721
amortization, 308
amortization calculations

Payment (PMT), 309, 311–313
Present Value (PV), 309–310
rates, 311
rates, variable, 356–358
schedules, 320, 322, 352–358
time periods, 310

Analysis ToolPak add-in
chart tools, 199
date tools, 112, 149–150
described, 21, 24
engineering tools, 110
frequency distribution tools, 198–199
future value tools, 346
histogram tool, 199
information tools, 112
interest calculation tools, 322
Internal Rate of Return (IRR) tools, 366
math tools, 112, 285, 287
measurement unit conversion tools, 269
Net Present Value (NPV) tools, 366
principal calculation tools, 322
statistical tools, 109
time tools, 112
trigonometry tools, 112

Analysis ToolPak functions, specific
CONVERT, 269
CUMIPMT, 322–323, 543
CUMPRINC, 322–323
DOLLARDE, 285, 288
DOLLARFR, 285, 288
EDATE, 149
EOMONTH, 149
FVSCHEDULE, 324, 346–347
MROUND, 285, 287
NETWORKDAYS, 150, 154–155
WEEKNUM, 150
WORKDAY, 150, 156
XIRR, 325, 366–368
XNPV, 366
YEARFRAC, 150, 157

AND function, 37, 400–401, 531, 724
#AND# Lotus logical operator, 703
AND/OR criteria, 189–191, 208–210
animated shapes.xls (on the CD-ROM), 771
AnnEff_Effx function, 315, 325, 335

778 Index

4800-X Index.F 8/27/01 12:00 PM Page 778

AnnEff_Nomx function, 316
ANSI character set, 117
Apple computers, 4
application names, returning, 657
Application object, 664
Apply Names dialog box, 73
APPNAME function, 657
Appraisal Institute of America (AAI), 330
area calculations, geometric, 280–281
AREAS function, 111, 725
Arglist keyword, 603, 695
arguments. See functions, arguments
arithmetic. See math; numbers
Array function, 687
arrays

1-dimensional, 375
1-dimensional horizontal, 379–380
1-dimensional vertical, 380
2-dimensional, 375, 380–381, 630
3-dimensional, 375
AND function, using in array formulas, 400
Arglist arrays, 695
averages, calculating using, 394, 402–403
calendars, creating using, 166–167, 417–418
cell range references, using in lieu of,

395–396
cell range values, calculating average of

non-zero using, 402–403
cell range values, counting non-zero

using, 403
cell range values, counting unique using,

193–195
cell range values, determining closest

using, 410
cell range values, determining validity

using, 406
cell range values, finding nth occurrence of

using, 405
cell range values, finding using, 403–404
cell range values, returning maximum

using, 404–405
cell range values, returning positive-only

using, 414–415
cell range values, returning unique using,

416–417
cell range values, summing every nth using,

409–410
cell ranges, counting differences between

using, 404
cell ranges, counting error values in using,

185–186, 398–399
cell ranges, returning nonempty cells in

using, 415
cell ranges, reversing cell order using,

415–416
cell ranges, sorting dynamically using, 416
cell ranges containing, selecting, 383–384
cells containing, selecting, 383–384

charts, range reference conversions in, 445
columns, returning last value in using,

410–411
constants, 378–379
constants, creating from range values,

386–387
constants, naming, 381–383
constants, summing operations involving,

378–379
constants, using in calendars, 416
constants, using in lieu of range references,

395–396
counting cell contents using, 192–193
counting cells meeting AND criteria using,

190–191
counting cells meeting multiple criteria

using, 189–190
counting cells meeting OR criteria using,

190–191
counting error values using, 185–186,

398–399
counting invalid items using, 406
counting logical values using, 185
counting most frequently occurring text

using, 191
counting nontext cells using, 185
counting string occurrences using, 193
counting text cells using, 185
crosstab tables, creating dynamic using,

413–414
data type returned by, 687
database filter criteria formulas, in, 257–258
database filter criteria ranges, using in place

of, 260, 395
database functions support of, 260
debugging array formulas, 567
declaring in Visual Basic for Applications

(VBA), 630–631
deleting, 384
dynamic, 416, 631
editing array formulas, 384–385
elements in, accessing, 382–383
elements in, performing operations on,

387–388
entering array formulas, 30, 376,

377, 383, 385
equations, array formulas in, 284
error values, counting using, 185–186,

398–399
formula bar, array formula entry/editing

using, 383, 384
formulas, using in named, 90–91, 381–383
frequency distribution calculations, array

formulas in, 196
function arguments, arrays as, 103, 388, 694
functions, returning from custom, 418–421,

687–688

continued

Index 779

4800-X Index.F 8/27/01 12:00 PM Page 779

arrays continued
functions returning, 391
horizontal, 379–380
horizontal, converting to vertical, 382–383,

388–389
import operation data validity checks,

in, 406
integers, of consecutive, 389–390, 406
integers, of consecutive arranged randomly,

689–690
integers, summing digits of using, 406–408
intermediate formulas, eliminating, 394–395
introduced, 375
list comparison using, 406
logical functions in array formulas, 400–401
lookup formulas, in, 222, 224, 225–226,

229, 395–396
Lotus 1-2-3 functions, converting using

array formulas, 715
matrix determinants, returning, 726
matrix inverse, returning, 726
matrix product of two, returning, 727
megaformulas, in, 548–552, 554–555
multicell, changing cell contents in, 384
multicell, creating from range values,

386–387
multicell, creating with single formula,

376–377
multicell, deleting, 384
multicell, deleting cells in, 384
multicell, editing, 384–385
multicell, moving array formula, 384
multicell, moving cells in, 384
multicell, operations using, 386–390,

414–418
multicell, selecting cells containing,

383–384
multicell range, contracting, 385
multicell range, expanding, 385
multicell range, inserting cells in, 384
ranking data using, 412–413
rows, returning last value in using, 412
selecting, 383–384
single-cell, operations using, 375, 377,

390–396, 397
sorting values dynamically, 416
speed considerations, 385
summary data tables, in, 264, 359
summing largest range values using,

204, 402
summing negative values only using, 206
summing operations involving array

constants, 378–379
summing operations returning, 180
summing positive values only using, 399
summing ranges containing error values

using, 398
summing rounded values using, 408

summing smallest range values using,
204, 392

summing values based on a different range
using, 206–207

summing values based on conditions using,
399–400, 401

summing values meeting AND criteria
using, 208–210

summing values meeting multiple criteria
using, 208

summing values meeting OR criteria using,
209–210

text, removing non-numeric characters from
strings using, 410

text strings, returning longest in range
using, 405

transposing, 382–383, 388–389, 688
validation operations using, 406
vertical, 380
vertical, converting to horizontal, 388–389

ASIN function, 726
ASINH function, 726
ATAN function, 726
ATAN2 function, 726
ATANH function, 726
auditing. See also debugging

background, 44, 578–579
cell dependents, tracing, 576–577
cell precedents, tracing, 576
cells of particular type, identifying, 573
circling invalid data, 537
error values, tracing, 563, 577
Excel Auditor utility, using, 582
Formula Auditing toolbar, using, 537, 574,

576–577
Formula Evaluator, using, 580
Formula view, using, 573–575
formula/result display, showing in separate

windows, 573–574
Go To Special dialog box, using, 573, 576
introduced, 24
Power Utility Pak (on the CD-ROM) features,

575, 581–582
Spreadsheet Detective, using, 582

AutoCalculate, 182
AutoCorrect, Formula, 39–40, 562
AutoFill, 15, 48, 152–153
AutoFilter, 22, 240–244, 455–456
AutoFormats, applying to pivot tables, 500
AutoShapes, 18
AutoSum, 107
autoupdate chart.xls (on the CD-ROM), 771
AVEDEV function, 728
AVERAGE function

array arguments, 394, 403
box plots using, 453
cells, blank, 402–403
described, 728
zero values, 402–403

780 Index

4800-X Index.F 8/27/01 12:00 PM Page 780

AVERAGEA function, 728
averages

array arguments, 394, 403
arrays, calculating using, 394, 402–403
box plots using, 453
cell range values, non-zero, 402–403
cells, blank, 402–403
database entries, of, 258, 717
grade point averages, 225
growth rate, 340–341
growth rate, annual, 298, 299–300
growth rate, geometric, 346–347
lookup formulas, in, 221, 225
mean, geometric, 729
mean, harmonic, 729
payments, time-weighted, 338
return, calculating average, 302, 340–341
trendline moving averages, 474
zero values in, 402–403

B
backsolving, 53
bank accounts.xls (on the CD-ROM), 772
bank fees, 317–318
basic counting.xls (on the CD-ROM), 767
basic lookup examples.xls (on the CD-ROM),

767
BESSEL functions, 719, 728
binary numbers, converting to/from, 719, 720
BINOMDIST function, 728
Boolean (TRUE/FALSE) logical values, working

with. See comparison operations, logical
borders, 76, 451, 515
box plots, 453–455. See also charts
box plot.xls (on the CD-ROM), 771
breakpoints in Visual Basic for Applications

(VBA) code, 614, 615, 616
Bricklin, Dan, 4
Bullen, Stephen, 463, 764
bullen function plotter.xls (on the CD-ROM), 771
Byg Software, 582

C
cache, pivot table, 501
calculated field and item.xls (on the CD-ROM),

772
calculation mode, 40–41, 361, 430–431
calculator, using formula bar as, 35
calendar array.xls (on the CD-ROM), 770
calendars, 159, 166–167, 417–418
case conversion operations, 98, 119, 126–127,

631, 693
case sensitivity

comparison operations, 120, 129, 131
counting operations, 187, 193
lookup formulas, 222
names, 60

variables, 596
Visual Basic for Applications (VBA),

596, 603
cash flows

Discounted Cash Flow (DCF), 363–364
inflows, 329
Internal Rate of Return (IRR) calculation,

339–340, 341, 366–367
Net Present Value (NPV), affect on, 330
Net Present Value (NPV), calculating for

flows beginning at end of first period,
332

Net Present Value (NPV), calculating for
flows in advance, 333–334

Net Present Value (NPV), calculating for
flows initially positive, 332–333

Net Present Value (NPV), calculating for
flows series, 331

Net Present Value (NPV), calculating for
flows with rate time period mismatch,
335–336

Net Present Value (NPV), calculating for
flows with terminal values, 333–335

Net Present Value (NPV), calculating for
irregular, 366, 367–368

Net Present Value (NPV), calculation of
accumulation at different rates, 324,
346–347

Net Present Value (NPV), calculation of
sums of irregular, 325, 366, 367–368

Net Present Value (NPV), calculation of
sums of regular, 324, 329–338

outflows, 329
ownership, 296
Point 0, 330
rates, calculation of multiple from regular,

324, 342–345
rates, calculation of single from irregular,

325, 366–368
rates, calculation of single from regular, 324
rates, discount, 330, 331
rates, hurdle, 330
rates, monthly effective, 330
rental situations, 333, 336
schedules, 324–325, 351
schedules, discounted, 363–364
signing, 295–296, 337

CD-ROM with this book. See also CD-ROM with
this book, example workbooks

character set macros, 118
charts utility, 446
Compare Sheets or Ranges utility, 581
database resources, 248, 249, 263
date utilities, 148, 159, 581
error-checking formulas, 301
Excel 2002 Formulas in PDF format, 776

continued

Index 781

4800-X Index.F 8/27/01 12:00 PM Page 781

CD-ROM with this book continued
Extended Date Functions add-in, 148, 679
file guide to, 766–773
Financial Functions add-in, 314–316
Formula Report utility, 581
Insert-A-Date utility, 159
JWalk Enhanced Data Form add-in, 248
measurement unit conversion tables, 272
Name Lister utility, 64, 581
Perpetual Calendar utility, 159
Power Utility Pak, 21, 765, 773–774
Reminder Alarm utility, 159
saving files to hard drive, 765
Time Tracker utility, 159
VBA Project Summary Report utility, 581
Workbook Link Report utility, 581
Workbook Summary Report utility, 581
Worksheet Map utility, 581

CD-ROM with this book, example workbooks
accumulation calculations, 297, 301, 361
amortization calculations, 308, 356
array formulas, 226, 397
cash flow, 331, 363, 366
CELLTYPE function, 660
charts, animated, 482
charts, AutoFiltering, 456
charts, circle plotting, 485
charts, clock, 484
charts, combo boxes for user input, 462
charts, comparative histograms, 452
charts, drawing in XY, 487
charts, function plotting, 463
charts, Gantt, 450
charts, hypocycloid curves in, 468
charts, interactive, 461, 462, 463
charts, progress toward goal, 449
charts, storing multiple on worksheet, 479
charts, trendlines, 471, 475
charts with data series automatic

update, 457
charts with linked pictures, 446
circular references, 429, 432, 436
COMMISSION function, 667
conditional formatting, 521
counting formulas, 182, 188, 192, 194
credit card, 365, 556
data validation, 538
date calculation, 155, 161, 162, 163, 167
depreciation, 349
discounting problem, 304, 307
equation, 284, 436
frequency distribution, 195
histogram, 124, 200
indices, 371
LASTINCOLUMN function, 680
LASTINROW function, 680
loan calculations, 316, 320, 370
lookup formulas, two-way, 226

lookup formulas returning closest
match, 230

lookup formulas returning item position in
range, 230

lookup formulas using arrays, 226
lookup formulas using INDEX function, 222
lookup formulas using linear

interpolation, 232
lookup formulas using MATCH

function, 222
lookup formulas using two-columns, 228
lookup formulas using VLOOKUP function,

214, 222, 223, 224
megaformula, 542, 547, 552, 556
MONTHNAMES function, 688
MYSUM function, 697
Net Present Value (NPV), 331
pivot table, 490
RANDOMINTEGERS function, 690
RANGERANDOMIZE function, 692
right triangle formula, 280
sales commissions calculation, 667
SPELLDOLLARS function, 674
STATFUNCTION function, 661
summary data table, 263, 358
summing formula, 203, 206
text manipulation, 547, 668
time calculation, 172, 178
Visual Basic for Applications (VBA)

counting functions, 675
Visual Basic for Applications (VBA) date

functions, 677
Visual Basic for Applications (VBA)

multisheet functions, 682
Visual Basic for Applications (VBA) simple

functions, 654
Visual Basic for Applications (VBA)

summing functions, 675
Visual Basic for Applications (VBA) text

functions, 668
VMONTHNAMES function, 688

CEILING function, 285, 287, 726
CELL function, 110, 111, 117, 723
cell names. See also names

case sensitivity, 60
changing, 76
characters, prohibited, 60
checking, 62–63, 64
column deletion, behavior during, 77–78
column insertion, behavior during, 77
copy/paste operations, 32, 64, 68, 78–79
creating, 58–64
deleting, 75, 565
formulas, applying automatically when

creating, 74
formulas, applying to existing, 73–74
formulas, entering in, 32, 69
formulas, using in, 69

782 Index

4800-X Index.F 8/27/01 12:00 PM Page 782

function arguments, as, 100
introduced, 18
length, maximum, 60
lists of, creating, 68–69
multiple for same cell, 59
natural language formulas versus, 71–72
navigating using, 58
redefining, 76
returning, 648
row deletion, behavior during, 77–78
row insertion, behavior during, 77
rules, 60
scope, 66–67
spaces in, 60
unapplying, 74–75
workbook-level, 67–68, 69
workbooks, referencing in other, 67
worksheet deletion, during, 79
worksheet-level, 67–68, 69

cell ranges
addresses, fixed, 89–90
addresses, returning, 405, 647
arrays, contracting ranges containing, 385
arrays, creating from values in, 386–387
arrays, expanding ranges containing, 385
arrays, inserting cells in ranges

containing, 384
arrays, selecting ranges containing,

383–384
border display, 76
calendars, creating in, 166–167, 417–418
cells in, returning nonempty, 415, 680–681
cells in, reversing order of, 415–416
cells in, summing all, 201–202
cells in, summing visible, 210, 676–677
cells-used subset, returning, 651–652
characters in, counting, 391–392
charts, adding data labels by specifying, 446
charts, converting range references to arrays

in, 445
charts, referencing in, 442, 444
charts, unlinking from, 444
columns in, returning, 649
columns in, returning number of, 648
columns in, testing for hidden, 649,

654–655
combining, 651
conditional formatting, applying, 518
conditional formatting, applying to

duplicate values in, 526
conditional formatting, applying to

maximum values in, 524
conditional formatting, applying to

nonsorted values in, 527
copy/cut/paste operations, 15, 78, 566
data validation lists, specifying ranges

for, 536
deleting, 75

differences between, counting, 404
dynamic, 91
error values, summing ranges

containing, 398
font properties, returning, 648, 658
hidden, testing for, 654–655
INDIRECT function, working with named

ranges in, 88–90
intersections, 36, 70, 72
intersections, returning, 650–651
invalid, 64
lookup formulas returning item position in,

212, 217, 229–230
lookup formulas returning references to, 212
lookup formulas returning values from, 212,

216–219
looping through using For Each-Next,

643–644
multisheet, 65–66
names, 18
names, applying to existing formulas,

73–74
names, as function arguments, 57–58, 100
names, automatically created, 61–63, 74
names, behavior during column/row

deletion, 77–78
names, case sensitivity, 60
names, changing, 76
names, checking, 62–63, 64
names, copy/paste operations, 32, 64, 68,

78–79
names, creating, 58–64
names, deleting, 75, 565
names, displaying, 76–77
names, entering in formulas, 69
names, for noncontiguous, 59
names, in macros, 58
names, lists of, 68–69
names, multiple for same range, 59
names, multisheet, 65–66
names, natural language formulas versus,

71–72
names, navigating using, 58
names, redefining, 76
names, referencing in other workbooks, 67
names, returning, 648
names, rules for, 60
names, scope, 66–67
names, unapplying, 74–75
names, using in macros, 58
names, workbook-level, 67–68, 69
names, worksheet-level, 67–68, 69
noncontiguous, 59, 442
number format, returning, 648, 659
object variables, assigning to, 649–650
operator, range, 36, 72
pictures, linked, 19

continued

Index 783

4800-X Index.F 8/27/01 12:00 PM Page 783

cell ranges continued
properties, Visual Basic for Applications

(VBA), 644–649
random number generation in, 433–434,

689–690
randomizing, 691–692
reference operator, 36, 101
references, absolute, 42, 567–568
references, color, 567
references, combining, 36
references, copy/paste operations, 78
references, full-column, 101
references, full-row, 101
references, in SERIES formulas, 442
references, in Visual Basic for Applications

(VBA), 644–646
references, indirect, 88–89
references, intersection, 36, 70, 72
references, mixed, 42, 88
references, natural language formulas

versus, 71–72
references, operators used for, 36
references, relative, 42, 87, 567–568
references, returning number of areas

in, 725
references, returning number of

columns in, 725
references to ranges in other workbooks,

44–45, 68
references to ranges in other worksheets,

44–45
references, using array constants in lieu of,

395–396
references, using in named formulas, 84–85
rows, returning, 649
rows, returning number of, 648
rows, testing for hidden, 649, 654–655
selecting, 14 , 60–61
text strings, returning longest in, 405
validation checks in, 406
values in, counting non-zero, 403
values in, counting unique, 193–195
values in, determining closest, 410
values in, determining largest, 432–433
values in, finding, 403–404
values in, finding nth occurrence of, 405
values in, returning average of

non-zero, 403
values in, returning location of maximum,

404–405
values in, returning maximum, 404–405
values in, returning maximum using LARGE

function, 100
values in, returning maximum using MAX

function, 98, 433
values in, returning most frequently

occurring, 191
values in, returning positive-only, 414–415

values in, returning unique, 416–417
values in, sorting dynamically, 416
values in, summing based on different

ranges, 206–207
values in, summing every nth, 409–410
values in, summing largest, 204, 402
values in, summing smallest, 204, 392
values in, summing squares of, 643–644
viewing named, 76–77
Visual Basic for Applications (VBA),

working with in, 643–652
worksheets, spanning multiple, 65–66
worksheets containing, returning, 647

cell references. See also circular references
A1 notation, 43–44
absolute, 42
color, 567
column number of, returning, 725
combining, 36
conditional formatting formulas, in, 517,

518, 520–521
database operations, in, 239, 256
entering, 31, 32, 45
formula elements, as, 29
formulas, copied, 45
formulas, using in named, 84–87
indirect, 88–89
intersection, 36, 70, 72
invalid, 50, 566
megaformulas, substituting formula text for

in, 544
mixed, 42, 88
multiple, combining into one, 36
names, using instead of, 58
natural language formulas versus, 71–72
number format correspondence, 31
operators used for, 36
R1C1 notation, 43–44
ranges, cells in multicell named, 73
relative, 42, 85–87
Visual Basic for Applications (VBA)

formulas, in, 645
workbooks, in other, 44–45, 68
worksheets, in other, 44–45

CELLFORMULA function, 654
CELLHASFORMULA function, 654
CELLHASTEXT function, 137, 671–672
CELLISHIDDEN function, 654–655
cells

arrays, changing cell contents in, 384
arrays, selecting cells containing, 383–384
auditing by identifying cells of particular

type, 573
characters in, maximum, 113–114
charts, linking to, 445–448
charts, plotting hidden, 457
charts, single-cell, 448
color, background, 16, 524, 528–529

784 Index

4800-X Index.F 8/27/01 12:00 PM Page 784

conditional formatting, applying shading
using, 515, 517, 525–526

conditional formatting, applying to cells
containing above-average values, 522

conditional formatting, applying to cells
containing formulas, 530–531

conditional formatting, applying to cells
containing invalid data, 532–533

conditional formatting, applying to cells
containing link formulas, 532

conditional formatting, applying to cells
containing more than one word, 528

conditional formatting, applying to cells
containing specific characters, 528

conditional formatting, applying to cells
containing text, 521

conditional formatting, applying to
named, 521

conditional formatting, applying to
specific cells, 518

conditional formatting, copying cells
containing, 519

conditional formatting, hiding contents
using, 524, 528–529

conditional formatting, locating cells
containing, 520

copy operations, 15, 79
counting blank, 180, 183–184
counting cells between two values, 675
counting cells containing dates, 187, 210
counting cells containing specific

formatting, 210
counting cells containing specific numeric

value, 180
counting cells meeting AND criteria,

190–191
counting cells meeting multiple criteria,

189–190
counting cells meeting OR criteria, 190–191
counting cells meeting specified criteria,

180, 186–191, 192–193, 210
counting characters in, 130
counting nonempty, 180, 184, 411, 646
counting nontext, 185
counting numeric, 185
counting text cells, 185, 187, 392–393
counting total in range, 183, 644, 647
counting total in worksheet, 645
counting visible, 210, 675–676
counting words in, 135–136
data stored in, 14
data type, determining, 110, 115–117, 137,

210, 659–660
deleting, 75, 566
dependents, 575, 576–577
editing contents, 34
empty, allowing/disallowing using data

validation, 537

empty, determining if, 110
empty, filling using Paste Special, 245
empty, in database operations, 241
empty, in lookup formulas, 219
empty, in net present value

calculations, 339
empty, in pivot tables, 501
empty, spaces in, 563
formatting, stylistic, 16–17
formatting information, returning, 648,

657–659
formulas, identifying cells containing,

530–531, 573, 647, 654
formulas in, returning, 646–647
line breaks in, 15, 119–120
locking, 25, 49
number format, counting cells containing

specific, 210
number format, displaying, 756
number format, filling with repeating

characters using, 756–757
number format, padding with dashes using,

756–757
number of, maximum, 9
precedents, 575–576
preformatting to avoid automatic number

formatting, 734, 740
returning nonempty, 415, 680–681
selecting, 14, 16, 60–61
selecting cells containing arrays, 383–384
selecting random, 663–664
shading, 515, 517, 525–526
summing cells containing specific

formatting, 210
summing visible cells, 210, 676–677
text, determining if cell contains, 115–117,

137, 671–672
tracing, 575–577
wrap, 9, 15, 120–121
zero values in, 184, 219

Cells property, 645–646
CELLSINCOMMON function, 650–651
CELLTYPE function, 659–660
celltype function.xls (on the CD-ROM), 773
CHAR function, 118–119, 732
character codes, 117–118
character set.xls (on the CD-ROM), 766
characters, special, 119
Chart ➪ Chart Type, 443
chart data in active row.xls (on the CD-ROM),

771
chart from combo box.xls (on the CD-ROM),

771
Chart ➪ Location, 479
Chart Location dialog box, 479
Chart Options dialog box, 445, 447
Chart Wizard, 448–449, 450–451, 454–455

Index 785

4800-X Index.F 8/27/01 12:00 PM Page 785

charts. See also SERIES formulas
3-D, 466–467
activating, 20, 444
Analysis ToolPak add-in features, 199
animation, 481–482
arrays, converting data range

references to, 445
AutoFiltering, 455–456
axes labels, 442, 451
axes number formats, custom, 452
axes scale values, adjusting, 451
axes tick marks, removing, 452
bar charts, clustered, 452
bar charts, creating Gantt charts from, 450
bar charts, stacked, 450
borders, 451
box plots, 453–455
category axis titles, 445
cell range names, referencing in, 77
cells, charts in single, 448
cells, linking to, 445–448
cells, plotting hidden, 457
circles, plotting, 485–486
clock charts, 483–485, 486
color settings, 443, 455, 467, 515
column charts, 448–449
columns, plotting data in hidden, 455
combo box, data selection from, 461–462
COS function in, 483–484
COUNTA function, using in, 457, 458
curve fitting, 474
data labels, adding by specifying range, 446
data labels, editing, 446
data labels, linking to cells, 446
data labels, selecting, 446
data points, changing worksheet values by

dragging, 480–481
data points, displaying most recent,

458–459
data points, missing, 444, 454
data points, plotting every nth, 455–457
data points, plotting last n, 458–459
data series, 441
data series, deleting from, 444
data series, selecting points in, 443
data series, updating automatically,

457–458
data tables in, 447
date format, 451
dynamic, 444, 457–458
embedded, 10
embedded, printing, 443
embedded, relocating, 479
embedded, removing from printing, 443
embedded, selecting, 444
embedded, viewing in window, 480
EVALUATE function, using in, 465

extrapolation, 474
fill color, 443
font color, 443, 515
forecasting using trendlines, 469, 473
formulas, working with named, 444,

460–461
free-floating, 20
frequency distributions, charting, 196–197,

198–200
functions, plotting double-variable,

466–467
functions, plotting single-variable, 462–466
Gantt charts, 449–451
gap width, 449, 452
gauge charts, 482
goal seeking, 481
goals, charting progress toward, 448–449
histograms, 123–124, 198–200, 451–452
hypocycloid curves, 468–469
interactive, 460–467
interpolation, 454, 474
legends, 442, 467
line charts, continuing line through points

with no data, 444
line charts with markers, 454
line color, 455
location, 479
names, using in, 77, 442, 444
naming, 80
NOW function, updates using, 466
number formats, custom, 452
OFFSET function, using in, 457, 458–459,

464–465
overlap, 452
percent values, displaying as data series,

448–449
pictures, linking to cells, 447–448
pictures, pasting as, 444
pie charts, 482
PivotChart Report, 495
plot area, 443
plotting order, specifying, 442
population pyramids, 451
positioning, 444
Power Utility Pak tools, 446
printing chart sheets, 10
printing embedded charts, 443
printing without associated worksheet, 443
properties, changing, 444
quartile plots, 453–455
range, unlinking from, 444
range names, referencing, 442
range references, 442, 444
range references, converting to arrays, 445
range references, noncontiguous, 442
row, plotting based on active, 460–461
row, plotting data in hidden, 455

786 Index

4800-X Index.F 8/27/01 12:00 PM Page 786

scatter, 462, 469
selecting, 20, 444
selecting elements in, 443
SERIES formulas, relation to, 441–442
shading, 467
sheets, 8, 10
SIN function in, 462, 483–484
single-cell charts, 448
sizing/resizing, 443, 449
static, 444
surface charts, formatting, 467
surface charts, plotting double-variable

functions using, 466
surface charts, XYZ, 466
text, linking to cells, 446–447
text boxes in, 446–447
“thermometer” type display, 448–449
tick marks, 452
titles, 442, 445, 449
trendlines, 469
trendlines, coefficient of determination, 471
trendlines, data series versus, 470
trendlines, decimal places setting, 471
trendlines, exponential, 474, 477–478
trendlines, intercept calculations, 470,

471–472
trendlines, linear, 469, 470–471
trendlines, logarithmic, 474, 475–476
trendlines, moving average option, 474
trendlines, nonlinear, 474–479
trendlines, polynomial, 474, 478–479
trendlines, power, 474, 476–477
trendlines, predicted values calculations,

472–473
trendlines, R-squared values, 470, 471, 474
trendlines, slope calculations, 471–472
type, setting default, 443
value axis titles, 445
variables, plotting functions with double,

466–467
variables, plotting functions with single,

462–463
Visual Basic for Applications (VBA) macros,

using in, 461, 484–485
windows, sizing to, 443, 479
windows, viewing embedded charts in

separate, 480
worksheets, 8, 10
worksheets, changing values by dragging

data points, 480–481
worksheets, referring to other, 442
worksheets, storing multiple charts on,

479–480
XY charts, animated, 481
XY charts, circle plotting in, 485
XY charts, clock display in, 483
XY charts, drawing using, 486–487

XY charts, function plotting using, 463
XY charts, hypocycloid curve

display in, 468
XY charts, scatter, 462, 469

checksum digits, 552
CHIDIST function, 728
CHIINV function, 728
CHITEST function, 728
CHOOSE function, 212, 725
Chr function, 621
circle.xls (on the CD-ROM), 771
Circular Reference toolbar, 51–52, 426–427, 577
circular references

accidental, 51–52, 426–427, 560, 572, 577
described, 51, 425–426
Do-Loop constructs, 428
entering, 51–52
equations, solving recursive using, 435–436
equations, solving simultaneous using,

436–438
error message, 51–52, 426
error message, turning off, 52
IF function in, 122
indirect, 427
intentional, 428–430
iteration settings, 52, 427,

428–429, 431, 439
locating, 426
NOW function in, 122
random number generation using, 433–434
time stamping cell entries using, 432
value, determining highest using, 432–433

circular reference.xls (on the CD-ROM), 770
CLEAN function, 125–126, 732
clock chart vba.xls (on the CD-ROM), 771
clock chart.xls (on the CD-ROM), 771
clocks, creating in charts, 483–485, 486
closest match.xls (on the CD-ROM), 767
CODE function, 118, 732
color

cell backgrounds, 16, 524, 528–529
cell references, 567
cell shading, 515, 517, 525–526
charts, 443, 455, 467, 515
conditional formatting, applying using, 515,

516, 517, 525–526, 528–529
error values, hiding using, 524
fills, chart, 443
fills, returning color index number for,

658–659
fills, text box, 16
font, 443
modifying available, 516
number formats, custom, 518, 739, 751–752
palette, 516
workbooks, 516

Columbus Day, calculating, 164

Index 787

4800-X Index.F 8/27/01 12:00 PM Page 787

COLUMN function, 725
columns. See also worksheets

cells, returning last nonempty in, 680–681
database columns, mixing data types

in, 239
database columns as fields, 238
deleting, 75, 77–78
function arguments, as, 101
inserting, cell name behavior during, 77
labels, database column, 239
labels, using in formulas, 71–72
letters, returning for values contained in

cells, 132
naming, 63
number of, maximum, 9
numbers, returning, 725
pivot table column headers, 492
pivot table column orientation, 492
pivot table column titles, 501
returning last value in, 410–411
shading using conditional formatting, 525
splitting, 136
summing values in meeting

specified criteria, 180
testing for hidden, 649, 654–655
values in, determining largest, 432–433
width, changing, 9
width, insufficient, 50, 562

COLUMNS function, 111, 183, 725
Columns property, 648
COM automation, retrieving real-time data from

programs supporting, 725
COMBIN function, 726
COMMISSION function, 665–667
commission function.xls (on the CD-ROM), 773
comp.apps.spreadsheets FAQ site, 764
comparative histogram.xls (on the CD-ROM),

771
Compare Sheets or Ranges utility (on

the CD-ROM), 581
comparison operations

case sensitivity, 120, 129, 131
equal to, 34, 36, 119–120, 719
greater than, 36
greater than or equal to, 36
less than, 36, 37
less than or equal to, 36, 37
logical, 36, 110, 202, 208–209
not equal to, 37
summing values based on date

comparisons, 207
summing values based on text

comparisons, 207
text comparisons, 119–120,

130–131, 137, 207
Visual Basic for Applications (VBA), 137,

629

COMPLEX function, 719
CONCATENATE function, 121, 732
conditional formatting. See formatting,

conditional
Conditional Formatting dialog box

accessing, 514
Add button, 518
Cell Value Is button, 514, 516
Delete button, 520
Format button, 514, 515
Formula Is button, 514, 516
formulas, entering in, 517

conditional formatting.xls (on the CD-ROM),
772

Conditional Sum Wizard add-in, 205
conditional summing.xls (on the CD-ROM), 767
CONFIDENCE function, 729
Consolidate_Area internal name, 64
Const statements, 626
constants

array constants, 378–379
array constants, creating from range values,

386–387
array constants, naming, 381–383
array constants, summing operations

involving, 378–379
array constants, using in calendars, 416
arrays constants, using in lieu of range

references, 395–396
equations, in, 283
naming, 81–83
numeric, 81–82
scope, 626
text constants, 82–83
Visual Basic for Applications (VBA),

626–627
Control Toolbox, 19
controls, dialog box, 19–20
conversions, measurement unit. See

measurement unit conversions
CONVERT function, 269, 719
Convert Text to Columns Wizard, 136
Convert utility, 278
copy/cut/paste operations

cell contents, 15
cell ranges, 15, 78
cells, 15, 78–79, 566
conditional formatting considerations, 519
formulas, 45–46, 566
keyboard shortcuts, 14, 15
name considerations, 32, 64, 68, 78–79
pivot tables, 504
text, copying from formulas, 544
Visual Basic for Applications

(VBA) code, 598
worksheets, 78–79

CORREL function, 729

788 Index

4800-X Index.F 8/27/01 12:00 PM Page 788

COS function, 483–484, 726
COSH function, 726
COUNT function, 180, 729
Count property, 647
count unique.xls (on the CD-ROM), 767
COUNTA function

array formulas, in, 411
cells, counting non-empty using, 180, 184,

411, 646
charts, in, 457, 458
described, 729
formulas, in dynamic named, 92

COUNTBETWEEN function, 210, 675
COUNTBLANK function, 180, 183–184, 729
counters, 615, 639–640
COUNTIF function, 180, 186–193, 403, 539, 729
counting

AND/OR criteria in, 189–191
array formula involvement in, 183
AutoCalculate, using, 182
case sensitivity in, 187, 193
cell ranges, differences between, 404
cells, blank, 180, 183–184
cells, nonempty, 180, 184, 411, 646
cells, nontext, 185
cells, numeric, 185
cells, text, 185, 187, 392–393
cells, total in range, 183, 644, 647
cells, visible, 210, 675–676
cells, words in, 135–136
cells between two values, 675
cells containing dates, 187, 210
cells containing specific formatting, 210
cells containing specific numeric

values, 180
cells meeting AND criteria, 190–191
cells meeting multiple criteria, 188–191
cells meeting OR criteria, 190–191
cells meeting specified criteria, 180,

186–191, 192–193, 210
characters in cell ranges, 391–392
characters in cells, 130
characters in text strings, 126, 130,

192–193
database operations involving, 110, 180,

181–182, 242–243
day of week, occurrences of, 161–162
error values in ranges, 185–186, 398–399
frequency distributions, 195–201
functions related to, 180–181, 210, 674–676
invalid items, 406
logical values, 185
most frequently occurring value, 191
pivot tables, in, 181, 195, 494
substring occurrences, 130–131
text string occurrences, 130–131, 192–193
text strings, words in, 135–136
values, non-zero, 403

values, unique, 193–195
Visual Basic for Applications (VBA)

functions, using, 210, 674–676
wildcard characters in, 186
words in cells, 135–136

counting and summing functions.xls (on the
CD-ROM), 773

counting text in a range.xls (on the CD-ROM),
767

COUNTVISIBLE function, 210, 675–676
COUPDAYBS function, 721
COUPDAYS function, 721
COUPDAYSNC function, 721
COUPNCD function, 721
COUPNUM function, 721
coupon period calculations, 721
COUPPCD function, 721
COVAR function, 729
Create Names dialog box, 61–62
creating indices.xls (on the CD-ROM), 769
credit card calculations.xls (on the CD-ROM),

769
credit card validation.xls (on the CD-ROM), 772
credit cards

American Express, 552
checksum digits, 552
Discover, 552
Mastercard, 552
minimum payment considerations, 365
number validity formulas, 552–556
payment calculations, 324, 365–366
Visa, 552

CRITBINOM function, 729
Criteria internal name, 64
cross-checking formulas for accuracy, 300
crosstab tables, dynamic, 413–414
CUMIPMT function, 322–323, 543, 721
CUMPRINC function, 322–323, 721
cumulative sum.xls (on the CD-ROM), 767
currency

dollars, fractional, 285, 288, 721
dollars, rounding, 287
format, 15, 16, 733, 735, 736
fraction/decimal conversions, 285
spelling out, 137, 674
text, displaying as, 122–123

cut/paste operations. See copy/cut/paste
operations

CVErr function, 686

D
Data Analysis dialog box, 198–199
data entry. See also validation, data

array formulas, 30, 376, 377, 383
AutoFill, using, 15, 48
databases, in, 248

continued

Index 789

4800-X Index.F 8/27/01 12:00 PM Page 789

data entry continued
formula results, 35
formulas, 30–32, 39–40
functions, 103–107
introduced, 14–15
parentheses, 39
Visual Basic for Applications (VBA) code,

manually, 595–596
Visual Basic for Applications (VBA) code

using macro recorder, 596–598
Data ➪ Filter ➪ Advanced Filter, 22
Data ➪ Filter ➪ AutoFilter, 22, 240
Data ➪ Filter ➪ Show All, 242
Data ➪ Form, 248
Data Form feature, 248, 497
Data ➪ JWalk Enhanced Data Form, 248
Data ➪ PivotTable, 495
data recovery using link formulas, 45
Data ➪ Sort, 22
Data ➪ Subtotals, 107
Data ➪ Table, 261
data table summary.xls (on the CD-ROM), 768
data tables, summary

array formulas in, 264, 359
calculation mode considerations, 361
creating, 263, 358–361
crosstab tables, dynamic, 413–414
dynamic, 261
frequency distributions, 195
loan option summaries, 358–361
one-way, 358–360
pivot tables, using, 261
speed considerations, 361
two-way, 360–361

Data ➪ Text to Columns, 136
data types

arrays, returned by, 687
Boolean, 624
byte, 624
currency, 624
database columns, mixing data types in,

239
date, 624, 627–628
decimal, 624
determining, 110, 115–117,

137, 210, 659–660
displaying, 615
double, 624
errors, debugging, 567
integer, 624
long, 624
object, 624
single, 624
string, 624, 627
variant, 624, 687
Visual Basic for Applications (VBA), 624

Visual Basic for Applications (VBA),
automatic assignment, 623

Visual Basic for Applications (VBA),
declaring in, 625

Visual Basic for Applications (VBA),
determining using, 659–660

Visual Basic for Applications (VBA)
functions, specifying type returned by,
603, 620

data validation. See validation, data
Data ➪ Validation, 15
Data Validation dialog box

accessing, 534
Error Alert tab, 535, 537, 538
Input Message tab, 535
Settings tab, 534, 537, 538

data validation.xls (on the CD-ROM), 772
Database internal name, 64
databases (worksheet lists)

array formula operations, 260, 264
arrays, using in filter criteria formulas,

257–258
arrays, using in place of criteria range, 260,

395
averages, 258, 717
cell references, 239, 256
cells, blank, 241
columns, labeling, 239
columns, mixing data types in, 239
columns as fields, 238
counting operations, 110, 180, 181–182,

242–243
data entry/editing, 248
date format considerations, 254
design, 239
field labels, using in filtering, 247, 256
fields, columns as, 238
fields, maximum, 238
filtering, 22, 240
filtering, comparison operators in, 250–251
filtering, copying data resulting from, 243
filtering, count operations on resulting

data, 242–243
filtering, data hidden by, 240, 242, 243
filtering, deleting data resulting from, 243
filtering, duplicate record removal

using, 247
filtering, field labels in, 247, 256
filtering, logical comparisons in,

253–255, 256
filtering, range name of filtered list, 241
filtering, sum operations on resulting data,

242–243, 266
filtering, wildcards in, 251–252
filtering criteria, AND/OR, 246,

253–254, 257–258
filtering criteria, computed, 255–258

790 Index

4800-X Index.F 8/27/01 12:00 PM Page 790

filtering criteria, multiple,
241, 246, 253–255

filtering criteria, specifying,
240–241, 246, 248–258

filtering criteria, using arrays in place of
ranges, 260, 395

filtering using Advanced Filter
dialog box, 247

filtering using AutoFilter, 240–244
functions related to, 110, 258–259, 717–718
headings, 239
import data cleanup, 245
import data, Lotus, 261
multiplication, 717
pivot table background queries, 501
pivot table data sources, as, 496
pivot table summaries, 491
queries, background in pivot tables, 501
records, counting nonempty, 180
records, counting using specified criteria,

110, 180, 717
records, extracting unique, 247, 717
records, maximum number of, 22, 238
records, removing duplicates, 247
records, rows as, 238
rows, empty, 239
rows, freezing first, 239
rows, hiding, 243, 244
rows, labeling, 239
sorting, 22
standard deviation calculations, 717
summing operations, 242–243, 259–260,

264–267, 718
table relationships, 237
table selection, 14
tables, data, 261–264
uses of, 238–239
values, returning maximum/minimum, 717
variance calculations, 718
worksheets, storage in, 239

databases, external, 22, 501
DATATYPE function, 210
DATE function

arguments, invalid, 151
arguments, other functions as, 151
date calculations, in, 157, 160–166
date display using, 151
date formats, ensuring compatibility

using, 254
described, 149, 718
displaying dates using, 151
string conversions, in, 153
summing operations, in, 207
TIME function, using with, 169

date functions.xls (on the CD-ROM), 773
Date Report utility (on the CD-ROM), 159, 581
DATEDIF function, 149, 158, 718

dates
1582, prior to, 690
1900, prior to, 147–148, 679–680
1900 system, 140
1904 system, 140, 173
add-ins, 112, 148, 149–150, 159
age calculations, 156–157
AutoFill, entering series using, 152–153
calendars, creating in ranges, 166–167,

417–418
cells containing, counting, 187, 210
cells containing, referencing, 146
century, specifying, 148–149
chart date format, 451
Columbus Day, determining, 164
current, displaying, 150–151
current, entering, 15
current, returning, 109, 122, 523
data validation, 536
databases, format considerations in, 254
day of month, determining last, 165
day of week, counting occurrences, 161–162
day of week, determining,

158–159, 160–161
day of week, determining date of next, 678
day of week, returning as integer, 679
day of week after specified date,

determining first, 160
day of year, determining, 157
days, adding to dates, 679
days, offsetting using work days, 156
days between two dates, calculating, 149,

153–154, 158, 679, 718
days of dates, returning, 679
displaying, 150–152
Easter, determining, 165
entering, 15, 141–142, 148–149, 151
entering with time, 145
fence-post analogy, 154
format, applying, 140, 145–146, 734, 736
format, automatic, 146, 734
format, custom, 146, 741, 752
format, default, 141
format compatibility, 139, 152, 254
formats recognized, 141–142
formatting, conditional, 522–523, 531
functions related to, 109, 112, 148, 149–150,

718–719
holidays, determining, 163–165
holidays, lists of, 156
Julian, 157
Labor Day, determining, 164
leap year bug, 147
Lotus 1-2-3 legacy, 147, 158
Macintosh date system, 140
Martin Luther King Jr. Day,

determining, 163

continued

Index 791

4800-X Index.F 8/27/01 12:00 PM Page 791

dates continued
Memorial Day, determining, 164
Monday, determining date of next, 677–678
month, determining last day of, 165
month, identifying dates in, 522
months, determining number between two

dates, 158, 718
months of dates, returning, 679
ordinals, expressing as, 162
Power Utility Pak (on the CD-ROM) tools,

159, 581
Presidents’ Day, determining, 164
quarter, determining, 166
range supported, 140
regional settings, 141
replacement characters for invalid, 50, 562
reports, 581
searching for, 143
serial numbers, converting text strings to,

151, 718
serial numbers, converting to days, 149,

150, 718, 719
serial numbers, converting to months, 150,

168, 718
serial numbers, converting to years, 150,

719
serial numbers, entering as, 141
serial numbers, returning for current date,

150, 719
serial numbers, returning for current date

and time, 150, 168, 718
serial numbers, returning for

specified dates, 149, 150, 718
serial numbers, viewing, 140
serial numbers, zero value, 145
series of, generating, 152–153
stamp, 151
summing values based on date

comparisons, 207
Sunday, determining date of the most

recent, 160
system settings, 141
text, converting to, 151, 153
text, returning, 157, 162
text recognized as, 141, 142, 147–148
Thanksgiving Day, determining, 164
time, day association with, 145
United States format, 139, 152
variables, storing in, 627–628
version differences, 148–149
versions of Excel, differences in, 140,

148–149
Visual Basic for Applications (VBA),

working with in, 627–628, 677–680
week, determining day of, 158–159
week number in year, returning, 150, 719
week of month, returning integer for,

678–679

weekend dates, identifying, 523
workdays calculations, 150,

154–155, 718, 719
year, determining day of, 157
years, converting to Roman numerals, 166
years, leap, 147, 165–166
years, returning fractional values for date

spans, 150, 719
years, two-digit, 147, 148–149
years between two dates, calculating, 156,

158, 679, 718
years of dates, returning, 679

DATEVALUE function, 149, 151–152, 718
DAVERAGE function, 258, 717
DAY function, 149, 718
day of the week count.xls (on the CD-ROM),

766
DAYS360 function, 149, 718
DB function, 348, 349, 721
DCF. See Discounted Cash Flow (DCF)
DCOUNT function, 110, 180, 181, 258, 717
@DCOUNT Lotus function 707, 714–715
DCOUNTA function, 180, 258
DDB function, 348, 349, 721
Debug ➪ Compile, 610
Debug ➪ Toggle Breakpoint, 616
debugging. See also auditing; errors in formulas

actual versus displayed values
problems, 570

add-ins, missing, 565
array formulas, 567
breakpoints, using, 614, 615, 616
cell dependents, tracing, 576–577
cell precedents, tracing, 576
cell range intersection errors, 565–566
cell references, absolute/relative problems,

567–568
cell references invalid errors, 50, 566
circular references, 560, 572, 577
column width, insufficient, 562
data type errors, 567
Debug.Print statements, monitoring

variables using, 612–613
described, 559
division by zero errors, 50, 564
error checking, background, 578–579
error values, identifying, 398, 399, 564
error values, tracing, 563, 577
floating point number errors, 571
Formula Evaluator, using, 580
formulas not calculated, 569
function arguments, non-numerical when

numerical expected, 566
function arguments, range when single

value expected, 467
functions, custom, 567
iteration errors, 566
link errors, 572

792 Index

4800-X Index.F 8/27/01 12:00 PM Page 792

loop constructs, monitoring values in,
611–613

missing data errors, 565
MsgBox statements, using, 610–612
name/range undefined errors, 565
operator precedence errors, 568–569
parentheses, mismatched, 561
programs versus formulas, 559
spaces in blank cells, accidental, 563
syntax errors, 561, 562, 596, 610
values too large/small errors, 566
variables, monitoring, 610–613
Visual Basic for Applications (VBA)

statement execution, viewing in
Immediate window, 590

Debug.Print statements, monitoring variables
using, 612–613

DEC2BIN function, 719
DEC2HEX function, 719
DEC2OCT function, 719
decimal numbers, converting to/from, 719, 720
Define Name dialog box

accessing, 58
name creation using, 58–59
name definition, changing using, 60, 76
name deletion using, 75
Names field, 59
names listed in, 64, 80
Refers to field, 59, 65–66, 80–81, 457, 458
Workbook field, 67

DEGREES function, 279, 726
Delete Conditional Formatting dialog box, 520
DELTA function, 719
dependents, cell, 575, 576–577
depreciation, 347
depreciation calculations

accounting period, 721
cost arguments, 348
declining balance, 348, 349, 721
double-declining balance, 348, 349, 721
factor arguments, 348
functions related to, 348
life arguments, 348
month arguments, 348
no-switch arguments, 348
rate arguments, 348
salvage arguments, 348
straight-line, 348, 349
sum of year’s digits, 348, 349
variable-declining balance, 348, 349–350

depreciation.xls (on the CD-ROM), 769
detailed loan amortization schedule.xls (on the

CD-ROM), 769
DEVSQ function, 180, 729
DGET function, 258, 717
Diagram Gallery, 18–19

dialog box controls, placing on worksheets,
19–20

dialog boxes, built-in, 12–13. See also specific
boxes

dialog sheets, 8, 10
Dim keyword, 620, 625, 630–631
DISC function, 721
Discounted Cash Flow (DCF), 363–364
discounted cash flow schedule.xls (on

the CD-ROM), 769
discounting calculations

accumulation compared, 304
complex, 304
Discounted Cash Flow (DCF), 363
Future Value (FV), 308
payment, 307, 309–313
Present Value (PV), 304–306, 307
rate, 306, 307–308
rate, discount, 306, 329–330, 339,

341–342, 721
simple, 304

display, customizing, 14
distance measurement unit conversions,

272, 273
#DIV/O! division by zero errors, 50, 564
DIVIDETWO function, 642–643
division operators, 36, 38, 60, 629
DMAX function, 259, 717
DMIN function, 259
Do Until constructs, 640–641
Do While constructs, 639–640
document shortcuts, 725
DOLLAR function, 122–123, 732
DOLLARDE function, 285, 288, 721
DOLLARFR function, 285, 288, 721
dollars

fractional, 285, 288, 721
rounding, 287

DPRODUCT function, 259, 717
drag-and-drop editing, 13
draw layer, worksheet, 10, 13, 18–20
Drawing toolbar, 18
DRAWONE function, 663–664
DSTDEV function, 259, 717
DSTDEVP function, 259, 717
DSUM function, 180, 181, 259–260, 718
DURATION function, 721
DVAR function, 259, 718
DVARP function, 259, 718

E
Easter, calculating, 165
EDATE function, 149, 718
Edit ➪ Clear ➪ Formats, 520
Edit ➪ Copy Picture, 444
Edit ➪ Paste Picture, 444
Edit ➪ Paste Picture Link, 19
Edit ➪ Paste Special, 46, 245

Index 793

4800-X Index.F 8/27/01 12:00 PM Page 793

Edit ➪ Replace, 128
editing formulas, 34–35
EFFECT function, 315, 356, 722
Effx_AnnEff function

described, 315
Discounted Cash Flow (DCF) schedule

calculations, in, 364
formula equivalent, Excel, 315
loan calculations, in, 319–320

Effx_Effy function, 315
Effx_Nomx function, 315
Effx_Nomy function, 315
energy measurement unit conversions, 272, 276
engineering functions, 110, 719–720
entering formulas

array formulas, 30, 376, 377, 383, 385
at sign (@) prefix, 30
AutoCorrect, using, 39–40, 562
conditional formatting formulas, 517
equal sign (=) prefix, 30, 31
line breaks, 32
manual entry, 30
names, entering, 32, 69
pointing, by, 31
spaces, 32
syntax, 30

EntireColumn property, 649
EntireRow property, 649
environment, returning information about, 723
EOMONTH function, 149, 718
equations

array formulas, using, 284
circular references, solving using, 435–438
coefficient matrix, inverse of, 284
coefficients, 283
constants, 283
formulas, converting to

self-referencing, 435
linear, 283
recursive, 435–436
simultaneous, solving, 283–284, 436–438
variables, 283

ERF function, 720
ERFC function, 720
Error Checking dialog box, 579
error values

counting, 185–186, 398–399
hiding, 524
listed, 50, 563
pivot table display, 501
printing options, 524, 563
referencing, 686
replacing with empty strings, 398
returning, 685–686, 723
summing ranges containing errors, 398
tracing, 563, 577

errors in formulas. See also debugging
actual versus displayed values

problems, 570
add-ins, missing, 565
array formulas, 560, 567
background error checking, 578–579
bypassing by converting formulas to

text, 35
cell range intersection, 565–566
cell reference errors, 50, 560, 566
cell references, absolute/relative problems,

567–568
circular references, 51–52, 426–427,

560, 572, 577
cross-checking to avoid, 300
data type incorrect, 567, 615
floating point number errors, 571
function arguments, non-numerical when

numerical expected, 566
function arguments, range when single

value expected, 467
functions, custom, 567
ignoring, 579, 641–642
incomplete calculation errors, 560
iteration errors, 566
link errors, 572
logic errors, 560, 610
missing data errors, 50, 565
name/range undefined, 565
operator precedence problems, 568–569
parentheses, mismatched, 561
prevalence, 560
recalculation missing, 569
ripple effect, 559
runtime, 610, 613–615
syntax errors, 560, 561
types, 49–50
values too large or too small errors, 566
Visual Basic for Applications (VBA) error

handling, 641–643
zero, division by, 50, 564

ERROR.TYPE function, 723
Evaluate Formula dialog box, 580
EVALUATE function, 465
EVEN function, 285, 289–290, 726
EXACT function, 732
Excel 2002 Power Programming with VBA, 588
Excel Auditor utility, 582
Excel Home Page, 760
Excel Web Source Web site, 764
EXCELVERSION function, 657
EXP function, 726
EXPONDIST function, 729
exponentiation operators, 36, 38, 568, 629

794 Index

4800-X Index.F 8/27/01 12:00 PM Page 794

expressions
function arguments, as, 102
order of evaluation, controlling, 30, 38–40
Visual Basic for Applications (VBA),

628–629
Extended Date Functions add-in (on the CD-

ROM), 148, 679
Extract internal name, 64
EXTRACTELEMENT function, 137, 672–673
extrapolation using charts, 474. See also

interpolation

F
FACT function, 726
FACTDOUBLE function, 720
factorials, returning, 720, 726
FALSE function, 724
FAQ pages, comp.apps.spreadsheets

newsgroup, 764
FDIST function, 729
fields

calculated, 506–511
columns as, 238
filtering, using in, 247, 256
labels, 247, 256
maximum, 238
pivot table fields, calculated, 506–511
pivot table fields, column, 492, 501
pivot table fields, customizing, 499
pivot table fields, drag and drop operations,

499, 502
pivot table fields, names in data source, 496
pivot table fields, ordering on page, 501
pivot table fields, page, 493
pivot table fields, row, 493
pivot table fields, summarizing non-

numeric, 494
File ➪ Page Setup, 563
File ➪ Print, 443
File ➪ Properties, 617
File ➪ Remove, 593
File ➪ Save, 45
File ➪ Save As, 45
filenames, extracting from path string, 132–133
files, corrupt. See data recovery using link

formulas
FILLCOLOR function, 210, 658
filter operations, database

Advanced Filter dialog box, using, 247
arrays, using in criteria formulas, 257–258
arrays, using in place of criteria range,

260, 395
AutoFilter, using, 240–244
comparison operators in, 250–251
copying resulting data, 243
count operations on resulting data, 242–243
criteria, AND/OR, 246, 253–254, 257–258

criteria, computed, 255–258
criteria, multiple, 241, 246, 253–255
criteria, specifying, 240–241, 246, 248–258
data hidden by, 240, 242, 243
deleting resulting data, 243
described, 22, 240
duplicate record removal using, 247
field labels in, 247, 256
logical comparisons in, 253–255, 256
range name of filtered list, 241
sum operations on resulting data,

242–243, 266
wildcards in, 251–252

FilterDatabase internal name, 64
financial calculations. See specific topics
financial concepts, basic

amortization, 308
depreciation, 347
Future Value (FV), 294
interest period, 294
interest rate, 294
interest rate, annual effective, 314
interest rate, nominal, 313, 314
interest rate, periodic effective, 314
interest rate quote methods, 313–314
loans, flat rate, 318
money flow, 295–296
Net Present Value (NPV), 330
Payment (PMT), 294
Present Value (PV), 294
term, 294

financial functions, 109, 293–294,
324–326, 721–723

Financial Functions add-in (on
the CD-ROM), 314–316

Find and Replace dialog box, 516
FIND function, 128–129, 732
FINV function, 729
FISHER function, 729
Fisher transformation, 729
FISHERINV function, 729
FIXED function, 732
floating point number errors, 571
FLOOR function, 285, 287, 726
FMT files, 699
font

character set for, displaying, 117–118
color, 443, 515, 518
counting cells containing specific

formatting, 210
formatting, conditional, 515
options, data, 16
properties, returning, 648, 658

Font property, 648
For Each-Next constructs, 643–644
force measurement unit conversions, 272, 276
FORECAST function, 391, 473, 729
forecasting using chart trendlines, 469, 473

Index 795

4800-X Index.F 8/27/01 12:00 PM Page 795

Format ➪ Cells, 16
Format Cells dialog box

conditional formatting version, 515
described, 16–17
Number tab, 16, 145–146, 736–737
Protection tab, 25–26, 49, 755

Format Chart dialog box, 444
Format ➪ Conditional Formatting, 514
Format Control dialog box, 462
Format Data Series dialog box, 446
Format dialog box, 16
Format Legend Key dialog box, 467
Format ➪ Row ➪ Hide, 243
Format ➪ Style, 734
Format Trendline dialog box, 473
formatting, conditional

borders, 515
cell ranges, applying to, 518
cell ranges, applying to duplicate

values in, 526
cell ranges, applying to maximum

values in, 524
cell ranges, applying to nonsorted

values in, 527
cell references in conditional formatting

formulas, 517, 518, 520–521
cells, applying to named, 521
cells, applying to specific, 518
cells, background patterns using, 515
cells, hiding contents using, 524, 528–529
cells, shading using, 515, 517, 525–526
cells containing above-average values,

applying to, 522
cells containing formulas, applying to,

530–531
cells containing invalid data,

applying to, 532–533
cells containing link formulas,

applying to, 532
cells containing, locating, 520
cells containing more than one word,

applying to, 528
cells containing specific characters,

applying to, 528
cells containing text, applying to, 521
color, applying using, 515, 516, 517,

525–526, 528–529
column shading, 525
conditions, between two values, 516
conditions, cell value, 516, 518–519
conditions, equal to specified values, 516
conditions, formula-based, 517–518
conditions, greater than or equal to

specified values, 516
conditions, greater than

specified values, 516

conditions, less than or equal to specified
values, 516

conditions, less than specified values, 516
conditions, not between two values, 516
conditions, not equal to specified

values, 516
conditions, specifying multiple, 518–519
conditions, specifying simple, 516–518
copy/paste considerations, 519
dates, working with, 522–523, 531
deleting, 520
described, 513–514
duplicate values, applying to, 526
dynamic nature of, 514
entering conditional formatting

formulas, 517
error values, hiding using, 524
find and replace, exempted from, 516
finding, 520
font color, 515, 524
font size, 515
font strikethrough, 515
font style, 515
font underline, 515
formulas, based on, 517–518
formulas, custom functions in, 530–533
link formulas, applying to cells

containing, 532
nonnumeric data, identifying, 521
numbers, 518, 750–751
results, displaying only when all data

entered, 528–529
rows, 525–526, 529
searching for cells containing, 520
shading, 515, 517, 525–526
trends, applying to, 527
types, applicable, 515–516
versions of Excel, differences in, 513
Visual Basic for Applications (VBA)

functions in conditional formatting
formulas, 530–533

worksheets, referencing other, 520–521
Formatting toolbar, 734–735
Forms toolbar, 461
formula auditing. See auditing
Formula Auditing toolbar, 537, 574, 576–577
Formula AutoCorrect, 39–40, 562
formula bar

array formulas in, 383, 384
calculator, using as, 35
editing formulas in, 34, 384
formula appearance in, 30
hiding formulas, 26

Formula Evaluator feature, 580
Formula Palette, 31–32, 34, 106
Formula property, 646–647
Formula Report utility (on the CD-ROM), 581

796 Index

4800-X Index.F 8/27/01 12:00 PM Page 796

Formula view, 573–575
For-Next constructs, 620–621, 637–639, 646
fractions

entering, 15
number format, 737, 748–749

Frankston, Bob, 4
FreqName function, 352
frequency distributions

Analysis ToolPak add-in features, 198–199
array formulas, using in calculating, 196
bins, 195–196, 198, 200
charting, 196–197, 198–200
described, 195
FREQUENCY function, using, 195–196
pivot tables, 195, 489

frequency distribution.xls (on the CD-ROM),
767

FREQUENCY function, 180, 195–196, 391, 729
FTEST function, 729
Full Screen view, 14
Function Arguments dialog box, 106
Function keyword, 602
functions. See also Visual Basic for

Applications (VBA), functions; specific
functions

advantages of using, 97–99
Analysis ToolPak functions,

110, 112, 269, 285
arguments, 99–100
arguments, arrays as, 103, 388, 694
arguments, Boolean, 697
arguments, columns as, 101
arguments, descriptive placeholders for, 108
arguments, determining type, 185, 686, 697
arguments, expressions as, 102
arguments, literal, 102
arguments, maximum number of, 694
arguments, mixing type, 694
arguments, multiple in same function, 100
arguments, names as, 100–101
arguments, non-numerical when numerical

expected, 566
arguments, optional, 693
arguments, other functions as, 102–103
arguments, range value when single value

expected, 467
arguments, rows as, 101
arguments, value display, 108
arrays, returning, 391
Bessel functions, returning, 719
built-in, 17, 99
charts, plotting double-variable functions

in, 466–467
charts, plotting single-variable functions in,

462–466
counting functions, 180–181, 210, 674–676
custom, 99, 599–600
database functions, 110, 258–259, 717–718

date functions, 109, 112, 148,
149–150, 718–719

depreciation, related to, 348
editing, 108
engineering functions, 110, 719–720
entering, 103–107
financial functions, 109, 293–294,

324–326, 721–723
formula elements, as, 30
formulas, using in named, 83–84
information functions, 110, 723–724
logical functions, 110, 400–401, 724
lookup functions, 110, 212, 725
math functions, 109, 726–728
matrix functions, 284
multiple-form, 108
nesting, 102–103
rate conversion, 315
reference, 110, 725
rounding functions, 285
searching for, 105, 108
securities, related to, 721, 722, 723
SERIES formulas, using in, 442
statistical, 109, 728–731
summing functions, 180–181, 210
text functions, 110, 115, 136–137, 732
time-related, 109, 168, 718–719
trigonometric functions, 109, 726–728
user-defined, 111, 588, 599
versions of Excel, function categories

inherited from previous, 111
Visual Basic for Applications (VBA) code,

inserting Excel functions in, 632
volatile, 111
worksheet functions, 97

Future Value (FV)
accumulation calculations, 297–298, 299,

301–302, 303, 346–347
amortization calculations, 310, 312,

323–324
Analysis ToolPak add-in features, 346
defined, 294
discounting calculations, 308
Net Present Value (NPV),

calculating from, 337
Present Value, calculating from, 324

FV function
accumulation calculations,

297–298, 299, 302
amortization calculations,

310, 312, 323–324
arguments, required, 293
credit card calculations, in, 365
described, 722
money flow, 295
time value of money concept used by, 295

FVSCHEDULE function, 324, 346–347, 722

Index 797

4800-X Index.F 8/27/01 12:00 PM Page 797

G
GAMMADIST function, 729
GAMMAINV function, 729
GAMMALN function, 729
gantt chart.xls (on the CD-ROM), 771
gauge chart.xls (on the CD-ROM), 771
GCD function, 726
GEOMEAN function, 729
geometry. See also trigonometry

area calculations, 280–281
circles, calculations involving, 281
cones, calculations involving, 282
cubes, calculations involving, 282
cylinders, calculations involving, 282–283
degrees, converting radians to, 279
hypocycloid curves, charting, 468–469
perimeter calculations, 280–281
pyramids, calculations involving, 283
radians, expressing angles in, 103, 279, 720
rectangles, calculations involving, 281
spheres, calculations involving, 282
squares, calculations involving, 280–281
surface calculations, 282
trapezoids, calculations involving, 281
triangles, calculations involving,

277–280, 281
volume calculations, 282–283

GESTEP function, 720
GETPIVOTDATA function, 725
GMT. See Greenwich Mean Time (GMT),

expressing in local
Go To dialog box, 245
Go To Special dialog box

accessing, 521, 573
Dependents option, 576
Formulas option, 530, 573
Precedents option, 576

Goal Seek dialog box, 54, 481
goal seeking

described, 53
Internal Rate of Return (IRR), 345
payment calculations, 53–54
precision, 55
single-cell, 53
solution not found, 54–55
Solver, using, 55

gpa.xls (on the CD-ROM), 767
grade lookup.xls (on the CD-ROM), 767
grade point average calculations using lookup

formulas, 225
Greenwich Mean Time (GMT), expressing in

local, 175
Group and Outline ➪ Group, 503, 504
Group and Show Detail ➪ Group, 503
Grouping dialog box, 503, 505
GROWTH function, 391, 729

growth rate calculations
average, 340–341
average, annual, 298, 299–300
average, geometric, 346–347
indexes based on, 347

H
hard coding, avoiding, 40, 351
Harker, Norman, 314
HARMEAN function, 729
HASDATE function, 531
HasFormula property, 530, 647
HASLINK function, 532
Help ➪ Lotus 1-2-3 Help, 701
Herber, Hans, 165
HEX2BIN function, 720
HEX2DEC function, 720
HEX2OCT function, 720
hexadecimal numbers, converting to/from,

719, 720
Hidden property, 649
hiding formulas, 26, 48–49
histograms, 123–124, 198–200, 451–452. See

also charts
history of Excel, 4–7
HLOOKUP function

arguments, 215
case sensitivity, 222
described, 212, 725
errors returned by, 565
looking up closest match, 230–231
looking up exact values, 220
syntax, 215

holidays.xls (on the CD-ROM), 766
Home Page, Excel, 760
HOUR function, 168, 718
HYPERLINK function, 725
Hypertext Markup Language (HTML), using as

native file format, 8
HYPGEOMDIST function, 729
hypocycloid curves, plotting in charts, 468–469
hypocycloid.xls (on the CD-ROM), 771

I
If Err statements, 642
IF function

cell ranges, identifying differences between
using, 404

cell ranges, identifying values in using,
399, 404–405

circular references, in intentional, 122
described, 99, 180, 724
error values, by displaying empty string

using, 524
error values, identifying using,

398, 399, 564

798 Index

4800-X Index.F 8/27/01 12:00 PM Page 798

nesting, 103, 393
text operations, in, 115, 132, 133
time stamp calculations, in, 432

If-Then constructs, 620–621, 633–635
If-Then-Else constructs, 634, 635
IMABS function, 720
IMAGINARY function, 720
IMARGUMENT function, 720
IMCONJUGATE function, 720
IMCOS function, 720
IMDIV function, 720
IMEXP function, 720
IMLN function, 720
IMLOG2 function, 720
IMLOG10 function, 720
import operations. See also Lotus 1-2-3

database data, 245
numbers as text considerations, 115
transition formula evaluation, 74–75, 261,

700–701, 702
validation checks following, 406

IMPOWER function, 720
IMPRODUCT function, 720
IMREAL function, 720
IMSIN function, 720
IMSQRT function, 720
IMSUB function, 720
IMSUM function, 720
INDEX function

array elements, accessing using, 383, 405
array specification using, 91
cell ranges, return single values from

multicell using, 73, 405
described, 725
form, choosing, 108
lookup formulas, in, 212, 217–219, 227
MATCH function, combining with, 217–219
volatile nature of, 111

indices, 346–347, 370–372
INDIRECT function

cell range names, working with, 88–90
described, 725
integers, generating consecutive using, 390
lookup formulas, in, 231
summing operations, in, 402
volatile nature of, 111
worksheet-level names, working with, 89

information functions, 110, 723–724
INFO function, 723
Insert Calculated Field dialog box, 508
Insert Calculated Item dialog box, 510
Insert ➪ Diagram, 18
Insert dialog box, 10
Insert ➪ Function, 105
Insert Function dialog box

accessing, 105
functions, descriptions displayed, 606–607

functions, inserting, 104–106, 108, 607
functions, listing available, 105, 605
functions, searching, 105
functions, selecting, 105–106
functions, specifying

categories for, 607–609
Insert ➪ Map, 19
Insert ➪ Module, 600
Insert ➪ Name ➪ Apply, 73
Insert ➪ Name ➪ Create, 61, 228
Insert ➪ Name ➪ Define, 58, 444
Insert ➪ Name ➪ Paste, 32
Insert-A-Date utility (on the CD-ROM), 159
INT function, 285, 288–289, 726
integers

days of week, returning as, 679
generating consecutive, 389–390, 406
generating consecutive arranged

randomly, 689–690
generating random, 433–434
generating random nonduplicated, 689–690
summing digits of using arrays, 406–408
truncating numbers to, 285, 288–289

INTERCEPT function, 729
interest

accumulation calculations,
297–304, 362, 721

amortization calculations, 308–313
amortization schedules, 320, 322, 352–358
Analysis ToolPak add-in features, 322
annual effective, 314, 722
annual effective versus nominal

compounded monthly, 311
annual in arrears basis, 319
annual payments / 12 basis, 319–320
on balances, negative versus

positive, 344–345
compounding frequency not matching

payment frequency, 323–324
conversions, 313–316
cumulative, returning, 721
defined, 294
discounting calculations, 304–308,

329–330, 339, 341–342
Excel functions limited to one level, 324
finance versus deposit rate, 343–344
flat, 318–319
hurdle, 330
Internal Rate of Return (IRR) analyses, 343
loan analysis, variable rate, 369–370
loan payments, returning interest associated

with specific, 722
loans, interest-free, 319

continued

Index 799

4800-X Index.F 8/27/01 12:00 PM Page 799

interest continued
megaformulas, using for calculating,

542–543
monthly effective, 330
multiple, calculation from regular cash

flows, 324, 342–345
Net Present Value (NPV) analyses, 343
nominal, 313, 314, 722
payment for given period, returning, 722
period, 294
periodic effective, 314
principal versus interest calculations,

320–323
quote methods, 313–314
rental calculations, 305–308
return, calculating average, 302, 340–341
securities, calculating accrued interest, 721
tax effects on interest payments

calculations, 320
term, 294
total, 353, 354, 542–543

Interest Conversion Functions Demo.xls (on the
CD-ROM), 769

Internal Rate of Return (IRR)
Analysis ToolPak add-in features, 366
annual effective, 364
averages, calculating, 340–341
cash flow requirements, 339–340, 341
cash flows, calculation against irregular,

366–367
cash flows, discounted, 363, 364
credit card calculations, in, 365
cross-checking, 342
defined, 341
goal seeking, 345
growth rates, calculating, 340–341
interest rate assumptions, 343
loan analysis using, 339
multiple, calculations involving,

342–345, 369
Net Present Value (NPV), as special

case of, 339
Risk Rate Equivalent IRR, 345

Internet resources
comp.apps.spreadsheets FAQ site, 764
Excel Home Page, 760
Excel Web Source, 764
Microsoft Knowledge Base, 759–760
newsgroups, 760–763
Office 2002 Web site, 760
search engines, 762
Spreadsheet Page, The, 763–764
Stephen Bullen’s Excel Page, 764

interpolated lookup.xls (on the CD-ROM), 767
interpolation. See also extrapolation using

charts
charts, in, 454, 474
lookup formulas, in, 231–234

Intersect function, 650–651
Intersect method, 697
INTRATE function, 722
INVALIDPART function, 533
IPMT function, 320–322, 722
IRR. See Internal Rate of Return (IRR)
IRR function

credit card calculations, 365
described, 339, 722
Discounted Cash Flow (DCF), working with,

363, 364
income flow requirements, 339
iteration, 339
loan cost before tax relief calculations, 356
range argument, 339
syntax, 339

ISBLANK function, 110, 724
ISBOLD function, 210, 658
IsDate function, 531, 659
ISEMPTY function, 659
ISERR function, 185–186, 724
ISERROR function, 185–186, 398–399, 659, 724
ISEVEN function, 724
ISITALIC function, 210, 658
ISLIKE function, 137, 670–671
ISLOGICAL function, 185, 659, 724
IsMissing function, 693
ISNA function, 185–186, 398, 724
ISNONTEXT function, 185, 686, 724
IsNull function, 658
ISNUMBER function, 724
ISNUMERIC function, 659, 697
ISODD function, 724
ISPMT function, 722
ISREF function, 724
ISTEXT function, 110, 116, 185, 521, 724
iteration. See also loop constructs

allowing, 429
calculation mode considerations, 430–431
circular references, using, 428–429, 439
errors, 566
IRR function, 339
maximum permitted, setting, 430
RATE function, 302
settings, 52, 427, 428–429, 431, 439
speed considerations, 430

J
Jansen, Thomas, 165
jogging log.xls (on the CD-ROM), 766
Julian dates, 157
JWalk Enhanced Data Form add-in, 248

K
Kapor, Mitch, 4
keyboard shortcuts, 11, 14
KURT function, 730

800 Index

4800-X Index.F 8/27/01 12:00 PM Page 800

L
Labor Day, calculating, 164
LARGE function, 100, 204, 402, 524, 730
last nonempty cell.xls (on the CD-ROM), 773
LASTINCOLUMN function, 680–681
LASTINROW function, 681
LCM function, 726
leap year bug, 147
LEFT function, 102, 127, 133, 693, 732
LEN function (Excel), 126, 391, 406, 732
Len function (Visual Basic for Applications

(VBA)), 620
Like operator, 533
line breaks

cells, in, 15, 119–120
formulas, in, 32

linear interpolation in lookup formulas,
231–234

linear trendline.xls (on the CD-ROM), 771
LINEST function, 391, 730
link formulas, 44–45, 532
link reports, 581
linked picture.xls (on the CD-ROM), 771
liquid measurement unit conversions, 272, 274
List separator setting, 100
lists (worksheet databases), 237. See also

databases (worksheet lists)
LN function, 726
loan data tables.xls (on the CD-ROM), 769
loans. See also Payment (PMT)

amortization calculations, 308–313
amortization schedules, 320, 322, 352–358
annual in arrears basis, 319
cash price equivalent, comparing, 319
cost, calculating effective, 316–320
cost before tax relief calculations, 356
Effx_AnnEff function in loan calculations,

319–320
fees, bank, 317–318
flat rate, 318–319
interest associated with specific payments,

returning, 722
interest-free, 319
Internal Rate of Return (IRR), analysis

using, 339
mortgage calculations, 309–310, 311–313,

317–318, 319–320, 322–323
overdrafts, 303
principal calculations, 320–323, 721
RATE function in cost calculations, 318–319
summary data tables, 358–361
terminology, 294
variable rate analysis, 369–370

LOG function, 726
LOG10 function, 726

logarithms, returning, 726
LOGEST function, 391, 730
logical comparison operators, 36, 38, 568
logical functions, 110, 400–401, 724
logical functions.xls (on the CD-ROM), 770
LOGINV function, 730
LOGNORMDIST function, 730
lookup address.xls (on the CD-ROM), 767
lookup formulas

array formulas, using, 222, 224, 225–226,
229, 395–396

averages, calculating using, 221, 225
case-sensitive, 222
cells, empty, 219
described, 211–212
functions relevant to, 110, 212, 725
grade point average calculations, 225
horizontal lookups, 212, 215, 220
linear interpolation in, 231–234
missing data errors, 565
ranges, returning item position in, 212, 217,

229–230
ranges, returning references to, 212
ranges, returning values from, 212, 216–219
sort order considerations, 213, 216
tax calculations using, 110, 214, 216
test score calculations, 224
two-column lookups, 228–229
two-way lookups, 226–228
values, estimating missing, 231–234
values, looking up closest match, 230–231
values, looking up exact, 220
values, looking up in columns other than

first, 221
values, returning specific from listed, 212
vertical lookups, 212, 213–214, 220–221
wildcard characters in, 214, 215, 217

LOOKUP function, 212, 216–217, 234, 725
lookup tables, 213, 215, 223
lookup to the left.xls (on the CD-ROM), 767
Lookup Wizard add-in, 227
loop constructs. See also iteration

cell ranges, looping through, 643–644
circular references, using, 428
counters, using, 639–640
Do Until loops, 640–641
Do While loops, 639–640
For Each-Next loops, 643–644
For-Next loops, 620–621, 637–639, 646
variables in, monitoring values using

Debug.Print statements, 612–613
variables in, monitoring values using

MsgBox statements, 611
Visual Basic for Applications (VBA),

611–613, 620–621, 636–641

Index 801

4800-X Index.F 8/27/01 12:00 PM Page 801

Lotus 1-2-3
array formulas, using to convert database

functions, 715
Boolean expressions, differences in values

returned, 702–703
calculation order differences, 701
commands, listing, 701
database criteria evaluation differences, 703
database functions, converting, 714–715
date features legacy, 147, 158
dates containing hyphens, importing, 703
file types, 699
files, importing from, 261, 700
files supported in Excel, 700
formulas, differences from Excel, 700
formulas, importing from, 700–701
functions, Excel equivalents, 704–713
help feature, 701
history, 4
logical expressions, differences in values

returned, 702–703
macros, executing in Excel, 704
number values as text, 114
operator precedence differences, 701
operators, Excel accommodation of, 14, 30,

101
text data in numerical operations,

differences in values returned, 702
transition formula evaluation, 74–75, 261,

700–701, 702
Version Manager, 23

LOWER function, 126, 732

M
Macauley modified duration, returning, 722
Macintosh computers, 3, 4, 140
Macro dialog box, 606
Macro Options dialog box, 607
macro recorder, 596–598. See also Visual Basic

for Applications (VBA)
macros. See also Visual Basic for Applications

(VBA)
cell range names, using in, 58
names created by, hidden, 64
objects, attached to, 14, 16
sheets, 8, 10

Madison, Josh, 278
maps, 19
Martin Luther King Jr. Day, calculating, 163
MATCH function

arguments, 217
cell offset, using to determine, 405
described, 725
INDEX function, combining with, 217–219
missing data errors, 565
space characters in arrays, using to locate,

549–550
syntax, 217

math. See also algebra; geometry; summing;
trigonometry

absolute values, returning, 173, 407
addition, 36, 38, 568, 629
binary numbers, converting to/from, 719,

720
decimal numbers, converting to/from, 719,

720
division, 36, 38, 60, 629, 727
division by zero error, 50, 564
divisor, returning greatest common, 726
equal to comparisons, 34, 36, 119–120, 719
even numbers, testing for, 724
exponentiation, 36, 38, 568, 629, 726
factorials, returning, 720, 726
floating point number errors, 571
functions related to, 109, 726–728
greater than comparisons, 36
greater than or equal to comparisons, 36
hexadecimal numbers, converting to/from,

719, 720
less than comparisons, 36, 37
less than or equal to comparisons, 36, 37
modulo arithmetic, 629
multiple, returning least common, 726
multiplication, 33
multiplication, database entries, 717
multiplication operators, 36, 38, 568, 629
negation operator, 38, 568
octal numbers, converting to/from, 719, 720
odd numbers, testing for, 724
percent operator, 36, 38, 568
pi, returning value of, 727
rounding numbers, 176–177,

285–290, 306, 726, 727
square root, 35, 102, 338, 631, 727
subtraction operator, 36, 38, 569, 629
threshold values, testing if greater than, 720

matrices, 284, 726, 727
MAX function, 405, 433, 453, 524, 730
MAXA function, 730
MAXALLSHEETS function, 682–683
maximums

cells, characters in, 113–114
cells, number of, 9
columns, number of, 9
data type ranges, 624
database records, number of, 22
formula size, 32, 541
iterations, 430
name length, 60

MDETERM function, 726
MDURATION function, 722
measurement unit conversions

Analysis ToolPak add-in features, 269
distance, 272, 273
energy, 272, 276
force, 272, 276

802 Index

4800-X Index.F 8/27/01 12:00 PM Page 802

liquid measurements, 272, 274
metric, to/from, 270–271
surface, 272, 275
tables (on the CD-ROM), 272
temperature, 277
time, 272, 277
volume calculations, 272, 275
weight, 272, 273

MEDIAN function, 730
megaformulas

advantages/disadvantages, 557
arrays in, 548–552, 554–555
cell references, substituting formula text for,

544
checksum digits, working with, 552
creating, 542–543, 550
credit card validity checks using, 552–556
described, 541
interest calculations using, 542–543
intermediate formulas, avoiding using, 541
length, maximum, 541
names, removing middle using, 544–547
parentheses in, 551
spaces, returning positions of using, 548–552
speed considerations, 547–548
text, copying from formulas, 544
text manipulations using, 544–547

Memorial Day, calculating, 164
menus, 11. See also toolbars
messages, custom data validation, 534
metric units, conversion to/from, 270–271
Microsoft resources

Excel Home Page, 760
Knowledge Base, 759–760
newsgroups, 761–762
Office 2002 Web site, 760
support options, listing, 759

MID function (Excel), 127, 153, 407, 549, 732
Mid function (Visual Basic for Applications

(VBA)), 621
military time, converting from, 174
MIN function, 405, 453, 730
MINA function, 730
MINUTE function, 168, 718
MINVERSE function, 391, 726
MIRR function, 324, 342–345, 722
MMULT function, 391, 727
MOD function, 173, 409, 456, 525, 727
MODE function, 191, 730
modules. See also Visual Basic for Applications

(VBA)
adding, 592, 600
class, 593
exporting, 593
importing, 593
introduced, 588
naming/renaming, 592
removing, 593
sheets, 8

modulo arithmetic, 629
MONTH function, 150, 161, 168, 522, 718
MONTHNAMES function, 687–688
monthnames.xls (on the CD-ROM), 773
MONTHWEEK function, 678–679
MROUND function, 285, 287, 727
MsgBox statements, 610–612
multi-cell array formulas.xls (on the CD-ROM),

770
MULTINOMIAL function, 727
MultiPlan, 4
multiple charts.xls (on the CD-ROM), 771
multiple criteria counting.xls (on the CD-ROM),

767
multiple lookup tables.xls (on the CD-ROM), 767
multiplication

database entries, 717
introduced, 33
operators, 36, 38, 568, 629

multisheet functions.xls (on the CD-ROM), 773
Myfuncs.xls, 616
MYSUM function, 695–698
mysum function.xls (on the CD-ROM), 773

N
N function, 724
NA function, 724
#N/A missing data errors, 50, 185–186, 398, 565
Name box

accessing, 58, 61
cell range selection using, 60–61
cell selection using, 60–61
name changing using, 80
name creation using, 59–61, 67
name display in, 59, 64, 66, 67, 83

Name Lister utility (on the CD-ROM), 64, 581
Name property, 648
#NAME? undefined name/range errors, 50, 565
names. See also cell names; cell ranges, names

add-ins, created by, 64
application names, returning, 657
array constants, naming, 381–383
changing, 8, 76, 80
characters, prohibited, 60
charts, naming, 80
columns, naming, 63
constants, naming, 81–83, 381–383
copying/pasting considerations,

32, 64, 78–79
deleting, 75
described, 57–58
formulas, dynamic named, 91–93
formulas, named, 80
formulas, using arrays in named, 90–91,

381–383
formulas, using cell range references in

named, 84–85

continued

Index 803

4800-X Index.F 8/27/01 12:00 PM Page 803

names continued
formulas, using cell references in named,

84–87
formulas, using functions in named, 83–84
hidden, 64
internal to Excel, 64
internal to Excel, modifying, 64
internal to Excel, overriding, 60
length, maximum, 60
listing, 64, 80, 581
macros, created by, 64
multisheet, 65–66
objects, naming, 80
personal, changing case, 126–127
personal, extracting portions of, 134–135
personal, removing middle, 544–547
pivot tables, naming, 500
precedence, 67
redefining, 76
rows, naming, 63
rules, 60
scope, 66–67
spaces in, 60, 67
unapplying, 74–75
workbook-level, 67–68, 69
worksheet names, changing, 8
worksheet-level, 67–68, 69

natural language formulas, 71–72
negation operator, 38, 568
NEGBINOMDIST function, 730
nested subtotals.xls (on the CD-ROM), 768
Net Present Value (NPV). See also Present

Value (PV)
accumulation calculations, 324, 337–338,

346–347
Analysis ToolPak add-in features, 366
cash flows, calculating accumulation at

different rates, 324, 346–347
cash flows, calculating for irregular, 366,

367–368
cash flows, calculating sums of irregular,

325, 366, 367–368
cash flows, calculating sums of regular, 324,

329–338
cash flows, discounted, 363, 364
cash flow’s effect on, 330
cash flows beginning at end of first period,

calculating for, 332
cash flows in advance, calculating for,

333–334
cash flows initially positive, calculating for,

332–333
cash flows series, calculating for, 331
cash flows with rate time period mismatch,

calculating for, 335–336
cash flows with terminal values, calculating

for, 333–335
credit card calculations, in, 365
cross-checking calculations, 331, 339, 342

defined, 330
discount rate, calculations involving,

329–330, 339, 341–342, 363–364
Future Value (FV), calculating from, 337
interest rate assumptions, 343
Internal Rate of Return (IRR) as special case

of, 339
negative, 330
positive, 330
rate, affect on, 330
rental situations, 333, 336, 338
zero, returning, 339–342

net profit (circular).xls (on the CD-ROM), 770
net profit (not circular).xls (on the CD-ROM),

770
NETWORKDAYS function, 150, 154–155, 718
newsgroups, Excel, 760–763
NEXTDAY function, 678
NEXTMONDAY function, 677–678
no middle name.xls (on the CD-ROM), 772
NOMINAL function, 315–316, 722
Nomx_AnnEff function, 315
Nomx_Effx function, 315, 318, 322–323
Nomx_Effy function, 315, 353
Nomx_Nomy function, 315
nonlinear trendline.xls (on the CD-ROM), 771
NORMDIST function, 730
NORMINV function, 730
NORMSDIST function, 730
NORMSINV function, 730
NOT function, 724
#NOT# Lotus logical operator, 703
NOW function

chart updates using, 466
circular references, in, 122
clocks, displaying using, 484
date, returning using, 122, 150, 168
described, 718
time, returning using, 122, 150, 168, 432
volatile nature of, 111

NPER function
accumulation calculations, 298, 303
amortization calculations, 310–311
arguments, required, 294
credit card calculations, 324, 365
described, 722
money flow, 295
PMT function, relationship with, 295
RATE function, relationship with, 295
time value of money concept used by, 295

NPV. See Net Present Value (NPV)
NPV function

cash flows beginning at end of first period
calculations, 332

cash flows in advance calculations, 333–334
cash flows initially positive calculations,

332–333
cash flows series calculations, 331

804 Index

4800-X Index.F 8/27/01 12:00 PM Page 804

cash flows with rate time period mismatch
calculations, 335–336

cash flows with terminal value calculations,
333–335

credit card calculations, in, 365
described, 722
Discounted Cash Flow (DCF), working with,

363, 364
PMT function, nesting in, 338
rental situations, calculations in, 333, 336

#NULL! range intersection errors, 50, 565–566
Null values, testing for, 658
#NUM! errors, 50, 566
number formats

Accounting format, 736
aligning numbers using custom formats,

748, 750
automatic, 16, 733–734
automatic, avoiding, 734
cell format, returning, 648, 659
cell references, correspondence in, 31
cells, displaying number format of, 756
cells, filling with repeating characters using

custom formats, 756–757
cells, padding with dashes using custom

formats, 756–757
cells containing specific, counting, 210
charts, formatting numbers in, 452, 737
codes, custom format, 738–739, 740–741
colors in custom formats, 518, 739, 751–752
commas, 733, 735
conditional formatting, 518, 750–751
creating custom, 738–742
currency, 15, 16, 733, 735, 736
date format, applying, 140,

145–146, 734, 736
date format, automatic, 146, 734
date format, custom, 146, 741, 752
date format, default, 141
date format compatibility, 139, 152, 254
date formats recognized, 141–142
decimal places, increasing/decreasing,

735, 742
default, 733
dots, displaying leading using custom

formats, 757
exponential format, 734, 737
Format Cells dialog box, using, 736–737
Formatting toolbar, using, 734–735
fractions, 737, 748–749
General format, 733, 736
hiding values using, 755
locale-dependent, 737
negative sign display in custom

formats, 750
percentages, 15, 734, 735, 736, 747
predefined, 16

preformatting cells to avoid
automatic, 734, 740

scaling values in custom formats, 742–746
scientific notation, 734, 737
shortcut keys for applying, 735
Social Security Numbers, 737
strings, custom format, 738–739
symbols in custom formats, 754–755
testing custom formats, 749
text, displaying in quotes in custom

formats, 749
text, displaying N/A for in custom formats,

749
text, displaying with numbers in custom

formats, 753
text, repeating in custom formats, 749
text, treating numbers as, 737
TEXT function, using for, 754
time, 145–146, 734, 736
time, custom formatting, 146, 741, 752
value display, effect on, 733
worksheets, storage with, 738
zeros, adding to custom formats, 746
zeros, displaying leading in custom

formats, 747
zeros, displaying with dashes in custom

formats, 753–754
zeros, hiding in custom formats, 746–747
Zip Codes, 737, 739, 751

NUMBERFORMAT function, 210, 659
NumberFormat property, 648
numbers. See also math

binary, converting to/from, 719, 720
complex, functions related to, 719, 720
conditional formatting, avoiding using

custom number formats, 518
data entry restriction to number ranges, 536
data entry restriction to whole, 536
decimal numbers, converting to/from,

719, 720
even, testing for, 724
fraction/decimal conversions in financial

formulas, 285
hexadecimal, converting to/from, 719, 720
integers, generating consecutive, 389–390,

406
integers, generating consecutive arranged

randomly, 689–690
integers, generating nonduplicated, 689–690
octal, converting to/from, 719, 720
odd, testing for, 724
ordinals, expressing as, 131–132, 162
padding, 124–125
random, generating, 100, 433–434,

662–664, 689–690, 727
Roman numerals, 166, 633
rounding, 176–177, 285–290, 306, 726, 727

continued

Index 805

4800-X Index.F 8/27/01 12:00 PM Page 805

numbers continued
sign of, returning, 727
spelling out, 137, 674
text, as, 114–115
text, displaying as, 121–122
text string conversion to numeric

values, 407
thousands separator, 298, 733, 735
truncating, 285, 288–289

O
object model, 7
objects

container objects, 647
hierarchy, 656
macros, attached, 14, 16
naming, 80
parent objects, returning, 647, 655–656
selecting, 14, 16
Visual Basic for Applications (VBA), 593

OCT2BIN function, 720
OCT2DEC function, 720
OCT2HEX function, 720
octal numbers, converting to/from, 719, 720
ODD function, 285, 289–290, 727
ODDFPRICE function, 722
ODDFYIELD function, 722
ODDLPRICE function, 722
ODDLYIELD function, 722
Office 2002 Web site, 760
Office XP, Excel 2002 relation to, 6
OFFSET function

array formulas, in, 411
charts, using in, 457, 458–459, 464–465
described, 725
formulas, in dynamic named, 92
lookup formulas, in, 212
values in specified cells, returning using,

411
volatile nature of, 111

Offset property, 646
OLAP pivot table data sources. See Online

Analytical Processing (OLAP) pivot table
data sources

On Error statements, 641–643, 651
Online Analytical Processing (OLAP) pivot table

data sources, 506
operating environment, returning information

about, 723
operators

addition, 36, 38, 568, 629
#AND# Lotus logical operator, 703
And Visual Basic for Applications (VBA)

operator, 629
arithmetic, 36
assignment, 622
concatenation, 36, 38, 119–120, 568, 629

division, 36, 38, 60, 629
Eqv Visual Basic for Applications (VBA)

operator, 629
exponentiation, 36, 38, 568, 629
formula elements, as, 29
Imp Visual Basic for Applications (VBA)

operator, 629
integer division Visual Basic for

Applications (VBA) operator, 60
intersection operators, 36, 70, 72
Like, 533
logical comparison, 36, 38, 568
Mod Visual Basic for Applications (VBA)

operator, 629
multiplication, 36, 38, 568, 629
negation, 38, 568
#NOT# Lotus logical operator, 703
Not Visual Basic for Applications (VBA)

operator, 629
#OR# Lotus logical operator, 703
Or Visual Basic for Applications (VBA)

operator, 629
percent, 36, 38, 568
precedence, 38–40
precedence, debugging, 568–569
precedence, Lotus differences from Excel,

701
Quattro Pro, 101
range operators, 36, 72
range reference, 36, 101
reference operators, 36
search, 129
subtraction, 36, 38, 569, 629
union, 36
Xor Visual Basic for Applications (VBA)

operator, 629
Option Base keyword, 630
Option Explicit statements, 625, 626
optional keyword, 693
Options dialog box

Calculation tab Accept labels in formulas
setting, 71, 255

Calculation tab calculation mode setting,
361

Calculation tab date system setting, 140,
173

Calculation tab Iteration setting, 52, 427,
429, 430

Calculation tab Maximum change setting,
430

Calculation tab Precision as displayed
setting, 570

Chart tab, 454, 457
Color tab, 516
Edit tab, 13, 34
Error Checking tab, 578
General tab, 597

806 Index

4800-X Index.F 8/27/01 12:00 PM Page 806

Transition tab, 74, 261, 700
View tab, 14, 573
Zero values option, 184

OR/AND criteria, 189–191, 208–210
OR function, 37, 103, 400–401, 404, 724
#OR# Lotus logical operator, 703
ordinal dates.xls (on the CD-ROM), 766
outlines, 23, 266–267
overdrafts, 303

P
page breaks between subtotal groups, 265
Page Setup dialog box, 524
Panko, Ray, 560
ParamArray keyword, 694
Parent property, 647
parentheses

entering, 39, 561
function argument delimiters, 99, 100
megaformulas, in, 551
mismatched, debugging, 561
nesting, 39–40
operator precedence control using, 30,

38–40
SERIES formula argument delimiters, 442

passwords
databases, external, 501
project passwords, 590
security of, 26, 618
worksheets, protecting using, 25

Paste Function dialog box, 105, 606
Paste Name dialog box, 32, 83
paste operations. See copy/cut/paste operations
Paste Special feature, 46, 48, 245
Payment (PMT)

accumulation calculations, 299, 301–302
aggregate calculations, 322–323
amortization calculations, 309, 311–313
annual / 12 basis, 319–320
credit card calculations, 324, 365
deferred, 325
defined, 294
discounting calculations, 307, 309–313
Excel functions limited to one level of, 324
frequency mismatch with rate, 323–324
goal seeking calculations, 53–54
mortgage calculations, 296, 310, 311–313
negative values, 296
past-due, 204–205
positive values, 296
principal versus interest calculations,

320–323
rent, 305, 306, 338
schedules calculations, 353
signing, 296
tax effects on interest calculations, 320
varying, 324–326

varying, replacing with time-weighted
average, 338

Pearson, Chip, 764
PEARSON function, 730
peppercorn rent, 306
percentages

charts, displaying as data series in, 448–449
frequency distributions consisting of, 196
number format, 15, 734, 735, 736, 747
operator, 36, 38, 568

PERCENTILE function, 730
PERCENTRANK function, 730
perimeter calculations, geometric, 280–281
PERMUT function, 730
Perpetual Calendar utility (on the CD-ROM),

159
personal names, text manipulations in,

126–127, 134–135, 544–547
pi, returning value of, 727
PI function, 727
pictures, linked, 19, 447–448
Pivot Table toolbar, 508
pivot tables

AutoFormatting, 500
cache, 501
cells, empty, 501
column headers, 492
column orientation, 492
column titles, printing on each page, 501
copying, 504
counting operations in, 181, 195, 494
creating, 495–503
cross-tabulations, 489, 494
data appropriate for, 493–494
data area, 492
Data Form feature, using, 497
data sources, databases as, 496
data sources, external, 496, 501
data sources, multiple consolidation ranges

as, 496
data sources, Online Analytical Processing

(OLAP), 506
data sources, other pivot tables as, 496
data sources, specifying, 496–497
data sources, specifying location, 495
database queries, background, 501
database summaries using, 491
databases, external, 501
dates, summarizing by, 503–505
described, 24, 489
drag and drop, 499, 502, 510
drilling to details, 501
error value display, 501
fields, calculated, 506–511
fields, column, 492, 501
fields, customizing, 499
fields, dragging, 499, 502

continued

Index 807

4800-X Index.F 8/27/01 12:00 PM Page 807

pivot tables continued
fields, names in data source, 496
fields, ordering on page, 501
fields, page, 493
fields, row, 493
fields, summarizing non-numeric, 494
formatting, preserving, 500
formulas, using for calculations in, 506,

508–509
formulas, using in place of, 489
frequency distributions, 195, 489
grand totals, 492, 500
groups, 492, 503
groups, creating automatically, 503
groups, dates, 503–505
groups, post hoc, 489
interactivity, 489
item labels, repeating on each page, 501
items, 492
items, calculated, 506–511
items, dragging, 510
layout, 498–499, 501, 502
layout, saving data with, 501
location, 497
memory, optimizing, 501
merge labels, 500
naming, 500
numeric values in, 499
page setup, 493, 500
passwords for external databases, saving,

501
printing, 500, 501
range, specifying, 496–497
refreshing, 489, 493, 501
row headers, 492
row orientation, 493
saving data with layout, 501
source data, 493
subtotals, 493
subtotals of hidden page items, 500
summarizing data using, 414
summing operations in, 181, 492, 500, 501
totals, marking with asterisks, 501
updates, automatic, 489
uses of, 489
version differences, 495
versions of Excel, differences between, 495,

498, 499, 504
worksheets, saving in, 497

PivotChart Report, 495
PivotChart Wizard, 495–498
PivotTable Field List toolbar, 499, 502
PivotTable ➪ Formulas ➪ Calculated Field, 508
PivotTable ➪ Formulas ➪ Calculated Item, 510
PivotTable Options dialog box, 500
plot every nth data point.xls (on the CD-ROM),

772

plot last n data points.xls (on the CD-ROM),
772

PMT. See Payment (PMT)
PMT function

amortization calculations, 309, 312–313
amortization schedules, payment calculation

in, 353, 356–357
arguments, required, 293
credit card calculations, in, 365
described, 722
discounting calculations, 307
money flow, 295
NPER function, relationship with, 295
NPV function, nesting in, 338
payments, calculating aggregate of,

322–323
principal versus interest payment

calculations, cross-checking using, 322
RATE function, relationship with, 295
time value of money concept used by, 295

POISSON function, 730
pop-up boxes, monitoring variables using,

610–612
position of last space.xls (on the CD-ROM), 772
POWER function, 727
Power Utility Pak (on the CD-ROM)

Acrobat Reader, 765, 776
auditing features, 575, 581–582
charts tools, 446
Compare Sheets or Ranges feature, 581
Date Report, 159, 581
described, 21, 765
discount coupon, 582
formula listing feature, 575
Formula Report feature, 581
Insert-A-Date, 159
installing/uninstalling, 774
link report feature, 581
Name Lister, 64, 581
Perpetual Calendar, 159
printing tool, 575
registering, 774
Reminder Alarm, 159
Sound-Proof 2000, 765, 775–776
summary reports tool, 581
Time Tracker, 159
VBA Project Summary Report, 581
Workbook Link Report, 581
Workbook Summary Report, 581
Worksheet Map, 581

PPMT function, 320–322, 722
precedents, cell, 575–576
precision as displayed setting, 570
Present Value (PV). See also Net Present Value

(NPV)
accumulation at different rates, calculating,

324, 346–347
amortization calculations, 309–310

808 Index

4800-X Index.F 8/27/01 12:00 PM Page 808

calculating, 304–305, 324–325
defined, 294
discounting calculations, 304–306, 307
Future Value (FV), calculating from, 324
Internal Rate of Return (IRR) checks using

sum of, 341–342
Net Present Value (NPV) checks using sum

of, 341–342
Presidents’ Day, calculating, 164
PRICE function, 722
PRICEDISC function, 722
PRICEMAT function, 722
Print keyword, 615
Print_Area internal name, 64
printing

characters, removing nonprinting, 125–126
charts, 10, 443
error values options, 524, 563
pivot tables, 500, 501
Power Utility Pak (on the CD-ROM) tool,

575
Print_Titles internal name, 64
PROB function, 730
PRODUCT function, 727
projects. See also Visual Basic for Applications

(VBA)
code window, 593
described, 590
expanding/contracting, 590
modules, adding to, 600
naming/renaming, 591, 605
passwords, 590
saving, 598
workbooks as, 590

PROPER function, 98, 126, 732
Protect Sheet dialog box, 25, 26
Protect Workbook dialog box, 26
protection features, 25–26, 49
Public keyword, 630
PV. See Present Value (PV)
PV function

accumulation calculations, 298–299,
303–304

amortization calculations, 309–310, 324
arguments, required, 293
credit card calculations, 365
described, 723
discounting calculations, 304–306, 307–308
money flow, 295
payment levels, chaining to deal with

differing, 325–326
time value of money concept used, 295

Q
QUARTILE function, 453, 730
quartile plots, 453–455
Quattro Pro, 5, 101
Query utility, 496

QUOTIENT function, 727

R
R1C1 notation, 43–44
RADIANS function, 103, 279, 727
RAND function, 100, 111, 663, 727
RANDBETWEEN function, 727
random integers function.xls (on the CD-ROM),

773
random number generation

0 and 1, between, 100
cell ranges, in, 433–434, 663, 689–690
cells, selecting random using, 663–664
circular reference formulas, using, 433–434
integers, 433–434
integers, random nonduplicated, 689–690
range, in specified, 727
recalculation, nonchanging during, 663

RANDOMINTEGERS function, 689–690
Range objects

cell ranges, returning for, 646, 651–652
parent, returning, 655–656
variables, Range object, 649, 654

Range property, 644–645
range randomize function.xls (on the CD-ROM),

773
range reference operator, 36, 101
RANGERANDOMIZE function, 691–692
RANK function, 412–413, 730
ranking data, 412–413
rate, interest. See interest
rate, return. See return rate
RATE function

accumulation calculations, 298, 299–300,
302

amortization calculations, 311
arguments, required, 294
credit card calculations, 365
cross-checks using, 305
described, 723
discounting calculations, 306, 307–308
iteration, 302
loan effective cost calculations, 318–319
money flow, 295
NPER function, relationship with, 295
PMT function, relationship with, 295
time value of money concept used, 295

real estate database.xls (on the CD-ROM), 768
RECEIVED function, 723
Record Macro dialog box, 596
recursive equations.xls (on the CD-ROM), 770
#REF! invalid cell reference errors, 50, 565
reference functions, 110, 725
references, circular. See circular references
References dialog box, 604–605
References node, 591
Reminder Alarm utility (on the CD-ROM), 159

Index 809

4800-X Index.F 8/27/01 12:00 PM Page 809

REMOVESPACES function, 619–621, 631
rental situations

annualized, 308, 336
cash flow calculations, 333, 336
discounting calculations, 305–308
Net Present Value (NPV) calculations, 333,

336, 338
payments, replacing varying with time-

weighted average, 338
peppercorn rent, 306

REPLACE function (Excel), 128, 732
Replace function (Visual Basic for Applications

(VBA)), 631–632
reports

date reports, 159, 581
formulas, listing all in worksheet, 581
PivotChart Report, 495
Visual Basic for Applications (VBA)

procedures, 581
workbook links, 581
workbook summary, 581

REPT function, 123–124, 732
return rate. See also Internal Rate of Return

(IRR)
annual effective, 364, 367–368
average, calculating, 302, 340–341
average, geometric, 340
Risk Free Rate of Return, 345
Risk Rate Equivalent Internal Rate of

Return, 345
REVERSETEXT function, 137, 611, 614, 668,

685–686
REVERSETEXT2 function, 668
RIGHT function, 127, 153, 732
ROMAN function, 166, 633, 727
Roman numerals, 166, 633
ROUND function, 176–177, 285, 286–287, 727
round numbers

creating, 176–177, 285–290, 306, 726, 727
summing, 408

ROUNDDOWN function, 285, 286, 727
ROUNDUP function, 166, 285, 286, 727
ROW function, 389–390, 406, 525, 725
RowOfLargest function, 639
rows. See also worksheets

cell ranges, returning from, 649
cell ranges, returning number in, 648
cell ranges, testing for hidden in, 649,

654–655
cells, returning last nonempty in, 680–681
charts, plotting based on active, 460–461
charts, plotting data in hidden, 455
database rows, as records, 238
database rows, freezing first, 239
database rows, labels, 239
deleting, 75, 77–78
empty, 239

finding row of value’s nth occurrence, 405
formatting, conditional, 525–526, 529
function arguments, as, 101
height, changing, 9
hiding, 243, 244, 355
inserting, cell name behavior during, 77
labels, using in formulas, 71–72
naming, 63
number, returning, 456
number of, maximum, 9, 238
pivot table row headers, 492
returning last value in, 412
shading using conditional formatting,

525–526
testing for hidden, 649, 654–655

ROWS function, 111, 183, 725
Rows property, 648
RSQ function, 474, 731
RTD function, 725
Run ➪ Run Sub/UserForm, 614

S
Sachs, Jonathon, 4
sales by date.xls (on the CD-ROM), 772
sales commission calculations, 664–667
scenario management, 23
schedules

accumulation, 361–363
amortization, 320, 322, 352–358
balance calculations, 354
cash flow, 324–325, 351
cash flow, discounted, 363–364
dynamic, 351–352
hard coding in, 351, 354
holding periods calculations, 353
indices, creating from schedules of

changing values, 370–372
interest rates, calculating periodic, 353
interest rates, calculating total, 353, 354
interest rates, variable, 356–358
intermediate calculations section, 352, 353
labels, descriptive, 354
payment calculations, 353, 356–357
principal calculations, 354
rows, hiding unused, 355
self-checking, 355
summary output section, 352, 353–354
time periods, cross-comparison between,

370
time periods, incrementing, 354
time periods, variable, 352
user input section, 352
worksheets, storage in, 352

SCRAMBLE function, 137, 669
search and replace operations, 129–130, 516
SEARCH function, 128–129, 732

810 Index

4800-X Index.F 8/27/01 12:00 PM Page 810

searching. See also lookup formulas
cell ranges, finding nth occurrence of values

in, 405
cell ranges, finding values in, 403–404
conditional formatting, for cells containing,

520
dates, 143
formulas, identifying cells containing,

530–531, 573
functions, for, 105
text, for, 128–130
wildcard characters, using, 129, 137

SECOND function, 168, 718
securities, functions related to, 721, 722, 723
security. See also passwords

formulas, hiding, 26, 48–49
number padding, 124–125
passwords, 26, 618
Visual Basic for Applications (VBA) code,

618
Select Case constructs, 635–636, 666
SERIES formulas. See also charts

activating, 445
arguments, 442
category_labels argument, 442
charts, relation to, 441–442
described, 441–442
formulas, using named in, 444, 460–461
name argument, 442
names, referencing, 77, 200, 442, 444,

460–461
order argument, 442
plotting order, 442
range, unlinking from, 444
range references, 442
syntax, 442
values argument, 442
workbooks, referencing, 442
worksheet functions, using in, 442
worksheets, referencing, 442

SERIES function, 464
SERIESSUM function, 727
Set keyword, 649–650
shapes, 18
SHEETNAME function, 655–656
SHEETOFFSET function, 683–685
Sheet_Title internal name, 64
shortcut keys, 11, 14
shortcut menus, 11
shortcuts, document, 725
SIGN function, 727
simple functions.xls (on the CD-ROM), 773
simple loan amortization schedule.xls (on the

CD-ROM), 769
SIMPLESUM function, 694–695
simultaneous equations.xls (on the CD-ROM),

768, 770

SIN function
angles, returning sine of, 103
chart operations, in, 462, 483–484
described, 727

single-cell array formulas.xls (on the CD-ROM),
770

SINH function, 727
SKEW function, 731
SLN function, 348, 349, 723
SLOPE function, 731
SMALL function, 204, 392, 405, 731
Smart Icon feature, 50
Smart Tags, 12, 47, 578–579
Social Security Numbers number format, 737
solve right triangle.xls (on the CD-ROM), 768
Solver add-in

goal seeking, using in, 55
introduced, 24
names created by, hidden, 64

SORTED function, 419–420
sorted function.xls (on the CD-ROM), 770
sorting

array formulas, using, 416
databases, in, 22
lookup formulas, considerations in, 213, 216
ranges dynamically, 416

Sound-Proof 2000 add-in (on the CD-ROM),
765, 775–776

Southern Cross Software, 582
spaces

cells containing, empty, 563
characters, determining if spaces, 621
formulas, in, 32
names, in, 60, 67
positions of, returning, 548–552
removing, 125–126, 619–621, 631

special characters, 119
speech feature, 775
speed considerations

arrays, 385
formulas, intermediate, 548
functions, custom, 599
iteration, 430
summary data tables, 361
Visual Basic for Applications (VBA), 548,

599, 623, 625
SPELLDOLLARS function, 137, 674
spelldollars function.xls (on the CD-ROM), 773
Spreadsheet Detective, 582
Spreadsheet Page, The, 763–764
Spreadsheet Research (SSR) Web site, 560
Sqr function, 631
SQRT function, 35, 727
SQRTPI function, 727
Square function, 645
square root, 35, 102, 338, 631, 727

Index 811

4800-X Index.F 8/27/01 12:00 PM Page 811

squares
returning, 645
summing, 180–181, 643–644
summing differences of, 181

SSR Web site. See Spreadsheet Research (SSR)
Web site

Standard toolbar
AutoSum button, 107
Copy button, 46
Insert Function button, 105
Paste button, 46

STANDARDIZE function, 731
STATFUNCTION function, 660–662
statfunction function.xls (on the CD-ROM), 773
STATICRAND function, 663, 664
statistics. See also counting

Analysis ToolPak add-in features, 109
covariance, 109
frequency distributions, 195–201
functions related to, 109, 728–731
sums of differences of squares, 181
sums of squares, 180–181
variance, 718

STDEV function, 731
STDEVA function, 731
STDEVP function, 731
STDEVPA function, 731
Stephen Bullen’s Excel Page, 764
STEYX function, 731
Stop Recording toolbar, 597
strings, 113. See also text operations
stylistic formatting, 16–17
SUBSTITUTE function, 128, 130, 136, 621, 732
Subtotal dialog box, 264–265
SUBTOTAL function, 180, 242–244,

264–267, 727
subtotals, 107, 180, 242–243, 244, 264–267
subtraction, 33–34, 36, 38, 569, 629
sum every nth.xls (on the CD-ROM), 770
SUM function. See also summing

arguments, 201–212, 694, 695
described, 727

SUMIF function, 180, 204, 206–208, 399, 727.
See also summing

summary information, schedule, 352, 353–354
summary reports using data tables. See data

tables, summary
summary reports using pivot tables. See pivot

tables
summary reports using Power Utility Pak, 581
summing

AND/OR criteria, using, 208–210
array constants, summing operations

involving, 378–379
arrays, summing operations returning, 180
AutoCalculate, using, 182
AutoSum, 107

cell ranges, all values in, 201–202
cell ranges, every nth value in, 409–410
cell ranges, largest values in, 204, 402
cell ranges, smallest values in, 204, 392
cell ranges, squares of values in, 643–644
cell ranges, visible cells in, 210, 676–677
cell ranges based on different ranges,

206–207
cell ranges containing error values, 398
checksum digits, 552
columns meeting specified criteria, 180
conditional sums, 180, 204–210, 399–400,

401
cumulative sums, 202–203
databases, in, 242–243, 259–260, 264–267,

718
date comparisons, based on, 207
error values, cell ranges containing, 398
formatting, based on cell, 210
functions related to, 180–181, 210
INDIRECT function, involving, 402
integers, digits of, 406–408
introduced, 33, 34
negative values only, 206
Net Present Value (NPV) of irregular flows,

325, 366, 367–368
Net Present Value (NPV) of regular flows,

324, 329–338
operator, 36
pivot tables, in, 181, 492, 500, 501
positive values only, 399
power series, 727
Present Value (PV) sums in cross-checking,

341–342
products, 180, 209
round values, 408
running totals, 202–203
squares, differences of, 181
squares, of, 180–181
subtotals, 107, 180, 242–243, 244, 264–267
text comparisons, based on, 207
time periods, 170–172, 175
Visual Basic for Applications (VBA)

functions, using, 210, 643–644,
676–677, 694–698

SumOfSquares function, 644
SUMPRODUCT function, 180, 209
SUMSQ function, 180, 728
SUMVISIBLE function, 210, 676–677
SUMX2MY2 function, 181, 728
SUMX2PY2 function, 181, 728
SUMXMY2 function, 181, 728
surface calculations

geometry, 282
measurement unit conversions, 272, 275

surface chart.xls (on the CD-ROM), 772
SYD function, 348, 349, 723

812 Index

4800-X Index.F 8/27/01 12:00 PM Page 812

Symbol dialog box, 119
symbols, working with, 119
system settings

date format, 141
list separator, 100

T
T function, 732
Table dialog box, 263
TABLE function, 359, 361
tables, dynamic crosstab, 413–414
TAN function, 728
TANH function, 728
taxes

interest payments calculations, effect on,
320

lookup formulas, using, 110, 214, 216
TBILLEQ function, 723
TBILLPRICE function, 723
TBILLYIELD function, 723
TDIST function, 731
temperature measurement unit conversions, 277
term (interest period)

accumulation calculations, 298, 303
amortization calculations, 310
defined, 294

test score calculations using lookup formulas,
224

text boxes
charts, in, 446–447
fill color, 16

TEXT function, 121–122, 123, 174, 732
text manipulation functions.xls (on the

CD-ROM), 773
text operations

acronyms, returning, 137, 669–670
case conversion, 98, 119, 126–127, 631, 693
cell ranges, returning longest string in, 405
cells, determining if text-containing,

115–117, 137, 671–672
character codes, working with, 117–118
characters, removing nonprinting, 125–126
characters, repeating, 123
characters, returning from beginning of

strings, 102, 127, 133
characters, returning from end of strings,

127, 133
characters, returning from middle of strings,

110, 127, 134–135
characters, returning from nth position in

strings, 137, 672–673
characters, returning from strings based on

separator characters, 137
characters, returning position in string,

128–129
characters, reversing order of, 137, 610–611,

668–669

characters, scrambling, 137, 669
column letters, returning for values

contained in cells, 132
comparison, 119–120, 130–131, 137, 207
concatenation, 36, 38, 119–120, 568, 629
counting characters in text strings, 126,

130, 192–193
counting most frequently occurring text,

191
counting occurrences of substrings,

130–131, 192–193
counting text cells, 185, 187, 392–393
currency values, displaying as text, 122–123
data entry restriction by text length, 536
data entry restriction to text only, 538
dates, converting strings to, 151, 153
dates, returning strings from, 157, 162
filenames, extracting from path, 132–133
formula conversion to text, 35
formulas, copying text from, 544
functions related to, 110, 115, 136–137, 732
histograms, 123–124
IF function, using in, 115, 132, 133
length of strings, returning, 130, 219, 620
megaformulas, using, 544–547
non-numeric characters, removing from

strings, 410
number formats, displaying N/A for using

custom, 749
number formats, displaying text in quotes

using custom, 749
number formats, displaying text with

numbers using custom, 753
number formats, repeating text using

custom, 749
numbers, displaying as text, 114–115,

121–122
numbers, spelling out, 137, 674
numeric values, converting text strings

to, 407
pattern matching, 137, 670–671
personal names, changing case, 126–127
personal names, extracting portions of,

134–135
personal names, removing middle, 544–547
replacement, 127–128, 129–130
spaces, removing excess, 125–126
spaces, returning positions of, 548–552
splitting strings, 136
substrings, returning position of, 128–129
summing based on text comparisons, 207
symbols, working with, 119
time serial numbers, converting text strings

to, 168, 170
time values, returning text from, 174
words, counting, 135–136
words, returning from strings, 133–135

Index 813

4800-X Index.F 8/27/01 12:00 PM Page 813

text wrap, 9, 15, 120–121
text-to-speech feature, 775
Thanksgiving Day, calculating, 164
thermometer chart.xls (on the CD-ROM), 772
thousands separator, 298, 733, 735
time

24-hour values, exceeding, 146, 169,
170–172

AM/PM, determining, 634, 636
Analysis ToolPak add-in features, 112
cells containing, referencing, 146
clocks, creating in charts, 483–485, 486
current, displaying, 168–169
current, entering, 15, 168
current, returning, 122, 634
data validation criteria, 536
dates, entering with, 145
days, as fractional, 142–144
days, associating with, 145
decimal units, converting, 174
differences, calculating, 172–173
displaying, 168–170
entering, 15, 144–145, 168
format, applying, 145–146, 734, 736
format, custom, 146, 741, 752
formats recognized, 144–145
functions related to, 109, 168, 718–719
Greenwich Mean Time (GMT), expressing in

local, 175
IF function in time stamp calculations, 432
measurement unit conversions, 272, 277
midnight, spanning, 173
military time, converting from, 174
negative values, 140, 173
NOW function in time stamp calculations,

432
periods, non–time-of-day, 177–178
replacement characters for invalid values,

50, 562
rounding time values, 176–177
serial numbers, 142–144
serial numbers, converting text strings to,

168, 170, 718
serial numbers, converting to hours, 168,

718
serial numbers, converting to minutes, 168,

718
serial numbers, converting to seconds, 168,

718
serial numbers, returning for current date

and time, 150, 168, 718
serial numbers, returning for current time,

150
serial numbers, returning for particular

time, 168, 169, 718
smallest unit possible, 143
stamps, 168

stamps using intentional circular references,
432

summing operations, 170–172, 175
text, returning, 174
text recognized as, 145
Visual Basic for Applications (VBA),

working with in, 634, 636
zones, converting between, 175–176

TIME function (Excel), 168, 169, 175, 718
Time function (Visual Basic for Applications

(VBA)), 634
time sheet.xls (on the CD-ROM), 766
time stamp.xls (on the CD-ROM), 771
Time Tracker utility (on the CD-ROM), 159
TIMEVALUE function, 168, 170, 174, 718
TINV function, 731
TODAY function

conditional formatting, in, 523
described, 109, 719
displaying current date using, 150
update, automatic, 150
volatile nature of, 111

toolbars. See also menus
customizing, 21
docking, 13
floating, 13
predefined, 13

Tools ➪ Add-Ins, 21
Tools ➪ Auditing, 24
Tools ➪ Conditional Sum, 205
Tools ➪ Data Analysis, 198
Tools ➪ Formula Auditing, 24
Tools ➪ Formula Auditing ➪ Evaluate Formula,

580
Tools ➪ Formula Auditing ➪ Formula Auditing

Mode, 574
Tools ➪ Formula Auditing ➪ Show Formula

Auditing Toolbar, 576
Tools ➪ Goal Seek, 54
Tools ➪ Macro ➪ Macros, 606
Tools ➪ Macro ➪ Record New Macro, 596
Tools ➪ Macro ➪ Visual Basic Editor, 588
Tools ➪ Options, 15
Tools ➪ Protection ➪ Protect Sheet, 25
Tools ➪ Protection ➪ Protect Workbook, 26
Tools ➪ References, 604
total interest.xls (on the CD-ROM), 772
transition formula evaluation, 74–75, 261,

700–701, 702
TRANSPOSE function, 382–383, 388–389, 688,

725
Treasury bills, 345, 723
TREND function, 234, 391, 731
trends

chart trendlines, 469
chart trendlines, coefficient of

determination, 471
chart trendlines, data series versus, 470

814 Index

4800-X Index.F 8/27/01 12:00 PM Page 814

chart trendlines, decimal places setting, 471
chart trendlines, exponential, 474, 477–478
chart trendlines, intercept calculations, 470,

471–472
chart trendlines, linear, 469, 470–471
chart trendlines, logarithmic, 474, 475–476
chart trendlines, moving average option,

474
chart trendlines, nonlinear, 474–479
chart trendlines, polynomial, 474, 478–479
chart trendlines, power, 474, 476–477
chart trendlines, predicted values

calculations, 472–473
chart trendlines, R-squared values, 470, 471,

474
chart trendlines, slope calculations, 471–472
downward, identifying, 527
formatting, conditional, 527
upward, identifying, 527

trigonometry. See also geometry
Analysis ToolPak add-in features, 112
arccosines, 726
arcsines, 726
arctangents, 726
cosines, hyperbolic, 726
cosines, inverse hyperbolic, 726
cosines of complex numbers, 720
functions related to, 109, 726–728
logarithms, returning, 726
radians, assumed in trigonometry functions,

109
sines, hyperbolic, 727
sines, inverse hyperbolic, 726
sines of angles, 103, 727
tangents, 728
tangents, hyperbolic, 728
tangents, inverse hyperbolic, 726

TRIM function, 125–126, 136, 528, 732
TRIMMEAN function, 731
TRUE function, 724
TRUE/FALSE logical values, working with. See

comparison operations, logical
TRUNC function, 285, 288–289, 728
TTEST function, 731
two-column lookup.xls (on the CD-ROM), 768
two-way lookup.xls (on the CD-ROM), 768
TYPE function, 116, 724
TypeName function, 697

U
UCase function, 631, 693
UDFs. See user-defined functions (UDFs)
UI. See user interface (UI)
Unicode character set, 118
Union function, 651
union operator, 36
unique random integers.xls (on the CD-ROM),

771

unit conversion tables.xls (on the CD-ROM),
768

unit conversions, measurement. See
measurement unit conversions

UPPER function, 126, 732
Usenet spreadsheet newsgroup, 761
User function, 600–602
user interface (UI), 11–16
user name, displaying using custom function,

600–602
user-defined functions (UDFs), 111, 588, 599.

See also Visual Basic for Applications
(VBA), functions

UserForms versus dialog sheets, 10
UserName property, 597

V
Val function, 657
validation, data

arrays, determining rage values validity
using, 406

blank entries, allowing/disallowing, 537
conditional formatting, applying to invalid

data, 532–533
criteria, specifying, 534–535
criteria, types, 536–537
data entry restriction by text length, 536
data entry restriction to dates, 536
data entry restriction to larger values than

previous cell, 538–539
data entry restriction to list entries, 89, 352
data entry restriction to nonduplicate

values, 539
data entry restriction to number ranges, 536
data entry restriction to specific characters,

539
data entry restriction to text only, 538
data entry restriction to times, 536
data entry restriction to whole numbers, 536
functions, using custom, 540
invalid data, allowing entry of, 537
invalid data, circling, 537
messages, custom, 534
removing, 536
versions of Excel available in, 533

#VALUE! errors, 50, 567, 610
VALUE function, 407, 732
VAR function, 731
VARA function, 731
variable rate analysis.xls (on the CD-ROM), 770
variable rate loan amortization schedule.xls (on

the CD-ROM), 770
variables

assigning values to, 622–623, 628–629
case sensitivity, 596
cell ranges, assigning to object variables,

649–650

continued

Index 815

4800-X Index.F 8/27/01 12:00 PM Page 815

variables continued
charting functions, double-variable,

466–467
charting functions, single-variable, 462–466
constants, 626–627
counters, 615, 639–640
data type, displaying, 615
dates in, 627–628
Debug.Print statements, monitoring value

using, 612–613
declaring, 594, 620, 624–626
equations, in, 283
Immediate window, monitoring values in,

612–613
monitoring values in loops, 611–613
object variables, 649–650
option explicit setting, 625, 626
pop-up boxes, monitoring value using,

610–612
Range object, 649, 654
spelling errors, 625
string, 621, 627

VARP function, 731
VARPA function, 731
VB Editor. See Visual Basic Editor (VB Editor)
VBA. See Visual Basic for Applications (VBA)
VBA Project Summary Report utility (on the

CD-ROM), 581
VDB function, 348, 349–350, 723
versions of Excel

add-in differences, 618
character support differences, 119
conditional formatting differences, 513
data validation differences, 533
date support differences, 140, 148–149
dialog sheets, inserting from previous, 10
error checking, background, 578–579
error value printing differences, 524, 563
Formula Palette removed from Excel 2002,

32, 106
function categories inherited from previous,

111
history, 5–6
leap year bug, 147
number, returning, 657
pivot table differences, 495, 498, 499, 504
rows, maximum number supported, 9, 238
sub-versions, 7
Visual Basic Editor differences, 588
Visual Basic for Applications (VBA)

compatibility, 632
View ➪ Full Screen, 14
view options, 14, 573–574
View ➪ Sized with Window, 443
View ➪ Toolbars ➪ Customize, 11, 21
View ➪ Toolbars ➪ Forms, 461
VisiCalc, 4

Visual Basic Editor (VB Editor). See also Visual
Basic for Applications (VBA)

activating, 8, 588–589
Auto List Members option, 631
case conversion, automatic, 596
code, entering, 595–596
code window, 590, 593
Debug button, 614
Editor tab, 626, 631
functions, listing, 631–632
Immediate window, 590, 608, 612–613, 615
menu bar, 589
Project window, 590–591
Properties window, 590, 592
Redo, 596
Require Variable Declaration option, 626
shortcut menus, 589
Sub procedures, executing from, 614
syntax error checking, 596, 610
toolbars, 589
Undo, 596
versions of Excel, differences, 588
windows, customizing, 589
windows, minimizing/maximizing, 593–594

Visual Basic for Applications (VBA). See also
Visual Basic Editor (VB Editor); specific
functions, keywords, methods and
properties

acronyms, returning, 137, 669–670
add-ins, creating, 616–618
addition operator, 629
And operator, 629
application names, returning, 657
Application object, 664
arrays, declaring, 630–631
arrays, returning from functions, 418–421,

687–688
arrays of consecutive integers arranged

randomly, generating, 689–690
arrays of range contents arranged randomly,

generating, 691–692
breakpoints, 614, 615, 616
case conversion, 631, 693
case sensitivity, 596, 603
cell range address, returning, 647
cell ranges, assigning to object variables,

649–650
cell ranges, combining, 651
cell ranges, looping through using For

Each-Next, 643–644
cell ranges, randomizing, 691–692
cell ranges, referencing, 644–646
cell ranges, returning cells-used subset,

651–652
cell ranges, returning columns of, 649
cell ranges, returning font properties, 648,

658

816 Index

4800-X Index.F 8/27/01 12:00 PM Page 816

cell ranges, returning intersections, 650–651
cell ranges, returning names of, 648
cell ranges, returning number format, 648,

659
cell ranges, returning number of columns

in, 648
cell ranges, returning number of rows in,

648
cell ranges, returning parent of Range

object, 655–656
cell ranges, returning Range objects for,

646, 651–652
cell ranges, returning rows from, 649
cell ranges, returning worksheets

containing, 647
cell ranges, summing squares of values in,

643–644
cell ranges, summing visible, 210, 676–677
cell ranges, testing for hidden, 654–655
cell ranges, testing for hidden rows/columns

in, 649, 654–655
cells, counting between two values, 675
cells, counting total in range, 644, 647
cells, counting total in worksheet, 645
cells, counting visible, 210, 675–676
cells, determining data type, 659–660
cells, determining if formula contained in,

647, 654
cells, determining if text contained in, 137,

671–672
cells, referencing, 645
cells, returning font properties of, 648, 658
cells, returning formatting information of,

648, 657–659
cells, returning formulas contained in,

646–647
cells, returning last nonempty, 680–681
cells, returning names of, 648
cells, selecting random, 663–664
cells containing formulas, identifying, 647,

654
charts, using in, 461, 484–485
code, case sensitivity, 596
code, copying, 598
code, entering manually, 595–596
code, entering using macro recorder,

596–598
code, indenting, 595
code, inserting Excel worksheet functions

in, 632
code, types of, 594
color fills, returning color index number for,

658–659
comments, 620, 622
commission calculations, 664–667
comparison operations, 137, 629
concatenation operator, 629

constants, 626–627
counters, 615, 639–640
counting functions, 210, 674–676
data types, 624
data types, automatic assignment, 623
data types, declaring, 625
data types, determining, 659–660
data types, displaying, 615
data types returned by functions, specifying,

603, 620
data validation, using in, 540, 661
dates, working with, 627–628, 677–680
day of week, calculating date of next, 678
day of week, returning as integer, 679
days between two dates, calculating, 679
days of dates, returning, 679
Debug.Print statements, monitoring

variables using, 612–613
declarations, 594
division operator, 629
Do Until constructs, 640–641
Do While constructs, 639–640
dollars, spelling out, 137, 674
Eqv operator, 629
error handling, 641–643
error values, returning, 685–686
errors, ignoring, 641–642
errors, logical, 610
errors, runtime, 610, 613–615
errors, syntax, 596, 610, 623
Excel version number, returning, 657
Excel worksheet functions, using, 632
execution control, 633–643
exponentiation operator, 629
expressions, 628
expressions, assignment, 628–629
flow control, 633–643
font properties, returning, 648, 658
For Each-Next constructs, 643–644
formatting information, returning, 648,

657–659
For-Next constructs, 620–621, 637–639, 646
function arguments, 605
function arguments, Boolean, 697
function arguments, determining if missing,

693, 697
function arguments, determining type, 697
function arguments, maximum number of,

694
function arguments, mixing type, 694
function arguments, representing by

variable lists, 603
function categories, assigning to, 111,

607–609
function categories listed, 609

continued

Index 817

4800-X Index.F 8/27/01 12:00 PM Page 817

Visual Basic for Applications (VBA) continued
Function procedures, 594–595, 602,

619–621
Function procedures, creating using macro

recorder, 596
Function procedures in add-ins, 605
functions, built-in, 631–633
functions, calling from Sub procedures,

613–615
functions, creating, 600, 620
functions, creating descriptions for, 606–607
functions, custom, 99, 599–600
functions, data type returned by, 603, 620
functions, debugging, 609–616
functions, declaring, 602–603, 620
functions, ending, 603, 621
functions, exiting, 603
functions, in conditional formatting

formulas, 530–533
functions, in data validation, 540
functions, inserting in formulas, 104–106,

108, 605–609
functions, interest rate conversion, 315
functions, limitations of, 601
functions, listing, 631–632
functions, multifunctional, 660–662
functions, multisheet, 681–685
functions, naming, 603, 607
functions, naming with variable string

contents, 621
functions, optional arguments, 693
functions, passive nature of, 601
functions, private, 602
functions, public, 602
functions, recalculation control, 664
functions, referencing in other workbooks,

604–605
functions, returning arrays from, 418–421,

687–688
functions, static, 602
functions, storage location, 592, 600
functions, testing, 609–610
functions, worksheet changes using, 601
history, 6
If Err statements, 642
If-Then constructs, 620–621, 633–635
If-Then-Else constructs, 634, 635
Immediate window, monitoring variable

values in, 612–613
Imp operator, 629
indentation, 595
integer division operator, 60
integers, generating consecutive arranged

randomly, 689–690
integers, generating nonduplicated, 689–690
interest rate conversions, 315
Intersect method, 697

logical operators, 629
loop constructs, 611–613, 620–621, 636–641
math operations, 629
Mod operator, 629
module sheets, 8
modules, 588
modules, adding, 592, 600
modules, class, 593
modules, exporting, 593
modules, importing, 593
modules, naming/renaming, 592
modules, removing, 593
Monday, calculating date of next, 677–678
months of dates, returning, 679
MsgBox statements, 610–612
multiplication operator, 629
nodes, 590–591
Not operator, 629
Null values, testing for, 658
number format, returning, 648, 659
numbers, generating random, 662–664
object variables, 649–650
objects, 593
On Error statements, 641–643, 651
operators, 595, 629
Option Explicit statements, 625, 626
options, choosing among, 635–636
Or operator, 629
parent objects, returning, 647, 655–656
pop-up boxes, monitoring variables using,

610–612
procedures, 594
procedures, marking as volatile, 664
procedures, reports on, 581
procedures, types of, 20–21
projects, 590
projects, adding modules to, 600
projects, expanding/contracting, 590
projects, naming/renaming, 591, 605
projects, passwords, 590
projects, saving, 598
projects, workbooks as, 590
projects code window, 593
random number generation, 662–664
Range object, returning parent of, 655–656
sales commission calculations, 664–667
security, 618
Select Case constructs, 635–636, 666
speed considerations, 548, 599, 623, 625
squares, returning, 645
statements, 603
statements, commenting out, 622
statements, executing individually as Sub

procedures, 608
statements, executing individually in

Immediate window, 608, 615
statements, executing line-by-line, 614

818 Index

4800-X Index.F 8/27/01 12:00 PM Page 818

statements, lengthy, 595
statements, multi-line, 595, 634
statements, viewing execution in Immediate

window, 590
string variables, 621, 627
Sub procedures, 594
Sub procedures, calling functions from,

613–615
Sub procedures, executing from VB Editor,

614
Sub procedures, executing statements as,

608
Sub procedures, listing available, 606
subtraction operator, 629
summing operations, 210, 643–644,

676–677, 694–698
text comparison operations, 137
text strings, determining if cells contain,

137, 671–672
text strings, extracting nth element from,

137, 672–673
text strings, pattern matching, 137, 670–671
text strings, returning acronyms from, 137,

669–670
text strings, reversing character order, 137,

610–611, 668–669
text strings, scrambling characters in, 137,

669
time, working with, 634, 636
user name display, 600–602
uses, 587
variables, 622
variables, assigning values to, 622–623,

628–629
variables, declaring, 594, 620, 624–626
variables, displaying data type, 615
variables, misspelled, 625
variables, monitoring values in loops,

611–613
variables, object, 649–650
variables, option explicit setting, 625, 626
variables, Range object, 649, 654
variables, storing dates in, 627–628
variables, string, 621, 627
versions of Excel, compatibility with earlier,

632
Volatile method, 657–658, 664
week of month, returning integer for,

678–679
wildcard characters, 670
words, reserved, 623
workbooks, returning names of, 656
workbooks, storage in, 8
worksheet index, returning, 684–685
worksheets, as, 8
worksheets, relative references to, 683–685

worksheets, returning maximum value
across multiple, 682–683

worksheets, returning names of, 655–656
worksheets, working with multiple, 681–685
Xor operator, 629
years between two dates, calculating, 679
years of dates, returning, 679

Visual Basic toolbar, 588
VLOOKUP function

arguments, 213–214, 224
case-sensitivity, 222
closest match lookups, 230
described, 212, 213–214, 725
lookup tables, working with multiple, 223
missing data errors, 565
sales commissions calculations, in, 665
tax rate calculations, in, 214
values, looking up exact, 220
values, looking up in columns other than

first, 221
wildcards, using, 214

VMONTHNAMES function, 688
Volatile method, 657–658, 664
volume calculations

geometry, 282–283
measurement unit conversions, 272, 275

W
Web resources. See Internet resources
WEEKDAY function, 150, 158–161, 523, 719
WEEKNUM function, 150, 719
WEIBULL function, 731
wildcard characters

counting operations, in, 186
examples, 252
lookup formulas, in, 214, 215, 217
searches using, 129, 137
Visual Basic for Applications (VBA), 670

Window ➪ Freeze Panes, 239
Window ➪ Hide, 8
windows

charts, sizing to, 443, 479
charts, viewing embedded charts in

separate, 480
formula/result display, showing in separate,

573–574
moving, disallowing, 26
resizing, disallowing, 26
Visual Basic Editor, 589, 593–594
workbooks, displaying in multiple, 8

WK1 files, 699
WK3 files, 699
WK4 files, 699
WKS files, 699
work days.xls (on the CD-ROM), 766
Workbook Link Report utility (on the

CD-ROM), 581

Index 819

4800-X Index.F 8/27/01 12:00 PM Page 819

Workbook Summary Report utility (on the
CD-ROM), 581

WORKBOOKNAME function, 656
workbooks

active, 8
add-ins, creating from, 616–618
calculation mode setting, 431
code window for, viewing, 590
color formatting, 516
display options, 8
hiding, 8
introduced, 7–8
names, returning, 656
names, spaces in, 44
open, maximum, 8
projects, as, 590
protecting, 26
SERIES formulas, referencing in, 442
summary reports, 581
Visual Basic for Applications (VBA) module

storage in, 8
windows, displaying in multiple, 8
worksheets contained in, default, 10
worksheets contained in, maximum, 8

WORKDAY function, 150, 156, 719
worksheet databases. See databases (worksheet

lists)
worksheet functions, 97. See also functions
worksheet lists. See databases (worksheet lists)
Worksheet Map utility (on the CD-ROM), 581
worksheet outlines. See outlines
WorksheetIndex function, 684–685
worksheets. See also cells; columns; rows

active, 8
cell ranges, referencing in other worksheets,

44–45
cell ranges, returning worksheet containing,

647
cell ranges spanning multiple, 65–66
chart sheets, 8, 10
charts, referring to other worksheets in, 442
charts, storing multiple on, 479–480
clocks, displaying in, 484
conditional formatting, referencing in,

520–521
copying within same workbook, 78–79
database storage in, 239
deleting, named object considerations,

66, 79
dialog box controls, placing on, 19–20
dialog sheets, 8, 10
draw layer, 10, 13, 18–20
formulas in, listing all, 581
index, returning, 684–685
inserting, 66

introduced, 9
macro sheets, 8, 10
maps, inserting in, 19
menu bar, 11
multiple, working with, 9, 681–685
names, changing, 8
names, referencing, 67, 89
names, returning, 655–656
navigating using cell names, 58
number format storage with, 738
number of, default, 10
number of, maximum, 8
password protecting, 25
pivot tables, saving in, 497
references, relative, 683–685
references in conditional formatting,

520–521
schedule storage in, 352
SERIES formulas, referencing in, 442
types, 8
Visual Basic for Applications (VBA)

modules, as, 8

X
XDATE functions, 679
XIRR and XNPV functions.xls (on the

CD-ROM), 770
XIRR function, 325, 366–368, 723
.xla files, 617
xlErr constants, 686
XLM macro functions, 465
XLM macro language, 587
XLM macro sheets, 8, 10
.xls files, 7
XNPV function, 325, 366, 367–368, 723
xy sketch.xls (on the CD-ROM), 772

Y
YEAR function, 150, 151, 161, 719
YEARFRAC function, 150, 157, 719
YIELD function, 723
YIELDDISC function, 723
YIELDMAT function, 723

Z
zero

division by, 50, 564
number format manipulations involving,

746–747, 753–754
Zero values option, 184
Zip Code number format, 737, 739, 751
ZTEST function, 731

820 Index

4800-X Index.F 8/27/01 12:00 PM Page 820

4800-X Index.F 8/27/01 12:00 PM Page 821

Save $30.00!

Power Utility Pak 2000
“The Excel tools Microsoft forgot”

A $39.95 value. Yours for only $9.95.

PRO-QUALITY TOOLS
The PUP 2000 add-in is a dynamite collection of 50 general purpose Excel utili-
ties, plus 40 new worksheet functions. Download the trial version from the URL
listed below. If you like it, use this coupon to receive $30.00 off the normal price.

VBA SOURCE CODE IS AVAILABLE
You can also get the complete VBA source files for only $20.00. Learn how the
utilities and functions were written, and pick up useful tips and programming
techniques in the process. This is a must for all VBA programmers!

YES! Please send Power Utility Pak 2000 to...
Name: __

Company: __

Address: __

City: ____________________________________State: __________ Zip: ________

Daytime Phone:__E-mail: ________

Check one:
❑ PUP 2000 Licensed Version (only $9.95 + $4.00 s/h) . $13.95
❑ Developer’s Pak: Licensed Version ($9.95 + $4.00 s/h) + VBA Source

($20.00) $33.95

Delivery method:
❑ Send me the disk
❑ Send download instructions to my e-mail address (shipping/handling

fee still applies)

Credit Card No: ____________________________________Expires: __________

Make check or money order (U.S. funds only) payable to:
JWalk & Associates Inc.
P.O. Box 12861
La Jolla, CA 92039-2861

Download the latest version of PUP from: http://j-walk.com/ss/
• PUP 2000 is compatible with Excel 97, Excel 2000, and Excel 2002.

4800-X Coupons.F 8/27/01 12:00 PM Page 823

4800-X Coupons.F 8/27/01 12:00 PM Page 824

4800-X Index.F 8/27/01 12:00 PM Page 822

Hungry Minds, Inc.
End-User License Agreement
READ THIS. You should carefully read these terms and conditions before opening
the software packet(s) included with this book (“Book”). This is a license agreement
(“Agreement”) between you and Hungry Minds, Inc. (“HMI”). By opening the accom-
panying software packet(s), you acknowledge that you have read and accept the
following terms and conditions. If you do not agree and do not want to be bound by
such terms and conditions, promptly return the Book and the unopened software
packet(s) to the place you obtained them for a full refund.

1. License Grant. HMI grants to you (either an individual or entity) a non-
exclusive license to use one copy of the enclosed software program(s)
(collectively, the “Software”) solely for your own personal or business
purposes on a single computer (whether a standard computer or a work-
station component of a multi-user network). The Software is in use on a
computer when it is loaded into temporary memory (RAM) or installed
into permanent memory (hard disk, CD-ROM, or other storage device).
HMI reserves all rights not expressly granted herein.

2. Ownership. HMI is the owner of all right, title, and interest, including
copyright, in and to the compilation of the Software recorded on the
disk(s) or CD-ROM (“Software Media”). Copyright to the individual
programs recorded on the Software Media is owned by the author or other
authorized copyright owner of each program. Ownership of the Software
and all proprietary rights relating thereto remain with HMI and its
licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival
purposes, or (ii) transfer the Software to a single hard disk, provided
that you keep the original for backup or archival purposes. You may
not (i) rent or lease the Software, (ii) copy or reproduce the Software
through a LAN or other network system or through any computer
subscriber system or bulletin-board system, or (iii) modify, adapt, or
create derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software.
You may transfer the Software and user documentation on a permanent
basis, provided that the transferee agrees to accept the terms and
conditions of this Agreement and you retain no copies. If the Software
is an update or has been updated, any transfer must include the most
recent update and all prior versions.

825

4800-X EULA.F 8/27/01 12:00 PM Page 825

4. Restrictions on Use of Individual Programs. You must follow the individual
requirements and restrictions detailed for each individual program in
Appendix E of this Book. These limitations are also contained in the
individual license agreements recorded on the Software Media. These
limitations may include a requirement that after using the program for a
specified period of time, the user must pay a registration fee or discontinue
use. By opening the Software packet(s), you will be agreeing to abide by the
licenses and restrictions for these individual programs that are detailed in
Appendix E and on the Software Media. None of the material on this
Software Media or listed in this Book may ever be redistributed, in original
or modified form, for commercial purposes.

5. Limited Warranty.

(a) HMI warrants that the Software and Software Media are free from
defects in materials and workmanship under normal use for a period of
sixty (60) days from the date of purchase of this Book. If HMI receives
notification within the warranty period of defects in materials or
workmanship, HMI will replace the defective Software Media.

(b) HMI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT
LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE
SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED
THEREIN, AND/OR THE TECHNIQUES DESCRIBED IN THIS BOOK.
HMI DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE
OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have
other rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) HMI’s entire liability and your exclusive remedy for defects in materials
and workmanship shall be limited to replacement of the Software
Media, which may be returned to HMI with a copy of your receipt at
the following address: Software Media Fulfillment Department, Attn.:
Excel 2002 Formulas, Hungry Minds, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to
six weeks for delivery. This Limited Warranty is void if failure of the
Software Media has resulted from accident, abuse, or misapplication.
Any replacement Software Media will be warranted for the remainder
of the original warranty period or thirty (30) days, whichever is longer.

4800-X EULA.F 8/27/01 12:00 PM Page 826

(b) In no event shall HMI or the author be liable for any damages
whatsoever (including without limitation damages for loss of business
profits, business interruption, loss of business information, or any other
pecuniary loss) arising from the use of or inability to use the Book or
the Software, even if HMI has been advised of the possibility of such
damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of
liability for consequential or incidental damages, the above limitation
or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the
Software for or on behalf of the United States of America, its agencies
and/or instrumentalities (the “U.S. Government”) is subject to restrictions
as stated in paragraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013, or subparagraphs
(c) (1) and (2) of the Commercial Computer Software - Restricted Rights
clause at FAR 52.227-19, and in similar clauses in the NASA FAR
supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the
parties and revokes and supersedes all prior agreements, oral or written,
between them and may not be modified or amended except in a writing
signed by both parties hereto that specifically refers to this Agreement.
This Agreement shall take precedence over any other documents that may
be in conflict herewith. If any one or more provisions contained in this
Agreement are held by any court or tribunal to be invalid, illegal, or
otherwise unenforceable, each and every other provision shall remain in
full force and effect.

4800-X EULA.F 8/27/01 12:00 PM Page 827

CD ROM Installation Instructions
The CD-ROM that you find in the back of this book contains software for both
Macintosh and Windows 95/98/NT/ME/2000/XP users. You will need a copy of
Excel 2002 to use the examples and software on the CD-ROM. Read the “What’s on
the CD-ROM” appendix for complete information about the stuff on the CD-ROM.

Note: You do not need to install all the items on the CD-ROM. Just install the
programs that appeal to you.

To start the CD-ROM using Windows, follow these steps:

1. Insert the CD-ROM into your computer’s CD-ROM drive.

2. Launch Windows Explorer.

3. Click Browse to browse the CD. This enables you to access the author-
created files. (Note that you must save files to your hard drive if you make
changes.)

For detailed information about installing the demonstration programs from the
CD, please see the “What’s on the CD-ROM” appendix.

828

4800-X Install.F 8/27/01 12:00 PM Page 828

	Excel 2002 Formulas
	Front of Book
	Preface
	Acknowledgments
	Contents at a Glance
	Table of Contents

	Part I: Basic Information
	Chapter 1: Excel in a Nutshell
	The History of Excel
	The Object Model Concept
	The Workings of Workbooks
	Excel’s User Interface
	Cell Formatting
	Worksheet Formulas and Functions
	Objects on the Draw Layer
	Customization in Excel
	Analysis Tools
	Protection Options
	Summary

	Chapter 2: Basic Facts about Formulas
	Entering and Editing Formulas
	Using Operators in Formulas
	Calculating Formulas
	Cell and Range References
	Making an Exact Copy of a Formula
	Converting Formulas to Values
	Hiding Formulas
	Errors in Formulas
	Dealing with Circular References
	Goal Seeking
	Summary

	Chapter 3: Working with Names
	What’s in a Name?
	Methods for Creating Cell and Range Names
	Creating Multisheet Names
	A Name’s Scope
	Working with Range and Cell Names
	How Excel Maintains Cell and Range Names
	Potential Problems with Names
	The Secret to Understanding Names
	Advanced Techniques That Use Names
	Summary

	Part II: Using Functions in Your Formulas
	Chapter 4: Introducing Worksheet Functions
	What Is a Function?
	Function Argument Types
	Ways to Enter a Function into a Formula
	Function Categories
	Summary

	Chapter 5: Manipulating Text
	A Few Words about Text
	Text Functions
	Advanced Text Formulas
	Custom VBA Text Functions
	Summary

	Chapter 6: Working with Dates and Times
	How Excel Handles Dates and Times
	Date-Related Functions
	Time-Related Functions
	Summary

	Chapter 7: Counting and Summing Techniques
	Counting and Summing Worksheet Cells
	Counting or Summing Records in Databases and Pivot Tables
	Basic Counting Formulas
	Advanced Counting Formulas
	Summing Formulas
	Conditional Sums Using a Single Criterion
	Conditional Sums Using Multiple Criteria
	Using VBA Functions to Count and Sum
	Summary

	Chapter 8: Lookups
	What Is a Lookup Formula?
	Functions Relevant to Lookups
	Basic Lookup Formulas
	Specialized Lookup Formulas
	Summary

	Chapter 9: Databases and Lists
	Worksheet Lists or Databases
	Using AutoFiltering
	Using Advanced Filtering
	Specifying Advanced Filter Criteria
	Using Database Functions with Lists
	Summarizing a List with a Data Table
	Creating Subtotals
	Summary

	Chapter 10: Miscellaneous Calculations
	Unit Conversions
	Solving Right Triangles
	Area, Surface, Circumference, and Volume Calculations
	Solving Simultaneous Equations
	Rounding Numbers
	Summary

	Part III: Financial Formulas
	Chapter 11: Introducing Financial Formulas
	Excel’s Basic Financial Functions
	Signing of Money Flows Convention
	Accumulation, Discounting, and Amortization Functions
	Converting Interest Rates
	Effective Cost of Loans
	Calculating the Interest and Principal Components
	Matching Different Interest and Payment Frequencies
	Limitations of Excel’s Financial Functions
	Summary

	Chapter 12: Discounting and Depreciation Financial Functions
	Using the NPV Function
	Using the IRR Function
	Multiple Rates of IRR and the MIRR Function
	Using the FVSCHEDULE Function
	Depreciation Calculations
	Summary

	Chapter 13: Advanced Uses of Financial Functions and Formulas
	Creating Dynamic Financial Schedules
	Creating Amortization Schedules
	Summarizing Loan Options Using a Data Table
	Accumulation Schedules
	Discounted Cash Flow Schedules
	Credit Card Calculations
	XIRR and XNPV Functions
	Variable Rate Analysis
	Creating Indices
	Summary

	Part IV: Array Formulas
	Chapter 14: Introducing Arrays
	Introducing Array Formulas
	Understanding the Dimensions of an Array
	Naming Array Constants
	Working with Array Formulas
	Using Multicell Array Formulas
	Using Single-Cell Array Formulas
	Summary

	Chapter 15: Performing Magic with Array Formulas
	Working with Single-Cell Array Formulas
	Working with Multicell Array Formulas
	Returning an Array from a Custom VBA Function
	Summary

	Part V: Miscellaneous Formula Techniques
	Chapter 16: Intentional Circular References
	What Are Circular References?
	Intentional Circular References
	How Excel Determines Calculation and Iteration Settings
	Circular Reference Examples
	Potential Problems with Intentional Circular References
	Summary

	Chapter 17: Charting Techniques
	Representing Data in Charts
	Plotting Data Interactively
	Creating Awesome Designs
	Working with Trendlines
	Useful Chart Tricks
	Summary

	Chapter 18: Pivot Tables
	About Pivot Tables
	Creating a Pivot Table
	Grouping Pivot Table Items
	Creating a Calculated Field or Calculated Item
	Summary

	Chapter 19: Conditional Formatting and Data Validation
	Conditional Formatting
	Data Validation
	Summary

	Chapter 20: Creating Megaformulas
	What Is a Megaformula?
	Creating a Megaformula: A Simple Example
	The Pros and Cons of Megaformulas
	Summary

	Chapter 21: Tools and Methods for Debugging Formulas
	Formula Debugging?
	Formula Problems and Solutions
	Excel’s Auditing Tools
	Third-Party Auditing Tools
	Summary

	Part VI: Developing Custom Worksheet Functions
	Chapter 22: Introducing VBA
	About VBA
	Introducing the Visual Basic Editor
	Summary

	Chapter 23: Function Procedure Basics
	Why Create Custom Functions?
	An Introductory VBA Function Example
	About Function Procedures
	Using the Insert Function Dialog Box
	Testing and Debugging Your Functions
	Creating Add-Ins
	Summary

	Chapter 24: VBA Programming Concepts
	An Introductory Example Function Procedure
	Using Comments in Your Code
	Using Variables, Data Types, and Constants
	Using Assignment Expressions
	Using Arrays
	Using VBA’s Built-in Functions
	Controlling Execution
	Using Ranges
	Summary

	Chapter 25: VBA Custom Function Examples
	Simple Functions
	Determining a Cell’s Data Type
	A Multifunctional Function
	Generating Random Numbers
	Calculating Sales Commissions
	Text Manipulation Functions
	Counting and Summing Functions
	Date Functions
	Returning the Last Nonempty Cell in a Column or Row
	Multisheet Functions
	Advanced Function Techniques
	Summary

	Appendixes
	Appendix A :Working with Imported 1-2-3 Files
	About 1-2-3 Files
	Lotus 1-2-3 Formulas
	Lotus 1-2-3 Function Compatibility

	Appendix B: Excel Function Reference
	Excel Functions by Category

	Appendix C: Using Custom Number Formats
	About Number Formatting
	Creating a Custom Number Format

	Appendix D: Additional Excel Resources
	Microsoft Technical Support
	Internet Newsgroups
	Internet Web Sites

	Appendix E: What’s on the CD-ROM
	CD-ROM Overview
	Chapter Examples
	Power Utility Pak
	Sound-Proof 2000
	Electronic Version of Excel 2002 Formulas
	Adobe Acrobat Reader

	Index
	Symbols & Numbers
	A
	B - C
	D
	E
	F
	G - I
	J - K
	L
	M
	N
	O
	P
	Q - R
	S
	T
	U - V
	W
	X - Z

	Back of Book
	Save $30.00! Power Utility Pak 2000
	Hungry Minds, Inc. End-User License Agreement
	CD ROM Installation Instructions

